Motif 775 (n=880)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0B4J269 | None | S422 | ochoa | Melanocyte-stimulating hormone receptor (Melanocortin receptor 1) | Receptor for MSH (alpha, beta and gamma) and ACTH. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. Mediates melanogenesis, the production of eumelanin (black/brown) and phaeomelanin (red/yellow), via regulation of cAMP signaling in melanocytes. {ECO:0000256|ARBA:ARBA00023428}. |
A0FGR8 | ESYT2 | S513 | ochoa | Extended synaptotagmin-2 (E-Syt2) (Chr2Syt) | Tethers the endoplasmic reticulum to the cell membrane and promotes the formation of appositions between the endoplasmic reticulum and the cell membrane. Binds glycerophospholipids in a barrel-like domain and may play a role in cellular lipid transport. Plays a role in FGF signaling via its role in the rapid internalization of FGFR1 that has been activated by FGF1 binding; this occurs most likely via the AP-2 complex. Promotes the localization of SACM1L at endoplasmic reticulum-plasma membrane contact sites (EPCS) (PubMed:27044890). {ECO:0000269|PubMed:17360437, ECO:0000269|PubMed:20833364, ECO:0000269|PubMed:23791178, ECO:0000269|PubMed:24847877, ECO:0000269|PubMed:27044890}. |
A2VDJ0 | TMEM131L | S1212 | ochoa | Transmembrane protein 131-like | [Isoform 1]: Membrane-associated form that antagonizes canonical Wnt signaling by triggering lysosome-dependent degradation of Wnt-activated LRP6. Regulates thymocyte proliferation. {ECO:0000269|PubMed:23690469}. |
A6NI28 | ARHGAP42 | S587 | ochoa | Rho GTPase-activating protein 42 (Rho GTPase-activating protein 10-like) (Rho-type GTPase-activating protein 42) | May influence blood pressure by functioning as a GTPase-activating protein for RHOA in vascular smooth muscle. {ECO:0000269|PubMed:24335996}. |
A6NKT7 | RGPD3 | S1564 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A8MT19 | RHPN2P1 | S493 | ochoa | Putative rhophilin-2-like protein RHPN2P1 (Rhophilin-2 pseudogene 1) | None |
H3BQZ7 | HNRNPUL2-BSCL2 | S655 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | None |
O00151 | PDLIM1 | S250 | ochoa | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
O00160 | MYO1F | S922 | ochoa | Unconventional myosin-If (Myosin-Ie) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments (By similarity). {ECO:0000250}. |
O00186 | STXBP3 | S323 | ochoa | Syntaxin-binding protein 3 (Platelet Sec1 protein) (PSP) (Protein unc-18 homolog 3) (Unc18-3) (Protein unc-18 homolog C) (Unc-18C) | Together with STX4 and VAMP2, may play a role in insulin-dependent movement of GLUT4 and in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes. {ECO:0000250}. |
O00244 | ATOX1 | S47 | ochoa | Copper transport protein ATOX1 (Metal transport protein ATX1) | Binds and deliver cytosolic copper to the copper ATPase proteins. May be important in cellular antioxidant defense. |
O00311 | CDC7 | S509 | ochoa | Cell division cycle 7-related protein kinase (CDC7-related kinase) (HsCdc7) (huCdc7) (EC 2.7.11.1) | Kinase involved in initiation of DNA replication. Phosphorylates critical substrates that regulate the G1/S phase transition and initiation of DNA replication, such as MCM proteins and CLASPIN. {ECO:0000269|PubMed:12065429, ECO:0000269|PubMed:27401717}. |
O00533 | CHL1 | S1127 | ochoa | Neural cell adhesion molecule L1-like protein (Close homolog of L1) [Cleaved into: Processed neural cell adhesion molecule L1-like protein] | Extracellular matrix and cell adhesion protein that plays a role in nervous system development and in synaptic plasticity. Both soluble and membranous forms promote neurite outgrowth of cerebellar and hippocampal neurons and suppress neuronal cell death. Plays a role in neuronal positioning of pyramidal neurons and in regulation of both the number of interneurons and the efficacy of GABAergic synapses. May play a role in regulating cell migration in nerve regeneration and cortical development. Potentiates integrin-dependent cell migration towards extracellular matrix proteins. Recruits ANK3 to the plasma membrane (By similarity). {ECO:0000250}. |
O00567 | NOP56 | S151 | ochoa | Nucleolar protein 56 (Nucleolar protein 5A) | Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
O14640 | DVL1 | S51 | ochoa | Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) | Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ). |
O14654 | IRS4 | S777 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14715 | RGPD8 | S1563 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14777 | NDC80 | S76 | ochoa|psp | Kinetochore protein NDC80 homolog (Highly expressed in cancer protein) (Kinetochore protein Hec1) (HsHec1) (Kinetochore-associated protein 2) (Retinoblastoma-associated protein HEC) | Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity (PubMed:12351790, PubMed:14654001, PubMed:14699129, PubMed:15062103, PubMed:15235793, PubMed:15239953, PubMed:15548592, PubMed:16732327, PubMed:30409912, PubMed:9315664). Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore (PubMed:15548592, PubMed:30409912). The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules (PubMed:23085020). Plays a role in chromosome congression and is essential for the end-on attachment of the kinetochores to spindle microtubules (PubMed:23891108, PubMed:25743205). {ECO:0000269|PubMed:12351790, ECO:0000269|PubMed:14654001, ECO:0000269|PubMed:14699129, ECO:0000269|PubMed:15062103, ECO:0000269|PubMed:15235793, ECO:0000269|PubMed:15239953, ECO:0000269|PubMed:15548592, ECO:0000269|PubMed:16732327, ECO:0000269|PubMed:23085020, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:9315664}. |
O14936 | CASK | S314 | ochoa | Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) | Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}. |
O14983 | ATP2A1 | S186 | ochoa|psp | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (SERCA1) (SR Ca(2+)-ATPase 1) (EC 7.2.2.10) (Calcium pump 1) (Calcium-transporting ATPase sarcoplasmic reticulum type, fast twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) | Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction (PubMed:10914677). {ECO:0000250|UniProtKB:P04191, ECO:0000269|PubMed:10914677}. |
O15344 | MID1 | S311 | ochoa | E3 ubiquitin-protein ligase Midline-1 (EC 2.3.2.27) (Midin) (Putative transcription factor XPRF) (RING finger protein 59) (RING finger protein Midline-1) (RING-type E3 ubiquitin transferase Midline-1) (Tripartite motif-containing protein 18) | Has E3 ubiquitin ligase activity towards IGBP1, promoting its monoubiquitination, which results in deprotection of the catalytic subunit of protein phosphatase PP2A, and its subsequent degradation by polyubiquitination. {ECO:0000269|PubMed:10400985, ECO:0000269|PubMed:11685209, ECO:0000269|PubMed:22613722}. |
O15344 | MID1 | S513 | ochoa | E3 ubiquitin-protein ligase Midline-1 (EC 2.3.2.27) (Midin) (Putative transcription factor XPRF) (RING finger protein 59) (RING finger protein Midline-1) (RING-type E3 ubiquitin transferase Midline-1) (Tripartite motif-containing protein 18) | Has E3 ubiquitin ligase activity towards IGBP1, promoting its monoubiquitination, which results in deprotection of the catalytic subunit of protein phosphatase PP2A, and its subsequent degradation by polyubiquitination. {ECO:0000269|PubMed:10400985, ECO:0000269|PubMed:11685209, ECO:0000269|PubMed:22613722}. |
O15350 | TP73 | S166 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15381 | NVL | S180 | ochoa | Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) | Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}. |
O15400 | STX7 | S81 | ochoa | Syntaxin-7 | May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. |
O43167 | ZBTB24 | S523 | ochoa | Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) | May be involved in BMP2-induced transcription. {ECO:0000250}. |
O43314 | PPIP5K2 | S646 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43314 | PPIP5K2 | S788 | ochoa | Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) | Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}. |
O43353 | RIPK2 | S393 | ochoa | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43353 | RIPK2 | S401 | ochoa | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43488 | AKR7A2 | S255 | ochoa | Aflatoxin B1 aldehyde reductase member 2 (EC 1.1.1.n11) (AFB1 aldehyde reductase 1) (AFB1-AR 1) (Aldoketoreductase 7) (Succinic semialdehyde reductase) (SSA reductase) | Catalyzes the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate. May have an important role in producing the neuromodulator gamma-hydroxybutyrate (GHB). Has broad substrate specificity. Has NADPH-dependent aldehyde reductase activity towards 2-carboxybenzaldehyde, 2-nitrobenzaldehyde and pyridine-2-aldehyde (in vitro). Can reduce 1,2-naphthoquinone and 9,10-phenanthrenequinone (in vitro). Can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in protection of liver against the toxic and carcinogenic effects of AFB1, a potent hepatocarcinogen. {ECO:0000269|PubMed:17591773, ECO:0000269|PubMed:9576847}. |
O43663 | PRC1 | S501 | ochoa | Protein regulator of cytokinesis 1 | Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}. |
O43663 | PRC1 | S563 | ochoa | Protein regulator of cytokinesis 1 | Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}. |
O43707 | ACTN4 | S621 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O43707 | ACTN4 | S642 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O60218 | AKR1B10 | S118 | ochoa | Aldo-keto reductase family 1 member B10 (EC 1.1.1.300) (EC 1.1.1.54) (ARL-1) (Aldose reductase-like) (Aldose reductase-related protein) (ARP) (hARP) (Small intestine reductase) (SI reductase) | Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols (PubMed:12732097, PubMed:18087047, PubMed:19013440, PubMed:19563777, PubMed:9565553). Displays strong enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (PubMed:12732097, PubMed:18087047). Plays a critical role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (PubMed:19013440, PubMed:19563777). Displays no reductase activity towards glucose (PubMed:12732097). {ECO:0000269|PubMed:12732097, ECO:0000269|PubMed:18087047, ECO:0000269|PubMed:19013440, ECO:0000269|PubMed:19563777, ECO:0000269|PubMed:9565553}. |
O60231 | DHX16 | S715 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) | Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}. |
O60260 | PRKN | S65 | psp | E3 ubiquitin-protein ligase parkin (Parkin) (EC 2.3.2.31) (Parkin RBR E3 ubiquitin-protein ligase) (Parkinson juvenile disease protein 2) (Parkinson disease protein 2) | Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:10888878, PubMed:10973942, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:15105460, PubMed:16135753, PubMed:21376232, PubMed:21532592, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:24660806, PubMed:24751536, PubMed:29311685, PubMed:32047033). Substrates include SYT11 and VDAC1 (PubMed:29311685, PubMed:32047033). Other substrates are BCL2, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746, MIRO1 and AIMP2 (PubMed:10888878, PubMed:10973942, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:15105460, PubMed:16135753, PubMed:21376232, PubMed:21532592, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:24660806, PubMed:24751536). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context (PubMed:19229105, PubMed:20889974, PubMed:25474007, PubMed:25621951, PubMed:32047033). Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation (PubMed:17846173, PubMed:19229105). Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation (PubMed:11431533, PubMed:11590439, PubMed:15105460, PubMed:15728840, PubMed:19229105). Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy (PubMed:20889974). Protects against mitochondrial dysfunction during cellular stress, by acting downstream of PINK1 to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components (PubMed:11439185, PubMed:18957282, PubMed:19029340, PubMed:19966284, PubMed:21376232, PubMed:22082830, PubMed:22396657, PubMed:23620051, PubMed:23933751, PubMed:24660806, PubMed:24784582, PubMed:24896179, PubMed:25474007, PubMed:25527291, PubMed:32047033). Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy (PubMed:11439185, PubMed:19029340, PubMed:19801972, PubMed:19966284, PubMed:21376232, PubMed:22082830, PubMed:22396657, PubMed:23620051, PubMed:23685073, PubMed:23933751, PubMed:24896179, PubMed:25527291, PubMed:32047033, PubMed:33499712). Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires PINK1-mediated phosphorylation of both PRKN and ubiquitin (PubMed:24660806, PubMed:24784582, PubMed:25474007, PubMed:25527291). After mitochondrial damage, functions with PINK1 to mediate the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of VDAC1, respectively; polyubiquitination of VDAC1 promotes mitophagy, while monoubiquitination of VDAC1 decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:27534820, PubMed:32047033). When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1, MFN1 and USP30 (PubMed:19029340, PubMed:19966284, PubMed:21753002, PubMed:22396657, PubMed:23620051, PubMed:23685073, PubMed:23933751, PubMed:24896179, PubMed:25527291). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains, leading to mitophagy (PubMed:25621951, PubMed:32047033). The PINK1-PRKN pathway also promotes fission of damaged mitochondria by PINK1-mediated phosphorylation which promotes the PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2 (PubMed:23620051). This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed:23620051). Regulates motility of damaged mitochondria via the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma (PubMed:22396657). Involved in mitochondrial biogenesis via the 'Lys-48'-linked polyubiquitination of transcriptional repressor ZNF746/PARIS which leads to its subsequent proteasomal degradation and allows activation of the transcription factor PPARGC1A (PubMed:21376232). Limits the production of reactive oxygen species (ROS) (PubMed:18541373). Regulates cyclin-E during neuronal apoptosis (PubMed:12628165). In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress (PubMed:22082830). Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53 (PubMed:19801972). May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity (PubMed:11439185). May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene (PubMed:12719539). {ECO:0000269|PubMed:10888878, ECO:0000269|PubMed:10973942, ECO:0000269|PubMed:11431533, ECO:0000269|PubMed:11439185, ECO:0000269|PubMed:11590439, ECO:0000269|PubMed:12150907, ECO:0000269|PubMed:12628165, ECO:0000269|PubMed:12719539, ECO:0000269|PubMed:15105460, ECO:0000269|PubMed:15728840, ECO:0000269|PubMed:16135753, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18541373, ECO:0000269|PubMed:18957282, ECO:0000269|PubMed:19029340, ECO:0000269|PubMed:19229105, ECO:0000269|PubMed:19801972, ECO:0000269|PubMed:19966284, ECO:0000269|PubMed:20889974, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:21532592, ECO:0000269|PubMed:21753002, ECO:0000269|PubMed:22082830, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:23620051, ECO:0000269|PubMed:23685073, ECO:0000269|PubMed:23754282, ECO:0000269|PubMed:23933751, ECO:0000269|PubMed:24660806, ECO:0000269|PubMed:24751536, ECO:0000269|PubMed:24784582, ECO:0000269|PubMed:24896179, ECO:0000269|PubMed:25474007, ECO:0000269|PubMed:25527291, ECO:0000269|PubMed:25621951, ECO:0000269|PubMed:27534820, ECO:0000269|PubMed:29311685, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:33499712}. |
O60271 | SPAG9 | S594 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60563 | CCNT1 | S563 | ochoa | Cyclin-T1 (CycT1) (Cyclin-T) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}. |
O60716 | CTNND1 | S895 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60832 | DKC1 | S420 | ochoa | H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) | [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}. |
O60928 | KCNJ13 | S201 | psp | Inward rectifier potassium channel 13 (Inward rectifier K(+) channel Kir7.1) (Potassium channel, inwardly rectifying subfamily J member 13) | Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. KCNJ13 has a very low single channel conductance, low sensitivity to block by external barium and cesium, and no dependence of its inward rectification properties on the internal blocking particle magnesium. {ECO:0000269|PubMed:9620703, ECO:0000269|PubMed:9738472}. |
O75152 | ZC3H11A | S452 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75363 | BCAS1 | S330 | ochoa | Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) | Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}. |
O75369 | FLNB | S2487 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75376 | NCOR1 | S1383 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75410 | TACC1 | S476 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75469 | NR1I2 | S221 | psp | Nuclear receptor subfamily 1 group I member 2 (Orphan nuclear receptor PAR1) (Orphan nuclear receptor PXR) (Pregnane X receptor) (Steroid and xenobiotic receptor) (SXR) | Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes. {ECO:0000269|PubMed:11297522, ECO:0000269|PubMed:11668216, ECO:0000269|PubMed:12578355, ECO:0000269|PubMed:18768384, ECO:0000269|PubMed:19297428, ECO:0000269|PubMed:9727070}. |
O75792 | RNASEH2A | S208 | psp | Ribonuclease H2 subunit A (RNase H2 subunit A) (EC 3.1.26.4) (Aicardi-Goutieres syndrome 4 protein) (AGS4) (RNase H(35)) (Ribonuclease HI large subunit) (RNase HI large subunit) (Ribonuclease HI subunit A) | Catalytic subunit of RNase HII, an endonuclease that specifically degrades the RNA of RNA:DNA hybrids. Participates in DNA replication, possibly by mediating the removal of lagging-strand Okazaki fragment RNA primers during DNA replication. Mediates the excision of single ribonucleotides from DNA:RNA duplexes. {ECO:0000269|PubMed:16845400, ECO:0000269|PubMed:21177858}. |
O75881 | CYP7B1 | S124 | ochoa | Cytochrome P450 7B1 (24-hydroxycholesterol 7-alpha-hydroxylase) (EC 1.14.14.26) (25/26-hydroxycholesterol 7-alpha-hydroxylase) (EC 1.14.14.29) (3-hydroxysteroid 7-alpha hydroxylase) (Oxysterol 7-alpha-hydroxylase) | A cytochrome P450 monooxygenase involved in the metabolism of endogenous oxysterols and steroid hormones, including neurosteroids (PubMed:10588945, PubMed:24491228). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase) (PubMed:10588945, PubMed:24491228). Catalyzes the hydroxylation of carbon hydrogen bonds of steroids with a preference for 7-alpha position (PubMed:10588945, PubMed:24491228). Usually metabolizes steroids carrying a hydroxy group at position 3, functioning as a 3-hydroxy steroid 7-alpha hydroxylase (PubMed:24491228). Hydroxylates oxysterols, including 25-hydroxycholesterol and (25R)-cholest-5-ene-3beta,26-diol toward 7-alpha hydroxy derivatives, which may be transported to the liver and converted to bile acids (PubMed:10588945, PubMed:9802883). Via its product 7-alpha,25-dihydroxycholesterol, a ligand for the chemotactic G protein-coupled receptor GPR183/EBI2, regulates B cell migration in germinal centers of lymphoid organs, thus guiding efficient maturation of plasma B cells and overall antigen-specific humoral immune response (By similarity). 7-alpha hydroxylates neurosteroids, including 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone) and pregnenolone, both involved in hippocampus-associated memory and learning (PubMed:24491228). Metabolizes androstanoids toward 6- or 7-alpha hydroxy derivatives (PubMed:24491228). {ECO:0000250|UniProtKB:Q60991, ECO:0000269|PubMed:10588945, ECO:0000269|PubMed:24491228, ECO:0000269|PubMed:9802883}. |
O75962 | TRIO | S2671 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94782 | USP1 | S350 | ochoa | Ubiquitin carboxyl-terminal hydrolase 1 (EC 3.4.19.12) (Deubiquitinating enzyme 1) (hUBP) (Ubiquitin thioesterase 1) (Ubiquitin-specific-processing protease 1) [Cleaved into: Ubiquitin carboxyl-terminal hydrolase 1, N-terminal fragment] | Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2 (PubMed:15694335). Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:16531995, PubMed:20147293). Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a high activity (PubMed:18082604, PubMed:26388029). {ECO:0000269|PubMed:15694335, ECO:0000269|PubMed:16531995, ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:26388029}. |
O94832 | MYO1D | S298 | ochoa | Unconventional myosin-Id | Unconventional myosin that functions as actin-based motor protein with ATPase activity (By similarity). Plays a role in endosomal protein trafficking, and especially in the transfer of cargo proteins from early to recycling endosomes (By similarity). Required for normal planar cell polarity in ciliated tracheal cells, for normal rotational polarity of cilia, and for coordinated, unidirectional ciliary movement in the trachea. Required for normal, polarized cilia organization in brain ependymal epithelial cells (By similarity). {ECO:0000250|UniProtKB:F1PRN2, ECO:0000250|UniProtKB:Q63357}. |
O94832 | MYO1D | S971 | ochoa | Unconventional myosin-Id | Unconventional myosin that functions as actin-based motor protein with ATPase activity (By similarity). Plays a role in endosomal protein trafficking, and especially in the transfer of cargo proteins from early to recycling endosomes (By similarity). Required for normal planar cell polarity in ciliated tracheal cells, for normal rotational polarity of cilia, and for coordinated, unidirectional ciliary movement in the trachea. Required for normal, polarized cilia organization in brain ependymal epithelial cells (By similarity). {ECO:0000250|UniProtKB:F1PRN2, ECO:0000250|UniProtKB:Q63357}. |
O94875 | SORBS2 | S207 | psp | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94956 | SLCO2B1 | S34 | ochoa | Solute carrier organic anion transporter family member 2B1 (Organic anion transporter B) (OATP-B) (Organic anion transporter polypeptide-related protein 2) (OATP-RP2) (OATPRP2) (Organic anion transporting polypeptide 2B1) (OATP2B1) (Solute carrier family 21 member 9) | Mediates the Na(+)-independent transport of steroid sulfate conjugates and other specific organic anions (PubMed:10873595, PubMed:11159893, PubMed:11932330, PubMed:12724351, PubMed:14610227, PubMed:16908597, PubMed:18501590, PubMed:20507927, PubMed:22201122, PubMed:23531488, PubMed:25132355, PubMed:26383540, PubMed:27576593, PubMed:28408210, PubMed:29871943, PubMed:34628357). Responsible for the transport of estrone 3-sulfate (E1S) through the basal membrane of syncytiotrophoblast, highlighting a potential role in the placental absorption of fetal-derived sulfated steroids including the steroid hormone precursor dehydroepiandrosterone sulfate (DHEA-S) (PubMed:11932330, PubMed:12409283). Also facilitates the uptake of sulfated steroids at the basal/sinusoidal membrane of hepatocytes, therefore accounting for the major part of organic anions clearance of liver (PubMed:11159893). Mediates the intestinal uptake of sulfated steroids (PubMed:12724351, PubMed:28408210). Mediates the uptake of the neurosteroids DHEA-S and pregnenolone sulfate (PregS) into the endothelial cells of the blood-brain barrier as the first step to enter the brain (PubMed:16908597, PubMed:25132355). Also plays a role in the reuptake of neuropeptides such as substance P/TAC1 and vasoactive intestinal peptide/VIP released from retinal neurons (PubMed:25132355). May act as a heme transporter that promotes cellular iron availability via heme oxygenase/HMOX2 and independently of TFRC (PubMed:35714613). Also transports heme by-product coproporphyrin III (CPIII), and may be involved in their hepatic disposition (PubMed:26383540). Mediates the uptake of other substrates such as prostaglandins D2 (PGD2), E1 (PGE1) and E2 (PGE2), taurocholate, L-thyroxine, leukotriene C4 and thromboxane B2 (PubMed:10873595, PubMed:14610227, PubMed:19129463, PubMed:29871943, Ref.25). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable). Shows a pH-sensitive substrate specificity which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:14610227, PubMed:19129463, PubMed:22201122). The exact transport mechanism has not been yet deciphered but most likely involves an anion exchange, coupling the cellular uptake of organic substrate with the efflux of an anionic compound (PubMed:19129463, PubMed:20507927, PubMed:26277985). Hydrogencarbonate/HCO3(-) acts as a probable counteranion that exchanges for organic anions (PubMed:19129463). Cytoplasmic glutamate may also act as counteranion in the placenta (PubMed:26277985). An inwardly directed proton gradient has also been proposed as the driving force of E1S uptake with a (H(+):E1S) stoichiometry of (1:1) (PubMed:20507927). {ECO:0000269|PubMed:10873595, ECO:0000269|PubMed:11159893, ECO:0000269|PubMed:11932330, ECO:0000269|PubMed:12409283, ECO:0000269|PubMed:12724351, ECO:0000269|PubMed:14610227, ECO:0000269|PubMed:16908597, ECO:0000269|PubMed:18501590, ECO:0000269|PubMed:19129463, ECO:0000269|PubMed:20507927, ECO:0000269|PubMed:22201122, ECO:0000269|PubMed:23531488, ECO:0000269|PubMed:25132355, ECO:0000269|PubMed:26277985, ECO:0000269|PubMed:26383540, ECO:0000269|PubMed:27576593, ECO:0000269|PubMed:29871943, ECO:0000269|PubMed:34628357, ECO:0000269|PubMed:35714613, ECO:0000269|Ref.25, ECO:0000305|PubMed:35307651}.; FUNCTION: [Isoform 3]: Has estrone 3-sulfate (E1S) transport activity comparable with the full-length isoform 1. {ECO:0000269|PubMed:23531488}. |
O95243 | MBD4 | S165 | psp | Methyl-CpG-binding domain protein 4 (EC 3.2.2.-) (Methyl-CpG-binding endonuclease 1) (Methyl-CpG-binding protein MBD4) (Mismatch-specific DNA N-glycosylase) | Mismatch-specific DNA N-glycosylase involved in DNA repair. Has thymine glycosylase activity and is specific for G:T mismatches within methylated and unmethylated CpG sites. Can also remove uracil or 5-fluorouracil in G:U mismatches. Has no lyase activity. Was first identified as methyl-CpG-binding protein. {ECO:0000269|PubMed:10097147, ECO:0000269|PubMed:10930409}. |
O95251 | KAT7 | S216 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95425 | SVIL | S296 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95470 | SGPL1 | S104 | ochoa | Sphingosine-1-phosphate lyase 1 (S1PL) (SP-lyase 1) (SPL 1) (hSPL) (EC 4.1.2.27) (Sphingosine-1-phosphate aldolase) | Cleaves phosphorylated sphingoid bases (PSBs), such as sphingosine-1-phosphate, into fatty aldehydes and phosphoethanolamine. Elevates stress-induced ceramide production and apoptosis (PubMed:11018465, PubMed:14570870, PubMed:24809814, PubMed:28165339). Required for global lipid homeostasis in liver and cholesterol homeostasis in fibroblasts. Involved in the regulation of pro-inflammatory response and neutrophil trafficking. Modulates neuronal autophagy via phosphoethanolamine production which regulates accumulation of aggregate-prone proteins such as APP (By similarity). Seems to play a role in establishing neuronal contact sites and axonal maintenance (By similarity). {ECO:0000250|UniProtKB:Q8R0X7, ECO:0000250|UniProtKB:Q9V7Y2, ECO:0000269|PubMed:11018465, ECO:0000269|PubMed:14570870, ECO:0000269|PubMed:24809814, ECO:0000269|PubMed:28165339}. |
O95671 | ASMTL | S223 | ochoa | Probable bifunctional dTTP/UTP pyrophosphatase/methyltransferase protein [Includes: dTTP/UTP pyrophosphatase (dTTPase/UTPase) (EC 3.6.1.9) (Nucleoside triphosphate pyrophosphatase) (Nucleotide pyrophosphatase) (Nucleotide PPase); N-acetylserotonin O-methyltransferase-like protein (ASMTL) (EC 2.1.1.-)] | Nucleoside triphosphate pyrophosphatase that hydrolyzes dTTP and UTP. Can also hydrolyze CTP and the modified nucleotides pseudo-UTP, 5-methyl-UTP (m(5)UTP) and 5-methyl-CTP (m(5)CTP). Has weak activity with dCTP, 8-oxo-GTP and N(4)-methyl-dCTP (PubMed:24210219). May have a dual role in cell division arrest and in preventing the incorporation of modified nucleotides into cellular nucleic acids (PubMed:24210219). In addition, the presence of the putative catalytic domain of S-adenosyl-L-methionine binding in the C-terminal region argues for a methyltransferase activity (Probable). {ECO:0000269|PubMed:24210219, ECO:0000305}. |
O95721 | SNAP29 | S114 | ochoa | Synaptosomal-associated protein 29 (SNAP-29) (Soluble 29 kDa NSF attachment protein) (Vesicle-membrane fusion protein SNAP-29) | SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. SNAP29 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane. Also plays a role in ciliogenesis by regulating membrane fusions. {ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:25686604}. |
O95757 | HSPA4L | S517 | ochoa | Heat shock 70 kDa protein 4L (Heat shock 70-related protein APG-1) (Heat shock protein family H member 3) (Heat-shock protein family A member 4-like protein) (HSPA4-like protein) (Osmotic stress protein 94) | Possesses chaperone activity in vitro where it inhibits aggregation of citrate synthase. {ECO:0000250}. |
O95831 | AIFM1 | S249 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
O96019 | ACTL6A | S51 | ochoa | Actin-like protein 6A (53 kDa BRG1-associated factor A) (Actin-related protein Baf53a) (ArpNbeta) (BRG1-associated factor 53A) (BAF53A) (INO80 complex subunit K) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000250|UniProtKB:Q9Z2N8, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:15196461, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O96028 | NSD2 | S421 | ochoa | Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) | Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}. |
P00533 | EGFR | S229 | psp | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P00558 | PGK1 | S399 | ochoa | Phosphoglycerate kinase 1 (EC 2.7.11.1) (EC 2.7.2.3) (Cell migration-inducing gene 10 protein) (Primer recognition protein 2) (PRP 2) | Catalyzes one of the two ATP producing reactions in the glycolytic pathway via the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate (PubMed:30323285, PubMed:7391028). Both L- and D- forms of purine and pyrimidine nucleotides can be used as substrates, but the activity is much lower on pyrimidines (PubMed:18463139). In addition to its role as a glycolytic enzyme, it seems that PGK1 acts as a polymerase alpha cofactor protein (primer recognition protein) (PubMed:2324090). Acts as a protein kinase when localized to the mitochondrion where it phosphorylates pyruvate dehydrogenase kinase PDK1 to inhibit pyruvate dehydrogenase complex activity and suppress the formation of acetyl-coenzyme A from pyruvate, and consequently inhibit oxidative phosphorylation and promote glycolysis (PubMed:26942675, PubMed:36849569). May play a role in sperm motility (PubMed:26677959). {ECO:0000269|PubMed:18463139, ECO:0000269|PubMed:2324090, ECO:0000269|PubMed:26677959, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:30323285, ECO:0000269|PubMed:36849569, ECO:0000269|PubMed:7391028}. |
P00918 | CA2 | S165 | ochoa | Carbonic anhydrase 2 (EC 4.2.1.1) (Carbonate dehydratase II) (Carbonic anhydrase C) (CAC) (Carbonic anhydrase II) (CA-II) (Cyanamide hydratase CA2) (EC 4.2.1.69) | Catalyzes the reversible hydration of carbon dioxide (PubMed:11327835, PubMed:11802772, PubMed:11831900, PubMed:12056894, PubMed:12171926, PubMed:1336460, PubMed:14736236, PubMed:15300855, PubMed:15453828, PubMed:15667203, PubMed:15865431, PubMed:16106378, PubMed:16214338, PubMed:16290146, PubMed:16686544, PubMed:16759856, PubMed:16807956, PubMed:17127057, PubMed:17251017, PubMed:17314045, PubMed:17330962, PubMed:17346964, PubMed:17540563, PubMed:17588751, PubMed:17705204, PubMed:18024029, PubMed:18162396, PubMed:18266323, PubMed:18374572, PubMed:18481843, PubMed:18618712, PubMed:18640037, PubMed:18942852, PubMed:1909891, PubMed:1910042, PubMed:19170619, PubMed:19186056, PubMed:19206230, PubMed:19520834, PubMed:19778001, PubMed:7761440, PubMed:7901850, PubMed:8218160, PubMed:8262987, PubMed:8399159, PubMed:8451242, PubMed:8485129, PubMed:8639494, PubMed:9265618, PubMed:9398308). Can also hydrate cyanamide to urea (PubMed:10550681, PubMed:11015219). Stimulates the chloride-bicarbonate exchange activity of SLC26A6 (PubMed:15990874). Essential for bone resorption and osteoclast differentiation (PubMed:15300855). Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. {ECO:0000269|PubMed:10550681, ECO:0000269|PubMed:11015219, ECO:0000269|PubMed:11327835, ECO:0000269|PubMed:11802772, ECO:0000269|PubMed:11831900, ECO:0000269|PubMed:12056894, ECO:0000269|PubMed:12171926, ECO:0000269|PubMed:1336460, ECO:0000269|PubMed:14736236, ECO:0000269|PubMed:15300855, ECO:0000269|PubMed:15453828, ECO:0000269|PubMed:15667203, ECO:0000269|PubMed:15865431, ECO:0000269|PubMed:15990874, ECO:0000269|PubMed:16106378, ECO:0000269|PubMed:16214338, ECO:0000269|PubMed:16290146, ECO:0000269|PubMed:16686544, ECO:0000269|PubMed:16759856, ECO:0000269|PubMed:16807956, ECO:0000269|PubMed:17127057, ECO:0000269|PubMed:17251017, ECO:0000269|PubMed:17314045, ECO:0000269|PubMed:17330962, ECO:0000269|PubMed:17346964, ECO:0000269|PubMed:17540563, ECO:0000269|PubMed:17588751, ECO:0000269|PubMed:17705204, ECO:0000269|PubMed:18024029, ECO:0000269|PubMed:18162396, ECO:0000269|PubMed:18266323, ECO:0000269|PubMed:18374572, ECO:0000269|PubMed:18481843, ECO:0000269|PubMed:18618712, ECO:0000269|PubMed:18640037, ECO:0000269|PubMed:18942852, ECO:0000269|PubMed:1909891, ECO:0000269|PubMed:1910042, ECO:0000269|PubMed:19170619, ECO:0000269|PubMed:19186056, ECO:0000269|PubMed:19206230, ECO:0000269|PubMed:19520834, ECO:0000269|PubMed:19778001, ECO:0000269|PubMed:7761440, ECO:0000269|PubMed:7901850, ECO:0000269|PubMed:8218160, ECO:0000269|PubMed:8262987, ECO:0000269|PubMed:8399159, ECO:0000269|PubMed:8451242, ECO:0000269|PubMed:8485129, ECO:0000269|PubMed:8639494, ECO:0000269|PubMed:9265618, ECO:0000269|PubMed:9398308}. |
P02652 | APOA2 | S68 | ochoa | Apolipoprotein A-II (Apo-AII) (ApoA-II) (Apolipoprotein A2) [Cleaved into: Proapolipoprotein A-II (ProapoA-II); Truncated apolipoprotein A-II (Apolipoprotein A-II(1-76))] | May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. |
P02794 | FTH1 | S164 | ochoa | Ferritin heavy chain (Ferritin H subunit) (EC 1.16.3.1) (Cell proliferation-inducing gene 15 protein) [Cleaved into: Ferritin heavy chain, N-terminally processed] | Stores iron in a soluble, non-toxic, readily available form. Important for iron homeostasis. Has ferroxidase activity (PubMed:9003196). Iron is taken up in the ferrous form and deposited as ferric hydroxides after oxidation (PubMed:9003196). Also plays a role in delivery of iron to cells (By similarity). Mediates iron uptake in capsule cells of the developing kidney (By similarity). Delivery to lysosomes is mediated by the cargo receptor NCOA4 for autophagic degradation and release of iron (PubMed:24695223, PubMed:26436293). {ECO:0000250|UniProtKB:P09528, ECO:0000269|PubMed:24695223, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:9003196}. |
P04083 | ANXA1 | S46 | ochoa | Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35) [Cleaved into: Annexin Ac2-26] | Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed:17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into Th2 cells (PubMed:17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed:19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity). {ECO:0000250|UniProtKB:P10107, ECO:0000250|UniProtKB:P19619, ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:19625660, ECO:0000269|PubMed:2532504, ECO:0000269|PubMed:2936963, ECO:0000269|PubMed:8425544, ECO:0000269|PubMed:8557678}.; FUNCTION: [Annexin Ac2-26]: Functions at least in part by activating the formyl peptide receptors and downstream signaling cascades (PubMed:15187149, PubMed:22879591, PubMed:25664854). Promotes chemotaxis of granulocytes and monocytes via activation of the formyl peptide receptors (PubMed:15187149). Promotes rearrangement of the actin cytoskeleton, cell polarization and cell migration (PubMed:15187149). Promotes resolution of inflammation and wound healing (PubMed:25664854). Acts via neutrophil N-formyl peptide receptors to enhance the release of CXCL2 (PubMed:22879591). {ECO:0000269|PubMed:15187149, ECO:0000269|PubMed:22879591, ECO:0000269|PubMed:25664854}. |
P04406 | GAPDH | S288 | ochoa | Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) | Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}. |
P04637 | TP53 | S149 | ochoa|psp | Cellular tumor antigen p53 (Antigen NY-CO-13) (Phosphoprotein p53) (Tumor suppressor p53) | Multifunctional transcription factor that induces cell cycle arrest, DNA repair or apoptosis upon binding to its target DNA sequence (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:35618207, PubMed:36634798, PubMed:38653238, PubMed:9840937). Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17189187, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:38653238, PubMed:9840937). Negatively regulates cell division by controlling expression of a set of genes required for this process (PubMed:11025664, PubMed:12524540, PubMed:12810724, PubMed:15186775, PubMed:15340061, PubMed:17317671, PubMed:17349958, PubMed:19556538, PubMed:20673990, PubMed:20959462, PubMed:22726440, PubMed:24051492, PubMed:24652652, PubMed:9840937). One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression (PubMed:12524540, PubMed:17189187). Its pro-apoptotic activity is activated via its interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 (PubMed:12524540). However, this activity is inhibited when the interaction with PPP1R13B/ASPP1 or TP53BP2/ASPP2 is displaced by PPP1R13L/iASPP (PubMed:12524540). In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; the function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seems to have an effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis. Regulates the circadian clock by repressing CLOCK-BMAL1-mediated transcriptional activation of PER2 (PubMed:24051492). {ECO:0000269|PubMed:11025664, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15340061, ECO:0000269|PubMed:17189187, ECO:0000269|PubMed:17317671, ECO:0000269|PubMed:17349958, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:20959462, ECO:0000269|PubMed:22726440, ECO:0000269|PubMed:24051492, ECO:0000269|PubMed:24652652, ECO:0000269|PubMed:35618207, ECO:0000269|PubMed:36634798, ECO:0000269|PubMed:38653238, ECO:0000269|PubMed:9840937}. |
P05023 | ATP1A1 | S371 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P05067 | APP | S679 | psp | Amyloid-beta precursor protein (APP) (ABPP) (APPI) (Alzheimer disease amyloid A4 protein homolog) (Alzheimer disease amyloid protein) (Amyloid precursor protein) (Amyloid-beta (A4) precursor protein) (Amyloid-beta A4 protein) (Cerebral vascular amyloid peptide) (CVAP) (PreA4) (Protease nexin-II) (PN-II) [Cleaved into: N-APP; Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99 (Beta-secretase C-terminal fragment) (Beta-CTF); Amyloid-beta protein 42 (Abeta42) (Beta-APP42); Amyloid-beta protein 40 (Abeta40) (Beta-APP40); C83 (Alpha-secretase C-terminal fragment) (Alpha-CTF); P3(42); P3(40); C80; Gamma-secretase C-terminal fragment 59 (Amyloid intracellular domain 59) (AICD-59) (AID(59)) (Gamma-CTF(59)); Gamma-secretase C-terminal fragment 57 (Amyloid intracellular domain 57) (AICD-57) (AID(57)) (Gamma-CTF(57)); Gamma-secretase C-terminal fragment 50 (Amyloid intracellular domain 50) (AICD-50) (AID(50)) (Gamma-CTF(50)); C31] | Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis (PubMed:25122912). Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). By acting as a kinesin I membrane receptor, plays a role in axonal anterograde transport of cargo towards synapses in axons (PubMed:17062754, PubMed:23011729). Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1. {ECO:0000250, ECO:0000250|UniProtKB:P12023, ECO:0000269|PubMed:17062754, ECO:0000269|PubMed:23011729, ECO:0000269|PubMed:25122912}.; FUNCTION: Amyloid-beta peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Amyloid-beta peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.; FUNCTION: [Amyloid-beta protein 42]: More effective reductant than amyloid-beta protein 40. May activate mononuclear phagocytes in the brain and elicit inflammatory responses.; FUNCTION: Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain. {ECO:0000250}.; FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. |
P06746 | POLB | S44 | psp | DNA polymerase beta (EC 2.7.7.7) (5'-deoxyribose-phosphate lyase) (5'-dRP lyase) (EC 4.2.99.-) (AP lyase) (EC 4.2.99.18) | Repair polymerase that plays a key role in base-excision repair (PubMed:10556592, PubMed:9207062, PubMed:9572863). During this process, the damaged base is excised by specific DNA glycosylases, the DNA backbone is nicked at the abasic site by an apurinic/apyrimidic (AP) endonuclease, and POLB removes 5'-deoxyribose-phosphate from the preincised AP site acting as a 5'-deoxyribose-phosphate lyase (5'-dRP lyase); through its DNA polymerase activity, it adds one nucleotide to the 3' end of the arising single-nucleotide gap (PubMed:10556592, PubMed:17526740, PubMed:9556598, PubMed:9572863, PubMed:9614142). Conducts 'gap-filling' DNA synthesis in a stepwise distributive fashion rather than in a processive fashion as for other DNA polymerases. It is also able to cleave sugar-phosphate bonds 3' to an intact AP site, acting as an AP lyase (PubMed:9614142). {ECO:0000269|PubMed:10556592, ECO:0000269|PubMed:11805079, ECO:0000269|PubMed:17526740, ECO:0000269|PubMed:21362556, ECO:0000269|PubMed:9207062, ECO:0000269|PubMed:9556598, ECO:0000269|PubMed:9572863, ECO:0000269|PubMed:9614142}. |
P07237 | P4HB | S88 | ochoa | Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) | This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}. |
P07437 | TUBB | S75 | ochoa | Tubulin beta chain (Tubulin beta-5 chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P07814 | EPRS1 | S434 | ochoa | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
P07900 | HSP90AA1 | S602 | ochoa | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P08235 | NR3C2 | S459 | psp | Mineralocorticoid receptor (MR) (Nuclear receptor subfamily 3 group C member 2) | Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels. {ECO:0000269|PubMed:3037703}. |
P08238 | HSP90AB1 | S594 | ochoa | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P08581 | MET | S1236 | ochoa | Hepatocyte growth factor receptor (HGF receptor) (EC 2.7.10.1) (HGF/SF receptor) (Proto-oncogene c-Met) (Scatter factor receptor) (SF receptor) (Tyrosine-protein kinase Met) | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to hepatocyte growth factor/HGF ligand. Regulates many physiological processes including proliferation, scattering, morphogenesis and survival. Ligand binding at the cell surface induces autophosphorylation of MET on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1, SRC, GRB2, STAT3 or the adapter GAB1. Recruitment of these downstream effectors by MET leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. The RAS-ERK activation is associated with the morphogenetic effects while PI3K/AKT coordinates prosurvival effects. During embryonic development, MET signaling plays a role in gastrulation, development and migration of neuronal precursors, angiogenesis and kidney formation. During skeletal muscle development, it is crucial for the migration of muscle progenitor cells and for the proliferation of secondary myoblasts (By similarity). In adults, participates in wound healing as well as organ regeneration and tissue remodeling. Also promotes differentiation and proliferation of hematopoietic cells. May regulate cortical bone osteogenesis (By similarity). {ECO:0000250|UniProtKB:P16056}.; FUNCTION: (Microbial infection) Acts as a receptor for Listeria monocytogenes internalin InlB, mediating entry of the pathogen into cells. {ECO:0000269|PubMed:11081636, ECO:0000305|PubMed:17662939, ECO:0000305|PubMed:19900460}. |
P09382 | LGALS1 | S30 | ochoa | Galectin-1 (Gal-1) (14 kDa laminin-binding protein) (HLBP14) (14 kDa lectin) (Beta-galactoside-binding lectin L-14-I) (Galaptin) (HBL) (HPL) (Lactose-binding lectin 1) (Lectin galactoside-binding soluble 1) (Putative MAPK-activating protein PM12) (S-Lac lectin 1) | Lectin that binds beta-galactoside and a wide array of complex carbohydrates. Plays a role in regulating apoptosis, cell proliferation and cell differentiation. Inhibits CD45 protein phosphatase activity and therefore the dephosphorylation of Lyn kinase. Strong inducer of T-cell apoptosis. Plays a negative role in Th17 cell differentiation via activation of the receptor CD69 (PubMed:24752896). {ECO:0000269|PubMed:14617626, ECO:0000269|PubMed:18796645, ECO:0000269|PubMed:19497882, ECO:0000269|PubMed:24752896, ECO:0000269|PubMed:24945728}. |
P09769 | FGR | S57 | ochoa | Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}. |
P09960 | LTA4H | S81 | ochoa | Leukotriene A-4 hydrolase (LTA-4 hydrolase) (EC 3.3.2.6) (Leukotriene A(4) hydrolase) (Tripeptide aminopeptidase LTA4H) (EC 3.4.11.4) | Bifunctional zinc metalloenzyme that comprises both epoxide hydrolase (EH) and aminopeptidase activities. Acts as an epoxide hydrolase to catalyze the conversion of LTA4 to the pro-inflammatory mediator leukotriene B4 (LTB4) (PubMed:11917124, PubMed:12207002, PubMed:15078870, PubMed:18804029, PubMed:1897988, PubMed:1975494, PubMed:2244921). Also has aminopeptidase activity, with high affinity for N-terminal arginines of various synthetic tripeptides (PubMed:18804029, PubMed:20813919). In addition to its pro-inflammatory EH activity, may also counteract inflammation by its aminopeptidase activity, which inactivates by cleavage another neutrophil attractant, the tripeptide Pro-Gly-Pro (PGP), a bioactive fragment of collagen generated by the action of matrix metalloproteinase-9 (MMP9) and prolylendopeptidase (PREPL) (PubMed:20813919, PubMed:24591641). Involved also in the biosynthesis of resolvin E1 and 18S-resolvin E1 from eicosapentaenoic acid, two lipid mediators that show potent anti-inflammatory and pro-resolving actions (PubMed:21206090). {ECO:0000269|PubMed:11917124, ECO:0000269|PubMed:12207002, ECO:0000269|PubMed:15078870, ECO:0000269|PubMed:18804029, ECO:0000269|PubMed:1897988, ECO:0000269|PubMed:1975494, ECO:0000269|PubMed:20813919, ECO:0000269|PubMed:21206090, ECO:0000269|PubMed:2244921, ECO:0000269|PubMed:24591641}. |
P0DMV8 | HSPA1A | S362 | ochoa | Heat shock 70 kDa protein 1A (Heat shock 70 kDa protein 1) (HSP70-1) (HSP70.1) (Heat shock protein family A member 1A) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). Required as a co-chaperone for optimal STUB1/CHIP ubiquitination of NFATC3 (By similarity). Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response (PubMed:9499401). Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation (PubMed:28842558). {ECO:0000250|UniProtKB:P0DMW0, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28842558, ECO:0000269|PubMed:9499401, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P0DMV9 | HSPA1B | S362 | ochoa | Heat shock 70 kDa protein 1B (Heat shock 70 kDa protein 2) (HSP70-2) (HSP70.2) (Heat shock protein family A member 1B) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24012426, PubMed:24318877, PubMed:26865365). Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation (PubMed:27708256). Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle (PubMed:27137183). Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling (PubMed:24613385). Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation (PubMed:23973223). {ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:27137183, ECO:0000269|PubMed:27708256, ECO:0000303|PubMed:24012426, ECO:0000303|PubMed:26865365}.; FUNCTION: (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell. {ECO:0000269|PubMed:16537599}. |
P10451 | SPP1 | S258 | ochoa|psp | Osteopontin (Bone sialoprotein 1) (Nephropontin) (Secreted phosphoprotein 1) (SPP-1) (Urinary stone protein) (Uropontin) | Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction. {ECO:0000250|UniProtKB:P31096}.; FUNCTION: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity. {ECO:0000250|UniProtKB:P10923}. |
P10588 | NR2F6 | S83 | psp | Nuclear receptor subfamily 2 group F member 6 (V-erbA-related protein 2) (EAR-2) | Transcription factor predominantly involved in transcriptional repression. Binds to promoter/enhancer response elements that contain the imperfect 5'-AGGTCA-3' direct or inverted repeats with various spacings which are also recognized by other nuclear hormone receptors. Involved in modulation of hormonal responses. Represses transcriptional activity of the lutropin-choriogonadotropic hormone receptor/LHCGR gene, the renin/REN gene and the oxytocin-neurophysin/OXT gene. Represses the triiodothyronine-dependent and -independent transcriptional activity of the thyroid hormone receptor gene in a cell type-specific manner. The corepressing function towards thyroid hormone receptor beta/THRB involves at least in part the inhibition of THRB binding to triiodothyronine response elements (TREs) by NR2F6. Inhibits NFATC transcription factor DNA binding and subsequently its transcriptional activity. Acts as transcriptional repressor of IL-17 expression in Th-17 differentiated CD4(+) T cells and may be involved in induction and/or maintenance of peripheral immunological tolerance and autoimmunity. Involved in development of forebrain circadian clock; is required early in the development of the locus coeruleus (LC). {ECO:0000269|PubMed:10644740, ECO:0000269|PubMed:10713182, ECO:0000269|PubMed:11682620, ECO:0000269|PubMed:18701084}. |
P10809 | HSPD1 | S253 | ochoa | 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) | Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}. |
P11021 | HSPA5 | S452 | ochoa | Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) | Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}. |
P11142 | HSPA8 | S362 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P11233 | RALA | S22 | ochoa | Ras-related protein Ral-A (EC 3.6.5.2) | Multifunctional GTPase involved in a variety of cellular processes including gene expression, cell migration, cell proliferation, oncogenic transformation and membrane trafficking. Accomplishes its multiple functions by interacting with distinct downstream effectors (PubMed:18756269, PubMed:19306925, PubMed:20005108, PubMed:21822277, PubMed:30500825). Acts as a GTP sensor for GTP-dependent exocytosis of dense core vesicles. The RALA-exocyst complex regulates integrin-dependent membrane raft exocytosis and growth signaling (PubMed:20005108). Key regulator of LPAR1 signaling and competes with GRK2 for binding to LPAR1 thus affecting the signaling properties of the receptor. Required for anchorage-independent proliferation of transformed cells (PubMed:19306925). During mitosis, supports the stabilization and elongation of the intracellular bridge between dividing cells. Cooperates with EXOC2 to recruit other components of the exocyst to the early midbody (PubMed:18756269). During mitosis, also controls mitochondrial fission by recruiting to the mitochondrion RALBP1, which mediates the phosphorylation and activation of DNM1L by the mitotic kinase cyclin B-CDK1 (PubMed:21822277). {ECO:0000269|PubMed:18756269, ECO:0000269|PubMed:19306925, ECO:0000269|PubMed:20005108, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:30500825}. |
P11234 | RALB | S22 | ochoa | Ras-related protein Ral-B (EC 3.6.5.2) | Multifunctional GTPase involved in a variety of cellular processes including gene expression, cell migration, cell proliferation, oncogenic transformation and membrane trafficking (PubMed:10393179, PubMed:17875936, PubMed:18756269). Accomplishes its multiple functions by interacting with distinct downstream effectors. Acts as a GTP sensor for GTP-dependent exocytosis of dense core vesicles (By similarity). Required both to stabilize the assembly of the exocyst complex and to localize functional exocyst complexes to the leading edge of migrating cells (By similarity). Required for suppression of apoptosis (PubMed:17875936). In late stages of cytokinesis, upon completion of the bridge formation between dividing cells, mediates exocyst recruitment to the midbody to drive abscission (PubMed:18756269). Involved in ligand-dependent receptor mediated endocytosis of the EGF and insulin receptors (PubMed:10393179). {ECO:0000250|UniProtKB:P36860, ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:17875936, ECO:0000269|PubMed:18756269}. |
P11831 | SRF | S162 | psp | Serum response factor (SRF) | SRF is a transcription factor that binds to the serum response element (SRE), a short sequence of dyad symmetry located 300 bp to the 5' of the site of transcription initiation of some genes (such as FOS). Together with MRTFA transcription coactivator, controls expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration. The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. Required for cardiac differentiation and maturation. {ECO:0000250|UniProtKB:Q9JM73}. |
P12814 | ACTN1 | S348 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P12883 | MYH7 | S1435 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13010 | XRCC5 | S255 | ochoa | X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}. |
P13489 | RNH1 | S255 | ochoa | Ribonuclease inhibitor (Placental ribonuclease inhibitor) (Placental RNase inhibitor) (Ribonuclease/angiogenin inhibitor 1) (RAI) | Ribonuclease inhibitor which inhibits RNASE1, RNASE2 and angiogenin (ANG) (PubMed:12578357, PubMed:14515218, PubMed:3219362, PubMed:3243277, PubMed:3470787, PubMed:9050852). May play a role in redox homeostasis (PubMed:17292889). Required to inhibit the cytotoxic tRNA ribonuclease activity of ANG in the cytoplasm in absence of stress (PubMed:23843625, PubMed:32510170). Relocates to the nucleus in response to stress, relieving inhibition of ANG in the cytoplasm, and inhibiting the angiogenic activity of ANG in the nucleus (PubMed:23843625). {ECO:0000269|PubMed:12578357, ECO:0000269|PubMed:14515218, ECO:0000269|PubMed:17292889, ECO:0000269|PubMed:23843625, ECO:0000269|PubMed:3219362, ECO:0000269|PubMed:3243277, ECO:0000269|PubMed:32510170, ECO:0000269|PubMed:3470787, ECO:0000269|PubMed:9050852}. |
P13533 | MYH6 | S1437 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13637 | ATP1A3 | S361 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-3 (Na(+)/K(+) ATPase alpha-3 subunit) (EC 7.2.2.13) (Na(+)/K(+) ATPase alpha(III) subunit) (Sodium pump subunit alpha-3) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P13807 | GYS1 | S288 | ochoa | Glycogen [starch] synthase, muscle (EC 2.4.1.11) (Glycogen synthase 1) | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. {ECO:0000269|PubMed:35835870}. |
P14618 | PKM | S287 | ochoa | Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) | Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}. |
P15924 | DSP | S957 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P15924 | DSP | S2553 | ochoa | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16144 | ITGB4 | S1002 | ochoa | Integrin beta-4 (GP150) (CD antigen CD104) | Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}. |
P16615 | ATP2A2 | S186 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) (SR Ca(2+)-ATPase 2) (EC 7.2.2.10) (Calcium pump 2) (Calcium-transporting ATPase sarcoplasmic reticulum type, slow twitch skeletal muscle isoform) (Endoplasmic reticulum class 1/2 Ca(2+) ATPase) | This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (PubMed:12542527, PubMed:16402920). Involved in autophagy in response to starvation. Upon interaction with VMP1 and activation, controls ER-isolation membrane contacts for autophagosome formation (PubMed:28890335). Also modulates ER contacts with lipid droplets, mitochondria and endosomes (PubMed:28890335). In coordination with FLVCR2 mediates heme-stimulated switching from mitochondrial ATP synthesis to thermogenesis (By similarity). {ECO:0000250|UniProtKB:O55143, ECO:0000269|PubMed:12542527, ECO:0000269|PubMed:16402920, ECO:0000269|PubMed:28890335}.; FUNCTION: [Isoform 2]: Involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic Ca(2+) spiking for activation of NFATC1 and production of mitochondrial ROS, thereby triggering Ca(2+) signaling cascades that promote osteoclast differentiation and activation. {ECO:0000250|UniProtKB:O55143}. |
P17600 | SYN1 | S341 | ochoa | Synapsin-1 (Brain protein 4.1) (Synapsin I) | Neuronal phosphoprotein that coats synaptic vesicles, and binds to the cytoskeleton. Acts as a regulator of synaptic vesicles trafficking, involved in the control of neurotransmitter release at the pre-synaptic terminal (PubMed:21441247, PubMed:23406870). Also involved in the regulation of axon outgrowth and synaptogenesis (By similarity). The complex formed with NOS1 and CAPON proteins is necessary for specific nitric-oxid functions at a presynaptic level (By similarity). {ECO:0000250|UniProtKB:O88935, ECO:0000250|UniProtKB:P09951, ECO:0000269|PubMed:21441247, ECO:0000269|PubMed:23406870}. |
P18206 | VCL | S52 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S383 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S434 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S443 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S755 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18583 | SON | S2190 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18583 | SON | S2357 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P19237 | TNNI1 | S169 | ochoa | Troponin I, slow skeletal muscle (Troponin I, slow-twitch isoform) | Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P19544 | WT1 | S265 | ochoa | Wilms tumor protein (WT33) | Transcription factor that plays an important role in cellular development and cell survival (PubMed:7862533). Recognizes and binds to the DNA sequence 5'-GCG(T/G)GGGCG-3' (PubMed:17716689, PubMed:25258363, PubMed:7862533). Regulates the expression of numerous target genes, including EPO. Plays an essential role for development of the urogenital system. It has a tumor suppressor as well as an oncogenic role in tumor formation. Function may be isoform-specific: isoforms lacking the KTS motif may act as transcription factors (PubMed:15520190). Isoforms containing the KTS motif may bind mRNA and play a role in mRNA metabolism or splicing (PubMed:16934801). Isoform 1 has lower affinity for DNA, and can bind RNA (PubMed:19123921). {ECO:0000269|PubMed:15520190, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17716689, ECO:0000269|PubMed:19123921, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:25258363, ECO:0000269|PubMed:7862533}. |
P20042 | EIF2S2 | S218 | psp | Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) | Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}. |
P20929 | NEB | S923 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20929 | NEB | S1348 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20929 | NEB | S1380 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20929 | NEB | S2324 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P20963 | CD247 | S146 | ochoa | T-cell surface glycoprotein CD3 zeta chain (T-cell receptor T3 zeta chain) (CD antigen CD247) | Part of the TCR-CD3 complex present on T-lymphocyte cell surface that plays an essential role in adaptive immune response. When antigen presenting cells (APCs) activate T-cell receptor (TCR), TCR-mediated signals are transmitted across the cell membrane by the CD3 chains CD3D, CD3E, CD3G and CD3Z. All CD3 chains contain immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domain. Upon TCR engagement, these motifs become phosphorylated by Src family protein tyrosine kinases LCK and FYN, resulting in the activation of downstream signaling pathways (PubMed:1384049, PubMed:1385158, PubMed:2470098, PubMed:7509083). CD3Z ITAMs phosphorylation creates multiple docking sites for the protein kinase ZAP70 leading to ZAP70 phosphorylation and its conversion into a catalytically active enzyme (PubMed:7509083). Plays an important role in intrathymic T-cell differentiation. Additionally, participates in the activity-dependent synapse formation of retinal ganglion cells (RGCs) in both the retina and dorsal lateral geniculate nucleus (dLGN) (By similarity). {ECO:0000250|UniProtKB:P24161, ECO:0000269|PubMed:1384049, ECO:0000269|PubMed:1385158, ECO:0000269|PubMed:16027224, ECO:0000269|PubMed:2470098, ECO:0000269|PubMed:28465009, ECO:0000269|PubMed:7509083}. |
P22492 | H1-6 | S106 | ochoa | Histone H1t (Testicular H1 histone) | Testis-specific histone H1 that forms less compacted chromatin compared to other H1 histone subtypes (PubMed:26757249). Formation of more relaxed chromatin may be required to promote chromatin architecture required for proper chromosome regulation during meiosis, such as homologous recombination (PubMed:26757249). Histones H1 act as linkers that bind to nucleosomes and compact polynucleosomes into a higher-order chromatin configuration (Probable). {ECO:0000269|PubMed:26757249, ECO:0000305}. |
P23526 | AHCY | S183 | ochoa | Adenosylhomocysteinase (AdoHcyase) (EC 3.13.2.1) (S-adenosyl-L-homocysteine hydrolase) | Catalyzes the hydrolysis of S-adenosyl-L-homocysteine to form adenosine and homocysteine (PubMed:10933798). Binds copper ions (By similarity). {ECO:0000250|UniProtKB:P50247, ECO:0000269|PubMed:10933798}. |
P23634 | ATP2B4 | S1149 | ochoa | Plasma membrane calcium-transporting ATPase 4 (PMCA4) (EC 7.2.2.10) (Matrix-remodeling-associated protein 1) (Plasma membrane calcium ATPase isoform 4) (Plasma membrane calcium pump isoform 4) | Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). {ECO:0000250|UniProtKB:Q6Q477, ECO:0000269|PubMed:8530416}. |
P23771 | GATA3 | S198 | ochoa | Trans-acting T-cell-specific transcription factor GATA-3 (GATA-binding factor 3) | Transcriptional activator which binds to the enhancer of the T-cell receptor alpha and delta genes. Binds to the consensus sequence 5'-AGATAG-3'. Required for the T-helper 2 (Th2) differentiation process following immune and inflammatory responses. Positively regulates ASB2 expression (By similarity). Coordinates macrophage transcriptional activation and UCP2-dependent metabolic reprogramming in response to IL33. Upon tissue injury, acts downstream of IL33 signaling to drive differentiation of inflammation-resolving alternatively activated macrophages. {ECO:0000250|UniProtKB:P23772, ECO:0000269|PubMed:23824597}. |
P24385 | CCND1 | S197 | psp | G1/S-specific cyclin-D1 (B-cell lymphoma 1 protein) (BCL-1) (BCL-1 oncogene) (PRAD1 oncogene) | Regulatory component of the cyclin D1-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:33854235, PubMed:8114739, PubMed:8302605). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:8114739, PubMed:8302605). Hypophosphorylates RB1 in early G(1) phase (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:8114739, PubMed:8302605). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:1827756, PubMed:1833066, PubMed:19412162, PubMed:8302605). Also a substrate for SMAD3, phosphorylating SMAD3 in a cell-cycle-dependent manner and repressing its transcriptional activity (PubMed:15241418). Component of the ternary complex, cyclin D1/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex (PubMed:9106657). Exhibits transcriptional corepressor activity with INSM1 on the NEUROD1 and INS promoters in a cell cycle-independent manner (PubMed:16569215, PubMed:18417529). {ECO:0000269|PubMed:15241418, ECO:0000269|PubMed:16569215, ECO:0000269|PubMed:1827756, ECO:0000269|PubMed:1833066, ECO:0000269|PubMed:18417529, ECO:0000269|PubMed:19412162, ECO:0000269|PubMed:33854235, ECO:0000269|PubMed:8114739, ECO:0000269|PubMed:8302605, ECO:0000269|PubMed:9106657}. |
P25101 | EDNRA | S391 | psp | Endothelin-1 receptor (Endothelin receptor type A) (ET-A) (ETA-R) (hET-AR) | Receptor for endothelin-1. Mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. The rank order of binding affinities for ET-A is: ET1 > ET2 >> ET3. |
P25705 | ATP5F1A | S184 | ochoa | ATP synthase F(1) complex subunit alpha, mitochondrial (ATP synthase F1 subunit alpha) | Subunit alpha, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the catalytic subunit beta (ATP5F1B), forms the catalytic core in the F(1) domain (PubMed:37244256). Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (Probable). Binds the bacterial siderophore enterobactin and can promote mitochondrial accumulation of enterobactin-derived iron ions (PubMed:30146159). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:30146159, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P26045 | PTPN3 | S335 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P27694 | RPA1 | S174 | ochoa | Replication protein A 70 kDa DNA-binding subunit (RP-A p70) (Replication factor A protein 1) (RF-A protein 1) (Single-stranded DNA-binding protein) [Cleaved into: Replication protein A 70 kDa DNA-binding subunit, N-terminally processed] | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism (PubMed:17596542, PubMed:27723717, PubMed:27723720). Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage (PubMed:9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed:24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed:17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Also plays a role in base excision repair (BER) probably through interaction with UNG (PubMed:9765279). Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. Plays a role in telomere maintenance (PubMed:17959650, PubMed:34767620). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2-containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed:19996105). RPA stimulates 5'-3' helicase activity of the BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:19996105, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:34767620, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
P27694 | RPA1 | S396 | ochoa | Replication protein A 70 kDa DNA-binding subunit (RP-A p70) (Replication factor A protein 1) (RF-A protein 1) (Single-stranded DNA-binding protein) [Cleaved into: Replication protein A 70 kDa DNA-binding subunit, N-terminally processed] | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism (PubMed:17596542, PubMed:27723717, PubMed:27723720). Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage (PubMed:9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed:24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed:17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Also plays a role in base excision repair (BER) probably through interaction with UNG (PubMed:9765279). Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. Plays a role in telomere maintenance (PubMed:17959650, PubMed:34767620). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2-containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed:19996105). RPA stimulates 5'-3' helicase activity of the BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:19996105, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:34767620, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
P29474 | NOS3 | S624 | ochoa | Nitric oxide synthase 3 (EC 1.14.13.39) (Constitutive NOS) (cNOS) (EC-NOS) (NOS type III) (NOSIII) (Nitric oxide synthase, endothelial) (Endothelial NOS) (eNOS) | Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway (PubMed:1378832). NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets. {ECO:0000269|PubMed:1378832}.; FUNCTION: [Isoform eNOS13C]: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1. |
P30414 | NKTR | S1244 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P30622 | CLIP1 | S285 | ochoa | CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) | Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}. |
P31153 | MAT2A | S114 | ochoa | S-adenosylmethionine synthase isoform type-2 (AdoMet synthase 2) (EC 2.5.1.6) (Methionine adenosyltransferase 2) (MAT 2) (Methionine adenosyltransferase II) (MAT-II) | Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate. {ECO:0000269|PubMed:10644686, ECO:0000269|PubMed:23189196, ECO:0000269|PubMed:25075345}. |
P32248 | CCR7 | S356 | psp | C-C chemokine receptor type 7 (C-C CKR-7) (CC-CKR-7) (CCR-7) (BLR2) (CDw197) (Epstein-Barr virus-induced G-protein coupled receptor 1) (EBI1) (EBV-induced G-protein coupled receptor 1) (MIP-3 beta receptor) (CD antigen CD197) | Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or of normal lymphocyte functions. |
P32298 | GRK4 | S244 | psp | G protein-coupled receptor kinase 4 (EC 2.7.11.16) (G protein-coupled receptor kinase GRK4) (ITI1) | Specifically phosphorylates the activated forms of G protein-coupled receptors. GRK4-alpha can phosphorylate rhodopsin and its activity is inhibited by calmodulin; the other three isoforms do not phosphorylate rhodopsin and do not interact with calmodulin. GRK4-alpha and GRK4-gamma phosphorylate DRD3. Phosphorylates ADRB2. {ECO:0000269|PubMed:19520868, ECO:0000269|PubMed:8626439}. |
P33981 | TTK | S345 | psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P34931 | HSPA1L | S364 | ochoa | Heat shock 70 kDa protein 1-like (Heat shock 70 kDa protein 1L) (Heat shock 70 kDa protein 1-Hom) (HSP70-Hom) (Heat shock protein family A member 1L) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). Positive regulator of PRKN translocation to damaged mitochondria (PubMed:24270810). {ECO:0000269|PubMed:24270810, ECO:0000303|PubMed:26865365}. |
P35227 | PCGF2 | S251 | ochoa | Polycomb group RING finger protein 2 (DNA-binding protein Mel-18) (RING finger protein 110) (Zinc finger protein 144) | Transcriptional repressor. Binds specifically to the DNA sequence 5'-GACTNGACT-3'. Has tumor suppressor activity. May play a role in control of cell proliferation and/or neural cell development. Regulates proliferation of early T progenitor cells by maintaining expression of HES1. Also plays a role in antero-posterior specification of the axial skeleton and negative regulation of the self-renewal activity of hematopoietic stem cells (By similarity). Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:26151332). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). {ECO:0000250|UniProtKB:P23798, ECO:0000269|PubMed:26151332}. |
P35348 | ADRA1A | S407 | psp | Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) | This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}. |
P35462 | DRD3 | S233 | psp | D(3) dopamine receptor (Dopamine D3 receptor) | Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase. Promotes cell proliferation. {ECO:0000269|PubMed:19520868}. |
P35523 | CLCN1 | S892 | psp | Chloride channel protein 1 (ClC-1) (Chloride channel protein, skeletal muscle) | Voltage-gated chloride channel involved in skeletal muscle excitability. Generates most of the plasma membrane chloride conductance in skeletal muscle fibers, stabilizes the resting membrane potential and contributes to the repolarization phase during action potential firing (PubMed:12456816, PubMed:16027167, PubMed:22521272, PubMed:22641783, PubMed:26007199, PubMed:26502825, PubMed:26510092, PubMed:7951242, PubMed:8112288, PubMed:8130334, PubMed:9122265, PubMed:9565403, PubMed:9736777). Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Has a significant open probability at muscle resting potential and is further activated upon membrane depolarization (PubMed:10051520, PubMed:10962018, PubMed:29809153, PubMed:31022181). Permeable to small monovalent anions with ion selectivity for chloride > thiocyanate > bromide > nitrate > iodide (PubMed:9122265, PubMed:9565403). {ECO:0000269|PubMed:10051520, ECO:0000269|PubMed:10962018, ECO:0000269|PubMed:12456816, ECO:0000269|PubMed:16027167, ECO:0000269|PubMed:22521272, ECO:0000269|PubMed:22641783, ECO:0000269|PubMed:26007199, ECO:0000269|PubMed:26502825, ECO:0000269|PubMed:26510092, ECO:0000269|PubMed:29809153, ECO:0000269|PubMed:31022181, ECO:0000269|PubMed:7951242, ECO:0000269|PubMed:8112288, ECO:0000269|PubMed:8130334, ECO:0000269|PubMed:9122265, ECO:0000269|PubMed:9565403, ECO:0000269|PubMed:9736777}. |
P35573 | AGL | S738 | ochoa | Glycogen debranching enzyme (Glycogen debrancher) [Includes: 4-alpha-glucanotransferase (EC 2.4.1.25) (Oligo-1,4-1,4-glucantransferase); Amylo-alpha-1,6-glucosidase (Amylo-1,6-glucosidase) (EC 3.2.1.33) (Dextrin 6-alpha-D-glucosidase)] | Multifunctional enzyme acting as 1,4-alpha-D-glucan:1,4-alpha-D-glucan 4-alpha-D-glycosyltransferase and amylo-1,6-glucosidase in glycogen degradation. |
P35670 | ATP7B | S341 | psp | Copper-transporting ATPase 2 (EC 7.2.2.8) (Copper pump 2) (Wilson disease-associated protein) [Cleaved into: WND/140 kDa] | Copper ion transmembrane transporter involved in the export of copper out of the cells. It is involved in copper homeostasis in the liver, where it ensures the efflux of copper from hepatocytes into the bile in response to copper overload. {ECO:0000269|PubMed:18203200, ECO:0000269|PubMed:22240481, ECO:0000269|PubMed:24706876, ECO:0000269|PubMed:26004889}. |
P35749 | MYH11 | S589 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P37173 | TGFBR2 | S213 | psp | TGF-beta receptor type-2 (TGFR-2) (EC 2.7.11.30) (TGF-beta type II receptor) (Transforming growth factor-beta receptor type II) (TGF-beta receptor type II) (TbetaR-II) | Transmembrane serine/threonine kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and thus regulates a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. {ECO:0000269|PubMed:7774578}.; FUNCTION: [Isoform 1]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 2]: Has transforming growth factor beta-activated receptor activity. {ECO:0000269|PubMed:8635485}.; FUNCTION: [Isoform 3]: Binds TGFB1, TGFB2 and TGFB3 in the picomolar affinity range without the participation of additional receptors. Blocks activation of SMAD2 and SMAD3 by TGFB1. {ECO:0000269|PubMed:34568316}. |
P38398 | BRCA1 | S1423 | psp | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P39748 | FEN1 | S331 | ochoa | Flap endonuclease 1 (FEN-1) (EC 3.1.-.-) (DNase IV) (Flap structure-specific endonuclease 1) (Maturation factor 1) (MF1) (hFEN-1) | Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA. {ECO:0000255|HAMAP-Rule:MF_03140, ECO:0000269|PubMed:10744741, ECO:0000269|PubMed:11986308, ECO:0000269|PubMed:18443037, ECO:0000269|PubMed:20729856, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:7961795, ECO:0000269|PubMed:8621570}. |
P40818 | USP8 | S599 | ochoa | Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) | Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}. |
P41240 | CSK | S364 | psp | Tyrosine-protein kinase CSK (EC 2.7.10.2) (C-Src kinase) (Protein-tyrosine kinase CYL) | Non-receptor tyrosine-protein kinase that plays an important role in the regulation of cell growth, differentiation, migration and immune response. Phosphorylates tyrosine residues located in the C-terminal tails of Src-family kinases (SFKs) including LCK, SRC, HCK, FYN, LYN, CSK or YES1. Upon tail phosphorylation, Src-family members engage in intramolecular interactions between the phosphotyrosine tail and the SH2 domain that result in an inactive conformation. To inhibit SFKs, CSK is recruited to the plasma membrane via binding to transmembrane proteins or adapter proteins located near the plasma membrane. Suppresses signaling by various surface receptors, including T-cell receptor (TCR) and B-cell receptor (BCR) by phosphorylating and maintaining inactive several positive effectors such as FYN or LCK. {ECO:0000269|PubMed:1639064, ECO:0000269|PubMed:9281320}. |
P41743 | PRKCI | S46 | psp | Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) | Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}. |
P42680 | TEC | S521 | ochoa | Tyrosine-protein kinase Tec (EC 2.7.10.2) | Non-receptor tyrosine kinase that contributes to signaling from many receptors and participates as a signal transducer in multiple downstream pathways, including regulation of the actin cytoskeleton. Plays a redundant role to ITK in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. Required for TCR-dependent IL2 gene induction. Phosphorylates DOK1, one CD28-specific substrate, and contributes to CD28-signaling. Mediates signals that negatively regulate IL2RA expression induced by TCR cross-linking. Plays a redundant role to BTK in BCR-signaling for B-cell development and activation, especially by phosphorylating STAP1, a BCR-signaling protein. Required in mast cells for efficient cytokine production. Involved in both growth and differentiation mechanisms of myeloid cells through activation by the granulocyte colony-stimulating factor CSF3, a critical cytokine to promoting the growth, differentiation, and functional activation of myeloid cells. Participates in platelet signaling downstream of integrin activation. Cooperates with JAK2 through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. GRB10, a negative modifier of the FOS activation pathway, is another substrate of TEC. TEC is involved in G protein-coupled receptor- and integrin-mediated signalings in blood platelets. Plays a role in hepatocyte proliferation and liver regeneration and is involved in HGF-induced ERK signaling pathway. TEC also regulates FGF2 unconventional secretion (endoplasmic reticulum (ER)/Golgi-independent mechanism) under various physiological conditions through phosphorylation of FGF2 'Tyr-215'. May also be involved in the regulation of osteoclast differentiation. {ECO:0000269|PubMed:10518561, ECO:0000269|PubMed:19883687, ECO:0000269|PubMed:20230531, ECO:0000269|PubMed:9753425}. |
P42685 | FRK | S220 | ochoa | Tyrosine-protein kinase FRK (EC 2.7.10.2) (FYN-related kinase) (Nuclear tyrosine protein kinase RAK) (Protein-tyrosine kinase 5) | Non-receptor tyrosine-protein kinase that negatively regulates cell proliferation. Positively regulates PTEN protein stability through phosphorylation of PTEN on 'Tyr-336', which in turn prevents its ubiquitination and degradation, possibly by reducing its binding to NEDD4. May function as a tumor suppressor. {ECO:0000269|PubMed:19345329}. |
P46013 | MKI67 | S411 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S704 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1048 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1656 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S1751 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S2505 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46020 | PHKA1 | S972 | ochoa | Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform (Phosphorylase kinase alpha M subunit) | Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The alpha chain may bind calmodulin. |
P46087 | NOP2 | S666 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P46100 | ATRX | S1244 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46459 | NSF | S106 | ochoa | Vesicle-fusing ATPase (EC 3.6.4.6) (N-ethylmaleimide-sensitive fusion protein) (NEM-sensitive fusion protein) (Vesicular-fusion protein NSF) | Required for vesicle-mediated transport. Catalyzes the fusion of transport vesicles within the Golgi cisternae. Is also required for transport from the endoplasmic reticulum to the Golgi stack. Seems to function as a fusion protein required for the delivery of cargo proteins to all compartments of the Golgi stack independent of vesicle origin. Interaction with AMPAR subunit GRIA2 leads to influence GRIA2 membrane cycling (By similarity). {ECO:0000250}. |
P48634 | PRRC2A | S198 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S2073 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48651 | PTDSS1 | S454 | ochoa | Phosphatidylserine synthase 1 (PSS-1) (PtdSer synthase 1) (EC 2.7.8.29) (Serine-exchange enzyme I) | Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine (PubMed:19014349, PubMed:24241535). Catalyzes mainly the conversion of phosphatidylcholine (PubMed:19014349, PubMed:24241535). Also converts, in vitro and to a lesser extent, phosphatidylethanolamine (PubMed:19014349, PubMed:24241535). {ECO:0000269|PubMed:19014349, ECO:0000269|PubMed:24241535}. |
P49146 | NPY2R | S351 | ochoa | Neuropeptide Y receptor type 2 (NPY2-R) (NPY-Y2 receptor) (Y2 receptor) | Receptor for neuropeptide Y and peptide YY. The rank order of affinity of this receptor for pancreatic polypeptides is PYY > NPY > PYY (3-36) > NPY (2-36) > [Ile-31, Gln-34] PP > [Leu-31, Pro-34] NPY > PP, [Pro-34] PYY and NPY free acid. |
P49757 | NUMB | S303 | ochoa | Protein numb homolog (h-Numb) (Protein S171) | Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}. |
P49792 | RANBP2 | S1496 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S1651 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S2539 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49815 | TSC2 | S923 | ochoa | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P50993 | ATP1A2 | S369 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-2 (Na(+)/K(+) ATPase alpha-2 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-2) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}. |
P51587 | BRCA2 | S70 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51587 | BRCA2 | S1099 | ochoa | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P51668 | UBE2D1 | S83 | ochoa | Ubiquitin-conjugating enzyme E2 D1 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D1) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D1) (Stimulator of Fe transport) (SFT) (UBC4/5 homolog) (UbcH5) (Ubiquitin carrier protein D1) (Ubiquitin-conjugating enzyme E2(17)KB 1) (Ubiquitin-conjugating enzyme E2-17 kDa 1) (Ubiquitin-protein ligase D1) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:22496338). In vitro catalyzes 'Lys-48'-linked polyubiquitination (PubMed:20061386). Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and auto-ubiquitination of STUB1, TRAF6 and TRIM63/MURF1 (PubMed:18042044, PubMed:18359941). Ubiquitinates STUB1-associated HSP90AB1 in vitro (PubMed:18042044). Lacks inherent specificity for any particular lysine residue of ubiquitin (PubMed:18042044). Essential for viral activation of IRF3 (PubMed:19854139). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). {ECO:0000269|PubMed:18042044, ECO:0000269|PubMed:18359941, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:22496338}. |
P51825 | AFF1 | S378 | ochoa | AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) | None |
P52701 | MSH6 | S330 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P52789 | HK2 | S415 | ochoa | Hexokinase-2 (EC 2.7.1.1) (Hexokinase type II) (HK II) (Hexokinase-B) (Muscle form hexokinase) | Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D-fructose 6-phosphate, respectively) (PubMed:23185017, PubMed:26985301, PubMed:29298880). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (PubMed:29298880). Plays a key role in maintaining the integrity of the outer mitochondrial membrane by preventing the release of apoptogenic molecules from the intermembrane space and subsequent apoptosis (PubMed:18350175). {ECO:0000269|PubMed:18350175, ECO:0000269|PubMed:23185017, ECO:0000269|PubMed:26985301, ECO:0000269|PubMed:29298880}. |
P52948 | NUP98 | S656 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S1344 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P53350 | PLK1 | S99 | psp | Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) (Polo-like kinase 1) (PLK-1) (Serine/threonine-protein kinase 13) (STPK13) | Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Polo-like kinase proteins act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, MRE11, PPP1R12A/MYPT1, POLQ, PRC1, RACGAP1/CYK4, RAD51, RHNO1, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17218258, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:22325354, PubMed:23455478, PubMed:23509069, PubMed:25986610, PubMed:26811421, PubMed:28512243, PubMed:37440612, PubMed:37674080, PubMed:8991084). Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL (PubMed:16980960, PubMed:19509060). NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins (PubMed:12852856). Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1 (PubMed:12939256, PubMed:16247472, PubMed:17351640, PubMed:19468300, PubMed:19468302). Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains (PubMed:12939256, PubMed:17351640). Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation (PubMed:19468300, PubMed:19468302). Promotes the central spindle recruitment of ECT2 (PubMed:16247472). Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1 (PubMed:11202906, PubMed:12447691, PubMed:12524548, PubMed:19160488). Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1 (PubMed:11202906). Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase (PubMed:12447691, PubMed:12524548). Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity (PubMed:19160488). Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2 (PubMed:15148369, PubMed:15469984, PubMed:17376779, PubMed:18331714). PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation (PubMed:17617734). Required for kinetochore localization of BUB1B (PubMed:17376779). Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2 (By similarity). Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function (PubMed:18331714). Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome (PubMed:15148369, PubMed:15469984). Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53 (PubMed:19473992). Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA (PubMed:18521620). Contributes to the regulation of AURKA function (PubMed:18615013, PubMed:18662541). Also required for recovery after DNA damage checkpoint and entry into mitosis (PubMed:18615013, PubMed:18662541). Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (PubMed:23509069). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation (PubMed:25503564). Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope (PubMed:20679239). Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock (PubMed:15661742). Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression (PubMed:18794143). Regulates mitotic progression by phosphorylating RIOK2 (PubMed:21880710). Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis (PubMed:27979967). Regulates DNA repair during mitosis by mediating phosphorylation of POLQ and RHNO1, thereby promoting POLQ recruitment to DNA damage sites (PubMed:37440612, PubMed:37674080). Phosphorylates ATXN10 which may play a role in the regulation of cytokinesis and may stimulate the proteasome-mediated degradation of ATXN10 (PubMed:21857149). {ECO:0000250|UniProtKB:P70032, ECO:0000250|UniProtKB:Q5F2C3, ECO:0000269|PubMed:11202906, ECO:0000269|PubMed:12207013, ECO:0000269|PubMed:12447691, ECO:0000269|PubMed:12524548, ECO:0000269|PubMed:12738781, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:12939256, ECO:0000269|PubMed:14532005, ECO:0000269|PubMed:14734534, ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:15148369, ECO:0000269|PubMed:15469984, ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:16247472, ECO:0000269|PubMed:16980960, ECO:0000269|PubMed:17081991, ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:17351640, ECO:0000269|PubMed:17376779, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:18418051, ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:18521620, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19597481, ECO:0000269|PubMed:20679239, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:21880710, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080, ECO:0000269|PubMed:8991084}. |
P53396 | ACLY | S667 | ochoa | ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) | Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}. |
P53985 | SLC16A1 | S467 | ochoa|psp | Monocarboxylate transporter 1 (MCT 1) (Solute carrier family 16 member 1) | Bidirectional proton-coupled monocarboxylate transporter (PubMed:12946269, PubMed:32946811, PubMed:33333023). Catalyzes the rapid transport across the plasma membrane of many monocarboxylates such as lactate, pyruvate, acetate and the ketone bodies acetoacetate and beta-hydroxybutyrate, and thus contributes to the maintenance of intracellular pH (PubMed:12946269, PubMed:33333023). The transport direction is determined by the proton motive force and the concentration gradient of the substrate monocarboxylate. MCT1 is a major lactate exporter (By similarity). Plays a role in cellular responses to a high-fat diet by modulating the cellular levels of lactate and pyruvate that contribute to the regulation of central metabolic pathways and insulin secretion, with concomitant effects on plasma insulin levels and blood glucose homeostasis (By similarity). Facilitates the protonated monocarboxylate form of succinate export, that its transient protonation upon muscle cell acidification in exercising muscle and ischemic heart (PubMed:32946811). Functions via alternate outward- and inward-open conformation states. Protonation and deprotonation of 309-Asp is essential for the conformational transition (PubMed:33333023). {ECO:0000250|UniProtKB:P53986, ECO:0000250|UniProtKB:P53987, ECO:0000269|PubMed:12946269, ECO:0000269|PubMed:32946811, ECO:0000269|PubMed:33333023}. |
P54132 | BLM | S646 | ochoa|psp | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54296 | MYOM2 | S52 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54296 | MYOM2 | S341 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54792 | DVL1P1 | S51 | ochoa | Putative segment polarity protein dishevelled homolog DVL1P1 (DSH homolog 1-like) (Segment polarity protein dishevelled homolog DVL-1-like) (Dishevelled-1-like) | May play a role in the signal transduction pathway mediated by multiple Wnt genes. |
P54920 | NAPA | S157 | ochoa | Alpha-soluble NSF attachment protein (SNAP-alpha) (N-ethylmaleimide-sensitive factor attachment protein alpha) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus (Probable). Together with GNA12 promotes CDH5 localization to plasma membrane (PubMed:15980433). {ECO:0000269|PubMed:15980433, ECO:0000305}. |
P55072 | VCP | S37 | ochoa | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
P55087 | AQP4 | S285 | ochoa | Aquaporin-4 (AQP-4) (Mercurial-insensitive water channel) (MIWC) (WCH4) | Forms a water-specific channel (PubMed:19383790, PubMed:7559426, PubMed:8601457). Plays an important role in brain water homeostasis (PubMed:37143309). It is involved in glymphatic solute transport and is required for a normal rate of water exchange across the blood brain interface. Required for normal levels of cerebrospinal fluid influx into the brain cortex and parenchyma along paravascular spaces that surround penetrating arteries, and for normal drainage of interstitial fluid along paravenous drainage pathways. Thereby, it is required for normal clearance of solutes from the brain interstitial fluid, including soluble beta-amyloid peptides derived from APP. Plays a redundant role in urinary water homeostasis and urinary concentrating ability (By similarity). {ECO:0000250|UniProtKB:P55088, ECO:0000269|PubMed:19383790, ECO:0000269|PubMed:37143309, ECO:0000269|PubMed:7559426, ECO:0000269|PubMed:8601457}. |
P55196 | AFDN | S240 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55287 | CDH11 | S714 | ochoa | Cadherin-11 (OSF-4) (Osteoblast cadherin) (OB-cadherin) | Cadherins are calcium-dependent cell adhesion proteins. They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. Required for proper focal adhesion assembly (PubMed:33811546). Involved in the regulation of cell migration (PubMed:33811546). {ECO:0000269|PubMed:33811546}. |
P55786 | NPEPPS | S811 | ochoa | Puromycin-sensitive aminopeptidase (PSA) (EC 3.4.11.14) (Cytosol alanyl aminopeptidase) (AAP-S) | Aminopeptidase with broad substrate specificity for several peptides. Involved in proteolytic events essential for cell growth and viability. May act as regulator of neuropeptide activity. Plays a role in the antigen-processing pathway for MHC class I molecules. Involved in the N-terminal trimming of cytotoxic T-cell epitope precursors. Digests the poly-Q peptides found in many cellular proteins. Digests tau from normal brain more efficiently than tau from Alzheimer disease brain. {ECO:0000269|PubMed:10978616, ECO:0000269|PubMed:11062501, ECO:0000269|PubMed:17154549, ECO:0000269|PubMed:17318184, ECO:0000269|PubMed:19917696}. |
P55884 | EIF3B | S447 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P56270 | MAZ | S361 | ochoa | Myc-associated zinc finger protein (MAZI) (Pur-1) (Purine-binding transcription factor) (Serum amyloid A-activating factor-1) (SAF-1) (Transcription factor Zif87) (ZF87) (Zinc finger protein 801) | Transcriptional regulator, potentially with dual roles in transcription initiation and termination. {ECO:0000303|PubMed:1502157}.; FUNCTION: [Isoform 1]: Binds DNA and functions as a transcriptional activator (PubMed:12270922). Binds to two G/A-rich sites, ME1a1 and ME1a2, within the MYC promoter having greater affinity for the former (PubMed:1502157). Also binds to multiple G/C-rich sites within the promoter of the Sp1 family of transcription factors (PubMed:1502157). {ECO:0000269|PubMed:12270922, ECO:0000269|PubMed:1502157}.; FUNCTION: [Isoform 2]: Binds DNA and functions as a transcriptional activator (PubMed:12270922). Inhibits MAZ isoform 1-mediated transcription (PubMed:12270922). {ECO:0000269|PubMed:12270922}.; FUNCTION: [Isoform 3]: Binds DNA and functions as a transcriptional activator. {ECO:0000269|PubMed:19583771}. |
P56945 | BCAR1 | S292 | ochoa | Breast cancer anti-estrogen resistance protein 1 (CRK-associated substrate) (Cas scaffolding protein family member 1) (p130cas) | Docking protein which plays a central coordinating role for tyrosine kinase-based signaling related to cell adhesion (PubMed:12432078, PubMed:12832404). Implicated in induction of cell migration and cell branching (PubMed:12432078, PubMed:12832404, PubMed:17038317). Involved in the BCAR3-mediated inhibition of TGFB signaling (By similarity). {ECO:0000250|UniProtKB:Q61140, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:17038317}. |
P57735 | RAB25 | S79 | ochoa | Ras-related protein Rab-25 (EC 3.6.5.2) (CATX-8) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (By similarity). RAB25 regulates epithelial cell differentiation, proliferation and survival, thereby playing key roles in tumorigenesis (PubMed:17925226). Promotes invasive migration of cells in which it functions to localize and maintain integrin alpha-V/beta-1 at the tips of extending pseudopodia (PubMed:17925226). Involved in the regulation of epithelial morphogenesis through the control of CLDN4 expression and localization at tight junctions (By similarity). May selectively regulate the apical recycling pathway (By similarity). Together with MYO5B regulates transcytosis (By similarity). {ECO:0000250|UniProtKB:E2RQ15, ECO:0000250|UniProtKB:P46629, ECO:0000250|UniProtKB:P61106, ECO:0000250|UniProtKB:Q9WTL2, ECO:0000269|PubMed:17925226}. |
P57764 | GSDMD | S185 | ochoa | Gasdermin-D (Gasdermin domain-containing protein 1) [Cleaved into: Gasdermin-D, N-terminal (GSDMD-NT) (hGSDMD-NTD); Gasdermin-D, C-terminal (GSDMD-CT) (hGSDMD-CTD); Gasdermin-D, p13 (Gasdermin-D, 13 kDa) (13 kDa GSDMD); Gasdermin-D, p40] | [Gasdermin-D]: Precursor of a pore-forming protein that plays a key role in host defense against pathogen infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27281216). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-D, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:26375003, PubMed:26375259, PubMed:27281216). {ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216}.; FUNCTION: [Gasdermin-D, N-terminal]: Promotes pyroptosis in response to microbial infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27418190, PubMed:28392147, PubMed:32820063, PubMed:34289345, PubMed:38040708, PubMed:38530158, PubMed:38599239). Produced by the cleavage of gasdermin-D by inflammatory caspases CASP1, CASP4 or CASP5 in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (PubMed:26375003, PubMed:26375259, PubMed:27418190). After cleavage, moves to the plasma membrane where it strongly binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, such as phosphatidylinositol 4-phosphate, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate, as well as phosphatidylinositol (3,4,5)-bisphosphate, and more weakly to phosphatidic acid and phosphatidylserine (PubMed:27281216, PubMed:29898893, PubMed:36227980). Homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukin-1 (IL1B and IL18) and triggering pyroptosis (PubMed:27281216, PubMed:27418190, PubMed:29898893, PubMed:33883744, PubMed:38040708, PubMed:38530158, PubMed:38599239). Gasdermin pores also allow the release of mature caspase-7 (CASP7) (By similarity). In some, but not all, cells types, pyroptosis is followed by pyroptotic cell death, which is caused by downstream activation of ninjurin-1 (NINJ1), which mediates membrane rupture (cytolysis) (PubMed:33472215, PubMed:37198476). Also forms pores in the mitochondrial membrane, resulting in release of mitochondrial DNA (mtDNA) into the cytosol (By similarity). Gasdermin-D, N-terminal released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (PubMed:27281216). Under cell culture conditions, also active against intracellular bacteria, such as Listeria monocytogenes (By similarity). Also active in response to MAP3K7/TAK1 inactivation by Yersinia toxin YopJ, which triggers cleavage by CASP8 and subsequent activation (By similarity). Required for mucosal tissue defense against enteric pathogens (By similarity). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Strongly binds to bacterial and mitochondrial lipids, including cardiolipin (PubMed:27281216). Does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine nor phosphatidylcholine (PubMed:27281216). {ECO:0000250|UniProtKB:Q9D8T2, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:27418190, ECO:0000269|PubMed:28392147, ECO:0000269|PubMed:29898893, ECO:0000269|PubMed:32820063, ECO:0000269|PubMed:33472215, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:36227980, ECO:0000269|PubMed:37198476, ECO:0000269|PubMed:38040708, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.; FUNCTION: [Gasdermin-D, p13]: Transcription coactivator produced by the cleavage by CASP3 or CASP7 in the upper small intestine in response to dietary antigens (By similarity). Required to maintain food tolerance in small intestine: translocates to the nucleus and acts as a coactivator for STAT1 to induce the transcription of CIITA and MHC class II molecules, which in turn induce type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:Q9D8T2}.; FUNCTION: [Gasdermin-D, p40]: Produced by the cleavage by papain allergen (PubMed:35794369). After cleavage, moves to the plasma membrane and homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the specific release of mature interleukin-33 (IL33), promoting type 2 inflammatory immune response (PubMed:35794369). {ECO:0000269|PubMed:35794369}. |
P61019 | RAB2A | S70 | ochoa | Ras-related protein Rab-2A (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology (PubMed:37821429). RAB2A regulates autophagy by promoting autophagosome-lysosome fusion via recruitment of the HOPS endosomal tethering complex; this process involves autophagosomal RAB2A and lysosomal RAB39A recruitment of HOPS subcomplexes VPS39-VPS11 and VPS41-VPS16-VPS18-VPS33A, respectively, which assemble into a functional complex to mediate membrane tethering and SNAREs-driven membrane fusion (PubMed:37821429). Required for protein transport from the endoplasmic reticulum to the Golgi complex. Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with RAB2B, redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:28483915, ECO:0000269|PubMed:37821429}. |
P61024 | CKS1B | S51 | ochoa | Cyclin-dependent kinases regulatory subunit 1 (CKS-1) | Binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. |
P61077 | UBE2D3 | S83 | ochoa | Ubiquitin-conjugating enzyme E2 D3 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D3) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D3) (Ubiquitin carrier protein D3) (Ubiquitin-conjugating enzyme E2(17)KB 3) (Ubiquitin-conjugating enzyme E2-17 kDa 3) (Ubiquitin-protein ligase D3) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:15247280, PubMed:15496420, PubMed:18284575, PubMed:20061386, PubMed:21532592, PubMed:28322253). In vitro catalyzes 'Lys-11'-, as well as 'Lys-48'-linked polyubiquitination (PubMed:15247280, PubMed:15496420, PubMed:18284575, PubMed:20061386, PubMed:21532592). Cooperates with the E2 CDC34 and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation (PubMed:20347421). Acts as an initiator E2, priming the phosphorylated NFKBIA target at positions 'Lys-21' and/or 'Lys-22' with a monoubiquitin (PubMed:10329681). Ubiquitin chain elongation is then performed by CDC34, building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin (PubMed:10329681). Also acts as an initiator E2, in conjunction with RNF8, for the priming of PCNA (PubMed:18948756). Monoubiquitination of PCNA, and its subsequent polyubiquitination, are essential events in the operation of the DNA damage tolerance (DDT) pathway that is activated after DNA damage caused by UV or chemical agents during S-phase (PubMed:18948756). Associates with the BRCA1/BARD1 E3 ligase complex to perform ubiquitination at DNA damage sites following ionizing radiation leading to DNA repair (PubMed:16628214). Targets DAPK3 for ubiquitination which influences promyelocytic leukemia protein nuclear body (PML-NB) formation in the nucleus (PubMed:18515077). In conjunction with the MDM2 and TOPORS E3 ligases, functions ubiquitination of p53/TP53 (PubMed:12646252, PubMed:15280377). In conjunction with the CBL E3 ligase, targets EGFR for polyubiquitination at the plasma membrane as well as during its internalization and transport on endosomes (PubMed:18508924). In conjunction with the STUB1 E3 quality control E3 ligase, ubiquitinates unfolded proteins to catalyze their immediate destruction (PubMed:11743028). Together with RNF135, catalyzes the viral RNA-dependent 'Lys-63'-linked polyubiquitination of RIGI to activate the downstream signaling pathway that leads to interferon beta production (PubMed:28469175). Together with ZNF598, catalyzes ubiquitination of 40S ribosomal proteins in response to ribosome collisions (PubMed:28685749). In cooperation with the GATOR2 complex, catalyzes 'Lys-6'-linked ubiquitination of NPRL2 (PubMed:36528027). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:11743028, ECO:0000269|PubMed:12646252, ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15280377, ECO:0000269|PubMed:15496420, ECO:0000269|PubMed:16628214, ECO:0000269|PubMed:18284575, ECO:0000269|PubMed:18508924, ECO:0000269|PubMed:18515077, ECO:0000269|PubMed:18948756, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20347421, ECO:0000269|PubMed:21532592, ECO:0000269|PubMed:28322253, ECO:0000269|PubMed:28469175, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:36528027}. |
P61353 | RPL27 | S86 | ochoa | Large ribosomal subunit protein eL27 (60S ribosomal protein L27) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). Required for proper rRNA processing and maturation of 28S and 5.8S rRNAs (PubMed:25424902). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P61604 | HSPE1 | S53 | ochoa | 10 kDa heat shock protein, mitochondrial (Hsp10) (10 kDa chaperonin) (Chaperonin 10) (CPN10) (Early-pregnancy factor) (EPF) (Heat shock protein family E member 1) | Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131, PubMed:7912672). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000269|PubMed:7912672, ECO:0000305|PubMed:25918392}. |
P61964 | WDR5 | S49 | psp | WD repeat-containing protein 5 (BMP2-induced 3-kb gene protein) | Contributes to histone modification (PubMed:16600877, PubMed:16829960, PubMed:19103755, PubMed:19131338, PubMed:19556245, PubMed:20018852). May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4' (PubMed:16829960). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:18840606). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:19103755, PubMed:20018852). May regulate osteoblasts differentiation (By similarity). In association with RBBP5 and ASH2L, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:P61965, ECO:0000269|PubMed:16600877, ECO:0000269|PubMed:16829960, ECO:0000269|PubMed:18840606, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
P61978 | HNRNPK | S77 | ochoa | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P62266 | RPS23 | S45 | ochoa | Small ribosomal subunit protein uS12 (40S ribosomal protein S23) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:28257692). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (PubMed:23636399, PubMed:25901680, PubMed:25957688). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (PubMed:23636399, PubMed:25901680, PubMed:25957688). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (PubMed:23636399, PubMed:25901680, PubMed:25957688). Plays an important role in translational accuracy (PubMed:28257692). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:28257692, ECO:0000269|PubMed:34516797}. |
P62491 | RAB11A | S78 | ochoa | Ras-related protein Rab-11A (Rab-11) (EC 3.6.5.2) (YL8) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:15601896, PubMed:15689490, PubMed:17462998, PubMed:19542231, PubMed:20026645, PubMed:20890297, PubMed:21282656, PubMed:26032412). The small Rab GTPase RAB11A regulates endocytic recycling (PubMed:20026645). Forms a functional Rab11/RAB11FIP3/dynein complex that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). Acts as a major regulator of membrane delivery during cytokinesis (PubMed:15601896). Together with MYO5B and RAB8A participates in epithelial cell polarization (PubMed:21282656). Together with Rabin8/RAB3IP, RAB8A, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Together with MYO5B participates in CFTR trafficking to the plasma membrane and TF (Transferrin) recycling in nonpolarized cells (PubMed:17462998). Required in a complex with MYO5B and RAB11FIP2 for the transport of NPC1L1 to the plasma membrane (PubMed:19542231). Participates in the sorting and basolateral transport of CDH1 from the Golgi apparatus to the plasma membrane (PubMed:15689490). Regulates the recycling of FCGRT (receptor of Fc region of monomeric IgG) to basolateral membranes (By similarity). May also play a role in melanosome transport and release from melanocytes (By similarity). Promotes Rabin8/RAB3IP preciliary vesicular trafficking to mother centriole by forming a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, thereby regulating ciliogenesis initiation (PubMed:25673879, PubMed:31204173). On the contrary, upon LPAR1 receptor signaling pathway activation, interaction with phosphorylated WDR44 prevents Rab11-RAB3IP-RAB11FIP3 complex formation and cilia growth (PubMed:31204173). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-endososomal dependent export route via interaction with WDR44 (PubMed:32344433). {ECO:0000250|UniProtKB:P62490, ECO:0000250|UniProtKB:P62492, ECO:0000269|PubMed:15601896, ECO:0000269|PubMed:15689490, ECO:0000269|PubMed:17462998, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:20026645, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26032412, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
P62633 | CNBP | S151 | ochoa | CCHC-type zinc finger nucleic acid binding protein (Cellular nucleic acid-binding protein) (CNBP) (Zinc finger protein 9) | Single-stranded DNA-binding protein that preferentially binds to the sterol regulatory element (SRE) sequence 5'-GTGCGGTG-3', and thereby mediates transcriptional repression (PubMed:2562787). Has a role as transactivator of the Myc promoter (By similarity). Binds single-stranded RNA in a sequence-specific manner (By similarity). {ECO:0000250|UniProtKB:P53996, ECO:0000250|UniProtKB:P62634, ECO:0000269|PubMed:2562787}.; FUNCTION: [Isoform 1]: Binds G-rich elements in target mRNA coding sequences (PubMed:28329689). Prevents G-quadruplex structure formation in vitro, suggesting a role in supporting translation by resolving stable structures on mRNAs (PubMed:28329689). {ECO:0000269|PubMed:28329689}.; FUNCTION: [Isoform 2]: Binds to RNA. {ECO:0000269|PubMed:28329689}.; FUNCTION: [Isoform 4]: Binds to RNA. {ECO:0000269|PubMed:28329689}.; FUNCTION: [Isoform 5]: Binds to RNA. {ECO:0000269|PubMed:28329689}.; FUNCTION: [Isoform 6]: Binds to RNA. {ECO:0000269|PubMed:28329689}.; FUNCTION: [Isoform 8]: Binds to RNA. {ECO:0000269|PubMed:28329689}. |
P62820 | RAB1A | S78 | ochoa | Ras-related protein Rab-1A (EC 3.6.5.2) (YPT1-related protein) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:20639577, PubMed:20861236, PubMed:21303926, PubMed:22939626). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:20639577, PubMed:20861236, PubMed:21303926, PubMed:22939626). RAB1A regulates vesicular protein transport from the endoplasmic reticulum (ER) to the Golgi compartment and on to the cell surface, and plays a role in IL-8 and growth hormone secretion (PubMed:21303926). Required to modulate the compacted morphology of the Golgi (PubMed:26209634). Regulates the level of CASR present at the cell membrane (PubMed:20861236). Plays a role in cell adhesion and cell migration, via its role in protein trafficking (PubMed:20639577). Plays a role in autophagosome assembly and cellular defense reactions against pathogenic bacteria (PubMed:22939626). Plays a role in microtubule-dependent protein transport by early endosomes and in anterograde melanosome transport (By similarity). {ECO:0000250|UniProtKB:P62821, ECO:0000269|PubMed:20639577, ECO:0000269|PubMed:20861236, ECO:0000269|PubMed:21303926, ECO:0000269|PubMed:22939626, ECO:0000269|PubMed:26209634}. |
P62837 | UBE2D2 | S83 | ochoa | Ubiquitin-conjugating enzyme E2 D2 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D2) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D2) (Ubiquitin carrier protein D2) (Ubiquitin-conjugating enzyme E2(17)KB 2) (Ubiquitin-conjugating enzyme E2-17 kDa 2) (Ubiquitin-protein ligase D2) (p53-regulated ubiquitin-conjugating enzyme 1) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:10329681, PubMed:18042044, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854, PubMed:28322253). Catalyzes 'Lys-48'-linked polyubiquitination (PubMed:10329681, PubMed:18042044, PubMed:18359941, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854). Mediates the selective degradation of short-lived and abnormal proteins (PubMed:10329681, PubMed:18042044, PubMed:18359941, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854). Functions in the E6/E6-AP-induced ubiquitination of p53/TP53 (PubMed:15280377). Mediates ubiquitination of PEX5 and SQSTM1 and autoubiquitination of STUB1 and TRAF6 (PubMed:18359941, PubMed:28322253). Involved in the signal-induced conjugation and subsequent degradation of NFKBIA, FBXW2-mediated GCM1 ubiquitination and degradation, MDM2-dependent degradation of p53/TP53 and the activation of MAVS in the mitochondria by RIGI in response to viral infection (PubMed:18703417, PubMed:20403326). Essential for viral activation of IRF3 (PubMed:19854139). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:15280377, ECO:0000269|PubMed:18042044, ECO:0000269|PubMed:18359941, ECO:0000269|PubMed:18703417, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20403326, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:26475854, ECO:0000269|PubMed:28322253}. |
P62851 | RPS25 | S74 | ochoa | Small ribosomal subunit protein eS25 (40S ribosomal protein S25) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}. |
P62937 | PPIA | S99 | ochoa | Peptidyl-prolyl cis-trans isomerase A (PPIase A) (EC 5.2.1.8) (Cyclophilin A) (Cyclosporin A-binding protein) (Rotamase A) [Cleaved into: Peptidyl-prolyl cis-trans isomerase A, N-terminally processed] | Catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (PubMed:2001362, PubMed:20676357, PubMed:21245143, PubMed:21593166, PubMed:25678563). Exerts a strong chemotactic effect on leukocytes partly through activation of one of its membrane receptors BSG/CD147, initiating a signaling cascade that culminates in MAPK/ERK activation (PubMed:11943775, PubMed:21245143). Activates endothelial cells (ECs) in a pro-inflammatory manner by stimulating activation of NF-kappa-B and ERK, JNK and p38 MAP-kinases and by inducing expression of adhesion molecules including SELE and VCAM1 (PubMed:15130913). Induces apoptosis in ECs by promoting the FOXO1-dependent expression of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). In response to oxidative stress, initiates proapoptotic and antiapoptotic signaling in ECs via activation of NF-kappa-B and AKT1 and up-regulation of antiapoptotic protein BCL2 (PubMed:23180369). Negatively regulates MAP3K5/ASK1 kinase activity, autophosphorylation and oxidative stress-induced apoptosis mediated by MAP3K5/ASK1 (PubMed:26095851). Necessary for the assembly of TARDBP in heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and regulates TARDBP binding to RNA UG repeats and TARDBP-dependent expression of HDAC6, ATG7 and VCP which are involved in clearance of protein aggregates (PubMed:25678563). Plays an important role in platelet activation and aggregation (By similarity). Regulates calcium mobilization and integrin ITGA2B:ITGB3 bidirectional signaling via increased ROS production as well as by facilitating the interaction between integrin and the cell cytoskeleton (By similarity). Binds heparan sulfate glycosaminoglycans (PubMed:11943775). Inhibits replication of influenza A virus (IAV) (PubMed:19207730). Inhibits ITCH/AIP4-mediated ubiquitination of matrix protein 1 (M1) of IAV by impairing the interaction of ITCH/AIP4 with M1, followed by the suppression of the nuclear export of M1, and finally reduction of the replication of IAV (PubMed:22347431, PubMed:30328013). {ECO:0000250|UniProtKB:P17742, ECO:0000269|PubMed:11943775, ECO:0000269|PubMed:15130913, ECO:0000269|PubMed:19207730, ECO:0000269|PubMed:2001362, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:21245143, ECO:0000269|PubMed:21593166, ECO:0000269|PubMed:22347431, ECO:0000269|PubMed:23180369, ECO:0000269|PubMed:25678563, ECO:0000269|PubMed:26095851, ECO:0000269|PubMed:30328013, ECO:0000269|PubMed:31063815}.; FUNCTION: (Microbial infection) May act as a mediator between human SARS coronavirus nucleoprotein and BSG/CD147 in the process of invasion of host cells by the virus (PubMed:15688292). {ECO:0000269|PubMed:15688292}.; FUNCTION: (Microbial infection) Stimulates RNA-binding ability of HCV NS5A in a peptidyl-prolyl cis-trans isomerase activity-dependent manner. {ECO:0000269|PubMed:21593166}. |
P63241 | EIF5A | S44 | ochoa | Eukaryotic translation initiation factor 5A-1 (eIF-5A-1) (eIF-5A1) (Eukaryotic initiation factor 5A isoform 1) (eIF-5A) (Rev-binding factor) (eIF-4D) | Translation factor that promotes translation elongation and termination, particularly upon ribosome stalling at specific amino acid sequence contexts (PubMed:33547280). Binds between the exit (E) and peptidyl (P) site of the ribosome and promotes rescue of stalled ribosome: specifically required for efficient translation of polyproline-containing peptides as well as other motifs that stall the ribosome (By similarity). Acts as a ribosome quality control (RQC) cofactor by joining the RQC complex to facilitate peptidyl transfer during CAT tailing step (By similarity). Also involved in actin dynamics and cell cycle progression, mRNA decay and probably in a pathway involved in stress response and maintenance of cell wall integrity (PubMed:16987817). With syntenin SDCBP, functions as a regulator of p53/TP53 and p53/TP53-dependent apoptosis (PubMed:15371445). Also regulates TNF-alpha-mediated apoptosis (PubMed:15452064, PubMed:17187778). Mediates effects of polyamines on neuronal process extension and survival (PubMed:17360499). Is required for autophagy by assisting the ribosome in translating the ATG3 protein at a specific amino acid sequence, the 'ASP-ASP-Gly' motif, leading to the increase of the efficiency of ATG3 translation and facilitation of LC3B lipidation and autophagosome formation (PubMed:29712776). {ECO:0000250|UniProtKB:P23301, ECO:0000269|PubMed:15371445, ECO:0000269|PubMed:15452064, ECO:0000269|PubMed:16987817, ECO:0000269|PubMed:17187778, ECO:0000269|PubMed:17360499, ECO:0000269|PubMed:29712776, ECO:0000269|PubMed:33547280}.; FUNCTION: (Microbial infection) Cellular cofactor of human T-cell leukemia virus type I (HTLV-1) Rex protein and of human immunodeficiency virus type 1 (HIV-1) Rev protein, essential for mRNA export of retroviral transcripts. {ECO:0000269|PubMed:8253832}. |
P68371 | TUBB4B | S75 | ochoa | Tubulin beta-4B chain (Tubulin beta-2 chain) (Tubulin beta-2C chain) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
P78347 | GTF2I | S839 | ochoa | General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) | Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}. |
P78352 | DLG4 | S561 | psp | Disks large homolog 4 (Postsynaptic density protein 95) (PSD-95) (Synapse-associated protein 90) (SAP-90) (SAP90) | Postsynaptic scaffolding protein that plays a critical role in synaptogenesis and synaptic plasticity by providing a platform for the postsynaptic clustering of crucial synaptic proteins. Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B. Also regulates AMPA-type glutamate receptor (AMPAR) immobilization at postsynaptic density keeping the channels in an activated state in the presence of glutamate and preventing synaptic depression (By similarity). Under basal conditions, cooperates with FYN to stabilize palmitoyltransferase ZDHHC5 at the synaptic membrane through FYN-mediated phosphorylation of ZDHHC5 and its subsequent inhibition of association with endocytic proteins (PubMed:26334723). {ECO:0000250|UniProtKB:Q62108, ECO:0000269|PubMed:26334723}. |
P79483 | HLA-DRB3 | S117 | ochoa | HLA class II histocompatibility antigen, DR beta 3 chain (MHC class II antigen DRB3) | A beta chain of antigen-presenting major histocompatibility complex class II (MHCII) molecule. In complex with the alpha chain HLA-DRA, displays antigenic peptides on professional antigen presenting cells (APCs) for recognition by alpha-beta T cell receptor (TCR) on HLA-DRB3-restricted CD4-positive T cells. This guides antigen-specific T-helper effector functions, both antibody-mediated immune response and macrophage activation, to ultimately eliminate the infectious agents and transformed cells. Typically presents extracellular peptide antigens of 10 to 30 amino acids that arise from proteolysis of endocytosed antigens in lysosomes (PubMed:16148104, PubMed:19531622, PubMed:19830726, PubMed:20368442, PubMed:22929521, PubMed:23569328, PubMed:2463305, PubMed:2788702, PubMed:30282837, PubMed:31020640, PubMed:31308093, PubMed:31333679). In the tumor microenvironment, presents antigenic peptides that are primarily generated in tumor-resident APCs likely via phagocytosis of apoptotic tumor cells or macropinocytosis of secreted tumor proteins (By similarity). Presents peptides derived from intracellular proteins that are trapped in autolysosomes after macroautophagy, a mechanism especially relevant for T cell selection in the thymus and central immune tolerance (By similarity). The selection of the immunodominant epitopes follows two processing modes: 'bind first, cut/trim later' for pathogen-derived antigenic peptides and 'cut first, bind later' for autoantigens/self-peptides. The anchor residue at position 1 of the peptide N-terminus, usually a large hydrophobic residue, is essential for high affinity interaction with MHCII molecules (By similarity). {ECO:0000250|UniProtKB:P01911, ECO:0000269|PubMed:16148104, ECO:0000269|PubMed:19531622, ECO:0000269|PubMed:19830726, ECO:0000269|PubMed:20368442, ECO:0000269|PubMed:22929521, ECO:0000269|PubMed:23569328, ECO:0000269|PubMed:2463305, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:30282837, ECO:0000269|PubMed:31020640, ECO:0000269|PubMed:31308093, ECO:0000269|PubMed:31333679}.; FUNCTION: ALLELE DRB3*01:01: Exclusively presents several immunogenic epitopes derived from C.tetani neurotoxin tetX, playing a significant role in immune recognition and long-term protection (PubMed:19830726, PubMed:2463305, PubMed:2788702). Presents viral epitopes derived from HHV-6B U11, TRX2/U56 and U85 antigens to polyfunctional CD4-positive T cells with cytotoxic activity implicated in control of HHV-6B infection (PubMed:31020640). {ECO:0000269|PubMed:19830726, ECO:0000269|PubMed:2463305, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:31020640}.; FUNCTION: ALLELE DRB3*02:02 Exclusively presents several immunogenic epitopes derived from C.tetani neurotoxin tetX, playing a significant role in immune recognition and long-term protection (PubMed:19830726, PubMed:2788702). Upon EBV infection, presents to CD4-positive T cells latent antigen EBNA2 (PRSPTVFYNIPPMPLPPSQL) and lytic antigen BZLF1 (LTAYHVSTAPTGSWF) peptides, driving oligoclonal expansion and selection of virus-specific memory T cell subsets with cytotoxic potential to directly eliminate virus-infected B cells (PubMed:23569328, PubMed:31308093). Presents viral epitopes derived from HHV-6B U11, gB/U39 and gH/U48 antigens to polyfunctional CD4-positive T cells with cytotoxic activity implicated in control of HHV-6B infection (PubMed:31020640). Plays a minor role in CD4-positive T cell immune response against Dengue virus by presenting conserved peptides from capsid and non-structural NS3 proteins (PubMed:31333679). Displays peptides derived from IAV matrix protein M, implying a role in protection against IAV infection (PubMed:19830726). In the context of tumor immunesurveillance, may present to T-helper 1 cells an immunogenic epitope derived from tumor-associated antigen WT1 (KRYFKLSHLQMHSRKH), likely providing for effective antitumor immunity in a wide range of solid and hematological malignancies (PubMed:22929521). Presents to Vbeta2-positive T-helper 1 cells specifically an immunodominant peptide derived from tumor antigen CTAG1A/NY-ESO-1(PGVLLKEFTVSGNILTIRLTAADHR) and confers protective memory response (PubMed:19531622, PubMed:20368442). In metastatic epithelial tumors, presents to intratumoral CD4-positive T cells a TP53 neoantigen (HYNYMCNSSCMGSMNRRPILTIITL) carrying G245S hotspot driver mutation and may mediate tumor regression (PubMed:30282837). {ECO:0000269|PubMed:19531622, ECO:0000269|PubMed:19830726, ECO:0000269|PubMed:20368442, ECO:0000269|PubMed:22929521, ECO:0000269|PubMed:23569328, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:30282837, ECO:0000269|PubMed:31020640, ECO:0000269|PubMed:31308093, ECO:0000269|PubMed:31333679}.; FUNCTION: ALLELE DRB3*03:01: Presents a series of conserved peptides derived from the M.tuberculosis PPE family of proteins, in particular PPE29 and PPE33, known to be highly immunogenic (PubMed:32341563). Presents immunogenic epitopes derived from C.tetani neurotoxin tetX, playing a role in immune recognition and long-term protection (PubMed:2788702). Displays immunodominant viral peptides from HCV non-structural protein NS2, as part of a broad range T-helper response to resolve infection (PubMed:16148104). {ECO:0000269|PubMed:16148104, ECO:0000269|PubMed:2788702, ECO:0000269|PubMed:32341563}. |
P80192 | MAP3K9 | S519 | ochoa | Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}. |
P84243 | H3-3A | S32 | ochoa | Histone H3.3 | Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15776021, ECO:0000269|PubMed:16258499}. |
Q00266 | MAT1A | S114 | psp | S-adenosylmethionine synthase isoform type-1 (AdoMet synthase 1) (EC 2.5.1.6) (Methionine adenosyltransferase 1) (MAT 1) (Methionine adenosyltransferase I/III) (MAT-I/III) | Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate. {ECO:0000269|PubMed:10677294}. |
Q00341 | HDLBP | S622 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q00577 | PURA | S256 | ochoa | Transcriptional activator protein Pur-alpha (Purine-rich single-stranded DNA-binding protein alpha) | This is a probable transcription activator that specifically binds the purine-rich single strand of the PUR element located upstream of the MYC gene (PubMed:1448097, PubMed:20976240). May play a role in the initiation of DNA replication and in recombination. {ECO:0000269|PubMed:1448097, ECO:0000269|PubMed:20976240}. |
Q00653 | NFKB2 | S739 | ochoa | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q01831 | XPC | S94 | ochoa|psp | DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}. |
Q02539 | H1-1 | S105 | ochoa | Histone H1.1 (Histone H1a) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
Q02880 | TOP2B | S1236 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q03001 | DST | S6192 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03014 | HHEX | S177 | psp | Hematopoietically-expressed homeobox protein HHEX (Homeobox protein HEX) (Homeobox protein PRH) (Proline-rich homeodomain protein) | Recognizes the DNA sequence 5'-ATTAA-3' (By similarity). Transcriptional repressor (By similarity). Activator of WNT-mediated transcription in conjunction with CTNNB1 (PubMed:20028982). Establishes anterior identity at two levels; acts early to enhance canonical WNT-signaling by repressing expression of TLE4, and acts later to inhibit NODAL-signaling by directly targeting NODAL (By similarity). Inhibits EIF4E-mediated mRNA nuclear export (PubMed:12554669). May play a role in hematopoietic differentiation (PubMed:8096636). {ECO:0000250|UniProtKB:P43120, ECO:0000269|PubMed:12554669, ECO:0000269|PubMed:20028982, ECO:0000269|PubMed:8096636}. |
Q03164 | KMT2A | S1004 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S1056 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S1058 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S2796 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03188 | CENPC | S373 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04206 | RELA | S45 | ochoa|psp | Transcription factor p65 (Nuclear factor NF-kappa-B p65 subunit) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 3) | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric RELA-NFKB1 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. The NF-kappa-B heterodimeric RELA-NFKB1 and RELA-REL complexes, for instance, function as transcriptional activators. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The inhibitory effect of I-kappa-B on NF-kappa-B through retention in the cytoplasm is exerted primarily through the interaction with RELA. RELA shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Besides its activity as a direct transcriptional activator, it is also able to modulate promoters accessibility to transcription factors and thereby indirectly regulate gene expression. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells (PubMed:15790681). The NF-kappa-B homodimeric RELA-RELA complex appears to be involved in invasin-mediated activation of IL-8 expression. Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:10928981, ECO:0000269|PubMed:12748188, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17620405, ECO:0000269|PubMed:19058135, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:33440148}. |
Q04206 | RELA | S238 | ochoa|psp | Transcription factor p65 (Nuclear factor NF-kappa-B p65 subunit) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 3) | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric RELA-NFKB1 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. The NF-kappa-B heterodimeric RELA-NFKB1 and RELA-REL complexes, for instance, function as transcriptional activators. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The inhibitory effect of I-kappa-B on NF-kappa-B through retention in the cytoplasm is exerted primarily through the interaction with RELA. RELA shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Besides its activity as a direct transcriptional activator, it is also able to modulate promoters accessibility to transcription factors and thereby indirectly regulate gene expression. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells (PubMed:15790681). The NF-kappa-B homodimeric RELA-RELA complex appears to be involved in invasin-mediated activation of IL-8 expression. Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:10928981, ECO:0000269|PubMed:12748188, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17620405, ECO:0000269|PubMed:19058135, ECO:0000269|PubMed:19103749, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:33440148}. |
Q05655 | PRKCD | S130 | ochoa | Protein kinase C delta type (EC 2.7.11.13) (Tyrosine-protein kinase PRKCD) (EC 2.7.10.2) (nPKC-delta) [Cleaved into: Protein kinase C delta type regulatory subunit; Protein kinase C delta type catalytic subunit (Sphingosine-dependent protein kinase-1) (SDK1)] | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses (PubMed:21406692, PubMed:21810427). Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction (By similarity). Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis (PubMed:21406692, PubMed:21810427). In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53 (PubMed:21406692, PubMed:21810427). In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53 (PubMed:21406692, PubMed:21810427). In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation (By similarity). Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1 (PubMed:15774464). Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways (By similarity). Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways (PubMed:19801500). May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA (PubMed:11748588). In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation (PubMed:16940418). Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release (PubMed:19587372). Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin (PubMed:11877440). The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion (By similarity). Phosphorylates ELAVL1 in response to angiotensin-2 treatment (PubMed:18285462). Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis (PubMed:12649167). Phosphorylates SMPD1 which induces SMPD1 secretion (PubMed:17303575). {ECO:0000250|UniProtKB:P28867, ECO:0000269|PubMed:11748588, ECO:0000269|PubMed:11877440, ECO:0000269|PubMed:12649167, ECO:0000269|PubMed:15774464, ECO:0000269|PubMed:16940418, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19587372, ECO:0000269|PubMed:19801500, ECO:0000303|PubMed:21406692, ECO:0000303|PubMed:21810427}. |
Q05655 | PRKCD | S658 | ochoa | Protein kinase C delta type (EC 2.7.11.13) (Tyrosine-protein kinase PRKCD) (EC 2.7.10.2) (nPKC-delta) [Cleaved into: Protein kinase C delta type regulatory subunit; Protein kinase C delta type catalytic subunit (Sphingosine-dependent protein kinase-1) (SDK1)] | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses (PubMed:21406692, PubMed:21810427). Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction (By similarity). Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis (PubMed:21406692, PubMed:21810427). In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53 (PubMed:21406692, PubMed:21810427). In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53 (PubMed:21406692, PubMed:21810427). In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation (By similarity). Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1 (PubMed:15774464). Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways (By similarity). Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways (PubMed:19801500). May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA (PubMed:11748588). In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation (PubMed:16940418). Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release (PubMed:19587372). Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin (PubMed:11877440). The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion (By similarity). Phosphorylates ELAVL1 in response to angiotensin-2 treatment (PubMed:18285462). Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis (PubMed:12649167). Phosphorylates SMPD1 which induces SMPD1 secretion (PubMed:17303575). {ECO:0000250|UniProtKB:P28867, ECO:0000269|PubMed:11748588, ECO:0000269|PubMed:11877440, ECO:0000269|PubMed:12649167, ECO:0000269|PubMed:15774464, ECO:0000269|PubMed:16940418, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19587372, ECO:0000269|PubMed:19801500, ECO:0000303|PubMed:21406692, ECO:0000303|PubMed:21810427}. |
Q05D32 | CTDSPL2 | S112 | ochoa | CTD small phosphatase-like protein 2 (CTDSP-like 2) (EC 3.1.3.-) | Probable phosphatase. {ECO:0000250}. |
Q05D60 | DEUP1 | S518 | ochoa | Deuterosome assembly protein 1 (Coiled-coil domain-containing protein 67) | Key structural component of the deuterosome, a structure that promotes de novo centriole amplification in multiciliated cells. Deuterosome-mediated centriole amplification occurs in terminally differentiated multiciliated cells and can generate more than 100 centrioles. Probably sufficient for the specification and formation of the deuterosome inner core. Interacts with CEP152 and recruits PLK4 to activate centriole biogenesis (By similarity). {ECO:0000250}. |
Q06187 | BTK | S366 | ochoa | Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) | Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}. |
Q06187 | BTK | S553 | ochoa | Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) | Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}. |
Q07020 | RPL18 | S161 | ochoa | Large ribosomal subunit protein eL18 (60S ribosomal protein L18) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
Q07889 | SOS1 | S757 | ochoa | Son of sevenless homolog 1 (SOS-1) | Promotes the exchange of Ras-bound GDP by GTP (PubMed:8493579). Probably by promoting Ras activation, regulates phosphorylation of MAP kinase MAPK3/ERK1 in response to EGF (PubMed:17339331). Catalytic component of a trimeric complex that participates in transduction of signals from Ras to Rac by promoting the Rac-specific guanine nucleotide exchange factor (GEF) activity (By similarity). {ECO:0000250|UniProtKB:Q62245, ECO:0000269|PubMed:17339331, ECO:0000269|PubMed:8493579}. |
Q08170 | SRSF4 | S269 | ochoa | Serine/arginine-rich splicing factor 4 (Pre-mRNA-splicing factor SRP75) (SRP001LB) (Splicing factor, arginine/serine-rich 4) | Plays a role in alternative splice site selection during pre-mRNA splicing. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:15009664}. |
Q08211 | DHX9 | S1026 | ochoa | ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) | Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}. |
Q08380 | LGALS3BP | S444 | ochoa | Galectin-3-binding protein (Basement membrane autoantigen p105) (Lectin galactoside-binding soluble 3-binding protein) (Mac-2-binding protein) (MAC2BP) (Mac-2 BP) (Tumor-associated antigen 90K) | Promotes integrin-mediated cell adhesion. May stimulate host defense against viruses and tumor cells. {ECO:0000269|PubMed:11146440, ECO:0000269|PubMed:8034587, ECO:0000269|PubMed:9501082}. |
Q08881 | ITK | S514 | ochoa | Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}. |
Q09666 | AHNAK | S67 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S845 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S4486 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12830 | BPTF | S1765 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12846 | STX4 | S208 | ochoa | Syntaxin-4 (Renal carcinoma antigen NY-REN-31) | Plasma membrane t-SNARE that mediates docking of transport vesicles (By similarity). Necessary for the translocation of SLC2A4 from intracellular vesicles to the plasma membrane (By similarity). In neurons, recruited at neurite tips to membrane domains rich in the phospholipid 1-oleoyl-2-palmitoyl-PC (OPPC) which promotes neurite tip surface expression of the dopamine transporter SLC6A3/DAT by facilitating fusion of SLC6A3-containing transport vesicles with the plasma membrane (By similarity). Together with STXB3 and VAMP2, may also play a role in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes and in docking of synaptic vesicles at presynaptic active zones (By similarity). Required for normal hearing (PubMed:36355422). {ECO:0000250|UniProtKB:P70452, ECO:0000250|UniProtKB:Q08850, ECO:0000269|PubMed:36355422}. |
Q12888 | TP53BP1 | S105 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12904 | AIMP1 | S93 | ochoa | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q12906 | ILF3 | S362 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12906 | ILF3 | S506 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12959 | DLG1 | S598 | ochoa | Disks large homolog 1 (Synapse-associated protein 97) (SAP-97) (SAP97) (hDlg) | Essential multidomain scaffolding protein required for normal development (By similarity). Recruits channels, receptors and signaling molecules to discrete plasma membrane domains in polarized cells. Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). May also play a role in adherens junction assembly, signal transduction, cell proliferation, synaptogenesis and lymphocyte activation. Regulates the excitability of cardiac myocytes by modulating the functional expression of Kv4 channels. Functional regulator of Kv1.5 channel. During long-term depression in hippocampal neurons, it recruits ADAM10 to the plasma membrane (PubMed:23676497). {ECO:0000250|UniProtKB:A0A8C0TYJ0, ECO:0000250|UniProtKB:Q811D0, ECO:0000269|PubMed:10656683, ECO:0000269|PubMed:12445884, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15263016, ECO:0000269|PubMed:19213956, ECO:0000269|PubMed:20605917, ECO:0000269|PubMed:23676497}. |
Q13263 | TRIM28 | S138 | ochoa | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13263 | TRIM28 | S501 | ochoa|psp | Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) | Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}. |
Q13322 | GRB10 | S481 | ochoa | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13330 | MTA1 | S584 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13422 | IKZF1 | S298 | ochoa | DNA-binding protein Ikaros (Ikaros family zinc finger protein 1) (Lymphoid transcription factor LyF-1) | Transcription regulator of hematopoietic cell differentiation (PubMed:17934067). Binds gamma-satellite DNA (PubMed:17135265, PubMed:19141594). Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus in adult erythrocytes. Increases normal apoptosis in adult erythroid cells. Confers early temporal competence to retinal progenitor cells (RPCs) (By similarity). Function is isoform-specific and is modulated by dominant-negative inactive isoforms (PubMed:17135265, PubMed:17934067). {ECO:0000250|UniProtKB:Q03267, ECO:0000269|PubMed:10204490, ECO:0000269|PubMed:17135265, ECO:0000269|PubMed:17934067, ECO:0000269|PubMed:19141594}. |
Q13509 | TUBB3 | S75 | ochoa | Tubulin beta-3 chain (Tubulin beta-4 chain) (Tubulin beta-III) | Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:34996871, PubMed:38305685, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:34996871, PubMed:38305685, PubMed:38609661). Below the cap, alpha-beta tubulin heterodimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). TUBB3 plays a critical role in proper axon guidance and maintenance (PubMed:20074521). Binding of NTN1/Netrin-1 to its receptor UNC5C might cause dissociation of UNC5C from polymerized TUBB3 in microtubules and thereby lead to increased microtubule dynamics and axon repulsion (PubMed:28483977). Plays a role in dorsal root ganglion axon projection towards the spinal cord (PubMed:28483977). {ECO:0000269|PubMed:20074521, ECO:0000269|PubMed:28483977, ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}. |
Q13554 | CAMK2B | S276 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit beta (CaM kinase II subunit beta) (CaMK-II subunit beta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in dendritic spine and synapse formation, neuronal plasticity and regulation of sarcoplasmic reticulum Ca(2+) transport in skeletal muscle (PubMed:16690701). In neurons, plays an essential structural role in the reorganization of the actin cytoskeleton during plasticity by binding and bundling actin filaments in a kinase-independent manner. This structural function is required for correct targeting of CaMK2A, which acts downstream of NMDAR to promote dendritic spine and synapse formation and maintain synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In developing hippocampal neurons, promotes arborization of the dendritic tree and in mature neurons, promotes dendritic remodeling. Also regulates the migration of developing neurons (PubMed:29100089). Participates in the modulation of skeletal muscle function in response to exercise (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of triadin, a ryanodine receptor-coupling factor, and phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). Phosphorylates reticulophagy regulator RETREG1 at 'Ser-151' under endoplasmic reticulum stress conditions which enhances RETREG1 oligomerization and its membrane scission and reticulophagy activity (PubMed:31930741). {ECO:0000250|UniProtKB:P08413, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:29100089, ECO:0000269|PubMed:31930741}. |
Q13555 | CAMK2G | S276 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}. |
Q13557 | CAMK2D | S276 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}. |
Q13561 | DCTN2 | S211 | ochoa | Dynactin subunit 2 (50 kDa dynein-associated polypeptide) (Dynactin complex 50 kDa subunit) (DCTN-50) (p50 dynamitin) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In the dynactin soulder domain, binds the ACTR1A filament and acts as a molecular ruler to determine the length (By similarity). Modulates cytoplasmic dynein binding to an organelle, and plays a role in prometaphase chromosome alignment and spindle organization during mitosis. Involved in anchoring microtubules to centrosomes. May play a role in synapse formation during brain development (By similarity). {ECO:0000250|UniProtKB:A0A5G2QD80, ECO:0000250|UniProtKB:Q99KJ8}. |
Q13596 | SNX1 | S72 | ochoa | Sorting nexin-1 | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17101778, PubMed:17550970, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498). {ECO:0000269|PubMed:12198132, ECO:0000269|PubMed:15498486, ECO:0000269|PubMed:16407403, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:17550970, ECO:0000269|PubMed:18088323, ECO:0000269|PubMed:19816406, ECO:0000269|PubMed:20070609, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:21040701, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:23152498, ECO:0000303|PubMed:15498486}. |
Q13615 | MTMR3 | S1173 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR3 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 1) (FYVE-DSP1) (Myotubularin-related protein 3) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) (Zinc finger FYVE domain-containing protein 10) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:10733931, PubMed:11302699, PubMed:11676921, PubMed:12646134). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic (PubMed:11302699, PubMed:11676921, PubMed:12646134). Could also have a molecular sequestering/adapter activity and regulate biological processes independently of its phosphatase activity. It includes the regulation of midbody abscission during mitotic cytokinesis (PubMed:25659891). {ECO:0000269|PubMed:10733931, ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:11676921, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:25659891}. |
Q13618 | CUL3 | S585 | ochoa | Cullin-3 (CUL-3) | Core component of multiple cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. BCR complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins (PubMed:27565346). As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin-protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cullin subunit with TIP120A/CAND1. The functional specificity of the BCR complex depends on the BTB domain-containing protein as the substrate recognition component. BCR(KLHL42) is involved in ubiquitination of KATNA1. BCR(SPOP) is involved in ubiquitination of BMI1/PCGF4, BRMS1, MACROH2A1 and DAXX, GLI2 and GLI3. Can also form a cullin-RING-based BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex containing homodimeric SPOPL or the heterodimer formed by SPOP and SPOPL; these complexes have lower ubiquitin ligase activity. BCR(KLHL9-KLHL13) controls the dynamic behavior of AURKB on mitotic chromosomes and thereby coordinates faithful mitotic progression and completion of cytokinesis. BCR(KLHL12) is involved in ER-Golgi transport by regulating the size of COPII coats, thereby playing a key role in collagen export, which is required for embryonic stem (ES) cells division: BCR(KLHL12) acts by mediating monoubiquitination of SEC31 (SEC31A or SEC31B) (PubMed:22358839, PubMed:27716508). BCR(KLHL3) acts as a regulator of ion transport in the distal nephron; by mediating ubiquitination of WNK4 (PubMed:23387299, PubMed:23453970, PubMed:23576762). The BCR(KLHL20) E3 ubiquitin ligase complex is involved in interferon response and anterograde Golgi to endosome transport: it mediates both ubiquitination leading to degradation and 'Lys-33'-linked ubiquitination (PubMed:20389280, PubMed:21670212, PubMed:21840486, PubMed:24768539). The BCR(KLHL21) E3 ubiquitin ligase complex regulates localization of the chromosomal passenger complex (CPC) from chromosomes to the spindle midzone in anaphase and mediates the ubiquitination of AURKB (PubMed:19995937). The BCR(KLHL22) ubiquitin ligase complex mediates monoubiquitination of PLK1, leading to PLK1 dissociation from phosphoreceptor proteins and subsequent removal from kinetochores, allowing silencing of the spindle assembly checkpoint (SAC) and chromosome segregation (PubMed:23455478). The BCR(KLHL22) ubiquitin ligase complex is also responsible for the amino acid-stimulated 'Lys-48' polyubiquitination and proteasomal degradation of DEPDC5. Through the degradation of DEPDC5, releases the GATOR1 complex-mediated inhibition of the TORC1 pathway (PubMed:29769719). The BCR(KLHL25) ubiquitin ligase complex is involved in translational homeostasis by mediating ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1) (PubMed:22578813). The BCR(KLHL25) ubiquitin ligase complex is also involved in lipid synthesis by mediating ubiquitination and degradation of ACLY (PubMed:27664236). The BCR(KBTBD8) complex acts by mediating monoubiquitination of NOLC1 and TCOF1, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in ubiquitination of cyclin E and of cyclin D1 (in vitro) thus involved in regulation of G1/S transition. Involved in the ubiquitination of KEAP1, ENC1 and KLHL41 (PubMed:15983046). In concert with ATF2 and RBX1, promotes degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. The BCR(KCTD17) E3 ubiquitin ligase complex mediates ubiquitination and degradation of TCHP, a down-regulator of cilium assembly, thereby inducing ciliogenesis (PubMed:25270598). The BCR(KLHL24) E3 ubiquitin ligase complex mediates ubiquitination of KRT14, controls KRT14 levels during keratinocytes differentiation, and is essential for skin integrity (PubMed:27798626). The BCR(KLHL18) E3 ubiquitin ligase complex mediates the ubiquitination of AURKA leading to its activation at the centrosome which is required for initiating mitotic entry (PubMed:23213400). The BCR(KEAP1) E3 ubiquitin ligase complex acts as a key sensor of oxidative and electrophilic stress by mediating ubiquitination and degradation of NFE2L2/NRF2, a transcription factor regulating expression of many cytoprotective genes (PubMed:15601839, PubMed:16006525). As part of the CUL3(KBTBD6/7) E3 ubiquitin ligase complex functions mediates 'Lys-48' ubiquitination and proteasomal degradation of TIAM1 (PubMed:25684205). By controlling the ubiquitination of that RAC1 guanine exchange factors (GEF), regulates RAC1 signal transduction and downstream biological processes including the organization of the cytoskeleton, cell migration and cell proliferation (PubMed:25684205). The BCR(KBTBD4) E3 ubiquitin ligase complex targets CoREST corepressor complex components RCOR1, KDM1A/LSD1 and HDAC2 for proteasomal degradation with RCOR1 likely to be the primary target while degradation of KDM1A and HDAC2 is likely due to their association with RCOR1 (PubMed:33417871). It also targets RCOR3, MIER2 and MIER3 for proteasomal degradation as well as associated proteins ZNF217 and RREB1 with degradation being dependent on the presence of an ELM2 domain in the target proteins (PubMed:36997086). The BCR(ARMC5) complex mediates premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation by mediating ubiquitination of Pol II subunit POLR2A (PubMed:35687106, PubMed:38225631, PubMed:39504960, PubMed:39667934). Required for 'Lys-63'-linked ubiquitination of large ribosomal subunit protein MRPL12 (PubMed:37526061). {ECO:0000269|PubMed:10500095, ECO:0000269|PubMed:11311237, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:15897469, ECO:0000269|PubMed:15983046, ECO:0000269|PubMed:16006525, ECO:0000269|PubMed:16524876, ECO:0000269|PubMed:17543862, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:19261606, ECO:0000269|PubMed:19995937, ECO:0000269|PubMed:20389280, ECO:0000269|PubMed:21670212, ECO:0000269|PubMed:21840486, ECO:0000269|PubMed:22085717, ECO:0000269|PubMed:22358839, ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:22632832, ECO:0000269|PubMed:23213400, ECO:0000269|PubMed:23387299, ECO:0000269|PubMed:23453970, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23576762, ECO:0000269|PubMed:24768539, ECO:0000269|PubMed:25270598, ECO:0000269|PubMed:25684205, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:27565346, ECO:0000269|PubMed:27664236, ECO:0000269|PubMed:27716508, ECO:0000269|PubMed:27798626, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:33417871, ECO:0000269|PubMed:35687106, ECO:0000269|PubMed:36997086, ECO:0000269|PubMed:37526061, ECO:0000269|PubMed:38225631, ECO:0000269|PubMed:39504960, ECO:0000269|PubMed:39667934}. |
Q13733 | ATP1A4 | S379 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-4 (Na(+)/K(+) ATPase alpha-4 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-4) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility. |
Q13885 | TUBB2A | S75 | ochoa | Tubulin beta-2A chain (Tubulin beta class IIa) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. |
Q14126 | DSG2 | S553 | ochoa | Desmoglein-2 (Cadherin family member 5) (HDGC) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:38395410). Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion. Required for proliferation and viability of embryonic stem cells in the blastocyst, thereby crucial for progression of post-implantation embryonic development (By similarity). Maintains pluripotency by regulating epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via interacting with and sequestering CTNNB1 to sites of cell-cell contact, thereby reducing translocation of CTNNB1 to the nucleus and subsequent transcription of CTNNB1/TCF-target genes (PubMed:29910125). Promotes pluripotency and the multi-lineage differentiation potential of hematopoietic stem cells (PubMed:27338829). Plays a role in endothelial cell sprouting and elongation via mediating the junctional-association of cortical actin fibers and CDH5 (PubMed:27338829). Plays a role in limiting inflammatory infiltration and the apoptotic response to injury in kidney tubular epithelial cells, potentially via its role in maintaining cell-cell adhesion and the epithelial barrier (PubMed:38395410). {ECO:0000250|UniProtKB:O55111, ECO:0000269|PubMed:27338829, ECO:0000269|PubMed:29910125, ECO:0000269|PubMed:38395410}. |
Q14151 | SAFB2 | S372 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14157 | UBAP2L | S337 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14161 | GIT2 | S255 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14315 | FLNC | S1962 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14324 | MYBPC2 | S487 | ochoa | Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role. |
Q14324 | MYBPC2 | S884 | ochoa | Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) | Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role. |
Q14457 | BECN1 | S337 | psp | Beclin-1 (Coiled-coil myosin-like BCL2-interacting protein) (Protein GT197) [Cleaved into: Beclin-1-C 35 kDa; Beclin-1-C 37 kDa] | Plays a central role in autophagy (PubMed:18570871, PubMed:21358617, PubMed:23184933, PubMed:23974797, PubMed:25484083, PubMed:28445460, PubMed:37776275). Acts as a core subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and required for the abscission step in cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20208530, PubMed:20643123, PubMed:23974797, PubMed:26783301). Essential for the formation of PI3KC3-C2 but not PI3KC3-C1 PI3K complex forms. Involved in endocytosis (PubMed:25275521). May play a role in antiviral host defense. {ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20208530, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:21358617, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23974797, ECO:0000269|PubMed:25275521, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:26783301, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:37776275, ECO:0000269|PubMed:9765397}.; FUNCTION: Beclin-1-C 35 kDa localized to mitochondria can promote apoptosis; it induces the mitochondrial translocation of BAX and the release of proapoptotic factors. {ECO:0000269|PubMed:21364619, ECO:0000269|PubMed:26263979}.; FUNCTION: (Microbial infection) Protects against infection by a neurovirulent strain of Sindbis virus. {ECO:0000269|PubMed:9765397}. |
Q14562 | DHX8 | S129 | ochoa | ATP-dependent RNA helicase DHX8 (EC 3.6.4.13) (DEAH box protein 8) (RNA helicase HRH1) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). Facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome (PubMed:8608946). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:8608946}. |
Q14624 | ITIH4 | S225 | ochoa | Inter-alpha-trypsin inhibitor heavy chain H4 (ITI heavy chain H4) (ITI-HC4) (Inter-alpha-inhibitor heavy chain 4) (Inter-alpha-trypsin inhibitor family heavy chain-related protein) (IHRP) (Plasma kallikrein sensitive glycoprotein 120) (Gp120) (PK-120) [Cleaved into: 70 kDa inter-alpha-trypsin inhibitor heavy chain H4; 35 kDa inter-alpha-trypsin inhibitor heavy chain H4] | Type II acute-phase protein (APP) involved in inflammatory responses to trauma. May also play a role in liver development or regeneration. {ECO:0000269|PubMed:19263524}. |
Q14676 | MDC1 | S292 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14697 | GANAB | S916 | ochoa | Neutral alpha-glucosidase AB (EC 3.2.1.207) (Alpha-glucosidase 2) (Glucosidase II subunit alpha) | Catalytic subunit of glucosidase II that cleaves sequentially the 2 innermost alpha-1,3-linked glucose residues from the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins (PubMed:10929008). Required for PKD1/Polycystin-1 and PKD2/Polycystin-2 maturation and localization to the cell surface and cilia (PubMed:27259053). {ECO:0000269|PubMed:10929008, ECO:0000269|PubMed:27259053}. |
Q14766 | LTBP1 | S494 | ochoa | Latent-transforming growth factor beta-binding protein 1 (LTBP-1) (Transforming growth factor beta-1-binding protein 1) (TGF-beta1-BP-1) | Key regulator of transforming growth factor beta (TGFB1, TGFB2 and TGFB3) that controls TGF-beta activation by maintaining it in a latent state during storage in extracellular space (PubMed:2022183, PubMed:8617200, PubMed:8939931). Associates specifically via disulfide bonds with the Latency-associated peptide (LAP), which is the regulatory chain of TGF-beta, and regulates integrin-dependent activation of TGF-beta (PubMed:15184403, PubMed:8617200, PubMed:8939931). Outcompeted by LRRC32/GARP for binding to LAP regulatory chain of TGF-beta (PubMed:22278742). {ECO:0000269|PubMed:15184403, ECO:0000269|PubMed:2022183, ECO:0000269|PubMed:22278742, ECO:0000269|PubMed:8617200, ECO:0000269|PubMed:8939931}. |
Q14865 | ARID5B | S266 | ochoa | AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) | Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}. |
Q14980 | NUMA1 | S1105 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q14D04 | VEPH1 | S425 | ochoa | Ventricular zone-expressed PH domain-containing protein homolog 1 (Protein melted) | Interacts with TGF-beta receptor type-1 (TGFBR1) and inhibits dissociation of activated SMAD2 from TGFBR1, impeding its nuclear accumulation and resulting in impaired TGF-beta signaling. May also affect FOXO, Hippo and Wnt signaling. {ECO:0000269|PubMed:26039994}. |
Q15022 | SUZ12 | S240 | ochoa | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15111 | PLCL1 | S97 | ochoa | Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) | Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}. |
Q15149 | PLEC | S647 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15149 | PLEC | S4365 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15283 | RASA2 | S560 | ochoa | Ras GTPase-activating protein 2 (GTPase-activating protein 1m) (GAP1m) | Inhibitory regulator of the Ras-cyclic AMP pathway. Binds inositol tetrakisphosphate (IP4). |
Q15398 | DLGAP5 | S787 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15418 | RPS6KA1 | S684 | ochoa | Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}. |
Q15424 | SAFB | S587 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15468 | STIL | S953 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15554 | TERF2 | S412 | ochoa | Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}. |
Q15643 | TRIP11 | S1858 | ochoa | Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) | Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}. |
Q15746 | MYLK | S1848 | ochoa | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q15907 | RAB11B | S78 | ochoa | Ras-related protein Rab-11B (EC 3.6.5.2) (GTP-binding protein YPT3) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:14627637, PubMed:19029296, PubMed:19244346, PubMed:20717956, PubMed:21248079, PubMed:22129970, PubMed:26032412). The small Rab GTPase RAB11B plays a role in endocytic recycling, regulating apical recycling of several transmembrane proteins including cystic fibrosis transmembrane conductance regulator/CFTR, epithelial sodium channel/ENaC, potassium voltage-gated channel, and voltage-dependent L-type calcium channel. May also regulate constitutive and regulated secretion, like insulin granule exocytosis. Required for melanosome transport and release from melanocytes. Also regulates V-ATPase intracellular transport in response to extracellular acidosis (PubMed:14627637, PubMed:19029296, PubMed:19244346, PubMed:20717956, PubMed:21248079, PubMed:22129970). Promotes Rabin8/RAB3IP preciliary vesicular trafficking to mother centriole by forming a ciliary targeting complex containing Rab11, ASAP1, Rabin8/RAB3IP, RAB11FIP3 and ARF4, thereby regulating ciliogenesis initiation (PubMed:25673879). On the contrary, upon LPAR1 receptor signaling pathway activation, interaction with phosphorylated WDR44 prevents Rab11-RAB3IP-RAB11FIP3 complex formation and cilia growth (PubMed:31204173). {ECO:0000269|PubMed:14627637, ECO:0000269|PubMed:19029296, ECO:0000269|PubMed:19244346, ECO:0000269|PubMed:20717956, ECO:0000269|PubMed:21248079, ECO:0000269|PubMed:22129970, ECO:0000269|PubMed:25673879, ECO:0000269|PubMed:26032412, ECO:0000269|PubMed:31204173}. |
Q16288 | NTRK3 | S472 | ochoa | NT-3 growth factor receptor (EC 2.7.10.1) (GP145-TrkC) (Trk-C) (Neurotrophic tyrosine kinase receptor type 3) (TrkC tyrosine kinase) | Receptor tyrosine kinase involved in nervous system and probably heart development. Upon binding of its ligand NTF3/neurotrophin-3, NTRK3 autophosphorylates and activates different signaling pathways, including the phosphatidylinositol 3-kinase/AKT and the MAPK pathways, that control cell survival and differentiation. {ECO:0000269|PubMed:25196463}. |
Q16637 | SMN1 | S88 | ochoa|psp | Survival motor neuron protein (Component of gems 1) (Gemin-1) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}. |
Q16659 | MAPK6 | S511 | ochoa | Mitogen-activated protein kinase 6 (MAP kinase 6) (MAPK 6) (EC 2.7.11.24) (Extracellular signal-regulated kinase 3) (ERK-3) (MAP kinase isoform p97) (p97-MAPK) | Atypical MAPK protein. Phosphorylates microtubule-associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPKAPK5, ERK3/MAPK6 is phosphorylated at Ser-189 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6. May promote entry in the cell cycle (By similarity). {ECO:0000250}. |
Q17RH5 | RAPGEF2 | S794 | psp | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (Neural RAP guanine nucleotide exchange protein) (PDZ domain-containing guanine nucleotide exchange factor 1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | None |
Q1KMD3 | HNRNPUL2 | S655 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) | None |
Q2M1P5 | KIF7 | S895 | ochoa | Kinesin-like protein KIF7 | Essential for hedgehog signaling regulation: acts both as a negative and positive regulator of sonic hedgehog (Shh) and Indian hedgehog (Ihh) pathways, acting downstream of SMO, through both SUFU-dependent and -independent mechanisms (PubMed:21633164). Involved in the regulation of microtubular dynamics. Required for proper organization of the ciliary tip and control of ciliary localization of SUFU-GLI2 complexes (By similarity). Required for localization of GLI3 to cilia in response to Shh. Negatively regulates Shh signaling by preventing inappropriate activation of the transcriptional activator GLI2 in the absence of ligand. Positively regulates Shh signaling by preventing the processing of the transcription factor GLI3 into its repressor form. In keratinocytes, promotes the dissociation of SUFU-GLI2 complexes, GLI2 nuclear translocation and Shh signaling activation (By similarity). Involved in the regulation of epidermal differentiation and chondrocyte development (By similarity). {ECO:0000250|UniProtKB:B7ZNG0, ECO:0000269|PubMed:21633164}. |
Q2NKX8 | ERCC6L | S810 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2NKX8 | ERCC6L | S1055 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2PPJ7 | RALGAPA2 | S696 | ochoa|psp | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q32NC0 | C18orf21 | S195 | ochoa | UPF0711 protein C18orf21 (HBV X-transactivated gene 13 protein) (HBV XAg-transactivated protein 13) | None |
Q3MIW9 | MUCL3 | S126 | ochoa | Mucin-like protein 3 (Diffuse panbronchiolitis critical region protein 1) | May modulate NF-kappaB signaling and play a role in cell growth. {ECO:0000269|PubMed:29242154}. |
Q4KMQ2 | ANO6 | S169 | ochoa | Anoctamin-6 (Small-conductance calcium-activated nonselective cation channel) (SCAN channel) (Transmembrane protein 16F) | Small-conductance calcium-activated nonselective cation (SCAN) channel which acts as a regulator of phospholipid scrambling in platelets and osteoblasts (PubMed:20056604, PubMed:21107324, PubMed:21908539, PubMed:22006324, PubMed:22946059). Phospholipid scrambling results in surface exposure of phosphatidylserine which in platelets is essential to trigger the clotting system whereas in osteoblasts is essential for the deposition of hydroxyapatite during bone mineralization (By similarity). Has calcium-dependent phospholipid scramblase activity; scrambles phosphatidylserine, phosphatidylcholine and galactosylceramide (By similarity). Can generate outwardly rectifying chloride channel currents in airway epithelial cells and Jurkat T lymphocytes (By similarity). {ECO:0000250|UniProtKB:Q6P9J9, ECO:0000269|PubMed:20056604, ECO:0000269|PubMed:21107324, ECO:0000269|PubMed:21908539, ECO:0000269|PubMed:22006324, ECO:0000269|PubMed:22946059}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, is activated by spike protein which increases the amplitude of spontaneous Ca(2+) signals and is required for spike-mediated syncytia. {ECO:0000269|PubMed:33827113}. |
Q4VC05 | BCL7A | S157 | ochoa | B-cell CLL/lymphoma 7 protein family member A | None |
Q53EL6 | PDCD4 | S323 | ochoa | Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) | Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}. |
Q53H80 | AKIRIN2 | S111 | ochoa | Akirin-2 | Molecular adapter that acts as a bridge between a variety of multiprotein complexes, and which is involved in embryonic development, immunity, myogenesis and brain development (PubMed:34711951). Plays a key role in nuclear protein degradation by promoting import of proteasomes into the nucleus: directly binds to fully assembled 20S proteasomes at one end and to nuclear import receptor IPO9 at the other end, bridging them together and mediating the import of pre-assembled proteasome complexes through the nuclear pore (PubMed:34711951). Involved in innate immunity by regulating the production of interleukin-6 (IL6) downstream of Toll-like receptor (TLR): acts by bridging the NF-kappa-B inhibitor NFKBIZ and the SWI/SNF complex, leading to promote induction of IL6 (By similarity). Also involved in adaptive immunity by promoting B-cell activation (By similarity). Involved in brain development: required for the survival and proliferation of cerebral cortical progenitor cells (By similarity). Involved in myogenesis: required for skeletal muscle formation and skeletal development, possibly by regulating expression of muscle differentiation factors (By similarity). Also plays a role in facilitating interdigital tissue regression during limb development (By similarity). {ECO:0000250|UniProtKB:B1AXD8, ECO:0000269|PubMed:34711951}. |
Q562F6 | SGO2 | S47 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q5JSH3 | WDR44 | S195 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5JSL3 | DOCK11 | S23 | ochoa | Dedicator of cytokinesis protein 11 (Activated Cdc42-associated guanine nucleotide exchange factor) (ACG) (Zizimin-2) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP (PubMed:37342957). Required for marginal zone (MZ) B-cell development, is associated with early bone marrow B-cell development, MZ B-cell formation, MZ B-cell number and marginal metallophilic macrophages morphology (By similarity). Facilitates filopodia formation through the activation of CDC42 (PubMed:37342957). {ECO:0000250|UniProtKB:A2AF47, ECO:0000269|PubMed:37342957}. |
Q5JSP0 | FGD3 | S136 | ochoa | FYVE, RhoGEF and PH domain-containing protein 3 (Zinc finger FYVE domain-containing protein 5) | Promotes the formation of filopodia. May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q5QJE6 | DNTTIP2 | S41 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5QJE6 | DNTTIP2 | S274 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5QJE6 | DNTTIP2 | S362 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5T5C0 | STXBP5 | S1131 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5T7B8 | KIF24 | S603 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5T8I3 | EEIG2 | S288 | ochoa | EEIG family member 2 (EEIG2) | None |
Q5TCX8 | MAP3K21 | S514 | ochoa | Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) | Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}. |
Q5TKA1 | LIN9 | S95 | ochoa | Protein lin-9 homolog (HuLin-9) (hLin-9) (Beta subunit-associated regulator of apoptosis) (TUDOR gene similar protein) (Type I interferon receptor beta chain-associated protein) (pRB-associated protein) | Acts as a tumor suppressor. Inhibits DNA synthesis. Its ability to inhibit oncogenic transformation is mediated through its association with RB1. Plays a role in the expression of genes required for the G1/S transition. {ECO:0000269|PubMed:15538385, ECO:0000269|PubMed:16730350}. |
Q5VTT5 | MYOM3 | S643 | ochoa | Myomesin-3 (Myomesin family member 3) | May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}. |
Q5VTT5 | MYOM3 | S684 | ochoa | Myomesin-3 (Myomesin family member 3) | May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}. |
Q5VU43 | PDE4DIP | S728 | ochoa | Myomegalin (Cardiomyopathy-associated protein 2) (Phosphodiesterase 4D-interacting protein) | Functions as an anchor sequestering components of the cAMP-dependent pathway to Golgi and/or centrosomes (By similarity). {ECO:0000250|UniProtKB:Q9WUJ3}.; FUNCTION: [Isoform 13]: Participates in microtubule dynamics, promoting microtubule assembly. Depending upon the cell context, may act at the level of the Golgi apparatus or that of the centrosome (PubMed:25217626, PubMed:27666745, PubMed:28814570, PubMed:29162697). In complex with AKAP9, recruits CAMSAP2 to the Golgi apparatus and tethers non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745, PubMed:28814570). In complex with AKAP9, EB1/MAPRE1 and CDK5RAP2, contributes to microtubules nucleation and extension from the centrosome to the cell periphery, a crucial process for directed cell migration, mitotic spindle orientation and cell-cycle progression (PubMed:29162697). {ECO:0000269|PubMed:25217626, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28814570, ECO:0000269|PubMed:29162697}. |
Q5VUB5 | FAM171A1 | S351 | ochoa | Protein FAM171A1 (Astroprincin) (APCN) | Involved in the regulation of the cytoskeletal dynamics, plays a role in actin stress fiber formation. {ECO:0000269|PubMed:30312582}. |
Q5VWQ0 | RSBN1 | S206 | ochoa | Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) | Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}. |
Q5VZ89 | DENND4C | S538 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5XXA6 | ANO1 | S196 | ochoa | Anoctamin-1 (Discovered on gastrointestinal stromal tumors protein 1) (Oral cancer overexpressed protein 2) (Transmembrane protein 16A) (Tumor-amplified and overexpressed sequence 2) | Calcium-activated chloride channel (CaCC) (PubMed:20056604, PubMed:22178883, PubMed:22946059, PubMed:32487539). Plays a role in transepithelial anion transport and smooth muscle contraction. Required for the normal functioning of the interstitial cells of Cajal (ICCs) which generate electrical pacemaker activity in gastrointestinal smooth muscles. Acts as a major contributor to basal and stimulated chloride conductance in airway epithelial cells and plays an important role in tracheal cartilage development. Required for CFTR activation by enhancing endoplasmic reticulum Ca(2+) store release and is also required for CFTR membrane expression (PubMed:28963502). Required for basal and ATP-dependent mucus secretion in airways and intestine, probably by controlling exocytosis of mucus-filled granules by providing Ca(2+) to an apical signaling compartment (By similarity). Contributes to airway mucus expression induced by interleukins IL3 and IL8 and by the asthma-associated protein CLCA1 and is required for expression of mucin MUC5AC (PubMed:33026825). However, was shown in another study not to be required for MUC5AC expression (PubMed:31732694). Plays a role in the propagation of Ca(2+) waves in Kolliker's organ in the cochlea and contributes to the refinement of auditory brainstem circuitries prior to hearing onset (By similarity). In vomeronasal sensory neurons, modulates spontaneous firing patterns in the absence of stimuli as well as the firing pattern of pheromone-evoked activity (By similarity). Responsible for calcium-activated chloride channel activity in type I taste cells of the vallate papillae (By similarity). Acts as a heat sensor in nociceptive neurons (By similarity). In dorsal root ganglion neurons, plays a role in mediating non-histaminergic Mas-related G-protein coupled receptor (MRGPR)-dependent itching, acting as a downstream effector of MRGPRs (By similarity). In the developing brain, required for the Ca(2+)-dependent process extension of radial glial cells (By similarity). {ECO:0000250|UniProtKB:Q8BHY3, ECO:0000269|PubMed:20056604, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:22946059, ECO:0000269|PubMed:28963502, ECO:0000269|PubMed:31732694, ECO:0000269|PubMed:32487539, ECO:0000269|PubMed:33026825, ECO:0000269|PubMed:37253099}.; FUNCTION: [Isoform 4]: Calcium-activated chloride channel (CaCC). Contributes to calcium-activated chloride secretion in human sweat gland epithelial cells. Shows increased basal chloride permeability and decreased Ca(2+)-induced chloride permeability. {ECO:0000269|PubMed:25220078}.; FUNCTION: [Isoform 5]: Calcium-activated chloride channel (CaCC). Shows increased sensitivity to intracellular Ca(2+). {ECO:0000269|PubMed:26359375}. |
Q641Q2 | WASHC2A | S362 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q641Q2 | WASHC2A | S552 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q66K89 | E4F1 | S216 | ochoa | Transcription factor E4F1 (EC 2.3.2.27) (E4F transcription factor 1) (Putative E3 ubiquitin-protein ligase E4F1) (RING-type E3 ubiquitin transferase E4F1) (Transcription factor E4F) (p120E4F) (p50E4F) | May function as a transcriptional repressor. May also function as a ubiquitin ligase mediating ubiquitination of chromatin-associated TP53. Functions in cell survival and proliferation through control of the cell cycle. Functions in the p53 and pRB tumor suppressor pathways and regulates the cyclin CCNA2 transcription.; FUNCTION: Identified as a cellular target of the adenoviral oncoprotein E1A, it is required for both transcriptional activation and repression of viral genes. |
Q68CP9 | ARID2 | S1391 | ochoa | AT-rich interactive domain-containing protein 2 (ARID domain-containing protein 2) (BRG1-associated factor 200) (BAF200) (Zinc finger protein with activation potential) (Zipzap/p200) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). May be involved in targeting the complex to different genes. May be involved in regulating transcriptional activation of cardiac genes. {ECO:0000269|PubMed:16782067, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q68D51 | DENND2C | S445 | ochoa | DENN domain-containing protein 2C | Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q6AI39 | BICRAL | S687 | ochoa | BRD4-interacting chromatin-remodeling complex-associated protein-like (Glioma tumor suppressor candidate region gene 1 protein-like) | Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. {ECO:0000269|PubMed:29374058}. |
Q6KC79 | NIPBL | S679 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S1196 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6P0N0 | MIS18BP1 | S172 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P1N0 | CC2D1A | S292 | ochoa | Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}. |
Q6P2E9 | EDC4 | S871 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6P4E1 | GOLM2 | S232 | ochoa | Protein GOLM2 (Cancer susceptibility candidate gene 4 protein) (CASC4) (Golgi membrane protein 2) | None |
Q6PJ69 | TRIM65 | S181 | psp | E3 ubiquitin-protein ligase TRIM65 (EC 2.3.2.27) (Tripartite motif-containing protein 65) | E3 ubiquitin ligase that plays a role in several processes including innate immnity, autophagy or inflammation (PubMed:28594402, PubMed:34512673). Negatively regulates miRNAs by modulating the ubiquitination and stability of TNRC6A, a protein involved in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (PubMed:24778252). This ubiquitination results in the suppressed expression of miR-138-5p leading to increased autophagy (PubMed:31160576). Upon enteroviral infection, promotes 'Lys-63'-mediated ubiquitination activation of IFIH1/MDA5 leading to innate signaling cascade (PubMed:28594402). Mechanistically, selectively recognizes MDA5 filaments that occur on dsRNAs (PubMed:33373584). Plays also a role in limitation of inflammation through different mechanisms. First, promotes 'Lys-48'-mediated ubiquitination of VCAM1 leading to its degradation and limitation of LPS-induced lung inflammation (PubMed:31310649). In addition, negatively regulates inflammasome activation by promoting 'lys48'-linked ubiquitination of NLRP3 which is critical for the inhibition of NLRP3 inflammasome activation in resting macrophages (PubMed:34512673). {ECO:0000269|PubMed:24778252, ECO:0000269|PubMed:28594402, ECO:0000269|PubMed:31160576, ECO:0000269|PubMed:31310649, ECO:0000269|PubMed:33373584, ECO:0000269|PubMed:34512673}. |
Q6PJT7 | ZC3H14 | S365 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6R327 | RICTOR | S1373 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6WKZ4 | RAB11FIP1 | S384 | ochoa | Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) | A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}. |
Q6XZF7 | DNMBP | S996 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZS17 | RIPOR1 | S330 | ochoa | Rho family-interacting cell polarization regulator 1 | Downstream effector protein for Rho-type small GTPases that plays a role in cell polarity and directional migration (PubMed:27807006). Acts as an adapter protein, linking active Rho proteins to STK24 and STK26 kinases, and hence positively regulates Golgi reorientation in polarized cell migration upon Rho activation (PubMed:27807006). Involved in the subcellular relocation of STK26 from the Golgi to cytoplasm punctae in a Rho- and PDCD10-dependent manner upon serum stimulation (PubMed:27807006). {ECO:0000269|PubMed:27807006}. |
Q6ZU80 | CEP128 | S1041 | ochoa | Centrosomal protein of 128 kDa (Cep128) | None |
Q6ZUJ8 | PIK3AP1 | S573 | ochoa | Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) | Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}. |
Q6ZV73 | FGD6 | S663 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q76FK4 | NOL8 | S273 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76L83 | ASXL2 | S600 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7Z2T5 | TRMT1L | S243 | ochoa | tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) | Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}. |
Q7Z2T5 | TRMT1L | S707 | ochoa | tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) | Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}. |
Q7Z412 | PEX26 | S224 | ochoa | Peroxisome assembly protein 26 (Peroxin-26) | Peroxisomal docking factor that anchors PEX1 and PEX6 to peroxisome membranes (PubMed:12717447, PubMed:12851857, PubMed:16257970, PubMed:16763195, PubMed:16854980, PubMed:21362118). PEX26 is therefore required for the formation of the PEX1-PEX6 AAA ATPase complex, a complex that mediates the extraction of the PEX5 receptor from peroxisomal membrane (PubMed:12717447, PubMed:12851857, PubMed:16257970, PubMed:16763195, PubMed:16854980, PubMed:21362118). {ECO:0000269|PubMed:12717447, ECO:0000269|PubMed:12851857, ECO:0000269|PubMed:16257970, ECO:0000269|PubMed:16763195, ECO:0000269|PubMed:16854980, ECO:0000269|PubMed:21362118}. |
Q7Z6M1 | RABEPK | S63 | ochoa | Rab9 effector protein with kelch motifs (40 kDa Rab9 effector protein) (p40) | Rab9 effector required for endosome to trans-Golgi network (TGN) transport. {ECO:0000269|PubMed:9230071}. |
Q7Z6M1 | RABEPK | S328 | ochoa | Rab9 effector protein with kelch motifs (40 kDa Rab9 effector protein) (p40) | Rab9 effector required for endosome to trans-Golgi network (TGN) transport. {ECO:0000269|PubMed:9230071}. |
Q7Z6Z7 | HUWE1 | S1089 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86UE4 | MTDH | S496 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UU1 | PHLDB1 | S51 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86V21 | AACS | S84 | ochoa | Acetoacetyl-CoA synthetase (EC 6.2.1.16) (Acyl-CoA synthetase family member 1) (Protein sur-5 homolog) | Converts acetoacetate to acetoacetyl-CoA in the cytosol (By similarity). Ketone body-utilizing enzyme, responsible for the synthesis of cholesterol and fatty acids (By similarity). {ECO:0000250|UniProtKB:Q9D2R0, ECO:0000250|UniProtKB:Q9JMI1}. |
Q86V48 | LUZP1 | S518 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86WG5 | SBF2 | S1129 | ochoa | Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) | Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}. |
Q86XA9 | HEATR5A | S827 | ochoa | HEAT repeat-containing protein 5A | None |
Q86XD5 | FAM131B | S59 | ochoa | Protein FAM131B | None |
Q86XP1 | DGKH | S691 | ochoa | Diacylglycerol kinase eta (DAG kinase eta) (EC 2.7.1.107) (Diglyceride kinase eta) (DGK-eta) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12810723, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable) (PubMed:12810723, PubMed:23949095). Plays a key role in promoting cell growth (PubMed:19710016). Activates the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway induced by EGF (PubMed:19710016). Regulates the recruitment of RAF1 and BRAF from cytoplasm to membranes and their heterodimerization (PubMed:19710016). {ECO:0000269|PubMed:12810723, ECO:0000269|PubMed:19710016, ECO:0000269|PubMed:23949095, ECO:0000305}. |
Q86YC2 | PALB2 | S157 | ochoa|psp | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q8IU60 | DCP2 | S308 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IUC4 | RHPN2 | S596 | ochoa | Rhophilin-2 (76 kDa RhoB effector protein) (GTP-Rho-binding protein 2) (p76RBE) | Binds specifically to GTP-Rho. May function in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity. {ECO:0000269|PubMed:12221077}. |
Q8IV32 | CCDC71 | S144 | ochoa | Coiled-coil domain-containing protein 71 | None |
Q8IVF7 | FMNL3 | S93 | ochoa | Formin-like protein 3 (Formin homology 2 domain-containing protein 3) (WW domain-binding protein 3) (WBP-3) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Required for developmental angiogenesis (By similarity). In this process, required for microtubule reorganization and for efficient endothelial cell elongation. In quiescent endothelial cells, triggers rearrangement of the actin cytoskeleton, but does not alter microtubule alignement. {ECO:0000250|UniProtKB:Q6NXC0, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22275430}. |
Q8IW00 | VSTM4 | S224 | ochoa | V-set and transmembrane domain-containing protein 4 [Cleaved into: Peptide Lv] | Peptide Lv enhances L-type voltage-gated calcium channel (L-VGCC) currents in retinal photoreceptors. {ECO:0000250|UniProtKB:T1NXB5}. |
Q8IW19 | APLF | S238 | ochoa | Aprataxin and PNK-like factor (EC 3.1.-.-) (Apurinic-apyrimidinic endonuclease APLF) (PNK and APTX-like FHA domain-containing protein) (XRCC1-interacting protein 1) | Histone chaperone involved in single-strand and double-strand DNA break repair (PubMed:17353262, PubMed:17396150, PubMed:21211721, PubMed:21211722, PubMed:29905837, PubMed:30104678). Recruited to sites of DNA damage through interaction with branched poly-ADP-ribose chains, a polymeric post-translational modification synthesized transiently at sites of chromosomal damage to accelerate DNA strand break repair reactions (PubMed:17353262, PubMed:17396150, PubMed:21211721, PubMed:30104678). Following recruitment to DNA damage sites, acts as a histone chaperone that mediates histone eviction during DNA repair and promotes recruitment of histone variant MACROH2A1 (PubMed:21211722, PubMed:29905837, PubMed:30104678). Also has a nuclease activity: displays apurinic-apyrimidinic (AP) endonuclease and 3'-5' exonuclease activities in vitro (PubMed:17353262, PubMed:17396150). Also able to introduce nicks at hydroxyuracil and other types of pyrimidine base damage (PubMed:17353262, PubMed:17396150). Together with PARP3, promotes the retention of the LIG4-XRCC4 complex on chromatin and accelerate DNA ligation during non-homologous end-joining (NHEJ) (PubMed:21211721, PubMed:23689425). Also acts as a negative regulator of cell pluripotency by promoting histone exchange (By similarity). Required for the embryo implantation during the epithelial to mesenchymal transition in females (By similarity). {ECO:0000250|UniProtKB:Q9D842, ECO:0000269|PubMed:17353262, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:21211721, ECO:0000269|PubMed:21211722, ECO:0000269|PubMed:23689425, ECO:0000269|PubMed:29905837, ECO:0000269|PubMed:30104678}. |
Q8IWB9 | TEX2 | S388 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IWP9 | CCDC28A | S103 | ochoa | Coiled-coil domain-containing protein 28A (CCRL1AP) | None |
Q8IY18 | SMC5 | S627 | ochoa | Structural maintenance of chromosomes protein 5 (SMC protein 5) (SMC-5) (hSMC5) | Core component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination. The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). Required for recruitment of telomeres to PML nuclear bodies. Required for sister chromatid cohesion during prometaphase and mitotic progression; the function seems to be independent of SMC6. SMC5-SMC6 complex may prevent transcription of episomal DNA, such as circular viral DNA genome (PubMed:26983541). {ECO:0000269|PubMed:16810316, ECO:0000269|PubMed:17589526, ECO:0000269|PubMed:19502785, ECO:0000269|PubMed:26983541}. |
Q8IY63 | AMOTL1 | S787 | ochoa | Angiomotin-like protein 1 | Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. {ECO:0000269|PubMed:22362771}. |
Q8IYA6 | CKAP2L | S114 | ochoa | Cytoskeleton-associated protein 2-like (Radial fiber and mitotic spindle protein) (Radmis) | Microtubule-associated protein required for mitotic spindle formation and cell-cycle progression in neural progenitor cells. {ECO:0000269|PubMed:25439729}. |
Q8IYD8 | FANCM | S884 | ochoa | Fanconi anemia group M protein (Protein FACM) (EC 3.6.4.13) (ATP-dependent RNA helicase FANCM) (Fanconi anemia-associated polypeptide of 250 kDa) (FAAP250) (Protein Hef ortholog) | DNA-dependent ATPase component of the Fanconi anemia (FA) core complex (PubMed:16116422). Required for the normal activation of the FA pathway, leading to monoubiquitination of the FANCI-FANCD2 complex in response to DNA damage, cellular resistance to DNA cross-linking drugs, and prevention of chromosomal breakage (PubMed:16116422, PubMed:19423727, PubMed:20347428, PubMed:20347429, PubMed:29231814). In complex with CENPS and CENPX, binds double-stranded DNA (dsDNA), fork-structured DNA (fsDNA) and Holliday junction substrates (PubMed:20347428, PubMed:20347429). Its ATP-dependent DNA branch migration activity can process branched DNA structures such as a movable replication fork. This activity is strongly stimulated in the presence of CENPS and CENPX (PubMed:20347429). In complex with FAAP24, efficiently binds to single-strand DNA (ssDNA), splayed-arm DNA, and 3'-flap substrates (PubMed:17289582). In vitro, on its own, strongly binds ssDNA oligomers and weakly fsDNA, but does not bind to dsDNA (PubMed:16116434). {ECO:0000269|PubMed:16116422, ECO:0000269|PubMed:16116434, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:19423727, ECO:0000269|PubMed:20347428, ECO:0000269|PubMed:20347429, ECO:0000269|PubMed:29231814}. |
Q8IYF3 | TEX11 | S190 | ochoa | Testis-expressed protein 11 (Protein ZIP4 homolog) (ZIP4H) | Regulator of crossing-over during meiosis. Involved in initiation and/or maintenance of chromosome synapsis and formation of crossovers. {ECO:0000250|UniProtKB:Q14AT2}. |
Q8IYT2 | CMTR2 | S424 | ochoa | Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 2 (EC 2.1.1.296) (Cap methyltransferase 2) (Cap2 2'O-ribose methyltransferase 2) (HMTr2) (MTr2) (FtsJ methyltransferase domain-containing protein 1) (Protein adrift homolog) | S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap2 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the second nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) (cap0) to produce m(7)GpppRmpNm (cap2). Recognizes a guanosine cap on RNA independently of its N(7) methylation status. Display cap2 methylation on both cap0 and cap1. Displays a preference for cap1 RNAs. {ECO:0000269|PubMed:21310715}. |
Q8IZT6 | ASPM | S3426 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZT6 | ASPM | S3428 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N0S6 | CENPL | S53 | ochoa | Centromere protein L (CENP-L) (Interphase centromere complex protein 33) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:16716197}. |
Q8N0Z3 | SPICE1 | S315 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N0Z3 | SPICE1 | S317 | ochoa | Spindle and centriole-associated protein 1 (Coiled-coil domain-containing protein 52) (Spindle and centriole-associated protein) | Regulator required for centriole duplication, for proper bipolar spindle formation and chromosome congression in mitosis. {ECO:0000269|PubMed:20736305}. |
Q8N4S0 | CCDC82 | S88 | ochoa | Coiled-coil domain-containing protein 82 | None |
Q8N5C8 | TAB3 | S359 | ochoa | TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 (Mitogen-activated protein kinase kinase kinase 7-interacting protein 3) (NF-kappa-B-activating protein 1) (TAK1-binding protein 3) (TAB-3) (TGF-beta-activated kinase 1-binding protein 3) | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains (PubMed:14633987, PubMed:14766965, PubMed:15327770, PubMed:22158122, PubMed:36593296). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 (PubMed:15327770, PubMed:18079694, PubMed:22158122). {ECO:0000269|PubMed:14633987, ECO:0000269|PubMed:14766965, ECO:0000269|PubMed:15327770, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:22158122, ECO:0000269|PubMed:36593296}.; FUNCTION: [Isoform 2]: May be an oncogenic factor. {ECO:0000269|PubMed:14766965}. |
Q8N6T3 | ARFGAP1 | S295 | ochoa | ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) | GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}. |
Q8N7R7 | CCNYL1 | S121 | ochoa | Cyclin-Y-like protein 1 | Key regulator of Wnt signaling implicated in various biological processes including male fertility, embryonic neurogenesis and cortex development. Activates the cyclin-dependent kinase CDK16, and promotes sperm maturation. {ECO:0000250|UniProtKB:D3YUJ3}. |
Q8N884 | CGAS | S64 | ochoa | Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) | Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}. |
Q8N9B5 | JMY | S856 | ochoa | Junction-mediating and -regulatory protein | Acts both as a nuclear p53/TP53-cofactor and a cytoplasmic regulator of actin dynamics depending on conditions (PubMed:30420355). In nucleus, acts as a cofactor that increases p53/TP53 response via its interaction with p300/EP300. Increases p53/TP53-dependent transcription and apoptosis, suggesting an important role in p53/TP53 stress response such as DNA damage. In cytoplasm, acts as a nucleation-promoting factor for both branched and unbranched actin filaments (PubMed:30420355). Activates the Arp2/3 complex to induce branched actin filament networks. Also catalyzes actin polymerization in the absence of Arp2/3, creating unbranched filaments (PubMed:30420355). Contributes to cell motility by controlling actin dynamics. May promote the rapid formation of a branched actin network by first nucleating new mother filaments and then activating Arp2/3 to branch off these filaments. Upon nutrient stress, directly recruited by MAP1LC3B to the phagophore membrane surfaces to promote actin assembly during autophagy (PubMed:30420355). The p53/TP53-cofactor and actin activator activities are regulated via its subcellular location (By similarity). {ECO:0000250|UniProtKB:Q9QXM1, ECO:0000269|PubMed:30420355}. |
Q8NB12 | SMYD1 | S298 | ochoa | Histone-lysine N-methyltransferase SMYD1 (EC 2.1.1.354) (SET and MYND domain-containing protein 1) | Methylates histone H3 at 'Lys-4' (H3K4me), seems able to perform both mono-, di-, and trimethylation. Acts as a transcriptional repressor. Essential for cardiomyocyte differentiation and cardiac morphogenesis. {ECO:0000250|UniProtKB:P97443}. |
Q8NB50 | ZFP62 | S233 | ochoa | Zinc finger protein 62 homolog (Zfp-62) | May play a role in differentiating skeletal muscle. {ECO:0000250}. |
Q8NB50 | ZFP62 | S345 | ochoa | Zinc finger protein 62 homolog (Zfp-62) | May play a role in differentiating skeletal muscle. {ECO:0000250}. |
Q8NCD3 | HJURP | S328 | ochoa | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NCY6 | MSANTD4 | S100 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 4 (Myb/SANT-like DNA-binding domain containing 4 with coiled-coils) | None |
Q8NDB2 | BANK1 | S295 | ochoa | B-cell scaffold protein with ankyrin repeats | Involved in B-cell receptor (BCR)-induced Ca(2+) mobilization from intracellular stores. Promotes Lyn-mediated phosphorylation of IP3 receptors 1 and 2. {ECO:0000269|PubMed:11782428}. |
Q8NEF9 | SRFBP1 | S347 | ochoa | Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) | May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}. |
Q8NEF9 | SRFBP1 | S349 | ochoa | Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) | May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}. |
Q8NEJ9 | NGDN | S214 | ochoa | Neuroguidin (Centromere accumulated nuclear protein 1) (CANu1) (EIF4E-binding protein) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Its dissociation from the complex determines the transition from state pre-A1 to state pre-A1* (PubMed:34516797). Inhibits mRNA translation in a cytoplasmic polyadenylation element (CPE)-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q9DB96, ECO:0000269|PubMed:34516797}. |
Q8NEZ4 | KMT2C | S3786 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NF99 | ZNF397 | S242 | ochoa | Zinc finger protein 397 (Zinc finger and SCAN domain-containing protein 15) (Zinc finger protein 47) | Isoform 3 acts as a DNA-dependent transcriptional repressor. {ECO:0000269|PubMed:12801647}. |
Q8NFC6 | BOD1L1 | S1323 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NG31 | KNL1 | S1086 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NI08 | NCOA7 | S609 | ochoa | Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) | Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}. |
Q8NI35 | PATJ | S788 | ochoa | InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) | Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}. |
Q8TAF3 | WDR48 | S335 | ochoa | WD repeat-containing protein 48 (USP1-associated factor 1) (WD repeat endosomal protein) (p80) | Regulator of deubiquitinating complexes, which acts as a strong activator of USP1, USP12 and USP46 (PubMed:18082604, PubMed:19075014, PubMed:26388029, PubMed:31253762). Enhances the USP1-mediated deubiquitination of FANCD2; USP1 being almost inactive by itself (PubMed:18082604, PubMed:31253762). Activates deubiquitination by increasing the catalytic turnover without increasing the affinity of deubiquitinating enzymes for the substrate (PubMed:19075014, PubMed:27373336). Also activates deubiquitinating activity of complexes containing USP12 (PubMed:19075014, PubMed:27373336, PubMed:27650958). In complex with USP12, acts as a potential tumor suppressor by positively regulating PHLPP1 stability (PubMed:24145035). Docks at the distal end of the USP12 fingers domain and induces a cascade of structural changes leading to the activation of the enzyme (PubMed:27373336, PubMed:27650958). Together with RAD51AP1, promotes DNA repair by stimulating RAD51-mediated homologous recombination (PubMed:27239033, PubMed:27463890, PubMed:32350107). Binds single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) (PubMed:27239033, PubMed:31253762, PubMed:32350107). DNA-binding is required both for USP1-mediated deubiquitination of FANCD2 and stimulation of RAD51-mediated homologous recombination: both WDR48/UAF1 and RAD51AP1 have coordinated role in DNA-binding during these processes (PubMed:31253762, PubMed:32350107). Together with ATAD5 and by regulating USP1 activity, has a role in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA (PubMed:20147293). Together with ATAD5, has a role in recruiting RAD51 to stalled forks during replication stress (PubMed:31844045). {ECO:0000269|PubMed:18082604, ECO:0000269|PubMed:19075014, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:24145035, ECO:0000269|PubMed:26388029, ECO:0000269|PubMed:27239033, ECO:0000269|PubMed:27373336, ECO:0000269|PubMed:27463890, ECO:0000269|PubMed:27650958, ECO:0000269|PubMed:31253762, ECO:0000269|PubMed:31844045, ECO:0000269|PubMed:32350107}.; FUNCTION: (Microbial infection) In case of infection by Herpesvirus saimiri, may play a role in vesicular transport or membrane fusion events necessary for transport to lysosomes. Induces lysosomal vesicle formation via interaction with Herpesvirus saimiri tyrosine kinase-interacting protein (TIP). Subsequently, TIP recruits tyrosine-protein kinase LCK, resulting in down-regulation of T-cell antigen receptor TCR. May play a role in generation of enlarged endosomal vesicles via interaction with TIP (PubMed:12196293). In case of infection by papillomavirus HPV11, promotes the maintenance of the viral genome via its interaction with HPV11 helicase E1 (PubMed:18032488). {ECO:0000269|PubMed:12196293, ECO:0000269|PubMed:18032488}. |
Q8TF40 | FNIP1 | S686 | ochoa | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF47 | ZFP90 | S434 | ochoa | Zinc finger protein 90 homolog (Zfp-90) (Zinc finger protein 756) | Inhibits the transcriptional repressor activity of REST by inhibiting its binding to DNA, thereby derepressing transcription of REST target genes. {ECO:0000269|PubMed:21284946}.; FUNCTION: [Isoform 2]: Acts as a bridge between FOXP3 and the corepressor TRIM28, and is required for the transcriptional repressor activity of FOXP3 in regulatory T-cells (Treg). {ECO:0000269|PubMed:23543754}. |
Q8TF62 | ATP8B4 | S1168 | ochoa | Probable phospholipid-transporting ATPase IM (EC 7.6.2.1) (ATPase class I type 8B member 4) (P4-ATPase flippase complex alpha subunit ATP8B4) | Component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable). {ECO:0000305}. |
Q8WUD1 | RAB2B | S70 | ochoa | Ras-related protein Rab-2B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between active GTP-bound and inactive GDP-bound states. In their active state, drive transport of vesicular carriers from donor organelles to acceptor organelles to regulate the membrane traffic that maintains organelle identity and morphology. Regulates the compacted morphology of the Golgi (Probable). Promotes cytosolic DNA-induced innate immune responses. Regulates IFN responses against DNA viruses by regulating the CGAS-STING signaling axis (By similarity). Together with RAB2A redundantly required for efficient autophagic flux (PubMed:28483915). {ECO:0000250|UniProtKB:P59279, ECO:0000269|PubMed:28483915, ECO:0000305|PubMed:26209634}. |
Q8WUH6 | TMEM263 | S23 | ochoa | Transmembrane protein 263 | May play a role in bone development. {ECO:0000269|PubMed:34238371}. |
Q8WWI1 | LMO7 | S919 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWK9 | CKAP2 | S595 | ochoa | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q8WWQ0 | PHIP | S1734 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WWY3 | PRPF31 | S439 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp31 (Pre-mRNA-processing factor 31) (Serologically defined breast cancer antigen NY-BR-99) (U4/U6 snRNP 61 kDa protein) (Protein 61K) (hPrp31) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11867543, PubMed:20118938, PubMed:28781166). Required for the assembly of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome (PubMed:11867543). {ECO:0000269|PubMed:11867543, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:28781166}. |
Q8WX93 | PALLD | S99 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WY36 | BBX | S559 | ochoa | HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) | Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}. |
Q92541 | RTF1 | S677 | ochoa | RNA polymerase-associated protein RTF1 homolog | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}. |
Q92545 | TMEM131 | S1422 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92545 | TMEM131 | S1513 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92614 | MYO18A | S74 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92616 | GCN1 | S2612 | ochoa | Stalled ribosome sensor GCN1 (GCN1 eIF-2-alpha kinase activator homolog) (GCN1-like protein 1) (General control of amino-acid synthesis 1-like protein 1) (Translational activator GCN1) (HsGCN1) | Ribosome collision sensor that plays a key role in the RNF14-RNF25 translation quality control pathway, a pathway that takes place when a ribosome has stalled during translation, and which promotes ubiquitination and degradation of translation factors on stalled ribosomes (PubMed:32610081, PubMed:36638793, PubMed:37651229, PubMed:37951215, PubMed:37951216). Directly binds to the ribosome and acts as a sentinel for colliding ribosomes: activated following ribosome stalling and promotes recruitment of RNF14, which directly ubiquitinates EEF1A1/eEF1A, leading to its degradation (PubMed:36638793, PubMed:37951215, PubMed:37951216). In addition to EEF1A1/eEF1A, the RNF14-RNF25 translation quality control pathway mediates degradation of ETF1/eRF1 and ubiquitination of ribosomal protein (PubMed:36638793, PubMed:37651229). GCN1 also acts as a positive activator of the integrated stress response (ISR) by mediating activation of EIF2AK4/GCN2 in response to amino acid starvation (By similarity). Interaction with EIF2AK4/GCN2 on translating ribosomes stimulates EIF2AK4/GCN2 kinase activity, leading to phosphorylation of eukaryotic translation initiation factor 2 (eIF-2-alpha/EIF2S1) (By similarity). EIF2S1/eIF-2-alpha phosphorylation converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (By similarity). {ECO:0000250|UniProtKB:E9PVA8, ECO:0000269|PubMed:32610081, ECO:0000269|PubMed:36638793, ECO:0000269|PubMed:37651229, ECO:0000269|PubMed:37951215, ECO:0000269|PubMed:37951216}. |
Q92620 | DHX38 | S513 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 (EC 3.6.4.13) (ATP-dependent RNA helicase DHX38) (DEAH box protein 38) | Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:29301961, PubMed:9524131). {ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:9524131, ECO:0000305}. |
Q92621 | NUP205 | S1167 | ochoa | Nuclear pore complex protein Nup205 (205 kDa nucleoporin) (Nucleoporin Nup205) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor NUP62 and other nucleoporins, but not NUP153 and TPR, to the NPC (PubMed:15229283). In association with TMEM209, may be involved in nuclear transport of various nuclear proteins in addition to MYC (PubMed:22719065). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22719065, ECO:0000269|PubMed:9348540}. |
Q92622 | RUBCN | S443 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92674 | CENPI | S22 | ochoa | Centromere protein I (CENP-I) (FSH primary response protein 1) (Follicle-stimulating hormone primary response protein) (Interphase centromere complex protein 19) (Leucine-rich primary response protein 1) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. Required for the localization of CENPF, MAD1L1 and MAD2 (MAD2L1 or MAD2L2) to kinetochores. Involved in the response of gonadal tissues to follicle-stimulating hormone. {ECO:0000269|PubMed:12640463, ECO:0000269|PubMed:16622420}. |
Q92750 | TAF4B | S231 | ochoa | Transcription initiation factor TFIID subunit 4B (Transcription initiation factor TFIID 105 kDa subunit) (TAF(II)105) (TAFII-105) (TAFII105) | Cell type-specific subunit of the general transcription factor TFIID that may function as a gene-selective coactivator in certain cells. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. TAF4B is a transcriptional coactivator of the p65/RELA NF-kappa-B subunit. Involved in the activation of a subset of antiapoptotic genes including TNFAIP3. May be involved in regulating folliculogenesis. Through interaction with OCBA/POU2AF1, acts as a coactivator of B-cell-specific transcription. Plays a role in spermiogenesis and oogenesis. {ECO:0000250|UniProtKB:G5E8Z2, ECO:0000269|PubMed:10828057, ECO:0000269|PubMed:10849440, ECO:0000269|PubMed:16088961, ECO:0000303|PubMed:24431330}. |
Q92777 | SYN2 | S341 | ochoa | Synapsin-2 (Synapsin II) | Neuronal phosphoprotein that coats synaptic vesicles, binds to the cytoskeleton, and is believed to function in the regulation of neurotransmitter release. May play a role in noradrenaline secretion by sympathetic neurons (By similarity). {ECO:0000250}. |
Q92793 | CREBBP | S437 | psp | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92796 | DLG3 | S493 | ochoa | Disks large homolog 3 (Neuroendocrine-DLG) (Synapse-associated protein 102) (SAP-102) (SAP102) (XLMR) | Required for learning most likely through its role in synaptic plasticity following NMDA receptor signaling. |
Q92859 | NEO1 | S803 | ochoa | Neogenin (Immunoglobulin superfamily DCC subclass member 2) | Multi-functional cell surface receptor regulating cell adhesion in many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Receptor for members of the BMP, netrin, and repulsive guidance molecule (RGM) families. Netrin-Neogenin interactions result in a chemoattractive axon guidance response and cell-cell adhesion, the interaction between NEO1/Neogenin and RGMa and RGMb induces a chemorepulsive response. {ECO:0000269|PubMed:21149453}. |
Q92974 | ARHGEF2 | S107 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q92974 | ARHGEF2 | S109 | ochoa | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q93084 | ATP2A3 | S346 | ochoa | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (SERCA3) (SR Ca(2+)-ATPase 3) (EC 7.2.2.10) (Calcium pump 3) | This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. {ECO:0000269|PubMed:11956212, ECO:0000269|PubMed:15028735}. |
Q969S3 | ZNF622 | S122 | ochoa | Cytoplasmic 60S subunit biogenesis factor ZNF622 (Zinc finger protein 622) (Zinc finger-like protein 9) | Pre-60S-associated cytoplasmic factor involved in the cytoplasmic maturation of the 60S subunit. {ECO:0000269|PubMed:33711283}. |
Q96AQ6 | PBXIP1 | S551 | ochoa | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96CW1 | AP2M1 | S236 | ochoa | AP-2 complex subunit mu (AP-2 mu chain) (Adaptin-mu2) (Adaptor protein complex AP-2 subunit mu) (Adaptor-related protein complex 2 subunit mu) (Clathrin assembly protein complex 2 mu medium chain) (Clathrin coat assembly protein AP50) (Clathrin coat-associated protein AP50) (HA2 50 kDa subunit) (Plasma membrane adaptor AP-2 50 kDa protein) | Component of the adaptor protein complex 2 (AP-2) (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis (PubMed:16581796). AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface (PubMed:12694563, PubMed:12952941, PubMed:14745134, PubMed:14985334, PubMed:15473838, PubMed:31104773). AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules (By similarity). AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway (PubMed:19033387). During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 mu subunit binds to transmembrane cargo proteins; it recognizes the Y-X-X-Phi motifs (By similarity). The surface region interacting with to the Y-X-X-Phi motif is inaccessible in cytosolic AP-2, but becomes accessible through a conformational change following phosphorylation of AP-2 mu subunit at Thr-156 in membrane-associated AP-2 (PubMed:11877457). The membrane-specific phosphorylation event appears to involve assembled clathrin which activates the AP-2 mu kinase AAK1 (PubMed:11877457). Plays a role in endocytosis of frizzled family members upon Wnt signaling (By similarity). {ECO:0000250|UniProtKB:P84092, ECO:0000269|PubMed:11877457, ECO:0000269|PubMed:12694563, ECO:0000269|PubMed:12952941, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:14985334, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:16581796, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497, ECO:0000269|PubMed:31104773}. |
Q96D71 | REPS1 | S740 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96DY7 | MTBP | S547 | ochoa | Mdm2-binding protein (hMTBP) | Inhibits cell migration in vitro and suppresses the invasive behavior of tumor cells (By similarity). May play a role in MDM2-dependent p53/TP53 homeostasis in unstressed cells. Inhibits autoubiquitination of MDM2, thereby enhancing MDM2 stability. This promotes MDM2-mediated ubiquitination of p53/TP53 and its subsequent degradation. {ECO:0000250, ECO:0000269|PubMed:15632057}. |
Q96GA3 | LTV1 | S408 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96GY0 | ZC2HC1A | S279 | ochoa | Zinc finger C2HC domain-containing protein 1A | None |
Q96I25 | RBM17 | S293 | ochoa | Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) | Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}. |
Q96JS3 | PGBD1 | S358 | ochoa | PiggyBac transposable element-derived protein 1 (Cerebral protein 4) | None |
Q96K58 | ZNF668 | S568 | ochoa | Zinc finger protein 668 | May be involved in transcriptional regulation. May play a role in DNA repair process. {ECO:0000269|PubMed:34313816}. |
Q96PL5 | ERMAP | S421 | ochoa | Erythroid membrane-associated protein (hERMAP) (Radin blood group antigen) (Scianna blood group antigen) | Possible role as a cell-adhesion or receptor molecule of erythroid cells. |
Q96PY6 | NEK1 | S299 | psp | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96RL1 | UIMC1 | S26 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL7 | VPS13A | S1416 | ochoa | Intermembrane lipid transfer protein VPS13A (Chorea-acanthocytosis protein) (Chorein) (Vacuolar protein sorting-associated protein 13A) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phospholipids (PubMed:34830155). Required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria (PubMed:30741634). Negatively regulates lipid droplet size and motility (PubMed:30741634). Required for efficient lysosomal protein degradation (PubMed:30709847). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:30709847, ECO:0000269|PubMed:30741634, ECO:0000269|PubMed:34830155}. |
Q96RU2 | USP28 | S375 | ochoa | Ubiquitin carboxyl-terminal hydrolase 28 (EC 3.4.19.12) (Deubiquitinating enzyme 28) (Ubiquitin thioesterase 28) (Ubiquitin-specific-processing protease 28) | Deubiquitinase involved in DNA damage response checkpoint and MYC proto-oncogene stability. Involved in DNA damage induced apoptosis by specifically deubiquitinating proteins of the DNA damage pathway such as CLSPN. Also involved in G2 DNA damage checkpoint, by deubiquitinating CLSPN, and preventing its degradation by the anaphase promoting complex/cyclosome (APC/C). In contrast, it does not deubiquitinate PLK1. Specifically deubiquitinates MYC in the nucleoplasm, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm and counteracting ubiquitination of MYC by the SCF(FBW7) complex. In contrast, it does not interact with isoform 4 of FBXW7 (FBW7gamma) in the nucleolus, allowing MYC degradation and explaining the selective MYC degradation in the nucleolus. Deubiquitinates ZNF304, hence preventing ZNF304 degradation by the proteasome and leading to the activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) in a subset of colorectal cancers (CRC) cells (PubMed:24623306). {ECO:0000269|PubMed:16901786, ECO:0000269|PubMed:17558397, ECO:0000269|PubMed:17873522, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:24623306}. |
Q96S38 | RPS6KC1 | S642 | ochoa | Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) | May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}. |
Q96S82 | UBL7 | S123 | ochoa | Ubiquitin-like protein 7 (Bone marrow stromal cell ubiquitin-like protein) (BMSC-UbP) (Ubiquitin-like protein SB132) | Interferon-stimulated protein that positively regulates RNA virus-triggered innate immune signaling. Mechanistically, promotes 'Lys-27'-linked polyubiquitination of MAVS through TRIM21 leading to enhanced the IFN signaling pathway. {ECO:0000269|PubMed:19690332}. |
Q96SN8 | CDK5RAP2 | S1102 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96T23 | RSF1 | S314 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T37 | RBM15 | S212 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q96TA1 | NIBAN2 | S425 | ochoa | Protein Niban 2 (Meg-3) (Melanoma invasion by ERK) (MINERVA) (Niban-like protein 1) (Protein FAM129B) | May play a role in apoptosis suppression. May promote melanoma cell invasion in vitro. {ECO:0000269|PubMed:19362540, ECO:0000269|PubMed:21148485}. |
Q99538 | LGMN | S368 | ochoa | Legumain (EC 3.4.22.34) (Asparaginyl endopeptidase) (AEP) (Protease, cysteine 1) | Has a strict specificity for hydrolysis of asparaginyl bonds (PubMed:23776206). Can also cleave aspartyl bonds slowly, especially under acidic conditions (PubMed:23776206). Involved in the processing of proteins for MHC class II antigen presentation in the lysosomal/endosomal system (PubMed:9872320). Also involved in MHC class I antigen presentation in cross-presenting dendritic cells by mediating cleavage and maturation of Perforin-2 (MPEG1), thereby promoting antigen translocation in the cytosol (By similarity). Required for normal lysosomal protein degradation in renal proximal tubules (By similarity). Required for normal degradation of internalized EGFR (By similarity). Plays a role in the regulation of cell proliferation via its role in EGFR degradation (By similarity). {ECO:0000250|UniProtKB:O89017, ECO:0000269|PubMed:23776206, ECO:0000269|PubMed:9872320}. |
Q99567 | NUP88 | S167 | ochoa | Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88) | Component of nuclear pore complex. {ECO:0000269|PubMed:30543681}. |
Q99698 | LYST | S1017 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99708 | RBBP8 | S789 | ochoa|psp | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99742 | NPAS1 | S478 | ochoa | Neuronal PAS domain-containing protein 1 (Neuronal PAS1) (Basic-helix-loop-helix-PAS protein MOP5) (Class E basic helix-loop-helix protein 11) (bHLHe11) (Member of PAS protein 5) (PAS domain-containing protein 5) | May control regulatory pathways relevant to schizophrenia and to psychotic illness. May play a role in late central nervous system development by modulating EPO expression in response to cellular oxygen level (By similarity). Forms a heterodimer that binds core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) leading to transcriptional repression on its target gene TH (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:P97459}. |
Q99848 | EBNA1BP2 | S264 | ochoa | Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) | Required for the processing of the 27S pre-rRNA. {ECO:0000250}. |
Q9BPX5 | ARPC5L | S91 | ochoa | Actin-related protein 2/3 complex subunit 5-like protein (Arp2/3 complex 16 kDa subunit 2) (ARC16-2) | May function as component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. |
Q9BR77 | CCDC77 | S187 | ochoa | Coiled-coil domain-containing protein 77 | None |
Q9BT73 | PSMG3 | S58 | ochoa | Proteasome assembly chaperone 3 (PAC-3) (hPAC3) (Proteasome chaperone homolog 3) (Pba3) | Chaperone protein which promotes assembly of the 20S proteasome. May cooperate with PSMG1-PSMG2 heterodimers to orchestrate the correct assembly of proteasomes. {ECO:0000269|PubMed:17189198}. |
Q9BUF5 | TUBB6 | S75 | ochoa | Tubulin beta-6 chain (Tubulin beta class V) | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. {ECO:0000250|UniProtKB:P02557}. |
Q9BVA1 | TUBB2B | S75 | ochoa | Tubulin beta-2B chain | Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers (PubMed:23001566, PubMed:26732629, PubMed:28013290). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. Plays a critical role in proper axon guidance in both central and peripheral axon tracts (PubMed:23001566). Implicated in neuronal migration (PubMed:19465910). {ECO:0000269|PubMed:19465910, ECO:0000269|PubMed:23001566, ECO:0000269|PubMed:26732629, ECO:0000269|PubMed:28013290}. |
Q9BX63 | BRIP1 | S226 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BXI6 | TBC1D10A | S20 | ochoa | TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) | GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}. |
Q9BXS6 | NUSAP1 | S149 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BXS6 | NUSAP1 | S333 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BY77 | POLDIP3 | S217 | ochoa | Polymerase delta-interacting protein 3 (46 kDa DNA polymerase delta interaction protein) (p46) (S6K1 Aly/REF-like target) (SKAR) | Is involved in regulation of translation. Is preferentially associated with CBC-bound spliced mRNA-protein complexes during the pioneer round of mRNA translation. Contributes to enhanced translational efficiency of spliced over nonspliced mRNAs. Recruits activated ribosomal protein S6 kinase beta-1 I/RPS6KB1 to newly synthesized mRNA. Involved in nuclear mRNA export; probably mediated by association with the TREX complex. {ECO:0000269|PubMed:18423201, ECO:0000269|PubMed:22928037}. |
Q9BYE7 | PCGF6 | S232 | ochoa | Polycomb group RING finger protein 6 (Mel18 and Bmi1-like RING finger) (RING finger protein 134) | Transcriptional repressor (PubMed:12167161). May modulate the levels of histone H3K4Me3 by activating KDM5D histone demethylase (PubMed:17320162). Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:12167161). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). {ECO:0000269|PubMed:12167161, ECO:0000269|PubMed:17320162, ECO:0000269|PubMed:26151332}. |
Q9BYG3 | NIFK | S145 | ochoa | MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) | None |
Q9BYM8 | RBCK1 | S359 | ochoa | RanBP-type and C3HC4-type zinc finger-containing protein 1 (EC 2.3.2.31) (HBV-associated factor 4) (Heme-oxidized IRP2 ubiquitin ligase 1) (HOIL-1) (Hepatitis B virus X-associated protein 4) (RING finger protein 54) (RING-type E3 ubiquitin transferase HOIL-1) (Ubiquitin-conjugating enzyme 7-interacting protein 3) | E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, such as UBE2L3/UBCM4, and then transfers it to substrates (PubMed:12629548, PubMed:17449468, PubMed:18711448). Functions as an E3 ligase for oxidized IREB2 and both heme and oxygen are necessary for IREB2 ubiquitination (PubMed:12629548). Promotes ubiquitination of TAB2 and IRF3 and their degradation by the proteasome (PubMed:17449468, PubMed:18711448). Component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:17006537, PubMed:21455173, PubMed:21455180, PubMed:21455181). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:17006537, PubMed:19136968, PubMed:21455173, PubMed:21455180, PubMed:21455181). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). Binds polyubiquitin of different linkage types (PubMed:20005846, PubMed:21455181). {ECO:0000269|PubMed:12629548, ECO:0000269|PubMed:17006537, ECO:0000269|PubMed:17449468, ECO:0000269|PubMed:18711448, ECO:0000269|PubMed:19136968, ECO:0000269|PubMed:20005846, ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:28481331}. |
Q9BZ29 | DOCK9 | S32 | ochoa | Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}. |
Q9C0B5 | ZDHHC5 | S274 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0C2 | TNKS1BP1 | S244 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9GZT9 | EGLN1 | S61 | psp | Egl nine homolog 1 (EC 1.14.11.29) (Hypoxia-inducible factor prolyl hydroxylase 2) (HIF-PH2) (HIF-prolyl hydroxylase 2) (HPH-2) (Prolyl hydroxylase domain-containing protein 2) (PHD2) (SM-20) | Cellular oxygen sensor that catalyzes, under normoxic conditions, the post-translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) alpha proteins. Hydroxylates a specific proline found in each of the oxygen-dependent degradation (ODD) domains (N-terminal, NODD, and C-terminal, CODD) of HIF1A. Also hydroxylates HIF2A. Has a preference for the CODD site for both HIF1A and HIF1B. Hydroxylated HIFs are then targeted for proteasomal degradation via the von Hippel-Lindau ubiquitination complex. Under hypoxic conditions, the hydroxylation reaction is attenuated allowing HIFs to escape degradation resulting in their translocation to the nucleus, heterodimerization with HIF1B, and increased expression of hypoxy-inducible genes. EGLN1 is the most important isozyme under normoxia and, through regulating the stability of HIF1, involved in various hypoxia-influenced processes such as angiogenesis in retinal and cardiac functionality. Target proteins are preferentially recognized via a LXXLAP motif. {ECO:0000269|PubMed:11595184, ECO:0000269|PubMed:12181324, ECO:0000269|PubMed:12351678, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:19339211, ECO:0000269|PubMed:21792862, ECO:0000269|PubMed:25129147}. |
Q9GZV4 | EIF5A2 | S44 | ochoa | Eukaryotic translation initiation factor 5A-2 (eIF-5A-2) (eIF-5A2) (Eukaryotic initiation factor 5A isoform 2) | Translation factor that promotes translation elongation and termination, particularly upon ribosome stalling at specific amino acid sequence contexts (PubMed:14622290). Binds between the exit (E) and peptidyl (P) site of the ribosome and promotes rescue of stalled ribosome: specifically required for efficient translation of polyproline-containing peptides as well as other motifs that stall the ribosome. Acts as a ribosome quality control (RQC) cofactor by joining the RQC complex to facilitate peptidyl transfer during CAT tailing step (By similarity). Also involved in actin dynamics and cell cycle progression, mRNA decay and probably in a pathway involved in stress response and maintenance of cell wall integrity (By similarity). {ECO:0000250|UniProtKB:P23301, ECO:0000250|UniProtKB:P63241, ECO:0000269|PubMed:14622290}. |
Q9GZY6 | LAT2 | S55 | ochoa | Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) | Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}. |
Q9H0U4 | RAB1B | S75 | ochoa | Ras-related protein Rab-1B (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:20545908, PubMed:9437002, PubMed:23236136). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:9437002). Plays a role in the initial events of the autophagic vacuole development which take place at specialized regions of the endoplasmic reticulum (PubMed:20545908). Regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments (By similarity). Required to modulate the compacted morphology of the Golgi (PubMed:26209634). Promotes the recruitment of lipid phosphatase MTMR6 to the endoplasmic reticulum-Golgi intermediate compartment (By similarity). {ECO:0000250|UniProtKB:P10536, ECO:0000269|PubMed:20545908, ECO:0000269|PubMed:23236136, ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:9437002}. |
Q9H115 | NAPB | S157 | ochoa | Beta-soluble NSF attachment protein (SNAP-beta) (N-ethylmaleimide-sensitive factor attachment protein beta) | Required for vesicular transport between the endoplasmic reticulum and the Golgi apparatus. {ECO:0000250|UniProtKB:P28663}. |
Q9H1A4 | ANAPC1 | S46 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H2E6 | SEMA6A | S265 | ochoa | Semaphorin-6A (Semaphorin VIA) (Sema VIA) (Semaphorin-6A-1) (SEMA6A-1) | Cell surface receptor for PLXNA2 that plays an important role in cell-cell signaling. Required for normal granule cell migration in the developing cerebellum. Promotes reorganization of the actin cytoskeleton and plays an important role in axon guidance in the developing central nervous system. Can act as repulsive axon guidance cue. Has repulsive action towards migrating granular neurons. May play a role in channeling sympathetic axons into the sympathetic chains and controlling the temporal sequence of sympathetic target innervation. {ECO:0000250|UniProtKB:O35464}.; FUNCTION: (Microbial infection) Acts as a receptor for P.sordellii toxin TcsL in the in the vascular endothelium. {ECO:0000269|PubMed:32302524, ECO:0000269|PubMed:32589945}. |
Q9H2J7 | SLC6A15 | S675 | ochoa | Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) | Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}. |
Q9H2P0 | ADNP | S805 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2S1 | KCNN2 | S464 | psp | Small conductance calcium-activated potassium channel protein 2 (SK2) (SKCa 2) (SKCa2) (KCa2.2) | Small conductance calcium-activated potassium channel that mediates the voltage-independent transmembrane transfer of potassium across the cell membrane through a constitutive interaction with calmodulin which binds the intracellular calcium allowing its opening (PubMed:10991935, PubMed:33242881, PubMed:9287325). The current is characterized by a voltage-independent activation, an intracellular calcium concentration increase-dependent activation and a single-channel conductance of about 3 picosiemens (PubMed:10991935). Also presents an inwardly rectifying current, thus reducing its already small outward conductance of potassium ions, which is particularly the case when the membrane potential displays positive values, above + 20 mV (PubMed:10991935). The inward rectification could be due to a blockade of the outward current by intracellular divalent cations such as calcium and magnesium and could also be due to an intrinsic property of the channel pore, independent of intracellular divalent ions. There are three positively charged amino acids in the S6 transmembrane domain, close to the pore, that collectively control the conductance and rectification through an electrostatic mechanism. Additionally, electrostatic contributions from these residues also play an important role in determining the intrinsic open probability of the channel in the absence of calcium, affecting the apparent calcium affinity for activation. Forms an heteromeric complex with calmodulin, which is constitutively associated in a calcium-independent manner. Channel opening is triggered when calcium binds the calmodulin resulting in a rotary movement leading to the formation of the dimeric complex to open the gate (By similarity). Plays a role in the repolarization phase of cardiac action potential (PubMed:13679367). {ECO:0000250|UniProtKB:P70604, ECO:0000269|PubMed:10991935, ECO:0000269|PubMed:13679367, ECO:0000269|PubMed:33242881, ECO:0000269|PubMed:9287325}. |
Q9H2X9 | SLC12A5 | S963 | psp | Solute carrier family 12 member 5 (Electroneutral potassium-chloride cotransporter 2) (K-Cl cotransporter 2) (hKCC2) (Neuronal K-Cl cotransporter) | Mediates electroneutral potassium-chloride cotransport in mature neurons and is required for neuronal Cl(-) homeostasis (PubMed:12106695). As major extruder of intracellular chloride, it establishes the low neuronal Cl(-) levels required for chloride influx after binding of GABA-A and glycine to their receptors, with subsequent hyperpolarization and neuronal inhibition (By similarity). Involved in the regulation of dendritic spine formation and maturation (PubMed:24668262). {ECO:0000250|UniProtKB:Q63633, ECO:0000269|PubMed:12106695, ECO:0000269|PubMed:24668262}. |
Q9H2Y7 | ZNF106 | S509 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H2Y7 | ZNF106 | S554 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H2Y7 | ZNF106 | S556 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H3R0 | KDM4C | S352 | ochoa | Lysine-specific demethylase 4C (EC 1.14.11.66) (Gene amplified in squamous cell carcinoma 1 protein) (GASC-1 protein) (JmjC domain-containing histone demethylation protein 3C) (Jumonji domain-containing protein 2C) ([histone H3]-trimethyl-L-lysine(9) demethylase 4C) | Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. {ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}. |
Q9H4G0 | EPB41L1 | S510 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H4L5 | OSBPL3 | S200 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H582 | ZNF644 | S309 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H7N4 | SCAF1 | S847 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H930 | SP140L | S246 | ochoa | Nuclear body protein SP140-like protein | None |
Q9H967 | WDR76 | S114 | ochoa | WD repeat-containing protein 76 | Specifically binds 5-hydroxymethylcytosine (5hmC), suggesting that it acts as a specific reader of 5hmC. {ECO:0000250}. |
Q9H9S0 | NANOG | S135 | psp | Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) | Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}. |
Q9HAW4 | CLSPN | S362 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HB19 | PLEKHA2 | S273 | ochoa | Pleckstrin homology domain-containing family A member 2 (PH domain-containing family A member 2) (Tandem PH domain-containing protein 2) (TAPP-2) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane (By similarity). {ECO:0000250}. |
Q9HCD6 | TANC2 | S235 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCE3 | ZNF532 | S192 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCE3 | ZNF532 | S1067 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9NQV6 | PRDM10 | S803 | ochoa | PR domain zinc finger protein 10 (PR domain-containing protein 10) (Tristanin) | Transcriptional activator, essential for early embryonic development and survival of embryonic stem cells (ESCs) (By similarity). Supports cell growth and survival during early development by transcriptionally activating the expression of the translation initiation factor EIF3B, to sustain global translation (By similarity). Activates the transcription of FLNC (PubMed:36440963). {ECO:0000250|UniProtKB:Q3UTQ7, ECO:0000269|PubMed:36440963}. |
Q9NQW6 | ANLN | S336 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NQX3 | GPHN | S305 | ochoa | Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] | Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}. |
Q9NR00 | TCIM | S21 | ochoa | Transcriptional and immune response regulator (Thyroid cancer protein 1) (TC-1) | Seems to be involved in the regulation of cell growth an differentiation, may play different and opposite roles depending on the tissue or cell type. May enhance the WNT-CTNNB1 pathway by relieving antagonistic activity of CBY1 (PubMed:16424001, PubMed:16730711). Enhances the proliferation of follicular dendritic cells (PubMed:16730711). Plays a role in the mitogen-activated MAPK2/3 signaling pathway, positively regulates G1-to-S-phase transition of the cell cycle (PubMed:18959821). In endothelial cells, enhances key inflammatory mediators and inflammatory response through the modulation of NF-kappaB transcriptional regulatory activity (PubMed:19684084). Involved in the regulation of heat shock response, seems to play a positive feedback with HSF1 to modulate heat-shock downstream gene expression (PubMed:17603013). Plays a role in the regulation of hematopoiesis even if the mechanisms are unknown (By similarity). In cancers such as thyroid or lung cancer, it has been described as promoter of cell proliferation, G1-to-S-phase transition and inhibitor of apoptosis (PubMed:15087392, PubMed:24941347). However, it negatively regulates self-renewal of liver cancer cells via suppresion of NOTCH2 signaling (PubMed:25985737). {ECO:0000250|UniProtKB:Q9D915, ECO:0000269|PubMed:15087392, ECO:0000269|PubMed:16424001, ECO:0000269|PubMed:16730711, ECO:0000269|PubMed:17603013, ECO:0000269|PubMed:18959821, ECO:0000269|PubMed:19684084, ECO:0000269|PubMed:24941347, ECO:0000269|PubMed:25985737, ECO:0000305}. |
Q9NR48 | ASH1L | S2951 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRF2 | SH2B1 | S165 | psp | SH2B adapter protein 1 (Pro-rich, PH and SH2 domain-containing signaling mediator) (PSM) (SH2 domain-containing protein 1B) | Adapter protein for several members of the tyrosine kinase receptor family. Involved in multiple signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases, including the receptors of insulin (INS), insulin-like growth factor 1 (IGF1), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), platelet-derived growth factor (PDGF) and fibroblast growth factors (FGFs). In growth hormone (GH) signaling, autophosphorylated ('Tyr-813') JAK2 recruits SH2B1, which in turn is phosphorylated by JAK2 on tyrosine residues. These phosphotyrosines form potential binding sites for other signaling proteins. GH also promotes serine/threonine phosphorylation of SH2B1 and these phosphorylated residues may serve to recruit other proteins to the GHR-JAK2-SH2B1 complexes, such as RAC1. In leptin (LEP) signaling, binds to and potentiates the activation of JAK2 by globally enhancing downstream pathways. In response to leptin, binds simultaneously to both, JAK2 and IRS1 or IRS2, thus mediating formation of a complex of JAK2, SH2B1 and IRS1 or IRS2. Mediates tyrosine phosphorylation of IRS1 and IRS2, resulting in activation of the PI 3-kinase pathway. Acts as a positive regulator of NGF-mediated activation of the Akt/Forkhead pathway; prolongs NGF-induced phosphorylation of AKT1 on 'Ser-473' and AKT1 enzymatic activity. Enhances the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2 and of other receptor tyrosine kinases, such as FGFR3 and NTRK1. For JAK2, the mechanism seems to involve dimerization of both, SH2B1 and JAK2. Enhances RET phosphorylation and kinase activity. Isoforms seem to be differentially involved in IGF1 and PDGF-induced mitogenesis (By similarity). {ECO:0000250|UniProtKB:Q91ZM2, ECO:0000269|PubMed:11827956, ECO:0000269|PubMed:14565960, ECO:0000269|PubMed:15767667, ECO:0000269|PubMed:16569669, ECO:0000269|PubMed:17471236, ECO:0000269|PubMed:9694882, ECO:0000269|PubMed:9742218}. |
Q9NRL2 | BAZ1A | S1279 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NSY1 | BMP2K | S392 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NUQ8 | ABCF3 | S161 | ochoa | ATP-binding cassette sub-family F member 3 | Displays an antiviral effect against flaviviruses such as west Nile virus (WNV) in the presence of OAS1B. {ECO:0000250}. |
Q9NVI1 | FANCI | S565 | psp | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NVN8 | GNL3L | S519 | ochoa | Guanine nucleotide-binding protein-like 3-like protein | Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}. |
Q9NVP1 | DDX18 | S74 | ochoa | ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) | ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}. |
Q9NWQ8 | PAG1 | S339 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NXF1 | TEX10 | S287 | ochoa | Testis-expressed protein 10 | Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit (PubMed:21326211). {ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q9NY74 | ETAA1 | S710 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NYP7 | ELOVL5 | S273 | ochoa | Very long chain fatty acid elongase 5 (EC 2.3.1.199) (3-keto acyl-CoA synthase ELOVL5) (ELOVL fatty acid elongase 5) (ELOVL FA elongase 5) (Elongation of very long chain fatty acids protein 5) (Fatty acid elongase 1) (hELO1) (Very long chain 3-ketoacyl-CoA synthase 5) (Very long chain 3-oxoacyl-CoA synthase 5) | Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that acts specifically toward polyunsaturated acyl-CoA with the higher activity toward C18:3(n-6) acyl-CoA. May participate in the production of monounsaturated and of polyunsaturated VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators (By similarity) (PubMed:10970790, PubMed:20937905). In conditions where the essential linoleic and alpha linoleic fatty acids are lacking it is also involved in the synthesis of Mead acid from oleic acid (By similarity). {ECO:0000250|UniProtKB:Q8BHI7, ECO:0000255|HAMAP-Rule:MF_03205, ECO:0000269|PubMed:10970790, ECO:0000269|PubMed:20937905}. |
Q9NYQ6 | CELSR1 | S2737 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 1 (Cadherin family member 9) (Flamingo homolog 2) (hFmi2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NZ56 | FMN2 | S461 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9NZM1 | MYOF | S212 | ochoa | Myoferlin (Fer-1-like protein 3) | Calcium/phospholipid-binding protein that plays a role in the plasmalemma repair mechanism of endothelial cells that permits rapid resealing of membranes disrupted by mechanical stress. Involved in endocytic recycling. Implicated in VEGF signal transduction by regulating the levels of the receptor KDR (By similarity). {ECO:0000250}. |
Q9NZV8 | KCND2 | S552 | psp | A-type voltage-gated potassium channel KCND2 (Potassium voltage-gated channel subfamily D member 2) (Voltage-gated potassium channel subunit Kv4.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action potentials and regulates the back-propagation of action potentials from the neuronal cell body to the dendrites. Contributes to the regulation of the circadian rhythm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity (By similarity). Functions downstream of the metabotropic glutamate receptor GRM5 and plays a role in neuronal excitability and in nociception mediated by activation of GRM5 (By similarity). Mediates the transient outward current I(to) in rodent heart left ventricle apex cells, but not in human heart, where this current is mediated by another family member. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient (PubMed:10551270, PubMed:11507158, PubMed:14623880, PubMed:14695263, PubMed:14980201, PubMed:15454437, PubMed:16934482, PubMed:19171772, PubMed:24501278, PubMed:24811166, PubMed:34552243, PubMed:35597238). The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:11507158). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCND2 and KCND3; channel properties depend on the type of pore-forming alpha subunits that are part of the channel. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes. Interaction with specific isoforms of the regulatory subunits KCNIP1, KCNIP2, KCNIP3 or KCNIP4 strongly increases expression at the cell surface and thereby increases channel activity; it modulates the kinetics of channel activation and inactivation, shifts the threshold for channel activation to more negative voltage values, shifts the threshold for inactivation to less negative voltages and accelerates recovery after inactivation (PubMed:14623880, PubMed:14980201, PubMed:15454437, PubMed:19171772, PubMed:24501278, PubMed:24811166). Likewise, interaction with DPP6 or DPP10 promotes expression at the cell membrane and regulates both channel characteristics and activity (By similarity). Upon depolarization, the channel goes from a resting closed state (C state) to an activated but non-conducting state (C* state), from there, the channel may either inactivate (I state) or open (O state) (PubMed:35597238). {ECO:0000250|UniProtKB:Q63881, ECO:0000250|UniProtKB:Q9Z0V2, ECO:0000269|PubMed:10551270, ECO:0000269|PubMed:10729221, ECO:0000269|PubMed:11507158, ECO:0000269|PubMed:14623880, ECO:0000269|PubMed:14695263, ECO:0000269|PubMed:14980201, ECO:0000269|PubMed:15454437, ECO:0000269|PubMed:16934482, ECO:0000269|PubMed:19171772, ECO:0000269|PubMed:24501278, ECO:0000269|PubMed:24811166, ECO:0000269|PubMed:34552243, ECO:0000269|PubMed:35597238}. |
Q9P0J1 | PDP1 | S114 | ochoa | [Pyruvate dehydrogenase [acetyl-transferring]]-phosphatase 1, mitochondrial (PDP 1) (EC 3.1.3.43) (Protein phosphatase 2C) (Pyruvate dehydrogenase phosphatase catalytic subunit 1) (PDPC 1) | Mitochondrial enzyme that catalyzes the dephosphorylation and concomitant reactivation of the alpha subunit of the E1 component of the pyruvate dehydrogenase complex (PDC), thereby stimulating the conversion of pyruvate into acetyl-CoA. {ECO:0000269|PubMed:15554715, ECO:0000305|PubMed:15855260}. |
Q9P219 | CCDC88C | S1740 | ochoa | Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) | Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}. |
Q9P2E9 | RRBP1 | S165 | ochoa | Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) | Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}. |
Q9P2N5 | RBM27 | S884 | ochoa | RNA-binding protein 27 (RNA-binding motif protein 27) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q9P2N6 | KANSL3 | S559 | ochoa | KAT8 regulatory NSL complex subunit 3 (NSL complex protein NSL3) (Non-specific lethal 3 homolog) (Serum inhibited-related protein) (Testis development protein PRTD) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). Within the NSL complex, KANSL3 is required to promote KAT8 association with mitochondrial DNA (PubMed:27768893). Required for transcription of intraciliary transport genes in both ciliated and non-ciliated cells (By similarity). This is necessary for cilium assembly in ciliated cells and for organization of the microtubule cytoskeleton in non-ciliated cells (By similarity). Also required within the NSL complex to maintain nuclear architecture stability by promoting KAT8-mediated acetylation of lamin LMNA (By similarity). Plays an essential role in spindle assembly during mitosis (PubMed:26243146). Acts as a microtubule minus-end binding protein which stabilizes microtubules and promotes their assembly (PubMed:26243146). Indispensable during early embryonic development where it is required for proper lineage specification and maintenance during peri-implantation development and is essential for implantation (By similarity). {ECO:0000250|UniProtKB:A2RSY1, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q9UBL3 | ASH2L | S316 | ochoa | Set1/Ash2 histone methyltransferase complex subunit ASH2 (ASH2-like protein) | Transcriptional regulator (PubMed:12670868). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). Component of the Set1/Ash2 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3, but not if the neighboring 'Lys-9' residue is already methylated (PubMed:19556245). As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3 (PubMed:19556245). May play a role in hematopoiesis (PubMed:12670868). In association with RBBP5 and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q9UBR4 | LHX3 | S71 | psp | LIM/homeobox protein Lhx3 (LIM homeobox protein 3) | Transcription factor. Recognizes and binds to the consensus sequence motif 5'-AATTAATTA-3' in the regulatory elements of target genes, such as glycoprotein hormones alpha chain CGA and visual system homeobox CHX10, positively modulating transcription; transcription can be co-activated by LDB2. Synergistically enhances transcription from the prolactin promoter in cooperation with POU1F1/Pit-1 (By similarity). Required for the establishment of the specialized cells of the pituitary gland and the nervous system (PubMed:21149718). Involved in the development of interneurons and motor neurons in cooperation with LDB1 and ISL1 (By similarity). {ECO:0000250|UniProtKB:P50481, ECO:0000269|PubMed:21149718}. |
Q9UBW7 | ZMYM2 | S1064 | psp | Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) | Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}. |
Q9UGI8 | TES | S105 | ochoa | Testin (TESS) | Scaffold protein that may play a role in cell adhesion, cell spreading and in the reorganization of the actin cytoskeleton. Plays a role in the regulation of cell proliferation. May act as a tumor suppressor. Inhibits tumor cell growth. {ECO:0000269|PubMed:11420696, ECO:0000269|PubMed:12571287, ECO:0000269|PubMed:12695497}. |
Q9UH92 | MLX | S106 | ochoa | Max-like protein X (Class D basic helix-loop-helix protein 13) (bHLHd13) (Max-like bHLHZip protein) (Protein BigMax) (Transcription factor-like protein 4) | Transcription regulator. Forms a sequence-specific DNA-binding protein complex with MAD1, MAD4, MNT, WBSCR14 and MLXIP which recognizes the core sequence 5'-CACGTG-3'. The TCFL4-MAD1, TCFL4-MAD4, TCFL4-WBSCR14 complexes are transcriptional repressors. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000269|PubMed:10593926, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9UH99 | SUN2 | S63 | ochoa | SUN domain-containing protein 2 (Protein unc-84 homolog B) (Rab5-interacting protein) (Rab5IP) (Sad1/unc-84 protein-like 2) | As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. Required for interkinetic nuclear migration (INM) and essential for nucleokinesis and centrosome-nucleus coupling during radial neuronal migration in the cerebral cortex and during glial migration. Required for nuclear migration in retinal photoreceptor progenitors implicating association with cytoplasmic dynein-dynactin and kinesin motor complexes, and probably B-type lamins; SUN1 and SUN2 seem to act redundantly. The SUN1/2:KASH5 LINC complex couples telomeres to microtubules during meiosis; SUN1 and SUN2 seem to act at least partial redundantly. Anchors chromosome movement in the prophase of meiosis and is involved in selective gene expression of coding and non-coding RNAs needed for gametogenesis. Required for telomere attachment to nuclear envelope and gametogenesis. May also function on endocytic vesicles as a receptor for RAB5-GDP and participate in the activation of RAB5. {ECO:0000250|UniProtKB:Q8BJS4, ECO:0000269|PubMed:18396275, ECO:0000305}. |
Q9UHB7 | AFF4 | S314 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHC7 | MKRN1 | S379 | ochoa | E3 ubiquitin-protein ligase makorin-1 (EC 2.3.2.27) (RING finger protein 61) (RING-type E3 ubiquitin transferase makorin-1) | E3 ubiquitin ligase catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins. These substrates include FILIP1, p53/TP53, CDKN1A and TERT. Keeps cells alive by suppressing p53/TP53 under normal conditions, but stimulates apoptosis by repressing CDKN1A under stress conditions. Acts as a negative regulator of telomerase. Has negative and positive effects on RNA polymerase II-dependent transcription. {ECO:0000269|PubMed:16785614, ECO:0000269|PubMed:19536131}. |
Q9UHQ9 | CYB5R1 | S132 | ochoa | NADH-cytochrome b5 reductase 1 (b5R.1) (EC 1.6.2.2) (Humb5R2) (NAD(P)H:quinone oxidoreductase type 3 polypeptide A2) | NADH-cytochrome b5 reductases are involved in desaturation and elongation of fatty acids, cholesterol biosynthesis, drug metabolism, and, in erythrocyte, methemoglobin reduction. {ECO:0000250}. |
Q9UJM8 | HAO1 | S65 | ochoa | 2-Hydroxyacid oxidase 1 (HAOX1) (EC 1.1.3.15) (Glycolate oxidase) (GO) (GOX) (Glyoxylate oxidase) (EC 1.2.3.5) | Broad substrate specificity (S)-2-hydroxy-acid oxidase that preferentially oxidizes glycolate (PubMed:10777549, PubMed:10978532, PubMed:17669354, PubMed:18215067). The glyoxylate produced by the oxidation of glycolate can then be utilized by alanine-glyoxylate aminotransferase for the peroxisomal synthesis of glycine; this pathway appears to be an important step for the detoxification of glyoxylate which, if allowed to accumulate, may be metabolized to oxalate with formation of kidney stones (PubMed:10978532, PubMed:17669354). Can also catalyze the oxidation of glyoxylate, and long chain hydroxyacids such as 2-hydroxyhexadecanoate and 2-hydroxyoctanoate, albeit with much lower catalytic efficiency (PubMed:10777549, PubMed:17669354, PubMed:18215067). Active in vitro with the artificial electron acceptor 2,6-dichlorophenolindophenol (DCIP), but O2 is believed to be the physiological electron acceptor, leading to the production of H2O2 (PubMed:10777549, PubMed:10978532, PubMed:17669354, PubMed:18215067). Is not active on L-lactate and 2-hydroxybutanoate (PubMed:10777549). {ECO:0000269|PubMed:10777549, ECO:0000269|PubMed:10978532, ECO:0000269|PubMed:17669354, ECO:0000269|PubMed:18215067, ECO:0000303|PubMed:10978532, ECO:0000303|PubMed:17669354}. |
Q9UJW0 | DCTN4 | S198 | ochoa | Dynactin subunit 4 (Dyn4) (Dynactin subunit p62) | Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. {ECO:0000250|UniProtKB:A0A4X1TB62}. |
Q9UK61 | TASOR | S671 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UKF6 | CPSF3 | S482 | ochoa | Cleavage and polyadenylation specificity factor subunit 3 (EC 3.1.27.-) (Cleavage and polyadenylation specificity factor 73 kDa subunit) (CPSF 73 kDa subunit) (mRNA 3'-end-processing endonuclease CPSF-73) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Has endonuclease activity, and functions as an mRNA 3'-end-processing endonuclease (PubMed:30507380). Also involved in the histone 3'-end pre-mRNA processing (PubMed:30507380). U7 snRNP-dependent protein that induces both the 3'-endoribonucleolytic cleavage of histone pre-mRNAs and acts as a 5' to 3' exonuclease for degrading the subsequent downstream cleavage product (DCP) of mature histone mRNAs. Cleavage occurs after the 5'-ACCCA-3' sequence in the histone pre-mRNA leaving a 3'hydroxyl group on the upstream fragment containing the stem loop (SL) and 5' phosphate on the downstream cleavage product (DCP) starting with CU nucleotides. The U7-dependent 5' to 3' exonuclease activity is processive and degrades the DCP RNA substrate even after complete removal of the U7-binding site. Binds to the downstream cleavage product (DCP) of histone pre-mRNAs and the cleaved DCP RNA substrate in a U7 snRNP dependent manner. Required for entering/progressing through S-phase of the cell cycle (PubMed:30507380). Required for the selective processing of microRNAs (miRNAs) during embryonic stem cell differentiation via its interaction with ISY1 (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). {ECO:0000250|UniProtKB:Q9QXK7, ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:15037765, ECO:0000269|PubMed:17128255, ECO:0000269|PubMed:18688255, ECO:0000269|PubMed:30507380}. |
Q9UKJ3 | GPATCH8 | S328 | ochoa | G patch domain-containing protein 8 | None |
Q9ULD4 | BRPF3 | S76 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULH7 | MRTFB | S896 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULJ3 | ZBTB21 | S223 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULS5 | TMCC3 | S174 | ochoa | Transmembrane and coiled-coil domain protein 3 | None |
Q9ULU4 | ZMYND8 | S1124 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULW0 | TPX2 | S322 | psp | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9ULX3 | NOB1 | S371 | ochoa | RNA-binding protein NOB1 (EC 3.1.-.-) (Phosphorylation regulatory protein HP-10) (Protein ART-4) | May play a role in mRNA degradation (Probable). Endonuclease required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits (By similarity). {ECO:0000250|UniProtKB:Q9FLL1, ECO:0000305}. |
Q9UN79 | SOX13 | S453 | ochoa | Transcription factor SOX-13 (Islet cell antigen 12) (SRY (Sex determining region Y)-box 13) (Type 1 diabetes autoantigen ICA12) | Transcription factor that binds to DNA at the consensus sequence 5'-AACAAT-3' (PubMed:10871192). Binds to the proximal promoter region of the myelin protein MPZ gene, and may thereby be involved in the differentiation of oligodendroglia in the developing spinal tube (By similarity). Binds to the gene promoter of MBP and acts as a transcriptional repressor (By similarity). Binds to and modifies the activity of TCF7/TCF1, thereby inhibiting transcription and modulates normal gamma-delta T-cell development and differentiation of IL17A expressing gamma-delta T-cells (By similarity). Regulates expression of BLK in the differentiation of IL17A expressing gamma-delta T-cells (By similarity). Promotes brown adipocyte differentiation (By similarity). Inhibitor of WNT signaling (PubMed:20028982). {ECO:0000250|UniProtKB:Q04891, ECO:0000269|PubMed:10871192, ECO:0000269|PubMed:20028982}. |
Q9UQN3 | CHMP2B | S80 | ochoa | Charged multivesicular body protein 2b (CHMP2.5) (Chromatin-modifying protein 2b) (CHMP2b) (Vacuolar protein sorting-associated protein 2-2) (Vps2-2) (hVps2-2) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. |
Q9UQR1 | ZNF148 | S690 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y250 | LZTS1 | S71 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y2C9 | TLR6 | S417 | ochoa | Toll-like receptor 6 (CD antigen CD286) | Participates in the innate immune response to Gram-positive bacteria and fungi. Specifically recognizes diacylated and, to a lesser extent, triacylated lipopeptides (PubMed:20037584). In response to diacylated lipopeptides, forms the activation cluster TLR2:TLR6:CD14:CD36, this cluster triggers signaling from the cell surface and subsequently is targeted to the Golgi in a lipid-raft dependent pathway (PubMed:16880211). Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR2 (PubMed:11441107). In complex with TLR4, promotes sterile inflammation in monocytes/macrophages in response to oxidized low-density lipoprotein (oxLDL) or amyloid-beta 42. In this context, the initial signal is provided by oxLDL- or amyloid-beta 42-binding to CD36. This event induces the formation of a heterodimer of TLR4 and TLR6, which is rapidly internalized and triggers inflammatory response, leading to the NF-kappa-B-dependent production of CXCL1, CXCL2 and CCL9 cytokines, via MYD88 signaling pathway, and CCL5 cytokine, via TICAM1 signaling pathway, as well as IL1B secretion (PubMed:11441107, PubMed:20037584). {ECO:0000269|PubMed:11441107, ECO:0000269|PubMed:16880211, ECO:0000269|PubMed:20037584}. |
Q9Y2H2 | INPP5F | S829 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2H5 | PLEKHA6 | S919 | ochoa | Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) | None |
Q9Y2U8 | LEMD3 | S881 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W1 | THRAP3 | S392 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2X8 | UBE2D4 | S83 | ochoa | Ubiquitin-conjugating enzyme E2 D4 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme D4) (HBUCE1) (Ubiquitin carrier protein D4) (Ubiquitin-protein ligase D4) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro able to promote polyubiquitination using all 7 ubiquitin Lys residues, but may prefer 'Lys-11' and 'Lys-48'-linked polyubiquitination. {ECO:0000269|PubMed:20061386}. |
Q9Y2X9 | ZNF281 | S812 | ochoa | Zinc finger protein 281 (GC-box-binding zinc finger protein 1) (Transcription factor ZBP-99) (Zinc finger DNA-binding protein 99) | Transcription repressor that plays a role in regulation of embryonic stem cells (ESCs) differentiation. Required for ESCs differentiation and acts by mediating autorepression of NANOG in ESCs: binds to the NANOG promoter and promotes association of NANOG protein to its own promoter and recruits the NuRD complex, which deacetylates histones. Not required for establishement and maintenance of ESCs (By similarity). Represses the transcription of a number of genes including GAST, ODC1 and VIM. Binds to the G-rich box in the enhancer region of these genes. {ECO:0000250, ECO:0000269|PubMed:10448078, ECO:0000269|PubMed:12771217}. |
Q9Y426 | C2CD2 | S649 | ochoa | C2 domain-containing protein 2 (Transmembrane protein 24-like) | None |
Q9Y450 | HBS1L | S64 | ochoa | HBS1-like protein (EC 3.6.5.-) (ERFS) | GTPase component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway (PubMed:21448132, PubMed:23667253, PubMed:27863242). The Pelota-HBS1L complex recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel (PubMed:27863242). Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132, PubMed:32006463). {ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:23667253, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:32006463}. |
Q9Y485 | DMXL1 | S465 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y487 | ATP6V0A2 | S157 | ochoa | V-type proton ATPase 116 kDa subunit a 2 (V-ATPase 116 kDa subunit a 2) (Lysosomal H(+)-transporting ATPase V0 subunit a 2) (TJ6) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Essential component of the endosomal pH-sensing machinery (PubMed:16415858). May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (PubMed:18157129). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:16415858, ECO:0000269|PubMed:18157129, ECO:0000269|PubMed:28296633}. |
Q9Y490 | TLN1 | S1323 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B5 | MTCL1 | S542 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4K3 | TRAF6 | S188 | ochoa | TNF receptor-associated factor 6 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRAF6) (Interleukin-1 signal transducer) (RING finger protein 85) (RING-type E3 ubiquitin transferase TRAF6) | E3 ubiquitin ligase that, together with UBE2N and UBE2V1, mediates the synthesis of 'Lys-63'-linked-polyubiquitin chains conjugated to proteins, such as ECSIT, IKBKG, IRAK1, AKT1 and AKT2 (PubMed:11057907, PubMed:18347055, PubMed:19465916, PubMed:19713527, PubMed:27746020, PubMed:31620128). Also mediates ubiquitination of free/unanchored polyubiquitin chain that leads to MAP3K7 activation (PubMed:19675569). Leads to the activation of NF-kappa-B and JUN (PubMed:16378096, PubMed:17135271, PubMed:17703191). Seems to also play a role in dendritic cells (DCs) maturation and/or activation (By similarity). Represses c-Myb-mediated transactivation, in B-lymphocytes (PubMed:18093978, PubMed:18758450). Adapter protein that seems to play a role in signal transduction initiated via TNF receptor, IL-1 receptor and IL-17 receptor (PubMed:12140561, PubMed:19825828, PubMed:8837778). Regulates osteoclast differentiation by mediating the activation of adapter protein complex 1 (AP-1) and NF-kappa-B, in response to RANK-L stimulation (By similarity). Together with MAP3K8, mediates CD40 signals that activate ERK in B-cells and macrophages, and thus may play a role in the regulation of immunoglobulin production (By similarity). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by initiating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: TRAF6 catalyzes initial 'Lys-63'-linked-polyubiquitin chains that are then branched via 'Lys-48'-linked polyubiquitin by HUWE1 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Participates also in the TCR signaling by ubiquitinating LAT (PubMed:23514740, PubMed:25907557). {ECO:0000250|UniProtKB:P70196, ECO:0000269|PubMed:11057907, ECO:0000269|PubMed:12140561, ECO:0000269|PubMed:16378096, ECO:0000269|PubMed:17135271, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:18093978, ECO:0000269|PubMed:18347055, ECO:0000269|PubMed:18758450, ECO:0000269|PubMed:19465916, ECO:0000269|PubMed:19675569, ECO:0000269|PubMed:19713527, ECO:0000269|PubMed:19825828, ECO:0000269|PubMed:23514740, ECO:0000269|PubMed:25907557, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:31620128, ECO:0000269|PubMed:8837778}. |
Q9Y4P8 | WIPI2 | S388 | ochoa | WD repeat domain phosphoinositide-interacting protein 2 (WIPI-2) (WIPI49-like protein 2) | Component of the autophagy machinery that controls the major intracellular degradation process by which cytoplasmic materials are packaged into autophagosomes and delivered to lysosomes for degradation (PubMed:20505359, PubMed:28561066). Involved in an early step of the formation of preautophagosomal structures (PubMed:20505359, PubMed:28561066). Binds and is activated by phosphatidylinositol 3-phosphate (PtdIns3P) forming on membranes of the endoplasmic reticulum upon activation of the upstream ULK1 and PI3 kinases (PubMed:28561066). Mediates ER-isolation membranes contacts by interacting with the ULK1:RB1CC1 complex and PtdIns3P (PubMed:28890335). Once activated, WIPI2 recruits at phagophore assembly sites the ATG12-ATG5-ATG16L1 complex that directly controls the elongation of the nascent autophagosomal membrane (PubMed:20505359, PubMed:28561066). {ECO:0000269|PubMed:20505359, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:28890335, ECO:0000269|PubMed:30968111}.; FUNCTION: [Isoform 4]: Recruits the ATG12-ATG5-ATG16L1 complex to omegasomes and preautophagosomal structures, resulting in ATG8 family proteins lipidation and starvation-induced autophagy. Isoform 4 is also required for autophagic clearance of pathogenic bacteria. Isoform 4 binds the membrane surrounding Salmonella and recruits the ATG12-5-16L1 complex, initiating LC3 conjugation, autophagosomal membrane formation, and engulfment of Salmonella. {ECO:0000269|PubMed:24954904}. |
Q9Y520 | PRRC2C | S21 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y520 | PRRC2C | S876 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5B9 | SUPT16H | S360 | ochoa | FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}. |
Q9Y5Y5 | PEX16 | S186 | ochoa | Peroxisomal membrane protein PEX16 (Peroxin-16) (Peroxisomal biogenesis factor 16) | Required for peroxisome membrane biogenesis. May play a role in early stages of peroxisome assembly. Can recruit other peroxisomal proteins, such as PEX3 and PMP34, to de novo peroxisomes derived from the endoplasmic reticulum (ER). May function as receptor for PEX3. {ECO:0000269|PubMed:10704444, ECO:0000269|PubMed:12223482, ECO:0000269|PubMed:16717127}. |
Q9Y616 | IRAK3 | S325 | ochoa | Interleukin-1 receptor-associated kinase 3 (IRAK-3) (IL-1 receptor-associated kinase M) (IRAK-M) (Inactive IL-1 receptor-associated kinase 3) | Putative inactive protein kinase which regulates signaling downstream of immune receptors including IL1R and Toll-like receptors (PubMed:10383454, PubMed:29686383). Inhibits dissociation of IRAK1 and IRAK4 from the Toll-like receptor signaling complex by either inhibiting the phosphorylation of IRAK1 and IRAK4 or stabilizing the receptor complex (By similarity). Upon IL33-induced lung inflammation, positively regulates expression of IL6, CSF3, CXCL2 and CCL5 mRNAs in dendritic cells (PubMed:29686383). {ECO:0000250|UniProtKB:Q8K4B2, ECO:0000269|PubMed:10383454, ECO:0000269|PubMed:29686383}. |
Q9Y6D5 | ARFGEF2 | S1534 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
Q9Y6I4 | USP3 | S350 | ochoa | Ubiquitin carboxyl-terminal hydrolase 3 (EC 3.4.19.12) (Deubiquitinating enzyme 3) (Ubiquitin thioesterase 3) (Ubiquitin-specific-processing protease 3) | Deubiquitinase that plays a role in several cellular processes including transcriptional regulation, cell cycle progression or innate immunity. In response to DNA damage, deubiquitinates monoubiquitinated target proteins such as histone H2A and H2AX and thereby counteracts RNF168- and RNF8-mediated ubiquitination. In turn, participates in the recruitment of DNA damage repair factors to DNA break sites (PubMed:24196443). Required for proper progression through S phase and subsequent mitotic entry (PubMed:17980597). Acts as a positive regulator of TP53 by deubiquitinating and stabilizing it to promote normal cell proliferation and transformation (PubMed:28807825). Participates in establishing tolerance innate immune memory through non-transcriptional feedback. Mechanistically, negatively regulates TLR-induced NF-kappa-B signaling by targeting and removing the 'Lys-63'-linked polyubiquitin chains on MYD88 (PubMed:37971847). Negatively regulates the activation of type I interferon signaling by mediating 'Lys-63'-linked polyubiquitin chains on RIGI and IFIH1 (PubMed:24366338). Also deubiquinates ASC/PYCARD, the central adapter mediating the assembly and activation of most inflammasomes, and thereby promotes inflammasome activation (PubMed:36050480). {ECO:0000269|PubMed:17980597, ECO:0000269|PubMed:24196443, ECO:0000269|PubMed:24366338, ECO:0000269|PubMed:28807825, ECO:0000269|PubMed:36050480, ECO:0000269|PubMed:37971847}. |
Q9Y6M4 | CSNK1G3 | S345 | ochoa | Casein kinase I isoform gamma-3 (CKI-gamma 3) (EC 2.7.11.1) | Serine/threonine-protein kinase. Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates. It can phosphorylate a large number of proteins. Participates in Wnt signaling. Regulates fast synaptic transmission mediated by glutamate (By similarity). {ECO:0000250}. |
Q9Y6N7 | ROBO1 | S940 | ochoa | Roundabout homolog 1 (Deleted in U twenty twenty) (H-Robo-1) | Receptor for SLIT1 and SLIT2 that mediates cellular responses to molecular guidance cues in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development (PubMed:10102268, PubMed:24560577). Interaction with the intracellular domain of FLRT3 mediates axon attraction towards cells expressing NTN1 (PubMed:24560577). In axon growth cones, the silencing of the attractive effect of NTN1 by SLIT2 may require the formation of a ROBO1-DCC complex (By similarity). Plays a role in the regulation of cell migration via its interaction with MYO9B; inhibits MYO9B-mediated stimulation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). May be required for lung development (By similarity). {ECO:0000250|UniProtKB:O89026, ECO:0000269|PubMed:10102268, ECO:0000269|PubMed:24560577, ECO:0000269|PubMed:26529257, ECO:0000305}. |
Q9Y6R0 | NUMBL | S332 | ochoa | Numb-like protein (Numb-related protein) (Numb-R) | Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}. |
Q9Y6R6 | ZNF780B | S661 | ochoa | Zinc finger protein 780B (Zinc finger protein 779) | May be involved in transcriptional regulation. {ECO:0000250}. |
S4R3N1 | HSPE1-MOB4 | S53 | ochoa | 10 kDa heat shock protein, mitochondrial (10 kDa chaperonin) (Chaperonin 10) (MOB-like protein phocein) (Mob1 homolog 3) (Mps one binder kinase activator-like 3) (Preimplantation protein 3) | Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein. {ECO:0000256|ARBA:ARBA00046093}.; FUNCTION: Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation. {ECO:0000256|ARBA:ARBA00044741}. |
U3KPZ7 | LOC127814297 | S829 | ochoa | RNA-binding protein 27 (RNA-binding motif protein 27) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}. |
P62906 | RPL10A | S64 | Sugiyama | Large ribosomal subunit protein uL1 (60S ribosomal protein L10a) (CSA-19) (Neural precursor cell expressed developmentally down-regulated protein 6) (NEDD-6) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P07814 | EPRS1 | S335 | Sugiyama | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
P20674 | COX5A | S104 | Sugiyama | Cytochrome c oxidase subunit 5A, mitochondrial (Cytochrome c oxidase polypeptide Va) | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix. {ECO:0000250|UniProtKB:P00427}. |
P30533 | LRPAP1 | S230 | Sugiyama | Alpha-2-macroglobulin receptor-associated protein (Alpha-2-MRAP) (Low density lipoprotein receptor-related protein-associated protein 1) (RAP) | Molecular chaperone for LDL receptor-related proteins that may regulate their ligand binding activity along the secretory pathway. {ECO:0000269|PubMed:32296178, ECO:0000269|PubMed:7774585}. |
P36578 | RPL4 | S63 | Sugiyama | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q13283 | G3BP1 | S67 | Sugiyama | Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) | Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}. |
O60749 | SNX2 | S265 | Sugiyama | Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}. |
O95861 | BPNT1 | S57 | Sugiyama | 3'(2'),5'-bisphosphate nucleotidase 1 (EC 3.1.3.7) (3'-phosphoadenosine 5'-phosphate phosphatase) (PAP phosphatase) (Bisphosphate 3'-nucleotidase 1) (BPntase 1) (HsPIP) (Inositol-polyphosphate 1-phosphatase) (EC 3.1.3.57) | Phosphatase that converts 3'(2')-phosphoadenosine 5'-phosphate (PAP) to AMP and inositol 1,4-bisphosphate (Ins(1,4)P2) to inositol 4-phosphate (PubMed:10675562). Is also able to hydrolyze adenosine 3'-phosphate 5'-phosphosulfate (PAPS) to adenosine 5'-phosphosulfate (APS) (By similarity). Probably prevents the toxic accumulation of PAP, a compound which inhibits a variety of proteins, including PAPS-utilizing enzymes such as sulfotransferases, and RNA processing enzymes. Could also play a role in inositol recycling and phosphoinositide metabolism. Is not active on 3'-AMP, inositol-1-phosphate and inositol-1,4,5-triphosphate (PubMed:10675562). {ECO:0000250|UniProtKB:Q9Z1N4, ECO:0000269|PubMed:10675562}. |
P07900 | HSP90AA1 | S164 | Sugiyama | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P08238 | HSP90AB1 | S159 | Sugiyama | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P13667 | PDIA4 | S383 | Sugiyama | Protein disulfide-isomerase A4 (EC 5.3.4.1) (Endoplasmic reticulum resident protein 70) (ER protein 70) (ERp70) (Endoplasmic reticulum resident protein 72) (ER protein 72) (ERp-72) (ERp72) | None |
P16070 | CD44 | S71 | Sugiyama | CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteoglycan) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) (Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44) | Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment (PubMed:16541107, PubMed:19703720, PubMed:22726066). Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection (PubMed:7528188). Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its cytoplasmic domain, protein complexes containing receptor kinases and membrane proteases (PubMed:18757307, PubMed:23589287). Such effectors include PKN2, the RhoGTPases RAC1 and RHOA, Rho-kinases and phospholipase C that coordinate signaling pathways promoting calcium mobilization and actin-mediated cytoskeleton reorganization essential for cell migration and adhesion (PubMed:15123640). {ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:18757307, ECO:0000269|PubMed:19703720, ECO:0000269|PubMed:22726066, ECO:0000269|PubMed:23589287, ECO:0000269|PubMed:7528188}. |
P50395 | GDI2 | S396 | Sugiyama | Rab GDP dissociation inhibitor beta (Rab GDI beta) (Guanosine diphosphate dissociation inhibitor 2) (GDI-2) | GDP-dissociation inhibitor preventing the GDP to GTP exchange of most Rab proteins. By keeping these small GTPases in their inactive GDP-bound form regulates intracellular membrane trafficking (PubMed:25860027). Negatively regulates protein transport to the cilium and ciliogenesis through the inhibition of RAB8A (PubMed:25860027). {ECO:0000269|PubMed:25860027}. |
P63151 | PPP2R2A | S79 | Sugiyama | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform (PP2A subunit B isoform B55-alpha) (B55) (PP2A subunit B isoform PR55-alpha) (PP2A subunit B isoform R2-alpha) (PP2A subunit B isoform alpha) | Substrate-recognition subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit (PubMed:1849734, PubMed:33108758). Involved in chromosome clustering during late mitosis by mediating dephosphorylation of MKI67 (By similarity). Essential for serine/threonine-protein phosphatase 2A-mediated dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). {ECO:0000250|UniProtKB:Q6P1F6, ECO:0000269|PubMed:1849734, ECO:0000269|PubMed:33108758}. |
Q00005 | PPP2R2B | S75 | Sugiyama | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B beta isoform (PP2A subunit B isoform B55-beta) (PP2A subunit B isoform PR55-beta) (PP2A subunit B isoform R2-beta) (PP2A subunit B isoform beta) | The B regulatory subunit might modulate substrate selectivity and catalytic activity, and might also direct the localization of the catalytic enzyme to a particular subcellular compartment. Within the PP2A holoenzyme complex, isoform 2 is required to promote proapoptotic activity (By similarity). Isoform 2 regulates neuronal survival through the mitochondrial fission and fusion balance (By similarity). {ECO:0000250}. |
Q14320 | FAM50A | S292 | Sugiyama | Protein FAM50A (Protein HXC-26) (Protein XAP-5) | Probably involved in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:32703943}. |
Q14568 | HSP90AA2P | S164 | Sugiyama | Heat shock protein HSP 90-alpha A2 (Heat shock 90 kDa protein 1 alpha-like 3) (Heat shock protein HSP 90-alpha A2 pseudogene) (Heat shock protein family C member 2) | Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}. |
Q66LE6 | PPP2R2D | S85 | Sugiyama | Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform (PP2A subunit B isoform B55-delta) (PP2A subunit B isoform PR55-delta) (PP2A subunit B isoform R2-delta) (PP2A subunit B isoform delta) | Substrate-recognition subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit. Involved in chromosome clustering during late mitosis by mediating dephosphorylation of MKI67 (By similarity). The activity of PP2A complexes containing PPP2R2D (PR55-delta) fluctuate during the cell cycle: the activity is high in interphase and low in mitosis (By similarity). {ECO:0000250|UniProtKB:Q7ZX64, ECO:0000250|UniProtKB:Q925E7}. |
Q9NP74 | PALMD | S199 | Sugiyama | Palmdelphin (Paralemmin-like protein) | None |
P09234 | SNRPC | S48 | Sugiyama | U1 small nuclear ribonucleoprotein C (U1 snRNP C) (U1-C) (U1C) | Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5' splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5' splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5' end of the U1 snRNA and the 5' splice-site region. {ECO:0000255|HAMAP-Rule:MF_03153, ECO:0000269|PubMed:1826349, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:2136774, ECO:0000269|PubMed:8798632}. |
P27348 | YWHAQ | S156 | Sugiyama | 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
P11142 | HSPA8 | S432 | Sugiyama | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
Q9Y262 | EIF3L | S414 | Sugiyama | Eukaryotic translation initiation factor 3 subunit L (eIF3l) (Eukaryotic translation initiation factor 3 subunit 6-interacting protein) (Eukaryotic translation initiation factor 3 subunit E-interacting protein) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03011, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
O75369 | FLNB | S1442 | Sugiyama | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
Q07866 | KLC1 | S389 | Sugiyama | Kinesin light chain 1 (KLC 1) | Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}. |
O94804 | STK10 | S541 | Sugiyama | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O94804 | STK10 | S545 | Sugiyama | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
Q9UPN9 | TRIM33 | S1015 | Sugiyama | E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) | Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}. |
P14625 | HSP90B1 | S680 | Sugiyama | Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) | ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}. |
P00519 | ABL1 | S1106 | Sugiyama | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
Q13765 | NACA | S117 | Sugiyama | Nascent polypeptide-associated complex subunit alpha (NAC-alpha) (Alpha-NAC) (allergen Hom s 2) | Prevents inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). Binds to nascent polypeptide chains as they emerge from the ribosome and blocks their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. Also reduces the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites). May act as a specific coactivator for JUN, binding to DNA and stabilizing the interaction of JUN homodimers with target gene promoters. {ECO:0000269|PubMed:10982809, ECO:0000269|PubMed:15784678, ECO:0000269|PubMed:9877153}. |
O00443 | PIK3C2A | S58 | Sugiyama | Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PI3K-C2-alpha) (PtdIns-3-kinase C2 subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (EC 2.7.1.154) (Phosphoinositide 3-kinase-C2-alpha) | Generates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) that act as second messengers. Has a role in several intracellular trafficking events. Functions in insulin signaling and secretion. Required for translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane and glucose uptake in response to insulin-mediated RHOQ activation. Regulates insulin secretion through two different mechanisms: involved in glucose-induced insulin secretion downstream of insulin receptor in a pathway that involves AKT1 activation and TBC1D4/AS160 phosphorylation, and participates in the late step of insulin granule exocytosis probably in insulin granule fusion. Synthesizes PtdIns3P in response to insulin signaling. Functions in clathrin-coated endocytic vesicle formation and distribution. Regulates dynamin-independent endocytosis, probably by recruiting EEA1 to internalizing vesicles. In neurosecretory cells synthesizes PtdIns3P on large dense core vesicles. Participates in calcium induced contraction of vascular smooth muscle by regulating myosin light chain (MLC) phosphorylation through a mechanism involving Rho kinase-dependent phosphorylation of the MLCP-regulatory subunit MYPT1. May play a role in the EGF signaling cascade. May be involved in mitosis and UV-induced damage response. Required for maintenance of normal renal structure and function by supporting normal podocyte function. Involved in the regulation of ciliogenesis and trafficking of ciliary components (PubMed:31034465). {ECO:0000269|PubMed:10766823, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11239472, ECO:0000269|PubMed:12719431, ECO:0000269|PubMed:16215232, ECO:0000269|PubMed:21081650, ECO:0000269|PubMed:31034465, ECO:0000269|PubMed:9337861}. |
Q5QJE6 | DNTTIP2 | S703 | Sugiyama | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q9Y639 | NPTN | S224 | Sugiyama | Neuroplastin (Stromal cell-derived receptor 1) (SDR-1) | Probable homophilic and heterophilic cell adhesion molecule involved in long term potentiation at hippocampal excitatory synapses through activation of p38MAPK. May also regulate neurite outgrowth by activating the FGFR1 signaling pathway. May play a role in synaptic plasticity (By similarity). Also acts as a chaperone for ATP2B1; stabilizes ATP2B1 and increases its ATPase activity (PubMed:30190470). Promotes localization of XKR8 at the cell membrane (PubMed:27503893). {ECO:0000250|UniProtKB:P97546, ECO:0000269|PubMed:27503893, ECO:0000269|PubMed:30190470}. |
P07332 | FES | S56 | Sugiyama | Tyrosine-protein kinase Fes/Fps (EC 2.7.10.2) (Feline sarcoma/Fujinami avian sarcoma oncogene homolog) (Proto-oncogene c-Fes) (Proto-oncogene c-Fps) (p93c-fes) | Tyrosine-protein kinase that acts downstream of cell surface receptors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, cell attachment and cell spreading. Plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Acts down-stream of the activated FCER1 receptor and the mast/stem cell growth factor receptor KIT. Plays a role in the regulation of mast cell degranulation. Plays a role in the regulation of cell differentiation and promotes neurite outgrowth in response to NGF signaling. Plays a role in cell scattering and cell migration in response to HGF-induced activation of EZR. Phosphorylates BCR and down-regulates BCR kinase activity. Phosphorylates HCLS1/HS1, PECAM1, STAT3 and TRIM28. {ECO:0000269|PubMed:11509660, ECO:0000269|PubMed:15302586, ECO:0000269|PubMed:15485904, ECO:0000269|PubMed:16455651, ECO:0000269|PubMed:17595334, ECO:0000269|PubMed:18046454, ECO:0000269|PubMed:19001085, ECO:0000269|PubMed:19051325, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:2656706, ECO:0000269|PubMed:8955135}. |
P07949 | RET | S904 | Sugiyama | Proto-oncogene tyrosine-protein kinase receptor Ret (EC 2.7.10.1) (Cadherin family member 12) (Proto-oncogene c-Ret) [Cleaved into: Soluble RET kinase fragment; Extracellular cell-membrane anchored RET cadherin 120 kDa fragment] | Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation in response to glia cell line-derived growth family factors (GDNF, NRTN, ARTN, PSPN and GDF15) (PubMed:20064382, PubMed:20616503, PubMed:20702524, PubMed:21357690, PubMed:21454698, PubMed:24560924, PubMed:28846097, PubMed:28846099, PubMed:28953886, PubMed:31118272). In contrast to most receptor tyrosine kinases, RET requires not only its cognate ligands but also coreceptors, for activation (PubMed:21994944, PubMed:23333276, PubMed:28846097, PubMed:28846099, PubMed:28953886). GDNF ligands (GDNF, NRTN, ARTN, PSPN and GDF15) first bind their corresponding GDNFR coreceptors (GFRA1, GFRA2, GFRA3, GFRA4 and GFRAL, respectively), triggering RET autophosphorylation and activation, leading to activation of downstream signaling pathways, including the MAPK- and AKT-signaling pathways (PubMed:21994944, PubMed:23333276, PubMed:24560924, PubMed:25242331, PubMed:28846097, PubMed:28846099, PubMed:28953886). Acts as a dependence receptor via the GDNF-GFRA1 signaling: in the presence of the ligand GDNF in somatotrophs within pituitary, promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF (PubMed:20616503, PubMed:21994944). Required for the molecular mechanisms orchestration during intestine organogenesis via the ARTN-GFRA3 signaling: involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue (By similarity). Mediates, through interaction with GDF15-receptor GFRAL, GDF15-induced cell-signaling in the brainstem which triggers an aversive response, characterized by nausea, vomiting, and/or loss of appetite in response to various stresses (PubMed:28846097, PubMed:28846099, PubMed:28953886). Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner (PubMed:20702524, PubMed:21357690). Also active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage (PubMed:21357690). Triggers the differentiation of rapidly adapting (RA) mechanoreceptors (PubMed:20064382). Involved in the development of the neural crest (By similarity). Regulates nociceptor survival and size (By similarity). Phosphorylates PTK2/FAK1 (PubMed:21454698). {ECO:0000250|UniProtKB:P35546, ECO:0000269|PubMed:20064382, ECO:0000269|PubMed:20616503, ECO:0000269|PubMed:20702524, ECO:0000269|PubMed:21357690, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:21994944, ECO:0000269|PubMed:23333276, ECO:0000269|PubMed:24560924, ECO:0000269|PubMed:25242331, ECO:0000269|PubMed:28846097, ECO:0000269|PubMed:28846099, ECO:0000269|PubMed:28953886, ECO:0000269|PubMed:31118272}.; FUNCTION: [Isoform 1]: Isoform 1 in complex with GFRAL induces higher activation of MAPK-signaling pathway than isoform 2 in complex with GFRAL. {ECO:0000269|PubMed:28846099}. |
Q9Y639 | NPTN | S213 | Sugiyama | Neuroplastin (Stromal cell-derived receptor 1) (SDR-1) | Probable homophilic and heterophilic cell adhesion molecule involved in long term potentiation at hippocampal excitatory synapses through activation of p38MAPK. May also regulate neurite outgrowth by activating the FGFR1 signaling pathway. May play a role in synaptic plasticity (By similarity). Also acts as a chaperone for ATP2B1; stabilizes ATP2B1 and increases its ATPase activity (PubMed:30190470). Promotes localization of XKR8 at the cell membrane (PubMed:27503893). {ECO:0000250|UniProtKB:P97546, ECO:0000269|PubMed:27503893, ECO:0000269|PubMed:30190470}. |
P16333 | NCK1 | S53 | Sugiyama | SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) | Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}. |
P02786 | TFRC | S361 | Sugiyama | Transferrin receptor protein 1 (TR) (TfR) (TfR1) (Trfr) (T9) (p90) (CD antigen CD71) [Cleaved into: Transferrin receptor protein 1, serum form (sTfR)] | Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes (PubMed:26214738). Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the hereditary hemochromatosis protein HFE, competes for binding with transferrin for an overlapping C-terminal binding site. Positively regulates T and B cell proliferation through iron uptake (PubMed:26642240). Acts as a lipid sensor that regulates mitochondrial fusion by regulating activation of the JNK pathway (PubMed:26214738). When dietary levels of stearate (C18:0) are low, promotes activation of the JNK pathway, resulting in HUWE1-mediated ubiquitination and subsequent degradation of the mitofusin MFN2 and inhibition of mitochondrial fusion (PubMed:26214738). When dietary levels of stearate (C18:0) are high, TFRC stearoylation inhibits activation of the JNK pathway and thus degradation of the mitofusin MFN2 (PubMed:26214738). Mediates uptake of NICOL1 into fibroblasts where it may regulate extracellular matrix production (By similarity). {ECO:0000250|UniProtKB:Q62351, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:26642240, ECO:0000269|PubMed:3568132}.; FUNCTION: (Microbial infection) Acts as a receptor for new-world arenaviruses: Guanarito, Junin and Machupo virus. {ECO:0000269|PubMed:17287727, ECO:0000269|PubMed:18268337}.; FUNCTION: (Microbial infection) Acts as a host entry factor for rabies virus that hijacks the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762, ECO:0000269|PubMed:36779763}.; FUNCTION: (Microbial infection) Acts as a host entry factor for SARS-CoV, MERS-CoV and SARS-CoV-2 viruses that hijack the endocytosis of TFRC to enter cells. {ECO:0000269|PubMed:36779762}. |
P15328 | FOLR1 | S79 | Sugiyama | Folate receptor alpha (FR-alpha) (Adult folate-binding protein) (FBP) (Folate receptor 1) (Folate receptor, adult) (KB cells FBP) (Ovarian tumor-associated antigen MOv18) | Binds to folate and reduced folic acid derivatives and mediates delivery of 5-methyltetrahydrofolate and folate analogs into the interior of cells (PubMed:19074442, PubMed:23851396, PubMed:23934049, PubMed:2527252, PubMed:8033114, PubMed:8567728). Has high affinity for folate and folic acid analogs at neutral pH (PubMed:23851396, PubMed:23934049, PubMed:2527252, PubMed:8033114, PubMed:8567728). Exposure to slightly acidic pH after receptor endocytosis triggers a conformation change that strongly reduces its affinity for folates and mediates their release (PubMed:8567728). Required for normal embryonic development and normal cell proliferation (By similarity). {ECO:0000250|UniProtKB:P35846, ECO:0000269|PubMed:19074442, ECO:0000269|PubMed:23851396, ECO:0000269|PubMed:23934049, ECO:0000269|PubMed:2527252, ECO:0000269|PubMed:8033114, ECO:0000269|PubMed:8567728}. |
P61221 | ABCE1 | S186 | Sugiyama | ATP-binding cassette sub-family E member 1 (EC 3.6.5.-) (2'-5'-oligoadenylate-binding protein) (HuHP68) (RNase L inhibitor) (Ribonuclease 4 inhibitor) (RNS4I) | Nucleoside-triphosphatase (NTPase) involved in ribosome recycling by mediating ribosome disassembly (PubMed:20122402, PubMed:21448132). Able to hydrolyze ATP, GTP, UTP and CTP (PubMed:20122402). Splits ribosomes into free 60S subunits and tRNA- and mRNA-bound 40S subunits (PubMed:20122402, PubMed:21448132). Acts either after canonical termination facilitated by release factors (ETF1/eRF1) or after recognition of stalled and vacant ribosomes by mRNA surveillance factors (PELO/Pelota) (PubMed:20122402, PubMed:21448132). Involved in the No-Go Decay (NGD) pathway: recruited to stalled ribosomes by the Pelota-HBS1L complex, and drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132). Also plays a role in quality control of translation of mitochondrial outer membrane-localized mRNA (PubMed:29861391). As part of the PINK1-regulated signaling, ubiquitinated by CNOT4 upon mitochondria damage; this modification generates polyubiquitin signals that recruit autophagy receptors to the mitochondrial outer membrane and initiate mitophagy (PubMed:29861391). RNASEL-specific protein inhibitor which antagonizes the binding of 2-5A (5'-phosphorylated 2',5'-linked oligoadenylates) to RNASEL (PubMed:9660177). Negative regulator of the anti-viral effect of the interferon-regulated 2-5A/RNASEL pathway (PubMed:11585831, PubMed:9660177, PubMed:9847332). {ECO:0000269|PubMed:11585831, ECO:0000269|PubMed:20122402, ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:29861391, ECO:0000269|PubMed:9660177, ECO:0000269|PubMed:9847332}.; FUNCTION: (Microbial infection) May act as a chaperone for post-translational events during HIV-1 capsid assembly. {ECO:0000269|PubMed:9847332}.; FUNCTION: (Microbial infection) Plays a role in the down-regulation of the 2-5A/RNASEL pathway during encephalomyocarditis virus (EMCV) and HIV-1 infections. {ECO:0000269|PubMed:9660177}. |
P17948 | FLT1 | S1295 | Sugiyama | Vascular endothelial growth factor receptor 1 (VEGFR-1) (EC 2.7.10.1) (Fms-like tyrosine kinase 1) (FLT-1) (Tyrosine-protein kinase FRT) (Tyrosine-protein kinase receptor FLT) (FLT) (Vascular permeability factor receptor) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFB and PGF, and plays an essential role in the development of embryonic vasculature, the regulation of angiogenesis, cell survival, cell migration, macrophage function, chemotaxis, and cancer cell invasion. Acts as a positive regulator of postnatal retinal hyaloid vessel regression (By similarity). May play an essential role as a negative regulator of embryonic angiogenesis by inhibiting excessive proliferation of endothelial cells. Can promote endothelial cell proliferation, survival and angiogenesis in adulthood. Its function in promoting cell proliferation seems to be cell-type specific. Promotes PGF-mediated proliferation of endothelial cells, proliferation of some types of cancer cells, but does not promote proliferation of normal fibroblasts (in vitro). Has very high affinity for VEGFA and relatively low protein kinase activity; may function as a negative regulator of VEGFA signaling by limiting the amount of free VEGFA and preventing its binding to KDR. Modulates KDR signaling by forming heterodimers with KDR. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leading to activation of phosphatidylinositol kinase and the downstream signaling pathway. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Phosphorylates SRC and YES1, and may also phosphorylate CBL. Promotes phosphorylation of AKT1 at 'Ser-473'. Promotes phosphorylation of PTK2/FAK1 (PubMed:16685275). {ECO:0000250|UniProtKB:P35969, ECO:0000269|PubMed:11141500, ECO:0000269|PubMed:11312102, ECO:0000269|PubMed:11811792, ECO:0000269|PubMed:12796773, ECO:0000269|PubMed:14633857, ECO:0000269|PubMed:15735759, ECO:0000269|PubMed:16685275, ECO:0000269|PubMed:18079407, ECO:0000269|PubMed:18515749, ECO:0000269|PubMed:18583712, ECO:0000269|PubMed:18593464, ECO:0000269|PubMed:20512933, ECO:0000269|PubMed:20551949, ECO:0000269|PubMed:21752276, ECO:0000269|PubMed:7824266, ECO:0000269|PubMed:8248162, ECO:0000269|PubMed:8605350, ECO:0000269|PubMed:9299537, ECO:0000269|Ref.11}.; FUNCTION: [Isoform 1]: Phosphorylates PLCG. {ECO:0000269|PubMed:9299537}.; FUNCTION: [Isoform 2]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 3]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 4]: May function as decoy receptor for VEGFA. {ECO:0000269|PubMed:21752276}.; FUNCTION: [Isoform 7]: Has a truncated kinase domain; it increases phosphorylation of SRC at 'Tyr-418' by unknown means and promotes tumor cell invasion. {ECO:0000269|PubMed:20512933}. |
Q8TEQ6 | GEMIN5 | S852 | Sugiyama | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
P05556 | ITGB1 | S689 | Sugiyama | Integrin beta-1 (Fibronectin receptor subunit beta) (Glycoprotein IIa) (GPIIA) (VLA-4 subunit beta) (CD antigen CD29) | Integrins alpha-1/beta-1, alpha-2/beta-1, alpha-10/beta-1 and alpha-11/beta-1 are receptors for collagen. Integrins alpha-1/beta-1 and alpha-2/beta-2 recognize the proline-hydroxylated sequence G-F-P-G-E-R in collagen. Integrins alpha-2/beta-1, alpha-3/beta-1, alpha-4/beta-1, alpha-5/beta-1, alpha-8/beta-1, alpha-10/beta-1, alpha-11/beta-1 and alpha-V/beta-1 are receptors for fibronectin. Alpha-4/beta-1 recognizes one or more domains within the alternatively spliced CS-1 and CS-5 regions of fibronectin. Integrin alpha-5/beta-1 is a receptor for fibrinogen. Integrin alpha-1/beta-1, alpha-2/beta-1, alpha-6/beta-1 and alpha-7/beta-1 are receptors for lamimin. Integrin alpha-6/beta-1 (ITGA6:ITGB1) is present in oocytes and is involved in sperm-egg fusion (By similarity). Integrin alpha-4/beta-1 is a receptor for VCAM1. It recognizes the sequence Q-I-D-S in VCAM1. Integrin alpha-9/beta-1 is a receptor for VCAM1, cytotactin and osteopontin. It recognizes the sequence A-E-I-D-G-I-E-L in cytotactin. Integrin alpha-3/beta-1 is a receptor for epiligrin, thrombospondin and CSPG4. Alpha-3/beta-1 may mediate with LGALS3 the stimulation by CSPG4 of endothelial cells migration. Integrin alpha-V/beta-1 is a receptor for vitronectin. Beta-1 integrins recognize the sequence R-G-D in a wide array of ligands. When associated with alpha-7 integrin, regulates cell adhesion and laminin matrix deposition. Involved in promoting endothelial cell motility and angiogenesis. Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process and the formation of mineralized bone nodules. May be involved in up-regulation of the activity of kinases such as PKC via binding to KRT1. Together with KRT1 and RACK1, serves as a platform for SRC activation or inactivation. Plays a mechanistic adhesive role during telophase, required for the successful completion of cytokinesis. Integrin alpha-3/beta-1 provides a docking site for FAP (seprase) at invadopodia plasma membranes in a collagen-dependent manner and hence may participate in the adhesion, formation of invadopodia and matrix degradation processes, promoting cell invasion. ITGA4:ITGB1 binds to fractalkine (CX3CL1) and may act as its coreceptor in CX3CR1-dependent fractalkine signaling (PubMed:23125415, PubMed:24789099). ITGA4:ITGB1 and ITGA5:ITGB1 bind to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin FN1 and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973). Plays an important role in myoblast differentiation and fusion during skeletal myogenesis (By similarity). ITGA9:ITGB1 may play a crucial role in SVEP1/polydom-mediated myoblast cell adhesion (By similarity). Integrins ITGA9:ITGB1 and ITGA4:ITGB1 repress PRKCA-mediated L-type voltage-gated channel Ca(2+) influx and ROCK-mediated calcium sensitivity in vascular smooth muscle cells via their interaction with SVEP1, thereby inhibit vasocontraction (PubMed:35802072). {ECO:0000250|UniProtKB:P07228, ECO:0000250|UniProtKB:P09055, ECO:0000269|PubMed:10455171, ECO:0000269|PubMed:12473654, ECO:0000269|PubMed:12807887, ECO:0000269|PubMed:16256741, ECO:0000269|PubMed:17158881, ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:18804435, ECO:0000269|PubMed:19064666, ECO:0000269|PubMed:21768292, ECO:0000269|PubMed:23125415, ECO:0000269|PubMed:24789099, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:29030430, ECO:0000269|PubMed:31331973, ECO:0000269|PubMed:33962943, ECO:0000269|PubMed:35802072, ECO:0000269|PubMed:7523423}.; FUNCTION: [Isoform 2]: Interferes with isoform 1 resulting in a dominant negative effect on cell adhesion and migration (in vitro). {ECO:0000305|PubMed:2249781}.; FUNCTION: [Isoform 5]: Isoform 5 displaces isoform 1 in striated muscles. {ECO:0000250|UniProtKB:P09055}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human echoviruses 1 and 8. {ECO:0000269|PubMed:8411387}.; FUNCTION: (Microbial infection) Acts as a receptor for Cytomegalovirus/HHV-5. {ECO:0000269|PubMed:20660204}.; FUNCTION: (Microbial infection) Acts as a receptor for Epstein-Barr virus/HHV-4. {ECO:0000269|PubMed:17945327}.; FUNCTION: (Microbial infection) Integrin ITGA5:ITGB1 acts as a receptor for Human parvovirus B19. {ECO:0000269|PubMed:12907437}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human rotavirus. {ECO:0000269|PubMed:12941907}.; FUNCTION: (Microbial infection) Acts as a receptor for Mammalian reovirus. {ECO:0000269|PubMed:16501085}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, integrin ITGA5:ITGB1 binding to extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. {ECO:0000269|PubMed:10397733}.; FUNCTION: (Microbial infection) Interacts with CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:32487760). Integrin ITGA3:ITGB1 may act as a receptor for R.delemar CotH7 in alveolar epithelial cells, which may be an early step in pulmonary mucormycosis disease progression (PubMed:32487760). {ECO:0000269|PubMed:32487760}.; FUNCTION: (Microbial infection) May serve as a receptor for adhesin A (nadA) of N.meningitidis. {ECO:0000305|PubMed:21471204}.; FUNCTION: (Microbial infection) Facilitates rabies infection in a fibronectin-dependent manner and participates in rabies virus traffic after internalization. {ECO:0000269|PubMed:31666383}. |
P27448 | MARK3 | S451 | Sugiyama | MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) | Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}. |
P42681 | TXK | S422 | Sugiyama | Tyrosine-protein kinase TXK (EC 2.7.10.2) (Protein-tyrosine kinase 4) (Resting lymphocyte kinase) | Non-receptor tyrosine kinase that plays a redundant role with ITK in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation leads to the recruitment of TXK to the cell membrane, where it is phosphorylated at Tyr-420. Phosphorylation leads to TXK full activation. Also contributes to signaling from many receptors and participates in multiple downstream pathways, including regulation of the actin cytoskeleton. Like ITK, can phosphorylate PLCG1, leading to its localization in lipid rafts and activation, followed by subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with PARP1 and EEF1A1 (PubMed:11859127, PubMed:17177976). Within the complex, phosphorylates both PARP1 and EEF1A1 (PubMed:17177976). Also phosphorylates key sites in LCP2 leading to the up-regulation of Th1 preferred cytokine IL-2. Phosphorylates 'Tyr-201' of CTLA4 which leads to the association of PI-3 kinase with the CTLA4 receptor. {ECO:0000269|PubMed:10523612, ECO:0000269|PubMed:11564877, ECO:0000269|PubMed:11859127, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:9813138}. |
O15169 | AXIN1 | S614 | iPTMNet|EPSD | Axin-1 (Axis inhibition protein 1) (hAxin) | Component of the beta-catenin destruction complex required for regulating CTNNB1 levels through phosphorylation and ubiquitination, and modulating Wnt-signaling (PubMed:12192039, PubMed:27098453, PubMed:28829046). Controls dorsoventral patterning via two opposing effects; down-regulates CTNNB1 to inhibit the Wnt signaling pathway and ventralize embryos, but also dorsalizes embryos by activating a Wnt-independent JNK signaling pathway (PubMed:12192039). In Wnt signaling, probably facilitates the phosphorylation of CTNNB1 and APC by GSK3B (PubMed:12192039). Likely to function as a tumor suppressor. Enhances TGF-beta signaling by recruiting the RNF111 E3 ubiquitin ligase and promoting the degradation of inhibitory SMAD7 (PubMed:16601693). Also a component of the AXIN1-HIPK2-TP53 complex which controls cell growth, apoptosis and development (PubMed:17210684). Facilitates the phosphorylation of TP53 by HIPK2 upon ultraviolet irradiation (PubMed:17210684). {ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:16601693, ECO:0000269|PubMed:17210684, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:28546513}. |
P49768 | PSEN1 | S397 | GPS6 | Presenilin-1 (PS-1) (EC 3.4.23.-) (Protein S182) [Cleaved into: Presenilin-1 NTF subunit; Presenilin-1 CTF subunit; Presenilin-1 CTF12 (PS1-CTF12)] | Catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:10206644, PubMed:10545183, PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:12679784, PubMed:12740439, PubMed:15274632, PubMed:20460383, PubMed:25043039, PubMed:26280335, PubMed:28269784, PubMed:30598546, PubMed:30630874). Requires the presence of the other members of the gamma-secretase complex for protease activity (PubMed:15274632, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:9738936). Stimulates cell-cell adhesion via its interaction with CDH1; this stabilizes the complexes between CDH1 (E-cadherin) and its interaction partners CTNNB1 (beta-catenin), CTNND1 and JUP (gamma-catenin) (PubMed:11953314). Under conditions of apoptosis or calcium influx, cleaves CDH1 (PubMed:11953314). This promotes the disassembly of the complexes between CDH1 and CTNND1, JUP and CTNNB1, increases the pool of cytoplasmic CTNNB1, and thereby negatively regulates Wnt signaling (PubMed:11953314, PubMed:9738936). Required for normal embryonic brain and skeleton development, and for normal angiogenesis (By similarity). Mediates the proteolytic cleavage of EphB2/CTF1 into EphB2/CTF2 (PubMed:17428795, PubMed:28269784). The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is therefore involved in calcium homeostasis (PubMed:16959576, PubMed:25394380). Involved in the regulation of neurite outgrowth (PubMed:15004326, PubMed:20460383). Is a regulator of presynaptic facilitation, spike transmission and synaptic vesicles replenishment in a process that depends on gamma-secretase activity. It acts through the control of SYT7 presynaptic expression (By similarity). {ECO:0000250|UniProtKB:P49769, ECO:0000269|PubMed:10206644, ECO:0000269|PubMed:10545183, ECO:0000269|PubMed:10593990, ECO:0000269|PubMed:10811883, ECO:0000269|PubMed:10899933, ECO:0000269|PubMed:11953314, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12740439, ECO:0000269|PubMed:15004326, ECO:0000269|PubMed:15274632, ECO:0000269|PubMed:15341515, ECO:0000269|PubMed:16305624, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:17428795, ECO:0000269|PubMed:20460383, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:25394380, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:28269784, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000269|PubMed:9738936}. |
P15170 | GSPT1 | S230 | Sugiyama | Eukaryotic peptide chain release factor GTP-binding subunit ERF3A (Eukaryotic peptide chain release factor subunit 3a) (eRF3a) (EC 3.6.5.-) (G1 to S phase transition protein 1 homolog) | GTPase component of the eRF1-eRF3-GTP ternary complex, a ternary complex that mediates translation termination in response to the termination codons UAA, UAG and UGA (PubMed:15987998, PubMed:19417105, PubMed:2511002, PubMed:27863242). GSPT1/ERF3A mediates ETF1/ERF1 delivery to stop codons: The eRF1-eRF3-GTP complex binds to a stop codon in the ribosomal A-site (PubMed:27863242). GTP hydrolysis by GSPT1/ERF3A induces a conformational change that leads to its dissociation, permitting ETF1/ERF1 to accommodate fully in the A-site (PubMed:16777602, PubMed:27863242). Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:24486019). Required for SHFL-mediated translation termination which inhibits programmed ribosomal frameshifting (-1PRF) of mRNA from viruses and cellular genes (PubMed:30682371). {ECO:0000269|PubMed:15987998, ECO:0000269|PubMed:16777602, ECO:0000269|PubMed:19417105, ECO:0000269|PubMed:24486019, ECO:0000269|PubMed:2511002, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:30682371}. |
P51813 | BMX | S568 | Sugiyama | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P20073 | ANXA7 | S216 | Sugiyama | Annexin A7 (Annexin VII) (Annexin-7) (Synexin) | Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis. |
Q15013 | MAD2L1BP | S246 | GPS6 | MAD2L1-binding protein (Caught by MAD2 protein) (p31(comet)) | May function to silence the spindle checkpoint and allow mitosis to proceed through anaphase by binding MAD2L1 after it has become dissociated from the MAD2L1-CDC20 complex. {ECO:0000269|PubMed:18022368}. |
P05455 | SSB | S112 | Sugiyama | Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) | Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}. |
Q06210 | GFPT1 | S353 | Sugiyama | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) | Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}. |
P18077 | RPL35A | S90 | Sugiyama | Large ribosomal subunit protein eL33 (60S ribosomal protein L35a) (Cell growth-inhibiting gene 33 protein) | Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). Required for the proliferation and viability of hematopoietic cells (PubMed:18535205). {ECO:0000269|PubMed:18535205, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q04759 | PRKCQ | S216 | Sugiyama | Protein kinase C theta type (EC 2.7.11.13) (nPKC-theta) | Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that mediates non-redundant functions in T-cell receptor (TCR) signaling, including T-cells activation, proliferation, differentiation and survival, by mediating activation of multiple transcription factors such as NF-kappa-B, JUN, NFATC1 and NFATC2. In TCR-CD3/CD28-co-stimulated T-cells, is required for the activation of NF-kappa-B and JUN, which in turn are essential for IL2 production, and participates in the calcium-dependent NFATC1 and NFATC2 transactivation (PubMed:21964608). Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11 on several serine residues, inducing CARD11 association with lipid rafts and recruitment of the BCL10-MALT1 complex, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. May also play an indirect role in activation of the non-canonical NF-kappa-B (NFKB2) pathway. In the signaling pathway leading to JUN activation, acts by phosphorylating the mediator STK39/SPAK and may not act through MAP kinases signaling. Plays a critical role in TCR/CD28-induced NFATC1 and NFATC2 transactivation by participating in the regulation of reduced inositol 1,4,5-trisphosphate generation and intracellular calcium mobilization. After costimulation of T-cells through CD28 can phosphorylate CBLB and is required for the ubiquitination and subsequent degradation of CBLB, which is a prerequisite for the activation of TCR. During T-cells differentiation, plays an important role in the development of T-helper 2 (Th2) cells following immune and inflammatory responses, and, in the development of inflammatory autoimmune diseases, is necessary for the activation of IL17-producing Th17 cells. May play a minor role in Th1 response. Upon TCR stimulation, mediates T-cell protective survival signal by phosphorylating BAD, thus protecting T-cells from BAD-induced apoptosis, and by up-regulating BCL-X(L)/BCL2L1 levels through NF-kappa-B and JUN pathways. In platelets, regulates signal transduction downstream of the ITGA2B, CD36/GP4, F2R/PAR1 and F2RL3/PAR4 receptors, playing a positive role in 'outside-in' signaling and granule secretion signal transduction. May relay signals from the activated ITGA2B receptor by regulating the uncoupling of WASP and WIPF1, thereby permitting the regulation of actin filament nucleation and branching activity of the Arp2/3 complex. May mediate inhibitory effects of free fatty acids on insulin signaling by phosphorylating IRS1, which in turn blocks IRS1 tyrosine phosphorylation and downstream activation of the PI3K/AKT pathway. Phosphorylates MSN (moesin) in the presence of phosphatidylglycerol or phosphatidylinositol. Phosphorylates PDPK1 at 'Ser-504' and 'Ser-532' and negatively regulates its ability to phosphorylate PKB/AKT1. Phosphorylates CCDC88A/GIV and inhibits its guanine nucleotide exchange factor activity (PubMed:23509302). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11342610, ECO:0000269|PubMed:14988727, ECO:0000269|PubMed:15364919, ECO:0000269|PubMed:16252004, ECO:0000269|PubMed:16356855, ECO:0000269|PubMed:16709830, ECO:0000269|PubMed:19549985, ECO:0000269|PubMed:21964608, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:8657160}. |
Q04912 | MST1R | S1240 | Sugiyama | Macrophage-stimulating protein receptor (MSP receptor) (EC 2.7.10.1) (CDw136) (Protein-tyrosine kinase 8) (p185-Ron) (CD antigen CD136) [Cleaved into: Macrophage-stimulating protein receptor alpha chain; Macrophage-stimulating protein receptor beta chain] | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to MST1 ligand. Regulates many physiological processes including cell survival, migration and differentiation. Ligand binding at the cell surface induces autophosphorylation of RON on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1 or the adapter GAB1. Recruitment of these downstream effectors by RON leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. RON signaling activates the wound healing response by promoting epithelial cell migration, proliferation as well as survival at the wound site. Also plays a role in the innate immune response by regulating the migration and phagocytic activity of macrophages. Alternatively, RON can also promote signals such as cell migration and proliferation in response to growth factors other than MST1 ligand. {ECO:0000269|PubMed:18836480, ECO:0000269|PubMed:7939629, ECO:0000269|PubMed:9764835}. |
Q53QZ3 | ARHGAP15 | S292 | PSP | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
P38646 | HSPA9 | S473 | Sugiyama | Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) | Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}. |
Q9NZV8 | KCND2 | S438 | ELM | A-type voltage-gated potassium channel KCND2 (Potassium voltage-gated channel subfamily D member 2) (Voltage-gated potassium channel subunit Kv4.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action potentials and regulates the back-propagation of action potentials from the neuronal cell body to the dendrites. Contributes to the regulation of the circadian rhythm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity (By similarity). Functions downstream of the metabotropic glutamate receptor GRM5 and plays a role in neuronal excitability and in nociception mediated by activation of GRM5 (By similarity). Mediates the transient outward current I(to) in rodent heart left ventricle apex cells, but not in human heart, where this current is mediated by another family member. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient (PubMed:10551270, PubMed:11507158, PubMed:14623880, PubMed:14695263, PubMed:14980201, PubMed:15454437, PubMed:16934482, PubMed:19171772, PubMed:24501278, PubMed:24811166, PubMed:34552243, PubMed:35597238). The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:11507158). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCND2 and KCND3; channel properties depend on the type of pore-forming alpha subunits that are part of the channel. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes. Interaction with specific isoforms of the regulatory subunits KCNIP1, KCNIP2, KCNIP3 or KCNIP4 strongly increases expression at the cell surface and thereby increases channel activity; it modulates the kinetics of channel activation and inactivation, shifts the threshold for channel activation to more negative voltage values, shifts the threshold for inactivation to less negative voltages and accelerates recovery after inactivation (PubMed:14623880, PubMed:14980201, PubMed:15454437, PubMed:19171772, PubMed:24501278, PubMed:24811166). Likewise, interaction with DPP6 or DPP10 promotes expression at the cell membrane and regulates both channel characteristics and activity (By similarity). Upon depolarization, the channel goes from a resting closed state (C state) to an activated but non-conducting state (C* state), from there, the channel may either inactivate (I state) or open (O state) (PubMed:35597238). {ECO:0000250|UniProtKB:Q63881, ECO:0000250|UniProtKB:Q9Z0V2, ECO:0000269|PubMed:10551270, ECO:0000269|PubMed:10729221, ECO:0000269|PubMed:11507158, ECO:0000269|PubMed:14623880, ECO:0000269|PubMed:14695263, ECO:0000269|PubMed:14980201, ECO:0000269|PubMed:15454437, ECO:0000269|PubMed:16934482, ECO:0000269|PubMed:19171772, ECO:0000269|PubMed:24501278, ECO:0000269|PubMed:24811166, ECO:0000269|PubMed:34552243, ECO:0000269|PubMed:35597238}. |
Q9UH03 | SEPTIN3 | S91 | SIGNOR|iPTMNet|EPSD | Neuronal-specific septin-3 | Filament-forming cytoskeletal GTPase (By similarity). May play a role in cytokinesis (Potential). {ECO:0000250, ECO:0000305}. |
P42566 | EPS15 | S655 | Sugiyama | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
Q14164 | IKBKE | S603 | Sugiyama | Inhibitor of nuclear factor kappa-B kinase subunit epsilon (I-kappa-B kinase epsilon) (IKK-E) (IKK-epsilon) (IkBKE) (EC 2.7.11.10) (Inducible I kappa-B kinase) (IKK-i) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to viral infection, through the activation of the type I IFN, NF-kappa-B and STAT signaling. Also involved in TNFA and inflammatory cytokines, like Interleukin-1, signaling. Following activation of viral RNA sensors, such as RIG-I-like receptors, associates with DDX3X and phosphorylates interferon regulatory factors (IRFs), IRF3 and IRF7, as well as DDX3X. This activity allows subsequent homodimerization and nuclear translocation of the IRF3 leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNB. In order to establish such an antiviral state, IKBKE forms several different complexes whose composition depends on the type of cell and cellular stimuli. Thus, several scaffolding molecules including IPS1/MAVS, TANK, AZI2/NAP1 or TBKBP1/SINTBAD can be recruited to the IKBKE-containing-complexes. Activated by polyubiquitination in response to TNFA and interleukin-1, regulates the NF-kappa-B signaling pathway through, at least, the phosphorylation of CYLD. Phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor. In addition, is also required for the induction of a subset of ISGs which displays antiviral activity, may be through the phosphorylation of STAT1 at 'Ser-708'. Phosphorylation of STAT1 at 'Ser-708' also seems to promote the assembly and DNA binding of ISGF3 (STAT1:STAT2:IRF9) complexes compared to GAF (STAT1:STAT1) complexes, in this way regulating the balance between type I and type II IFN responses. Protects cells against DNA damage-induced cell death. Also plays an important role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, wich leads to a negative impact on insulin sensitivity. Phosphorylates AKT1. {ECO:0000269|PubMed:17568778, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:19153231, ECO:0000269|PubMed:20188669, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:22532683, ECO:0000269|PubMed:23453969, ECO:0000269|PubMed:23478265}. |
Q13131 | PRKAA1 | S415 | Sugiyama | 5'-AMP-activated protein kinase catalytic subunit alpha-1 (AMPK subunit alpha-1) (EC 2.7.11.1) (Acetyl-CoA carboxylase kinase) (ACACA kinase) (Hydroxymethylglutaryl-CoA reductase kinase) (HMGCR kinase) (EC 2.7.11.31) (Tau-protein kinase PRKAA1) (EC 2.7.11.26) | Catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism (PubMed:17307971, PubMed:17712357, PubMed:24563466, PubMed:37821951). In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation (PubMed:17307971, PubMed:17712357). AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators (PubMed:17307971, PubMed:17712357). Regulates lipid synthesis by phosphorylating and inactivating lipid metabolic enzymes such as ACACA, ACACB, GYS1, HMGCR and LIPE; regulates fatty acid and cholesterol synthesis by phosphorylating acetyl-CoA carboxylase (ACACA and ACACB) and hormone-sensitive lipase (LIPE) enzymes, respectively (By similarity). Promotes lipolysis of lipid droplets by mediating phosphorylation of isoform 1 of CHKA (CHKalpha2) (PubMed:34077757). Regulates insulin-signaling and glycolysis by phosphorylating IRS1, PFKFB2 and PFKFB3 (By similarity). AMPK stimulates glucose uptake in muscle by increasing the translocation of the glucose transporter SLC2A4/GLUT4 to the plasma membrane, possibly by mediating phosphorylation of TBC1D4/AS160 (By similarity). Regulates transcription and chromatin structure by phosphorylating transcription regulators involved in energy metabolism such as CRTC2/TORC2, FOXO3, histone H2B, HDAC5, MEF2C, MLXIPL/ChREBP, EP300, HNF4A, p53/TP53, SREBF1, SREBF2 and PPARGC1A (PubMed:11518699, PubMed:11554766, PubMed:15866171, PubMed:17711846, PubMed:18184930). Acts as a key regulator of glucose homeostasis in liver by phosphorylating CRTC2/TORC2, leading to CRTC2/TORC2 sequestration in the cytoplasm (By similarity). In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription (By similarity). Acts as a key regulator of cell growth and proliferation by phosphorylating FNIP1, TSC2, RPTOR, WDR24 and ATG1/ULK1: in response to nutrient limitation, negatively regulates the mTORC1 complex by phosphorylating RPTOR component of the mTORC1 complex and by phosphorylating and activating TSC2 (PubMed:14651849, PubMed:18439900, PubMed:20160076, PubMed:21205641). Also phosphorylates and inhibits GATOR2 subunit WDR24 in response to nutrient limitation, leading to suppress glucose-mediated mTORC1 activation (PubMed:36732624). In response to energetic stress, phosphorylates FNIP1, inactivating the non-canonical mTORC1 signaling, thereby promoting nuclear translocation of TFEB and TFE3, and inducing transcription of lysosomal or autophagy genes (PubMed:37079666). In response to nutrient limitation, promotes autophagy by phosphorylating and activating ATG1/ULK1 (PubMed:21205641). In that process, it also activates WDR45/WIPI4 (PubMed:28561066). Phosphorylates CASP6, thereby preventing its autoprocessing and subsequent activation (PubMed:32029622). In response to nutrient limitation, phosphorylates transcription factor FOXO3 promoting FOXO3 mitochondrial import (By similarity). Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin (PubMed:17486097). AMPK also acts as a regulator of circadian rhythm by mediating phosphorylation of CRY1, leading to destabilize it (By similarity). May regulate the Wnt signaling pathway by phosphorylating CTNNB1, leading to stabilize it (By similarity). Also has tau-protein kinase activity: in response to amyloid beta A4 protein (APP) exposure, activated by CAMKK2, leading to phosphorylation of MAPT/TAU; however the relevance of such data remains unclear in vivo (By similarity). Also phosphorylates CFTR, EEF2K, KLC1, NOS3 and SLC12A1 (PubMed:12519745, PubMed:20074060). Regulates hepatic lipogenesis. Activated via SIRT3, represses sterol regulatory element-binding protein (SREBP) transcriptional activities and ATP-consuming lipogenesis to restore cellular energy balance. Upon stress, regulates mitochondrial fragmentation through phosphorylation of MTFR1L (PubMed:36367943). {ECO:0000250|UniProtKB:P54645, ECO:0000250|UniProtKB:Q5EG47, ECO:0000269|PubMed:11518699, ECO:0000269|PubMed:11554766, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:14651849, ECO:0000269|PubMed:15866171, ECO:0000269|PubMed:17486097, ECO:0000269|PubMed:17711846, ECO:0000269|PubMed:18184930, ECO:0000269|PubMed:18439900, ECO:0000269|PubMed:20074060, ECO:0000269|PubMed:20160076, ECO:0000269|PubMed:21205641, ECO:0000269|PubMed:24563466, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:32029622, ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:36367943, ECO:0000269|PubMed:36732624, ECO:0000269|PubMed:37079666, ECO:0000269|PubMed:37821951, ECO:0000303|PubMed:17307971, ECO:0000303|PubMed:17712357}. |
P15735 | PHKG2 | S35 | Sugiyama | Phosphorylase b kinase gamma catalytic chain, liver/testis isoform (PHK-gamma-LT) (PHK-gamma-T) (EC 2.7.11.19) (PSK-C3) (Phosphorylase kinase subunit gamma-2) | Catalytic subunit of the phosphorylase b kinase (PHK), which mediates the neural and hormonal regulation of glycogen breakdown (glycogenolysis) by phosphorylating and thereby activating glycogen phosphorylase. May regulate glycogeneolysis in the testis. In vitro, phosphorylates PYGM (PubMed:35549678). {ECO:0000250|UniProtKB:P31325, ECO:0000269|PubMed:10487978, ECO:0000269|PubMed:35549678}. |
Q86Z02 | HIPK1 | S239 | Sugiyama | Homeodomain-interacting protein kinase 1 (EC 2.7.11.1) (Nuclear body-associated kinase 2) | Serine/threonine-protein kinase involved in transcription regulation and TNF-mediated cellular apoptosis. Plays a role as a corepressor for homeodomain transcription factors. Phosphorylates DAXX and MYB. Phosphorylates DAXX in response to stress, and mediates its translocation from the nucleus to the cytoplasm. Inactivates MYB transcription factor activity by phosphorylation. Prevents MAP3K5-JNK activation in the absence of TNF. TNF triggers its translocation to the cytoplasm in response to stress stimuli, thus activating nuclear MAP3K5-JNK by derepression and promoting apoptosis. May be involved in anti-oxidative stress responses. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. Promotes angiogenesis and to be involved in erythroid differentiation. May be involved in malignant squamous cell tumor formation. Phosphorylates PAGE4 at 'Thr-51' which is critical for the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:24559171). {ECO:0000269|PubMed:12702766, ECO:0000269|PubMed:12968034, ECO:0000269|PubMed:15701637, ECO:0000269|PubMed:16390825, ECO:0000269|PubMed:19646965, ECO:0000269|PubMed:24559171}. |
Q8IY84 | NIM1K | S86 | Sugiyama | Serine/threonine-protein kinase NIM1 (EC 2.7.11.1) (NIM1 serine/threonine-protein kinase) | None |
Q96BY7 | ATG2B | S1395 | Sugiyama | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
P49792 | RANBP2 | S1550 | Sugiyama | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P51659 | HSD17B4 | S185 | Sugiyama | Peroxisomal multifunctional enzyme type 2 (MFE-2) (17-beta-hydroxysteroid dehydrogenase 4) (17-beta-HSD 4) (D-bifunctional protein) (DBP) (Multifunctional protein 2) (MFP-2) (Short chain dehydrogenase/reductase family 8C member 1) [Cleaved into: (3R)-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.n12); Enoyl-CoA hydratase 2 (EC 4.2.1.107) (EC 4.2.1.119) (3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholest-24-enoyl-CoA hydratase)] | Bifunctional enzyme acting on the peroxisomal fatty acid beta-oxidation pathway. Catalyzes two of the four reactions in fatty acid degradation: hydration of 2-enoyl-CoA (trans-2-enoyl-CoA) to produce (3R)-3-hydroxyacyl-CoA, and dehydrogenation of (3R)-3-hydroxyacyl-CoA to produce 3-ketoacyl-CoA (3-oxoacyl-CoA), which is further metabolized by SCPx. Can use straight-chain and branched-chain fatty acids, as well as bile acid intermediates as substrates. {ECO:0000269|PubMed:10671535, ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:8902629, ECO:0000269|PubMed:9089413}. |
P08758 | ANXA5 | S46 | Sugiyama | Annexin A5 (Anchorin CII) (Annexin V) (Annexin-5) (Calphobindin I) (CPB-I) (Endonexin II) (Lipocortin V) (Placental anticoagulant protein 4) (PP4) (Placental anticoagulant protein I) (PAP-I) (Thromboplastin inhibitor) (Vascular anticoagulant-alpha) (VAC-alpha) | This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. |
O76070 | SNCG | S51 | Sugiyama | Gamma-synuclein (Breast cancer-specific gene 1 protein) (Persyn) (Synoretin) (SR) | Plays a role in neurofilament network integrity. May be involved in modulating axonal architecture during development and in the adult. In vitro, increases the susceptibility of neurofilament-H to calcium-dependent proteases (By similarity). May also function in modulating the keratin network in skin. Activates the MAPK and Elk-1 signal transduction pathway (By similarity). {ECO:0000250}. |
Q15417 | CNN3 | S175 | Sugiyama | Calponin-3 (Calponin, acidic isoform) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q99439 | CNN2 | S177 | Sugiyama | Calponin-2 (Calponin H2, smooth muscle) (Neutral calponin) | Thin filament-associated protein that is implicated in the regulation and modulation of smooth muscle contraction. It is capable of binding to actin, calmodulin and tropomyosin. The interaction of calponin with actin inhibits the actomyosin Mg-ATPase activity. |
Q9NSV4 | DIAPH3 | S1119 | Sugiyama | Protein diaphanous homolog 3 (Diaphanous-related formin-3) (DRF3) (MDia2) | Actin nucleation and elongation factor required for the assembly of F-actin structures, such as actin cables and stress fibers. Required for cytokinesis, stress fiber formation and transcriptional activation of the serum response factor. Binds to GTP-bound form of Rho and to profilin: acts in a Rho-dependent manner to recruit profilin to the membrane, where it promotes actin polymerization. DFR proteins couple Rho and Src tyrosine kinase during signaling and the regulation of actin dynamics. Also acts as an actin nucleation and elongation factor in the nucleus by promoting nuclear actin polymerization inside the nucleus to drive serum-dependent SRF-MRTFA activity. {ECO:0000250|UniProtKB:Q9Z207}. |
Q9UHG3 | PCYOX1 | S447 | Sugiyama | Prenylcysteine oxidase 1 (EC 1.8.3.5) (Prenylcysteine lyase) | Prenylcysteine oxidase that cleaves the thioether bond of prenyl-L-cysteines, such as farnesylcysteine and geranylgeranylcysteine (PubMed:10585463, PubMed:11078725, PubMed:12186880). Only active against free prenylcysteines and not prenylcysteine residues within prenylated proteins or peptides (By similarity). Involved in the final step in the degradation of prenylated proteins, by degrading prenylcysteines after the protein has been degraded (PubMed:10585463). {ECO:0000250|UniProtKB:F1N2K1, ECO:0000269|PubMed:10585463, ECO:0000269|PubMed:11078725, ECO:0000269|PubMed:12186880}. |
Q9H2X6 | HIPK2 | S46 | Sugiyama | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Q9Y6E0 | STK24 | S46 | Sugiyama | Serine/threonine-protein kinase 24 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 3) (MST-3) (STE20-like kinase MST3) [Cleaved into: Serine/threonine-protein kinase 24 36 kDa subunit (Mammalian STE20-like protein kinase 3 N-terminal) (MST3/N); Serine/threonine-protein kinase 24 12 kDa subunit (Mammalian STE20-like protein kinase 3 C-terminal) (MST3/C)] | Serine/threonine-protein kinase that acts on both serine and threonine residues and promotes apoptosis in response to stress stimuli and caspase activation. Mediates oxidative-stress-induced cell death by modulating phosphorylation of JNK1-JNK2 (MAPK8 and MAPK9), p38 (MAPK11, MAPK12, MAPK13 and MAPK14) during oxidative stress. Plays a role in a staurosporine-induced caspase-independent apoptotic pathway by regulating the nuclear translocation of AIFM1 and ENDOG and the DNase activity associated with ENDOG. Phosphorylates STK38L on 'Thr-442' and stimulates its kinase activity. In association with STK26 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Also regulates cellular migration with alteration of PTPN12 activity and PXN phosphorylation: phosphorylates PTPN12 and inhibits its activity and may regulate PXN phosphorylation through PTPN12. May act as a key regulator of axon regeneration in the optic nerve and radial nerve. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:16314523, ECO:0000269|PubMed:17046825, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:19604147, ECO:0000269|PubMed:19782762, ECO:0000269|PubMed:19855390, ECO:0000269|PubMed:27807006}. |
Q9UHD2 | TBK1 | S413 | Sugiyama | Serine/threonine-protein kinase TBK1 (EC 2.7.11.1) (NF-kappa-B-activating kinase) (T2K) (TANK-binding kinase 1) | Serine/threonine kinase that plays an essential role in regulating inflammatory responses to foreign agents (PubMed:10581243, PubMed:11839743, PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:15485837, PubMed:18583960, PubMed:21138416, PubMed:23453971, PubMed:23453972, PubMed:23746807, PubMed:25636800, PubMed:26611359, PubMed:32404352, PubMed:34363755, PubMed:32298923). Following activation of toll-like receptors by viral or bacterial components, associates with TRAF3 and TANK and phosphorylates interferon regulatory factors (IRFs) IRF3 and IRF7 as well as DDX3X (PubMed:12692549, PubMed:12702806, PubMed:14703513, PubMed:15367631, PubMed:18583960, PubMed:25636800). This activity allows subsequent homodimerization and nuclear translocation of the IRFs leading to transcriptional activation of pro-inflammatory and antiviral genes including IFNA and IFNB (PubMed:12702806, PubMed:15367631, PubMed:25636800, PubMed:32972995). In order to establish such an antiviral state, TBK1 form several different complexes whose composition depends on the type of cell and cellular stimuli (PubMed:23453971, PubMed:23453972, PubMed:23746807). Plays a key role in IRF3 activation: acts by first phosphorylating innate adapter proteins MAVS, STING1 and TICAM1 on their pLxIS motif, leading to recruitment of IRF3, thereby licensing IRF3 for phosphorylation by TBK1 (PubMed:25636800, PubMed:30842653, PubMed:37926288). Phosphorylated IRF3 dissociates from the adapter proteins, dimerizes, and then enters the nucleus to induce expression of interferons (PubMed:25636800). Thus, several scaffolding molecules including FADD, TRADD, MAVS, AZI2, TANK or TBKBP1/SINTBAD can be recruited to the TBK1-containing-complexes (PubMed:21931631). Under particular conditions, functions as a NF-kappa-B effector by phosphorylating NF-kappa-B inhibitor alpha/NFKBIA, IKBKB or RELA to translocate NF-Kappa-B to the nucleus (PubMed:10783893, PubMed:15489227). Restricts bacterial proliferation by phosphorylating the autophagy receptor OPTN/Optineurin on 'Ser-177', thus enhancing LC3 binding affinity and antibacterial autophagy (PubMed:21617041). Phosphorylates SMCR8 component of the C9orf72-SMCR8 complex, promoting autophagosome maturation (PubMed:27103069). Phosphorylates ATG8 proteins MAP1LC3C and GABARAPL2, thereby preventing their delipidation and premature removal from nascent autophagosomes (PubMed:31709703). Seems to play a role in energy balance regulation by sustaining a state of chronic, low-grade inflammation in obesity, which leads to a negative impact on insulin sensitivity (By similarity). Attenuates retroviral budding by phosphorylating the endosomal sorting complex required for transport-I (ESCRT-I) subunit VPS37C (PubMed:21270402). Phosphorylates Borna disease virus (BDV) P protein (PubMed:16155125). Plays an essential role in the TLR3- and IFN-dependent control of herpes virus HSV-1 and HSV-2 infections in the central nervous system (PubMed:22851595). Acts both as a positive and negative regulator of the mTORC1 complex, depending on the context: activates mTORC1 in response to growth factors by catalyzing phosphorylation of MTOR, while it limits the mTORC1 complex by promoting phosphorylation of RPTOR (PubMed:29150432, PubMed:31530866). Acts as a positive regulator of the mTORC2 complex by mediating phosphorylation of MTOR, leading to increased phosphorylation and activation of AKT1 (By similarity). Phosphorylates and activates AKT1 (PubMed:21464307). Involved in the regulation of TNF-induced RIPK1-mediated cell death, probably acting via CYLD phosphorylation that in turn controls RIPK1 ubiquitination status (PubMed:34363755). Also participates in the differentiation of T follicular regulatory cells together with the receptor ICOS (PubMed:27135603). {ECO:0000250|UniProtKB:Q9WUN2, ECO:0000269|PubMed:10581243, ECO:0000269|PubMed:10783893, ECO:0000269|PubMed:11839743, ECO:0000269|PubMed:12692549, ECO:0000269|PubMed:12702806, ECO:0000269|PubMed:14703513, ECO:0000269|PubMed:15367631, ECO:0000269|PubMed:15485837, ECO:0000269|PubMed:15489227, ECO:0000269|PubMed:16155125, ECO:0000269|PubMed:18583960, ECO:0000269|PubMed:21138416, ECO:0000269|PubMed:21270402, ECO:0000269|PubMed:21464307, ECO:0000269|PubMed:21617041, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:22851595, ECO:0000269|PubMed:23453971, ECO:0000269|PubMed:23453972, ECO:0000269|PubMed:23746807, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27135603, ECO:0000269|PubMed:29150432, ECO:0000269|PubMed:30842653, ECO:0000269|PubMed:31530866, ECO:0000269|PubMed:31709703, ECO:0000269|PubMed:32298923, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:34363755, ECO:0000269|PubMed:37926288}. |
Q9Y265 | RUVBL1 | S179 | Sugiyama | RuvB-like 1 (EC 3.6.4.12) (49 kDa TATA box-binding protein-interacting protein) (49 kDa TBP-interacting protein) (54 kDa erythrocyte cytosolic protein) (ECP-54) (INO80 complex subunit H) (Nuclear matrix protein 238) (NMP 238) (Pontin 52) (TIP49a) (TIP60-associated protein 54-alpha) (TAP54-alpha) | Possesses single-stranded DNA-stimulated ATPase and ATP-dependent DNA helicase (3' to 5') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring-like structure contribute to the ATPase activity (PubMed:17157868, PubMed:33205750). Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A (PubMed:14966270). This modification may both alter nucleosome-DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair (PubMed:14966270). The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage (PubMed:14966270). Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome (PubMed:24463511). Proposed core component of the chromatin remodeling INO80 complex which exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding (PubMed:16230350, PubMed:21303910). Plays an essential role in oncogenic transformation by MYC and also modulates transcriptional activation by the LEF1/TCF1-CTNNB1 complex (PubMed:10882073, PubMed:16014379). Essential for cell proliferation (PubMed:14506706). May be able to bind plasminogen at cell surface and enhance plasminogen activation (PubMed:11027681). {ECO:0000269|PubMed:10882073, ECO:0000269|PubMed:11027681, ECO:0000269|PubMed:14506706, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16014379, ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:17157868, ECO:0000269|PubMed:21303910, ECO:0000269|PubMed:24463511, ECO:0000269|PubMed:33205750}. |
Q7L7X3 | TAOK1 | S38 | Sugiyama | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q9UL54 | TAOK2 | S38 | Sugiyama | Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) | Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}. |
J3KQ70 | INO80B-WBP1 | S63 | ochoa | HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) | None |
O00124 | UBXN8 | S144 | ochoa | UBX domain-containing protein 8 (Reproduction 8 protein) (Rep-8 protein) (UBX domain-containing protein 6) | Involved in endoplasmic reticulum-associated degradation (ERAD) for misfolded lumenal proteins, possibly by tethering VCP to the endoplasmic reticulum membrane. May play a role in reproduction. {ECO:0000269|PubMed:21949850}. |
O00203 | AP3B1 | S609 | ochoa | AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}. |
O00442 | RTCA | S173 | ochoa | RNA 3'-terminal phosphate cyclase (RNA cyclase) (RNA-3'-phosphate cyclase) (EC 6.5.1.4) (RNA terminal phosphate cyclase domain-containing protein 1) (RTC domain-containing protein 1) | Catalyzes the conversion of 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA (PubMed:9184239). The mechanism of action of the enzyme occurs in 3 steps: (A) adenylation of the enzyme by ATP; (B) transfer of adenylate to an RNA-N3'P to produce RNA-N3'PP5'A; (C) and attack of the adjacent 2'-hydroxyl on the 3'-phosphorus in the diester linkage to produce the cyclic end product (PubMed:9184239). Likely functions in some aspects of cellular RNA processing (PubMed:25961792, PubMed:9184239). Function plays an important role in regulating axon regeneration by inhibiting central nervous system (CNS) axon regeneration following optic nerve injury (PubMed:25961792). {ECO:0000269|PubMed:25961792, ECO:0000269|PubMed:9184239}. |
O14647 | CHD2 | S1441 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14654 | IRS4 | S917 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14686 | KMT2D | S4849 | ochoa | Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}. |
O43167 | ZBTB24 | S134 | ochoa | Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) | May be involved in BMP2-induced transcription. {ECO:0000250}. |
O43493 | TGOLN2 | S290 | ochoa | Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) | May be involved in regulating membrane traffic to and from trans-Golgi network. |
O60216 | RAD21 | S46 | ochoa | Double-strand-break repair protein rad21 homolog (hHR21) (Nuclear matrix protein 1) (NXP-1) (SCC1 homolog) [Cleaved into: 64-kDa C-terminal product (64-kDa carboxy-terminal product) (65-kDa carboxy-terminal product)] | [Double-strand-break repair protein rad21 homolog]: As a member of the cohesin complex, involved in sister chromatid cohesion from the time of DNA replication in S phase to their segregation in mitosis, a function that is essential for proper chromosome segregation, post-replicative DNA repair, and the prevention of inappropriate recombination between repetitive regions (PubMed:11509732). The cohesin complex may also play a role in spindle pole assembly during mitosis (PubMed:11590136). In interphase, cohesins may function in the control of gene expression by binding to numerous sites within the genome (By similarity). May control RUNX1 gene expression (Probable). Binds to and represses APOB gene promoter (PubMed:25575569). May play a role in embryonic gut development, possibly through the regulation of enteric neuron development (By similarity). {ECO:0000250|UniProtKB:Q61550, ECO:0000250|UniProtKB:Q6TEL1, ECO:0000269|PubMed:11509732, ECO:0000269|PubMed:11590136, ECO:0000269|PubMed:25575569, ECO:0000305|PubMed:25575569}.; FUNCTION: [64-kDa C-terminal product]: May promote apoptosis. {ECO:0000269|PubMed:11875078, ECO:0000269|PubMed:12417729}. |
O60271 | SPAG9 | S564 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60315 | ZEB2 | S741 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60583 | CCNT2 | S424 | ochoa | Cyclin-T2 (CycT2) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin T) complex, also called positive transcription elongation factor B (P-TEFB), which is proposed to facilitate the transition from abortive to production elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNAP II) (PubMed:15563843, PubMed:9499409). The activity of this complex is regulated by binding with 7SK snRNA (PubMed:11713533). Plays a role during muscle differentiation; P-TEFB complex interacts with MYOD1; this tripartite complex promotes the transcriptional activity of MYOD1 through its CDK9-mediated phosphorylation and binds the chromatin of promoters and enhancers of muscle-specific genes; this event correlates with hyperphosphorylation of the CTD domain of RNA pol II (By similarity). In addition, enhances MYOD1-dependent transcription through interaction with PKN1 (PubMed:16331689). Involved in early embryo development (By similarity). {ECO:0000250|UniProtKB:Q7TQK0, ECO:0000269|PubMed:11713533, ECO:0000269|PubMed:15563843, ECO:0000269|PubMed:16331689, ECO:0000269|PubMed:9499409}.; FUNCTION: (Microbial infection) Promotes transcriptional activation of early and late herpes simplex virus 1/HHV-1 promoters. {ECO:0000269|PubMed:21509660}. |
O75140 | DEPDC5 | S445 | ochoa | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75369 | FLNB | S1433 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75369 | FLNB | S2531 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75683 | SURF6 | S74 | ochoa | Surfeit locus protein 6 | Binds to both DNA and RNA in vitro, with a stronger binding capacity for RNA. May represent a nucleolar constitutive protein involved in ribosomal biosynthesis or assembly (By similarity). {ECO:0000250}. |
O75717 | WDHD1 | S958 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O76021 | RSL1D1 | S443 | ochoa | Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) | Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}. |
O94913 | PCF11 | S372 | ochoa | Pre-mRNA cleavage complex 2 protein Pcf11 (Pre-mRNA cleavage complex II protein Pcf11) | Component of pre-mRNA cleavage complex II, which promotes transcription termination by RNA polymerase II. {ECO:0000269|PubMed:11060040, ECO:0000269|PubMed:29196535}. |
O95197 | RTN3 | S229 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95208 | EPN2 | S486 | ochoa | Epsin-2 (EPS-15-interacting protein 2) | Plays a role in the formation of clathrin-coated invaginations and endocytosis. {ECO:0000269|PubMed:10567358}. |
O95425 | SVIL | S86 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
P02775 | PPBP | S55 | ochoa | Platelet basic protein (PBP) (C-X-C motif chemokine 7) (Leukocyte-derived growth factor) (LDGF) (Macrophage-derived growth factor) (MDGF) (Small-inducible cytokine B7) [Cleaved into: Connective tissue-activating peptide III (CTAP-III) (LA-PF4) (Low-affinity platelet factor IV); TC-2; Connective tissue-activating peptide III(1-81) (CTAP-III(1-81)); Beta-thromboglobulin (Beta-TG); Neutrophil-activating peptide 2(74) (NAP-2(74)); Neutrophil-activating peptide 2(73) (NAP-2(73)); Neutrophil-activating peptide 2 (NAP-2); TC-1; Neutrophil-activating peptide 2(1-66) (NAP-2(1-66)); Neutrophil-activating peptide 2(1-63) (NAP-2(1-63))] | LA-PF4 stimulates DNA synthesis, mitosis, glycolysis, intracellular cAMP accumulation, prostaglandin E2 secretion, and synthesis of hyaluronic acid and sulfated glycosaminoglycan. It also stimulates the formation and secretion of plasminogen activator by human synovial cells. NAP-2 is a ligand for CXCR1 and CXCR2, and NAP-2, NAP-2(73), NAP-2(74), NAP-2(1-66), and most potent NAP-2(1-63) are chemoattractants and activators for neutrophils. TC-1 and TC-2 are antibacterial proteins, in vitro released from activated platelet alpha-granules. CTAP-III(1-81) is more potent than CTAP-III desensitize chemokine-induced neutrophil activation. {ECO:0000269|PubMed:10877842, ECO:0000269|PubMed:7890771, ECO:0000269|PubMed:8950790, ECO:0000269|PubMed:9794434}. |
P08603 | CFH | S219 | ochoa | Complement factor H (H factor 1) | Glycoprotein that plays an essential role in maintaining a well-balanced immune response by modulating complement activation. Acts as a soluble inhibitor of complement, where its binding to self markers such as glycan structures prevents complement activation and amplification on cell surfaces (PubMed:21285368, PubMed:21317894, PubMed:25402769). Accelerates the decay of the complement alternative pathway (AP) C3 convertase C3bBb, thus preventing local formation of more C3b, the central player of the complement amplification loop (PubMed:19503104, PubMed:21317894, PubMed:26700768). As a cofactor of the serine protease factor I, CFH also regulates proteolytic degradation of already-deposited C3b (PubMed:18252712, PubMed:23332154, PubMed:28671664). In addition, mediates several cellular responses through interaction with specific receptors. For example, interacts with CR3/ITGAM receptor and thereby mediates the adhesion of human neutrophils to different pathogens. In turn, these pathogens are phagocytosed and destroyed (PubMed:20008295, PubMed:9558116). {ECO:0000269|PubMed:18252712, ECO:0000269|PubMed:19503104, ECO:0000269|PubMed:20008295, ECO:0000269|PubMed:21285368, ECO:0000269|PubMed:21317894, ECO:0000269|PubMed:23332154, ECO:0000269|PubMed:25402769, ECO:0000269|PubMed:26700768, ECO:0000269|PubMed:28671664, ECO:0000269|PubMed:9558116}.; FUNCTION: (Microbial infection) In the mosquito midgut, binds to the surface of parasite P.falciparum gametocytes and protects the parasite from alternative complement pathway-mediated elimination. {ECO:0000269|PubMed:23332154}. |
P12755 | SKI | S366 | ochoa | Ski oncogene (Proto-oncogene c-Ski) | May play a role in terminal differentiation of skeletal muscle cells but not in the determination of cells to the myogenic lineage. Functions as a repressor of TGF-beta signaling. {ECO:0000269|PubMed:19049980}. |
P15144 | ANPEP | S247 | ochoa | Aminopeptidase N (AP-N) (hAPN) (EC 3.4.11.2) (Alanyl aminopeptidase) (Aminopeptidase M) (AP-M) (Microsomal aminopeptidase) (Myeloid plasma membrane glycoprotein CD13) (gp150) (CD antigen CD13) | Broad specificity aminopeptidase which plays a role in the final digestion of peptides generated from hydrolysis of proteins by gastric and pancreatic proteases. Also involved in the processing of various peptides including peptide hormones, such as angiotensin III and IV, neuropeptides, and chemokines. May also be involved the cleavage of peptides bound to major histocompatibility complex class II molecules of antigen presenting cells. May have a role in angiogenesis and promote cholesterol crystallization. May have a role in amino acid transport by acting as binding partner of amino acid transporter SLC6A19 and regulating its activity (By similarity). {ECO:0000250|UniProtKB:P97449, ECO:0000269|PubMed:10605003, ECO:0000269|PubMed:10676659, ECO:0000269|PubMed:11384645, ECO:0000269|PubMed:12473585, ECO:0000269|PubMed:7576235, ECO:0000269|PubMed:8102610, ECO:0000269|PubMed:9056417}.; FUNCTION: (Microbial infection) Acts as a receptor for human coronavirus 229E/HCoV-229E. In case of human coronavirus 229E (HCoV-229E) infection, serves as receptor for HCoV-229E spike glycoprotein. {ECO:0000269|PubMed:12551991, ECO:0000269|PubMed:1350662, ECO:0000269|PubMed:8887485, ECO:0000269|PubMed:9367365}.; FUNCTION: (Microbial infection) Mediates as well Human cytomegalovirus (HCMV) infection. {ECO:0000269|PubMed:8105105}. |
P16401 | H1-5 | S189 | ochoa|psp | Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) | Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}. |
P18031 | PTPN1 | S352 | ochoa|psp | Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) | Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}. |
P18887 | XRCC1 | S140 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P21333 | FLNA | S2576 | ochoa | Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) | Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}. |
P30307 | CDC25C | S168 | ochoa|psp | M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) | Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}. |
P33981 | TTK | S281 | ochoa|psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P35251 | RFC1 | S1076 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P40222 | TXLNA | S19 | ochoa | Alpha-taxilin | May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells. |
P41229 | KDM5C | S1359 | ochoa | Lysine-specific demethylase 5C (EC 1.14.11.67) (Histone demethylase JARID1C) (Jumonji/ARID domain-containing protein 1C) (Protein SmcX) (Protein Xe169) ([histone H3]-trimethyl-L-lysine(4) demethylase 5C) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code (PubMed:28262558). Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Participates in transcriptional repression of neuronal genes by recruiting histone deacetylases and REST at neuron-restrictive silencer elements. Represses the CLOCK-BMAL1 heterodimer-mediated transcriptional activation of the core clock component PER2 (By similarity). {ECO:0000250|UniProtKB:P41230, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17468742, ECO:0000269|PubMed:26645689, ECO:0000269|PubMed:28262558}. |
P42166 | TMPO | S351 | ochoa | Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] | May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide. |
P46013 | MKI67 | S308 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S713 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P48444 | ARCN1 | S493 | ochoa | Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) | Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}. |
P48739 | PITPNB | S184 | ochoa | Phosphatidylinositol transfer protein beta isoform (PI-TP-beta) (PtdIns transfer protein beta) (PtdInsTP beta) | Catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between membranes (PubMed:10531358, PubMed:18636990, PubMed:20332109). Also catalyzes the transfer of sphingomyelin (By similarity). Required for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum; phosphatidylinositol and phosphatidylcholine transfer activity is essential for this function (PubMed:20332109). {ECO:0000250|UniProtKB:Q9TR36, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:18636990, ECO:0000269|PubMed:20332109}. |
P51451 | BLK | S24 | ochoa | Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) | Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}. |
P51668 | UBE2D1 | S80 | ochoa | Ubiquitin-conjugating enzyme E2 D1 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D1) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D1) (Stimulator of Fe transport) (SFT) (UBC4/5 homolog) (UbcH5) (Ubiquitin carrier protein D1) (Ubiquitin-conjugating enzyme E2(17)KB 1) (Ubiquitin-conjugating enzyme E2-17 kDa 1) (Ubiquitin-protein ligase D1) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:22496338). In vitro catalyzes 'Lys-48'-linked polyubiquitination (PubMed:20061386). Mediates the selective degradation of short-lived and abnormal proteins. Functions in the E6/E6-AP-induced ubiquitination of p53/TP53. Mediates ubiquitination of PEX5 and auto-ubiquitination of STUB1, TRAF6 and TRIM63/MURF1 (PubMed:18042044, PubMed:18359941). Ubiquitinates STUB1-associated HSP90AB1 in vitro (PubMed:18042044). Lacks inherent specificity for any particular lysine residue of ubiquitin (PubMed:18042044). Essential for viral activation of IRF3 (PubMed:19854139). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). {ECO:0000269|PubMed:18042044, ECO:0000269|PubMed:18359941, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:22496338}. |
P53804 | TTC3 | S456 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P54756 | EPHA5 | S960 | ochoa | Ephrin type-A receptor 5 (EC 2.7.10.1) (Brain-specific kinase) (EPH homology kinase 1) (EHK-1) (EPH-like kinase 7) (EK7) (hEK7) | Receptor tyrosine kinase which binds promiscuously GPI-anchored ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Among GPI-anchored ephrin-A ligands, EFNA5 most probably constitutes the cognate/functional ligand for EPHA5. Functions as an axon guidance molecule during development and may be involved in the development of the retinotectal, entorhino-hippocampal and hippocamposeptal pathways. Together with EFNA5 plays also a role in synaptic plasticity in adult brain through regulation of synaptogenesis. In addition to its function in the nervous system, the interaction of EPHA5 with EFNA5 mediates communication between pancreatic islet cells to regulate glucose-stimulated insulin secretion (By similarity). {ECO:0000250}. |
P55196 | AFDN | S1182 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P61077 | UBE2D3 | S80 | ochoa | Ubiquitin-conjugating enzyme E2 D3 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D3) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D3) (Ubiquitin carrier protein D3) (Ubiquitin-conjugating enzyme E2(17)KB 3) (Ubiquitin-conjugating enzyme E2-17 kDa 3) (Ubiquitin-protein ligase D3) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:15247280, PubMed:15496420, PubMed:18284575, PubMed:20061386, PubMed:21532592, PubMed:28322253). In vitro catalyzes 'Lys-11'-, as well as 'Lys-48'-linked polyubiquitination (PubMed:15247280, PubMed:15496420, PubMed:18284575, PubMed:20061386, PubMed:21532592). Cooperates with the E2 CDC34 and the SCF(FBXW11) E3 ligase complex for the polyubiquitination of NFKBIA leading to its subsequent proteasomal degradation (PubMed:20347421). Acts as an initiator E2, priming the phosphorylated NFKBIA target at positions 'Lys-21' and/or 'Lys-22' with a monoubiquitin (PubMed:10329681). Ubiquitin chain elongation is then performed by CDC34, building ubiquitin chains from the UBE2D3-primed NFKBIA-linked ubiquitin (PubMed:10329681). Also acts as an initiator E2, in conjunction with RNF8, for the priming of PCNA (PubMed:18948756). Monoubiquitination of PCNA, and its subsequent polyubiquitination, are essential events in the operation of the DNA damage tolerance (DDT) pathway that is activated after DNA damage caused by UV or chemical agents during S-phase (PubMed:18948756). Associates with the BRCA1/BARD1 E3 ligase complex to perform ubiquitination at DNA damage sites following ionizing radiation leading to DNA repair (PubMed:16628214). Targets DAPK3 for ubiquitination which influences promyelocytic leukemia protein nuclear body (PML-NB) formation in the nucleus (PubMed:18515077). In conjunction with the MDM2 and TOPORS E3 ligases, functions ubiquitination of p53/TP53 (PubMed:12646252, PubMed:15280377). In conjunction with the CBL E3 ligase, targets EGFR for polyubiquitination at the plasma membrane as well as during its internalization and transport on endosomes (PubMed:18508924). In conjunction with the STUB1 E3 quality control E3 ligase, ubiquitinates unfolded proteins to catalyze their immediate destruction (PubMed:11743028). Together with RNF135, catalyzes the viral RNA-dependent 'Lys-63'-linked polyubiquitination of RIGI to activate the downstream signaling pathway that leads to interferon beta production (PubMed:28469175). Together with ZNF598, catalyzes ubiquitination of 40S ribosomal proteins in response to ribosome collisions (PubMed:28685749). In cooperation with the GATOR2 complex, catalyzes 'Lys-6'-linked ubiquitination of NPRL2 (PubMed:36528027). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:11743028, ECO:0000269|PubMed:12646252, ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15280377, ECO:0000269|PubMed:15496420, ECO:0000269|PubMed:16628214, ECO:0000269|PubMed:18284575, ECO:0000269|PubMed:18508924, ECO:0000269|PubMed:18515077, ECO:0000269|PubMed:18948756, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20347421, ECO:0000269|PubMed:21532592, ECO:0000269|PubMed:28322253, ECO:0000269|PubMed:28469175, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:36528027}. |
P62837 | UBE2D2 | S80 | ochoa | Ubiquitin-conjugating enzyme E2 D2 (EC 2.3.2.23) ((E3-independent) E2 ubiquitin-conjugating enzyme D2) (EC 2.3.2.24) (E2 ubiquitin-conjugating enzyme D2) (Ubiquitin carrier protein D2) (Ubiquitin-conjugating enzyme E2(17)KB 2) (Ubiquitin-conjugating enzyme E2-17 kDa 2) (Ubiquitin-protein ligase D2) (p53-regulated ubiquitin-conjugating enzyme 1) | Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins (PubMed:10329681, PubMed:18042044, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854, PubMed:28322253). Catalyzes 'Lys-48'-linked polyubiquitination (PubMed:10329681, PubMed:18042044, PubMed:18359941, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854). Mediates the selective degradation of short-lived and abnormal proteins (PubMed:10329681, PubMed:18042044, PubMed:18359941, PubMed:18703417, PubMed:20061386, PubMed:20403326, PubMed:20525694, PubMed:26475854). Functions in the E6/E6-AP-induced ubiquitination of p53/TP53 (PubMed:15280377). Mediates ubiquitination of PEX5 and SQSTM1 and autoubiquitination of STUB1 and TRAF6 (PubMed:18359941, PubMed:28322253). Involved in the signal-induced conjugation and subsequent degradation of NFKBIA, FBXW2-mediated GCM1 ubiquitination and degradation, MDM2-dependent degradation of p53/TP53 and the activation of MAVS in the mitochondria by RIGI in response to viral infection (PubMed:18703417, PubMed:20403326). Essential for viral activation of IRF3 (PubMed:19854139). {ECO:0000269|PubMed:10329681, ECO:0000269|PubMed:15280377, ECO:0000269|PubMed:18042044, ECO:0000269|PubMed:18359941, ECO:0000269|PubMed:18703417, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20403326, ECO:0000269|PubMed:20525694, ECO:0000269|PubMed:26475854, ECO:0000269|PubMed:28322253}. |
P78332 | RBM6 | S1025 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P82094 | TMF1 | S170 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
Q01780 | EXOSC10 | S821 | ochoa | Exosome complex component 10 (EC 3.1.13.-) (Autoantigen PM/Scl 2) (P100 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 100 kDa) (PM/Scl-100) (Polymyositis/scleroderma autoantigen 2) | Catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. EXOSC10 is required for nucleolar localization of C1D and probably mediates the association of MTREX, C1D and MPHOSPH6 with the RNA exosome involved in the maturation of 5.8S rRNA. Plays a role in the recruitment of replication protein A complex (RPA) and RAD51 to DNA double-strand breaks caused by irradiation, contributing to DNA repair by homologous recombination (PubMed:25632158, PubMed:31086179). Regulates levels of damage-induced RNAs in order to prevent DNA-RNA hybrid formation at DNA double-strand breaks and limit DNA end resection after damage (PubMed:31086179). Plays a role in oocyte development, maturation and survival (By similarity). Required for normal testis development and mitotic division of spermatogonia (By similarity). Plays a role in proper embryo development (By similarity). Required for global protein translation (PubMed:26857222, PubMed:36912080). Required for cell proliferation (PubMed:36912080). Regulates metabolism of C9orf72-derived repeat RNA that can be translated into toxic dipeptide repeat proteins (PubMed:32830871). {ECO:0000250|UniProtKB:P56960, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:17545563, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19056938, ECO:0000269|PubMed:20368444, ECO:0000269|PubMed:20699273, ECO:0000269|PubMed:25632158, ECO:0000269|PubMed:26857222, ECO:0000269|PubMed:31086179, ECO:0000269|PubMed:32830871, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:36912080}. |
Q01804 | OTUD4 | S557 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q01804 | OTUD4 | S1006 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q02224 | CENPE | S2654 | ochoa|psp | Centromere-associated protein E (Centromere protein E) (CENP-E) (Kinesin-7) (Kinesin-related protein CENPE) | Microtubule plus-end-directed kinetochore motor which plays an important role in chromosome congression, microtubule-kinetochore conjugation and spindle assembly checkpoint activation. Drives chromosome congression (alignment of chromosomes at the spindle equator resulting in the formation of the metaphase plate) by mediating the lateral sliding of polar chromosomes along spindle microtubules towards the spindle equator and by aiding the establishment and maintenance of connections between kinetochores and spindle microtubules (PubMed:23891108, PubMed:25395579, PubMed:7889940). The transport of pole-proximal chromosomes towards the spindle equator is favored by microtubule tracks that are detyrosinated (PubMed:25908662). Acts as a processive bi-directional tracker of dynamic microtubule tips; after chromosomes have congressed, continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends (PubMed:23955301). Suppresses chromosome congression in NDC80-depleted cells and contributes positively to congression only when microtubules are stabilized (PubMed:25743205). Plays an important role in the formation of stable attachments between kinetochores and spindle microtubules (PubMed:17535814) The stabilization of kinetochore-microtubule attachment also requires CENPE-dependent localization of other proteins to the kinetochore including BUB1B, MAD1 and MAD2. Plays a role in spindle assembly checkpoint activation (SAC) via its interaction with BUB1B resulting in the activation of its kinase activity, which is important for activating SAC. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss (By similarity). {ECO:0000250|UniProtKB:Q6RT24, ECO:0000269|PubMed:17535814, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:23955301, ECO:0000269|PubMed:25395579, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:25908662, ECO:0000269|PubMed:7889940}. |
Q02880 | TOP2B | S1279 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02880 | TOP2B | S1435 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q03188 | CENPC | S277 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q03188 | CENPC | S515 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04726 | TLE3 | S317 | ochoa | Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) | Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}. |
Q06546 | GABPA | S309 | ochoa | GA-binding protein alpha chain (GABP subunit alpha) (Nuclear respiratory factor 2 subunit alpha) (Transcription factor E4TF1-60) | Transcription factor capable of interacting with purine rich repeats (GA repeats). Positively regulates transcription of transcriptional repressor RHIT/ZNF205 (PubMed:22306510). {ECO:0000269|PubMed:22306510}.; FUNCTION: (Microbial infection) Necessary for the expression of the Adenovirus E4 gene. |
Q08AD1 | CAMSAP2 | S673 | ochoa | Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}. |
Q09666 | AHNAK | S4993 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12789 | GTF3C1 | S1653 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12792 | TWF1 | S143 | ochoa | Twinfilin-1 (Protein A6) (Protein tyrosine kinase 9) | Actin-binding protein involved in motile and morphological processes. Inhibits actin polymerization, likely by sequestering G-actin. By capping the barbed ends of filaments, it also regulates motility. Seems to play an important role in clathrin-mediated endocytosis and distribution of endocytic organelles (By similarity). {ECO:0000250}. |
Q12802 | AKAP13 | S983 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12802 | AKAP13 | S1857 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S2060 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12882 | DPYD | S905 | ochoa | Dihydropyrimidine dehydrogenase [NADP(+)] (DHPDHase) (DPD) (EC 1.3.1.2) (Dihydrothymine dehydrogenase) (Dihydrouracil dehydrogenase) | Involved in pyrimidine base degradation (PubMed:1512248). Catalyzes the reduction of uracil and thymine (PubMed:1512248). Also involved the degradation of the chemotherapeutic drug 5-fluorouracil (PubMed:1512248). {ECO:0000269|PubMed:1512248}. |
Q12888 | TP53BP1 | S727 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12923 | PTPN13 | S273 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q13042 | CDC16 | S560 | ochoa|psp | Cell division cycle protein 16 homolog (Anaphase-promoting complex subunit 6) (APC6) (CDC16 homolog) (CDC16Hs) (Cyclosome subunit 6) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q13129 | RLF | S1628 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13506 | NAB1 | S328 | ochoa | NGFI-A-binding protein 1 (EGR-1-binding protein 1) (Transcriptional regulatory protein p54) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. {ECO:0000250}. |
Q14498 | RBM39 | S136 | ochoa | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14692 | BMS1 | S552 | ochoa | Ribosome biogenesis protein BMS1 homolog (EC 3.6.5.-) (Ribosome assembly protein BMS1 homolog) | GTPase required for the synthesis of 40S ribosomal subunits and for processing of pre-ribosomal RNA (pre-rRNA) at sites A0, A1, and A2. Controls access of pre-rRNA intermediates to RCL1 during ribosome biogenesis by binding RCL1 in a GTP-dependent manner, and delivering it to pre-ribosomes. GTP-binding and/or GTP hydrolysis may induce conformational rearrangements within the BMS1-RCL1 complex allowing the interaction of RCL1 with its RNA substrate. Required for RCL1 import into the nucleus. {ECO:0000250|UniProtKB:Q08965}. |
Q15287 | RNPS1 | S157 | ochoa | RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) | Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Enhances the formation of the ATP-dependent A complex of the spliceosome. Involved in both constitutive splicing and, in association with SRP54 and TRA2B/SFRS10, in distinctive modulation of alternative splicing in a substrate-dependent manner. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Participates in mRNA 3'-end cleavage. Involved in UPF2-dependent nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Also mediates increase of mRNA abundance and translational efficiency. Binds spliced mRNA 20-25 nt upstream of exon-exon junctions. {ECO:0000269|PubMed:10449421, ECO:0000269|PubMed:11546874, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:14729963, ECO:0000269|PubMed:14752011, ECO:0000269|PubMed:15684395, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:17586820, ECO:0000269|PubMed:22203037}. |
Q15291 | RBBP5 | S497 | ochoa | Retinoblastoma-binding protein 5 (RBBP-5) (Retinoblastoma-binding protein RBQ-3) | In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). Does not affect ES cell self-renewal (By similarity). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3 (PubMed:19556245). Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:19556245). In association with ASH2L and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:Q8BX09, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}. |
Q15648 | MED1 | S1021 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15652 | JMJD1C | S641 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15652 | JMJD1C | S652 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15911 | ZFHX3 | S2207 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16649 | NFIL3 | S301 | ochoa | Nuclear factor interleukin-3-regulated protein (E4 promoter-binding protein 4) (Interleukin-3 promoter transcriptional activator) (Interleukin-3-binding protein 1) (Transcriptional activator NF-IL3A) | Acts as a transcriptional regulator that recognizes and binds to the sequence 5'-[GA]TTA[CT]GTAA[CT]-3', a sequence present in many cellular and viral promoters. Represses transcription from promoters with activating transcription factor (ATF) sites. Represses promoter activity in osteoblasts (By similarity). Represses transcriptional activity of PER1 (By similarity). Represses transcriptional activity of PER2 via the B-site on the promoter (By similarity). Activates transcription from the interleukin-3 promoter in T-cells. Competes for the same consensus-binding site with PAR DNA-binding factors (DBP, HLF and TEF) (By similarity). Component of the circadian clock that acts as a negative regulator for the circadian expression of PER2 oscillation in the cell-autonomous core clock (By similarity). Protects pro-B cells from programmed cell death (By similarity). Represses the transcription of CYP2A5 (By similarity). Positively regulates the expression and activity of CES2 by antagonizing the repressive action of NR1D1 on CES2 (By similarity). Required for the development of natural killer cell precursors (By similarity). {ECO:0000250|UniProtKB:O08750, ECO:0000269|PubMed:1620116, ECO:0000269|PubMed:7565758, ECO:0000269|PubMed:8836190}. |
Q1MSJ5 | CSPP1 | S401 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q2KHT3 | CLEC16A | S980 | ochoa | Protein CLEC16A (C-type lectin domain family 16 member A) | Regulator of mitophagy through the upstream regulation of the RNF41/NRDP1-PRKN pathway. Mitophagy is a selective form of autophagy necessary for mitochondrial quality control. The RNF41/NRDP1-PRKN pathway regulates autophagosome-lysosome fusion during late mitophagy. May protect RNF41/NRDP1 from proteasomal degradation, RNF41/NRDP1 which regulates proteasomal degradation of PRKN. Plays a key role in beta cells functions by regulating mitophagy/autophagy and mitochondrial health. {ECO:0000269|PubMed:24949970}. |
Q2M1Z3 | ARHGAP31 | S863 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2V2M9 | FHOD3 | S763 | ochoa | FH1/FH2 domain-containing protein 3 (Formactin-2) (Formin homolog overexpressed in spleen 2) (hFHOS2) | Actin-organizing protein that may cause stress fiber formation together with cell elongation (By similarity). Isoform 4 may play a role in actin filament polymerization in cardiomyocytes. {ECO:0000250, ECO:0000269|PubMed:21149568}. |
Q4LE39 | ARID4B | S675 | ochoa | AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) | Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}. |
Q53GS9 | USP39 | S46 | ochoa | Ubiquitin carboxyl-terminal hydrolase 39 (EC 3.4.19.12) (SAD1 homolog) (U4/U6.U5 tri-snRNP-associated 65 kDa protein) | Deubiquitinating enzyme that plays a role in many cellular processes including cellular antiviral response, epithelial morphogenesis, DNA repair or B-cell development (PubMed:33127822, PubMed:34614178). Plays a role in pre-mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the precatalytic spliceosome (PubMed:11350945, PubMed:26912367). Specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus and therefore plays an essential role in B-cell development (By similarity). Regulates AURKB mRNA levels, and thereby plays a role in cytokinesis and in the spindle checkpoint (PubMed:18728397). Regulates apoptosis and G2/M cell cycle checkpoint in response to DNA damage by deubiquitinating and stabilizing CHK2 (PubMed:30771428). Also plays an important role in DNA repair by controlling the recruitment of XRCC4/LIG4 to DNA double-strand breaks for non-homologous end-joining repair (PubMed:34614178). Participates in antiviral activity by affecting the type I IFN signaling by stabilizing STAT1 and decreasing its 'Lys-6'-linked ubiquitination (PubMed:33127822). Contributes to non-canonical Wnt signaling during epidermal differentiation (By similarity). Acts as a negative regulator NF-kappa-B activation through deubiquitination of 'Lys-48'-linked ubiquitination of NFKBIA (PubMed:36651806). {ECO:0000250|UniProtKB:Q3TIX9, ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:18728397, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:30771428, ECO:0000269|PubMed:33127822, ECO:0000269|PubMed:34614178, ECO:0000269|PubMed:36651806}. |
Q5FWF5 | ESCO1 | S412 | ochoa | N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}. |
Q5JTW2 | CEP78 | S325 | ochoa | Centrosomal protein of 78 kDa (Cep78) | Centriole wall protein that localizes to mature centrioles and regulates centriole and cilia biogenesis (PubMed:27246242, PubMed:27588451, PubMed:28242748, PubMed:34259627). Involved in centrosome duplication: required for efficient PLK4 centrosomal localization and PLK4-induced overduplication of centrioles (PubMed:27246242). Involved in cilium biogenesis and controls cilium length (PubMed:27588451). Acts as a regulator of protein stability by preventing ubiquitination of centrosomal proteins, such as CCP110 and tektins (PubMed:28242748, PubMed:34259627). Associates with the EDVP complex, preventing ubiquitination and degradation of CCP110 (PubMed:28242748, PubMed:34259627). Promotes deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5) via its interaction with USP16 (By similarity). {ECO:0000250|UniProtKB:Q6IRU7, ECO:0000269|PubMed:27246242, ECO:0000269|PubMed:27588451, ECO:0000269|PubMed:28242748, ECO:0000269|PubMed:34259627}. |
Q5T481 | RBM20 | S980 | ochoa | RNA-binding protein 20 (RNA-binding motif protein 20) | RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}. |
Q5T4S7 | UBR4 | S4117 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5TAX3 | TUT4 | S134 | ochoa | Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}. |
Q5TCZ1 | SH3PXD2A | S547 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q5THJ4 | VPS13D | S2692 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5TKA1 | LIN9 | S76 | ochoa | Protein lin-9 homolog (HuLin-9) (hLin-9) (Beta subunit-associated regulator of apoptosis) (TUDOR gene similar protein) (Type I interferon receptor beta chain-associated protein) (pRB-associated protein) | Acts as a tumor suppressor. Inhibits DNA synthesis. Its ability to inhibit oncogenic transformation is mediated through its association with RB1. Plays a role in the expression of genes required for the G1/S transition. {ECO:0000269|PubMed:15538385, ECO:0000269|PubMed:16730350}. |
Q5VT97 | SYDE2 | S223 | ochoa | Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
Q5VWG9 | TAF3 | S301 | ochoa | Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}. |
Q5VWQ8 | DAB2IP | S992 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q69YH5 | CDCA2 | S710 | ochoa | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q6IC98 | GRAMD4 | S24 | ochoa | GRAM domain-containing protein 4 (Death-inducing protein) | Plays a role as a mediator of E2F1-induced apoptosis in the absence of p53/TP53 (PubMed:15565177). Plays a role as a mediator of E2F1-induced apoptosis in the absence of p53/TP53. Inhibits TLR9 response to nucelic acids and regulates TLR9-mediated innate immune response (By similarity). {ECO:0000250|UniProtKB:Q8CB44, ECO:0000269|PubMed:15565177}. |
Q6JBY9 | RCSD1 | S216 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6N021 | TET2 | S75 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6N021 | TET2 | S1107 | ochoa | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6PGQ7 | BORA | S137 | ochoa|psp | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PIF6 | MYO7B | S934 | ochoa | Unconventional myosin-VIIb | Myosins are actin-based motor molecules with ATPase activity. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length (PubMed:24725409, PubMed:26812018, PubMed:32209652). May link the complex to the actin core bundle of microvilli. {ECO:0000269|PubMed:24725409, ECO:0000269|PubMed:26812018, ECO:0000269|PubMed:32209652, ECO:0000305|PubMed:24725409, ECO:0000305|PubMed:26812018}. |
Q6UB98 | ANKRD12 | S1573 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6UXM1 | LRIG3 | S984 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 3 (LIG-3) | May play a role in craniofacial and inner ear morphogenesis during embryonic development. May act within the otic vesicle epithelium to control formation of the lateral semicircular canal in the inner ear, possibly by restricting the expression of NTN1 (By similarity). {ECO:0000250}. |
Q6ZN17 | LIN28B | S105 | ochoa | Protein lin-28 homolog B (Lin-28B) | Suppressor of microRNA (miRNA) biogenesis, including that of let-7 and possibly of miR107, miR-143 and miR-200c. Binds primary let-7 transcripts (pri-let-7), including pri-let-7g and pri-let-7a-1, and sequester them in the nucleolus, away from the microprocessor complex, hence preventing their processing into mature miRNA (PubMed:22118463). Does not act on pri-miR21 (PubMed:22118463). The repression of let-7 expression is required for normal development and contributes to maintain the pluripotent state of embryonic stem cells by preventing let-7-mediated differentiation. When overexpressed, recruits ZCCHC11/TUT4 uridylyltransferase to pre-let-7 transcripts, leading to their terminal uridylation and degradation (PubMed:19703396). This activity might not be relevant in vivo, as LIN28B-mediated inhibition of let-7 miRNA maturation appears to be ZCCHC11-independent (PubMed:22118463). Interaction with target pre-miRNAs occurs via an 5'-GGAG-3' motif in the pre-miRNA terminal loop. Mediates MYC-induced let-7 repression (By similarity). When overexpressed, isoform 1 stimulates growth of the breast adenocarcinoma cell line MCF-7. Isoform 2 has no effect on cell growth. {ECO:0000250|UniProtKB:Q45KJ6, ECO:0000269|PubMed:16971064, ECO:0000269|PubMed:18951094, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22118463}. |
Q6ZRI6 | C15orf39 | S586 | ochoa | Uncharacterized protein C15orf39 | None |
Q6ZU52 | KIAA0408 | S246 | ochoa | Uncharacterized protein KIAA0408 | None |
Q71F23 | CENPU | S139 | ochoa | Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}. |
Q7L1Q6 | BZW1 | S205 | ochoa | eIF5-mimic protein 2 (Basic leucine zipper and W2 domain-containing protein 1) (Protein Orf) | Translation initiation regulator which represses repeat-associated non-AUG (RAN) initiated translation probably by acting as a competitive inhibitor of eukaryotic translation initiation factor 5 (EIF5) function (PubMed:29470543, PubMed:34260931). Enhances histone H4 gene transcription but does not seem to bind DNA directly (PubMed:11524015). {ECO:0000269|PubMed:11524015, ECO:0000269|PubMed:29470543, ECO:0000269|PubMed:34260931}. |
Q7Z333 | SETX | S615 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z5J4 | RAI1 | S1192 | ochoa | Retinoic acid-induced protein 1 | Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}. |
Q7Z7B1 | PIGW | S416 | ochoa | Glucosaminyl-phosphatidylinositol-acyltransferase PIGW (GlcN-PI-acyltransferase) (EC 2.3.-.-) (Phosphatidylinositol-glycan biosynthesis class W protein) (PIG-W) | Acyltransferase that catalyzes the acyl transfer from an acyl-CoA at the 2-OH position of the inositol ring of glucosaminyl phosphatidylinositol (GlcN-PI) to generate glucosaminyl acyl phosphatidylinositol (GlcN-(acyl)PI) and participates in the fourth step of GPI-anchor biosynthesis (By similarity). Required for the transport of GPI-anchored proteins to the plasma membrane (PubMed:24367057). Acetylation during GPI-anchor biosynthesis is not essential for the subsequent mannosylation and is usually removed soon after the attachment of GPIs to proteins (By similarity). {ECO:0000250|UniProtKB:Q7TSN4, ECO:0000269|PubMed:24367057}. |
Q86T90 | KIAA1328 | S273 | ochoa | Protein hinderin | Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}. |
Q86TU7 | SETD3 | S21 | ochoa | Actin-histidine N-methyltransferase (EC 2.1.1.85) (Protein-L-histidine N-tele-methyltransferase) (SET domain-containing protein 3) (hSETD3) | Protein-histidine N-methyltransferase that specifically mediates 3-methylhistidine (tele-methylhistidine) methylation of actin at 'His-73' (PubMed:30526847, PubMed:30626964, PubMed:30785395, PubMed:31388018, PubMed:31993215). Histidine methylation of actin is required for smooth muscle contraction of the laboring uterus during delivery (PubMed:30626964). Does not have protein-lysine N-methyltransferase activity and probably only catalyzes histidine methylation of actin (PubMed:30626964, PubMed:30785395, PubMed:31388018). {ECO:0000269|PubMed:30526847, ECO:0000269|PubMed:30626964, ECO:0000269|PubMed:30785395, ECO:0000269|PubMed:31388018, ECO:0000269|PubMed:31993215}. |
Q86V48 | LUZP1 | S467 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86YC2 | PALB2 | S285 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YN6 | PPARGC1B | S638 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q86YS7 | C2CD5 | S643 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q8IU60 | DCP2 | S329 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IVL0 | NAV3 | S1037 | ochoa | Neuron navigator 3 (Pore membrane and/or filament-interacting-like protein 1) (Steerin-3) (Unc-53 homolog 3) (unc53H3) | Plays a role in cell migration (PubMed:21471154). May be involved in neuron regeneration. May regulate IL2 production by T-cells. {ECO:0000269|PubMed:16166283, ECO:0000269|PubMed:21471154}. |
Q8IWC1 | MAP7D3 | S770 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IX90 | SKA3 | S152 | ochoa | Spindle and kinetochore-associated protein 3 | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}. |
Q8IXF0 | NPAS3 | S622 | ochoa | Neuronal PAS domain-containing protein 3 (Neuronal PAS3) (Basic-helix-loop-helix-PAS protein MOP6) (Class E basic helix-loop-helix protein 12) (bHLHe12) (Member of PAS protein 6) (PAS domain-containing protein 6) | May play a broad role in neurogenesis. May control regulatory pathways relevant to schizophrenia and to psychotic illness (By similarity). {ECO:0000250}. |
Q8IXZ2 | ZC3H3 | S211 | ochoa | Zinc finger CCCH domain-containing protein 3 (Smad-interacting CPSF-like factor) | Required for the export of polyadenylated mRNAs from the nucleus (PubMed:19364924). Enhances ACVR1B-induced SMAD-dependent transcription. Binds to single-stranded DNA but not to double-stranded DNA in vitro. Involved in RNA cleavage (By similarity). {ECO:0000250|UniProtKB:Q8CHP0, ECO:0000269|PubMed:19364924}. |
Q8IY33 | MICALL2 | S712 | ochoa | MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) | Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}. |
Q8IZD4 | DCP1B | S186 | ochoa | mRNA-decapping enzyme 1B (EC 3.6.1.62) | May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}. |
Q8N1W1 | ARHGEF28 | S719 | ochoa | Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) | Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}. |
Q8N3F8 | MICALL1 | S644 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3K9 | CMYA5 | S2137 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N8R5 | C2orf69 | S222 | ochoa | Mitochondrial protein C2orf69 | May play a role in the respiratory chain. {ECO:0000269|PubMed:33945503}. |
Q8NAP3 | ZBTB38 | S130 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NFC6 | BOD1L1 | S2905 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8TD26 | CHD6 | S21 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8WVJ9 | TWIST2 | S55 | ochoa | Twist-related protein 2 (Class A basic helix-loop-helix protein 39) (bHLHa39) (Dermis-expressed protein 1) (Dermo-1) | Binds to the E-box consensus sequence 5'-CANNTG-3' as a heterodimer and inhibits transcriptional activation by MYOD1, MYOG, MEF2A and MEF2C. Also represses expression of pro-inflammatory cytokines such as TNFA and IL1B. Involved in postnatal glycogen storage and energy metabolism (By similarity). Inhibits the premature or ectopic differentiation of preosteoblast cells during osteogenesis, possibly by changing the internal signal transduction response of osteoblasts to external growth factors. {ECO:0000250, ECO:0000269|PubMed:11062344}. |
Q8WVK7 | SKA2 | S101 | ochoa | Spindle and kinetochore-associated protein 2 (Protein FAM33A) | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:17093495, PubMed:19289083, PubMed:23085020). Required for timely anaphase onset during mitosis, when chromosomes undergo bipolar attachment on spindle microtubules leading to silencing of the spindle checkpoint (PubMed:17093495). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:17093495, PubMed:19289083). In the complex, it is required for SKA1 localization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:17093495, ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:23085020}. |
Q8WYA6 | CTNNBL1 | S389 | ochoa | Beta-catenin-like protein 1 (Nuclear-associated protein) (NAP) (Testis development protein NYD-SP19) | Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. Participates in AID/AICDA-mediated somatic hypermutation (SHM) and class-switch recombination (CSR), 2 processes resulting in the production of high-affinity, mutated isotype-switched antibodies (PubMed:32484799). {ECO:0000269|PubMed:32484799}. |
Q92560 | BAP1 | S292 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92888 | ARHGEF1 | S255 | ochoa | Rho guanine nucleotide exchange factor 1 (115 kDa guanine nucleotide exchange factor) (p115-RhoGEF) (p115RhoGEF) (Sub1.5) | Seems to play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13) subunits (PubMed:9641915, PubMed:9641916). Acts as a GTPase-activating protein (GAP) for GNA12 and GNA13, and as guanine nucleotide exchange factor (GEF) for RhoA GTPase (PubMed:30521495, PubMed:8810315, PubMed:9641915, PubMed:9641916). Activated G alpha 13/GNA13 stimulates the RhoGEF activity through interaction with the RGS-like domain (PubMed:9641916). This GEF activity is inhibited by binding to activated GNA12 (PubMed:9641916). Mediates angiotensin-2-induced RhoA activation (PubMed:20098430). In lymphoid follicles, may trigger activation of GNA13 as part of S1PR2-dependent signaling pathway that leads to inhibition of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:Q61210, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:30521495, ECO:0000269|PubMed:8810315, ECO:0000269|PubMed:9641915, ECO:0000269|PubMed:9641916}. |
Q96DX5 | ASB9 | S201 | ochoa | Ankyrin repeat and SOCS box protein 9 (ASB-9) | Substrate-recognition component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex, also named CRL5 complex), which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:25654263, PubMed:33268465). The ECS(ASB9) complex catalyzes ubiquitination of creatine kinases CKB and CKMT1A (PubMed:20302626, PubMed:22418839, PubMed:25654263, PubMed:33268465). {ECO:0000269|PubMed:20302626, ECO:0000269|PubMed:22418839, ECO:0000269|PubMed:25654263, ECO:0000269|PubMed:33268465}.; FUNCTION: [Isoform 2]: Does not interact with the Elongin BC complex, likely to be a negative regulator of isoform 1. {ECO:0000269|PubMed:20302626}. |
Q96EE3 | SEH1L | S260 | ochoa | Nucleoporin SEH1 (GATOR2 complex protein SEH1) (Nup107-160 subcomplex subunit SEH1) (SEC13-like protein) | Component of the Nup107-160 subcomplex of the nuclear pore complex (NPC). The Nup107-160 subcomplex is required for the assembly of a functional NPC (PubMed:15146057, PubMed:17363900). The Nup107-160 subcomplex is also required for normal kinetochore microtubule attachment, mitotic progression and chromosome segregation. This subunit plays a role in recruitment of the Nup107-160 subcomplex to the kinetochore (PubMed:15146057, PubMed:17363900). {ECO:0000269|PubMed:15146057, ECO:0000269|PubMed:17363900}.; FUNCTION: As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:26972053, PubMed:27487210). Within the GATOR2 complex, SEC13 and SEH1L are required to stabilize the complex (PubMed:35831510). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26972053, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}. |
Q96HH9 | GRAMD2B | S225 | ochoa | GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) | None |
Q96JN0 | LCOR | S249 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96PY6 | NEK1 | S653 | ochoa | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q96T23 | RSF1 | S473 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T88 | UHRF1 | S661 | psp | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q99543 | DNAJC2 | S541 | ochoa | DnaJ homolog subfamily C member 2 (M-phase phosphoprotein 11) (Zuotin-related factor 1) [Cleaved into: DnaJ homolog subfamily C member 2, N-terminally processed] | Acts both as a chaperone in the cytosol and as a chromatin regulator in the nucleus. When cytosolic, acts as a molecular chaperone: component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, stimulates the ATPase activity of the ribosome-associated pool of Hsp70-type chaperones HSPA14 that bind to the nascent polypeptide chain. When nuclear, mediates the switching from polycomb-repressed genes to an active state: specifically recruited at histone H2A ubiquitinated at 'Lys-119' (H2AK119ub), and promotes the displacement of the polycomb PRC1 complex from chromatin, thereby facilitating transcription activation. {ECO:0000269|PubMed:15802566, ECO:0000269|PubMed:16002468, ECO:0000269|PubMed:21179169}. |
Q99640 | PKMYT1 | S143 | ochoa | Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase (EC 2.7.11.1) (Myt1 kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by phosphorylation of the CDK1 kinase specifically when CDK1 is complexed to cyclins (PubMed:10373560, PubMed:10504341, PubMed:9001210, PubMed:9268380). Mediates phosphorylation of CDK1 predominantly on 'Thr-14'. Also involved in Golgi fragmentation (PubMed:9001210, PubMed:9268380). May be involved in phosphorylation of CDK1 on 'Tyr-15' to a lesser degree, however tyrosine kinase activity is unclear and may be indirect (PubMed:9001210, PubMed:9268380). {ECO:0000269|PubMed:10373560, ECO:0000269|PubMed:10504341, ECO:0000269|PubMed:9001210, ECO:0000269|PubMed:9268380}. |
Q9BPZ7 | MAPKAP1 | S315 | psp | Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}. |
Q9BQ39 | DDX50 | S82 | ochoa | ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) | ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}. |
Q9BQI5 | SGIP1 | S319 | ochoa | SH3-containing GRB2-like protein 3-interacting protein 1 (Endophilin-3-interacting protein) | May function in clathrin-mediated endocytosis. Has both a membrane binding/tubulating activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a preference for membranes enriched in phosphatidylserine and phosphoinositides and is required for the endocytosis of the transferrin receptor. May also bind tubulin. May play a role in the regulation of energy homeostasis. {ECO:0000250|UniProtKB:Q8VD37}. |
Q9BVI0 | PHF20 | S569 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BX63 | BRIP1 | S1032 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BXI3 | NT5C1A | S57 | ochoa | Cytosolic 5'-nucleotidase 1A (cN1A) (EC 3.1.3.5) (EC 3.1.3.89) (EC 3.1.3.99) (5'-deoxynucleotidase) (Cytosolic 5'-nucleotidase IA) (cN-I) (cN-IA) | Catalyzes the hydrolysis of ribonucleotide and deoxyribonucleotide monophosphates, releasing inorganic phosphate and the corresponding nucleoside (PubMed:11133996, PubMed:34814800, PubMed:7599155, PubMed:8967393). AMP is the major substrate but can also hydrolyze dCMP and IMP (PubMed:11133996, PubMed:34814800, PubMed:7599155, PubMed:8967393). {ECO:0000269|PubMed:11133996, ECO:0000269|PubMed:34814800, ECO:0000269|PubMed:7599155, ECO:0000269|PubMed:8967393}. |
Q9C086 | INO80B | S63 | ochoa | INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) | Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}. |
Q9H008 | LHPP | S191 | ochoa | Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (hLHPP) (EC 3.1.3.-) (EC 3.6.1.1) | Phosphatase that hydrolyzes imidodiphosphate, 3-phosphohistidine and 6-phospholysine. Has broad substrate specificity and can also hydrolyze inorganic diphosphate, but with lower efficiency (By similarity). {ECO:0000250}. |
Q9H0L4 | CSTF2T | S113 | ochoa | Cleavage stimulation factor subunit 2 tau variant (CF-1 64 kDa subunit tau variant) (Cleavage stimulation factor 64 kDa subunit tau variant) (CSTF 64 kDa subunit tau variant) (TauCstF-64) | May play a significant role in AAUAAA-independent mRNA polyadenylation in germ cells. Directly involved in the binding to pre-mRNAs (By similarity). {ECO:0000250}. |
Q9H161 | ALX4 | S200 | ochoa | Homeobox protein aristaless-like 4 | Transcription factor involved in skull and limb development. Plays an essential role in craniofacial development, skin and hair follicle development. {ECO:0000269|PubMed:19692347}. |
Q9H211 | CDT1 | S318 | ochoa|psp | DNA replication factor Cdt1 (Double parked homolog) (DUP) | Required for both DNA replication and mitosis (PubMed:11125146, PubMed:14993212, PubMed:21856198, PubMed:22581055, PubMed:26842564). DNA replication licensing factor, required for pre-replication complex assembly. Cooperates with CDC6 and the origin recognition complex (ORC) during G1 phase of the cell cycle to promote the loading of the mini-chromosome maintenance (MCM) complex onto DNA to generate pre-replication complexes (pre-RC) (PubMed:14672932). Required also for mitosis by promoting stable kinetochore-microtubule attachments (PubMed:22581055). Potential oncogene (By similarity). {ECO:0000250|UniProtKB:Q8R4E9, ECO:0000269|PubMed:11125146, ECO:0000269|PubMed:14672932, ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22581055, ECO:0000269|PubMed:26842564}. |
Q9H2B2 | SYT4 | S69 | ochoa | Synaptotagmin-4 (Synaptotagmin IV) (SytIV) | Synaptotagmin family member which does not bind Ca(2+) (By similarity) (PubMed:23999003). Involved in neuronal dense core vesicles (DCVs) mobility through its interaction with KIF1A. Upon increased neuronal activity, phosphorylation by MAPK8/JNK1 destabilizes the interaction with KIF1A and captures DCVs to synapses (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:P50232, ECO:0000269|PubMed:23999003}. |
Q9H410 | DSN1 | S30 | ochoa | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H6L5 | RETREG1 | S281 | ochoa | Reticulophagy regulator 1 (Reticulophagy receptor 1) | Endoplasmic reticulum (ER)-anchored autophagy regulator which mediates ER delivery into lysosomes through sequestration into autophagosomes (PubMed:26040720, PubMed:31930741, PubMed:34338405). Promotes membrane remodeling and ER scission via its membrane bending capacity and targets the fragments into autophagosomes via interaction with ATG8 family proteins (PubMed:26040720, PubMed:31930741, PubMed:34338405). Active under basal conditions (PubMed:34338405). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Required for long-term survival of nociceptive and autonomic ganglion neurons (PubMed:19838196, PubMed:26040720). {ECO:0000250|UniProtKB:Q8VE91, ECO:0000269|PubMed:19838196, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:34338405}.; FUNCTION: (Microbial infection) During SARS-CoV-2 infection, RETREG1-mediated reticulophagy is promoted by SARS-CoV-2 ORF3A protein (PubMed:35239449). This induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:35239449}. |
Q9H706 | GAREM1 | S492 | ochoa | GRB2-associated and regulator of MAPK protein 1 (GRB2-associated and regulator of MAPK1) | [Isoform 1]: Acts as an adapter protein that plays a role in intracellular signaling cascades triggered either by the cell surface activated epidermal growth factor receptor and/or cytoplasmic protein tyrosine kinases. Promotes activation of the MAPK/ERK signaling pathway. Plays a role in the regulation of cell proliferation. {ECO:0000269|PubMed:19509291}. |
Q9HC44 | GPBP1L1 | S216 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9NPE3 | NOP10 | S36 | ochoa | H/ACA ribonucleoprotein complex subunit 3 (Nucleolar protein 10) (Nucleolar protein family A member 3) (snoRNP protein NOP10) | Required for ribosome biogenesis and telomere maintenance. Part of the H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1. Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. May also be required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme. {ECO:0000269|PubMed:15044956, ECO:0000269|PubMed:32554502}. |
Q9NRM7 | LATS2 | S576 | ochoa | Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}. |
Q9NX40 | OCIAD1 | S108 | ochoa | OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) | Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}. |
Q9NYF8 | BCLAF1 | S496 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NZC9 | SMARCAL1 | S112 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A-like protein 1 (EC 3.6.4.-) (HepA-related protein) (hHARP) (Sucrose nonfermenting protein 2-like 1) | ATP-dependent annealing helicase that binds selectively to fork DNA relative to ssDNA or dsDNA and catalyzes the rewinding of the stably unwound DNA. Rewinds single-stranded DNA bubbles that are stably bound by replication protein A (RPA). Acts throughout the genome to reanneal stably unwound DNA, performing the opposite reaction of many enzymes, such as helicases and polymerases, that unwind DNA. May play an important role in DNA damage response by acting at stalled replication forks. {ECO:0000269|PubMed:18805831, ECO:0000269|PubMed:18974355, ECO:0000269|PubMed:19793861, ECO:0000269|PubMed:19793862}. |
Q9P0K7 | RAI14 | S386 | ochoa | Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) | Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}. |
Q9UBZ9 | REV1 | S1088 | ochoa | DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) | Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}. |
Q9UER7 | DAXX | S647 | ochoa | Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) | Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}. |
Q9UHF7 | TRPS1 | S90 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9UHI6 | DDX20 | S532 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UHV7 | MED13 | S1750 | ochoa | Mediator of RNA polymerase II transcription subunit 13 (Activator-recruited cofactor 250 kDa component) (ARC250) (Mediator complex subunit 13) (Thyroid hormone receptor-associated protein 1) (Thyroid hormone receptor-associated protein complex 240 kDa component) (Trap240) (Vitamin D3 receptor-interacting protein complex component DRIP250) (DRIP250) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. {ECO:0000269|PubMed:16595664}. |
Q9UIB8 | CD84 | S293 | ochoa | SLAM family member 5 (Cell surface antigen MAX.3) (Hly9-beta) (Leukocyte differentiation antigen CD84) (Signaling lymphocytic activation molecule 5) (CD antigen CD84) | Self-ligand receptor of the signaling lymphocytic activation molecule (SLAM) family. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Can mediate natural killer (NK) cell cytotoxicity dependent on SH2D1A and SH2D1B (By similarity). Increases proliferative responses of activated T-cells and SH2D1A/SAP does not seem be required for this process. Homophilic interactions enhance interferon gamma/IFNG secretion in lymphocytes and induce platelet stimulation via a SH2D1A-dependent pathway. May serve as a marker for hematopoietic progenitor cells (PubMed:11564780, PubMed:12115647, PubMed:12928397, PubMed:12962726, PubMed:16037392) Required for a prolonged T-cell:B-cell contact, optimal T follicular helper function, and germinal center formation. In germinal centers involved in maintaining B-cell tolerance and in preventing autoimmunity (By similarity). In mast cells negatively regulates high affinity immunoglobulin epsilon receptor signaling; independent of SH2D1A and SH2D1B but implicating FES and PTPN6/SHP-1 (PubMed:22068234). In macrophages enhances LPS-induced MAPK phosphorylation and NF-kappaB activation and modulates LPS-induced cytokine secretion; involving ITSM 2 (By similarity). Positively regulates macroautophagy in primary dendritic cells via stabilization of IRF8; inhibits TRIM21-mediated proteasomal degradation of IRF8 (PubMed:29434592). {ECO:0000250|UniProtKB:Q18PI6, ECO:0000269|PubMed:11564780, ECO:0000269|PubMed:12115647, ECO:0000269|PubMed:12928397, ECO:0000269|PubMed:12962726, ECO:0000269|PubMed:16037392, ECO:0000269|PubMed:22068234, ECO:0000269|PubMed:29434592, ECO:0000305}. |
Q9UKA4 | AKAP11 | S743 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKI2 | CDC42EP3 | S27 | ochoa | Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) | Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}. |
Q9UKL3 | CASP8AP2 | S168 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9ULU4 | ZMYND8 | S652 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UPU5 | USP24 | S2551 | ochoa | Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) | Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}. |
Q9UQ84 | EXO1 | S376 | ochoa | Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) | 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}. |
Q9UQB3 | CTNND2 | S1127 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9Y295 | DRG1 | S307 | ochoa | Developmentally-regulated GTP-binding protein 1 (DRG-1) (Neural precursor cell expressed developmentally down-regulated protein 3) (NEDD-3) (Translation factor GTPase DRG1) (TRAFAC GTPase DRG1) (EC 3.6.5.-) | Catalyzes the conversion of GTP to GDP through hydrolysis of the gamma-phosphate bond in GTP (PubMed:23711155, PubMed:29915238, PubMed:37179472). Appears to have an intrinsic GTPase activity that is stimulated by ZC3H15/DFRP1 binding likely by increasing the affinity for the potassium ions (PubMed:23711155). When hydroxylated at C-3 of 'Lys-22' by JMJD7, may bind to RNA and play a role in translation (PubMed:19819225, PubMed:29915238). Binds to microtubules and promotes microtubule polymerization and stability that are required for mitotic spindle assembly during prophase to anaphase transition. GTPase activity is not necessary for these microtubule-related functions (PubMed:28855639). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155, ECO:0000269|PubMed:28855639, ECO:0000269|PubMed:29915238, ECO:0000269|PubMed:37179472}. |
Q9Y2F5 | ICE1 | S516 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y314 | NOSIP | S36 | ochoa | Nitric oxide synthase-interacting protein (E3 ubiquitin-protein ligase NOSIP) (EC 2.3.2.27) (RING-type E3 ubiquitin transferase NOSIP) (eNOS-interacting protein) | E3 ubiquitin-protein ligase that is essential for proper development of the forebrain, the eye, and the face. Catalyzes monoubiquitination of serine/threonine-protein phosphatase 2A (PP2A) catalytic subunit PPP2CA/PPP2CB (By similarity). Negatively regulates nitric oxide production by inducing NOS1 and NOS3 translocation to actin cytoskeleton and inhibiting their enzymatic activity (PubMed:11149895, PubMed:15548660, PubMed:16135813). {ECO:0000250|UniProtKB:Q9D6T0, ECO:0000269|PubMed:11149895, ECO:0000269|PubMed:15548660, ECO:0000269|PubMed:16135813}. |
Q9Y3P9 | RABGAP1 | S389 | ochoa | Rab GTPase-activating protein 1 (GAP and centrosome-associated protein) (Rab6 GTPase-activating protein GAPCenA) | May act as a GTPase-activating protein of RAB6A. May play a role in microtubule nucleation by centrosome. May participate in a RAB6A-mediated pathway involved in the metaphase-anaphase transition. {ECO:0000269|PubMed:10202141, ECO:0000269|PubMed:16395330}. |
Q9Y4F3 | MARF1 | S66 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y6U3 | SCIN | S381 | ochoa | Scinderin (Adseverin) | Ca(2+)-dependent actin filament-severing protein that has a regulatory function in exocytosis by affecting the organization of the microfilament network underneath the plasma membrane (PubMed:26365202, PubMed:8547642). Severing activity is inhibited by phosphatidylinositol 4,5-bis-phosphate (PIP2) (By similarity). In vitro, also has barbed end capping and nucleating activities in the presence of Ca(2+). Required for megakaryocyte differentiation, maturation, polyploidization and apoptosis with the release of platelet-like particles (PubMed:11568009). Plays a role in osteoclastogenesis (OCG) and actin cytoskeletal organization in osteoclasts (By similarity). Regulates chondrocyte proliferation and differentiation (By similarity). Inhibits cell proliferation and tumorigenesis. Signaling is mediated by MAPK, p38 and JNK pathways (PubMed:11568009). {ECO:0000250|UniProtKB:Q28046, ECO:0000250|UniProtKB:Q5ZIV9, ECO:0000250|UniProtKB:Q60604, ECO:0000269|PubMed:11568009, ECO:0000269|PubMed:26365202, ECO:0000269|PubMed:8547642}. |
Q08752 | PPID | S119 | Sugiyama | Peptidyl-prolyl cis-trans isomerase D (PPIase D) (EC 5.2.1.8) (40 kDa peptidyl-prolyl cis-trans isomerase) (Cyclophilin-40) (CYP-40) (Cyclophilin-related protein) (Rotamase D) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:11350175, PubMed:20676357). Proposed to act as a co-chaperone in HSP90 complexes such as in unligated steroid receptors heterocomplexes. Different co-chaperones seem to compete for association with HSP90 thus establishing distinct HSP90-co-chaperone-receptor complexes with the potential to exert tissue-specific receptor activity control. May have a preference for estrogen receptor complexes and is not found in glucocorticoid receptor complexes. May be involved in cytoplasmic dynein-dependent movement of the receptor from the cytoplasm to the nucleus. May regulate MYB by inhibiting its DNA-binding activity. Involved in regulation of AHR signaling by promoting the formation of the AHR:ARNT dimer; the function is independent of HSP90 but requires the chaperone activity. Involved in regulation of UV radiation-induced apoptosis. Promotes cell viability in anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma (ALK+ ALCL) cell lines. {ECO:0000269|PubMed:11350175, ECO:0000269|PubMed:18708059, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22681779, ECO:0000269|PubMed:23220213, ECO:0000269|PubMed:9659917}.; FUNCTION: (Microbial infection) May be involved in hepatitis C virus (HCV) replication and release. {ECO:0000269|PubMed:19932913, ECO:0000269|PubMed:21711559}. |
P11168 | SLC2A2 | S505 | ELM|iPTMNet|EPSD | Solute carrier family 2, facilitated glucose transporter member 2 (Glucose transporter type 2, liver) (GLUT-2) | Facilitative hexose transporter that mediates the transport of glucose, fructose and galactose (PubMed:16186102, PubMed:23396969, PubMed:28083649, PubMed:8027028, PubMed:8457197). Likely mediates the bidirectional transfer of glucose across the plasma membrane of hepatocytes and is responsible for uptake of glucose by the beta cells; may comprise part of the glucose-sensing mechanism of the beta cell (PubMed:8027028). May also participate with the Na(+)/glucose cotransporter in the transcellular transport of glucose in the small intestine and kidney (PubMed:3399500). Also able to mediate the transport of dehydroascorbate (PubMed:23396969). {ECO:0000269|PubMed:16186102, ECO:0000269|PubMed:23396969, ECO:0000269|PubMed:28083649, ECO:0000269|PubMed:3399500, ECO:0000269|PubMed:8027028, ECO:0000269|PubMed:8457197}. |
Q96G03 | PGM2 | S186 | Sugiyama | Phosphopentomutase (EC 5.4.2.7) (Glucose phosphomutase 2) (Phosphodeoxyribomutase) (Phosphoglucomutase-2) (EC 5.4.2.2) | Catalyzes the conversion of the nucleoside breakdown products ribose-1-phosphate and deoxyribose-1-phosphate to the corresponding 5-phosphopentoses (PubMed:17804405). Catalyzes the reversible isomerization of alpha-D-glucose 1-phosphate to alpha-D-glucose 6-phosphate but with a lower catalytic efficiency (PubMed:17804405). The mechanism proceeds via the intermediate compound alpha-D-glucose 1,6-bisphosphate (PubMed:17804405). In vitro, also has a low glucose 1,6-bisphosphate synthase activity which is most probably not physiologically relevant (PubMed:17804405, PubMed:18927083). {ECO:0000269|PubMed:17804405, ECO:0000269|PubMed:18927083}. |
P29597 | TYK2 | S1063 | Sugiyama | Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) | Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}. |
P54762 | EPHB1 | S588 | Sugiyama | Ephrin type-B receptor 1 (EC 2.7.10.1) (ELK) (EPH tyrosine kinase 2) (EPH-like kinase 6) (EK6) (hEK6) (Neuronally-expressed EPH-related tyrosine kinase) (NET) (Tyrosine-protein kinase receptor EPH-2) | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Cognate/functional ephrin ligands for this receptor include EFNB1, EFNB2 and EFNB3. During nervous system development, regulates retinal axon guidance redirecting ipsilaterally ventrotemporal retinal ganglion cells axons at the optic chiasm midline. This probably requires repulsive interaction with EFNB2. In the adult nervous system together with EFNB3, regulates chemotaxis, proliferation and polarity of the hippocampus neural progenitors. In addition to its role in axon guidance also plays an important redundant role with other ephrin-B receptors in development and maturation of dendritic spines and synapse formation. May also regulate angiogenesis. More generally, may play a role in targeted cell migration and adhesion. Upon activation by EFNB1 and probably other ephrin-B ligands activates the MAPK/ERK and the JNK signaling cascades to regulate cell migration and adhesion respectively. Involved in the maintenance of the pool of satellite cells (muscle stem cells) by promoting their self-renewal and reducing their activation and differentiation (By similarity). {ECO:0000250|UniProtKB:Q8CBF3, ECO:0000269|PubMed:12223469, ECO:0000269|PubMed:12925710, ECO:0000269|PubMed:18034775, ECO:0000269|PubMed:9430661, ECO:0000269|PubMed:9499402}. |
P25815 | S100P | S47 | Sugiyama | Protein S100-P (Migration-inducing gene 9 protein) (MIG9) (Protein S100-E) (S100 calcium-binding protein P) | May function as calcium sensor and contribute to cellular calcium signaling. In a calcium-dependent manner, functions by interacting with other proteins, such as EZR and PPP5C, and indirectly plays a role in physiological processes like the formation of microvilli in epithelial cells. May stimulate cell proliferation in an autocrine manner via activation of the receptor for activated glycation end products (RAGE). {ECO:0000269|PubMed:14617629, ECO:0000269|PubMed:19111582, ECO:0000269|PubMed:22399290}. |
P20810 | CAST | S45 | SIGNOR | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P0DPB6 | POLR1D | S78 | Sugiyama | DNA-directed RNA polymerases I and III subunit RPAC2 (RNA polymerases I and III subunit AC2) (AC19) (DNA-directed RNA polymerase I subunit D) (RNA polymerase I 16 kDa subunit) (RPA16) (RPC16) (hRPA19) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and short non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs, respectively. {ECO:0000250|UniProtKB:P28000, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:35637192, ECO:0000269|PubMed:36271492}. |
Q9UK32 | RPS6KA6 | S712 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-3371556 | Cellular response to heat stress | 9.769963e-15 | 14.010 |
R-HSA-3371571 | HSF1-dependent transactivation | 4.856116e-13 | 12.314 |
R-HSA-3371568 | Attenuation phase | 2.459033e-12 | 11.609 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 5.257683e-12 | 11.279 |
R-HSA-1640170 | Cell Cycle | 1.999432e-10 | 9.699 |
R-HSA-3371511 | HSF1 activation | 2.472814e-10 | 9.607 |
R-HSA-2262752 | Cellular responses to stress | 1.051374e-09 | 8.978 |
R-HSA-8953897 | Cellular responses to stimuli | 9.992130e-10 | 9.000 |
R-HSA-69278 | Cell Cycle, Mitotic | 2.051584e-07 | 6.688 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 1.697103e-06 | 5.770 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 2.600058e-06 | 5.585 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 3.141300e-06 | 5.503 |
R-HSA-68886 | M Phase | 6.337522e-06 | 5.198 |
R-HSA-69620 | Cell Cycle Checkpoints | 7.081258e-06 | 5.150 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 1.071232e-05 | 4.970 |
R-HSA-68877 | Mitotic Prometaphase | 1.679612e-05 | 4.775 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 1.675688e-05 | 4.776 |
R-HSA-2467813 | Separation of Sister Chromatids | 1.970784e-05 | 4.705 |
R-HSA-68882 | Mitotic Anaphase | 2.028479e-05 | 4.693 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 2.197828e-05 | 4.658 |
R-HSA-3214841 | PKMTs methylate histone lysines | 4.073515e-05 | 4.390 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 6.857844e-05 | 4.164 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 6.695049e-05 | 4.174 |
R-HSA-141424 | Amplification of signal from the kinetochores | 6.695049e-05 | 4.174 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 7.861434e-05 | 4.104 |
R-HSA-9833482 | PKR-mediated signaling | 1.019810e-04 | 3.991 |
R-HSA-9944971 | Loss of Function of KMT2D in Kabuki Syndrome | 2.500787e-04 | 3.602 |
R-HSA-9944997 | Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome | 2.500787e-04 | 3.602 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 2.560594e-04 | 3.592 |
R-HSA-74160 | Gene expression (Transcription) | 2.350166e-04 | 3.629 |
R-HSA-6807878 | COPI-mediated anterograde transport | 3.004916e-04 | 3.522 |
R-HSA-422475 | Axon guidance | 3.043662e-04 | 3.517 |
R-HSA-936837 | Ion transport by P-type ATPases | 4.689886e-04 | 3.329 |
R-HSA-75153 | Apoptotic execution phase | 4.736130e-04 | 3.325 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 5.163701e-04 | 3.287 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 5.326610e-04 | 3.274 |
R-HSA-73886 | Chromosome Maintenance | 5.947726e-04 | 3.226 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 6.631712e-04 | 3.178 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 8.392574e-04 | 3.076 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 8.392574e-04 | 3.076 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 8.392574e-04 | 3.076 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 8.392574e-04 | 3.076 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 8.270954e-04 | 3.082 |
R-HSA-9675108 | Nervous system development | 7.745284e-04 | 3.111 |
R-HSA-438064 | Post NMDA receptor activation events | 7.823593e-04 | 3.107 |
R-HSA-913531 | Interferon Signaling | 7.700314e-04 | 3.113 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 8.400876e-04 | 3.076 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 8.753169e-04 | 3.058 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 9.225124e-04 | 3.035 |
R-HSA-4839726 | Chromatin organization | 9.291508e-04 | 3.032 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 1.131850e-03 | 2.946 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 1.176157e-03 | 2.930 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 1.200579e-03 | 2.921 |
R-HSA-5633007 | Regulation of TP53 Activity | 1.234336e-03 | 2.909 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 1.347317e-03 | 2.871 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 1.334207e-03 | 2.875 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 1.347317e-03 | 2.871 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 1.459488e-03 | 2.836 |
R-HSA-69473 | G2/M DNA damage checkpoint | 1.499098e-03 | 2.824 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 1.588679e-03 | 2.799 |
R-HSA-3247509 | Chromatin modifying enzymes | 1.592928e-03 | 2.798 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 1.765366e-03 | 2.753 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 1.716930e-03 | 2.765 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 1.880121e-03 | 2.726 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 1.880121e-03 | 2.726 |
R-HSA-399719 | Trafficking of AMPA receptors | 1.880121e-03 | 2.726 |
R-HSA-5578775 | Ion homeostasis | 1.820172e-03 | 2.740 |
R-HSA-437239 | Recycling pathway of L1 | 1.933118e-03 | 2.714 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 1.970447e-03 | 2.705 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 1.963722e-03 | 2.707 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 2.049049e-03 | 2.688 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 2.180158e-03 | 2.662 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 2.214594e-03 | 2.655 |
R-HSA-73857 | RNA Polymerase II Transcription | 2.126030e-03 | 2.672 |
R-HSA-9827857 | Specification of primordial germ cells | 2.214594e-03 | 2.655 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 2.255144e-03 | 2.647 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 2.271779e-03 | 2.644 |
R-HSA-9646399 | Aggrephagy | 2.271779e-03 | 2.644 |
R-HSA-373760 | L1CAM interactions | 2.397001e-03 | 2.620 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 2.588560e-03 | 2.587 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 2.588560e-03 | 2.587 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 2.588560e-03 | 2.587 |
R-HSA-191859 | snRNP Assembly | 2.576989e-03 | 2.589 |
R-HSA-194441 | Metabolism of non-coding RNA | 2.576989e-03 | 2.589 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 2.588560e-03 | 2.587 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 2.588560e-03 | 2.587 |
R-HSA-5693538 | Homology Directed Repair | 2.792441e-03 | 2.554 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 2.736870e-03 | 2.563 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 2.752997e-03 | 2.560 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 2.801024e-03 | 2.553 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 3.013249e-03 | 2.521 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 3.013249e-03 | 2.521 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 3.490272e-03 | 2.457 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 3.490272e-03 | 2.457 |
R-HSA-68875 | Mitotic Prophase | 3.240671e-03 | 2.489 |
R-HSA-69275 | G2/M Transition | 3.220044e-03 | 2.492 |
R-HSA-453274 | Mitotic G2-G2/M phases | 3.612975e-03 | 2.442 |
R-HSA-1632852 | Macroautophagy | 3.427407e-03 | 2.465 |
R-HSA-212436 | Generic Transcription Pathway | 3.504298e-03 | 2.455 |
R-HSA-180746 | Nuclear import of Rev protein | 3.490272e-03 | 2.457 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 3.691419e-03 | 2.433 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 3.850949e-03 | 2.414 |
R-HSA-73887 | Death Receptor Signaling | 3.930956e-03 | 2.406 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 4.023795e-03 | 2.395 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 4.120848e-03 | 2.385 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 4.183269e-03 | 2.378 |
R-HSA-9612973 | Autophagy | 4.448869e-03 | 2.352 |
R-HSA-8953854 | Metabolism of RNA | 4.520705e-03 | 2.345 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 4.604456e-03 | 2.337 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 4.701392e-03 | 2.328 |
R-HSA-774815 | Nucleosome assembly | 4.929134e-03 | 2.307 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 4.929134e-03 | 2.307 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 5.277512e-03 | 2.278 |
R-HSA-9020591 | Interleukin-12 signaling | 5.054867e-03 | 2.296 |
R-HSA-9694516 | SARS-CoV-2 Infection | 5.120415e-03 | 2.291 |
R-HSA-9679506 | SARS-CoV Infections | 5.311936e-03 | 2.275 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 5.366559e-03 | 2.270 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 5.366559e-03 | 2.270 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 5.924069e-03 | 2.227 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 5.924069e-03 | 2.227 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 6.006499e-03 | 2.221 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 5.924069e-03 | 2.227 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 5.924069e-03 | 2.227 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 5.542335e-03 | 2.256 |
R-HSA-9675135 | Diseases of DNA repair | 5.542335e-03 | 2.256 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 6.006499e-03 | 2.221 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 6.051105e-03 | 2.218 |
R-HSA-9663891 | Selective autophagy | 6.051105e-03 | 2.218 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 6.457128e-03 | 2.190 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 6.457128e-03 | 2.190 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 6.457128e-03 | 2.190 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 6.457128e-03 | 2.190 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 6.457128e-03 | 2.190 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 6.462968e-03 | 2.190 |
R-HSA-199991 | Membrane Trafficking | 6.747511e-03 | 2.171 |
R-HSA-1500931 | Cell-Cell communication | 6.816351e-03 | 2.166 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 6.809544e-03 | 2.167 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 6.825568e-03 | 2.166 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 6.907971e-03 | 2.161 |
R-HSA-397014 | Muscle contraction | 7.006737e-03 | 2.154 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 7.017880e-03 | 2.154 |
R-HSA-70171 | Glycolysis | 7.463812e-03 | 2.127 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 7.684465e-03 | 2.114 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 7.691181e-03 | 2.114 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 7.691181e-03 | 2.114 |
R-HSA-73894 | DNA Repair | 7.842307e-03 | 2.106 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 8.128701e-03 | 2.090 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 9.386132e-03 | 2.028 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 9.386132e-03 | 2.028 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 9.386132e-03 | 2.028 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 8.655970e-03 | 2.063 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 9.386132e-03 | 2.028 |
R-HSA-9675151 | Disorders of Developmental Biology | 8.827661e-03 | 2.054 |
R-HSA-447038 | NrCAM interactions | 8.669387e-03 | 2.062 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 8.655970e-03 | 2.063 |
R-HSA-168255 | Influenza Infection | 8.614849e-03 | 2.065 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 9.421165e-03 | 2.026 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 9.962098e-03 | 2.002 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 1.014263e-02 | 1.994 |
R-HSA-5693537 | Resolution of D-Loop Structures | 1.066520e-02 | 1.972 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 1.101052e-02 | 1.958 |
R-HSA-9620244 | Long-term potentiation | 1.117023e-02 | 1.952 |
R-HSA-428540 | Activation of RAC1 | 1.276913e-02 | 1.894 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 1.198214e-02 | 1.921 |
R-HSA-9948299 | Ribosome-associated quality control | 1.260428e-02 | 1.899 |
R-HSA-69481 | G2/M Checkpoints | 1.209862e-02 | 1.917 |
R-HSA-156711 | Polo-like kinase mediated events | 1.265426e-02 | 1.898 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 1.276913e-02 | 1.894 |
R-HSA-114608 | Platelet degranulation | 1.209862e-02 | 1.917 |
R-HSA-446728 | Cell junction organization | 1.275373e-02 | 1.894 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 1.276913e-02 | 1.894 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 1.300104e-02 | 1.886 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 1.326942e-02 | 1.877 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 1.343990e-02 | 1.872 |
R-HSA-447115 | Interleukin-12 family signaling | 1.345082e-02 | 1.871 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 1.352749e-02 | 1.869 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 1.359561e-02 | 1.867 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 1.359561e-02 | 1.867 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 1.386763e-02 | 1.858 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 1.386763e-02 | 1.858 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 1.415446e-02 | 1.849 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 1.488646e-02 | 1.827 |
R-HSA-212165 | Epigenetic regulation of gene expression | 1.497804e-02 | 1.825 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 1.574730e-02 | 1.803 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 1.923289e-02 | 1.716 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 1.923289e-02 | 1.716 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 1.878808e-02 | 1.726 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 1.910143e-02 | 1.719 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 1.780597e-02 | 1.749 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 1.780597e-02 | 1.749 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 1.746993e-02 | 1.758 |
R-HSA-373753 | Nephrin family interactions | 1.746993e-02 | 1.758 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 1.923289e-02 | 1.716 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 2.164665e-02 | 1.665 |
R-HSA-447041 | CHL1 interactions | 2.221200e-02 | 1.653 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 2.274055e-02 | 1.643 |
R-HSA-6804754 | Regulation of TP53 Expression | 2.390248e-02 | 1.622 |
R-HSA-8985801 | Regulation of cortical dendrite branching | 2.390248e-02 | 1.622 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 2.441826e-02 | 1.612 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 2.447378e-02 | 1.611 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 2.476917e-02 | 1.606 |
R-HSA-9679191 | Potential therapeutics for SARS | 2.493870e-02 | 1.603 |
R-HSA-72737 | Cap-dependent Translation Initiation | 2.523622e-02 | 1.598 |
R-HSA-72613 | Eukaryotic Translation Initiation | 2.523622e-02 | 1.598 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 2.577940e-02 | 1.589 |
R-HSA-72764 | Eukaryotic Translation Termination | 2.636057e-02 | 1.579 |
R-HSA-70326 | Glucose metabolism | 2.666970e-02 | 1.574 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 2.702647e-02 | 1.568 |
R-HSA-193639 | p75NTR signals via NF-kB | 2.740956e-02 | 1.562 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 2.740956e-02 | 1.562 |
R-HSA-446353 | Cell-extracellular matrix interactions | 2.740956e-02 | 1.562 |
R-HSA-446107 | Type I hemidesmosome assembly | 2.832600e-02 | 1.548 |
R-HSA-176412 | Phosphorylation of the APC/C | 3.216606e-02 | 1.493 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 3.040984e-02 | 1.517 |
R-HSA-72187 | mRNA 3'-end processing | 2.834039e-02 | 1.548 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 3.198767e-02 | 1.495 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 3.078223e-02 | 1.512 |
R-HSA-156902 | Peptide chain elongation | 3.216513e-02 | 1.493 |
R-HSA-9656223 | Signaling by RAF1 mutants | 2.835987e-02 | 1.547 |
R-HSA-168898 | Toll-like Receptor Cascades | 2.795601e-02 | 1.554 |
R-HSA-1474165 | Reproduction | 3.007941e-02 | 1.522 |
R-HSA-1169408 | ISG15 antiviral mechanism | 2.822187e-02 | 1.549 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 3.248365e-02 | 1.488 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 3.248365e-02 | 1.488 |
R-HSA-9609690 | HCMV Early Events | 3.432891e-02 | 1.464 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 3.438220e-02 | 1.464 |
R-HSA-162587 | HIV Life Cycle | 3.454204e-02 | 1.462 |
R-HSA-416482 | G alpha (12/13) signalling events | 3.458275e-02 | 1.461 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 3.523972e-02 | 1.453 |
R-HSA-448706 | Interleukin-1 processing | 3.523972e-02 | 1.453 |
R-HSA-9824446 | Viral Infection Pathways | 3.560795e-02 | 1.448 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 3.561722e-02 | 1.448 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 3.593877e-02 | 1.444 |
R-HSA-8875513 | MET interacts with TNS proteins | 3.593877e-02 | 1.444 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 3.609010e-02 | 1.443 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 3.691021e-02 | 1.433 |
R-HSA-190861 | Gap junction assembly | 3.692694e-02 | 1.433 |
R-HSA-190828 | Gap junction trafficking | 3.713310e-02 | 1.430 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 3.713310e-02 | 1.430 |
R-HSA-9762292 | Regulation of CDH11 function | 4.294007e-02 | 1.367 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 4.294007e-02 | 1.367 |
R-HSA-6798695 | Neutrophil degranulation | 4.355259e-02 | 1.361 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 4.238525e-02 | 1.373 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 4.238525e-02 | 1.373 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 4.238525e-02 | 1.373 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 4.387700e-02 | 1.358 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 4.387700e-02 | 1.358 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 4.387700e-02 | 1.358 |
R-HSA-6802949 | Signaling by RAS mutants | 4.387700e-02 | 1.358 |
R-HSA-376176 | Signaling by ROBO receptors | 4.498209e-02 | 1.347 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 4.522566e-02 | 1.345 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 4.172902e-02 | 1.380 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 4.752621e-02 | 1.323 |
R-HSA-156842 | Eukaryotic Translation Elongation | 4.334953e-02 | 1.363 |
R-HSA-5688426 | Deubiquitination | 4.117533e-02 | 1.385 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 4.294007e-02 | 1.367 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 4.815496e-02 | 1.317 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 4.828339e-02 | 1.316 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 4.837631e-02 | 1.315 |
R-HSA-180786 | Extension of Telomeres | 4.847954e-02 | 1.314 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 4.847954e-02 | 1.314 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 4.916416e-02 | 1.308 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 4.916416e-02 | 1.308 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 4.916416e-02 | 1.308 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 4.957653e-02 | 1.305 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 5.140718e-02 | 1.289 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 5.140718e-02 | 1.289 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 5.141366e-02 | 1.289 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 5.141366e-02 | 1.289 |
R-HSA-983189 | Kinesins | 5.195980e-02 | 1.284 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 5.403226e-02 | 1.267 |
R-HSA-157858 | Gap junction trafficking and regulation | 5.539008e-02 | 1.257 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 5.559686e-02 | 1.255 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 5.559686e-02 | 1.255 |
R-HSA-844456 | The NLRP3 inflammasome | 5.573995e-02 | 1.254 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 5.573995e-02 | 1.254 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 5.703135e-02 | 1.244 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 5.736715e-02 | 1.241 |
R-HSA-9723907 | Loss of Function of TP53 in Cancer | 5.740753e-02 | 1.241 |
R-HSA-5467345 | Deletions in the AXIN1 gene destabilize the destruction complex | 5.740753e-02 | 1.241 |
R-HSA-9723905 | Loss of function of TP53 in cancer due to loss of tetramerization ability | 5.740753e-02 | 1.241 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 5.804470e-02 | 1.236 |
R-HSA-5576891 | Cardiac conduction | 5.846398e-02 | 1.233 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 6.526489e-02 | 1.185 |
R-HSA-203754 | NOSIP mediated eNOS trafficking | 6.526489e-02 | 1.185 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 6.061554e-02 | 1.217 |
R-HSA-6807004 | Negative regulation of MET activity | 6.276472e-02 | 1.202 |
R-HSA-2132295 | MHC class II antigen presentation | 6.785714e-02 | 1.168 |
R-HSA-157579 | Telomere Maintenance | 5.998076e-02 | 1.222 |
R-HSA-209543 | p75NTR recruits signalling complexes | 7.053502e-02 | 1.152 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 7.091941e-02 | 1.149 |
R-HSA-202403 | TCR signaling | 6.281148e-02 | 1.202 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 6.526489e-02 | 1.185 |
R-HSA-373755 | Semaphorin interactions | 6.334665e-02 | 1.198 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 6.746140e-02 | 1.171 |
R-HSA-9711097 | Cellular response to starvation | 6.320261e-02 | 1.199 |
R-HSA-210991 | Basigin interactions | 7.023168e-02 | 1.153 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 5.939210e-02 | 1.226 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 6.406946e-02 | 1.193 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 7.023168e-02 | 1.153 |
R-HSA-2408557 | Selenocysteine synthesis | 7.313024e-02 | 1.136 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 7.091941e-02 | 1.149 |
R-HSA-6784531 | tRNA processing in the nucleus | 5.939210e-02 | 1.226 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 7.549851e-02 | 1.122 |
R-HSA-8854518 | AURKA Activation by TPX2 | 7.617364e-02 | 1.118 |
R-HSA-72312 | rRNA processing | 7.716002e-02 | 1.113 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 7.739238e-02 | 1.111 |
R-HSA-162582 | Signal Transduction | 7.805860e-02 | 1.108 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 7.813208e-02 | 1.107 |
R-HSA-192823 | Viral mRNA Translation | 8.034162e-02 | 1.095 |
R-HSA-5693606 | DNA Double Strand Break Response | 8.077159e-02 | 1.093 |
R-HSA-5357801 | Programmed Cell Death | 8.105551e-02 | 1.091 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 8.113178e-02 | 1.091 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 8.113178e-02 | 1.091 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 8.113178e-02 | 1.091 |
R-HSA-381070 | IRE1alpha activates chaperones | 8.129991e-02 | 1.090 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 8.159397e-02 | 1.088 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 8.207763e-02 | 1.086 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 8.207763e-02 | 1.086 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 8.207763e-02 | 1.086 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 8.410792e-02 | 1.075 |
R-HSA-354192 | Integrin signaling | 8.417221e-02 | 1.075 |
R-HSA-9733709 | Cardiogenesis | 8.417221e-02 | 1.075 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 8.417221e-02 | 1.075 |
R-HSA-9609646 | HCMV Infection | 8.583663e-02 | 1.066 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 8.645541e-02 | 1.063 |
R-HSA-75893 | TNF signaling | 8.896032e-02 | 1.051 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 8.896032e-02 | 1.051 |
R-HSA-193648 | NRAGE signals death through JNK | 8.896032e-02 | 1.051 |
R-HSA-9734091 | Drug-mediated inhibition of MET activation | 1.115227e-01 | 0.953 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 1.115227e-01 | 0.953 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 1.115227e-01 | 0.953 |
R-HSA-3642279 | TGFBR2 MSI Frameshift Mutants in Cancer | 1.115227e-01 | 0.953 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 1.115227e-01 | 0.953 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 1.115227e-01 | 0.953 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 1.115227e-01 | 0.953 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 1.189688e-01 | 0.925 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 1.189688e-01 | 0.925 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 1.189688e-01 | 0.925 |
R-HSA-114516 | Disinhibition of SNARE formation | 1.189688e-01 | 0.925 |
R-HSA-5656121 | Translesion synthesis by POLI | 1.166073e-01 | 0.933 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 1.166073e-01 | 0.933 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 1.043209e-01 | 0.982 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 1.043209e-01 | 0.982 |
R-HSA-390522 | Striated Muscle Contraction | 9.125427e-02 | 1.040 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 1.042045e-01 | 0.982 |
R-HSA-8955332 | Carboxyterminal post-translational modifications of tubulin | 1.110196e-01 | 0.955 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 1.180561e-01 | 0.928 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 1.002465e-01 | 0.999 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 1.042077e-01 | 0.982 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 1.166073e-01 | 0.933 |
R-HSA-1500620 | Meiosis | 1.048679e-01 | 0.979 |
R-HSA-110312 | Translesion synthesis by REV1 | 1.042077e-01 | 0.982 |
R-HSA-6802957 | Oncogenic MAPK signaling | 1.048679e-01 | 0.979 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 9.236901e-02 | 1.034 |
R-HSA-5620924 | Intraflagellar transport | 1.180561e-01 | 0.928 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 1.000413e-01 | 1.000 |
R-HSA-5653656 | Vesicle-mediated transport | 1.084531e-01 | 0.965 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 1.110196e-01 | 0.955 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 1.042045e-01 | 0.982 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 1.000413e-01 | 1.000 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 1.042077e-01 | 0.982 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 1.138347e-01 | 0.944 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 1.138347e-01 | 0.944 |
R-HSA-6804757 | Regulation of TP53 Degradation | 1.142549e-01 | 0.942 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 1.116406e-01 | 0.952 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 1.002763e-01 | 0.999 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 9.289590e-02 | 1.032 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 1.189688e-01 | 0.925 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 1.189688e-01 | 0.925 |
R-HSA-8873719 | RAB geranylgeranylation | 1.123398e-01 | 0.949 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 1.189688e-01 | 0.925 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 1.122370e-01 | 0.950 |
R-HSA-3214842 | HDMs demethylate histones | 1.138347e-01 | 0.944 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 9.518955e-02 | 1.021 |
R-HSA-9830364 | Formation of the nephric duct | 1.138347e-01 | 0.944 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 1.123398e-01 | 0.949 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 1.043209e-01 | 0.982 |
R-HSA-8863678 | Neurodegenerative Diseases | 1.043209e-01 | 0.982 |
R-HSA-9823739 | Formation of the anterior neural plate | 1.042077e-01 | 0.982 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 1.184336e-01 | 0.927 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 1.189688e-01 | 0.925 |
R-HSA-983712 | Ion channel transport | 1.167668e-01 | 0.933 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 1.189688e-01 | 0.925 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 1.189688e-01 | 0.925 |
R-HSA-3000170 | Syndecan interactions | 9.518955e-02 | 1.021 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 1.151470e-01 | 0.939 |
R-HSA-418990 | Adherens junctions interactions | 1.196448e-01 | 0.922 |
R-HSA-109581 | Apoptosis | 1.199322e-01 | 0.921 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 1.224830e-01 | 0.912 |
R-HSA-5689896 | Ovarian tumor domain proteases | 1.224830e-01 | 0.912 |
R-HSA-162909 | Host Interactions of HIV factors | 1.227673e-01 | 0.911 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 1.237150e-01 | 0.908 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 1.237150e-01 | 0.908 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 1.237150e-01 | 0.908 |
R-HSA-73893 | DNA Damage Bypass | 1.253093e-01 | 0.902 |
R-HSA-1483196 | PI and PC transport between ER and Golgi membranes | 1.625341e-01 | 0.789 |
R-HSA-9603505 | NTRK3 as a dependence receptor | 1.625341e-01 | 0.789 |
R-HSA-176034 | Interactions of Tat with host cellular proteins | 1.625341e-01 | 0.789 |
R-HSA-73930 | Abasic sugar-phosphate removal via the single-nucleotide replacement pathway | 1.625341e-01 | 0.789 |
R-HSA-4085023 | Defective GFPT1 causes CMSTA1 | 1.625341e-01 | 0.789 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 2.106197e-01 | 0.677 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 2.106197e-01 | 0.677 |
R-HSA-3642278 | Loss of Function of TGFBR2 in Cancer | 2.106197e-01 | 0.677 |
R-HSA-9034013 | NTF3 activates NTRK3 signaling | 2.106197e-01 | 0.677 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 2.106197e-01 | 0.677 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 2.106197e-01 | 0.677 |
R-HSA-68881 | Mitotic Metaphase/Anaphase Transition | 2.106197e-01 | 0.677 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 2.106197e-01 | 0.677 |
R-HSA-5578997 | Defective AHCY causes HMAHCHD | 2.106197e-01 | 0.677 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 2.106197e-01 | 0.677 |
R-HSA-5619098 | Defective SLC2A2 causes Fanconi-Bickel syndrome (FBS) | 2.106197e-01 | 0.677 |
R-HSA-3814836 | Glycogen storage disease type XV (GYG1) | 2.106197e-01 | 0.677 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 2.106197e-01 | 0.677 |
R-HSA-3828062 | Glycogen storage disease type 0 (muscle GYS1) | 2.106197e-01 | 0.677 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 2.106197e-01 | 0.677 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 2.106197e-01 | 0.677 |
R-HSA-3645790 | TGFBR2 Kinase Domain Mutants in Cancer | 2.106197e-01 | 0.677 |
R-HSA-5658034 | HHAT G278V doesn't palmitoylate Hh-Np | 2.106197e-01 | 0.677 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 2.106197e-01 | 0.677 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 2.106197e-01 | 0.677 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 2.106197e-01 | 0.677 |
R-HSA-9034793 | Activated NTRK3 signals through PLCG1 | 2.559470e-01 | 0.592 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 2.559470e-01 | 0.592 |
R-HSA-8941237 | Invadopodia formation | 2.559470e-01 | 0.592 |
R-HSA-5579013 | Defective CYP7B1 causes SPG5A and CBAS3 | 2.559470e-01 | 0.592 |
R-HSA-8865999 | MET activates PTPN11 | 2.559470e-01 | 0.592 |
R-HSA-5603037 | IRAK4 deficiency (TLR5) | 2.559470e-01 | 0.592 |
R-HSA-444257 | RSK activation | 1.386903e-01 | 0.858 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 1.386903e-01 | 0.858 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 1.590527e-01 | 0.798 |
R-HSA-204626 | Hypusine synthesis from eIF5A-lysine | 1.590527e-01 | 0.798 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 2.986741e-01 | 0.525 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 2.986741e-01 | 0.525 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 2.986741e-01 | 0.525 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 2.986741e-01 | 0.525 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 2.986741e-01 | 0.525 |
R-HSA-5579024 | Defective MAT1A causes MATD | 2.986741e-01 | 0.525 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 1.799176e-01 | 0.745 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 1.799176e-01 | 0.745 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 1.295261e-01 | 0.888 |
R-HSA-5655862 | Translesion synthesis by POLK | 1.295261e-01 | 0.888 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 2.011603e-01 | 0.696 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 3.389501e-01 | 0.470 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 3.389501e-01 | 0.470 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 3.389501e-01 | 0.470 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 1.429218e-01 | 0.845 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 1.429218e-01 | 0.845 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 1.429218e-01 | 0.845 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 2.226688e-01 | 0.652 |
R-HSA-4839735 | Signaling by AXIN mutants | 2.226688e-01 | 0.652 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 2.226688e-01 | 0.652 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 1.567519e-01 | 0.805 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 1.709741e-01 | 0.767 |
R-HSA-8851805 | MET activates RAS signaling | 2.443428e-01 | 0.612 |
R-HSA-179812 | GRB2 events in EGFR signaling | 2.443428e-01 | 0.612 |
R-HSA-164525 | Plus-strand DNA synthesis | 3.769153e-01 | 0.424 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 3.769153e-01 | 0.424 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 3.769153e-01 | 0.424 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 3.769153e-01 | 0.424 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 3.769153e-01 | 0.424 |
R-HSA-8849470 | PTK6 Regulates Cell Cycle | 3.769153e-01 | 0.424 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 3.769153e-01 | 0.424 |
R-HSA-5576894 | Phase 1 - inactivation of fast Na+ channels | 3.769153e-01 | 0.424 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 1.339449e-01 | 0.873 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 1.339449e-01 | 0.873 |
R-HSA-171319 | Telomere Extension By Telomerase | 1.445065e-01 | 0.840 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 2.004281e-01 | 0.698 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 2.004281e-01 | 0.698 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 2.004281e-01 | 0.698 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 2.155786e-01 | 0.666 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 2.878379e-01 | 0.541 |
R-HSA-69166 | Removal of the Flap Intermediate | 2.878379e-01 | 0.541 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 3.095078e-01 | 0.509 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 3.095078e-01 | 0.509 |
R-HSA-180336 | SHC1 events in EGFR signaling | 3.095078e-01 | 0.509 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 2.137842e-01 | 0.670 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 2.622592e-01 | 0.581 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 3.310392e-01 | 0.480 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 1.317927e-01 | 0.880 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 1.317927e-01 | 0.880 |
R-HSA-72649 | Translation initiation complex formation | 1.646356e-01 | 0.783 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 3.523768e-01 | 0.453 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 1.816774e-01 | 0.741 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 2.940430e-01 | 0.532 |
R-HSA-8853659 | RET signaling | 2.513354e-01 | 0.600 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 1.372939e-01 | 0.862 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 3.734719e-01 | 0.428 |
R-HSA-167287 | HIV elongation arrest and recovery | 3.260493e-01 | 0.487 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 3.260493e-01 | 0.487 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 2.071876e-01 | 0.684 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 3.032359e-01 | 0.518 |
R-HSA-380287 | Centrosome maturation | 2.239298e-01 | 0.650 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 2.833284e-01 | 0.548 |
R-HSA-68962 | Activation of the pre-replicative complex | 3.580429e-01 | 0.446 |
R-HSA-8957275 | Post-translational protein phosphorylation | 3.187979e-01 | 0.496 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 2.830765e-01 | 0.548 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 3.580429e-01 | 0.446 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 2.155786e-01 | 0.666 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 1.825024e-01 | 0.739 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 3.041536e-01 | 0.517 |
R-HSA-2682334 | EPH-Ephrin signaling | 2.597583e-01 | 0.585 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 3.420614e-01 | 0.466 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 3.420614e-01 | 0.466 |
R-HSA-69236 | G1 Phase | 3.694159e-01 | 0.432 |
R-HSA-69231 | Cyclin D associated events in G1 | 3.694159e-01 | 0.432 |
R-HSA-177929 | Signaling by EGFR | 1.816774e-01 | 0.741 |
R-HSA-204005 | COPII-mediated vesicle transport | 1.830219e-01 | 0.737 |
R-HSA-6783310 | Fanconi Anemia Pathway | 2.073654e-01 | 0.683 |
R-HSA-182971 | EGFR downregulation | 3.739685e-01 | 0.427 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 2.878379e-01 | 0.541 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 2.309590e-01 | 0.636 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 3.164137e-01 | 0.500 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 2.641524e-01 | 0.578 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 1.674401e-01 | 0.776 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 3.310392e-01 | 0.480 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 3.580429e-01 | 0.446 |
R-HSA-180292 | GAB1 signalosome | 1.567519e-01 | 0.805 |
R-HSA-9754189 | Germ layer formation at gastrulation | 1.709741e-01 | 0.767 |
R-HSA-8963888 | Chylomicron assembly | 2.011603e-01 | 0.696 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 1.429218e-01 | 0.845 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 2.226688e-01 | 0.652 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 2.016324e-01 | 0.695 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 3.100337e-01 | 0.509 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 3.676675e-01 | 0.435 |
R-HSA-5620971 | Pyroptosis | 1.445065e-01 | 0.840 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 1.567519e-01 | 0.805 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 1.590527e-01 | 0.798 |
R-HSA-176187 | Activation of ATR in response to replication stress | 2.016324e-01 | 0.695 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 2.004281e-01 | 0.698 |
R-HSA-209560 | NF-kB is activated and signals survival | 2.226688e-01 | 0.652 |
R-HSA-110320 | Translesion Synthesis by POLH | 1.709741e-01 | 0.767 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 2.443428e-01 | 0.612 |
R-HSA-8852405 | Signaling by MST1 | 3.769153e-01 | 0.424 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 3.523768e-01 | 0.453 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 3.100337e-01 | 0.509 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 2.073654e-01 | 0.683 |
R-HSA-1227986 | Signaling by ERBB2 | 3.751019e-01 | 0.426 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 1.295261e-01 | 0.888 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 1.546335e-01 | 0.811 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 1.546335e-01 | 0.811 |
R-HSA-74749 | Signal attenuation | 1.799176e-01 | 0.745 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 1.640530e-01 | 0.785 |
R-HSA-912446 | Meiotic recombination | 1.404453e-01 | 0.852 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 2.901211e-01 | 0.537 |
R-HSA-72172 | mRNA Splicing | 3.493086e-01 | 0.457 |
R-HSA-9007101 | Rab regulation of trafficking | 1.587462e-01 | 0.799 |
R-HSA-164939 | Nef mediated downregulation of CD28 cell surface expression | 1.625341e-01 | 0.789 |
R-HSA-9020933 | Interleukin-23 signaling | 1.386903e-01 | 0.858 |
R-HSA-444473 | Formyl peptide receptors bind formyl peptides and many other ligands | 1.386903e-01 | 0.858 |
R-HSA-5689877 | Josephin domain DUBs | 1.799176e-01 | 0.745 |
R-HSA-9832991 | Formation of the posterior neural plate | 2.011603e-01 | 0.696 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 3.389501e-01 | 0.470 |
R-HSA-8849472 | PTK6 Down-Regulation | 3.389501e-01 | 0.470 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 1.429218e-01 | 0.845 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 1.665513e-01 | 0.778 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 2.261318e-01 | 0.646 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 2.641524e-01 | 0.578 |
R-HSA-5674135 | MAP2K and MAPK activation | 3.296371e-01 | 0.482 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 3.428893e-01 | 0.465 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 3.428893e-01 | 0.465 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 2.154993e-01 | 0.667 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 3.580429e-01 | 0.446 |
R-HSA-69186 | Lagging Strand Synthesis | 2.004281e-01 | 0.698 |
R-HSA-6794361 | Neurexins and neuroligins | 2.833284e-01 | 0.548 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 3.310392e-01 | 0.480 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 2.946204e-01 | 0.531 |
R-HSA-69560 | Transcriptional activation of p53 responsive genes | 2.986741e-01 | 0.525 |
R-HSA-69895 | Transcriptional activation of cell cycle inhibitor p21 | 2.986741e-01 | 0.525 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 2.011603e-01 | 0.696 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 2.226688e-01 | 0.652 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 3.769153e-01 | 0.424 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 2.660925e-01 | 0.575 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 2.309590e-01 | 0.636 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 3.095078e-01 | 0.509 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 1.579726e-01 | 0.801 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 3.523768e-01 | 0.453 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 2.940430e-01 | 0.532 |
R-HSA-5358508 | Mismatch Repair | 1.567519e-01 | 0.805 |
R-HSA-5673000 | RAF activation | 2.261318e-01 | 0.646 |
R-HSA-202424 | Downstream TCR signaling | 2.355426e-01 | 0.628 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 2.855802e-01 | 0.544 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 2.878379e-01 | 0.541 |
R-HSA-69183 | Processive synthesis on the lagging strand | 3.095078e-01 | 0.509 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 1.579726e-01 | 0.801 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 1.709741e-01 | 0.767 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 3.580429e-01 | 0.446 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 1.295261e-01 | 0.888 |
R-HSA-9018519 | Estrogen-dependent gene expression | 1.265027e-01 | 0.898 |
R-HSA-9734767 | Developmental Cell Lineages | 3.197610e-01 | 0.495 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 1.553817e-01 | 0.809 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 1.932703e-01 | 0.714 |
R-HSA-162906 | HIV Infection | 1.518975e-01 | 0.818 |
R-HSA-6794362 | Protein-protein interactions at synapses | 1.897433e-01 | 0.722 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 1.625341e-01 | 0.789 |
R-HSA-9636667 | Manipulation of host energy metabolism | 1.625341e-01 | 0.789 |
R-HSA-194306 | Neurophilin interactions with VEGF and VEGFR | 2.106197e-01 | 0.677 |
R-HSA-446343 | Localization of the PINCH-ILK-PARVIN complex to focal adhesions | 2.106197e-01 | 0.677 |
R-HSA-3249367 | STAT6-mediated induction of chemokines | 2.559470e-01 | 0.592 |
R-HSA-8875791 | MET activates STAT3 | 2.559470e-01 | 0.592 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 1.799176e-01 | 0.745 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 1.295261e-01 | 0.888 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 3.769153e-01 | 0.424 |
R-HSA-1483101 | Synthesis of PS | 3.769153e-01 | 0.424 |
R-HSA-176417 | Phosphorylation of Emi1 | 3.769153e-01 | 0.424 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 3.769153e-01 | 0.424 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 1.445065e-01 | 0.840 |
R-HSA-418885 | DCC mediated attractive signaling | 3.095078e-01 | 0.509 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 2.622592e-01 | 0.581 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 3.260493e-01 | 0.487 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 2.901211e-01 | 0.537 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 2.833284e-01 | 0.548 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 1.698906e-01 | 0.770 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 1.698906e-01 | 0.770 |
R-HSA-5617833 | Cilium Assembly | 2.600632e-01 | 0.585 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 1.872936e-01 | 0.727 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 1.872936e-01 | 0.727 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 2.011978e-01 | 0.696 |
R-HSA-69242 | S Phase | 2.815706e-01 | 0.550 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 2.011978e-01 | 0.696 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 2.011978e-01 | 0.696 |
R-HSA-9033241 | Peroxisomal protein import | 2.084687e-01 | 0.681 |
R-HSA-73884 | Base Excision Repair | 2.355426e-01 | 0.628 |
R-HSA-445355 | Smooth Muscle Contraction | 2.946204e-01 | 0.531 |
R-HSA-5218859 | Regulated Necrosis | 2.956819e-01 | 0.529 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 2.375871e-01 | 0.624 |
R-HSA-8939211 | ESR-mediated signaling | 3.539551e-01 | 0.451 |
R-HSA-1679131 | Trafficking and processing of endosomal TLR | 2.443428e-01 | 0.612 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 2.155786e-01 | 0.666 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 1.487327e-01 | 0.828 |
R-HSA-5260271 | Diseases of Immune System | 1.487327e-01 | 0.828 |
R-HSA-8854214 | TBC/RABGAPs | 1.870146e-01 | 0.728 |
R-HSA-525793 | Myogenesis | 2.940430e-01 | 0.532 |
R-HSA-1834941 | STING mediated induction of host immune responses | 1.709741e-01 | 0.767 |
R-HSA-8982491 | Glycogen metabolism | 3.032359e-01 | 0.518 |
R-HSA-194138 | Signaling by VEGF | 2.116998e-01 | 0.674 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 1.902696e-01 | 0.721 |
R-HSA-202433 | Generation of second messenger molecules | 3.032359e-01 | 0.518 |
R-HSA-111448 | Activation of NOXA and translocation to mitochondria | 2.986741e-01 | 0.525 |
R-HSA-167044 | Signalling to RAS | 2.004281e-01 | 0.698 |
R-HSA-171007 | p38MAPK events | 3.095078e-01 | 0.509 |
R-HSA-6811438 | Intra-Golgi traffic | 1.674401e-01 | 0.776 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 2.084687e-01 | 0.681 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 1.489415e-01 | 0.827 |
R-HSA-3214847 | HATs acetylate histones | 3.274508e-01 | 0.485 |
R-HSA-421270 | Cell-cell junction organization | 1.311292e-01 | 0.882 |
R-HSA-391251 | Protein folding | 2.597583e-01 | 0.585 |
R-HSA-5683057 | MAPK family signaling cascades | 1.486785e-01 | 0.828 |
R-HSA-5689880 | Ub-specific processing proteases | 3.498060e-01 | 0.456 |
R-HSA-9020702 | Interleukin-1 signaling | 3.448715e-01 | 0.462 |
R-HSA-2028269 | Signaling by Hippo | 3.734719e-01 | 0.428 |
R-HSA-3214858 | RMTs methylate histone arginines | 3.694159e-01 | 0.432 |
R-HSA-1266738 | Developmental Biology | 1.574999e-01 | 0.803 |
R-HSA-162592 | Integration of provirus | 2.226688e-01 | 0.652 |
R-HSA-5205647 | Mitophagy | 2.261318e-01 | 0.646 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 2.178024e-01 | 0.662 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 2.178024e-01 | 0.662 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 2.559470e-01 | 0.592 |
R-HSA-9960525 | CASP5-mediated substrate cleavage | 2.559470e-01 | 0.592 |
R-HSA-205025 | NADE modulates death signalling | 2.986741e-01 | 0.525 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 1.295261e-01 | 0.888 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 1.295261e-01 | 0.888 |
R-HSA-74713 | IRS activation | 3.389501e-01 | 0.470 |
R-HSA-71737 | Pyrophosphate hydrolysis | 3.389501e-01 | 0.470 |
R-HSA-8981373 | Intestinal hexose absorption | 3.769153e-01 | 0.424 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 3.769153e-01 | 0.424 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 2.004281e-01 | 0.698 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 2.004281e-01 | 0.698 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 1.646356e-01 | 0.783 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 1.993846e-01 | 0.700 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 3.734719e-01 | 0.428 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 3.260493e-01 | 0.487 |
R-HSA-5673001 | RAF/MAP kinase cascade | 2.177052e-01 | 0.662 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 1.837704e-01 | 0.736 |
R-HSA-389948 | Co-inhibition by PD-1 | 1.592438e-01 | 0.798 |
R-HSA-168256 | Immune System | 3.509191e-01 | 0.455 |
R-HSA-373752 | Netrin-1 signaling | 1.970988e-01 | 0.705 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 1.665513e-01 | 0.778 |
R-HSA-114452 | Activation of BH3-only proteins | 3.580429e-01 | 0.446 |
R-HSA-70221 | Glycogen breakdown (glycogenolysis) | 2.781075e-01 | 0.556 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 1.909434e-01 | 0.719 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 2.454219e-01 | 0.610 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 2.465313e-01 | 0.608 |
R-HSA-9012852 | Signaling by NOTCH3 | 1.730696e-01 | 0.762 |
R-HSA-622312 | Inflammasomes | 1.445065e-01 | 0.840 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 3.734719e-01 | 0.428 |
R-HSA-446652 | Interleukin-1 family signaling | 3.083805e-01 | 0.511 |
R-HSA-597592 | Post-translational protein modification | 2.881270e-01 | 0.540 |
R-HSA-449147 | Signaling by Interleukins | 1.489560e-01 | 0.827 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 3.310392e-01 | 0.480 |
R-HSA-1483255 | PI Metabolism | 1.378865e-01 | 0.860 |
R-HSA-112315 | Transmission across Chemical Synapses | 2.995790e-01 | 0.523 |
R-HSA-390466 | Chaperonin-mediated protein folding | 2.121640e-01 | 0.673 |
R-HSA-111933 | Calmodulin induced events | 2.513354e-01 | 0.600 |
R-HSA-9960519 | CASP4-mediated substrate cleavage | 2.559470e-01 | 0.592 |
R-HSA-390696 | Adrenoceptors | 1.386903e-01 | 0.858 |
R-HSA-390651 | Dopamine receptors | 2.986741e-01 | 0.525 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 2.986741e-01 | 0.525 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 1.799176e-01 | 0.745 |
R-HSA-9667769 | Acetylcholine inhibits contraction of outer hair cells | 3.769153e-01 | 0.424 |
R-HSA-444821 | Relaxin receptors | 3.769153e-01 | 0.424 |
R-HSA-194313 | VEGF ligand-receptor interactions | 3.769153e-01 | 0.424 |
R-HSA-5660668 | CLEC7A/inflammasome pathway | 3.769153e-01 | 0.424 |
R-HSA-111457 | Release of apoptotic factors from the mitochondria | 3.769153e-01 | 0.424 |
R-HSA-1475029 | Reversible hydration of carbon dioxide | 2.660925e-01 | 0.575 |
R-HSA-418360 | Platelet calcium homeostasis | 1.553817e-01 | 0.809 |
R-HSA-186763 | Downstream signal transduction | 1.779961e-01 | 0.750 |
R-HSA-9682385 | FLT3 signaling in disease | 2.513354e-01 | 0.600 |
R-HSA-111997 | CaM pathway | 2.513354e-01 | 0.600 |
R-HSA-449836 | Other interleukin signaling | 1.709741e-01 | 0.767 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 1.830219e-01 | 0.737 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 2.831978e-01 | 0.548 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 2.443428e-01 | 0.612 |
R-HSA-416700 | Other semaphorin interactions | 3.095078e-01 | 0.509 |
R-HSA-8876725 | Protein methylation | 3.095078e-01 | 0.509 |
R-HSA-111996 | Ca-dependent events | 3.428893e-01 | 0.465 |
R-HSA-9830369 | Kidney development | 2.856063e-01 | 0.544 |
R-HSA-5358351 | Signaling by Hedgehog | 3.130773e-01 | 0.504 |
R-HSA-9645723 | Diseases of programmed cell death | 3.510217e-01 | 0.455 |
R-HSA-8874177 | ATF6B (ATF6-beta) activates chaperones | 2.106197e-01 | 0.677 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 1.386903e-01 | 0.858 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 1.386903e-01 | 0.858 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 1.386903e-01 | 0.858 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 1.590527e-01 | 0.798 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 1.590527e-01 | 0.798 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 3.389501e-01 | 0.470 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 3.769153e-01 | 0.424 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 3.769153e-01 | 0.424 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 2.155786e-01 | 0.666 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 2.878379e-01 | 0.541 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 3.095078e-01 | 0.509 |
R-HSA-9733458 | Induction of Cell-Cell Fusion | 3.310392e-01 | 0.480 |
R-HSA-1483249 | Inositol phosphate metabolism | 2.038547e-01 | 0.691 |
R-HSA-109582 | Hemostasis | 2.755626e-01 | 0.560 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 1.799176e-01 | 0.745 |
R-HSA-5578768 | Physiological factors | 2.878379e-01 | 0.541 |
R-HSA-2408522 | Selenoamino acid metabolism | 1.278032e-01 | 0.893 |
R-HSA-9033500 | TYSND1 cleaves peroxisomal proteins | 3.769153e-01 | 0.424 |
R-HSA-9008059 | Interleukin-37 signaling | 3.580429e-01 | 0.446 |
R-HSA-8983711 | OAS antiviral response | 2.443428e-01 | 0.612 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 2.833284e-01 | 0.548 |
R-HSA-1433557 | Signaling by SCF-KIT | 3.561541e-01 | 0.448 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 1.709741e-01 | 0.767 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 2.673063e-01 | 0.573 |
R-HSA-201451 | Signaling by BMP | 3.100337e-01 | 0.509 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 2.878379e-01 | 0.541 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 2.465313e-01 | 0.608 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 3.523768e-01 | 0.453 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 1.431522e-01 | 0.844 |
R-HSA-211000 | Gene Silencing by RNA | 1.723448e-01 | 0.764 |
R-HSA-9678108 | SARS-CoV-1 Infection | 3.632006e-01 | 0.440 |
R-HSA-5689603 | UCH proteinases | 3.780631e-01 | 0.422 |
R-HSA-1489509 | DAG and IP3 signaling | 3.826595e-01 | 0.417 |
R-HSA-69190 | DNA strand elongation | 3.898146e-01 | 0.409 |
R-HSA-3928664 | Ephrin signaling | 3.942819e-01 | 0.404 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 3.942819e-01 | 0.404 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 3.942819e-01 | 0.404 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 3.942819e-01 | 0.404 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 3.942819e-01 | 0.404 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 3.942819e-01 | 0.404 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 3.942819e-01 | 0.404 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 3.942819e-01 | 0.404 |
R-HSA-2559583 | Cellular Senescence | 3.969833e-01 | 0.401 |
R-HSA-186797 | Signaling by PDGF | 3.982312e-01 | 0.400 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 4.055355e-01 | 0.392 |
R-HSA-9930044 | Nuclear RNA decay | 4.055590e-01 | 0.392 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 4.090355e-01 | 0.388 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 4.097674e-01 | 0.387 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 4.127023e-01 | 0.384 |
R-HSA-9842640 | Signaling by LTK in cancer | 4.127023e-01 | 0.384 |
R-HSA-162585 | Uncoating of the HIV Virion | 4.127023e-01 | 0.384 |
R-HSA-5619070 | Defective SLC16A1 causes symptomatic deficiency in lactate transport (SDLT) | 4.127023e-01 | 0.384 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 4.127023e-01 | 0.384 |
R-HSA-6806942 | MET Receptor Activation | 4.127023e-01 | 0.384 |
R-HSA-69478 | G2/M DNA replication checkpoint | 4.127023e-01 | 0.384 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 4.127023e-01 | 0.384 |
R-HSA-199920 | CREB phosphorylation | 4.127023e-01 | 0.384 |
R-HSA-8964011 | HDL clearance | 4.127023e-01 | 0.384 |
R-HSA-8866423 | VLDL assembly | 4.127023e-01 | 0.384 |
R-HSA-164944 | Nef and signal transduction | 4.127023e-01 | 0.384 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 4.147700e-01 | 0.382 |
R-HSA-1237044 | Erythrocytes take up carbon dioxide and release oxygen | 4.147700e-01 | 0.382 |
R-HSA-1480926 | O2/CO2 exchange in erythrocytes | 4.147700e-01 | 0.382 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 4.153906e-01 | 0.382 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 4.173723e-01 | 0.379 |
R-HSA-6806834 | Signaling by MET | 4.196222e-01 | 0.377 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 4.211813e-01 | 0.376 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 4.211813e-01 | 0.376 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 4.242235e-01 | 0.372 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 4.264082e-01 | 0.370 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 4.299708e-01 | 0.367 |
R-HSA-9609507 | Protein localization | 4.307192e-01 | 0.366 |
R-HSA-1234174 | Cellular response to hypoxia | 4.327365e-01 | 0.364 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 4.349048e-01 | 0.362 |
R-HSA-9629569 | Protein hydroxylation | 4.349048e-01 | 0.362 |
R-HSA-445144 | Signal transduction by L1 | 4.349048e-01 | 0.362 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 4.366625e-01 | 0.360 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 4.366625e-01 | 0.360 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 4.402896e-01 | 0.356 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 4.460475e-01 | 0.351 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 4.464360e-01 | 0.350 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 4.464360e-01 | 0.350 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 4.464360e-01 | 0.350 |
R-HSA-112412 | SOS-mediated signalling | 4.464360e-01 | 0.350 |
R-HSA-72731 | Recycling of eIF2:GDP | 4.464360e-01 | 0.350 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 4.464360e-01 | 0.350 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 4.464360e-01 | 0.350 |
R-HSA-1296052 | Ca2+ activated K+ channels | 4.464360e-01 | 0.350 |
R-HSA-8964041 | LDL remodeling | 4.464360e-01 | 0.350 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 4.464360e-01 | 0.350 |
R-HSA-381042 | PERK regulates gene expression | 4.519851e-01 | 0.345 |
R-HSA-187687 | Signalling to ERKs | 4.519851e-01 | 0.345 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 4.546591e-01 | 0.342 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 4.554803e-01 | 0.342 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 4.594061e-01 | 0.338 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 4.594061e-01 | 0.338 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 4.609791e-01 | 0.336 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 4.627988e-01 | 0.335 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 4.627988e-01 | 0.335 |
R-HSA-167172 | Transcription of the HIV genome | 4.668031e-01 | 0.331 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 4.671330e-01 | 0.331 |
R-HSA-74158 | RNA Polymerase III Transcription | 4.671330e-01 | 0.331 |
R-HSA-69205 | G1/S-Specific Transcription | 4.671330e-01 | 0.331 |
R-HSA-157118 | Signaling by NOTCH | 4.701688e-01 | 0.328 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 4.737286e-01 | 0.324 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 4.737286e-01 | 0.324 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 4.740103e-01 | 0.324 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 4.740103e-01 | 0.324 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 4.740103e-01 | 0.324 |
R-HSA-9671555 | Signaling by PDGFR in disease | 4.740103e-01 | 0.324 |
R-HSA-877300 | Interferon gamma signaling | 4.751425e-01 | 0.323 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 4.768517e-01 | 0.322 |
R-HSA-162589 | Reverse Transcription of HIV RNA | 4.782339e-01 | 0.320 |
R-HSA-164516 | Minus-strand DNA synthesis | 4.782339e-01 | 0.320 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 4.782339e-01 | 0.320 |
R-HSA-8875656 | MET receptor recycling | 4.782339e-01 | 0.320 |
R-HSA-196025 | Formation of annular gap junctions | 4.782339e-01 | 0.320 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 4.782339e-01 | 0.320 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 4.782339e-01 | 0.320 |
R-HSA-9839383 | TGFBR3 PTM regulation | 4.782339e-01 | 0.320 |
R-HSA-8963676 | Intestinal absorption | 4.782339e-01 | 0.320 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 4.811414e-01 | 0.318 |
R-HSA-9006936 | Signaling by TGFB family members | 4.824937e-01 | 0.317 |
R-HSA-5610787 | Hedgehog 'off' state | 4.835608e-01 | 0.316 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 4.855246e-01 | 0.314 |
R-HSA-1221632 | Meiotic synapsis | 4.863626e-01 | 0.313 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 4.863626e-01 | 0.313 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 4.863626e-01 | 0.313 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 4.885452e-01 | 0.311 |
R-HSA-350054 | Notch-HLH transcription pathway | 4.929396e-01 | 0.307 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 4.929396e-01 | 0.307 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 4.929396e-01 | 0.307 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 4.929396e-01 | 0.307 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 4.929396e-01 | 0.307 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 4.968478e-01 | 0.304 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 4.968478e-01 | 0.304 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 5.002180e-01 | 0.301 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 5.002180e-01 | 0.301 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 5.002180e-01 | 0.301 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 5.082071e-01 | 0.294 |
R-HSA-9613354 | Lipophagy | 5.082071e-01 | 0.294 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 5.082071e-01 | 0.294 |
R-HSA-190873 | Gap junction degradation | 5.082071e-01 | 0.294 |
R-HSA-201688 | WNT mediated activation of DVL | 5.082071e-01 | 0.294 |
R-HSA-428542 | Regulation of commissural axon pathfinding by SLIT and ROBO | 5.082071e-01 | 0.294 |
R-HSA-2025928 | Calcineurin activates NFAT | 5.082071e-01 | 0.294 |
R-HSA-112411 | MAPK1 (ERK2) activation | 5.082071e-01 | 0.294 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 5.082071e-01 | 0.294 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 5.082071e-01 | 0.294 |
R-HSA-9768777 | Regulation of NPAS4 gene transcription | 5.082071e-01 | 0.294 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 5.082071e-01 | 0.294 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 5.082071e-01 | 0.294 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 5.082071e-01 | 0.294 |
R-HSA-430116 | GP1b-IX-V activation signalling | 5.082071e-01 | 0.294 |
R-HSA-1592230 | Mitochondrial biogenesis | 5.113008e-01 | 0.291 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 5.113894e-01 | 0.291 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 5.114316e-01 | 0.291 |
R-HSA-9830674 | Formation of the ureteric bud | 5.114316e-01 | 0.291 |
R-HSA-982772 | Growth hormone receptor signaling | 5.114316e-01 | 0.291 |
R-HSA-1280218 | Adaptive Immune System | 5.226582e-01 | 0.282 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 5.234833e-01 | 0.281 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 5.234833e-01 | 0.281 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 5.234833e-01 | 0.281 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 5.257055e-01 | 0.279 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 5.294740e-01 | 0.276 |
R-HSA-429947 | Deadenylation of mRNA | 5.294740e-01 | 0.276 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 5.294740e-01 | 0.276 |
R-HSA-8963898 | Plasma lipoprotein assembly | 5.294740e-01 | 0.276 |
R-HSA-1236394 | Signaling by ERBB4 | 5.327965e-01 | 0.273 |
R-HSA-9856651 | MITF-M-dependent gene expression | 5.341582e-01 | 0.272 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 5.355695e-01 | 0.271 |
R-HSA-9764561 | Regulation of CDH1 Function | 5.355695e-01 | 0.271 |
R-HSA-173107 | Binding and entry of HIV virion | 5.364601e-01 | 0.270 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 5.364601e-01 | 0.270 |
R-HSA-164843 | 2-LTR circle formation | 5.364601e-01 | 0.270 |
R-HSA-5221030 | TET1,2,3 and TDG demethylate DNA | 5.364601e-01 | 0.270 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 5.364601e-01 | 0.270 |
R-HSA-6803544 | Ion influx/efflux at host-pathogen interface | 5.364601e-01 | 0.270 |
R-HSA-9020956 | Interleukin-27 signaling | 5.364601e-01 | 0.270 |
R-HSA-9683686 | Maturation of spike protein | 5.364601e-01 | 0.270 |
R-HSA-110056 | MAPK3 (ERK1) activation | 5.364601e-01 | 0.270 |
R-HSA-2586552 | Signaling by Leptin | 5.364601e-01 | 0.270 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 5.364601e-01 | 0.270 |
R-HSA-5696398 | Nucleotide Excision Repair | 5.383497e-01 | 0.269 |
R-HSA-9694548 | Maturation of spike protein | 5.397867e-01 | 0.268 |
R-HSA-9607240 | FLT3 Signaling | 5.397867e-01 | 0.268 |
R-HSA-8852135 | Protein ubiquitination | 5.434423e-01 | 0.265 |
R-HSA-917937 | Iron uptake and transport | 5.434423e-01 | 0.265 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 5.470575e-01 | 0.262 |
R-HSA-420029 | Tight junction interactions | 5.470575e-01 | 0.262 |
R-HSA-400685 | Sema4D in semaphorin signaling | 5.470575e-01 | 0.262 |
R-HSA-3000157 | Laminin interactions | 5.470575e-01 | 0.262 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 5.470575e-01 | 0.262 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 5.536245e-01 | 0.257 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 5.539725e-01 | 0.257 |
R-HSA-1980143 | Signaling by NOTCH1 | 5.539725e-01 | 0.257 |
R-HSA-168249 | Innate Immune System | 5.546509e-01 | 0.256 |
R-HSA-69239 | Synthesis of DNA | 5.560916e-01 | 0.255 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 5.560916e-01 | 0.255 |
R-HSA-9700206 | Signaling by ALK in cancer | 5.560916e-01 | 0.255 |
R-HSA-69306 | DNA Replication | 5.564159e-01 | 0.255 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 5.630917e-01 | 0.249 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 5.630917e-01 | 0.249 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 5.630917e-01 | 0.249 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 5.630917e-01 | 0.249 |
R-HSA-192905 | vRNP Assembly | 5.630917e-01 | 0.249 |
R-HSA-4839744 | Signaling by APC mutants | 5.630917e-01 | 0.249 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 5.630917e-01 | 0.249 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 5.630917e-01 | 0.249 |
R-HSA-5682910 | LGI-ADAM interactions | 5.630917e-01 | 0.249 |
R-HSA-8874081 | MET activates PTK2 signaling | 5.641754e-01 | 0.249 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 5.641754e-01 | 0.249 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 5.641754e-01 | 0.249 |
R-HSA-9845614 | Sphingolipid catabolism | 5.641754e-01 | 0.249 |
R-HSA-5689901 | Metalloprotease DUBs | 5.641754e-01 | 0.249 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 5.708705e-01 | 0.243 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 5.708705e-01 | 0.243 |
R-HSA-69002 | DNA Replication Pre-Initiation | 5.735274e-01 | 0.241 |
R-HSA-73864 | RNA Polymerase I Transcription | 5.746674e-01 | 0.241 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 5.805412e-01 | 0.236 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 5.808229e-01 | 0.236 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 5.808229e-01 | 0.236 |
R-HSA-8949613 | Cristae formation | 5.808229e-01 | 0.236 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 5.808229e-01 | 0.236 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 5.808229e-01 | 0.236 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 5.808229e-01 | 0.236 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 5.808229e-01 | 0.236 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 5.808229e-01 | 0.236 |
R-HSA-112043 | PLC beta mediated events | 5.822991e-01 | 0.235 |
R-HSA-450294 | MAP kinase activation | 5.822991e-01 | 0.235 |
R-HSA-9659379 | Sensory processing of sound | 5.848236e-01 | 0.233 |
R-HSA-9610379 | HCMV Late Events | 5.854163e-01 | 0.233 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 5.881947e-01 | 0.230 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 5.881947e-01 | 0.230 |
R-HSA-433692 | Proton-coupled monocarboxylate transport | 5.881947e-01 | 0.230 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 5.881947e-01 | 0.230 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 5.881947e-01 | 0.230 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 5.881947e-01 | 0.230 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 5.881947e-01 | 0.230 |
R-HSA-4839748 | Signaling by AMER1 mutants | 5.881947e-01 | 0.230 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 5.881947e-01 | 0.230 |
R-HSA-168330 | Viral RNP Complexes in the Host Cell Nucleus | 5.881947e-01 | 0.230 |
R-HSA-9707616 | Heme signaling | 5.935503e-01 | 0.227 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 5.935503e-01 | 0.227 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 5.935503e-01 | 0.227 |
R-HSA-3928662 | EPHB-mediated forward signaling | 5.936083e-01 | 0.227 |
R-HSA-156581 | Methylation | 5.936083e-01 | 0.227 |
R-HSA-375280 | Amine ligand-binding receptors | 5.936083e-01 | 0.227 |
R-HSA-112316 | Neuronal System | 5.942067e-01 | 0.226 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 5.948471e-01 | 0.226 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 5.948471e-01 | 0.226 |
R-HSA-77387 | Insulin receptor recycling | 5.969978e-01 | 0.224 |
R-HSA-8848021 | Signaling by PTK6 | 6.046200e-01 | 0.219 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 6.046200e-01 | 0.219 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 6.058005e-01 | 0.218 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 6.118568e-01 | 0.213 |
R-HSA-937039 | IRAK1 recruits IKK complex | 6.118568e-01 | 0.213 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 6.118568e-01 | 0.213 |
R-HSA-3000484 | Scavenging by Class F Receptors | 6.118568e-01 | 0.213 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 6.118568e-01 | 0.213 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 6.118568e-01 | 0.213 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 6.118568e-01 | 0.213 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 6.118568e-01 | 0.213 |
R-HSA-69091 | Polymerase switching | 6.118568e-01 | 0.213 |
R-HSA-69109 | Leading Strand Synthesis | 6.118568e-01 | 0.213 |
R-HSA-4641265 | Repression of WNT target genes | 6.118568e-01 | 0.213 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 6.118568e-01 | 0.213 |
R-HSA-8866427 | VLDLR internalisation and degradation | 6.118568e-01 | 0.213 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 6.118568e-01 | 0.213 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 6.118568e-01 | 0.213 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 6.118568e-01 | 0.213 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 6.118568e-01 | 0.213 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 6.118568e-01 | 0.213 |
R-HSA-9028731 | Activated NTRK2 signals through FRS2 and FRS3 | 6.118568e-01 | 0.213 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 6.118568e-01 | 0.213 |
R-HSA-877312 | Regulation of IFNG signaling | 6.118568e-01 | 0.213 |
R-HSA-9697154 | Disorders of Nervous System Development | 6.118568e-01 | 0.213 |
R-HSA-9005895 | Pervasive developmental disorders | 6.118568e-01 | 0.213 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 6.118568e-01 | 0.213 |
R-HSA-1247673 | Erythrocytes take up oxygen and release carbon dioxide | 6.118568e-01 | 0.213 |
R-HSA-8984722 | Interleukin-35 Signalling | 6.118568e-01 | 0.213 |
R-HSA-9842663 | Signaling by LTK | 6.118568e-01 | 0.213 |
R-HSA-8983432 | Interleukin-15 signaling | 6.118568e-01 | 0.213 |
R-HSA-5334118 | DNA methylation | 6.126993e-01 | 0.213 |
R-HSA-9615710 | Late endosomal microautophagy | 6.126993e-01 | 0.213 |
R-HSA-210745 | Regulation of gene expression in beta cells | 6.126993e-01 | 0.213 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 6.135258e-01 | 0.212 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 6.189372e-01 | 0.208 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 6.189372e-01 | 0.208 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 6.240883e-01 | 0.205 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 6.279284e-01 | 0.202 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 6.279284e-01 | 0.202 |
R-HSA-2424491 | DAP12 signaling | 6.279284e-01 | 0.202 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 6.279284e-01 | 0.202 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 6.311925e-01 | 0.200 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 6.329189e-01 | 0.199 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 6.335493e-01 | 0.198 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 6.341607e-01 | 0.198 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 6.341607e-01 | 0.198 |
R-HSA-1059683 | Interleukin-6 signaling | 6.341607e-01 | 0.198 |
R-HSA-8963901 | Chylomicron remodeling | 6.341607e-01 | 0.198 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 6.341607e-01 | 0.198 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 6.341607e-01 | 0.198 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 6.341607e-01 | 0.198 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 6.341607e-01 | 0.198 |
R-HSA-9843745 | Adipogenesis | 6.396094e-01 | 0.194 |
R-HSA-162588 | Budding and maturation of HIV virion | 6.426876e-01 | 0.192 |
R-HSA-2129379 | Molecules associated with elastic fibres | 6.426876e-01 | 0.192 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 6.426876e-01 | 0.192 |
R-HSA-5694530 | Cargo concentration in the ER | 6.426876e-01 | 0.192 |
R-HSA-112040 | G-protein mediated events | 6.470162e-01 | 0.189 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 6.491531e-01 | 0.188 |
R-HSA-5619102 | SLC transporter disorders | 6.538529e-01 | 0.185 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 6.548740e-01 | 0.184 |
R-HSA-9766229 | Degradation of CDH1 | 6.548740e-01 | 0.184 |
R-HSA-177504 | Retrograde neurotrophin signalling | 6.551841e-01 | 0.184 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 6.551841e-01 | 0.184 |
R-HSA-9018681 | Biosynthesis of protectins | 6.551841e-01 | 0.184 |
R-HSA-399956 | CRMPs in Sema3A signaling | 6.551841e-01 | 0.184 |
R-HSA-1170546 | Prolactin receptor signaling | 6.551841e-01 | 0.184 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 6.551841e-01 | 0.184 |
R-HSA-9023661 | Biosynthesis of E-series 18(R)-resolvins | 6.551841e-01 | 0.184 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 6.551841e-01 | 0.184 |
R-HSA-1433559 | Regulation of KIT signaling | 6.551841e-01 | 0.184 |
R-HSA-9686114 | Non-canonical inflammasome activation | 6.551841e-01 | 0.184 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 6.569806e-01 | 0.182 |
R-HSA-4791275 | Signaling by WNT in cancer | 6.569806e-01 | 0.182 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 6.569806e-01 | 0.182 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 6.571318e-01 | 0.182 |
R-HSA-9842860 | Regulation of endogenous retroelements | 6.574663e-01 | 0.182 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 6.608176e-01 | 0.180 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 6.630262e-01 | 0.178 |
R-HSA-5658442 | Regulation of RAS by GAPs | 6.662981e-01 | 0.176 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 6.670503e-01 | 0.176 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 6.673722e-01 | 0.176 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 6.708121e-01 | 0.173 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 6.708121e-01 | 0.173 |
R-HSA-5675482 | Regulation of necroptotic cell death | 6.708121e-01 | 0.173 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 6.750007e-01 | 0.171 |
R-HSA-8964315 | G beta:gamma signalling through BTK | 6.750007e-01 | 0.171 |
R-HSA-73780 | RNA Polymerase III Chain Elongation | 6.750007e-01 | 0.171 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 6.750007e-01 | 0.171 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 6.750007e-01 | 0.171 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 6.750007e-01 | 0.171 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 6.750007e-01 | 0.171 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 6.750007e-01 | 0.171 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 6.750007e-01 | 0.171 |
R-HSA-9027284 | Erythropoietin activates RAS | 6.750007e-01 | 0.171 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 6.750007e-01 | 0.171 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 6.750007e-01 | 0.171 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 6.750007e-01 | 0.171 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 6.750007e-01 | 0.171 |
R-HSA-448424 | Interleukin-17 signaling | 6.767706e-01 | 0.170 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 6.774438e-01 | 0.169 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 6.804171e-01 | 0.167 |
R-HSA-9833110 | RSV-host interactions | 6.816625e-01 | 0.166 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 6.841881e-01 | 0.165 |
R-HSA-453276 | Regulation of mitotic cell cycle | 6.862918e-01 | 0.163 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 6.862918e-01 | 0.163 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 6.883116e-01 | 0.162 |
R-HSA-9664420 | Killing mechanisms | 6.936795e-01 | 0.159 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 6.936795e-01 | 0.159 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 6.936795e-01 | 0.159 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 6.936795e-01 | 0.159 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 6.936795e-01 | 0.159 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 6.936795e-01 | 0.159 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 6.936795e-01 | 0.159 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 6.936795e-01 | 0.159 |
R-HSA-9678110 | Attachment and Entry | 6.936795e-01 | 0.159 |
R-HSA-9754706 | Atorvastatin ADME | 6.936795e-01 | 0.159 |
R-HSA-9706369 | Negative regulation of FLT3 | 6.936795e-01 | 0.159 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 6.956134e-01 | 0.158 |
R-HSA-5696400 | Dual Incision in GG-NER | 6.971152e-01 | 0.157 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 6.971152e-01 | 0.157 |
R-HSA-203615 | eNOS activation | 6.971152e-01 | 0.157 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 6.971152e-01 | 0.157 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 6.971152e-01 | 0.157 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 6.971152e-01 | 0.157 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 6.971152e-01 | 0.157 |
R-HSA-418346 | Platelet homeostasis | 6.971624e-01 | 0.157 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 6.989025e-01 | 0.156 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 6.989025e-01 | 0.156 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 7.038043e-01 | 0.153 |
R-HSA-69052 | Switching of origins to a post-replicative state | 7.047352e-01 | 0.152 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 7.092177e-01 | 0.149 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 7.092177e-01 | 0.149 |
R-HSA-917977 | Transferrin endocytosis and recycling | 7.096007e-01 | 0.149 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 7.096007e-01 | 0.149 |
R-HSA-2892247 | POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation | 7.112858e-01 | 0.148 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 7.112858e-01 | 0.148 |
R-HSA-1566977 | Fibronectin matrix formation | 7.112858e-01 | 0.148 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 7.112858e-01 | 0.148 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 7.112858e-01 | 0.148 |
R-HSA-432047 | Passive transport by Aquaporins | 7.112858e-01 | 0.148 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 7.112858e-01 | 0.148 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 7.192592e-01 | 0.143 |
R-HSA-3214815 | HDACs deacetylate histones | 7.192592e-01 | 0.143 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 7.198176e-01 | 0.143 |
R-HSA-69206 | G1/S Transition | 7.203725e-01 | 0.142 |
R-HSA-212300 | PRC2 methylates histones and DNA | 7.216527e-01 | 0.142 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 7.216527e-01 | 0.142 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 7.216527e-01 | 0.142 |
R-HSA-9845576 | Glycosphingolipid transport | 7.216527e-01 | 0.142 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 7.223804e-01 | 0.141 |
R-HSA-72766 | Translation | 7.226347e-01 | 0.141 |
R-HSA-9711123 | Cellular response to chemical stress | 7.234481e-01 | 0.141 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 7.275892e-01 | 0.138 |
R-HSA-68867 | Assembly of the pre-replicative complex | 7.275892e-01 | 0.138 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 7.278812e-01 | 0.138 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 7.278812e-01 | 0.138 |
R-HSA-3229121 | Glycogen storage diseases | 7.278812e-01 | 0.138 |
R-HSA-9020265 | Biosynthesis of aspirin-triggered D-series resolvins | 7.278812e-01 | 0.138 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 7.278812e-01 | 0.138 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 7.278812e-01 | 0.138 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 7.278812e-01 | 0.138 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 7.290291e-01 | 0.137 |
R-HSA-4641258 | Degradation of DVL | 7.332799e-01 | 0.135 |
R-HSA-110331 | Cleavage of the damaged purine | 7.332799e-01 | 0.135 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 7.332799e-01 | 0.135 |
R-HSA-9837999 | Mitochondrial protein degradation | 7.352042e-01 | 0.134 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 7.400769e-01 | 0.131 |
R-HSA-432142 | Platelet sensitization by LDL | 7.435236e-01 | 0.129 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 7.435236e-01 | 0.129 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 7.435236e-01 | 0.129 |
R-HSA-210993 | Tie2 Signaling | 7.435236e-01 | 0.129 |
R-HSA-9831926 | Nephron development | 7.435236e-01 | 0.129 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 7.435236e-01 | 0.129 |
R-HSA-111471 | Apoptotic factor-mediated response | 7.435236e-01 | 0.129 |
R-HSA-8875878 | MET promotes cell motility | 7.444911e-01 | 0.128 |
R-HSA-73927 | Depurination | 7.444911e-01 | 0.128 |
R-HSA-1566948 | Elastic fibre formation | 7.444911e-01 | 0.128 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 7.444911e-01 | 0.128 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 7.444911e-01 | 0.128 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 7.477649e-01 | 0.126 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 7.552958e-01 | 0.122 |
R-HSA-69541 | Stabilization of p53 | 7.552958e-01 | 0.122 |
R-HSA-8964043 | Plasma lipoprotein clearance | 7.552958e-01 | 0.122 |
R-HSA-9648002 | RAS processing | 7.552958e-01 | 0.122 |
R-HSA-186712 | Regulation of beta-cell development | 7.567370e-01 | 0.121 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 7.567370e-01 | 0.121 |
R-HSA-5663205 | Infectious disease | 7.576751e-01 | 0.121 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 7.582677e-01 | 0.120 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 7.582677e-01 | 0.120 |
R-HSA-166520 | Signaling by NTRKs | 7.639254e-01 | 0.117 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 7.654498e-01 | 0.116 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 7.654498e-01 | 0.116 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 7.654498e-01 | 0.116 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 7.654498e-01 | 0.116 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 7.654498e-01 | 0.116 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 7.657036e-01 | 0.116 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 7.657036e-01 | 0.116 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 7.657036e-01 | 0.116 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 7.657036e-01 | 0.116 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 7.657036e-01 | 0.116 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 7.657036e-01 | 0.116 |
R-HSA-167169 | HIV Transcription Elongation | 7.657036e-01 | 0.116 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 7.657036e-01 | 0.116 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 7.669355e-01 | 0.115 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 7.721651e-01 | 0.112 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 7.721651e-01 | 0.112 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 7.721651e-01 | 0.112 |
R-HSA-3322077 | Glycogen synthesis | 7.721651e-01 | 0.112 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 7.721651e-01 | 0.112 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 7.721651e-01 | 0.112 |
R-HSA-77111 | Synthesis of Ketone Bodies | 7.721651e-01 | 0.112 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 7.757245e-01 | 0.110 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 7.757245e-01 | 0.110 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 7.757245e-01 | 0.110 |
R-HSA-1268020 | Mitochondrial protein import | 7.821127e-01 | 0.107 |
R-HSA-72306 | tRNA processing | 7.846471e-01 | 0.105 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 7.852643e-01 | 0.105 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 7.852643e-01 | 0.105 |
R-HSA-198753 | ERK/MAPK targets | 7.852643e-01 | 0.105 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 7.852643e-01 | 0.105 |
R-HSA-9018896 | Biosynthesis of E-series 18(S)-resolvins | 7.852643e-01 | 0.105 |
R-HSA-167161 | HIV Transcription Initiation | 7.853685e-01 | 0.105 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 7.853685e-01 | 0.105 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 7.853685e-01 | 0.105 |
R-HSA-3000480 | Scavenging by Class A Receptors | 7.853685e-01 | 0.105 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 7.853685e-01 | 0.105 |
R-HSA-416476 | G alpha (q) signalling events | 7.872798e-01 | 0.104 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 7.946458e-01 | 0.100 |
R-HSA-165159 | MTOR signalling | 7.946458e-01 | 0.100 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 7.946458e-01 | 0.100 |
R-HSA-73928 | Depyrimidination | 7.946458e-01 | 0.100 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 7.946458e-01 | 0.100 |
R-HSA-392499 | Metabolism of proteins | 7.956363e-01 | 0.099 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 7.967996e-01 | 0.099 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 7.976111e-01 | 0.098 |
R-HSA-5654706 | FRS-mediated FGFR3 signaling | 7.976111e-01 | 0.098 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 7.976111e-01 | 0.098 |
R-HSA-9694614 | Attachment and Entry | 7.976111e-01 | 0.098 |
R-HSA-175474 | Assembly Of The HIV Virion | 7.976111e-01 | 0.098 |
R-HSA-2022377 | Metabolism of Angiotensinogen to Angiotensins | 7.976111e-01 | 0.098 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 7.989061e-01 | 0.098 |
R-HSA-9006925 | Intracellular signaling by second messengers | 8.007090e-01 | 0.097 |
R-HSA-1989781 | PPARA activates gene expression | 8.010534e-01 | 0.096 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 8.035667e-01 | 0.095 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 8.035667e-01 | 0.095 |
R-HSA-9710421 | Defective pyroptosis | 8.035667e-01 | 0.095 |
R-HSA-73621 | Pyrimidine catabolism | 8.035667e-01 | 0.095 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 8.040239e-01 | 0.095 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 8.055276e-01 | 0.094 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 8.092487e-01 | 0.092 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 8.092487e-01 | 0.092 |
R-HSA-5654712 | FRS-mediated FGFR4 signaling | 8.092487e-01 | 0.092 |
R-HSA-9018676 | Biosynthesis of D-series resolvins | 8.092487e-01 | 0.092 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 8.092487e-01 | 0.092 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 8.092487e-01 | 0.092 |
R-HSA-8964038 | LDL clearance | 8.092487e-01 | 0.092 |
R-HSA-189200 | Cellular hexose transport | 8.092487e-01 | 0.092 |
R-HSA-9669938 | Signaling by KIT in disease | 8.092487e-01 | 0.092 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 8.108129e-01 | 0.091 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 8.119708e-01 | 0.090 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 8.119708e-01 | 0.090 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 8.121414e-01 | 0.090 |
R-HSA-2172127 | DAP12 interactions | 8.121414e-01 | 0.090 |
R-HSA-5683826 | Surfactant metabolism | 8.121414e-01 | 0.090 |
R-HSA-70268 | Pyruvate metabolism | 8.182383e-01 | 0.087 |
R-HSA-8854691 | Interleukin-20 family signaling | 8.202177e-01 | 0.086 |
R-HSA-912526 | Interleukin receptor SHC signaling | 8.202177e-01 | 0.086 |
R-HSA-446210 | Synthesis of UDP-N-acetyl-glucosamine | 8.202177e-01 | 0.086 |
R-HSA-1855167 | Synthesis of pyrophosphates in the cytosol | 8.202177e-01 | 0.086 |
R-HSA-879518 | Organic anion transport by SLCO transporters | 8.202177e-01 | 0.086 |
R-HSA-74182 | Ketone body metabolism | 8.202177e-01 | 0.086 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 8.203803e-01 | 0.086 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 8.203803e-01 | 0.086 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 8.203803e-01 | 0.086 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 8.203803e-01 | 0.086 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 8.238619e-01 | 0.084 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 8.282937e-01 | 0.082 |
R-HSA-9839373 | Signaling by TGFBR3 | 8.282937e-01 | 0.082 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 8.282937e-01 | 0.082 |
R-HSA-6783589 | Interleukin-6 family signaling | 8.305567e-01 | 0.081 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 8.305567e-01 | 0.081 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 8.305567e-01 | 0.081 |
R-HSA-9865881 | Complex III assembly | 8.305567e-01 | 0.081 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 8.305567e-01 | 0.081 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 8.358916e-01 | 0.078 |
R-HSA-112310 | Neurotransmitter release cycle | 8.360149e-01 | 0.078 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 8.392300e-01 | 0.076 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 8.392300e-01 | 0.076 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 8.392300e-01 | 0.076 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 8.403016e-01 | 0.076 |
R-HSA-5654693 | FRS-mediated FGFR1 signaling | 8.403016e-01 | 0.076 |
R-HSA-389887 | Beta-oxidation of pristanoyl-CoA | 8.403016e-01 | 0.076 |
R-HSA-2160916 | Hyaluronan degradation | 8.403016e-01 | 0.076 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 8.403016e-01 | 0.076 |
R-HSA-8951664 | Neddylation | 8.421373e-01 | 0.075 |
R-HSA-195721 | Signaling by WNT | 8.422902e-01 | 0.075 |
R-HSA-9031628 | NGF-stimulated transcription | 8.431842e-01 | 0.074 |
R-HSA-70263 | Gluconeogenesis | 8.431842e-01 | 0.074 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 8.431842e-01 | 0.074 |
R-HSA-389356 | Co-stimulation by CD28 | 8.431842e-01 | 0.074 |
R-HSA-5632684 | Hedgehog 'on' state | 8.453744e-01 | 0.073 |
R-HSA-2046105 | Linoleic acid (LA) metabolism | 8.494867e-01 | 0.071 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 8.494867e-01 | 0.071 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 8.494867e-01 | 0.071 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 8.494867e-01 | 0.071 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 8.501815e-01 | 0.070 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 8.501815e-01 | 0.070 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 8.501815e-01 | 0.070 |
R-HSA-380108 | Chemokine receptors bind chemokines | 8.501815e-01 | 0.070 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 8.513139e-01 | 0.070 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 8.513139e-01 | 0.070 |
R-HSA-74752 | Signaling by Insulin receptor | 8.523142e-01 | 0.069 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 8.523142e-01 | 0.069 |
R-HSA-171306 | Packaging Of Telomere Ends | 8.581440e-01 | 0.066 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 8.581440e-01 | 0.066 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 8.581440e-01 | 0.066 |
R-HSA-264876 | Insulin processing | 8.581440e-01 | 0.066 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 8.581440e-01 | 0.066 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 8.581440e-01 | 0.066 |
R-HSA-193807 | Synthesis of bile acids and bile salts via 27-hydroxycholesterol | 8.581440e-01 | 0.066 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 8.624002e-01 | 0.064 |
R-HSA-1474290 | Collagen formation | 8.624002e-01 | 0.064 |
R-HSA-1226099 | Signaling by FGFR in disease | 8.625984e-01 | 0.064 |
R-HSA-9864848 | Complex IV assembly | 8.633292e-01 | 0.064 |
R-HSA-2514856 | The phototransduction cascade | 8.633292e-01 | 0.064 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 8.650193e-01 | 0.063 |
R-HSA-5654700 | FRS-mediated FGFR2 signaling | 8.663038e-01 | 0.062 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 8.663038e-01 | 0.062 |
R-HSA-9638334 | Iron assimilation using enterobactin | 8.663038e-01 | 0.062 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 8.663038e-01 | 0.062 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 8.679534e-01 | 0.062 |
R-HSA-9909396 | Circadian clock | 8.694112e-01 | 0.061 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 8.694988e-01 | 0.061 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 8.694988e-01 | 0.061 |
R-HSA-446203 | Asparagine N-linked glycosylation | 8.725454e-01 | 0.059 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 8.726940e-01 | 0.059 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 8.739947e-01 | 0.058 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 8.739947e-01 | 0.058 |
R-HSA-204174 | Regulation of pyruvate dehydrogenase (PDH) complex | 8.739947e-01 | 0.058 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 8.739947e-01 | 0.058 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 8.739947e-01 | 0.058 |
R-HSA-9018679 | Biosynthesis of EPA-derived SPMs | 8.739947e-01 | 0.058 |
R-HSA-9006335 | Signaling by Erythropoietin | 8.739947e-01 | 0.058 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 8.743237e-01 | 0.058 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 8.754114e-01 | 0.058 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 8.778869e-01 | 0.057 |
R-HSA-9694635 | Translation of Structural Proteins | 8.781135e-01 | 0.056 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 8.812437e-01 | 0.055 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 8.812437e-01 | 0.055 |
R-HSA-216083 | Integrin cell surface interactions | 8.829285e-01 | 0.054 |
R-HSA-418597 | G alpha (z) signalling events | 8.865020e-01 | 0.052 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 8.875733e-01 | 0.052 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 8.880760e-01 | 0.052 |
R-HSA-162710 | Synthesis of glycosylphosphatidylinositol (GPI) | 8.880760e-01 | 0.052 |
R-HSA-1257604 | PIP3 activates AKT signaling | 8.888007e-01 | 0.051 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 8.916976e-01 | 0.050 |
R-HSA-1538133 | G0 and Early G1 | 8.945157e-01 | 0.048 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 8.946873e-01 | 0.048 |
R-HSA-977225 | Amyloid fiber formation | 8.963713e-01 | 0.048 |
R-HSA-6807070 | PTEN Regulation | 8.983010e-01 | 0.047 |
R-HSA-397795 | G-protein beta:gamma signalling | 9.005852e-01 | 0.045 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 9.005852e-01 | 0.045 |
R-HSA-5609975 | Diseases associated with glycosylation precursor biosynthesis | 9.005852e-01 | 0.045 |
R-HSA-6782135 | Dual incision in TC-NER | 9.014321e-01 | 0.045 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.014966e-01 | 0.045 |
R-HSA-9664417 | Leishmania phagocytosis | 9.014966e-01 | 0.045 |
R-HSA-9664407 | Parasite infection | 9.014966e-01 | 0.045 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 9.059874e-01 | 0.043 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 9.063058e-01 | 0.043 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 9.063058e-01 | 0.043 |
R-HSA-5223345 | Miscellaneous transport and binding events | 9.063058e-01 | 0.043 |
R-HSA-189483 | Heme degradation | 9.063058e-01 | 0.043 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 9.068677e-01 | 0.042 |
R-HSA-111885 | Opioid Signalling | 9.079135e-01 | 0.042 |
R-HSA-379724 | tRNA Aminoacylation | 9.103452e-01 | 0.041 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 9.116975e-01 | 0.040 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 9.116975e-01 | 0.040 |
R-HSA-2142845 | Hyaluronan metabolism | 9.116975e-01 | 0.040 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 9.116975e-01 | 0.040 |
R-HSA-1980145 | Signaling by NOTCH2 | 9.116975e-01 | 0.040 |
R-HSA-901042 | Calnexin/calreticulin cycle | 9.116975e-01 | 0.040 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 9.145132e-01 | 0.039 |
R-HSA-445717 | Aquaporin-mediated transport | 9.145132e-01 | 0.039 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 9.162096e-01 | 0.038 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.167435e-01 | 0.038 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 9.167793e-01 | 0.038 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 9.167793e-01 | 0.038 |
R-HSA-2559585 | Oncogene Induced Senescence | 9.167793e-01 | 0.038 |
R-HSA-1643685 | Disease | 9.171222e-01 | 0.038 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 9.184987e-01 | 0.037 |
R-HSA-8941326 | RUNX2 regulates bone development | 9.215689e-01 | 0.035 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 9.223090e-01 | 0.035 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 9.223090e-01 | 0.035 |
R-HSA-74751 | Insulin receptor signalling cascade | 9.259510e-01 | 0.033 |
R-HSA-2428924 | IGF1R signaling cascade | 9.259510e-01 | 0.033 |
R-HSA-4641257 | Degradation of AXIN | 9.260832e-01 | 0.033 |
R-HSA-1296072 | Voltage gated Potassium channels | 9.260832e-01 | 0.033 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 9.260832e-01 | 0.033 |
R-HSA-390247 | Beta-oxidation of very long chain fatty acids | 9.260832e-01 | 0.033 |
R-HSA-196757 | Metabolism of folate and pterines | 9.260832e-01 | 0.033 |
R-HSA-1236974 | ER-Phagosome pathway | 9.287583e-01 | 0.032 |
R-HSA-9758941 | Gastrulation | 9.289710e-01 | 0.032 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 9.294315e-01 | 0.032 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 9.296530e-01 | 0.032 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 9.303378e-01 | 0.031 |
R-HSA-71336 | Pentose phosphate pathway | 9.343479e-01 | 0.029 |
R-HSA-193368 | Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol | 9.359336e-01 | 0.029 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 9.359336e-01 | 0.029 |
R-HSA-451927 | Interleukin-2 family signaling | 9.381273e-01 | 0.028 |
R-HSA-9658195 | Leishmania infection | 9.415667e-01 | 0.026 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.415667e-01 | 0.026 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 9.416893e-01 | 0.026 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 9.416893e-01 | 0.026 |
R-HSA-5423646 | Aflatoxin activation and detoxification | 9.416893e-01 | 0.026 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 9.446314e-01 | 0.025 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 9.446314e-01 | 0.025 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 9.450465e-01 | 0.025 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 9.450465e-01 | 0.025 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 9.450465e-01 | 0.025 |
R-HSA-9683701 | Translation of Structural Proteins | 9.450465e-01 | 0.025 |
R-HSA-975634 | Retinoid metabolism and transport | 9.472721e-01 | 0.024 |
R-HSA-3000178 | ECM proteoglycans | 9.472721e-01 | 0.024 |
R-HSA-8978934 | Metabolism of cofactors | 9.472721e-01 | 0.024 |
R-HSA-74259 | Purine catabolism | 9.497925e-01 | 0.022 |
R-HSA-5654743 | Signaling by FGFR4 | 9.511927e-01 | 0.022 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 9.511927e-01 | 0.022 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 9.511927e-01 | 0.022 |
R-HSA-9749641 | Aspirin ADME | 9.521977e-01 | 0.021 |
R-HSA-1474244 | Extracellular matrix organization | 9.534726e-01 | 0.021 |
R-HSA-9907900 | Proteasome assembly | 9.540032e-01 | 0.020 |
R-HSA-2142691 | Synthesis of Leukotrienes (LT) and Eoxins (EX) | 9.540032e-01 | 0.020 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 9.541480e-01 | 0.020 |
R-HSA-9013694 | Signaling by NOTCH4 | 9.544925e-01 | 0.020 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 9.544925e-01 | 0.020 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 9.566521e-01 | 0.019 |
R-HSA-5654741 | Signaling by FGFR3 | 9.566521e-01 | 0.019 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.569417e-01 | 0.019 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.575506e-01 | 0.019 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.580665e-01 | 0.019 |
R-HSA-4086400 | PCP/CE pathway | 9.626608e-01 | 0.017 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 9.626608e-01 | 0.017 |
R-HSA-9634597 | GPER1 signaling | 9.637189e-01 | 0.016 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 9.644715e-01 | 0.016 |
R-HSA-389661 | Glyoxylate metabolism and glycine degradation | 9.658087e-01 | 0.015 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 9.677783e-01 | 0.014 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 9.678429e-01 | 0.014 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 9.696346e-01 | 0.013 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 9.696346e-01 | 0.013 |
R-HSA-68949 | Orc1 removal from chromatin | 9.713840e-01 | 0.013 |
R-HSA-1236975 | Antigen processing-Cross presentation | 9.727974e-01 | 0.012 |
R-HSA-2672351 | Stimuli-sensing channels | 9.727974e-01 | 0.012 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.751465e-01 | 0.011 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.751568e-01 | 0.011 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.762081e-01 | 0.010 |
R-HSA-5654736 | Signaling by FGFR1 | 9.774311e-01 | 0.010 |
R-HSA-1483257 | Phospholipid metabolism | 9.787163e-01 | 0.009 |
R-HSA-112399 | IRS-mediated signalling | 9.787317e-01 | 0.009 |
R-HSA-163685 | Integration of energy metabolism | 9.798587e-01 | 0.009 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 9.799575e-01 | 0.009 |
R-HSA-909733 | Interferon alpha/beta signaling | 9.819395e-01 | 0.008 |
R-HSA-977443 | GABA receptor activation | 9.822013e-01 | 0.008 |
R-HSA-211976 | Endogenous sterols | 9.832273e-01 | 0.007 |
R-HSA-9793380 | Formation of paraxial mesoderm | 9.832273e-01 | 0.007 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 9.832273e-01 | 0.007 |
R-HSA-2029481 | FCGR activation | 9.841527e-01 | 0.007 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 9.841942e-01 | 0.007 |
R-HSA-6799198 | Complex I biogenesis | 9.851054e-01 | 0.007 |
R-HSA-8963743 | Digestion and absorption | 9.851054e-01 | 0.007 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 9.863139e-01 | 0.006 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.870897e-01 | 0.006 |
R-HSA-1296071 | Potassium Channels | 9.870897e-01 | 0.006 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.875361e-01 | 0.005 |
R-HSA-2187338 | Visual phototransduction | 9.879487e-01 | 0.005 |
R-HSA-977606 | Regulation of Complement cascade | 9.886442e-01 | 0.005 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 9.889322e-01 | 0.005 |
R-HSA-9614085 | FOXO-mediated transcription | 9.889374e-01 | 0.005 |
R-HSA-382556 | ABC-family proteins mediated transport | 9.894939e-01 | 0.005 |
R-HSA-9638482 | Metal ion assimilation from the host | 9.907389e-01 | 0.004 |
R-HSA-189445 | Metabolism of porphyrins | 9.907389e-01 | 0.004 |
R-HSA-8956319 | Nucleotide catabolism | 9.910241e-01 | 0.004 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 9.917765e-01 | 0.004 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 9.935163e-01 | 0.003 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.935653e-01 | 0.003 |
R-HSA-6783783 | Interleukin-10 signaling | 9.938904e-01 | 0.003 |
R-HSA-5619084 | ABC transporter disorders | 9.938904e-01 | 0.003 |
R-HSA-191273 | Cholesterol biosynthesis | 9.938904e-01 | 0.003 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 9.942430e-01 | 0.003 |
R-HSA-5654738 | Signaling by FGFR2 | 9.945752e-01 | 0.002 |
R-HSA-9018677 | Biosynthesis of DHA-derived SPMs | 9.948883e-01 | 0.002 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 9.954614e-01 | 0.002 |
R-HSA-390918 | Peroxisomal lipid metabolism | 9.957233e-01 | 0.002 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.958935e-01 | 0.002 |
R-HSA-2980736 | Peptide hormone metabolism | 9.963045e-01 | 0.002 |
R-HSA-166658 | Complement cascade | 9.963895e-01 | 0.002 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.971704e-01 | 0.001 |
R-HSA-382551 | Transport of small molecules | 9.973513e-01 | 0.001 |
R-HSA-6809371 | Formation of the cornified envelope | 9.974490e-01 | 0.001 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.978252e-01 | 0.001 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.982478e-01 | 0.001 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.984444e-01 | 0.001 |
R-HSA-190236 | Signaling by FGFR | 9.984444e-01 | 0.001 |
R-HSA-422356 | Regulation of insulin secretion | 9.984444e-01 | 0.001 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 9.988449e-01 | 0.001 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 9.988555e-01 | 0.000 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 9.989746e-01 | 0.000 |
R-HSA-5419276 | Mitochondrial translation termination | 9.992387e-01 | 0.000 |
R-HSA-6803157 | Antimicrobial peptides | 9.993242e-01 | 0.000 |
R-HSA-611105 | Respiratory electron transport | 9.993304e-01 | 0.000 |
R-HSA-2871796 | FCERI mediated MAPK activation | 9.993633e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.995260e-01 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.996695e-01 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.997216e-01 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.997370e-01 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 9.998212e-01 | 0.000 |
R-HSA-446219 | Synthesis of substrates in N-glycan biosythesis | 9.998384e-01 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 9.998435e-01 | 0.000 |
R-HSA-418555 | G alpha (s) signalling events | 9.998469e-01 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 9.998490e-01 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.998628e-01 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.998628e-01 | 0.000 |
R-HSA-5368287 | Mitochondrial translation | 9.998998e-01 | 0.000 |
R-HSA-9748784 | Drug ADME | 9.999183e-01 | 0.000 |
R-HSA-9018678 | Biosynthesis of specialized proresolving mediators (SPMs) | 9.999299e-01 | 0.000 |
R-HSA-2142753 | Arachidonate metabolism | 9.999591e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999629e-01 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 9.999682e-01 | 0.000 |
R-HSA-446193 | Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... | 9.999696e-01 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 9.999709e-01 | 0.000 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.999739e-01 | 0.000 |
R-HSA-6805567 | Keratinization | 9.999791e-01 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 9.999833e-01 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.999834e-01 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.999913e-01 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.999926e-01 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.999942e-01 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 9.999943e-01 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.999946e-01 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.999967e-01 | 0.000 |
R-HSA-9640148 | Infection with Enterobacteria | 9.999982e-01 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.999986e-01 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 9.999996e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.999999e-01 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 9.999999e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000e+00 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.923 | 0.187 | 2 | 0.938 |
CLK3 |
0.917 | 0.419 | 1 | 0.925 |
NLK |
0.916 | 0.400 | 1 | 0.945 |
KIS |
0.912 | 0.404 | 1 | 0.866 |
MTOR |
0.908 | 0.032 | 1 | 0.855 |
PRPK |
0.908 | -0.142 | -1 | 0.903 |
MOS |
0.907 | 0.053 | 1 | 0.867 |
GCN2 |
0.907 | -0.141 | 2 | 0.881 |
ERK5 |
0.906 | 0.202 | 1 | 0.877 |
ULK2 |
0.905 | -0.079 | 2 | 0.875 |
PIM3 |
0.905 | 0.050 | -3 | 0.838 |
CDC7 |
0.905 | -0.091 | 1 | 0.818 |
DSTYK |
0.904 | -0.002 | 2 | 0.943 |
RAF1 |
0.904 | -0.103 | 1 | 0.849 |
CDKL1 |
0.904 | 0.088 | -3 | 0.804 |
CAMK1B |
0.904 | 0.006 | -3 | 0.877 |
TBK1 |
0.903 | -0.098 | 1 | 0.763 |
CDK8 |
0.903 | 0.364 | 1 | 0.850 |
NDR2 |
0.903 | 0.029 | -3 | 0.845 |
HIPK4 |
0.903 | 0.240 | 1 | 0.904 |
MST4 |
0.903 | 0.145 | 2 | 0.916 |
SRPK1 |
0.902 | 0.210 | -3 | 0.746 |
IKKB |
0.902 | -0.146 | -2 | 0.829 |
BMPR2 |
0.902 | -0.146 | -2 | 0.939 |
PKN3 |
0.901 | 0.049 | -3 | 0.835 |
WNK1 |
0.901 | 0.059 | -2 | 0.920 |
NUAK2 |
0.900 | 0.071 | -3 | 0.848 |
PRKD1 |
0.900 | 0.088 | -3 | 0.828 |
PDHK4 |
0.900 | -0.370 | 1 | 0.879 |
NEK6 |
0.900 | -0.008 | -2 | 0.907 |
CDK5 |
0.899 | 0.447 | 1 | 0.857 |
CDKL5 |
0.899 | 0.103 | -3 | 0.794 |
NIK |
0.899 | 0.035 | -3 | 0.902 |
PKCD |
0.899 | 0.152 | 2 | 0.876 |
TGFBR2 |
0.899 | 0.007 | -2 | 0.848 |
ATR |
0.898 | -0.059 | 1 | 0.845 |
CDK19 |
0.898 | 0.365 | 1 | 0.817 |
NEK7 |
0.898 | -0.110 | -3 | 0.871 |
IKKE |
0.898 | -0.147 | 1 | 0.757 |
NDR1 |
0.898 | 0.016 | -3 | 0.841 |
PRKD2 |
0.898 | 0.107 | -3 | 0.772 |
MLK1 |
0.897 | -0.040 | 2 | 0.895 |
PKN2 |
0.897 | 0.068 | -3 | 0.852 |
ICK |
0.897 | 0.167 | -3 | 0.842 |
CAMK2G |
0.897 | -0.128 | 2 | 0.864 |
RIPK3 |
0.897 | -0.062 | 3 | 0.793 |
CDK7 |
0.896 | 0.346 | 1 | 0.848 |
PDHK1 |
0.896 | -0.274 | 1 | 0.870 |
CDK18 |
0.896 | 0.426 | 1 | 0.785 |
RSK2 |
0.896 | 0.054 | -3 | 0.769 |
PIM1 |
0.896 | 0.106 | -3 | 0.783 |
CHAK2 |
0.895 | 0.007 | -1 | 0.900 |
CAMLCK |
0.895 | 0.004 | -2 | 0.904 |
AMPKA1 |
0.895 | 0.042 | -3 | 0.865 |
CDK1 |
0.895 | 0.427 | 1 | 0.803 |
SKMLCK |
0.895 | 0.029 | -2 | 0.902 |
DYRK2 |
0.894 | 0.345 | 1 | 0.856 |
SRPK2 |
0.894 | 0.161 | -3 | 0.663 |
JNK2 |
0.893 | 0.439 | 1 | 0.802 |
ULK1 |
0.893 | -0.178 | -3 | 0.853 |
MARK4 |
0.893 | -0.022 | 4 | 0.881 |
P90RSK |
0.893 | 0.010 | -3 | 0.772 |
CDK13 |
0.892 | 0.352 | 1 | 0.824 |
IKKA |
0.892 | -0.041 | -2 | 0.814 |
CLK1 |
0.892 | 0.279 | -3 | 0.748 |
HUNK |
0.892 | -0.152 | 2 | 0.890 |
DAPK2 |
0.892 | -0.040 | -3 | 0.882 |
IRE1 |
0.892 | 0.000 | 1 | 0.814 |
GRK5 |
0.891 | -0.208 | -3 | 0.888 |
WNK3 |
0.891 | -0.217 | 1 | 0.840 |
CLK4 |
0.891 | 0.236 | -3 | 0.769 |
P38A |
0.891 | 0.388 | 1 | 0.860 |
NEK9 |
0.891 | -0.099 | 2 | 0.917 |
TSSK2 |
0.891 | 0.049 | -5 | 0.899 |
RSK3 |
0.891 | 0.004 | -3 | 0.762 |
MAPKAPK3 |
0.891 | -0.021 | -3 | 0.777 |
TSSK1 |
0.890 | 0.082 | -3 | 0.884 |
CDK17 |
0.890 | 0.406 | 1 | 0.737 |
JNK3 |
0.890 | 0.398 | 1 | 0.828 |
CDK2 |
0.890 | 0.349 | 1 | 0.858 |
PKACG |
0.889 | 0.028 | -2 | 0.800 |
P70S6KB |
0.889 | 0.006 | -3 | 0.800 |
LATS2 |
0.889 | -0.022 | -5 | 0.805 |
P38G |
0.889 | 0.420 | 1 | 0.734 |
GRK1 |
0.889 | 0.031 | -2 | 0.850 |
MLK2 |
0.889 | -0.071 | 2 | 0.894 |
ERK1 |
0.889 | 0.383 | 1 | 0.798 |
AMPKA2 |
0.888 | 0.024 | -3 | 0.828 |
NIM1 |
0.888 | -0.046 | 3 | 0.829 |
BCKDK |
0.888 | -0.220 | -1 | 0.853 |
CAMK2D |
0.888 | -0.076 | -3 | 0.855 |
MLK3 |
0.888 | 0.039 | 2 | 0.832 |
ANKRD3 |
0.888 | -0.111 | 1 | 0.877 |
P38B |
0.888 | 0.399 | 1 | 0.800 |
CDK3 |
0.888 | 0.449 | 1 | 0.752 |
MNK2 |
0.887 | 0.081 | -2 | 0.843 |
AURC |
0.887 | 0.102 | -2 | 0.700 |
MASTL |
0.887 | -0.317 | -2 | 0.880 |
PKR |
0.887 | 0.090 | 1 | 0.861 |
SRPK3 |
0.887 | 0.110 | -3 | 0.716 |
HIPK1 |
0.887 | 0.353 | 1 | 0.873 |
IRE2 |
0.886 | 0.023 | 2 | 0.846 |
ERK2 |
0.886 | 0.353 | 1 | 0.835 |
HIPK2 |
0.886 | 0.381 | 1 | 0.790 |
PKCA |
0.886 | 0.109 | 2 | 0.822 |
CDK9 |
0.886 | 0.333 | 1 | 0.830 |
PKCB |
0.886 | 0.098 | 2 | 0.828 |
DLK |
0.886 | -0.198 | 1 | 0.855 |
CDK12 |
0.885 | 0.352 | 1 | 0.803 |
NUAK1 |
0.885 | 0.010 | -3 | 0.794 |
PKCG |
0.885 | 0.068 | 2 | 0.831 |
PRP4 |
0.885 | 0.319 | -3 | 0.831 |
PRKD3 |
0.885 | 0.038 | -3 | 0.742 |
GRK6 |
0.885 | -0.132 | 1 | 0.831 |
RIPK1 |
0.884 | -0.224 | 1 | 0.834 |
ALK4 |
0.884 | 0.018 | -2 | 0.890 |
CDK14 |
0.884 | 0.397 | 1 | 0.823 |
MELK |
0.884 | -0.008 | -3 | 0.813 |
CDK16 |
0.883 | 0.434 | 1 | 0.752 |
CAMK4 |
0.883 | -0.097 | -3 | 0.833 |
PHKG1 |
0.883 | -0.009 | -3 | 0.836 |
MAPKAPK2 |
0.883 | -0.007 | -3 | 0.724 |
PKCZ |
0.882 | 0.047 | 2 | 0.868 |
PAK3 |
0.882 | -0.051 | -2 | 0.833 |
PAK1 |
0.882 | -0.014 | -2 | 0.828 |
QIK |
0.882 | -0.082 | -3 | 0.849 |
BMPR1B |
0.882 | 0.096 | 1 | 0.764 |
TTBK2 |
0.881 | -0.233 | 2 | 0.794 |
PKCH |
0.881 | 0.041 | 2 | 0.821 |
NEK2 |
0.881 | -0.048 | 2 | 0.893 |
TGFBR1 |
0.881 | 0.043 | -2 | 0.864 |
GRK4 |
0.881 | -0.197 | -2 | 0.877 |
LATS1 |
0.881 | 0.041 | -3 | 0.854 |
MNK1 |
0.881 | 0.071 | -2 | 0.854 |
VRK2 |
0.881 | -0.096 | 1 | 0.914 |
PLK1 |
0.881 | -0.091 | -2 | 0.870 |
DYRK1A |
0.881 | 0.257 | 1 | 0.894 |
MLK4 |
0.880 | -0.021 | 2 | 0.813 |
HIPK3 |
0.880 | 0.299 | 1 | 0.871 |
ATM |
0.880 | -0.079 | 1 | 0.771 |
MEK1 |
0.880 | -0.175 | 2 | 0.905 |
CLK2 |
0.880 | 0.280 | -3 | 0.747 |
P38D |
0.879 | 0.417 | 1 | 0.753 |
YSK4 |
0.879 | -0.104 | 1 | 0.793 |
QSK |
0.879 | -0.016 | 4 | 0.859 |
CDK10 |
0.879 | 0.397 | 1 | 0.811 |
PAK6 |
0.879 | 0.061 | -2 | 0.758 |
AURB |
0.879 | 0.051 | -2 | 0.701 |
CHAK1 |
0.878 | -0.098 | 2 | 0.848 |
PKG2 |
0.878 | 0.066 | -2 | 0.726 |
FAM20C |
0.878 | 0.034 | 2 | 0.632 |
CAMK2B |
0.878 | -0.026 | 2 | 0.821 |
RSK4 |
0.878 | 0.039 | -3 | 0.733 |
MSK2 |
0.878 | -0.075 | -3 | 0.735 |
SGK3 |
0.877 | 0.058 | -3 | 0.762 |
SIK |
0.877 | -0.029 | -3 | 0.763 |
PKACB |
0.876 | 0.073 | -2 | 0.723 |
AKT2 |
0.875 | 0.048 | -3 | 0.682 |
PIM2 |
0.875 | 0.054 | -3 | 0.745 |
DYRK1B |
0.875 | 0.316 | 1 | 0.821 |
DYRK4 |
0.875 | 0.338 | 1 | 0.802 |
MYLK4 |
0.874 | -0.028 | -2 | 0.823 |
GRK7 |
0.874 | 0.024 | 1 | 0.768 |
CHK1 |
0.874 | -0.031 | -3 | 0.832 |
CAMK2A |
0.874 | -0.044 | 2 | 0.838 |
PAK2 |
0.874 | -0.085 | -2 | 0.817 |
ACVR2A |
0.874 | -0.034 | -2 | 0.842 |
MST3 |
0.874 | 0.107 | 2 | 0.908 |
IRAK4 |
0.873 | -0.014 | 1 | 0.822 |
DYRK3 |
0.873 | 0.251 | 1 | 0.870 |
ALK2 |
0.873 | -0.000 | -2 | 0.870 |
ZAK |
0.873 | -0.061 | 1 | 0.822 |
MEKK1 |
0.873 | -0.086 | 1 | 0.852 |
PINK1 |
0.873 | -0.059 | 1 | 0.902 |
MARK3 |
0.873 | -0.025 | 4 | 0.819 |
PLK4 |
0.873 | -0.101 | 2 | 0.722 |
ACVR2B |
0.873 | -0.034 | -2 | 0.855 |
CDK6 |
0.872 | 0.393 | 1 | 0.809 |
MARK2 |
0.872 | -0.043 | 4 | 0.786 |
SMG1 |
0.872 | -0.124 | 1 | 0.793 |
PERK |
0.872 | -0.131 | -2 | 0.889 |
DCAMKL1 |
0.872 | 0.002 | -3 | 0.788 |
HRI |
0.872 | -0.161 | -2 | 0.900 |
BRSK2 |
0.872 | -0.122 | -3 | 0.828 |
DNAPK |
0.872 | -0.037 | 1 | 0.721 |
TLK2 |
0.871 | -0.126 | 1 | 0.814 |
MSK1 |
0.871 | -0.024 | -3 | 0.741 |
BRAF |
0.871 | -0.087 | -4 | 0.859 |
PKCT |
0.871 | 0.038 | 2 | 0.828 |
MEKK2 |
0.870 | -0.053 | 2 | 0.886 |
WNK4 |
0.870 | -0.098 | -2 | 0.906 |
CAMK1G |
0.870 | -0.052 | -3 | 0.764 |
NEK5 |
0.870 | -0.051 | 1 | 0.848 |
PLK3 |
0.870 | -0.134 | 2 | 0.831 |
MEK5 |
0.870 | -0.236 | 2 | 0.900 |
MPSK1 |
0.870 | 0.104 | 1 | 0.830 |
BRSK1 |
0.869 | -0.116 | -3 | 0.795 |
TAO3 |
0.869 | 0.040 | 1 | 0.826 |
PRKX |
0.869 | 0.090 | -3 | 0.671 |
PHKG2 |
0.868 | -0.017 | -3 | 0.811 |
CDK4 |
0.868 | 0.373 | 1 | 0.792 |
MEKK3 |
0.868 | -0.182 | 1 | 0.827 |
SNRK |
0.868 | -0.256 | 2 | 0.763 |
AURA |
0.868 | -0.002 | -2 | 0.669 |
SSTK |
0.868 | 0.019 | 4 | 0.856 |
ERK7 |
0.867 | 0.185 | 2 | 0.615 |
AKT1 |
0.867 | 0.057 | -3 | 0.701 |
PKCI |
0.866 | 0.040 | 2 | 0.838 |
DRAK1 |
0.866 | -0.150 | 1 | 0.749 |
DCAMKL2 |
0.866 | -0.036 | -3 | 0.817 |
MARK1 |
0.866 | -0.096 | 4 | 0.841 |
SMMLCK |
0.865 | -0.042 | -3 | 0.827 |
CK1E |
0.865 | -0.020 | -3 | 0.579 |
MAPKAPK5 |
0.865 | -0.200 | -3 | 0.713 |
GRK2 |
0.865 | -0.126 | -2 | 0.769 |
BMPR1A |
0.864 | 0.049 | 1 | 0.745 |
GAK |
0.864 | 0.075 | 1 | 0.863 |
TAO2 |
0.863 | 0.001 | 2 | 0.925 |
TLK1 |
0.863 | -0.174 | -2 | 0.879 |
JNK1 |
0.863 | 0.313 | 1 | 0.782 |
PKCE |
0.863 | 0.092 | 2 | 0.817 |
P70S6K |
0.861 | -0.063 | -3 | 0.702 |
PKACA |
0.861 | 0.035 | -2 | 0.669 |
NEK11 |
0.861 | -0.153 | 1 | 0.825 |
NEK8 |
0.860 | -0.156 | 2 | 0.901 |
LKB1 |
0.859 | -0.052 | -3 | 0.874 |
CAMKK1 |
0.859 | -0.182 | -2 | 0.830 |
GSK3A |
0.859 | 0.071 | 4 | 0.445 |
IRAK1 |
0.859 | -0.269 | -1 | 0.808 |
MAK |
0.859 | 0.268 | -2 | 0.760 |
CAMK1D |
0.858 | -0.030 | -3 | 0.684 |
TNIK |
0.858 | 0.097 | 3 | 0.927 |
HGK |
0.858 | 0.033 | 3 | 0.922 |
PASK |
0.858 | -0.081 | -3 | 0.855 |
NEK4 |
0.858 | -0.084 | 1 | 0.816 |
EEF2K |
0.857 | 0.040 | 3 | 0.893 |
PAK5 |
0.857 | -0.022 | -2 | 0.688 |
GCK |
0.857 | 0.008 | 1 | 0.817 |
MEKK6 |
0.857 | -0.048 | 1 | 0.827 |
MINK |
0.857 | 0.015 | 1 | 0.815 |
PDK1 |
0.857 | -0.110 | 1 | 0.827 |
GSK3B |
0.857 | -0.034 | 4 | 0.437 |
MST2 |
0.857 | -0.049 | 1 | 0.821 |
TTBK1 |
0.856 | -0.237 | 2 | 0.711 |
PKN1 |
0.856 | -0.006 | -3 | 0.724 |
CK1D |
0.856 | -0.018 | -3 | 0.529 |
MAP3K15 |
0.856 | -0.044 | 1 | 0.806 |
CK1G1 |
0.855 | -0.074 | -3 | 0.570 |
MOK |
0.855 | 0.225 | 1 | 0.850 |
CAMKK2 |
0.854 | -0.176 | -2 | 0.825 |
LRRK2 |
0.854 | -0.082 | 2 | 0.924 |
LOK |
0.854 | 0.004 | -2 | 0.842 |
NEK1 |
0.854 | -0.029 | 1 | 0.825 |
DAPK3 |
0.853 | -0.024 | -3 | 0.803 |
CK1A2 |
0.853 | -0.031 | -3 | 0.526 |
PAK4 |
0.852 | -0.020 | -2 | 0.692 |
AKT3 |
0.852 | 0.043 | -3 | 0.611 |
TAK1 |
0.852 | -0.106 | 1 | 0.843 |
MRCKB |
0.852 | 0.047 | -3 | 0.740 |
HPK1 |
0.851 | -0.015 | 1 | 0.800 |
CHK2 |
0.851 | -0.023 | -3 | 0.627 |
ROCK2 |
0.851 | 0.080 | -3 | 0.791 |
MRCKA |
0.851 | 0.045 | -3 | 0.757 |
SGK1 |
0.850 | 0.034 | -3 | 0.593 |
KHS1 |
0.850 | 0.054 | 1 | 0.801 |
MST1 |
0.850 | -0.050 | 1 | 0.808 |
BUB1 |
0.850 | 0.127 | -5 | 0.849 |
KHS2 |
0.849 | 0.089 | 1 | 0.813 |
VRK1 |
0.849 | -0.151 | 2 | 0.916 |
YSK1 |
0.849 | -0.008 | 2 | 0.889 |
CAMK1A |
0.848 | -0.012 | -3 | 0.647 |
GRK3 |
0.848 | -0.129 | -2 | 0.721 |
SLK |
0.847 | -0.063 | -2 | 0.785 |
PBK |
0.846 | 0.025 | 1 | 0.787 |
DMPK1 |
0.844 | 0.097 | -3 | 0.763 |
STK33 |
0.844 | -0.189 | 2 | 0.702 |
DAPK1 |
0.844 | -0.059 | -3 | 0.785 |
MEK2 |
0.842 | -0.287 | 2 | 0.882 |
NEK3 |
0.842 | -0.110 | 1 | 0.805 |
SBK |
0.842 | 0.011 | -3 | 0.554 |
CK2A2 |
0.842 | -0.025 | 1 | 0.668 |
RIPK2 |
0.841 | -0.320 | 1 | 0.776 |
PLK2 |
0.841 | -0.083 | -3 | 0.826 |
PDHK3_TYR |
0.840 | 0.164 | 4 | 0.925 |
TTK |
0.840 | 0.013 | -2 | 0.869 |
OSR1 |
0.839 | -0.018 | 2 | 0.876 |
HASPIN |
0.838 | 0.031 | -1 | 0.742 |
ROCK1 |
0.838 | 0.044 | -3 | 0.757 |
MYO3B |
0.836 | 0.023 | 2 | 0.899 |
PKG1 |
0.836 | -0.026 | -2 | 0.640 |
BIKE |
0.836 | 0.059 | 1 | 0.746 |
TESK1_TYR |
0.834 | -0.009 | 3 | 0.933 |
PKMYT1_TYR |
0.834 | 0.058 | 3 | 0.899 |
MYO3A |
0.833 | -0.009 | 1 | 0.812 |
CRIK |
0.833 | 0.011 | -3 | 0.695 |
LIMK2_TYR |
0.832 | 0.111 | -3 | 0.919 |
TAO1 |
0.832 | -0.048 | 1 | 0.764 |
ASK1 |
0.832 | -0.136 | 1 | 0.794 |
CK2A1 |
0.831 | -0.050 | 1 | 0.645 |
PDHK4_TYR |
0.831 | -0.001 | 2 | 0.928 |
MAP2K4_TYR |
0.830 | -0.128 | -1 | 0.921 |
MAP2K7_TYR |
0.830 | -0.221 | 2 | 0.923 |
MAP2K6_TYR |
0.829 | -0.081 | -1 | 0.925 |
BMPR2_TYR |
0.828 | -0.012 | -1 | 0.915 |
PINK1_TYR |
0.827 | -0.184 | 1 | 0.863 |
LIMK1_TYR |
0.824 | -0.111 | 2 | 0.925 |
PDHK1_TYR |
0.824 | -0.167 | -1 | 0.930 |
RET |
0.823 | -0.124 | 1 | 0.835 |
TYK2 |
0.822 | -0.150 | 1 | 0.831 |
EPHA6 |
0.822 | -0.016 | -1 | 0.895 |
ROS1 |
0.822 | -0.078 | 3 | 0.837 |
TYRO3 |
0.821 | -0.121 | 3 | 0.861 |
ALPHAK3 |
0.821 | -0.160 | -1 | 0.812 |
JAK2 |
0.821 | -0.109 | 1 | 0.839 |
MST1R |
0.821 | -0.143 | 3 | 0.861 |
AAK1 |
0.820 | 0.115 | 1 | 0.648 |
CSF1R |
0.819 | -0.081 | 3 | 0.842 |
EPHB4 |
0.818 | -0.068 | -1 | 0.876 |
TNNI3K_TYR |
0.818 | 0.100 | 1 | 0.869 |
STLK3 |
0.817 | -0.230 | 1 | 0.784 |
YANK3 |
0.816 | -0.133 | 2 | 0.460 |
ABL2 |
0.816 | -0.049 | -1 | 0.847 |
DDR1 |
0.816 | -0.202 | 4 | 0.852 |
TXK |
0.815 | 0.037 | 1 | 0.816 |
JAK3 |
0.815 | -0.119 | 1 | 0.814 |
YES1 |
0.814 | -0.075 | -1 | 0.882 |
FGR |
0.813 | -0.142 | 1 | 0.849 |
CK1A |
0.813 | -0.091 | -3 | 0.436 |
ABL1 |
0.812 | -0.075 | -1 | 0.839 |
ITK |
0.812 | -0.051 | -1 | 0.842 |
TNK1 |
0.812 | -0.064 | 3 | 0.836 |
PDGFRB |
0.811 | -0.167 | 3 | 0.858 |
TNK2 |
0.811 | -0.103 | 3 | 0.797 |
LCK |
0.811 | -0.006 | -1 | 0.865 |
HCK |
0.811 | -0.105 | -1 | 0.865 |
INSRR |
0.810 | -0.160 | 3 | 0.798 |
FER |
0.810 | -0.236 | 1 | 0.851 |
JAK1 |
0.809 | -0.057 | 1 | 0.780 |
KDR |
0.809 | -0.108 | 3 | 0.803 |
FLT3 |
0.808 | -0.178 | 3 | 0.852 |
FGFR2 |
0.808 | -0.186 | 3 | 0.832 |
NEK10_TYR |
0.808 | -0.145 | 1 | 0.711 |
KIT |
0.807 | -0.177 | 3 | 0.839 |
BLK |
0.807 | 0.006 | -1 | 0.868 |
EPHB1 |
0.807 | -0.156 | 1 | 0.830 |
TEK |
0.807 | -0.168 | 3 | 0.791 |
FGFR1 |
0.807 | -0.171 | 3 | 0.813 |
SRMS |
0.806 | -0.184 | 1 | 0.828 |
EPHA4 |
0.806 | -0.137 | 2 | 0.824 |
EPHB3 |
0.806 | -0.149 | -1 | 0.858 |
EPHB2 |
0.805 | -0.114 | -1 | 0.853 |
AXL |
0.804 | -0.190 | 3 | 0.822 |
WEE1_TYR |
0.804 | -0.109 | -1 | 0.791 |
MET |
0.803 | -0.151 | 3 | 0.831 |
PDGFRA |
0.803 | -0.270 | 3 | 0.859 |
MERTK |
0.803 | -0.164 | 3 | 0.821 |
BMX |
0.803 | -0.093 | -1 | 0.756 |
TEC |
0.802 | -0.130 | -1 | 0.773 |
BTK |
0.801 | -0.253 | -1 | 0.805 |
ALK |
0.799 | -0.222 | 3 | 0.770 |
DDR2 |
0.799 | -0.043 | 3 | 0.778 |
FYN |
0.798 | -0.041 | -1 | 0.842 |
FLT1 |
0.798 | -0.179 | -1 | 0.870 |
LTK |
0.796 | -0.238 | 3 | 0.788 |
PTK6 |
0.796 | -0.305 | -1 | 0.769 |
EPHA7 |
0.796 | -0.158 | 2 | 0.837 |
FRK |
0.796 | -0.168 | -1 | 0.867 |
FGFR3 |
0.795 | -0.221 | 3 | 0.802 |
NTRK1 |
0.795 | -0.320 | -1 | 0.858 |
ERBB2 |
0.795 | -0.265 | 1 | 0.776 |
INSR |
0.795 | -0.235 | 3 | 0.777 |
LYN |
0.795 | -0.150 | 3 | 0.764 |
EPHA1 |
0.795 | -0.204 | 3 | 0.810 |
FLT4 |
0.794 | -0.254 | 3 | 0.793 |
NTRK2 |
0.794 | -0.292 | 3 | 0.800 |
EPHA3 |
0.793 | -0.236 | 2 | 0.806 |
PTK2B |
0.792 | -0.128 | -1 | 0.811 |
MATK |
0.789 | -0.202 | -1 | 0.770 |
NTRK3 |
0.789 | -0.248 | -1 | 0.805 |
CK1G3 |
0.789 | -0.115 | -3 | 0.386 |
SRC |
0.788 | -0.149 | -1 | 0.838 |
EPHA5 |
0.786 | -0.187 | 2 | 0.811 |
EPHA8 |
0.786 | -0.179 | -1 | 0.838 |
EGFR |
0.785 | -0.171 | 1 | 0.690 |
PTK2 |
0.784 | -0.038 | -1 | 0.828 |
CSK |
0.782 | -0.270 | 2 | 0.839 |
YANK2 |
0.782 | -0.169 | 2 | 0.476 |
FGFR4 |
0.781 | -0.208 | -1 | 0.802 |
MUSK |
0.780 | -0.221 | 1 | 0.667 |
SYK |
0.778 | -0.095 | -1 | 0.805 |
IGF1R |
0.777 | -0.247 | 3 | 0.714 |
EPHA2 |
0.775 | -0.189 | -1 | 0.805 |
ERBB4 |
0.771 | -0.156 | 1 | 0.690 |
CK1G2 |
0.767 | -0.126 | -3 | 0.485 |
FES |
0.761 | -0.277 | -1 | 0.733 |
ZAP70 |
0.758 | -0.119 | -1 | 0.734 |