Motif 744 (n=1,056)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0A087X0R7 SENP3-EIF4A1 S282 ochoa SENP3-EIF4A1 readthrough (NMD candidate) None
A0A087X0R7 SENP3-EIF4A1 S285 ochoa SENP3-EIF4A1 readthrough (NMD candidate) None
A0A0A6YYC7 ZFP91-CNTF S142 ochoa E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 91 homolog) Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000256|ARBA:ARBA00054990}.
A0A0B4J269 None S686 ochoa Melanocyte-stimulating hormone receptor (Melanocortin receptor 1) Receptor for MSH (alpha, beta and gamma) and ACTH. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. Mediates melanogenesis, the production of eumelanin (black/brown) and phaeomelanin (red/yellow), via regulation of cAMP signaling in melanocytes. {ECO:0000256|ARBA:ARBA00023428}.
A0AVT1 UBA6 S951 ochoa Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}.
A1L170 C1orf226 S196 ochoa Uncharacterized protein C1orf226 None
A1L390 PLEKHG3 S592 ochoa Pleckstrin homology domain-containing family G member 3 (PH domain-containing family G member 3) Plays a role in controlling cell polarity and cell motility by selectively binding newly polymerized actin and activating RAC1 and CDC42 to enhance local actin polymerization. {ECO:0000269|PubMed:27555588}.
A6NC98 CCDC88B S1370 ochoa Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}.
A6NJZ7 RIMBP3C S1294 ochoa RIMS-binding protein 3C (RIM-BP3.C) (RIMS-binding protein 3.3) (RIM-BP3.3) Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}.
A6NKT7 RGPD3 S1232 ochoa RanBP2-like and GRIP domain-containing protein 3 None
A6NNM3 RIMBP3B S1294 ochoa RIMS-binding protein 3B (RIM-BP3.B) (RIMS-binding protein 3.2) (RIM-BP3.2) Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}.
A7KAX9 ARHGAP32 S44 ochoa Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}.
B1AJZ9 FHAD1 S717 ochoa Forkhead-associated domain-containing protein 1 (FHA domain-containing protein 1) Regulator of sperm motility and spermatocyte meiosis. {ECO:0000250|UniProtKB:A6PWD2}.
H0YHG0 None S146 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
H0YHG0 None S444 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
M0QX08 None S58 ochoa Protein kinase domain-containing protein None
M0QZ92 None S40 ochoa SEC7 domain-containing protein None
O00213 APBB1 S347 ochoa|psp Amyloid beta precursor protein binding family B member 1 (Amyloid-beta A4 precursor protein-binding family B member 1) (Protein Fe65) Transcription coregulator that can have both coactivator and corepressor functions (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469, PubMed:33938178). Adapter protein that forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). Plays a central role in the response to DNA damage by translocating to the nucleus and inducing apoptosis (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). May act by specifically recognizing and binding histone H2AX phosphorylated on 'Tyr-142' (H2AXY142ph) at double-strand breaks (DSBs), recruiting other pro-apoptosis factors such as MAPK8/JNK1 (PubMed:19234442). Required for histone H4 acetylation at double-strand breaks (DSBs) (PubMed:19234442). Its ability to specifically bind modified histones and chromatin modifying enzymes such as KAT5/TIP60, probably explains its transcription activation activity (PubMed:33938178). Functions in association with TSHZ3, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4 (PubMed:19343227). Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Plays a role in the maintenance of lens transparency (By similarity). May play a role in muscle cell strength (By similarity). Acts as a molecular adapter that functions in neurite outgrowth by activating the RAC1-ARF6 axis upon insulin treatment (PubMed:36250347). {ECO:0000250|UniProtKB:Q9QXJ1, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:18468999, ECO:0000269|PubMed:18922798, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:25342469, ECO:0000269|PubMed:33938178, ECO:0000269|PubMed:36250347}.
O00291 HIP1 S338 ochoa Huntingtin-interacting protein 1 (HIP-1) (Huntingtin-interacting protein I) (HIP-I) Plays a role in clathrin-mediated endocytosis and trafficking (PubMed:11532990, PubMed:11577110, PubMed:11889126). Involved in regulating AMPA receptor trafficking in the central nervous system in an NMDA-dependent manner (By similarity). Regulates presynaptic nerve terminal activity (By similarity). Enhances androgen receptor (AR)-mediated transcription (PubMed:16027218). May act as a proapoptotic protein that induces cell death by acting through the intrinsic apoptosis pathway (PubMed:11007801). Binds 3-phosphoinositides (via ENTH domain) (PubMed:14732715). May act through the ENTH domain to promote cell survival by stabilizing receptor tyrosine kinases following ligand-induced endocytosis (PubMed:14732715). May play a functional role in the cell filament networks (PubMed:18790740). May be required for differentiation, proliferation, and/or survival of somatic and germline progenitors (PubMed:11007801, PubMed:12163454). {ECO:0000250|UniProtKB:Q8VD75, ECO:0000269|PubMed:11007801, ECO:0000269|PubMed:11532990, ECO:0000269|PubMed:11577110, ECO:0000269|PubMed:11889126, ECO:0000269|PubMed:12163454, ECO:0000269|PubMed:14732715, ECO:0000269|PubMed:16027218, ECO:0000269|PubMed:18790740, ECO:0000269|PubMed:9147654}.
O00515 LAD1 S38 ochoa|psp Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00515 LAD1 S363 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O14523 C2CD2L S613 ochoa Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}.
O14715 RGPD8 S1231 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14879 IFIT3 S237 ochoa Interferon-induced protein with tetratricopeptide repeats 3 (IFIT-3) (CIG49) (ISG-60) (Interferon-induced 60 kDa protein) (IFI-60K) (Interferon-induced protein with tetratricopeptide repeats 4) (IFIT-4) (Retinoic acid-induced gene G protein) (P60) (RIG-G) IFN-induced antiviral protein which acts as an inhibitor of cellular as well as viral processes, cell migration, proliferation, signaling, and viral replication. Enhances MAVS-mediated host antiviral responses by serving as an adapter bridging TBK1 to MAVS which leads to the activation of TBK1 and phosphorylation of IRF3 and phosphorylated IRF3 translocates into nucleus to promote antiviral gene transcription. Exhibits an antiproliferative activity via the up-regulation of cell cycle negative regulators CDKN1A/p21 and CDKN1B/p27. Normally, CDKN1B/p27 turnover is regulated by COPS5, which binds CDKN1B/p27 in the nucleus and exports it to the cytoplasm for ubiquitin-dependent degradation. IFIT3 sequesters COPS5 in the cytoplasm, thereby increasing nuclear CDKN1B/p27 protein levels. Up-regulates CDKN1A/p21 by down-regulating MYC, a repressor of CDKN1A/p21. Can negatively regulate the apoptotic effects of IFIT2. {ECO:0000269|PubMed:17050680, ECO:0000269|PubMed:20686046, ECO:0000269|PubMed:21190939, ECO:0000269|PubMed:21642987, ECO:0000269|PubMed:21813773}.
O15014 ZNF609 S247 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15061 SYNM S1132 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O15151 MDM4 S367 ochoa|psp Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}.
O15400 STX7 S173 ochoa Syntaxin-7 May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes.
O15534 PER1 S1030 ochoa Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}.
O15534 PER1 S1040 ochoa Period circadian protein homolog 1 (hPER1) (Circadian clock protein PERIOD 1) (Circadian pacemaker protein Rigui) Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates circadian target genes expression at post-transcriptional levels, but may not be required for the repression at transcriptional level. Controls PER2 protein decay. Represses CRY2 preventing its repression on CLOCK/BMAL1 target genes such as FXYD5 and SCNN1A in kidney and PPARA in liver. Besides its involvement in the maintenance of the circadian clock, has an important function in the regulation of several processes. Participates in the repression of glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) by BMAL1:CLOCK. Plays a role in the modulation of the neuroinflammatory state via the regulation of inflammatory mediators release, such as CCL2 and IL6. In spinal astrocytes, negatively regulates the MAPK14/p38 and MAPK8/JNK MAPK cascades as well as the subsequent activation of NFkappaB. Coordinately regulates the expression of multiple genes that are involved in the regulation of renal sodium reabsorption. Can act as gene expression activator in a gene and tissue specific manner, in kidney enhances WNK1 and SLC12A3 expression in collaboration with CLOCK. Modulates hair follicle cycling. Represses the CLOCK-BMAL1 induced transcription of BHLHE40/DEC1. {ECO:0000269|PubMed:24005054}.
O43143 DHX15 S64 ochoa ATP-dependent RNA helicase DHX15 (EC 3.6.4.13) (ATP-dependent RNA helicase #46) (DEAH box protein 15) (Splicing factor Prp43) (hPrp43) RNA helicase involved in mRNA processing and antiviral innate immunity (PubMed:19103666, PubMed:19432882, PubMed:24782566, PubMed:24990078, PubMed:32179686, PubMed:34161762). Pre-mRNA processing factor involved in disassembly of spliceosomes after the release of mature mRNA (PubMed:19103666). In cooperation with TFIP11 seem to be involved in the transition of the U2, U5 and U6 snRNP-containing IL complex to the snRNP-free IS complex leading to efficient debranching and turnover of excised introns (PubMed:19103666). Plays a key role in antiviral innate immunity by promoting both MAVS-dependent signaling and NLRP6 inflammasome (PubMed:24782566, PubMed:24990078, PubMed:34161762). Acts as an RNA virus sensor: recognizes and binds viral double stranded RNA (dsRNA) and activates the MAVS-dependent signaling to produce interferon-beta and interferon lambda-3 (IFNL3) (PubMed:24782566, PubMed:24990078, PubMed:34161762). Involved in intestinal antiviral innate immunity together with NLRP6: recognizes and binds viral dsRNA and promotes activation of the NLRP6 inflammasome in intestinal epithelial cells to restrict infection by enteric viruses (PubMed:34161762). The NLRP6 inflammasome acts by promoting maturation and secretion of IL18 in the extracellular milieu (PubMed:34161762). Also involved in antibacterial innate immunity by promoting Wnt-induced antimicrobial protein expression in Paneth cells (By similarity). {ECO:0000250|UniProtKB:O35286, ECO:0000269|PubMed:19103666, ECO:0000269|PubMed:19432882, ECO:0000269|PubMed:24782566, ECO:0000269|PubMed:24990078, ECO:0000269|PubMed:32179686, ECO:0000269|PubMed:34161762}.
O43150 ASAP2 S294 ochoa Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2 (Development and differentiation-enhancing factor 2) (Paxillin-associated protein with ARF GAP activity 3) (PAG3) (Pyk2 C-terminus-associated protein) (PAP) Activates the small GTPases ARF1, ARF5 and ARF6. Regulates the formation of post-Golgi vesicles and modulates constitutive secretion. Modulates phagocytosis mediated by Fc gamma receptor and ARF6. Modulates PXN recruitment to focal contacts and cell migration. {ECO:0000269|PubMed:10022920, ECO:0000269|PubMed:10749932, ECO:0000269|PubMed:11304556}.
O43255 SIAH2 S167 psp E3 ubiquitin-protein ligase SIAH2 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase SIAH2) (Seven in absentia homolog 2) (Siah-2) (hSiah2) E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:11483518, PubMed:19224863, PubMed:9334332). E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:11483518, PubMed:19224863, PubMed:9334332). Mediates E3 ubiquitin ligase activity either through direct binding to substrates or by functioning as the essential RING domain subunit of larger E3 complexes (PubMed:11483518, PubMed:19224863, PubMed:9334332). Triggers the ubiquitin-mediated degradation of many substrates, including proteins involved in transcription regulation (GPS2, POU2AF1, PML, NCOR1), a cell surface receptor (DCC), an antiapoptotic protein (BAG1), and a protein involved in synaptic vesicle function in neurons (SYP) (PubMed:11483518, PubMed:19224863, PubMed:9334332). Mediates ubiquitination and proteasomal degradation of DYRK2 in response to hypoxia (PubMed:22878263). It is thereby involved in apoptosis, tumor suppression, cell cycle, transcription and signaling processes (PubMed:11483518, PubMed:19224863, PubMed:22878263, PubMed:9334332). Has some overlapping function with SIAH1 (PubMed:11483518, PubMed:19224863, PubMed:9334332). Triggers the ubiquitin-mediated degradation of TRAF2, whereas SIAH1 does not (PubMed:12411493). Promotes monoubiquitination of SNCA (PubMed:19224863). Regulates cellular clock function via ubiquitination of the circadian transcriptional repressors NR1D1 and NR1D2 leading to their proteasomal degradation (PubMed:26392558). Plays an important role in mediating the rhythmic degradation/clearance of NR1D1 and NR1D2 contributing to their circadian profile of protein abundance (PubMed:26392558). Mediates ubiquitination and degradation of EGLN2 and EGLN3 in response to the unfolded protein response (UPR), leading to their degradation and subsequent stabilization of ATF4 (By similarity). Also part of the Wnt signaling pathway in which it mediates the Wnt-induced ubiquitin-mediated proteasomal degradation of AXIN1. {ECO:0000250|UniProtKB:Q06986, ECO:0000269|PubMed:11483518, ECO:0000269|PubMed:12411493, ECO:0000269|PubMed:19224863, ECO:0000269|PubMed:22878263, ECO:0000269|PubMed:26392558, ECO:0000269|PubMed:28546513, ECO:0000269|PubMed:9334332}.
O43290 SART1 S378 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43290 SART1 S463 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43290 SART1 S591 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43379 WDR62 S1093 ochoa WD repeat-containing protein 62 Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}.
O43395 PRPF3 S131 ochoa U4/U6 small nuclear ribonucleoprotein Prp3 (Pre-mRNA-splicing factor 3) (hPrp3) (U4/U6 snRNP 90 kDa protein) Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28781166, ECO:0000305|PubMed:20595234}.
O43683 BUB1 S436 ochoa Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}.
O43719 HTATSF1 S498 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O43752 STX6 S86 ochoa Syntaxin-6 SNARE promoting movement of transport vesicles to target membranes. Targets endosomes to the trans-Golgi network, and may therefore function in retrograde trafficking. Together with SNARE STX12, promotes movement of vesicles from endosomes to the cell membrane, and may therefore function in the endocytic recycling pathway. {ECO:0000250|UniProtKB:Q63635}.
O43829 ZBTB14 S233 ochoa Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}.
O43896 KIF1C Y671 ochoa Kinesin-like protein KIF1C Motor required for the retrograde transport of Golgi vesicles to the endoplasmic reticulum. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:9685376}.
O60237 PPP1R12B S523 ochoa Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}.
O60238 BNIP3L S34 psp BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}.
O60271 SPAG9 S311 ochoa C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}.
O60331 PIP5K1C S556 ochoa Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1gamma) (PtdIns(4)P-5-kinase 1 gamma) (EC 2.7.1.68) (Type I phosphatidylinositol 4-phosphate 5-kinase gamma) Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:12422219, PubMed:22942276). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (Probable). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Together with PIP5K1A, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle attachment by generating the pool of PtdIns(4,5)P2 that induces controlled actin depolymerization to facilitate Fc-gamma-R clustering. Mediates RAC1-dependent reorganization of actin filaments. Required for synaptic vesicle transport (By similarity). Controls the plasma membrane pool of PtdIns(4,5)P2 implicated in synaptic vesicle endocytosis and exocytosis (PubMed:12847086). Plays a role in endocytosis mediated by clathrin and AP-2 (adaptor protein complex 2) (PubMed:12847086). Required for clathrin-coated pits assembly at the synapse (PubMed:17261850). Participates in cell junction assembly (PubMed:17261850). Modulates adherens junctions formation by facilitating CDH1/cadherin trafficking (PubMed:17261850). Required for focal adhesion dynamics. Modulates the targeting of talins (TLN1 and TLN2) to the plasma membrane and their efficient assembly into focal adhesions (PubMed:12422219). Regulates the interaction between talins (TLN1 and TLN2) and beta-integrins (PubMed:12422219). Required for uropodium formation and retraction of the cell rear during directed migration (By similarity). Has a role in growth factor-stimulated directional cell migration and adhesion (By similarity). Required for talin assembly into nascent adhesions forming at the leading edge toward the direction of the growth factor (PubMed:17635937). Negative regulator of T-cell activation and adhesion (By similarity). Negatively regulates integrin alpha-L/beta-2 (LFA-1) polarization and adhesion induced by T-cell receptor (By similarity). Together with PIP5K1A has a role during embryogenesis and together with PIP5K1B may have a role immediately after birth (By similarity). {ECO:0000250|UniProtKB:O70161, ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:12422219, ECO:0000269|PubMed:12847086, ECO:0000269|PubMed:17261850, ECO:0000269|PubMed:17635937, ECO:0000269|PubMed:22942276, ECO:0000305|PubMed:19889969}.
O60437 PPL S915 ochoa Periplakin (190 kDa paraneoplastic pemphigus antigen) (195 kDa cornified envelope precursor protein) Component of the cornified envelope of keratinocytes. May link the cornified envelope to desmosomes and intermediate filaments. May act as a localization signal in PKB/AKT-mediated signaling. {ECO:0000269|PubMed:9412476}.
O60711 LPXN S23 ochoa Leupaxin Transcriptional coactivator for androgen receptor (AR) and serum response factor (SRF). Contributes to the regulation of cell adhesion, spreading and cell migration and acts as a negative regulator in integrin-mediated cell adhesion events. Suppresses the integrin-induced tyrosine phosphorylation of paxillin (PXN). May play a critical role as an adapter protein in the formation of the adhesion zone in osteoclasts. Negatively regulates B-cell antigen receptor (BCR) signaling. {ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:18451096, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:20543562}.
O60716 CTNND1 S129 ochoa Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}.
O60749 SNX2 S277 ochoa Sorting nexin-2 (Transformation-related gene 9 protein) (TRG-9) Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:16179610). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:17101778). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Required for retrograde endosome-to-TGN transport of TGN38 (PubMed:20138391). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). {ECO:0000269|PubMed:16179610, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:20138391, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:23085988, ECO:0000303|PubMed:16179610}.
O75022 LILRB3 S522 ochoa Leukocyte immunoglobulin-like receptor subfamily B member 3 (LIR-3) (Leukocyte immunoglobulin-like receptor 3) (CD85 antigen-like family member A) (Immunoglobulin-like transcript 5) (ILT-5) (Monocyte inhibitory receptor HL9) (CD antigen CD85a) May act as receptor for class I MHC antigens. Becomes activated upon coligation of LILRB3 and immune receptors, such as FCGR2B and the B-cell receptor. Down-regulates antigen-induced B-cell activation by recruiting phosphatases to its immunoreceptor tyrosine-based inhibitor motifs (ITIM). {ECO:0000250|UniProtKB:P97484}.
O75150 RNF40 S819 psp E3 ubiquitin-protein ligase BRE1B (BRE1-B) (EC 2.3.2.27) (95 kDa retinoblastoma-associated protein) (RBP95) (RING finger protein 40) (RING-type E3 ubiquitin transferase BRE1B) Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role in histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}.
O75334 PPFIA2 S257 ochoa Liprin-alpha-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-2) (PTPRF-interacting protein alpha-2) Alters PTPRF cellular localization and induces PTPRF clustering. May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. In neuronal cells, is a scaffolding protein in the dendritic spines which acts as immobile postsynaptic post able to recruit KIF1A-driven dense core vesicles to dendritic spines (PubMed:30021165). {ECO:0000269|PubMed:30021165, ECO:0000269|PubMed:9624153}.
O75369 FLNB S2227 ochoa Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro.
O75379 VAMP4 S90 ochoa Vesicle-associated membrane protein 4 (VAMP-4) Involved in the pathway that functions to remove an inhibitor (probably synaptotagmin-4) of calcium-triggered exocytosis during the maturation of secretory granules. May be a marker for this sorting pathway that is critical for remodeling the secretory response of granule.
O75449 KATNA1 S170 ochoa Katanin p60 ATPase-containing subunit A1 (Katanin p60 subunit A1) (EC 5.6.1.1) (p60 katanin) Catalytic subunit of a complex which severs microtubules in an ATP-dependent manner. Microtubule severing may promote rapid reorganization of cellular microtubule arrays and the release of microtubules from the centrosome following nucleation. Microtubule release from the mitotic spindle poles may allow depolymerization of the microtubule end proximal to the spindle pole, leading to poleward microtubule flux and poleward motion of chromosome. Microtubule release within the cell body of neurons may be required for their transport into neuronal processes by microtubule-dependent motor proteins. This transport is required for axonal growth. {ECO:0000255|HAMAP-Rule:MF_03023, ECO:0000269|PubMed:10751153, ECO:0000269|PubMed:11870226, ECO:0000269|PubMed:19287380}.
O75822 EIF3J S72 ochoa Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
O75925 PIAS1 S485 ochoa E3 SUMO-protein ligase PIAS1 (EC 2.3.2.-) (DEAD/H box-binding protein 1) (E3 SUMO-protein transferase PIAS1) (Gu-binding protein) (GBP) (Protein inhibitor of activated STAT protein 1) (RNA helicase II-binding protein) Functions as an E3-type small ubiquitin-like modifier (SUMO) ligase, stabilizing the interaction between UBE2I and the substrate, and as a SUMO-tethering factor (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Catalyzes sumoylation of various proteins, such as CEBPB, MRE11, MTA1, PTK2 and PML (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Plays a crucial role as a transcriptional coregulation in various cellular pathways, including the STAT pathway, the p53 pathway and the steroid hormone signaling pathway (PubMed:11583632, PubMed:11867732). In vitro, binds A/T-rich DNA (PubMed:15133049). The effects of this transcriptional coregulation, transactivation or silencing, may vary depending upon the biological context (PubMed:11583632, PubMed:11867732, PubMed:14500712, PubMed:21965678, PubMed:36050397). Mediates sumoylation of MRE11, stabilizing MRE11 on chromatin during end resection (PubMed:36050397). Sumoylates PML (at 'Lys-65' and 'Lys-160') and PML-RAR and promotes their ubiquitin-mediated degradation (By similarity). PIAS1-mediated sumoylation of PML promotes its interaction with CSNK2A1/CK2 which in turn promotes PML phosphorylation and degradation (By similarity). Enhances the sumoylation of MTA1 and may participate in its paralog-selective sumoylation (PubMed:21965678). Plays a dynamic role in adipogenesis by promoting the SUMOylation and degradation of CEBPB (By similarity). Mediates the nuclear mobility and localization of MSX1 to the nuclear periphery, whereby MSX1 is brought into the proximity of target myoblast differentiation factor genes (By similarity). Also required for the binding of MSX1 to the core enhancer region in target gene promoter regions, independent of its sumoylation activity (By similarity). Capable of binding to the core enhancer region TAAT box in the MYOD1 gene promoter (By similarity). {ECO:0000250|UniProtKB:O88907, ECO:0000269|PubMed:11583632, ECO:0000269|PubMed:11867732, ECO:0000269|PubMed:14500712, ECO:0000269|PubMed:15133049, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:36050397}.; FUNCTION: (Microbial infection) Restricts Epstein-Barr virus (EBV) lytic replication by acting as an inhibitor for transcription factors involved in lytic gene expression (PubMed:29262325). The virus can use apoptotic caspases to antagonize PIAS1-mediated restriction and express its lytic genes (PubMed:29262325). {ECO:0000269|PubMed:29262325}.
O94806 PRKD3 S395 ochoa Serine/threonine-protein kinase D3 (EC 2.7.11.13) (Protein kinase C nu type) (Protein kinase EPK2) (nPKC-nu) Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity). {ECO:0000250}.
O94818 NOL4 S312 ochoa Nucleolar protein 4 (Nucleolar-localized protein) None
O94885 SASH1 S743 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O94986 CEP152 S83 ochoa Centrosomal protein of 152 kDa (Cep152) Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}.
O95292 VAPB S142 ochoa Vesicle-associated membrane protein-associated protein B/C (VAMP-B/VAMP-C) (VAMP-associated protein B/C) (VAP-B/VAP-C) Endoplasmic reticulum (ER)-anchored protein that mediates the formation of contact sites between the ER and endosomes via interaction with FFAT motif-containing proteins such as STARD3 or WDR44 (PubMed:32344433, PubMed:33124732). Interacts with STARD3 in a FFAT motif phosphorylation dependent manner (PubMed:33124732). Via interaction with WDR44 participates in neosynthesized protein export (PubMed:32344433). Participates in the endoplasmic reticulum unfolded protein response (UPR) by inducing ERN1/IRE1 activity (PubMed:16891305, PubMed:20940299). Involved in cellular calcium homeostasis regulation (PubMed:22131369). {ECO:0000269|PubMed:16891305, ECO:0000269|PubMed:20940299, ECO:0000269|PubMed:22131369, ECO:0000269|PubMed:32344433, ECO:0000269|PubMed:33124732}.
O95391 SLU7 S308 ochoa Pre-mRNA-splicing factor SLU7 (hSlu7) Required for pre-mRNA splicing as component of the spliceosome (PubMed:10197984, PubMed:28502770, PubMed:30705154). Participates in the second catalytic step of pre-mRNA splicing, when the free hydroxyl group of exon I attacks the 3'-splice site to generate spliced mRNA and the excised lariat intron. Required for holding exon 1 properly in the spliceosome and for correct AG identification when more than one possible AG exists in 3'-splicing site region. May be involved in the activation of proximal AG. Probably also involved in alternative splicing regulation. {ECO:0000269|PubMed:10197984, ECO:0000269|PubMed:10647016, ECO:0000269|PubMed:12764196, ECO:0000269|PubMed:15181151, ECO:0000269|PubMed:15728250, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:30705154}.
O95613 PCNT S610 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95747 OXSR1 S359 ochoa Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}.
O95758 PTBP3 S454 ochoa Polypyrimidine tract-binding protein 3 (Regulator of differentiation 1) (Rod1) RNA-binding protein that mediates pre-mRNA alternative splicing regulation. Plays a role in the regulation of cell proliferation, differentiation and migration. Positive regulator of EPO-dependent erythropoiesis. Participates in cell differentiation regulation by repressing tissue-specific exons. Promotes FAS exon 6 skipping. Binds RNA, preferentially to both poly(G) and poly(U). {ECO:0000269|PubMed:10207106, ECO:0000269|PubMed:18335065, ECO:0000269|PubMed:19441079, ECO:0000269|PubMed:20937273}.
O95772 STARD3NL S193 ochoa STARD3 N-terminal-like protein (MLN64 N-terminal domain homolog) Tethering protein that creates contact site between the endoplasmic reticulum and late endosomes: localizes to late endosome membranes and contacts the endoplasmic reticulum via interaction with VAPA and VAPB (PubMed:24105263). {ECO:0000269|PubMed:24105263}.
O95810 CAVIN2 S226 ochoa Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}.
O95866 MPIG6B S208 ochoa Megakaryocyte and platelet inhibitory receptor G6b (Protein G6b) Inhibitory receptor that acts as a critical regulator of hematopoietic lineage differentiation, megakaryocyte function and platelet production (PubMed:12665801, PubMed:17311996, PubMed:27743390). Inhibits platelet aggregation and activation by agonists such as ADP and collagen-related peptide (PubMed:12665801). This regulation of megakaryocate function as well as platelet production ann activation is done through the inhibition (via the 2 ITIM motifs) of the receptors CLEC1B and GP6:FcRgamma signaling (PubMed:17311996). Appears to operate in a calcium-independent manner (PubMed:12665801). {ECO:0000269|PubMed:12665801, ECO:0000269|PubMed:17311996, ECO:0000269|PubMed:27743390}.; FUNCTION: Isoform B, displayed in this entry, is the only isoform to contain both a transmembrane region and 2 immunoreceptor tyrosine-based inhibitor motifs (ITIMs) and, thus, the only one which probably has a role of inhibitory receptor. Isoform A may be the activating counterpart of isoform B. {ECO:0000305|PubMed:11544253}.
P02545 LMNA S395 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P02545 LMNA S458 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P02545 LMNA S568 ochoa Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}.
P04350 TUBB4A S339 ochoa Tubulin beta-4A chain (Tubulin 5 beta) (Tubulin beta-4 chain) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P04626 ERBB2 S1078 ochoa Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}.
P05023 ATP1A1 S653 ochoa Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}.
P05067 APP S679 psp Amyloid-beta precursor protein (APP) (ABPP) (APPI) (Alzheimer disease amyloid A4 protein homolog) (Alzheimer disease amyloid protein) (Amyloid precursor protein) (Amyloid-beta (A4) precursor protein) (Amyloid-beta A4 protein) (Cerebral vascular amyloid peptide) (CVAP) (PreA4) (Protease nexin-II) (PN-II) [Cleaved into: N-APP; Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99 (Beta-secretase C-terminal fragment) (Beta-CTF); Amyloid-beta protein 42 (Abeta42) (Beta-APP42); Amyloid-beta protein 40 (Abeta40) (Beta-APP40); C83 (Alpha-secretase C-terminal fragment) (Alpha-CTF); P3(42); P3(40); C80; Gamma-secretase C-terminal fragment 59 (Amyloid intracellular domain 59) (AICD-59) (AID(59)) (Gamma-CTF(59)); Gamma-secretase C-terminal fragment 57 (Amyloid intracellular domain 57) (AICD-57) (AID(57)) (Gamma-CTF(57)); Gamma-secretase C-terminal fragment 50 (Amyloid intracellular domain 50) (AICD-50) (AID(50)) (Gamma-CTF(50)); C31] Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis (PubMed:25122912). Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). By acting as a kinesin I membrane receptor, plays a role in axonal anterograde transport of cargo towards synapses in axons (PubMed:17062754, PubMed:23011729). Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1. {ECO:0000250, ECO:0000250|UniProtKB:P12023, ECO:0000269|PubMed:17062754, ECO:0000269|PubMed:23011729, ECO:0000269|PubMed:25122912}.; FUNCTION: Amyloid-beta peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Amyloid-beta peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.; FUNCTION: [Amyloid-beta protein 42]: More effective reductant than amyloid-beta protein 40. May activate mononuclear phagocytes in the brain and elicit inflammatory responses.; FUNCTION: Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain. {ECO:0000250}.; FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.
P05455 SSB S92 ochoa Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}.
P05783 KRT18 S399 ochoa Keratin, type I cytoskeletal 18 (Cell proliferation-inducing gene 46 protein) (Cytokeratin-18) (CK-18) (Keratin-18) (K18) Involved in the uptake of thrombin-antithrombin complexes by hepatic cells (By similarity). When phosphorylated, plays a role in filament reorganization. Involved in the delivery of mutated CFTR to the plasma membrane. Together with KRT8, is involved in interleukin-6 (IL-6)-mediated barrier protection. {ECO:0000250, ECO:0000269|PubMed:15529338, ECO:0000269|PubMed:16424149, ECO:0000269|PubMed:17213200, ECO:0000269|PubMed:7523419, ECO:0000269|PubMed:8522591, ECO:0000269|PubMed:9298992, ECO:0000269|PubMed:9524113}.
P05976 MYL1 S68 ochoa Myosin light chain 1/3, skeletal muscle isoform (MLC1/MLC3) (MLC1F/MLC3F) (Myosin light chain alkali 1/2) (Myosin light chain A1/A2) Non-regulatory myosin light chain required for proper formation and/or maintenance of myofibers, and thus appropriate muscle function. {ECO:0000269|PubMed:30215711}.
P06732 CKM S94 ochoa Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}.
P07437 TUBB S339 ochoa Tubulin beta chain (Tubulin beta-5 chain) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P08670 VIM S419 ochoa|psp Vimentin Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}.
P08708 RPS17 S89 ochoa Small ribosomal subunit protein eS17 (40S ribosomal protein S17) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P09497 CLTB S205 psp Clathrin light chain B (Lcb) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles.
P09960 LTA4H S240 ochoa Leukotriene A-4 hydrolase (LTA-4 hydrolase) (EC 3.3.2.6) (Leukotriene A(4) hydrolase) (Tripeptide aminopeptidase LTA4H) (EC 3.4.11.4) Bifunctional zinc metalloenzyme that comprises both epoxide hydrolase (EH) and aminopeptidase activities. Acts as an epoxide hydrolase to catalyze the conversion of LTA4 to the pro-inflammatory mediator leukotriene B4 (LTB4) (PubMed:11917124, PubMed:12207002, PubMed:15078870, PubMed:18804029, PubMed:1897988, PubMed:1975494, PubMed:2244921). Also has aminopeptidase activity, with high affinity for N-terminal arginines of various synthetic tripeptides (PubMed:18804029, PubMed:20813919). In addition to its pro-inflammatory EH activity, may also counteract inflammation by its aminopeptidase activity, which inactivates by cleavage another neutrophil attractant, the tripeptide Pro-Gly-Pro (PGP), a bioactive fragment of collagen generated by the action of matrix metalloproteinase-9 (MMP9) and prolylendopeptidase (PREPL) (PubMed:20813919, PubMed:24591641). Involved also in the biosynthesis of resolvin E1 and 18S-resolvin E1 from eicosapentaenoic acid, two lipid mediators that show potent anti-inflammatory and pro-resolving actions (PubMed:21206090). {ECO:0000269|PubMed:11917124, ECO:0000269|PubMed:12207002, ECO:0000269|PubMed:15078870, ECO:0000269|PubMed:18804029, ECO:0000269|PubMed:1897988, ECO:0000269|PubMed:1975494, ECO:0000269|PubMed:20813919, ECO:0000269|PubMed:21206090, ECO:0000269|PubMed:2244921, ECO:0000269|PubMed:24591641}.
P0DJD0 RGPD1 S1216 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 S1224 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P10451 SPP1 S267 ochoa|psp Osteopontin (Bone sialoprotein 1) (Nephropontin) (Secreted phosphoprotein 1) (SPP-1) (Urinary stone protein) (Uropontin) Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction. {ECO:0000250|UniProtKB:P31096}.; FUNCTION: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity. {ECO:0000250|UniProtKB:P10923}.
P10809 HSPD1 S398 ochoa 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}.
P11171 EPB41 S188 ochoa Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
P11387 TOP1 S506 psp DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}.
P11388 TOP2A S1115 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P12270 TPR S1847 ochoa Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
P12882 MYH1 S1702 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P12882 MYH1 S1714 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P12883 MYH7 S1550 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P12883 MYH7 S1698 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P12883 MYH7 S1710 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P12883 MYH7 S1722 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P13521 SCG2 S555 ochoa Secretogranin-2 (Chromogranin-C) (Secretogranin II) (SgII) [Cleaved into: Secretoneurin (SN); Manserin] Neuroendocrine protein of the granin family that regulates the biogenesis of secretory granules. {ECO:0000269|PubMed:19357184}.
P13533 MYH6 S1700 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P13533 MYH6 S1712 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P13533 MYH6 S1724 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P13535 MYH8 S1713 ochoa Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) Muscle contraction.
P13569 CFTR S686 psp Cystic fibrosis transmembrane conductance regulator (CFTR) (ATP-binding cassette sub-family C member 7) (Channel conductance-controlling ATPase) (EC 5.6.1.6) (cAMP-dependent chloride channel) Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810, PubMed:29393851). {ECO:0000269|PubMed:10792060, ECO:0000269|PubMed:11524016, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:12403779, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:12529365, ECO:0000269|PubMed:12588899, ECO:0000269|PubMed:12727866, ECO:0000269|PubMed:14668433, ECO:0000269|PubMed:15010471, ECO:0000269|PubMed:15284228, ECO:0000269|PubMed:16645176, ECO:0000269|PubMed:17036051, ECO:0000269|PubMed:1712898, ECO:0000269|PubMed:17182731, ECO:0000269|PubMed:19019741, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:19621064, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:25330774, ECO:0000269|PubMed:26627831, ECO:0000269|PubMed:26823428, ECO:0000269|PubMed:26846474, ECO:0000269|PubMed:27714810, ECO:0000269|PubMed:27941075, ECO:0000269|PubMed:28087700, ECO:0000269|PubMed:29393851, ECO:0000269|PubMed:8910473, ECO:0000269|PubMed:9804160, ECO:0000305|PubMed:19923167}.
P13637 ATP1A3 S643 ochoa Sodium/potassium-transporting ATPase subunit alpha-3 (Na(+)/K(+) ATPase alpha-3 subunit) (EC 7.2.2.13) (Na(+)/K(+) ATPase alpha(III) subunit) (Sodium pump subunit alpha-3) This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}.
P14921 ETS1 S267 ochoa Protein C-ets-1 (p54) Transcription factor (PubMed:10698492, PubMed:11909962). Directly controls the expression of cytokine and chemokine genes in a wide variety of different cellular contexts (PubMed:20378371). May control the differentiation, survival and proliferation of lymphoid cells (PubMed:20378371). May also regulate angiogenesis through regulation of expression of genes controlling endothelial cell migration and invasion (PubMed:15247905, PubMed:15592518). {ECO:0000269|PubMed:10698492, ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000303|PubMed:20378371}.; FUNCTION: [Isoform Ets-1 p27]: Acts as a dominant-negative for isoform c-ETS-1A. {ECO:0000269|PubMed:19377509}.
P16070 CD44 S291 psp CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteoglycan) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) (Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44) Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment (PubMed:16541107, PubMed:19703720, PubMed:22726066). Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection (PubMed:7528188). Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its cytoplasmic domain, protein complexes containing receptor kinases and membrane proteases (PubMed:18757307, PubMed:23589287). Such effectors include PKN2, the RhoGTPases RAC1 and RHOA, Rho-kinases and phospholipase C that coordinate signaling pathways promoting calcium mobilization and actin-mediated cytoskeleton reorganization essential for cell migration and adhesion (PubMed:15123640). {ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:18757307, ECO:0000269|PubMed:19703720, ECO:0000269|PubMed:22726066, ECO:0000269|PubMed:23589287, ECO:0000269|PubMed:7528188}.
P16144 ITGB4 S1000 ochoa Integrin beta-4 (GP150) (CD antigen CD104) Integrin alpha-6/beta-4 is a receptor for laminin. Plays a critical structural role in the hemidesmosome of epithelial cells. Is required for the regulation of keratinocyte polarity and motility. ITGA6:ITGB4 binds to NRG1 (via EGF domain) and this binding is essential for NRG1-ERBB signaling (PubMed:20682778). ITGA6:ITGB4 binds to IGF1 and this binding is essential for IGF1 signaling (PubMed:22351760). ITGA6:ITGB4 binds to IGF2 and this binding is essential for IGF2 signaling (PubMed:28873464). {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:22351760, ECO:0000269|PubMed:28873464}.
P16157 ANK1 S834 ochoa Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}.
P16333 NCK1 S176 ochoa SH2/SH3 adapter protein NCK1 (Cytoplasmic protein NCK1) (NCK adapter protein 1) (Nck-1) (SH2/SH3 adapter protein NCK-alpha) Adapter protein which associates with tyrosine-phosphorylated growth factor receptors, such as KDR and PDGFRB, or their cellular substrates. Maintains low levels of EIF2S1 phosphorylation by promoting its dephosphorylation by PP1. Plays a role in the DNA damage response, not in the detection of the damage by ATM/ATR, but for efficient activation of downstream effectors, such as that of CHEK2. Plays a role in ELK1-dependent transcriptional activation in response to activated Ras signaling. Modulates the activation of EIF2AK2/PKR by dsRNA. May play a role in cell adhesion and migration through interaction with ephrin receptors. {ECO:0000269|PubMed:10026169, ECO:0000269|PubMed:16835242, ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18835251, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:9430661}.
P16591 FER S427 ochoa Tyrosine-protein kinase Fer (EC 2.7.10.2) (Feline encephalitis virus-related kinase FER) (Fujinami poultry sarcoma/Feline sarcoma-related protein Fer) (Proto-oncogene c-Fer) (Tyrosine kinase 3) (p94-Fer) Tyrosine-protein kinase that acts downstream of cell surface receptors for growth factors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, lamellipodia formation, cell adhesion, cell migration and chemotaxis. Acts downstream of EGFR, KIT, PDGFRA and PDGFRB. Acts downstream of EGFR to promote activation of NF-kappa-B and cell proliferation. May play a role in the regulation of the mitotic cell cycle. Plays a role in the insulin receptor signaling pathway and in activation of phosphatidylinositol 3-kinase. Acts downstream of the activated FCER1 receptor and plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Plays a role in the regulation of mast cell degranulation. Plays a role in leukocyte recruitment and diapedesis in response to bacterial lipopolysaccharide (LPS). Plays a role in synapse organization, trafficking of synaptic vesicles, the generation of excitatory postsynaptic currents and neuron-neuron synaptic transmission. Plays a role in neuronal cell death after brain damage. Phosphorylates CTTN, CTNND1, PTK2/FAK1, GAB1, PECAM1 and PTPN11. May phosphorylate JUP and PTPN1. Can phosphorylate STAT3, but the biological relevance of this depends on cell type and stimulus. {ECO:0000269|PubMed:12972546, ECO:0000269|PubMed:14517306, ECO:0000269|PubMed:19147545, ECO:0000269|PubMed:19339212, ECO:0000269|PubMed:19738202, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:21518868, ECO:0000269|PubMed:22223638, ECO:0000269|PubMed:7623846, ECO:0000269|PubMed:9722593}.
P17028 ZNF24 S132 ochoa Zinc finger protein 24 (Retinoic acid suppression protein A) (RSG-A) (Zinc finger and SCAN domain-containing protein 3) (Zinc finger protein 191) (Zinc finger protein KOX17) Transcription factor required for myelination of differentiated oligodendrocytes. Required for the conversion of oligodendrocytes from the premyelinating to the myelinating state. In the developing central nervous system (CNS), involved in the maintenance in the progenitor stage by promoting the cell cycle. Specifically binds to the 5'-TCAT-3' DNA sequence (By similarity). Has transcription repressor activity in vitro. {ECO:0000250, ECO:0000269|PubMed:10585455}.
P17029 ZKSCAN1 S287 ochoa Zinc finger protein with KRAB and SCAN domains 1 (Zinc finger protein 139) (Zinc finger protein 36) (Zinc finger protein KOX18) May be involved in transcriptional regulation.
P17661 DES S424 ochoa Desmin Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}.
P17844 DDX5 S338 ochoa Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}.
P18615 NELFE S165 ochoa Negative elongation factor E (NELF-E) (RNA-binding protein RD) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:10199401, PubMed:27256882). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:11940650, PubMed:12612062, PubMed:27256882). Provides the strongest RNA binding activity of the NELF complex and may initially recruit the NELF complex to RNA (PubMed:18303858, PubMed:27256882, PubMed:27282391). {ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11940650, ECO:0000269|PubMed:12612062, ECO:0000269|PubMed:18303858, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27282391}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II. {ECO:0000269|PubMed:23884411}.
P18846 ATF1 S51 psp Cyclic AMP-dependent transcription factor ATF-1 (cAMP-dependent transcription factor ATF-1) (Activating transcription factor 1) (Protein TREB36) This protein binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), a sequence present in many viral and cellular promoters. Binds to the Tax-responsive element (TRE) of HTLV-I. Mediates PKA-induced stimulation of CRE-reporter genes. Represses the expression of FTH1 and other antioxidant detoxification genes. Triggers cell proliferation and transformation. {ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:20980392}.
P19474 TRIM21 S266 ochoa E3 ubiquitin-protein ligase TRIM21 (EC 2.3.2.27) (52 kDa Ro protein) (52 kDa ribonucleoprotein autoantigen Ro/SS-A) (RING finger protein 81) (Ro(SS-A)) (Sjoegren syndrome type A antigen) (SS-A) (Tripartite motif-containing protein 21) E3 ubiquitin-protein ligase whose activity is dependent on E2 enzymes, UBE2D1, UBE2D2, UBE2E1 and UBE2E2 (PubMed:16297862, PubMed:16316627, PubMed:16472766, PubMed:16880511, PubMed:18022694, PubMed:18361920, PubMed:18641315, PubMed:18845142, PubMed:19675099, PubMed:26347139). Forms a ubiquitin ligase complex in cooperation with the E2 UBE2D2 that is used not only for the ubiquitination of USP4 and IKBKB but also for its self-ubiquitination (PubMed:16880511, PubMed:19675099). Component of cullin-RING-based SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complexes such as SCF(SKP2)-like complexes (PubMed:16880511). A TRIM21-containing SCF(SKP2)-like complex is shown to mediate ubiquitination of CDKN1B ('Thr-187' phosphorylated-form), thereby promoting its degradation by the proteasome (PubMed:16880511). Monoubiquitinates IKBKB that will negatively regulates Tax-induced NF-kappa-B signaling (PubMed:19675099). Negatively regulates IFN-beta production post-pathogen recognition by catalyzing polyubiquitin-mediated degradation of IRF3 (PubMed:18641315). Mediates the ubiquitin-mediated proteasomal degradation of IgG1 heavy chain, which is linked to the VCP-mediated ER-associated degradation (ERAD) pathway (PubMed:18022694). Promotes IRF8 ubiquitination, which enhanced the ability of IRF8 to stimulate cytokine genes transcription in macrophages (By similarity). Plays a role in the regulation of the cell cycle progression (PubMed:16880511). Enhances the decapping activity of DCP2 (PubMed:18361920). Exists as a ribonucleoprotein particle present in all mammalian cells studied and composed of a single polypeptide and one of four small RNA molecules (PubMed:1985094, PubMed:8666824). At least two isoforms are present in nucleated and red blood cells, and tissue specific differences in RO/SSA proteins have been identified (PubMed:8666824). The common feature of these proteins is their ability to bind HY RNAs.2 (PubMed:8666824). Involved in the regulation of innate immunity and the inflammatory response in response to IFNG/IFN-gamma (PubMed:26347139). Organizes autophagic machinery by serving as a platform for the assembly of ULK1, Beclin 1/BECN1 and ATG8 family members and recognizes specific autophagy targets, thus coordinating target recognition with assembly of the autophagic apparatus and initiation of autophagy (PubMed:26347139). Also regulates autophagy through FIP200/RB1CC1 ubiquitination and subsequent decreased protein stability (PubMed:36359729). Represses the innate antiviral response by facilitating the formation of the NMI-IFI35 complex through 'Lys-63'-linked ubiquitination of NMI (PubMed:26342464). During viral infection, promotes cell pyroptosis by mediating 'Lys-6'-linked ubiquitination of ISG12a/IFI27, facilitating its translocation into the mitochondria and subsequent CASP3 activation (PubMed:36426955). When up-regulated through the IFN/JAK/STAT signaling pathway, promotes 'Lys-27'-linked ubiquitination of MAVS, leading to the recruitment of TBK1 and up-regulation of innate immunity (PubMed:29743353). Mediates 'Lys-63'-linked polyubiquitination of G3BP1 in response to heat shock, leading to stress granule disassembly (PubMed:36692217). {ECO:0000250|UniProtKB:Q62191, ECO:0000269|PubMed:16297862, ECO:0000269|PubMed:16316627, ECO:0000269|PubMed:16472766, ECO:0000269|PubMed:16880511, ECO:0000269|PubMed:18022694, ECO:0000269|PubMed:18361920, ECO:0000269|PubMed:18641315, ECO:0000269|PubMed:18845142, ECO:0000269|PubMed:19675099, ECO:0000269|PubMed:1985094, ECO:0000269|PubMed:26342464, ECO:0000269|PubMed:26347139, ECO:0000269|PubMed:29743353, ECO:0000269|PubMed:36359729, ECO:0000269|PubMed:36426955, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:8666824}.
P20042 EIF2S2 S158 ochoa Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P20700 LMNB1 S396 ochoa Lamin-B1 Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}.
P20810 CAST S379 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P21283 ATP6V1C1 S269 ochoa V-type proton ATPase subunit C 1 (V-ATPase subunit C 1) (Vacuolar proton pump subunit C 1) Subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (PubMed:33065002). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Subunit C is necessary for the assembly of the catalytic sector of the enzyme and is likely to have a specific function in its catalytic activity (By similarity). {ECO:0000250|UniProtKB:P21282, ECO:0000250|UniProtKB:P31412, ECO:0000269|PubMed:33065002}.
P21333 FLNA S2279 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P22681 CBL S704 ochoa E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}.
P23508 MCC S120 ochoa|psp Colorectal mutant cancer protein (Protein MCC) Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}.
P23508 MCC S684 ochoa Colorectal mutant cancer protein (Protein MCC) Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}.
P23634 ATP2B4 S570 ochoa Plasma membrane calcium-transporting ATPase 4 (PMCA4) (EC 7.2.2.10) (Matrix-remodeling-associated protein 1) (Plasma membrane calcium ATPase isoform 4) (Plasma membrane calcium pump isoform 4) Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). {ECO:0000250|UniProtKB:Q6Q477, ECO:0000269|PubMed:8530416}.
P25205 MCM3 S728 ochoa|psp DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
P26038 MSN S527 ochoa Moesin (Membrane-organizing extension spike protein) Ezrin-radixin-moesin (ERM) family protein that connects the actin cytoskeleton to the plasma membrane and thereby regulates the structure and function of specific domains of the cell cortex. Tethers actin filaments by oscillating between a resting and an activated state providing transient interactions between moesin and the actin cytoskeleton (PubMed:10212266). Once phosphorylated on its C-terminal threonine, moesin is activated leading to interaction with F-actin and cytoskeletal rearrangement (PubMed:10212266). These rearrangements regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction (PubMed:12387735, PubMed:15039356). The role of moesin is particularly important in immunity acting on both T and B-cells homeostasis and self-tolerance, regulating lymphocyte egress from lymphoid organs (PubMed:9298994, PubMed:9616160). Modulates phagolysosomal biogenesis in macrophages (By similarity). Also participates in immunologic synapse formation (PubMed:27405666). {ECO:0000250|UniProtKB:P26041, ECO:0000269|PubMed:10212266, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:15039356, ECO:0000269|PubMed:27405666, ECO:0000269|PubMed:9298994, ECO:0000269|PubMed:9616160}.
P26639 TARS1 S110 ochoa Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}.
P27348 YWHAQ S45 ochoa 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
P27816 MAP4 S116 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P28290 ITPRID2 S665 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P28290 ITPRID2 S866 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P29536 LMOD1 S44 ochoa Leiomodin-1 (64 kDa autoantigen 1D) (64 kDa autoantigen 1D3) (64 kDa autoantigen D1) (Leiomodin, muscle form) (Smooth muscle leiomodin) (SM-Lmod) (Thyroid-associated ophthalmopathy autoantigen) Required for proper contractility of visceral smooth muscle cells (PubMed:28292896). Mediates nucleation of actin filaments. {ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:28292896}.
P30291 WEE1 S312 ochoa|psp Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}.
P30307 CDC25C S198 psp M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}.
P31946 YWHAB S47 ochoa 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}.
P31947 SFN S45 ochoa 14-3-3 protein sigma (Epithelial cell marker protein 1) (Stratifin) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binding generally results in the modulation of the activity of the binding partner (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Promotes cytosolic retention of GBP1 GTPase by binding to phosphorylated GBP1, thereby inhibiting the innate immune response (PubMed:37797010). Also acts as a TP53/p53-regulated inhibitor of G2/M progression (PubMed:9659898). When bound to KRT17, regulates protein synthesis and epithelial cell growth by stimulating Akt/mTOR pathway (By similarity). Acts to maintain desmosome cell junction adhesion in epithelial cells via interacting with and sequestering PKP3 to the cytoplasm, thereby restricting its translocation to existing desmosome structures and therefore maintaining desmosome protein homeostasis (PubMed:24124604). Also acts to facilitate PKP3 exchange at desmosome plaques, thereby maintaining keratinocyte intercellular adhesion (PubMed:29678907). May also regulate MDM2 autoubiquitination and degradation and thereby activate p53/TP53 (PubMed:18382127). {ECO:0000250|UniProtKB:O70456, ECO:0000269|PubMed:15731107, ECO:0000269|PubMed:18382127, ECO:0000269|PubMed:22634725, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:28202711, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:37797010, ECO:0000269|PubMed:9659898}.
P32298 GRK4 S249 psp G protein-coupled receptor kinase 4 (EC 2.7.11.16) (G protein-coupled receptor kinase GRK4) (ITI1) Specifically phosphorylates the activated forms of G protein-coupled receptors. GRK4-alpha can phosphorylate rhodopsin and its activity is inhibited by calmodulin; the other three isoforms do not phosphorylate rhodopsin and do not interact with calmodulin. GRK4-alpha and GRK4-gamma phosphorylate DRD3. Phosphorylates ADRB2. {ECO:0000269|PubMed:19520868, ECO:0000269|PubMed:8626439}.
P32314 FOXN2 S273 ochoa Forkhead box protein N2 (Human T-cell leukemia virus enhancer factor) Binds to the purine-rich region in HTLV-I LTR.
P33241 LSP1 S282 ochoa Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}.
P33981 TTK S582 psp Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P35520 CBS S525 psp Cystathionine beta-synthase (EC 4.2.1.22) (Beta-thionase) (Serine sulfhydrase) Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:20506325, PubMed:23974653, PubMed:23981774). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity). {ECO:0000250|UniProtKB:P32232, ECO:0000269|PubMed:20506325, ECO:0000269|PubMed:23974653, ECO:0000269|PubMed:23981774}.
P35573 AGL S738 ochoa Glycogen debranching enzyme (Glycogen debrancher) [Includes: 4-alpha-glucanotransferase (EC 2.4.1.25) (Oligo-1,4-1,4-glucantransferase); Amylo-alpha-1,6-glucosidase (Amylo-1,6-glucosidase) (EC 3.2.1.33) (Dextrin 6-alpha-D-glucosidase)] Multifunctional enzyme acting as 1,4-alpha-D-glucan:1,4-alpha-D-glucan 4-alpha-D-glycosyltransferase and amylo-1,6-glucosidase in glycogen degradation.
P35749 MYH11 S1312 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P35968 KDR T1217 ochoa Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) (Protein-tyrosine kinase receptor flk-1) (CD antigen CD309) Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC. {ECO:0000269|PubMed:10102632, ECO:0000269|PubMed:10368301, ECO:0000269|PubMed:10600473, ECO:0000269|PubMed:11387210, ECO:0000269|PubMed:12649282, ECO:0000269|PubMed:1417831, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15215251, ECO:0000269|PubMed:15962004, ECO:0000269|PubMed:16966330, ECO:0000269|PubMed:17303569, ECO:0000269|PubMed:18529047, ECO:0000269|PubMed:19668192, ECO:0000269|PubMed:19834490, ECO:0000269|PubMed:20080685, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20705758, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:7929439, ECO:0000269|PubMed:9160888, ECO:0000269|PubMed:9804796, ECO:0000269|PubMed:9837777}.
P36952 SERPINB5 S75 ochoa Serpin B5 (Maspin) (Peptidase inhibitor 5) (PI-5) Tumor suppressor. It blocks the growth, invasion, and metastatic properties of mammary tumors. As it does not undergo the S (stressed) to R (relaxed) conformational transition characteristic of active serpins, it exhibits no serine protease inhibitory activity.
P41214 EIF2D S239 ochoa Eukaryotic translation initiation factor 2D (eIF2d) (Hepatocellular carcinoma-associated antigen 56) (Ligatin) Translation initiation factor that is able to deliver tRNA to the P-site of the eukaryotic ribosome in a GTP-independent manner. The binding of Met-tRNA(I) occurs after the AUG codon finds its position in the P-site of 40S ribosomes, the situation that takes place during initiation complex formation on some specific RNAs. Its activity in tRNA binding with 40S subunits does not require the presence of the aminoacyl moiety. Possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40S subunit. In addition to its role in initiation, can promote release of deacylated tRNA and mRNA from recycled 40S subunits following ABCE1-mediated dissociation of post-termination ribosomal complexes into subunits. {ECO:0000269|PubMed:20566627, ECO:0000269|PubMed:20713520}.
P41236 PPP1R2 S44 psp Protein phosphatase inhibitor 2 (IPP-2) Inhibitor of protein-phosphatase 1.
P41743 PRKCI S246 ochoa|psp Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}.
P42858 HTT S463 psp Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}.
P43686 PSMC4 S28 ochoa 26S proteasome regulatory subunit 6B (26S proteasome AAA-ATPase subunit RPT3) (MB67-interacting protein) (MIP224) (Proteasome 26S subunit ATPase 4) (Tat-binding protein 7) (TBP-7) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC4 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:8060531}.
P46821 MAP1B S1666 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P47712 PLA2G4A S454 ochoa|psp Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}.
P47736 RAP1GAP S525 psp Rap1 GTPase-activating protein 1 (Rap1GAP) (Rap1GAP1) GTPase activator for the nuclear Ras-related regulatory protein RAP-1A (KREV-1), converting it to the putatively inactive GDP-bound state. {ECO:0000269|PubMed:15141215}.
P49321 NASP S480 ochoa Nuclear autoantigenic sperm protein (NASP) Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.
P49321 NASP S662 ochoa Nuclear autoantigenic sperm protein (NASP) Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.
P49327 FASN S1129 ochoa Fatty acid synthase (EC 2.3.1.85) (Type I fatty acid synthase) [Includes: [Acyl-carrier-protein] S-acetyltransferase (EC 2.3.1.38); [Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39); 3-oxoacyl-[acyl-carrier-protein] synthase (EC 2.3.1.41); 3-oxoacyl-[acyl-carrier-protein] reductase (EC 1.1.1.100); 3-hydroxyacyl-[acyl-carrier-protein] dehydratase (EC 4.2.1.59); Enoyl-[acyl-carrier-protein] reductase (EC 1.3.1.39); Acyl-[acyl-carrier-protein] hydrolase (EC 3.1.2.14)] Fatty acid synthetase is a multifunctional enzyme that catalyzes the de novo biosynthesis of long-chain saturated fatty acids starting from acetyl-CoA and malonyl-CoA in the presence of NADPH. This multifunctional protein contains 7 catalytic activities and a site for the binding of the prosthetic group 4'-phosphopantetheine of the acyl carrier protein ([ACP]) domain. {ECO:0000269|PubMed:16215233, ECO:0000269|PubMed:16969344, ECO:0000269|PubMed:26851298, ECO:0000269|PubMed:7567999, ECO:0000269|PubMed:8962082, ECO:0000269|PubMed:9356448}.; FUNCTION: (Microbial infection) Fatty acid synthetase activity is required for SARS coronavirus-2/SARS-CoV-2 replication. {ECO:0000269|PubMed:34320401}.
P49792 RANBP2 S2207 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P50570 DNM2 S644 ochoa Dynamin-2 (EC 3.6.5.5) (Dynamin 2) (Dynamin II) Catalyzes the hydrolysis of GTP and utilizes this energy to mediate vesicle scission at plasma membrane during endocytosis and filament remodeling at many actin structures during organization of the actin cytoskeleton (PubMed:15731758, PubMed:19605363, PubMed:19623537, PubMed:33713620, PubMed:34744632). Plays an important role in vesicular trafficking processes, namely clathrin-mediated endocytosis (CME), exocytic and clathrin-coated vesicle from the trans-Golgi network, and PDGF stimulated macropinocytosis (PubMed:15731758, PubMed:19623537, PubMed:33713620). During vesicular trafficking process, associates to the membrane, through lipid binding, and self-assembles into ring-like structure through oligomerization to form a helical polymer around the vesicle membrane and leading to vesicle scission (PubMed:17636067, PubMed:34744632, PubMed:36445308). Plays a role in organization of the actin cytoskeleton by mediating arrangement of stress fibers and actin bundles in podocytes (By similarity). During organization of the actin cytoskeleton, self-assembles into ring-like structure that directly bundles actin filaments to form typical membrane tubules decorated with dynamin spiral polymers (By similarity). Self-assembly increases GTPase activity and the GTP hydrolysis causes the rapid depolymerization of dynamin spiral polymers, and results in dispersion of actin bundles (By similarity). Remodels, through its interaction with CTTN, bundled actin filaments in a GTPase-dependent manner and plays a role in orchestrating the global actomyosin cytoskeleton (PubMed:19605363). The interaction with CTTN stabilizes the interaction of DNM2 and actin filaments and stimulates the intrinsic GTPase activity that results in actin filament-barbed ends and increases the sensitivity of filaments in bundles to the actin depolymerizing factor, CFL1 (By similarity). Plays a role in the autophagy process, by participating in the formation of ATG9A vesicles destined for the autophagosomes through its interaction with SNX18 (PubMed:29437695), by mediating recycling endosome scission leading to autophagosome release through MAP1LC3B interaction (PubMed:29437695, PubMed:32315611). Also regulates maturation of apoptotic cell corpse-containing phagosomes by recruiting PIK3C3 to the phagosome membrane (By similarity). Also plays a role in cytokinesis (By similarity). May participate in centrosome cohesion through its interaction with TUBG1 (By similarity). Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Involved in membrane tubulation (PubMed:24135484). {ECO:0000250|UniProtKB:P39052, ECO:0000250|UniProtKB:P39054, ECO:0000269|PubMed:15731758, ECO:0000269|PubMed:17636067, ECO:0000269|PubMed:19605363, ECO:0000269|PubMed:19623537, ECO:0000269|PubMed:24135484, ECO:0000269|PubMed:29437695, ECO:0000269|PubMed:32315611, ECO:0000269|PubMed:33713620, ECO:0000269|PubMed:34744632, ECO:0000269|PubMed:36445308}.
P50851 LRBA S2065 ochoa Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}.
P50991 CCT4 S236 ochoa T-complex protein 1 subunit delta (TCP-1-delta) (EC 3.6.1.-) (CCT-delta) (Chaperonin containing T-complex polypeptide 1 subunit 4) (Stimulator of TAR RNA-binding) Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}.
P50993 ATP1A2 S450 ochoa Sodium/potassium-transporting ATPase subunit alpha-2 (Na(+)/K(+) ATPase alpha-2 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-2) This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients. {ECO:0000269|PubMed:33880529}.
P51003 PAPOLA S681 ochoa Poly(A) polymerase alpha (PAP-alpha) (EC 2.7.7.19) (Polynucleotide adenylyltransferase alpha) Polymerase that creates the 3'-poly(A) tail of mRNA's. Also required for the endoribonucleolytic cleavage reaction at some polyadenylation sites. May acquire specificity through interaction with a cleavage and polyadenylation specificity factor (CPSF) at its C-terminus. {ECO:0000269|PubMed:19224921}.
P51956 NEK3 S462 ochoa Serine/threonine-protein kinase Nek3 (EC 2.7.11.1) (HSPK 36) (Never in mitosis A-related kinase 3) (NimA-related protein kinase 3) Protein kinase which influences neuronal morphogenesis and polarity through effects on microtubules. Regulates microtubule acetylation in neurons. Contributes to prolactin-mediated phosphorylation of PXN and VAV2. Implicated in prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells through mechanisms involving RAC1 activation and phosphorylation of PXN and VAV2. {ECO:0000269|PubMed:15618286, ECO:0000269|PubMed:17297458}.
P53675 CLTCL1 S1222 ochoa Clathrin heavy chain 2 (Clathrin heavy chain on chromosome 22) (CLH-22) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network (By similarity). {ECO:0000250}.
P53794 SLC5A3 S591 ochoa Sodium/myo-inositol cotransporter (Na(+)/myo-inositol cotransporter) (Sodium/myo-inositol transporter 1) (SMIT1) (Solute carrier family 5 member 3) Electrogenic Na(+)-coupled sugar symporter that actively transports myo-inositol and its stereoisomer scyllo-inositol across the plasma membrane, with a Na(+) to sugar coupling ratio of 2:1 (By similarity). Maintains myo-inositol concentration gradient that defines cell volume and fluid balance during osmotic stress, in particular in the fetoplacental unit and central nervous system (By similarity). Forms coregulatory complexes with voltage-gated K(+) ion channels, allosterically altering ion selectivity, voltage dependence and gating kinetics of the channel. In turn, K(+) efflux through the channel forms a local electrical gradient that modulates electrogenic Na(+)-coupled myo-inositol influx through the transporter (PubMed:24595108, PubMed:28793216). Associates with KCNQ1-KCNE2 channel in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity) (PubMed:24595108). Associates with KCNQ2-KCNQ3 channel altering ion selectivity, increasing Na(+) and Cs(+) permeation relative to K(+) permeation (PubMed:28793216). Provides myo-inositol precursor for biosynthesis of phosphoinositides such as PI(4,5)P2, thus indirectly affecting the activity of phosphoinositide-dependent ion channels and Ca(2+) signaling upon osmotic stress (PubMed:27217553). {ECO:0000250|UniProtKB:P31637, ECO:0000250|UniProtKB:Q9JKZ2, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:27217553, ECO:0000269|PubMed:28793216}.
P54578 USP14 S230 ochoa|psp Ubiquitin carboxyl-terminal hydrolase 14 (EC 3.4.19.12) (Deubiquitinating enzyme 14) (Ubiquitin thioesterase 14) (Ubiquitin-specific-processing protease 14) Proteasome-associated deubiquitinase which releases ubiquitin from the proteasome targeted ubiquitinated proteins (PubMed:35145029). Ensures the regeneration of ubiquitin at the proteasome (PubMed:18162577, PubMed:28396413). Is a reversibly associated subunit of the proteasome and a large fraction of proteasome-free protein exists within the cell (PubMed:18162577). Required for the degradation of the chemokine receptor CXCR4 which is critical for CXCL12-induced cell chemotaxis (PubMed:19106094). Also serves as a physiological inhibitor of endoplasmic reticulum-associated degradation (ERAD) under the non-stressed condition by inhibiting the degradation of unfolded endoplasmic reticulum proteins via interaction with ERN1 (PubMed:19135427). Indispensable for synaptic development and function at neuromuscular junctions (NMJs) (By similarity). Plays a role in the innate immune defense against viruses by stabilizing the viral DNA sensor CGAS and thus inhibiting its autophagic degradation (PubMed:27666593). Inhibits OPTN-mediated selective autophagic degradation of KDM4D and thereby negatively regulates H3K9me2 and H3K9me3 (PubMed:35145029). {ECO:0000250|UniProtKB:Q9JMA1, ECO:0000269|PubMed:18162577, ECO:0000269|PubMed:19106094, ECO:0000269|PubMed:19135427, ECO:0000269|PubMed:27666593, ECO:0000269|PubMed:28396413, ECO:0000269|PubMed:35145029}.
P55011 SLC12A2 S994 ochoa Solute carrier family 12 member 2 (Basolateral Na-K-Cl symporter) (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 2) (BSC2) (Na-K-2Cl cotransporter 1) (hNKCC1) Cation-chloride cotransporter which mediates the electroneutral transport of chloride, potassium and/or sodium ions across the membrane (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:33597714, PubMed:35585053, PubMed:36239040, PubMed:36306358, PubMed:7629105). Plays a vital role in the regulation of ionic balance and cell volume (PubMed:16669787, PubMed:32081947, PubMed:32294086, PubMed:7629105). {ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:32081947, ECO:0000269|PubMed:32294086, ECO:0000269|PubMed:33597714, ECO:0000269|PubMed:35585053, ECO:0000269|PubMed:36239040, ECO:0000269|PubMed:36306358, ECO:0000269|PubMed:7629105}.
P55040 GEM S261 psp GTP-binding protein GEM (GTP-binding mitogen-induced T-cell protein) (RAS-like protein KIR) Could be a regulatory protein, possibly participating in receptor-mediated signal transduction at the plasma membrane. Has guanine nucleotide-binding activity but undetectable intrinsic GTPase activity.
P58004 SESN2 S73 psp Sestrin-2 (EC 1.11.1.-) (Hypoxia-induced gene) Functions as an intracellular leucine sensor that negatively regulates the mTORC1 signaling pathway through the GATOR complex (PubMed:18692468, PubMed:25263562, PubMed:25457612, PubMed:26449471, PubMed:26586190, PubMed:26612684, PubMed:31586034, PubMed:35114100, PubMed:35831510, PubMed:36528027). In absence of leucine, binds the GATOR subcomplex GATOR2 and prevents mTORC1 signaling (PubMed:18692468, PubMed:25263562, PubMed:25457612, PubMed:26449471, PubMed:26586190, PubMed:26612684, PubMed:31586034, PubMed:35114100, PubMed:35831510, PubMed:36528027). Binding of leucine to SESN2 disrupts its interaction with GATOR2 thereby activating the TORC1 signaling pathway (PubMed:26449471, PubMed:26586190, PubMed:35114100, PubMed:35831510, PubMed:36528027). This stress-inducible metabolic regulator also plays a role in protection against oxidative and genotoxic stresses. May negatively regulate protein translation in response to endoplasmic reticulum stress, via mTORC1 (PubMed:24947615). May positively regulate the transcription by NFE2L2 of genes involved in the response to oxidative stress by facilitating the SQSTM1-mediated autophagic degradation of KEAP1 (PubMed:23274085). May also mediate TP53 inhibition of TORC1 signaling upon genotoxic stress (PubMed:18692468). Moreover, may prevent the accumulation of reactive oxygen species (ROS) through the alkylhydroperoxide reductase activity born by the N-terminal domain of the protein (PubMed:26612684). Was originally reported to contribute to oxidative stress resistance by reducing PRDX1 (PubMed:15105503). However, this could not be confirmed (PubMed:19113821). {ECO:0000269|PubMed:15105503, ECO:0000269|PubMed:18692468, ECO:0000269|PubMed:19113821, ECO:0000269|PubMed:23274085, ECO:0000269|PubMed:24947615, ECO:0000269|PubMed:25263562, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:26449471, ECO:0000269|PubMed:26586190, ECO:0000269|PubMed:26612684, ECO:0000269|PubMed:35114100, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027}.
P60484 PTEN S302 ochoa Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (EC 3.1.3.16) (EC 3.1.3.48) (EC 3.1.3.67) (Inositol polyphosphate 3-phosphatase) (EC 3.1.3.-) (Mutated in multiple advanced cancers 1) (Phosphatase and tensin homolog) Dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins (PubMed:9187108, PubMed:9256433, PubMed:9616126). Also functions as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring of PtdIns(3,4,5)P3/phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4)P2/phosphatidylinositol 3,4-diphosphate and PtdIns3P/phosphatidylinositol 3-phosphate with a preference for PtdIns(3,4,5)P3 (PubMed:16824732, PubMed:26504226, PubMed:9593664, PubMed:9811831). Furthermore, this enzyme can also act as a cytosolic inositol 3-phosphatase acting on Ins(1,3,4,5,6)P5/inositol 1,3,4,5,6 pentakisphosphate and possibly Ins(1,3,4,5)P4/1D-myo-inositol 1,3,4,5-tetrakisphosphate (PubMed:11418101, PubMed:15979280). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:31492966, PubMed:37279284). The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation (PubMed:11707428). In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement (PubMed:22279049). Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation (PubMed:22279049). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces PTEN phosphorylation which changes its binding preference from the p85 regulatory subunit of the PI3K kinase complex to DLC1 and results in translocation of the PTEN-DLC1 complex to the posterior of migrating cells to promote RHOA activation (PubMed:26166433). Meanwhile, TNS3 switches binding preference from DLC1 to p85 and the TNS3-p85 complex translocates to the leading edge of migrating cells to activate RAC1 activation (PubMed:26166433). Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Involved in the regulation of synaptic function in excitatory hippocampal synapses. Recruited to the postsynaptic membrane upon NMDA receptor activation, is required for the modulation of synaptic activity during plasticity. Enhancement of lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses, activity required for NMDA receptor-dependent long-term depression (LTD) (By similarity). May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability (PubMed:10468583, PubMed:18716620). {ECO:0000250|UniProtKB:O08586, ECO:0000250|UniProtKB:O54857, ECO:0000269|PubMed:10468583, ECO:0000269|PubMed:11418101, ECO:0000269|PubMed:11707428, ECO:0000269|PubMed:15979280, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26504226, ECO:0000269|PubMed:31492966, ECO:0000269|PubMed:37279284, ECO:0000269|PubMed:9187108, ECO:0000269|PubMed:9256433, ECO:0000269|PubMed:9593664, ECO:0000269|PubMed:9616126, ECO:0000269|PubMed:9811831}.; FUNCTION: [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1. {ECO:0000269|PubMed:23744781}.
P61981 YWHAG S46 ochoa 14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein gamma, N-terminally processed] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binding generally results in the modulation of the activity of the binding partner (PubMed:16511572). Promotes inactivation of WDR24 component of the GATOR2 complex by binding to phosphorylated WDR24 (PubMed:36732624). Participates in the positive regulation of NMDA glutamate receptor activity by promoting the L-glutamate secretion through interaction with BEST1 (PubMed:29121962). Reduces keratinocyte intercellular adhesion, via interacting with PKP1 and sequestering it in the cytoplasm, thereby reducing its incorporation into desmosomes (PubMed:29678907). Plays a role in mitochondrial protein catabolic process (also named MALM) that promotes the degradation of damaged proteins inside mitochondria (PubMed:22532927). {ECO:0000269|PubMed:15696159, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:22532927, ECO:0000269|PubMed:29121962, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:36732624}.
P61981 YWHAG S150 ochoa 14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein gamma, N-terminally processed] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binding generally results in the modulation of the activity of the binding partner (PubMed:16511572). Promotes inactivation of WDR24 component of the GATOR2 complex by binding to phosphorylated WDR24 (PubMed:36732624). Participates in the positive regulation of NMDA glutamate receptor activity by promoting the L-glutamate secretion through interaction with BEST1 (PubMed:29121962). Reduces keratinocyte intercellular adhesion, via interacting with PKP1 and sequestering it in the cytoplasm, thereby reducing its incorporation into desmosomes (PubMed:29678907). Plays a role in mitochondrial protein catabolic process (also named MALM) that promotes the degradation of damaged proteins inside mitochondria (PubMed:22532927). {ECO:0000269|PubMed:15696159, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:22532927, ECO:0000269|PubMed:29121962, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:36732624}.
P63104 YWHAZ S28 ochoa 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}.
P63104 YWHAZ S45 ochoa 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}.
P63244 RACK1 S276 ochoa Small ribosomal subunit protein RACK1 (Cell proliferation-inducing gene 21 protein) (Guanine nucleotide-binding protein subunit beta-2-like 1) (Guanine nucleotide-binding protein subunit beta-like protein 12.3) (Human lung cancer oncogene 7 protein) (HLC-7) (Receptor for activated C kinase) (Receptor of activated protein C kinase 1) [Cleaved into: Small ribosomal subunit protein RACK1, N-terminally processed (Guanine nucleotide-binding protein subunit beta-2-like 1, N-terminally processed) (Receptor of activated protein C kinase 1, N-terminally processed)] Scaffolding protein involved in the recruitment, assembly and/or regulation of a variety of signaling molecules. Interacts with a wide variety of proteins and plays a role in many cellular processes. Component of the 40S ribosomal subunit involved in translational repression (PubMed:23636399). Involved in the initiation of the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, by promoting ubiquitination of a subset of 40S ribosomal subunits (PubMed:28132843). Binds to and stabilizes activated protein kinase C (PKC), increasing PKC-mediated phosphorylation. May recruit activated PKC to the ribosome, leading to phosphorylation of EIF6. Inhibits the activity of SRC kinases including SRC, LCK and YES1. Inhibits cell growth by prolonging the G0/G1 phase of the cell cycle. Enhances phosphorylation of BMAL1 by PRKCA and inhibits transcriptional activity of the BMAL1-CLOCK heterodimer. Facilitates ligand-independent nuclear translocation of AR following PKC activation, represses AR transactivation activity and is required for phosphorylation of AR by SRC. Modulates IGF1R-dependent integrin signaling and promotes cell spreading and contact with the extracellular matrix. Involved in PKC-dependent translocation of ADAM12 to the cell membrane. Promotes the ubiquitination and proteasome-mediated degradation of proteins such as CLEC1B and HIF1A. Required for VANGL2 membrane localization, inhibits Wnt signaling, and regulates cellular polarization and oriented cell division during gastrulation. Required for PTK2/FAK1 phosphorylation and dephosphorylation. Regulates internalization of the muscarinic receptor CHRM2. Promotes apoptosis by increasing oligomerization of BAX and disrupting the interaction of BAX with the anti-apoptotic factor BCL2L. Inhibits TRPM6 channel activity. Regulates cell surface expression of some GPCRs such as TBXA2R. Plays a role in regulation of FLT1-mediated cell migration. Involved in the transport of ABCB4 from the Golgi to the apical bile canalicular membrane (PubMed:19674157). Promotes migration of breast carcinoma cells by binding to and activating RHOA (PubMed:20499158). Acts as an adapter for the dephosphorylation and inactivation of AKT1 by promoting recruitment of PP2A phosphatase to AKT1 (By similarity). {ECO:0000250|UniProtKB:P68040, ECO:0000269|PubMed:11884618, ECO:0000269|PubMed:12589061, ECO:0000269|PubMed:12958311, ECO:0000269|PubMed:17108144, ECO:0000269|PubMed:17244529, ECO:0000269|PubMed:17956333, ECO:0000269|PubMed:18088317, ECO:0000269|PubMed:18258429, ECO:0000269|PubMed:18621736, ECO:0000269|PubMed:19423701, ECO:0000269|PubMed:19674157, ECO:0000269|PubMed:19785988, ECO:0000269|PubMed:20499158, ECO:0000269|PubMed:20541605, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:20976005, ECO:0000269|PubMed:21212275, ECO:0000269|PubMed:21347310, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:9584165}.; FUNCTION: (Microbial infection) Binds to Y.pseudotuberculosis yopK which leads to inhibition of phagocytosis and survival of bacteria following infection of host cells. {ECO:0000269|PubMed:21347310}.; FUNCTION: (Microbial infection) Enhances phosphorylation of HIV-1 Nef by PKCs. {ECO:0000269|PubMed:11312657}.; FUNCTION: (Microbial infection) In case of poxvirus infection, remodels the ribosomes so that they become optimal for the viral mRNAs (containing poly-A leaders) translation but not for host mRNAs. {ECO:0000269|PubMed:28636603}.; FUNCTION: (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses. {ECO:0000269|PubMed:25416947}.
P68371 TUBB4B S339 ochoa Tubulin beta-4B chain (Tubulin beta-2 chain) (Tubulin beta-2C chain) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
P82094 TMF1 S142 ochoa TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}.
P82979 SARNP S131 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
Q00403 GTF2B S65 psp Transcription initiation factor IIB (EC 2.3.1.48) (General transcription factor TFIIB) (S300-II) General transcription factor that plays a role in transcription initiation by RNA polymerase II (Pol II). Involved in the pre-initiation complex (PIC) formation and Pol II recruitment at promoter DNA (PubMed:12931194, PubMed:1517211, PubMed:1876184, PubMed:1946368, PubMed:27193682, PubMed:3029109, PubMed:3818643, PubMed:7601352, PubMed:8413225, PubMed:8515820, PubMed:8516311, PubMed:8516312, PubMed:9420329). Together with the TATA box-bound TBP forms the core initiation complex and provides a bridge between TBP and the Pol II-TFIIF complex (PubMed:8413225, PubMed:8504927, PubMed:8515820, PubMed:8516311, PubMed:8516312). Released from the PIC early following the onset of transcription during the initiation and elongation transition and reassociates with TBP during the next transcription cycle (PubMed:7601352). Associates with chromatin to core promoter-specific regions (PubMed:12931194, PubMed:24441171). Binds to two distinct DNA core promoter consensus sequence elements in a TBP-independent manner; these IIB-recognition elements (BREs) are localized immediately upstream (BREu), 5'-[GC][GC][GA]CGCC-3', and downstream (BREd), 5'-[GA]T[TGA][TG][GT][TG][TG]-3', of the TATA box element (PubMed:10619841, PubMed:16230532, PubMed:7675079, PubMed:9420329). Modulates transcription start site selection (PubMed:10318856). Also exhibits autoacetyltransferase activity that contributes to the activated transcription (PubMed:12931194). {ECO:0000269|PubMed:10318856, ECO:0000269|PubMed:10619841, ECO:0000269|PubMed:12931194, ECO:0000269|PubMed:1517211, ECO:0000269|PubMed:16230532, ECO:0000269|PubMed:1876184, ECO:0000269|PubMed:1946368, ECO:0000269|PubMed:24441171, ECO:0000269|PubMed:27193682, ECO:0000269|PubMed:3029109, ECO:0000269|PubMed:3818643, ECO:0000269|PubMed:7601352, ECO:0000269|PubMed:7675079, ECO:0000269|PubMed:8413225, ECO:0000269|PubMed:8504927, ECO:0000269|PubMed:8515820, ECO:0000269|PubMed:8516311, ECO:0000269|PubMed:8516312, ECO:0000269|PubMed:9420329}.
Q00587 CDC42EP1 S353 ochoa Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}.
Q00610 CLTC S1222 ochoa Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}.
Q00987 MDM2 S262 psp E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}.
Q00987 MDM2 S429 psp E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}.
Q01082 SPTBN1 S2106 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01082 SPTBN1 S2307 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01650 SLC7A5 S31 ochoa Large neutral amino acids transporter small subunit 1 (4F2 light chain) (4F2 LC) (4F2LC) (CD98 light chain) (Integral membrane protein E16) (E16) (L-type amino acid transporter 1) (hLAT1) (Solute carrier family 7 member 5) (y+ system cationic amino acid transporter) The heterodimer with SLC3A2 functions as a sodium-independent, high-affinity transporter that mediates uptake of large neutral amino acids such as phenylalanine, tyrosine, leucine, histidine, methionine, tryptophan, valine, isoleucine and alanine (PubMed:10049700, PubMed:10574970, PubMed:11557028, PubMed:11564694, PubMed:12117417, PubMed:12225859, PubMed:15769744, PubMed:18262359, PubMed:25998567, PubMed:30867591, PubMed:9751058). The heterodimer with SLC3A2 mediates the uptake of L-DOPA (By similarity). Functions as an amino acid exchanger (PubMed:11557028, PubMed:12117417, PubMed:12225859, PubMed:30867591). May play a role in the transport of L-DOPA across the blood-brain barrier (By similarity). May act as the major transporter of tyrosine in fibroblasts (Probable). May mediate blood-to-retina L-leucine transport across the inner blood-retinal barrier (By similarity). Can mediate the transport of thyroid hormones diiodothyronine (T2), triiodothyronine (T3) and thyroxine (T4) across the cell membrane (PubMed:11564694). When associated with LAPTM4B, the heterodimer formed by SLC3A2 and SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Involved in the uptake of toxic methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the membrane (PubMed:15769744). {ECO:0000250|UniProtKB:Q63016, ECO:0000250|UniProtKB:Q9Z127, ECO:0000269|PubMed:10049700, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:18262359, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:9751058, ECO:0000305|PubMed:18262359}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.
Q01650 SLC7A5 S35 ochoa Large neutral amino acids transporter small subunit 1 (4F2 light chain) (4F2 LC) (4F2LC) (CD98 light chain) (Integral membrane protein E16) (E16) (L-type amino acid transporter 1) (hLAT1) (Solute carrier family 7 member 5) (y+ system cationic amino acid transporter) The heterodimer with SLC3A2 functions as a sodium-independent, high-affinity transporter that mediates uptake of large neutral amino acids such as phenylalanine, tyrosine, leucine, histidine, methionine, tryptophan, valine, isoleucine and alanine (PubMed:10049700, PubMed:10574970, PubMed:11557028, PubMed:11564694, PubMed:12117417, PubMed:12225859, PubMed:15769744, PubMed:18262359, PubMed:25998567, PubMed:30867591, PubMed:9751058). The heterodimer with SLC3A2 mediates the uptake of L-DOPA (By similarity). Functions as an amino acid exchanger (PubMed:11557028, PubMed:12117417, PubMed:12225859, PubMed:30867591). May play a role in the transport of L-DOPA across the blood-brain barrier (By similarity). May act as the major transporter of tyrosine in fibroblasts (Probable). May mediate blood-to-retina L-leucine transport across the inner blood-retinal barrier (By similarity). Can mediate the transport of thyroid hormones diiodothyronine (T2), triiodothyronine (T3) and thyroxine (T4) across the cell membrane (PubMed:11564694). When associated with LAPTM4B, the heterodimer formed by SLC3A2 and SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Involved in the uptake of toxic methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the membrane (PubMed:15769744). {ECO:0000250|UniProtKB:Q63016, ECO:0000250|UniProtKB:Q9Z127, ECO:0000269|PubMed:10049700, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:18262359, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:9751058, ECO:0000305|PubMed:18262359}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.
Q02487 DSC2 S796 ochoa Desmocollin-2 (Cadherin family member 2) (Desmocollin-3) (Desmosomal glycoprotein II) (Desmosomal glycoprotein III) A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:33596089). Promotes timely incorporation of DSG2 into desmosome intercellular junctions and promotes interaction of desmosome cell junctions with intermediate filament cytokeratin, via modulation of DSP phosphorylation (PubMed:33596089). Plays an important role in desmosome-mediated maintenance of intestinal epithelial cell intercellular adhesion strength and barrier function (PubMed:33596089). Positively regulates wound healing of intestinal mucosa via promotion of epithelial cell migration, and also plays a role in mechanotransduction of force between intestinal epithelial cells and extracellular matrix (PubMed:31967937). May contribute to epidermal cell positioning (stratification) by mediating differential adhesiveness between cells that express different isoforms. May promote p38MAPK signaling activation that facilitates keratinocyte migration (By similarity). {ECO:0000250|UniProtKB:P55292, ECO:0000269|PubMed:31967937, ECO:0000269|PubMed:33596089}.
Q02952 AKAP12 S1324 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03135 CAV1 S80 psp Caveolin-1 May act as a scaffolding protein within caveolar membranes (PubMed:11751885). Forms a stable heterooligomeric complex with CAV2 that targets to lipid rafts and drives caveolae formation. Mediates the recruitment of CAVIN proteins (CAVIN1/2/3/4) to the caveolae (PubMed:19262564). Interacts directly with G-protein alpha subunits and can functionally regulate their activity (By similarity). Involved in the costimulatory signal essential for T-cell receptor (TCR)-mediated T-cell activation. Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Recruits CTNNB1 to caveolar membranes and may regulate CTNNB1-mediated signaling through the Wnt pathway (By similarity). Negatively regulates TGFB1-mediated activation of SMAD2/3 by mediating the internalization of TGFBR1 from membrane rafts leading to its subsequent degradation (PubMed:25893292). Binds 20(S)-hydroxycholesterol (20(S)-OHC) (By similarity). {ECO:0000250|UniProtKB:P49817, ECO:0000269|PubMed:11751885, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:19262564, ECO:0000269|PubMed:25893292}.
Q04917 YWHAH S46 ochoa 14-3-3 protein eta (Protein AS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
Q05513 PRKCZ S206 ochoa Protein kinase C zeta type (EC 2.7.11.13) (nPKC-zeta) Calcium- and diacylglycerol-independent serine/threonine-protein kinase that functions in phosphatidylinositol 3-kinase (PI3K) pathway and mitogen-activated protein (MAP) kinase cascade, and is involved in NF-kappa-B activation, mitogenic signaling, cell proliferation, cell polarity, inflammatory response and maintenance of long-term potentiation (LTP). Upon lipopolysaccharide (LPS) treatment in macrophages, or following mitogenic stimuli, functions downstream of PI3K to activate MAP2K1/MEK1-MAPK1/ERK2 signaling cascade independently of RAF1 activation. Required for insulin-dependent activation of AKT3, but may function as an adapter rather than a direct activator. Upon insulin treatment may act as a downstream effector of PI3K and contribute to the activation of translocation of the glucose transporter SLC2A4/GLUT4 and subsequent glucose transport in adipocytes. In EGF-induced cells, binds and activates MAP2K5/MEK5-MAPK7/ERK5 independently of its kinase activity and can activate JUN promoter through MEF2C. Through binding with SQSTM1/p62, functions in interleukin-1 signaling and activation of NF-kappa-B with the specific adapters RIPK1 and TRAF6. Participates in TNF-dependent transactivation of NF-kappa-B by phosphorylating and activating IKBKB kinase, which in turn leads to the degradation of NF-kappa-B inhibitors. In migrating astrocytes, forms a cytoplasmic complex with PARD6A and is recruited by CDC42 to function in the establishment of cell polarity along with the microtubule motor and dynein. In association with FEZ1, stimulates neuronal differentiation in PC12 cells. In the inflammatory response, is required for the T-helper 2 (Th2) differentiation process, including interleukin production, efficient activation of JAK1 and the subsequent phosphorylation and nuclear translocation of STAT6. May be involved in development of allergic airway inflammation (asthma), a process dependent on Th2 immune response. In the NF-kappa-B-mediated inflammatory response, can relieve SETD6-dependent repression of NF-kappa-B target genes by phosphorylating the RELA subunit at 'Ser-311'. Phosphorylates VAMP2 in vitro (PubMed:17313651). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11035106, ECO:0000269|PubMed:12162751, ECO:0000269|PubMed:15084291, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:17313651, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9447975}.; FUNCTION: [Isoform 2]: Involved in late synaptic long term potention phase in CA1 hippocampal cells and long term memory maintenance. {ECO:0000250|UniProtKB:Q02956}.
Q05682 CALD1 S628 ochoa Caldesmon (CDM) Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}.
Q07021 C1QBP S210 ochoa Complement component 1 Q subcomponent-binding protein, mitochondrial (ASF/SF2-associated protein p32) (Glycoprotein gC1qBP) (C1qBP) (Hyaluronan-binding protein 1) (Mitochondrial matrix protein p32) (gC1q-R protein) (p33) (SF2AP32) Multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing (PubMed:10022843, PubMed:10479529, PubMed:10722602, PubMed:11086025, PubMed:11859136, PubMed:15243141, PubMed:16140380, PubMed:16177118, PubMed:17881511, PubMed:18676636, PubMed:19004836, PubMed:19164550, PubMed:20810993, PubMed:21536856, PubMed:21544310, PubMed:22700724, PubMed:28942965, PubMed:8662673, PubMed:8710908, PubMed:9461517). At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades (PubMed:10479529, PubMed:11859136, PubMed:8662673, PubMed:8710908). Putative receptor for C1q; specifically binds to the globular 'heads' of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93 (PubMed:20810993, PubMed:8195709). In complex with cytokeratin-1/KRT1 is a high affinity receptor for kininogen-1/HMWK (PubMed:21544310). Can also bind other plasma proteins, such as coagulation factor XII leading to its autoactivation. May function to bind initially fluid kininogen-1 to the cell membrane. The secreted form may enhance both extrinsic and intrinsic coagulation pathways. It is postulated that the cell surface form requires docking with transmembrane proteins for downstream signaling which might be specific for a cell-type or response. By acting as C1q receptor is involved in chemotaxis of immature dendritic cells and neutrophils and is proposed to signal through CD209/DC-SIGN on immature dendritic cells, through integrin alpha-4/beta-1 during trophoblast invasion of the decidua, and through integrin beta-1 during endothelial cell adhesion and spreading (PubMed:16140380, PubMed:22700724, PubMed:9461517). Signaling involved in inhibition of innate immune response is implicating the PI3K-AKT/PKB pathway (PubMed:16177118). Required for protein synthesis in mitochondria (PubMed:28942965). In mitochondrial translation may be involved in formation of functional 55S mitoribosomes; the function seems to involve its RNA-binding activity (By similarity). Acts as a RNA modification reader, which specifically recognizes and binds mitochondrial RNAs modified by C5-methylcytosine (m5C) in response to stress, and promotes recruitment of the mitochondrial degradosome complex, leading to their degradation (PubMed:39019044). May be involved in the nucleolar ribosome maturation process; the function may involve the exchange of FBL for RRP1 in the association with pre-ribosome particles (By similarity). Involved in regulation of RNA splicing by inhibiting the RNA-binding capacity of SRSF1 and its phosphorylation (PubMed:10022843, PubMed:21536856). Is required for the nuclear translocation of splicing factor U2AF1L4 (By similarity). Involved in regulation of CDKN2A- and HRK-mediated apoptosis. Stabilizes mitochondrial CDKN2A isoform smARF (PubMed:17486078). May be involved in regulation of FOXC1 transcriptional activity and NFY/CCAAT-binding factor complex-mediated transcription (PubMed:15243141, PubMed:18676636). May play a role in antibacterial defense as it can bind to cell surface hyaluronan and inhibit Streptococcus pneumoniae hyaluronate lyase (PubMed:19004836). May be involved in modulation of the immune response; ligation by HCV core protein is resulting in suppression of interleukin-12 production in monocyte-derived dendritic cells (PubMed:11086025, PubMed:17881511). Involved in regulation of antiviral response by inhibiting RIGI- and IFIH1-mediated signaling pathways probably involving its association with MAVS after viral infection (PubMed:19164550). Acts as a regulator of DNA repair via homologous recombination by inhibiting the activity of MRE11: interacts with unphosphorylated MRE11 and RAD50 in absence of DNA damage, preventing formation and activity of the MRN complex. Following DNA damage, dissociates from phosphorylated MRE11, allowing formation of the MRN complex (PubMed:31353207). {ECO:0000250|UniProtKB:O35658, ECO:0000269|PubMed:10022843, ECO:0000269|PubMed:10479529, ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:11086025, ECO:0000269|PubMed:11859136, ECO:0000269|PubMed:15243141, ECO:0000269|PubMed:16140380, ECO:0000269|PubMed:16177118, ECO:0000269|PubMed:17486078, ECO:0000269|PubMed:17881511, ECO:0000269|PubMed:18676636, ECO:0000269|PubMed:19004836, ECO:0000269|PubMed:19164550, ECO:0000269|PubMed:20810993, ECO:0000269|PubMed:21536856, ECO:0000269|PubMed:21544310, ECO:0000269|PubMed:22700724, ECO:0000269|PubMed:28942965, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:39019044, ECO:0000269|PubMed:8195709, ECO:0000269|PubMed:8662673, ECO:0000269|PubMed:8710908, ECO:0000269|PubMed:9461517}.; FUNCTION: (Microbial infection) Involved in HIV-1 replication, presumably by contributing to splicing of viral RNA. {ECO:0000269|PubMed:12833064}.; FUNCTION: (Microbial infection) In infection processes acts as an attachment site for microbial proteins, including Listeria monocytogenes internalin B (InlB) and Staphylococcus aureus protein A. {ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:10747014, ECO:0000269|PubMed:12411480}.; FUNCTION: (Microbial infection) Involved in replication of Rubella virus. {ECO:0000269|PubMed:12034482}.
Q07157 TJP1 S1102 ochoa Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}.
Q08334 IL10RB S302 ochoa Interleukin-10 receptor subunit beta (IL-10 receptor subunit beta) (IL-10R subunit beta) (IL-10RB) (Cytokine receptor class-II member 4) (Cytokine receptor family 2 member 4) (CRF2-4) (Interleukin-10 receptor subunit 2) (IL-10R subunit 2) (IL-10R2) (CD antigen CDw210b) Shared cell surface receptor required for the activation of five class 2 cytokines: IL10, IL22, IL26, IL28, and IFNL1. The IFNLR1/IL10RB dimer is a receptor for the cytokine ligands IFNL2 and IFNL3 and mediates their antiviral activity. The ligand/receptor complex stimulate the activation of the JAK/STAT signaling pathway leading to the expression of IFN-stimulated genes (ISG), which contribute to the antiviral state. {ECO:0000269|PubMed:12469119, ECO:0000269|PubMed:15123776}.
Q08495 DMTN S269 ochoa Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}.
Q08999 RBL2 S373 ochoa|psp Retinoblastoma-like protein 2 (130 kDa retinoblastoma-associated protein) (p130) (Retinoblastoma-related protein 2) (RBR-2) (pRb2) Key regulator of entry into cell division. Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Probably acts as a transcription repressor by recruiting chromatin-modifying enzymes to promoters. Potent inhibitor of E2F-mediated trans-activation, associates preferentially with E2F5. Binds to cyclins A and E. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. May act as a tumor suppressor.
Q08AD1 CAMSAP2 S901 ochoa Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}.
Q09666 AHNAK S658 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12789 GTF3C1 S748 ochoa General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element.
Q12802 AKAP13 S395 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12873 CHD3 S88 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12888 TP53BP1 S552 ochoa|psp TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 S692 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 S1086 ochoa|psp TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12912 IRAG2 S182 ochoa Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}.
Q12912 IRAG2 S345 ochoa Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}.
Q13043 STK4 S414 psp Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}.
Q13066 GAGE2B S32 ochoa G antigen 2B/2C (GAGE-2B) (GAGE-2C) (Cancer/testis antigen 4.2) (CT4.2) (G antigen 2C) Antigen, recognized on melanoma by autologous cytolytic T-lymphocytes.
Q13129 RLF S1633 ochoa Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) May be involved in transcriptional regulation.
Q13153 PAK1 S115 ochoa Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}.
Q13277 STX3 S207 ochoa Syntaxin-3 Potentially involved in docking of synaptic vesicles at presynaptic active zones. Apical receptor involved in membrane fusion of apical vesicles. {ECO:0000269|PubMed:24726755}.; FUNCTION: [Isoform B]: Essential for survival of retinal photoreceetors. {ECO:0000269|PubMed:33974130}.; FUNCTION: [Isoform 3]: Functions as a regulator of gene expression. {ECO:0000269|PubMed:29475951}.
Q13416 ORC2 S255 ochoa Origin recognition complex subunit 2 Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}.
Q13427 PPIG S319 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13428 TCOF1 S777 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13444 ADAM15 S56 ochoa Disintegrin and metalloproteinase domain-containing protein 15 (ADAM 15) (EC 3.4.24.-) (Metalloprotease RGD disintegrin protein) (Metalloproteinase-like, disintegrin-like, and cysteine-rich protein 15) (MDC-15) (Metargidin) Active metalloproteinase with gelatinolytic and collagenolytic activity. Plays a role in the wound healing process. Mediates both heterotypic intraepithelial cell/T-cell interactions and homotypic T-cell aggregation. Inhibits beta-1 integrin-mediated cell adhesion and migration of airway smooth muscle cells. Suppresses cell motility on or towards fibronectin possibly by driving alpha-v/beta-1 integrin (ITAGV-ITGB1) cell surface expression via ERK1/2 inactivation. Cleaves E-cadherin in response to growth factor deprivation. Plays a role in glomerular cell migration. Plays a role in pathological neovascularization. May play a role in cartilage remodeling. May be proteolytically processed, during sperm epididymal maturation and the acrosome reaction. May play a role in sperm-egg binding through its disintegrin domain. {ECO:0000269|PubMed:12091380, ECO:0000269|PubMed:15358598, ECO:0000269|PubMed:15818704, ECO:0000269|PubMed:17416588, ECO:0000269|PubMed:17575078, ECO:0000269|PubMed:18387333, ECO:0000269|PubMed:18434311}.
Q13509 TUBB3 S339 ochoa Tubulin beta-3 chain (Tubulin beta-4 chain) (Tubulin beta-III) Tubulin is the major constituent of microtubules, protein filaments consisting of alpha- and beta-tubulin heterodimers (PubMed:34996871, PubMed:38305685, PubMed:38609661). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms (PubMed:34996871, PubMed:38305685, PubMed:38609661). Below the cap, alpha-beta tubulin heterodimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin (PubMed:34996871, PubMed:38609661). TUBB3 plays a critical role in proper axon guidance and maintenance (PubMed:20074521). Binding of NTN1/Netrin-1 to its receptor UNC5C might cause dissociation of UNC5C from polymerized TUBB3 in microtubules and thereby lead to increased microtubule dynamics and axon repulsion (PubMed:28483977). Plays a role in dorsal root ganglion axon projection towards the spinal cord (PubMed:28483977). {ECO:0000269|PubMed:20074521, ECO:0000269|PubMed:28483977, ECO:0000269|PubMed:34996871, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661}.
Q13526 PIN1 S115 ochoa|psp Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}.
Q13596 SNX1 S280 ochoa Sorting nexin-1 Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17101778, PubMed:17550970, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498). {ECO:0000269|PubMed:12198132, ECO:0000269|PubMed:15498486, ECO:0000269|PubMed:16407403, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:17550970, ECO:0000269|PubMed:18088323, ECO:0000269|PubMed:19816406, ECO:0000269|PubMed:20070609, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:21040701, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:23152498, ECO:0000303|PubMed:15498486}.
Q13671 RIN1 S719 ochoa Ras and Rab interactor 1 (Ras inhibitor JC99) (Ras interaction/interference protein 1) Ras effector protein, which may serve as an inhibitory modulator of neuronal plasticity in aversive memory formation. Can affect Ras signaling at different levels. First, by competing with RAF1 protein for binding to activated Ras. Second, by enhancing signaling from ABL1 and ABL2, which regulate cytoskeletal remodeling. Third, by activating RAB5A, possibly by functioning as a guanine nucleotide exchange factor (GEF) for RAB5A, by exchanging bound GDP for free GTP, and facilitating Ras-activated receptor endocytosis. {ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9208849}.
Q13823 GNL2 S514 ochoa Nucleolar GTP-binding protein 2 (Autoantigen NGP-1) GTPase that associates with pre-60S ribosomal subunits in the nucleolus and is required for their nuclear export and maturation (PubMed:32669547). May promote cell proliferation possibly by increasing p53/TP53 protein levels, and consequently those of its downstream product CDKN1A/p21, and decreasing RPL23A protein levels (PubMed:26203195). {ECO:0000269|PubMed:26203195, ECO:0000269|PubMed:32669547}.
Q13885 TUBB2A S339 ochoa Tubulin beta-2A chain (Tubulin beta class IIa) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Q14005 IL16 S1073 ochoa Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells.
Q14005 IL16 S1077 ochoa Pro-interleukin-16 [Cleaved into: Interleukin-16 (IL-16) (Lymphocyte chemoattractant factor) (LCF)] Interleukin-16 stimulates a migratory response in CD4+ lymphocytes, monocytes, and eosinophils. Primes CD4+ T-cells for IL-2 and IL-15 responsiveness. Also induces T-lymphocyte expression of interleukin 2 receptor. Ligand for CD4.; FUNCTION: [Isoform 1]: May act as a scaffolding protein that anchors ion channels in the membrane.; FUNCTION: Isoform 3 is involved in cell cycle progression in T-cells. Appears to be involved in transcriptional regulation of SKP2 and is probably part of a transcriptional repression complex on the core promoter of the SKP2 gene. May act as a scaffold for GABPB1 (the DNA-binding subunit the GABP transcription factor complex) and HDAC3 thus maintaining transcriptional repression and blocking cell cycle progression in resting T-cells.
Q14149 MORC3 S771 ochoa MORC family CW-type zinc finger protein 3 (Nuclear matrix protein 2) (Zinc finger CW-type coiled-coil domain protein 3) Nuclear matrix protein which forms MORC3-NBs (nuclear bodies) via an ATP-dependent mechanism and plays a role in innate immunity by restricting different viruses through modulation of the IFN response (PubMed:27440897, PubMed:34759314). Mechanistically, possesses a primary antiviral function through a MORC3-regulated element that activates IFNB1, and this function is guarded by a secondary IFN-repressing function (PubMed:34759314). Sumoylated MORC3-NBs associates with PML-NBs and recruits TP53 and SP100, thus regulating TP53 activity (PubMed:17332504, PubMed:20501696). Binds RNA in vitro (PubMed:11927593). Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:11927593, ECO:0000269|PubMed:17332504, ECO:0000269|PubMed:20501696, ECO:0000269|PubMed:26933034, ECO:0000269|PubMed:27440897, ECO:0000269|PubMed:34759314}.; FUNCTION: (Microbial infection) May be required for influenza A transcription during viral infection (PubMed:26202233). {ECO:0000269|PubMed:26202233}.
Q14207 NPAT S377 ochoa Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}.
Q14315 FLNC S379 ochoa Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}.
Q14315 FLNC S2348 ochoa Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}.
Q14432 PDE3A S654 ochoa cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}.
Q14674 ESPL1 S1073 psp Separin (EC 3.4.22.49) (Caspase-like protein ESPL1) (Extra spindle poles-like 1 protein) (Separase) Caspase-like protease, which plays a central role in the chromosome segregation by cleaving the SCC1/RAD21 subunit of the cohesin complex at the onset of anaphase. During most of the cell cycle, it is inactivated by different mechanisms. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11509732}.
Q14676 MDC1 S422 ochoa Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}.
Q14692 BMS1 S820 ochoa Ribosome biogenesis protein BMS1 homolog (EC 3.6.5.-) (Ribosome assembly protein BMS1 homolog) GTPase required for the synthesis of 40S ribosomal subunits and for processing of pre-ribosomal RNA (pre-rRNA) at sites A0, A1, and A2. Controls access of pre-rRNA intermediates to RCL1 during ribosome biogenesis by binding RCL1 in a GTP-dependent manner, and delivering it to pre-ribosomes. GTP-binding and/or GTP hydrolysis may induce conformational rearrangements within the BMS1-RCL1 complex allowing the interaction of RCL1 with its RNA substrate. Required for RCL1 import into the nucleus. {ECO:0000250|UniProtKB:Q08965}.
Q147X3 NAA30 S188 ochoa N-alpha-acetyltransferase 30 (EC 2.3.1.256) (N-acetyltransferase 12) (N-acetyltransferase MAK3 homolog) (NatC catalytic subunit) Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex (PubMed:19398576, PubMed:37891180). Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate (PubMed:19398576). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}.
Q14847 LASP1 S151 ochoa LIM and SH3 domain protein 1 (LASP-1) (Metastatic lymph node gene 50 protein) (MLN 50) Plays an important role in the regulation of dynamic actin-based, cytoskeletal activities. Agonist-dependent changes in LASP1 phosphorylation may also serve to regulate actin-associated ion transport activities, not only in the parietal cell but also in certain other F-actin-rich secretory epithelial cell types (By similarity). {ECO:0000250}.
Q15032 R3HDM1 S299 ochoa R3H domain-containing protein 1 None
Q15057 ACAP2 S384 ochoa Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 (Centaurin-beta-2) (Cnt-b2) GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6). Doesn't show GAP activity for RAB35 (PubMed:30905672). {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:30905672}.
Q15058 KIF14 S1044 ochoa Kinesin-like protein KIF14 Microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity (By similarity). Plays a role in many processes like cell division, cytokinesis and also in cell proliferation and apoptosis (PubMed:16648480, PubMed:24784001). During cytokinesis, targets to central spindle and midbody through its interaction with PRC1 and CIT respectively (PubMed:16431929). Regulates cell growth through regulation of cell cycle progression and cytokinesis (PubMed:24854087). During cell cycle progression acts through SCF-dependent proteasomal ubiquitin-dependent protein catabolic process which controls CDKN1B degradation, resulting in positive regulation of cyclins, including CCNE1, CCND1 and CCNB1 (PubMed:24854087). During late neurogenesis, regulates the cerebellar, cerebral cortex and olfactory bulb development through regulation of apoptosis, cell proliferation and cell division (By similarity). Also is required for chromosome congression and alignment during mitotic cell cycle process (PubMed:15843429). Regulates cell spreading, focal adhesion dynamics, and cell migration through its interaction with RADIL resulting in regulation of RAP1A-mediated inside-out integrin activation by tethering RADIL on microtubules (PubMed:23209302). {ECO:0000250|UniProtKB:L0N7N1, ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:16648480, ECO:0000269|PubMed:23209302, ECO:0000269|PubMed:24784001, ECO:0000269|PubMed:24854087}.
Q15058 KIF14 S1186 ochoa Kinesin-like protein KIF14 Microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity (By similarity). Plays a role in many processes like cell division, cytokinesis and also in cell proliferation and apoptosis (PubMed:16648480, PubMed:24784001). During cytokinesis, targets to central spindle and midbody through its interaction with PRC1 and CIT respectively (PubMed:16431929). Regulates cell growth through regulation of cell cycle progression and cytokinesis (PubMed:24854087). During cell cycle progression acts through SCF-dependent proteasomal ubiquitin-dependent protein catabolic process which controls CDKN1B degradation, resulting in positive regulation of cyclins, including CCNE1, CCND1 and CCNB1 (PubMed:24854087). During late neurogenesis, regulates the cerebellar, cerebral cortex and olfactory bulb development through regulation of apoptosis, cell proliferation and cell division (By similarity). Also is required for chromosome congression and alignment during mitotic cell cycle process (PubMed:15843429). Regulates cell spreading, focal adhesion dynamics, and cell migration through its interaction with RADIL resulting in regulation of RAP1A-mediated inside-out integrin activation by tethering RADIL on microtubules (PubMed:23209302). {ECO:0000250|UniProtKB:L0N7N1, ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:16648480, ECO:0000269|PubMed:23209302, ECO:0000269|PubMed:24784001, ECO:0000269|PubMed:24854087}.
Q15080 NCF4 S315 psp Neutrophil cytosol factor 4 (NCF-4) (Neutrophil NADPH oxidase factor 4) (SH3 and PX domain-containing protein 4) (p40-phox) (p40phox) Subunit of the phagocyte NADPH oxidase complex that mediates the transfer of electrons from cytosolic NADPH to O2 to produce the superoxide anion (O2(-)) (Probable). In the activated complex, electrons are first transferred from NADPH to flavin adenine dinucleotide (FAD) and subsequently transferred via two heme molecules to molecular oxygen, producing superoxide through an outer-sphere reaction (By similarity). Activation of the NADPH oxidase complex is initiated by the assembly of cytosolic subunits of the NADPH oxidase complex with the core NADPH oxidase complex to form a complex at the plasma membrane or phagosomal membrane (By similarity). This activation process is initiated by phosphorylation dependent binding of the cytosolic NCF1/p47-phox subunit to the C-terminus of CYBA/p22-phox (By similarity). {ECO:0000250|UniProtKB:P04839, ECO:0000250|UniProtKB:P14598, ECO:0000305|PubMed:8280052}.
Q15147 PLCB4 S521 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}.
Q15361 TTF1 S472 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15435 PPP1R7 S37 ochoa Protein phosphatase 1 regulatory subunit 7 (Protein phosphatase 1 regulatory subunit 22) Regulatory subunit of protein phosphatase 1. {ECO:0000250}.
Q15545 TAF7 S264 ochoa|psp Transcription initiation factor TFIID subunit 7 (RNA polymerase II TBP-associated factor subunit F) (Transcription initiation factor TFIID 55 kDa subunit) (TAF(II)55) (TAFII-55) (TAFII55) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:10438527, PubMed:33795473). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 (PubMed:33795473). Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) (PubMed:10438527). {ECO:0000269|PubMed:10438527, ECO:0000269|PubMed:33795473}.
Q15746 MYLK S1570 ochoa Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}.
Q15796 SMAD2 S417 psp Mothers against decapentaplegic homolog 2 (MAD homolog 2) (Mothers against DPP homolog 2) (JV18-1) (Mad-related protein 2) (hMAD-2) (SMAD family member 2) (SMAD 2) (Smad2) (hSMAD2) Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. Promotes TGFB1-mediated transcription of odontoblastic differentiation genes in dental papilla cells (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator. May act as a tumor suppressor in colorectal carcinoma (PubMed:8752209). {ECO:0000250|UniProtKB:Q62432, ECO:0000269|PubMed:16751101, ECO:0000269|PubMed:16862174, ECO:0000269|PubMed:17327236, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:9892009}.
Q16513 PKN2 S167 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16513 PKN2 S603 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16637 SMN1 S28 ochoa|psp Survival motor neuron protein (Component of gems 1) (Gemin-1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}.
Q16665 HIF1A S692 psp Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}.
Q16666 IFI16 S132 psp Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16851 UGP2 S320 ochoa UTP--glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) (UDP-glucose pyrophosphorylase) (UDPGP) (UGPase) UTP--glucose-1-phosphate uridylyltransferase catalyzing the conversion of glucose-1-phosphate into UDP-glucose, a crucial precursor for the production of glycogen. {ECO:0000269|PubMed:31820119, ECO:0000269|PubMed:8354390, ECO:0000269|PubMed:8631325}.
Q17R98 ZNF827 S689 ochoa Zinc finger protein 827 As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}.
Q1W6H9 FAM110C S241 ochoa Protein FAM110C May play a role in microtubule organization. May play a role in cell spreading and cell migration of epithelial cells; the function may involve the AKT1 signaling pathway. {ECO:0000269|PubMed:17499476, ECO:0000269|PubMed:19698782}.
Q27J81 INF2 S1188 ochoa Inverted formin-2 (HBEBP2-binding protein C) Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}.
Q2M2Z5 KIZ S507 ochoa Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}.
Q2M389 WASHC4 S1097 ochoa WASH complex subunit 4 (Strumpellin and WASH-interacting protein) (SWIP) (WASH complex subunit SWIP) Acts as a component of the WASH core complex that functions as a nucleation-promoting factor (NPF) at the surface of endosomes, where it recruits and activates the Arp2/3 complex to induce actin polymerization, playing a key role in the fission of tubules that serve as transport intermediates during endosome sorting. {ECO:0000269|PubMed:19922875, ECO:0000269|PubMed:20498093, ECO:0000303|PubMed:21498477}.
Q2NL82 TSR1 S387 ochoa Pre-rRNA-processing protein TSR1 homolog Required during maturation of the 40S ribosomal subunit in the nucleolus. {ECO:0000250}.
Q32MZ4 LRRFIP1 S618 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q32MZ4 LRRFIP1 S639 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q3T8J9 GON4L S346 ochoa GON-4-like protein (GON-4 homolog) Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}.
Q49AR2 C5orf22 S199 ochoa UPF0489 protein C5orf22 None
Q4G0A6 MINDY4 S392 ochoa Probable ubiquitin carboxyl-terminal hydrolase MINDY-4 (EC 3.4.19.12) (Probable deubiquitinating enzyme MINDY-4) Probable hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins. {ECO:0000250|UniProtKB:Q8NBR6}.
Q5JSZ5 PRRC2B S998 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5JSZ5 PRRC2B S1291 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5JSZ5 PRRC2B S1399 ochoa Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) None
Q5JTJ3 COA6 S85 ochoa Cytochrome c oxidase assembly factor 6 homolog Involved in the maturation of the mitochondrial respiratory chain complex IV subunit MT-CO2/COX2. Thereby, may regulate early steps of complex IV assembly. Mitochondrial respiratory chain complex IV or cytochrome c oxidase is the component of the respiratory chain that catalyzes the transfer of electrons from intermembrane space cytochrome c to molecular oxygen in the matrix and as a consequence contributes to the proton gradient involved in mitochondrial ATP synthesis. May also be required for efficient formation of respiratory supercomplexes comprised of complexes III and IV. {ECO:0000269|PubMed:24549041, ECO:0000269|PubMed:25959673, ECO:0000269|PubMed:26160915}.
Q5JTV8 TOR1AIP1 S230 ochoa Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}.
Q5M775 SPECC1 S425 ochoa Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) None
Q5PSV4 BRMS1L S174 ochoa Breast cancer metastasis-suppressor 1-like protein (BRMS1-homolog protein p40) (BRMS1-like protein p40) Involved in the histone deacetylase (HDAC1)-dependent transcriptional repression activity. When overexpressed in lung cancer cell line that lacks p53/TP53 expression, inhibits cell growth. {ECO:0000269|PubMed:15451426}.
Q5QJE6 DNTTIP2 S429 ochoa Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}.
Q5S007 LRRK2 S910 ochoa|psp Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}.
Q5T200 ZC3H13 S1409 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T5X7 BEND3 S36 ochoa BEN domain-containing protein 3 Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}.
Q5TAX3 TUT4 S296 ochoa Terminal uridylyltransferase 4 (TUTase 4) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 11) Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:25480299, PubMed:31036859). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets. Also functions as an integral regulator of microRNA biogenesis using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7), miR107, miR-143 and miR-200c. Uridylated miRNAs are not processed by Dicer and undergo degradation. Degradation of pre-let-7 contributes to the maintenance of embryonic stem (ES) cell pluripotency (By similarity). Also catalyzes the 3' uridylation of miR-26A, a miRNA that targets IL6 transcript. This abrogates the silencing of IL6 transcript, hence promoting cytokine expression (PubMed:19703396). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828). Adds oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). May also suppress Toll-like receptor-induced NF-kappa-B activation via binding to T2BP (PubMed:16643855). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (By similarity) (PubMed:16643855, PubMed:18172165, PubMed:19703396, PubMed:25480299, PubMed:25979828). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:B2RX14, ECO:0000269|PubMed:16643855, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31036859}.
Q5TCZ1 SH3PXD2A S547 ochoa SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}.
Q5UIP0 RIF1 S1157 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5UIP0 RIF1 S1564 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5UIP0 RIF1 S1666 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VST9 OBSCN T4788 ochoa Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}.
Q5VTT5 MYOM3 S857 ochoa Myomesin-3 (Myomesin family member 3) May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}.
Q5VWQ8 DAB2IP S745 ochoa Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}.
Q5VYS8 TUT7 S724 ochoa Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}.
Q5VZK9 CARMIL1 S1135 ochoa F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}.
Q5W0B1 OBI1 S276 ochoa ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}.
Q5XUX0 FBXO31 S278 psp F-box only protein 31 Substrate-recognition component of the SCF(FBXO31) protein ligase complex, which specifically mediates the ubiquitination of proteins amidated at their C-terminus in response to oxidative stress, leading to their degradation by the proteasome (PubMed:39880951). FBXO31 specifically recognizes and binds C-terminal peptides bearing an amide: C-terminal amidation in response to oxidative stress takes place following protein fragmentation (PubMed:39880951). The SCF(FBXO31) also plays a role in G1 arrest following DNA damage by mediating ubiquitination of phosphorylated cyclin-D1 (CCND1), promoting its degradation by the proteasome, resulting in G1 arrest (PubMed:19412162, PubMed:29279382). The SCF(FBXO31) complex is however not a major regulator of CCND1 stability during the G1/S transition (By similarity). In response to genotoxic stress, the SCF(FBXO31) complex directs ubiquitination and degradation of phosphorylated MDM2, thereby promoting p53/TP53-mediated DNA damage response (PubMed:26124108). SCF(FBXO31) complex is required for genomic integrity by catalyzing ubiquitination and degradation of cyclin-A (CCNA1 and/or CCNA2) during the G1 phase (PubMed:31413110). In response to genotoxic stress, the SCF(FBXO31) complex directs ubiquitination and degradation of phosphorylated FBXO46 and MAP2K6 (PubMed:24936062, PubMed:30171069). SCF(FBXO31) complex promotes ubiquitination and degradation of CDT1 during the G2 phase to prevent re-replication (PubMed:24828503). The SCF(FBXO31) complex also mediates ubiquitination and degradation of DUSP6, OGT and PARD6A (PubMed:23469015, PubMed:34686346, PubMed:39894887). {ECO:0000250|UniProtKB:Q3TQF0, ECO:0000269|PubMed:19412162, ECO:0000269|PubMed:23469015, ECO:0000269|PubMed:24828503, ECO:0000269|PubMed:24936062, ECO:0000269|PubMed:26124108, ECO:0000269|PubMed:29279382, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:31413110, ECO:0000269|PubMed:34686346, ECO:0000269|PubMed:39880951, ECO:0000269|PubMed:39894887}.
Q641Q2 WASHC2A S544 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q6IBW4 NCAPH2 S127 ochoa Condensin-2 complex subunit H2 (Chromosome-associated protein H2) (hCAP-H2) (Kleisin-beta) (Non-SMC condensin II complex subunit H2) Regulatory subunit of the condensin-2 complex, a complex that seems to provide chromosomes with an additional level of organization and rigidity and in establishing mitotic chromosome architecture (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of chromatin bridges at anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (By similarity). Seems to have lineage-specific role in T-cell development (PubMed:14532007). {ECO:0000250|UniProtKB:Q8BSP2, ECO:0000269|PubMed:14532007}.
Q6KC79 NIPBL S2682 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6NT46 GAGE2A S32 ochoa G antigen 2A (GAGE-2A) None
Q6NV74 CRACDL S92 ochoa CRACD-like protein None
Q6NYC8 PPP1R18 S308 ochoa Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}.
Q6P3W7 SCYL2 S677 ochoa SCY1-like protein 2 (Coated vesicle-associated kinase of 104 kDa) Component of the AP2-containing clathrin coat that may regulate clathrin-dependent trafficking at plasma membrane, TGN and endosomal system (Probable). A possible serine/threonine-protein kinase toward the beta2-subunit of the plasma membrane adapter complex AP2 and other proteins in presence of poly-L-lysine has not been confirmed (PubMed:15809293, PubMed:16914521). By regulating the expression of excitatory receptors at synapses, plays an essential role in neuronal function and signaling and in brain development (By similarity). {ECO:0000250|UniProtKB:Q8CFE4, ECO:0000269|PubMed:15809293, ECO:0000269|PubMed:16914521, ECO:0000305|PubMed:15809293, ECO:0000305|PubMed:16914521}.
Q6PGQ7 BORA S374 ochoa Protein aurora borealis (HsBora) Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}.
Q6PJI9 WDR59 S834 ochoa GATOR2 complex protein WDR59 (WD repeat-containing protein 59) As a component of the GATOR2 complex, functions as an activator of the amino acid-sensing branch of the mTORC1 signaling pathway (PubMed:23723238, PubMed:25457612, PubMed:27487210, PubMed:35831510, PubMed:36528027, PubMed:36577058). The GATOR2 complex indirectly activates mTORC1 through the inhibition of the GATOR1 subcomplex (PubMed:23723238, PubMed:27487210, PubMed:35831510, PubMed:36528027). GATOR2 probably acts as an E3 ubiquitin-protein ligase toward GATOR1 (PubMed:36528027). In the presence of abundant amino acids, the GATOR2 complex mediates ubiquitination of the NPRL2 core component of the GATOR1 complex, leading to GATOR1 inactivation (PubMed:36528027). In the absence of amino acids, GATOR2 is inhibited, activating the GATOR1 complex (PubMed:25457612, PubMed:27487210). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:27487210, ECO:0000269|PubMed:35831510, ECO:0000269|PubMed:36528027, ECO:0000269|PubMed:36577058}.
Q6PJT7 ZC3H14 S327 ochoa Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}.
Q6PJW8 CNST S175 ochoa Consortin Required for targeting of connexins to the plasma membrane. {ECO:0000269|PubMed:19864490}.
Q6PKG0 LARP1 S492 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6UB99 ANKRD11 S1296 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q6VMQ6 ATF7IP S518 ochoa Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}.
Q6VMQ6 ATF7IP S546 ochoa Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}.
Q6XZF7 DNMBP S359 ochoa Dynamin-binding protein (Scaffold protein Tuba) Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}.
Q6XZF7 DNMBP S996 ochoa Dynamin-binding protein (Scaffold protein Tuba) Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}.
Q6Y2X3 DNAJC14 S516 ochoa DnaJ homolog subfamily C member 14 (DnaJ protein homolog 3) (Dopamine receptor-interacting protein of 78 kDa) (DRIP78) (Human DnaJ protein 3) (hDj-3) Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000250}.
Q6ZMW3 EML6 S1296 ochoa Echinoderm microtubule-associated protein-like 6 (EMAP-6) (Echinoderm microtubule-associated protein-like 5-like) May modify the assembly dynamics of microtubules, such that microtubules are slightly longer, but more dynamic. {ECO:0000250}.
Q6ZN28 MACC1 S34 ochoa Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}.
Q6ZWE6 PLEKHM3 S460 ochoa Pleckstrin homology domain-containing family M member 3 (PH domain-containing family M member 3) (Differentiation associated protein) Involved in skeletal muscle differentiation. May act as a scaffold protein for AKT1 during muscle differentiation. {ECO:0000250|UniProtKB:Q8BM47}.
Q70J99 UNC13D S1029 ochoa Protein unc-13 homolog D (Munc13-4) Plays a role in cytotoxic granule exocytosis in lymphocytes. Required for both granule maturation and granule docking and priming at the immunologic synapse. Regulates assembly of recycling and late endosomal structures, leading to the formation of an endosomal exocytic compartment that fuses with perforin-containing granules at the immunologic synapse and licences them for exocytosis. Regulates Ca(2+)-dependent secretory lysosome exocytosis in mast cells. {ECO:0000269|PubMed:15548590, ECO:0000269|PubMed:17237785}.
Q76FK4 NOL8 S329 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q7L0Y3 TRMT10C S73 ochoa tRNA methyltransferase 10 homolog C (HBV pre-S2 trans-regulated protein 2) (Mitochondrial ribonuclease P protein 1) (Mitochondrial RNase P protein 1) (RNA (guanine-9-)-methyltransferase domain-containing protein 1) (Renal carcinoma antigen NY-REN-49) (mRNA methyladenosine-N(1)-methyltransferase) (EC 2.1.1.-) (tRNA (adenine(9)-N(1))-methyltransferase) (EC 2.1.1.218) (tRNA (guanine(9)-N(1))-methyltransferase) (EC 2.1.1.221) Mitochondrial tRNA N(1)-methyltransferase involved in mitochondrial tRNA maturation (PubMed:18984158, PubMed:21593607, PubMed:23042678, PubMed:27132592). Component of mitochondrial ribonuclease P, a complex composed of TRMT10C/MRPP1, HSD17B10/MRPP2 and PRORP/MRPP3, which cleaves tRNA molecules in their 5'-ends (PubMed:18984158). Together with HSD17B10/MRPP2, forms a subcomplex of the mitochondrial ribonuclease P, named MRPP1-MRPP2 subcomplex, which displays functions that are independent of the ribonuclease P activity (PubMed:23042678, PubMed:29040705). The MRPP1-MRPP2 subcomplex catalyzes the formation of N(1)-methylguanine and N(1)-methyladenine at position 9 (m1G9 and m1A9, respectively) in tRNAs; TRMT10C/MRPP1 acting as the catalytic N(1)-methyltransferase subunit (PubMed:23042678). The MRPP1-MRPP2 subcomplex also acts as a tRNA maturation platform: following 5'-end cleavage by the mitochondrial ribonuclease P complex, the MRPP1-MRPP2 subcomplex enhances the efficiency of 3'-processing catalyzed by ELAC2, retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA tRNA nucleotidyltransferase TRNT1 enzyme (PubMed:29040705). In addition to tRNA N(1)-methyltransferase activity, TRMT10C/MRPP1 also acts as a mRNA N(1)-methyltransferase by mediating methylation of adenosine residues at the N(1) position of MT-ND5 mRNA (PubMed:29072297). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly. {ECO:0000269|PubMed:18984158, ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:23042678, ECO:0000269|PubMed:24703694, ECO:0000269|PubMed:27132592, ECO:0000269|PubMed:29040705, ECO:0000269|PubMed:29072297}.
Q7Z3J3 RGPD4 S1232 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z422 SZRD1 S124 ochoa SUZ RNA-binding domain-containing (SUZ domain-containing protein 1) (Putative MAPK-activating protein PM18/PM20/PM22) None
Q7Z478 DHX29 S192 ochoa ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}.
Q7Z4H7 HAUS6 S742 ochoa HAUS augmin-like complex subunit 6 Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q7Z5J4 RAI1 S880 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z5J4 RAI1 S916 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6E9 RBBP6 S815 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6E9 RBBP6 S1341 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6I8 C5orf24 S37 ochoa UPF0461 protein C5orf24 None
Q86TC9 MYPN S243 ochoa Myopalladin (145 kDa sarcomeric protein) Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}.
Q86UE4 MTDH S478 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UW6 N4BP2 S1216 ochoa NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}.
Q86VF7 NRAP S729 ochoa Nebulin-related-anchoring protein (N-RAP) May be involved in anchoring the terminal actin filaments in the myofibril to the membrane and in transmitting tension from the myofibrils to the extracellular matrix. {ECO:0000250|UniProtKB:Q80XB4}.
Q86VP1 TAX1BP1 S593 psp Tax1-binding protein 1 (TRAF6-binding protein) Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}.
Q86VR2 RETREG3 S325 ochoa Reticulophagy regulator 3 Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}.
Q86WH2 RASSF3 S137 ochoa Ras association domain-containing protein 3 None
Q86X55 CARM1 S228 psp Histone-arginine methyltransferase CARM1 (EC 2.1.1.319) (Coactivator-associated arginine methyltransferase 1) (Protein arginine N-methyltransferase 4) Methylates (mono- and asymmetric dimethylation) the guanidino nitrogens of arginyl residues in several proteins involved in DNA packaging, transcription regulation, pre-mRNA splicing, and mRNA stability (PubMed:12237300, PubMed:16497732, PubMed:19405910). Recruited to promoters upon gene activation together with histone acetyltransferases from EP300/P300 and p160 families, methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activation of transcription via chromatin remodeling (PubMed:12237300, PubMed:16497732, PubMed:19405910). During nuclear hormone receptor activation and TCF7L2/TCF4 activation, acts synergically with EP300/P300 and either one of the p160 histone acetyltransferases NCOA1/SRC1, NCOA2/GRIP1 and NCOA3/ACTR or CTNNB1/beta-catenin to activate transcription (By similarity). During myogenic transcriptional activation, acts together with NCOA3/ACTR as a coactivator for MEF2C (By similarity). During monocyte inflammatory stimulation, acts together with EP300/P300 as a coactivator for NF-kappa-B (By similarity). Acts as a coactivator for PPARG, promotes adipocyte differentiation and the accumulation of brown fat tissue (By similarity). Plays a role in the regulation of pre-mRNA alternative splicing by methylation of splicing factors (By similarity). Also seems to be involved in p53/TP53 transcriptional activation (By similarity). Methylates EP300/P300, both at 'Arg-2142', which may loosen its interaction with NCOA2/GRIP1, and at 'Arg-580' and 'Arg-604' in the KIX domain, which impairs its interaction with CREB and inhibits CREB-dependent transcriptional activation (PubMed:15731352). Also methylates arginine residues in RNA-binding proteins PABPC1, ELAVL1 and ELAV4, which may affect their mRNA-stabilizing properties and the half-life of their target mRNAs (By similarity). Acts as a transcriptional coactivator of ACACA/acetyl-CoA carboxylase by enriching H3R17 methylation at its promoter, thereby positively regulating fatty acid synthesis (By similarity). Independently of its methyltransferase activity, involved in replication fork progression: promotes PARP1 recruitment to replication forks, leading to poly-ADP-ribosylation of chromatin at replication forks and reduced fork speed (PubMed:33412112). {ECO:0000250|UniProtKB:Q9WVG6, ECO:0000269|PubMed:12237300, ECO:0000269|PubMed:15731352, ECO:0000269|PubMed:16497732, ECO:0000269|PubMed:19405910, ECO:0000269|PubMed:33412112}.
Q86XD5 FAM131B S297 ochoa Protein FAM131B None
Q86XP1 DGKH S608 ochoa Diacylglycerol kinase eta (DAG kinase eta) (EC 2.7.1.107) (Diglyceride kinase eta) (DGK-eta) Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12810723, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable) (PubMed:12810723, PubMed:23949095). Plays a key role in promoting cell growth (PubMed:19710016). Activates the Ras/B-Raf/C-Raf/MEK/ERK signaling pathway induced by EGF (PubMed:19710016). Regulates the recruitment of RAF1 and BRAF from cytoplasm to membranes and their heterodimerization (PubMed:19710016). {ECO:0000269|PubMed:12810723, ECO:0000269|PubMed:19710016, ECO:0000269|PubMed:23949095, ECO:0000305}.
Q86Y26 NUTM1 S1026 psp NUT family member 1 (Nuclear protein in testis) Plays a role in the regulation of proliferation. Regulates TERT expression by modulating SP1 binding to TERT promoter binding sites. {ECO:0000269|PubMed:30447097}.
Q8IWB6 TEX14 S437 psp Inactive serine/threonine-protein kinase TEX14 (Protein kinase-like protein SgK307) (Sugen kinase 307) (Testis-expressed sequence 14) (Testis-expressed sequence 14 protein) Required both for the formation of intercellular bridges during meiosis and for kinetochore-microtubule attachment during mitosis. Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells and are required for spermatogenesis and male fertility. Acts by promoting the conversion of midbodies into intercellular bridges via its interaction with CEP55: interaction with CEP55 inhibits the interaction between CEP55 and PDCD6IP/ALIX and TSG101, blocking cell abscission and leading to transform midbodies into intercellular bridges. Also plays a role during mitosis: recruited to kinetochores by PLK1 during early mitosis and regulates the maturation of the outer kinetochores and microtubule attachment. Has no protein kinase activity in vitro (By similarity). {ECO:0000250}.
Q8IWT6 LRRC8A S217 ochoa|psp Volume-regulated anion channel subunit LRRC8A (Leucine-rich repeat-containing protein 8A) (HsLRRC8A) (Swelling protein 1) Essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes (PubMed:24725410, PubMed:24790029, PubMed:26530471, PubMed:26824658, PubMed:28193731, PubMed:29769723). The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine (PubMed:24725410, PubMed:24790029, PubMed:26530471, PubMed:26824658, PubMed:28193731, PubMed:30095067). Mediates efflux of amino acids, such as aspartate and glutamate, in response to osmotic stress (PubMed:28193731). LRRC8A and LRRC8D are required for the uptake of the drug cisplatin (PubMed:26530471). In complex with LRRC8C or LRRC8E, acts as a transporter of immunoreactive cyclic dinucleotide GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol: mediates both import and export of 2'-3'-cGAMP, thereby promoting transfer of 2'-3'-cGAMP to bystander cells (PubMed:33171122). In contrast, complexes containing LRRC8D inhibit transport of 2'-3'-cGAMP (PubMed:33171122). Required for in vivo channel activity, together with at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel characteristics depend on the precise subunit composition (PubMed:24790029, PubMed:26824658, PubMed:28193731). Can form functional channels by itself (in vitro) (PubMed:26824658). Involved in B-cell development: required for the pro-B cell to pre-B cell transition (PubMed:14660746). Also required for T-cell development (By similarity). Required for myoblast differentiation: VRAC activity promotes membrane hyperpolarization and regulates insulin-stimulated glucose metabolism and oxygen consumption (By similarity). Also acts as a regulator of glucose-sensing in pancreatic beta cells: VRAC currents, generated in response to hypotonicity- or glucose-induced beta cell swelling, depolarize cells, thereby causing electrical excitation, leading to increase glucose sensitivity and insulin secretion (PubMed:29371604). Also plays a role in lysosome homeostasis by forming functional lysosomal VRAC channels in response to low cytoplasmic ionic strength condition: lysosomal VRAC channels are necessary for the formation of large lysosome-derived vacuoles, which store and then expel excess water to maintain cytosolic water homeostasis (PubMed:31270356, PubMed:33139539). Acts as a key factor in NLRP3 inflammasome activation by modulating itaconate efflux and mitochondria function (PubMed:39909992). {ECO:0000250|UniProtKB:Q80WG5, ECO:0000269|PubMed:14660746, ECO:0000269|PubMed:24725410, ECO:0000269|PubMed:24790029, ECO:0000269|PubMed:26530471, ECO:0000269|PubMed:26824658, ECO:0000269|PubMed:28193731, ECO:0000269|PubMed:29371604, ECO:0000269|PubMed:29769723, ECO:0000269|PubMed:30095067, ECO:0000269|PubMed:31270356, ECO:0000269|PubMed:33139539, ECO:0000269|PubMed:33171122, ECO:0000269|PubMed:39909992}.
Q8IY81 FTSJ3 S639 ochoa pre-rRNA 2'-O-ribose RNA methyltransferase FTSJ3 (EC 2.1.1.-) (Protein ftsJ homolog 3) (Putative rRNA methyltransferase 3) RNA 2'-O-methyltransferase involved in the processing of the 34S pre-rRNA to 18S rRNA and in 40S ribosomal subunit formation. {ECO:0000255|HAMAP-Rule:MF_03163, ECO:0000269|PubMed:22195017}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, recruited to HIV-1 RNA and catalyzes 2'-O-methylation of the viral genome, allowing HIV-1 virus to escape the innate immune system (PubMed:30626973). RNA 2'-O-methylation provides a molecular signature for discrimination of self from non-self and is used by HIV-1 to evade innate immune recognition by IFIH1/MDA5 (PubMed:30626973). Mediates methylation of internal residues of HIV-1 RNA, with a strong preference for adenosine (PubMed:30626973). Recruited to HIV-1 RNA via interaction with TARBP2/TRBP (PubMed:30626973). {ECO:0000269|PubMed:30626973}.
Q8IY92 SLX4 S1173 ochoa Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}.
Q8IYB3 SRRM1 S478 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IZ21 PHACTR4 S533 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8IZT6 ASPM S553 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N103 TAGAP S400 ochoa T-cell activation Rho GTPase-activating protein (T-cell activation GTPase-activating protein) May function as a GTPase-activating protein and may play important roles during T-cell activation. {ECO:0000269|PubMed:15177553}.
Q8N108 MIER1 S136 ochoa Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}.
Q8N3U4 STAG2 S1178 ochoa Cohesin subunit SA-2 (SCC3 homolog 2) (Stromal antigen 2) Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. {ECO:0000269|PubMed:12034751}.
Q8N4S9 MARVELD2 S390 ochoa MARVEL domain-containing protein 2 (Tricellulin) Plays a role in the formation of tricellular tight junctions and of epithelial barriers (By similarity). Required for normal hearing via its role in the separation of the endolymphatic and perilymphatic spaces of the organ of Corti in the inner ear, and for normal survival of hair cells in the organ of Corti (PubMed:17186462). {ECO:0000250|UniProtKB:Q3UZP0, ECO:0000269|PubMed:17186462}.
Q8N573 OXR1 S346 ochoa Oxidation resistance protein 1 May be involved in protection from oxidative damage. {ECO:0000269|PubMed:11114193, ECO:0000269|PubMed:15060142}.
Q8N5C1 CALHM5 S238 ochoa Calcium homeostasis modulator protein 5 (Protein FAM26E) May assemble to form large pore channels with gating and ion conductance likely regulated by membrane lipids. {ECO:0000269|PubMed:33298887}.
Q8N5G2 MACO1 S228 ochoa Macoilin (Macoilin-1) (Transmembrane protein 57) Plays a role in the regulation of neuronal activity. {ECO:0000269|PubMed:21589894}.
Q8N9T8 KRI1 S183 ochoa Protein KRI1 homolog None
Q8NAV1 PRPF38A S209 ochoa Pre-mRNA-splicing factor 38A Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:26673105, ECO:0000269|PubMed:28781166}.
Q8NBJ4 GOLM1 S87 ochoa Golgi membrane protein 1 (Golgi membrane protein GP73) (Golgi phosphoprotein 2) Unknown. Cellular response protein to viral infection.
Q8NCN4 RNF169 S472 ochoa E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}.
Q8NDI1 EHBP1 S730 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NEM0 MCPH1 S338 ochoa Microcephalin Implicated in chromosome condensation and DNA damage induced cellular responses. May play a role in neurogenesis and regulation of the size of the cerebral cortex. {ECO:0000269|PubMed:12046007, ECO:0000269|PubMed:15199523, ECO:0000269|PubMed:15220350}.
Q8NEY1 NAV1 S387 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8NFQ8 TOR1AIP2 S22 ochoa Torsin-1A-interacting protein 2 (Lumenal domain-like LAP1) Required for endoplasmic reticulum integrity. Regulates the distribution of TOR1A between the endoplasmic reticulum and the nuclear envelope as well as induces TOR1A, TOR1B and TOR3A ATPase activity. {ECO:0000269|PubMed:19339278, ECO:0000269|PubMed:23569223, ECO:0000269|PubMed:24275647}.
Q8NHP6 MOSPD2 S283 ochoa Motile sperm domain-containing protein 2 Endoplasmic reticulum-anchored protein that mediates the formation of contact sites between the endoplasmic (ER) and endosomes, mitochondria or Golgi through interaction with conventional- and phosphorylated-FFAT-containing organelle-bound proteins (PubMed:29858488, PubMed:33124732, PubMed:35389430). In addition, forms endoplasmic reticulum (ER)-lipid droplets (LDs) contacts through a direct protein-membrane interaction and participates in LDs homeostasis (PubMed:35389430). The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs (PubMed:35389430). Promotes migration of primary monocytes and neutrophils, in response to various chemokines (PubMed:28137892). {ECO:0000269|PubMed:28137892, ECO:0000269|PubMed:29858488, ECO:0000269|PubMed:33124732, ECO:0000269|PubMed:35389430}.
Q8TD08 MAPK15 S331 psp Mitogen-activated protein kinase 15 (MAP kinase 15) (MAPK 15) (EC 2.7.11.24) (Extracellular signal-regulated kinase 7) (ERK-7) (Extracellular signal-regulated kinase 8) (ERK-8) Atypical MAPK protein that regulates several process such as autophagy, ciliogenesis, protein trafficking/secretion and genome integrity, in a kinase activity-dependent manner (PubMed:20733054, PubMed:21847093, PubMed:22948227, PubMed:24618899, PubMed:29021280). Controls both, basal and starvation-induced autophagy throught its interaction with GABARAP, MAP1LC3B and GABARAPL1 leading to autophagosome formation, SQSTM1 degradation and reduced MAP1LC3B inhibitory phosphorylation (PubMed:22948227). Regulates primary cilium formation and the localization of ciliary proteins involved in cilium structure, transport, and signaling (PubMed:29021280). Prevents the relocation of the sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production of sugar-coated proteins (PubMed:24618899). Upon amino-acid starvation, mediates transitional endoplasmic reticulum site disassembly and inhibition of secretion (PubMed:21847093). Binds to chromatin leading to MAPK15 activation and interaction with PCNA, that which protects genomic integrity by inhibiting MDM2-mediated degradation of PCNA (PubMed:20733054). Regulates DA transporter (DAT) activity and protein expression via activation of RhoA (PubMed:28842414). In response to H(2)O(2) treatment phosphorylates ELAVL1, thus preventing it from binding to the PDCD4 3'UTR and rendering the PDCD4 mRNA accessible to miR-21 and leading to its degradation and loss of protein expression (PubMed:26595526). Also functions in a kinase activity-independent manner as a negative regulator of growth (By similarity). Phosphorylates in vitro FOS and MBP (PubMed:11875070, PubMed:16484222, PubMed:19166846, PubMed:20638370). During oocyte maturation, plays a key role in the microtubule organization and meiotic cell cycle progression in oocytes, fertilized eggs, and early embryos (By similarity). Interacts with ESRRA promoting its re-localization from the nucleus to the cytoplasm and then prevents its transcriptional activity (PubMed:21190936). {ECO:0000250|UniProtKB:Q80Y86, ECO:0000250|UniProtKB:Q9Z2A6, ECO:0000269|PubMed:11875070, ECO:0000269|PubMed:16484222, ECO:0000269|PubMed:19166846, ECO:0000269|PubMed:20638370, ECO:0000269|PubMed:20733054, ECO:0000269|PubMed:21190936, ECO:0000269|PubMed:21847093, ECO:0000269|PubMed:22948227, ECO:0000269|PubMed:24618899, ECO:0000269|PubMed:26595526, ECO:0000269|PubMed:28842414, ECO:0000269|PubMed:29021280}.
Q8TDY2 RB1CC1 S982 ochoa RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}.
Q8TDY2 RB1CC1 S1484 ochoa RB1-inducible coiled-coil protein 1 (FAK family kinase-interacting protein of 200 kDa) (FIP200) Involved in autophagy (PubMed:21775823). Regulates early events but also late events of autophagosome formation through direct interaction with Atg16L1 (PubMed:23392225). Required for the formation of the autophagosome-like double-membrane structure that surrounds the Salmonella-containing vacuole (SCV) during S.typhimurium infection and subsequent xenophagy (By similarity). Involved in repair of DNA damage caused by ionizing radiation, which subsequently improves cell survival by decreasing apoptosis (By similarity). Inhibits PTK2/FAK1 and PTK2B/PYK2 kinase activity, affecting their downstream signaling pathways (PubMed:10769033, PubMed:12221124). Plays a role as a modulator of TGF-beta-signaling by restricting substrate specificity of RNF111 (By similarity). Functions as a DNA-binding transcription factor (PubMed:12095676). Is a potent regulator of the RB1 pathway through induction of RB1 expression (PubMed:14533007). Plays a crucial role in muscular differentiation (PubMed:12163359). Plays an indispensable role in fetal hematopoiesis and in the regulation of neuronal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9ESK9, ECO:0000269|PubMed:10769033, ECO:0000269|PubMed:12095676, ECO:0000269|PubMed:12163359, ECO:0000269|PubMed:12221124, ECO:0000269|PubMed:14533007, ECO:0000269|PubMed:21775823, ECO:0000269|PubMed:23392225}.
Q8TEH3 DENND1A S554 ochoa DENN domain-containing protein 1A (Connecdenn 1) (Connecdenn) (Protein FAM31A) Guanine nucleotide exchange factor (GEF) regulating clathrin-mediated endocytosis through RAB35 activation. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form. Regulates clathrin-mediated endocytosis of synaptic vesicles and mediates exit from early endosomes (PubMed:20154091, PubMed:20937701). Binds phosphatidylinositol-phosphates (PtdInsPs), with some preference for PtdIns(3)P (By similarity). {ECO:0000250|UniProtKB:Q8K382, ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701}.
Q8TEW0 PARD3 S964 ochoa Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}.
Q8TEW0 PARD3 S1223 ochoa Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}.
Q8TF21 ANKRD24 S393 ochoa Ankyrin repeat domain-containing protein 24 Component of the stereocilia rootlet in hair cells of inner ear. Bridges the apical plasma membrane with the lower rootlet and maintains normal distribution of TRIOBP, thereby reinforcing stereocilia insertion points and organizing rootlets for hearing with long-term resilience. {ECO:0000250|UniProtKB:Q80VM7}.
Q8TF40 FNIP1 S593 ochoa Folliculin-interacting protein 1 Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}.
Q8TF40 FNIP1 S714 ochoa Folliculin-interacting protein 1 Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}.
Q8WTS6 SETD7 S340 ochoa Histone-lysine N-methyltransferase SETD7 (EC 2.1.1.364) (Histone H3-K4 methyltransferase SETD7) (H3-K4-HMTase SETD7) (Lysine N-methyltransferase 7) (SET domain-containing protein 7) (SET7/9) Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3 (PubMed:11779497, PubMed:11850410, PubMed:12540855, PubMed:12588998, PubMed:16141209). H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:12540855, PubMed:12588998, PubMed:16141209). Plays a central role in the transcriptional activation of genes such as collagenase or insulin (PubMed:12588998, PubMed:16141209). Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription (PubMed:16141209). Also has methyltransferase activity toward non-histone proteins such as CGAS, p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins (PubMed:15099517, PubMed:15525938, PubMed:16415881, PubMed:35210392). Monomethylates 'Lys-189' of TAF10, leading to increase the affinity of TAF10 for RNA polymerase II (PubMed:15099517, PubMed:16415881). Monomethylates 'Lys-372' of p53/TP53, stabilizing p53/TP53 and increasing p53/TP53-mediated transcriptional activation (PubMed:15525938, PubMed:16415881, PubMed:17108971). Monomethylates 'Lys-491' of CGAS, promoting interaction between SGF29 and CGAS (By similarity). {ECO:0000250|UniProtKB:Q8VHL1, ECO:0000269|PubMed:11779497, ECO:0000269|PubMed:11850410, ECO:0000269|PubMed:12540855, ECO:0000269|PubMed:12588998, ECO:0000269|PubMed:15099517, ECO:0000269|PubMed:15525938, ECO:0000269|PubMed:16141209, ECO:0000269|PubMed:16415881, ECO:0000269|PubMed:17108971, ECO:0000269|PubMed:35210392}.
Q8WUY3 PRUNE2 S1762 ochoa Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}.
Q8WVM7 STAG1 S1138 ochoa Cohesin subunit SA-1 (SCC3 homolog 1) (Stromal antigen 1) Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis.
Q8WVM7 STAG1 S1205 ochoa Cohesin subunit SA-1 (SCC3 homolog 1) (Stromal antigen 1) Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis.
Q8WVQ1 CANT1 S21 ochoa Soluble calcium-activated nucleotidase 1 (SCAN-1) (EC 3.6.1.6) (Apyrase homolog) (Putative MAPK-activating protein PM09) (Putative NF-kappa-B-activating protein 107) Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP (PubMed:12234496, PubMed:15006348, PubMed:15248776, PubMed:16835225). Involved in proteoglycan synthesis (PubMed:22539336). {ECO:0000269|PubMed:12234496, ECO:0000269|PubMed:15006348, ECO:0000269|PubMed:15248776, ECO:0000269|PubMed:16835225, ECO:0000269|PubMed:22539336}.
Q8WWI1 LMO7 S1421 ochoa LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) None
Q8WXH0 SYNE2 S6447 ochoa Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}.
Q8WYB5 KAT6B S1296 ochoa Histone acetyltransferase KAT6B (EC 2.3.1.48) (Histone acetyltransferase MOZ2) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 4) (MYST-4) (Monocytic leukemia zinc finger protein-related factor) Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2-dependent transcriptional activation. May be involved in cerebral cortex development. Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. {ECO:0000269|PubMed:10497217, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:16387653}.
Q8WYP5 AHCTF1 S1342 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92574 TSC1 S282 ochoa Hamartin (Tuberous sclerosis 1 protein) Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}.
Q92628 KIAA0232 S712 ochoa Uncharacterized protein KIAA0232 None
Q92750 TAF4B S313 ochoa Transcription initiation factor TFIID subunit 4B (Transcription initiation factor TFIID 105 kDa subunit) (TAF(II)105) (TAFII-105) (TAFII105) Cell type-specific subunit of the general transcription factor TFIID that may function as a gene-selective coactivator in certain cells. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. TAF4B is a transcriptional coactivator of the p65/RELA NF-kappa-B subunit. Involved in the activation of a subset of antiapoptotic genes including TNFAIP3. May be involved in regulating folliculogenesis. Through interaction with OCBA/POU2AF1, acts as a coactivator of B-cell-specific transcription. Plays a role in spermiogenesis and oogenesis. {ECO:0000250|UniProtKB:G5E8Z2, ECO:0000269|PubMed:10828057, ECO:0000269|PubMed:10849440, ECO:0000269|PubMed:16088961, ECO:0000303|PubMed:24431330}.
Q92769 HDAC2 S86 ochoa Histone deacetylase 2 (HD2) (EC 3.5.1.98) (Protein deacylase HDAC2) (EC 3.5.1.-) Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR (PubMed:12724404). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Component of the SIN3B complex that represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). Also deacetylates non-histone targets: deacetylates TSHZ3, thereby regulating its transcriptional repressor activity (PubMed:19343227). May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation (By similarity). Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A (PubMed:21965678). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:35044827). {ECO:0000250|UniProtKB:P70288, ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:37137925}.
Q92769 HDAC2 S411 psp Histone deacetylase 2 (HD2) (EC 3.5.1.98) (Protein deacylase HDAC2) (EC 3.5.1.-) Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR (PubMed:12724404). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Component of the SIN3B complex that represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). Also deacetylates non-histone targets: deacetylates TSHZ3, thereby regulating its transcriptional repressor activity (PubMed:19343227). May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation (By similarity). Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A (PubMed:21965678). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:35044827). {ECO:0000250|UniProtKB:P70288, ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:37137925}.
Q92918 MAP4K1 S586 ochoa Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}.
Q93100 PHKB S700 ochoa Phosphorylase b kinase regulatory subunit beta (Phosphorylase kinase subunit beta) Phosphorylase b kinase catalyzes the phosphorylation of serine in certain substrates, including troponin I. The beta chain acts as a regulatory unit and modulates the activity of the holoenzyme in response to phosphorylation.
Q969E4 TCEAL3 S65 ochoa Transcription elongation factor A protein-like 3 (TCEA-like protein 3) (Transcription elongation factor S-II protein-like 3) May be involved in transcriptional regulation.
Q96CS3 FAF2 S355 ochoa FAS-associated factor 2 (UBX domain-containing protein 3B) (UBX domain-containing protein 8) Plays an important role in endoplasmic reticulum-associated degradation (ERAD) that mediates ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins (PubMed:18711132, PubMed:24215460). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Involved in inhibition of lipid droplet degradation by binding to phospholipase PNPL2 and inhibiting its activity by promoting dissociation of PNPL2 from its endogenous activator, ABHD5 which inhibits the rate of triacylglycerol hydrolysis (PubMed:23297223). Involved in stress granule disassembly: associates with ubiquitinated G3BP1 in response to heat shock, thereby promoting interaction between ubiquitinated G3BP1 and VCP, followed by G3BP1 extraction from stress granules and stress granule disassembly (PubMed:34739333). {ECO:0000269|PubMed:18711132, ECO:0000269|PubMed:23297223, ECO:0000269|PubMed:24215460, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:34739333}.
Q96D09 GPRASP2 S550 ochoa G-protein coupled receptor-associated sorting protein 2 (GASP-2) May play a role in regulation of a variety of G-protein coupled receptors. {ECO:0000269|PubMed:15086532}.
Q96DN5 TBC1D31 S875 ochoa TBC1 domain family member 31 (WD repeat-containing protein 67) Molecular adapter which is involved in cilium biogenesis. Part of a functional complex including OFD1 a centriolar protein involved in cilium assembly. Could regulate the cAMP-dependent phosphorylation of OFD1, and its subsequent ubiquitination by PJA2 which ultimately leads to its proteasomal degradation. {ECO:0000269|PubMed:33934390}.
Q96FV9 THOC1 S560 ochoa THO complex subunit 1 (Nuclear matrix protein p84) (p84N5) (hTREX84) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B/UAP56 (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Regulates transcriptional elongation of a subset of genes (PubMed:22144908). Involved in genome stability by preventing co-transcriptional R-loop formation (By similarity). May play a role in hair cell formation, hence may be involved in hearing (By similarity). {ECO:0000250|UniProtKB:Q7SYB2, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22144908, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: Participates in an apoptotic pathway which is characterized by activation of caspase-6, increases in the expression of BAK1 and BCL2L1 and activation of NF-kappa-B. This pathway does not require p53/TP53, nor does the presence of p53/TP53 affect the efficiency of cell killing. Activates a G2/M cell cycle checkpoint prior to the onset of apoptosis. Apoptosis is inhibited by association with RB1.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q96GE4 CEP95 S422 ochoa Centrosomal protein of 95 kDa (Cep95) (Coiled-coil domain-containing protein 45) None
Q96GX5 MASTL S552 ochoa Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}.
Q96HE7 ERO1A S143 ochoa ERO1-like protein alpha (ERO1-L) (ERO1-L-alpha) (EC 1.8.4.-) (Endoplasmic oxidoreductin-1-like protein) (Endoplasmic reticulum oxidoreductase alpha) (Oxidoreductin-1-L-alpha) Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (PubMed:29858230). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-trisphosphate receptor IP3R1. Involved in the release of the unfolded cholera toxin from reduced P4HB/PDI in case of infection by V.cholerae, thereby playing a role in retrotranslocation of the toxin. {ECO:0000269|PubMed:10671517, ECO:0000269|PubMed:10970843, ECO:0000269|PubMed:11707400, ECO:0000269|PubMed:12403808, ECO:0000269|PubMed:18833192, ECO:0000269|PubMed:18971943, ECO:0000269|PubMed:23027870, ECO:0000269|PubMed:29858230}.
Q96JE7 SEC16B S173 ochoa Protein transport protein Sec16B (Leucine zipper transcription regulator 2) (Regucalcin gene promoter region-related protein p117) (RGPR-p117) (SEC16 homolog B) Plays a role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17192411, PubMed:21768384, PubMed:22355596). Involved in peroxisome biogenesis. Regulates the transport of peroxisomal biogenesis factors PEX3 and PEX16 from the ER to peroxisomes (PubMed:21768384). {ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:21768384, ECO:0000303|PubMed:22355596}.
Q96JP5 ZFP91 S142 ochoa E3 ubiquitin-protein ligase ZFP91 (EC 2.3.2.27) (RING-type E3 ubiquitin transferase ZFP91) (Zinc finger protein 757) (Zinc finger protein 91 homolog) (Zfp-91) Atypical E3 ubiquitin-protein ligase that mediates 'Lys-63'-linked ubiquitination of MAP3K14/NIK, leading to stabilize and activate MAP3K14/NIK. It thereby acts as an activator of the non-canonical NF-kappa-B2/NFKB2 pathway. May also play an important role in cell proliferation and/or anti-apoptosis. {ECO:0000269|PubMed:12738986, ECO:0000269|PubMed:20682767}.
Q96JW4 SLC41A2 S136 ochoa Solute carrier family 41 member 2 Acts as a plasma-membrane magnesium transporter (PubMed:16984228). Can also mediate the transport of other divalent metal cations in an order of Ba(2+) > Ni(2+) > Co(2+) > Fe(2+) > Mn(2+) (By similarity). {ECO:0000250|UniProtKB:Q8BYR8, ECO:0000269|PubMed:16984228}.
Q96KP4 CNDP2 S299 ochoa Cytosolic non-specific dipeptidase (EC 3.4.13.18) (CNDP dipeptidase 2) (Glutamate carboxypeptidase-like protein 1) (Peptidase A) (Threonyl dipeptidase) Catalyzes the peptide bond hydrolysis in dipeptides, displaying a non-redundant activity toward threonyl dipeptides (By similarity). Mediates threonyl dipeptide catabolism in a tissue-specific way (By similarity). Has high dipeptidase activity toward cysteinylglycine, an intermediate metabolite in glutathione metabolism (PubMed:12473676, PubMed:19346245). Metabolizes N-lactoyl-amino acids, both through hydrolysis to form lactic acid and amino acids, as well as through their formation by reverse proteolysis (PubMed:25964343). Plays a role in the regulation of cell cycle arrest and apoptosis (PubMed:17121880, PubMed:24395568). {ECO:0000250|UniProtKB:Q9D1A2, ECO:0000269|PubMed:12473676, ECO:0000269|PubMed:17121880, ECO:0000269|PubMed:19346245, ECO:0000269|PubMed:24395568, ECO:0000269|PubMed:25964343}.
Q96NE9 FRMD6 S352 ochoa FERM domain-containing protein 6 (Willin) None
Q96PY6 NEK1 S959 ochoa Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}.
Q96QS3 ARX S314 ochoa Homeobox protein ARX (Aristaless-related homeobox) Transcription factor (PubMed:22194193, PubMed:31691806). Binds to specific sequence motif 5'-TAATTA-3' in regulatory elements of target genes, such as histone demethylase KDM5C (PubMed:22194193, PubMed:31691806). Positively modulates transcription of KDM5C (PubMed:31691806). Activates expression of KDM5C synergistically with histone lysine demethylase PHF8 and perhaps in competition with transcription regulator ZNF711; synergy may be related to enrichment of histone H3K4me3 in regulatory elements (PubMed:31691806). Required for normal brain development (PubMed:11889467, PubMed:12379852, PubMed:14722918). Plays a role in neuronal proliferation, interneuronal migration and differentiation in the embryonic forebrain (By similarity). May also be involved in axonal guidance in the floor plate (By similarity). {ECO:0000250|UniProtKB:O35085, ECO:0000269|PubMed:11889467, ECO:0000269|PubMed:12379852, ECO:0000269|PubMed:14722918, ECO:0000269|PubMed:22194193, ECO:0000269|PubMed:31691806}.
Q96ST2 IWS1 S213 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96ST2 IWS1 S252 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96ST2 IWS1 S304 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96ST2 IWS1 S415 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96ST2 IWS1 S513 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96T23 RSF1 S515 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T23 RSF1 S660 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T51 RUFY1 S618 ochoa RUN and FYVE domain-containing protein 1 (FYVE-finger protein EIP1) (La-binding protein 1) (Rab4-interacting protein) (Zinc finger FYVE domain-containing protein 12) Activating adapter involved in cargo sorting from early/recycling endosomes. Regulates retrieval of proteins from endosomes to the trans-Golgi network through interaction with the dynein-dynactin complex (PubMed:36282215). Dual effector of RAB4B and RAB14, mediates a cooperative interaction allowing endosomal tethering and fusion (PubMed:20534812). Binds phospholipid vesicles containing phosphatidylinositol 3-phosphate and participates in early endosomal trafficking (PubMed:14617813). In oocytes, self-assembles to form a protein matrix which hold together endolysosomes, autophagosomes and proteasomes and generate non-membrane-bound compartments called endo-lysosomal vesicular assemblies (ELVAs). In immature oocytes, ELVAs sequester ubiquitinated protein aggregates and degrade them upon oocyte maturation (By similarity). {ECO:0000250|UniProtKB:Q8BIJ7, ECO:0000269|PubMed:14617813, ECO:0000269|PubMed:20534812, ECO:0000269|PubMed:36282215}.
Q96T58 SPEN S1622 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99081 TCF12 S535 ochoa Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}.
Q99418 CYTH2 S56 ochoa Cytohesin-2 (ARF exchange factor) (ARF nucleotide-binding site opener) (Protein ARNO) (PH, SEC7 and coiled-coil domain-containing protein 2) Acts as a guanine-nucleotide exchange factor (GEF). Promotes guanine-nucleotide exchange on ARF1, ARF3 and ARF6. Activates ARF factors through replacement of GDP with GTP (By similarity). The cell membrane form, in association with ARL4 proteins, recruits ARF6 to the plasma membrane (PubMed:17398095). Involved in neurite growth (By similarity). {ECO:0000250|UniProtKB:P63034, ECO:0000269|PubMed:17398095}.
Q99590 SCAF11 S1058 ochoa Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}.
Q99623 PHB2 S243 psp Prohibitin-2 (B-cell receptor-associated protein BAP37) (D-prohibitin) (Repressor of estrogen receptor activity) Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors and sex steroid hormones in the nucleus. {ECO:0000269|PubMed:10359819, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:24003225, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Also regulates cytochrome-c oxidase assembly (COX) and mitochondrial respiration (PubMed:11302691, PubMed:20959514). Binding to sphingoid 1-phosphate (SPP) modulates its regulator activity (PubMed:11302691, PubMed:20959514). Has a key role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305|PubMed:25904163}.; FUNCTION: In the nucleus, serves as transcriptional co-regulator (Probable). Acts as a mediator of transcriptional repression by nuclear hormone receptors via recruitment of histone deacetylases. Functions as an estrogen receptor (ER)-selective coregulator that potentiates the inhibitory activities of antiestrogens and represses the activity of estrogens. Competes with NCOA1 for modulation of ER transcriptional activity (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000305|PubMed:25904163}.; FUNCTION: In the plasma membrane, is involved in IGFBP6-induced cell migration (PubMed:24003225). Cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates. Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:O35129, ECO:0000269|PubMed:24003225}.; FUNCTION: (Microbial infection) Involved in human enterovirus 71/EV-71 infection by enhancing the autophagy mechanism during the infection. {ECO:0000269|PubMed:32276428}.
Q99653 CHP1 S26 ochoa Calcineurin B homologous protein 1 (Calcineurin B-like protein) (Calcium-binding protein CHP) (Calcium-binding protein p22) (EF-hand calcium-binding domain-containing protein p22) Calcium-binding protein involved in different processes such as regulation of vesicular trafficking, plasma membrane Na(+)/H(+) exchanger and gene transcription. Involved in the constitutive exocytic membrane traffic. Mediates the association between microtubules and membrane-bound organelles of the endoplasmic reticulum and Golgi apparatus and is also required for the targeting and fusion of transcytotic vesicles (TCV) with the plasma membrane. Functions as an integral cofactor in cell pH regulation by controlling plasma membrane-type Na(+)/H(+) exchange activity. Affects the pH sensitivity of SLC9A1/NHE1 by increasing its sensitivity at acidic pH. Required for the stabilization and localization of SLC9A1/NHE1 at the plasma membrane. Inhibits serum- and GTPase-stimulated Na(+)/H(+) exchange. Plays a role as an inhibitor of ribosomal RNA transcription by repressing the nucleolar UBF1 transcriptional activity. May sequester UBF1 in the nucleoplasm and limit its translocation to the nucleolus. Associates to the ribosomal gene promoter. Acts as a negative regulator of the calcineurin/NFAT signaling pathway. Inhibits NFAT nuclear translocation and transcriptional activity by suppressing the calcium-dependent calcineurin phosphatase activity. Also negatively regulates the kinase activity of the apoptosis-induced kinase STK17B. Inhibits both STK17B auto- and substrate-phosphorylations in a calcium-dependent manner. {ECO:0000269|PubMed:10593895, ECO:0000269|PubMed:11350981, ECO:0000269|PubMed:15035633, ECO:0000269|PubMed:8901634}.
Q99661 KIF2C S181 ochoa Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}.
Q99666 RGPD5 S1231 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q9BQ67 GRWD1 S26 ochoa Glutamate-rich WD repeat-containing protein 1 Histone binding-protein that regulates chromatin dynamics and minichromosome maintenance (MCM) loading at replication origins, possibly by promoting chromatin openness (PubMed:25990725). {ECO:0000269|PubMed:25990725}.
Q9BQS8 FYCO1 S342 ochoa FYVE and coiled-coil domain-containing protein 1 (Zinc finger FYVE domain-containing protein 7) May mediate microtubule plus end-directed vesicle transport. {ECO:0000269|PubMed:20100911}.
Q9BSE4 HERPUD2 S365 ochoa Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 2 protein Could be involved in the unfolded protein response (UPR) pathway. {ECO:0000250}.
Q9BUA3 SPINDOC S126 ochoa Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}.
Q9BUB5 MKNK1 S433 ochoa MAP kinase-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 1) (MAPK signal-integrating kinase 1) (Mnk1) May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. {ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:15350534, ECO:0000269|PubMed:9155018, ECO:0000269|PubMed:9878069}.
Q9BUF5 TUBB6 S339 ochoa Tubulin beta-6 chain (Tubulin beta class V) Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. {ECO:0000250|UniProtKB:P02557}.
Q9BV36 MLPH S256 ochoa Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}.
Q9BVA1 TUBB2B S339 ochoa Tubulin beta-2B chain Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers (PubMed:23001566, PubMed:26732629, PubMed:28013290). Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin. Plays a critical role in proper axon guidance in both central and peripheral axon tracts (PubMed:23001566). Implicated in neuronal migration (PubMed:19465910). {ECO:0000269|PubMed:19465910, ECO:0000269|PubMed:23001566, ECO:0000269|PubMed:26732629, ECO:0000269|PubMed:28013290}.
Q9BVJ6 UTP14A S77 ochoa U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) May be required for ribosome biogenesis. {ECO:0000250}.
Q9BVJ6 UTP14A S437 ochoa U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) May be required for ribosome biogenesis. {ECO:0000250}.
Q9BVS4 RIOK2 S354 ochoa Serine/threonine-protein kinase RIO2 (EC 2.7.11.1) (RIO kinase 2) Serine/threonine-protein kinase involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in export of the 40S pre-ribosome particles (pre-40S) from the nucleus to the cytoplasm. Its kinase activity is required for the release of NOB1, PNO1 and LTV1 from the late pre-40S and the processing of 18S-E pre-rRNA to the mature 18S rRNA (PubMed:19564402). Regulates the timing of the metaphase-anaphase transition during mitotic progression, and its phosphorylation, most likely by PLK1, regulates this function (PubMed:21880710). {ECO:0000269|PubMed:16037817, ECO:0000269|PubMed:19564402, ECO:0000269|PubMed:21880710}.
Q9BW71 HIRIP3 S500 ochoa HIRA-interacting protein 3 Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}.
Q9BXJ1 C1QTNF1 S229 ochoa Complement C1q tumor necrosis factor-related protein 1 (G protein-coupled receptor-interacting protein) (GIP) None
Q9BXK5 BCL2L13 S298 ochoa Bcl-2-like protein 13 (Bcl2-L-13) (Bcl-rambo) (Protein Mil1) May promote the activation of caspase-3 and apoptosis.
Q9BY42 RTF2 S287 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BY89 KIAA1671 S1441 ochoa Uncharacterized protein KIAA1671 None
Q9C0D5 TANC1 S610 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9H0A0 NAT10 S984 ochoa RNA cytidine acetyltransferase (EC 2.3.1.-) (18S rRNA cytosine acetyltransferase) (N-acetyltransferase 10) (N-acetyltransferase-like protein) (hALP) RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs (PubMed:25411247, PubMed:25653167, PubMed:30449621, PubMed:35679869). Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation (PubMed:30449621, PubMed:35679869). mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency (PubMed:30449621). Mediates the formation of ac4C at position 1842 in 18S rRNA (PubMed:25411247). May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 and A2 during 18S rRNA synthesis (PubMed:25411247, PubMed:25653167). Catalyzes the formation of ac4C in serine and leucine tRNAs (By similarity). Requires the tRNA-binding adapter protein THUMPD1 for full tRNA acetyltransferase activity but not for 18S rRNA acetylation (PubMed:25653167). In addition to RNA acetyltransferase activity, also able to acetylate lysine residues of proteins, such as histones, microtubules, p53/TP53 and MDM2, in vitro (PubMed:14592445, PubMed:17631499, PubMed:19303003, PubMed:26882543, PubMed:27993683, PubMed:30165671). The relevance of the protein lysine acetyltransferase activity is however unsure in vivo (PubMed:30449621). Activates telomerase activity by stimulating the transcription of TERT, and may also regulate telomerase function by affecting the balance of telomerase subunit assembly, disassembly, and localization (PubMed:14592445, PubMed:18082603). Involved in the regulation of centrosome duplication by acetylating CENATAC during mitosis, promoting SASS6 proteasome degradation (PubMed:31722219). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P53914, ECO:0000269|PubMed:14592445, ECO:0000269|PubMed:17631499, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19303003, ECO:0000269|PubMed:25411247, ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:26882543, ECO:0000269|PubMed:27993683, ECO:0000269|PubMed:30165671, ECO:0000269|PubMed:30449621, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:35679869}.
Q9H1H9 KIF13A S1734 ochoa Kinesin-like protein KIF13A (Kinesin-like protein RBKIN) Plus end-directed microtubule-dependent motor protein involved in intracellular transport and regulating various processes such as mannose-6-phosphate receptor (M6PR) transport to the plasma membrane, endosomal sorting during melanosome biogenesis and cytokinesis. Mediates the transport of M6PR-containing vesicles from trans-Golgi network to the plasma membrane via direct interaction with the AP-1 complex. During melanosome maturation, required for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes by creating peripheral recycling endosomal subdomains in melanocytes. Also required for the abscission step in cytokinesis: mediates translocation of ZFYVE26, and possibly TTC19, to the midbody during cytokinesis. {ECO:0000269|PubMed:19841138, ECO:0000269|PubMed:20208530}.
Q9H2G2 SLK S655 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H3H1 TRIT1 S167 ochoa tRNA dimethylallyltransferase (EC 2.5.1.75) (Isopentenyl-diphosphate:tRNA isopentenyltransferase) (IPP transferase) (IPPT) (hGRO1) (tRNA isopentenyltransferase 1) (IPTase) Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 of both cytosolic and mitochondrial tRNAs, leading to the formation of N6-(dimethylallyl)adenosine (i6A37) (PubMed:11111046, PubMed:24126054, PubMed:24901367, PubMed:34774131). Mediates modification of a limited subset of tRNAs: tRNA(Ser)(AGA), tRNA(Ser)(CGA), tRNA(Ser)(UGA), as well as partial modification of the selenocysteine tRNA(Ser)(UCA) (PubMed:24126054). TRIT1 is therefore required for selenoprotein expression (PubMed:24126054). {ECO:0000269|PubMed:11111046, ECO:0000269|PubMed:24126054, ECO:0000269|PubMed:24901367, ECO:0000269|PubMed:34774131}.
Q9H3Z4 DNAJC5 S177 ochoa DnaJ homolog subfamily C member 5 (Ceroid-lipofuscinosis neuronal protein 4) (Cysteine string protein) (CSP) Acts as a general chaperone in regulated exocytosis (By similarity). Acts as a co-chaperone for the SNARE protein SNAP-25 (By similarity). Involved in the calcium-mediated control of a late stage of exocytosis (By similarity). May have an important role in presynaptic function. May be involved in calcium-dependent neurotransmitter release at nerve endings (By similarity). {ECO:0000250|UniProtKB:P60904, ECO:0000250|UniProtKB:Q29455}.
Q9H4A3 WNK1 S599 ochoa Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}.
Q9H4L4 SENP3 S352 ochoa Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}.
Q9H4L4 SENP3 S355 ochoa Sentrin-specific protease 3 (EC 3.4.22.-) (SUMO-1-specific protease 3) (Sentrin/SUMO-specific protease SENP3) Protease that releases SUMO2 and SUMO3 monomers from sumoylated substrates, but has only weak activity against SUMO1 conjugates (PubMed:16608850, PubMed:32832608, PubMed:36050397). Deconjugates SUMO2 from MEF2D, which increases its transcriptional activation capability (PubMed:15743823). Deconjugates SUMO2 and SUMO3 from CDCA8 (PubMed:18946085). Redox sensor that, when redistributed into nucleoplasm, can act as an effector to enhance HIF1A transcriptional activity by desumoylating EP300 (PubMed:19680224). Required for rRNA processing through deconjugation of SUMO2 and SUMO3 from nucleophosmin, NPM1 (PubMed:19015314). Plays a role in the regulation of sumoylation status of ZNF148 (PubMed:18259216). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Deconjugates SUMO2 from KAT5 (PubMed:32832608). Catalyzes desumoylation of MRE11 (PubMed:36050397). {ECO:0000269|PubMed:15743823, ECO:0000269|PubMed:16608850, ECO:0000269|PubMed:18259216, ECO:0000269|PubMed:18946085, ECO:0000269|PubMed:19015314, ECO:0000269|PubMed:19680224, ECO:0000269|PubMed:22872859, ECO:0000269|PubMed:32832608, ECO:0000269|PubMed:36050397}.
Q9H583 HEATR1 S1490 ochoa HEAT repeat-containing protein 1 (Protein BAP28) (U3 small nucleolar RNA-associated protein 10 homolog) [Cleaved into: HEAT repeat-containing protein 1, N-terminally processed] Ribosome biogenesis factor; required for recruitment of Myc to nucleoli (PubMed:38225354). Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Involved in neuronal-lineage cell proliferation (PubMed:38225354). {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:38225354}.
Q9H6H4 REEP4 S114 ochoa Receptor expression-enhancing protein 4 Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes. {ECO:0000269|PubMed:23911198}.
Q9H6L5 RETREG1 S281 ochoa Reticulophagy regulator 1 (Reticulophagy receptor 1) Endoplasmic reticulum (ER)-anchored autophagy regulator which mediates ER delivery into lysosomes through sequestration into autophagosomes (PubMed:26040720, PubMed:31930741, PubMed:34338405). Promotes membrane remodeling and ER scission via its membrane bending capacity and targets the fragments into autophagosomes via interaction with ATG8 family proteins (PubMed:26040720, PubMed:31930741, PubMed:34338405). Active under basal conditions (PubMed:34338405). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Required for long-term survival of nociceptive and autonomic ganglion neurons (PubMed:19838196, PubMed:26040720). {ECO:0000250|UniProtKB:Q8VE91, ECO:0000269|PubMed:19838196, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:34338405}.; FUNCTION: (Microbial infection) During SARS-CoV-2 infection, RETREG1-mediated reticulophagy is promoted by SARS-CoV-2 ORF3A protein (PubMed:35239449). This induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:35239449}.
Q9H799 CPLANE1 S156 ochoa Ciliogenesis and planar polarity effector 1 (Protein JBTS17) Involved in ciliogenesis (PubMed:25877302, PubMed:35582950). Involved in the establishment of cell polarity required for directional cell migration. Proposed to act in association with the CPLANE (ciliogenesis and planar polarity effectors) complex. Involved in recruitment of peripheral IFT-A proteins to basal bodies (By similarity). {ECO:0000250|UniProtKB:Q8CE72, ECO:0000269|PubMed:35582950, ECO:0000305|PubMed:25877302}.
Q9H7E2 TDRD3 S80 ochoa Tudor domain-containing protein 3 Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins (PubMed:15955813). Plays a role in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci (PubMed:21172665). In cytoplasm, acts as an antiviral factor that participates in the assembly of stress granules together with G3BP1 (PubMed:35085371). {ECO:0000269|PubMed:15955813, ECO:0000269|PubMed:18632687, ECO:0000269|PubMed:21172665, ECO:0000269|PubMed:35085371}.
Q9H7E2 TDRD3 S458 ochoa Tudor domain-containing protein 3 Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins (PubMed:15955813). Plays a role in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci (PubMed:21172665). In cytoplasm, acts as an antiviral factor that participates in the assembly of stress granules together with G3BP1 (PubMed:35085371). {ECO:0000269|PubMed:15955813, ECO:0000269|PubMed:18632687, ECO:0000269|PubMed:21172665, ECO:0000269|PubMed:35085371}.
Q9H7F0 ATP13A3 S130 ochoa Polyamine-transporting ATPase 13A3 (ATPase family homolog up-regulated in senescence cells 1) (Putrescine transporting ATPase) (EC 7.6.2.16) ATP-driven pump involved in endocytosis-dependent polyamine transport. Uses ATP as an energy source to transfer polyamine precursor putrescine from the endosomal compartment to the cytosol. {ECO:0000269|PubMed:27429841, ECO:0000269|PubMed:33310703}.
Q9H7L9 SUDS3 S39 ochoa Sin3 histone deacetylase corepressor complex component SDS3 (45 kDa Sin3-associated polypeptide) (Suppressor of defective silencing 3 protein homolog) Regulatory protein which represses transcription and augments histone deacetylase activity of HDAC1. May have a potential role in tumor suppressor pathways through regulation of apoptosis. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:21239494}.
Q9H892 TTC12 S67 ochoa Tetratricopeptide repeat protein 12 (TPR repeat protein 12) Cytoplasmic protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. {ECO:0000269|PubMed:31978331}.
Q9H8X2 IPPK S109 ochoa Inositol-pentakisphosphate 2-kinase (EC 2.7.1.158) (IPK1 homolog) (Inositol-1,3,4,5,6-pentakisphosphate 2-kinase) (Ins(1,3,4,5,6)P5 2-kinase) (InsP5 2-kinase) Phosphorylates Ins(1,3,4,5,6)P5 at position 2 to form Ins(1,2,3,4,5,6)P6 (InsP6 or phytate). InsP6 is involved in many processes such as mRNA export, non-homologous end-joining, endocytosis, ion channel regulation. It also protects cells from TNF-alpha-induced apoptosis. {ECO:0000269|PubMed:12084730, ECO:0000269|PubMed:15967797}.
Q9H902 REEP1 S114 ochoa Receptor expression-enhancing protein 1 (Spastic paraplegia 31 protein) Required for endoplasmic reticulum (ER) network formation, shaping and remodeling; it links ER tubules to the cytoskeleton. May also enhance the cell surface expression of odorant receptors (PubMed:20200447). May play a role in long-term axonal maintenance (PubMed:24478229). {ECO:0000269|PubMed:20200447, ECO:0000269|PubMed:24478229}.
Q9HAW7 UGT1A7 S432 psp UDP-glucuronosyltransferase 1A7 (UGT1A7) (EC 2.4.1.17) (UDP-glucuronosyltransferase 1-7) (UDPGT 1-7) (UGT1*7) (UGT1-07) (UGT1.7) (UDP-glucuronosyltransferase 1-G) (UGT-1G) (UGT1G) [Isoform 1]: UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:12181437, PubMed:15470161, PubMed:18004212, PubMed:18052087, PubMed:18674515, PubMed:18719240, PubMed:20610558, PubMed:23360619, PubMed:21422672, PubMed:38211441). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:12181437, PubMed:18004212). Catalyzes the glucuronidation of endogenous estrogen hormone epiestradiol (PubMed:18719240). Involved in the glucuronidation of F2-isoprostane (5-epi-5-F2t-IsoP) (PubMed:38211441). Involved in the glucuronidation of the phytochemical ferulic acid at the carboxylic acid group (PubMed:21422672). Also catalyzes the glucuronidation of the isoflavones genistein, daidzein, glycitein, formononetin, biochanin A and prunetin, which are phytoestrogens with anticancer and cardiovascular properties (PubMed:18052087). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonist caderastan, a drug which can inhibit the effect of angiotensin II (PubMed:18674515). Involved in the biotransformation of 7-ethyl-10-hydroxycamptothecin (SN-38), the pharmacologically active metabolite of the anticancer drug irinotecan (PubMed:12181437, PubMed:18004212, PubMed:20610558, PubMed:23360619). Also metabolizes mycophenolate, an immunosuppressive agent (PubMed:15470161). {ECO:0000269|PubMed:12181437, ECO:0000269|PubMed:15470161, ECO:0000269|PubMed:18004212, ECO:0000269|PubMed:18052087, ECO:0000269|PubMed:18674515, ECO:0000269|PubMed:18719240, ECO:0000269|PubMed:20610558, ECO:0000269|PubMed:21422672, ECO:0000269|PubMed:23360619, ECO:0000269|PubMed:38211441}.; FUNCTION: [Isoform 2]: Lacks UGT glucuronidation activity but acts as a negative regulator of isoform 1. {ECO:0000269|PubMed:18004212, ECO:0000269|PubMed:20610558, ECO:0000269|PubMed:23360619}.
Q9HAW8 UGT1A10 S432 psp UDP-glucuronosyltransferase 1A10 (UGT1A10) (EC 2.4.1.17) (UDP-glucuronosyltransferase 1-10) (UDPGT 1-10) (UGT1*10) (UGT1-10) (UGT1.10) (UDP-glucuronosyltransferase 1-J) (UGT-1J) (UGT1J) [Isoform 1]: UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:12181437, PubMed:18004212, PubMed:18052087, PubMed:18674515, PubMed:18719240, PubMed:19545173, PubMed:23288867, PubMed:26220143, PubMed:15231852, PubMed:21422672). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:12181437, PubMed:18004212). Catalyzes the glucuronidation of endogenous estrogen hormones such as estradiol, estrone and estriol (PubMed:18719240, PubMed:23288867, PubMed:26220143). Involved in the glucuronidation of arachidonic acid (AA) and AA-derived eicosanoids including 15-HETE and PGB1 (PubMed:15231852). Involved in the glucuronidation of the phytochemical ferulic acid at the phenolic or the carboxylic acid group (PubMed:21422672). Also catalyzes the glucuronidation of the isoflavones genistein, daidzein, glycitein, formononetin, biochanin A and prunetin, which are phytoestrogens with anticancer and cardiovascular properties (PubMed:18052087, PubMed:19545173). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonist losartan, caderastan and zolarsatan, drugs which can inhibit the effect of angiotensin II (PubMed:18674515). {ECO:0000269|PubMed:12181437, ECO:0000269|PubMed:15231852, ECO:0000269|PubMed:18004212, ECO:0000269|PubMed:18052087, ECO:0000269|PubMed:18674515, ECO:0000269|PubMed:18719240, ECO:0000269|PubMed:19545173, ECO:0000269|PubMed:21422672, ECO:0000269|PubMed:23288867, ECO:0000269|PubMed:26220143}.; FUNCTION: [Isoform 2]: Lacks UGT glucuronidation activity but acts as a negative regulator of isoform 1. {ECO:0000269|PubMed:18004212, ECO:0000269|PubMed:20610558}.
Q9HB65 ELL3 S239 ochoa RNA polymerase II elongation factor ELL3 Enhancer-binding elongation factor that specifically binds enhancers in embryonic stem cells (ES cells), marks them, and is required for their future activation during stem cell specification. Does not only bind to enhancer regions of active genes, but also marks the enhancers that are in a poised or inactive state in ES cells and is required for establishing proper RNA polymerase II occupancy at developmentally regulated genes in a cohesin-dependent manner. Probably required for priming developmentally regulated genes for later recruitment of the super elongation complex (SEC), for transcriptional activation during differentiation. Required for recruitment of P-TEFb within SEC during differentiation. Probably preloaded on germ cell chromatin, suggesting that it may prime gene activation by marking enhancers as early as in the germ cells. Promoting epithelial-mesenchymal transition (EMT) (By similarity). Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). {ECO:0000250, ECO:0000269|PubMed:10882741, ECO:0000269|PubMed:22195968}.
Q9HB96 FANCE S238 ochoa Fanconi anemia group E protein (Protein FACE) As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}.
Q9HB96 FANCE S241 ochoa Fanconi anemia group E protein (Protein FACE) As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}.
Q9HCE5 METTL14 S54 ochoa N(6)-adenosine-methyltransferase non-catalytic subunit METTL14 (Methyltransferase-like protein 14) (hMETTL14) The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some mRNAs and regulates the circadian clock, differentiation of embryonic stem cells and cortical neurogenesis (PubMed:24316715, PubMed:24407421, PubMed:25719671, PubMed:27281194, PubMed:27373337, PubMed:29348140). In the heterodimer formed with METTL3, METTL14 constitutes the RNA-binding scaffold that recognizes the substrate rather than the catalytic core (PubMed:27281194, PubMed:27373337, PubMed:27627798, PubMed:29348140). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability and processing (PubMed:24316715, PubMed:24407421, PubMed:25719671). M6A acts as a key regulator of mRNA stability by promoting mRNA destabilization and degradation (By similarity). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization (By similarity). M6A regulates spermatogonial differentiation and meiosis and is essential for male fertility and spermatogenesis (By similarity). M6A also regulates cortical neurogenesis: m6A methylation of transcripts related to transcription factors, neural stem cells, the cell cycle and neuronal differentiation during brain development promotes their destabilization and decay, promoting differentiation of radial glial cells (By similarity). {ECO:0000250|UniProtKB:Q3UIK4, ECO:0000269|PubMed:24316715, ECO:0000269|PubMed:24407421, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:27281194, ECO:0000269|PubMed:27373337, ECO:0000269|PubMed:27627798, ECO:0000269|PubMed:29348140}.
Q9HCM4 EPB41L5 S39 ochoa Band 4.1-like protein 5 (Erythrocyte membrane protein band 4.1-like 5) Plays a role in the formation and organization of tight junctions during the establishment of polarity in epithelial cells. {ECO:0000269|PubMed:17920587}.
Q9HCM7 FBRSL1 S787 ochoa Fibrosin-1-like protein (AUTS2-like protein) (HBV X-transactivated gene 9 protein) (HBV XAg-transactivated protein 9) None
Q9NP80 PNPLA8 S515 psp Calcium-independent phospholipase A2-gamma (EC 3.1.1.-) (EC 3.1.1.5) (Intracellular membrane-associated calcium-independent phospholipase A2 gamma) (iPLA2-gamma) (PNPLA-gamma) (Patatin-like phospholipase domain-containing protein 8) (iPLA2-2) Calcium-independent and membrane-bound phospholipase, that catalyzes the esterolytic cleavage of fatty acids from glycerophospholipids to yield free fatty acids and lysophospholipids, hence regulating membrane physical properties and the release of lipid second messengers and growth factors (PubMed:10744668, PubMed:10833412, PubMed:15695510, PubMed:15908428, PubMed:17213206, PubMed:18171998, PubMed:28442572). Hydrolyzes phosphatidylethanolamine, phosphatidylcholine and probably phosphatidylinositol with a possible preference for the former (PubMed:15695510). Also has a broad substrate specificity in terms of fatty acid moieties, hydrolyzing saturated and mono-unsaturated fatty acids at nearly equal rates from either the sn-1 or sn-2 position in diacyl phosphatidylcholine (PubMed:10744668, PubMed:10833412, PubMed:15695510, PubMed:15908428). However, has a weak activity toward polyunsaturated fatty acids at the sn-2 position, and thereby favors the production of 2-arachidonoyl lysophosphatidylcholine, a key branch point metabolite in eicosanoid signaling (PubMed:15908428). On the other hand, can produce arachidonic acid from the sn-1 position of diacyl phospholipid and from the sn-2 position of arachidonate-containing plasmalogen substrates (PubMed:15908428). Therefore, plays an important role in the mobilization of arachidonic acid in response to cellular stimuli and the generation of lipid second messengers (PubMed:15695510, PubMed:15908428). Can also hydrolyze lysophosphatidylcholine (PubMed:15695510). In the mitochondrial compartment, catalyzes the hydrolysis and release of oxidized aliphatic chains from cardiolipin and integrates mitochondrial bioenergetics and signaling. It is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition (PubMed:28442572). {ECO:0000250|UniProtKB:Q8K1N1, ECO:0000269|PubMed:10744668, ECO:0000269|PubMed:10833412, ECO:0000269|PubMed:15695510, ECO:0000269|PubMed:15908428, ECO:0000269|PubMed:17213206, ECO:0000269|PubMed:18171998, ECO:0000269|PubMed:28442572}.
Q9NPG3 UBN1 S336 ochoa Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}.
Q9NPY3 CD93 S629 ochoa Complement component C1q receptor (C1q/MBL/SPA receptor) (C1qR) (C1qR(p)) (C1qRp) (CDw93) (Complement component 1 q subcomponent receptor 1) (Matrix-remodeling-associated protein 4) (CD antigen CD93) Cell surface receptor that plays a role in various physiological processes including inflammation, phagocytosis, and cell adhesion. Plays a role in phagocytosis and enhances the uptake of apoptotic cells and immune complexes by acting as a receptor for defense collagens including surfactant protein A/SFTPA1, C1q, and mannose-binding lectin (MBL2) (PubMed:7977768). Plays a role in the regulation of endothelial cell function and adhesion by activating angiogenesis (PubMed:24809468). Mechanistically, exerts its angiogenic function by associating with beta-dystroglycan, leading to SRC-dependent phosphorylation and subsequent recruitment of CBL. In turn, CBL provides a docking site for downstream signaling components, such as CRKL to enhance cell migration (PubMed:26848865). Participates in angiogenesis also by acting as a receptor for the ECM pan-endothelial glycoprotein multimerin-2/MMRN2 and IGFBP7 ligands (PubMed:28671670, PubMed:36265539, PubMed:38218180). Both ligands play a non-redundant role in CD93-mediated endothelial cell function (PubMed:38218180). Acts as a key regulator of endothelial barrier function through modulating VEGFR2 function (By similarity). {ECO:0000250|UniProtKB:O89103, ECO:0000269|PubMed:24809468, ECO:0000269|PubMed:26848865, ECO:0000269|PubMed:28671670, ECO:0000269|PubMed:36265539, ECO:0000269|PubMed:38218180, ECO:0000269|PubMed:7977768}.
Q9NRA8 EIF4ENIF1 S374 ochoa|psp Eukaryotic translation initiation factor 4E transporter (4E-T) (eIF4E transporter) (Eukaryotic translation initiation factor 4E nuclear import factor 1) EIF4E-binding protein that regulates translation and stability of mRNAs in processing bodies (P-bodies) (PubMed:16157702, PubMed:24335285, PubMed:27342281, PubMed:32354837). Plays a key role in P-bodies to coordinate the storage of translationally inactive mRNAs in the cytoplasm and prevent their degradation (PubMed:24335285, PubMed:32354837). Acts as a binding platform for multiple RNA-binding proteins: promotes deadenylation of mRNAs via its interaction with the CCR4-NOT complex, and blocks decapping via interaction with eIF4E (EIF4E and EIF4E2), thereby protecting deadenylated and repressed mRNAs from degradation (PubMed:27342281, PubMed:32354837). Component of a multiprotein complex that sequesters and represses translation of proneurogenic factors during neurogenesis (By similarity). Promotes miRNA-mediated translational repression (PubMed:24335285, PubMed:27342281, PubMed:28487484). Required for the formation of P-bodies (PubMed:16157702, PubMed:22966201, PubMed:27342281, PubMed:32354837). Involved in mRNA translational repression mediated by the miRNA effector TNRC6B by protecting TNRC6B-targeted mRNAs from decapping and subsequent decay (PubMed:32354837). Also acts as a nucleoplasmic shuttling protein, which mediates the nuclear import of EIF4E and DDX6 by a piggy-back mechanism (PubMed:10856257, PubMed:28216671). {ECO:0000250|UniProtKB:Q9EST3, ECO:0000269|PubMed:10856257, ECO:0000269|PubMed:16157702, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:24335285, ECO:0000269|PubMed:27342281, ECO:0000269|PubMed:28216671, ECO:0000269|PubMed:28487484, ECO:0000269|PubMed:32354837}.
Q9NRY4 ARHGAP35 S1001 ochoa Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}.
Q9NRY4 ARHGAP35 S1111 ochoa Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}.
Q9NS69 TOMM22 S45 ochoa Mitochondrial import receptor subunit TOM22 homolog (hTom22) (1C9-2) (Translocase of outer membrane 22 kDa subunit homolog) Central receptor component of the translocase of the outer membrane of mitochondria (TOM complex) responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with the peripheral receptor TOM20 functions as the transit peptide receptor and facilitates the movement of preproteins into the translocation pore (PubMed:10982837). Required for the translocation across the mitochondrial outer membrane of cytochrome P450 monooxygenases (By similarity). {ECO:0000250|UniProtKB:Q75Q41, ECO:0000269|PubMed:10982837}.
Q9NTX5 ECHDC1 S54 ochoa Ethylmalonyl-CoA decarboxylase (EC 4.1.1.94) (Enoyl-CoA hydratase domain-containing protein 1) (Methylmalonyl-CoA decarboxylase) (MMCD) Decarboxylates ethylmalonyl-CoA, a potentially toxic metabolite, to form butyryl-CoA, suggesting it might be involved in metabolite proofreading (PubMed:22016388). Acts preferentially on (S)-ethylmalonyl-CoA but also has some activity on the (R)-isomer (By similarity). Also has methylmalonyl-CoA decarboxylase activity at lower level (By similarity). {ECO:0000250|UniProtKB:Q9D9V3, ECO:0000269|PubMed:22016388}.
Q9NVK5 FGFR1OP2 S63 ochoa FGFR1 oncogene partner 2 May be involved in wound healing pathway. {ECO:0000250}.
Q9NVS9 PNPO S165 ochoa Pyridoxine-5'-phosphate oxidase (EC 1.4.3.5) (Pyridoxamine-phosphate oxidase) Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP). {ECO:0000269|PubMed:12824491, ECO:0000269|PubMed:15182361, ECO:0000269|PubMed:15772097}.
Q9NVU0 POLR3E S522 ochoa DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}.
Q9NWF9 RNF216 S346 ochoa E3 ubiquitin-protein ligase RNF216 (EC 2.3.2.27) (RING finger protein 216) (RING-type E3 ubiquitin transferase RNF216) (Triad domain-containing protein 3) (Ubiquitin-conjugating enzyme 7-interacting protein 1) (Zinc finger protein inhibiting NF-kappa-B) [Isoform 1]: E3 ubiquitin ligase which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their ubiquitination (PubMed:34998453). Plays a role in the regulation of antiviral responses by promoting the degradation of TRAF3, TLR4 and TLR9 (PubMed:15107846, PubMed:19893624). In turn, down-regulates NF-kappa-B and IRF3 activation as well as beta interferon production. Also participates in the regulation of autophagy by ubiquitinating BECN1 leading to its degradation and autophagy inhibition (PubMed:25484083). Plays a role in ARC-dependent synaptic plasticity by mediating ARC ubiquitination resulting in its rapid proteasomal degradation (PubMed:24945773). Plays aso an essential role in spermatogenesis and male fertility (By similarity). Mechanistically, regulates meiosis by promoting the degradation of PRKACB through the ubiquitin-mediated lysosome pathway (By similarity). Modulates the gonadotropin-releasing hormone signal pathway by affecting the stability of STAU2 that is required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite (By similarity). {ECO:0000250|UniProtKB:P58283, ECO:0000269|PubMed:15107846, ECO:0000269|PubMed:19893624, ECO:0000269|PubMed:24945773, ECO:0000269|PubMed:25484083, ECO:0000269|PubMed:34998453}.; FUNCTION: [Isoform 3]: Inhibits TNF and IL-1 mediated activation of NF-kappa-B. Promotes TNF and RIP mediated apoptosis. {ECO:0000269|PubMed:11854271}.
Q9NXH9 TRMT1 S517 ochoa tRNA (guanine(26)-N(2))-dimethyltransferase (EC 2.1.1.216) (tRNA 2,2-dimethylguanosine-26 methyltransferase) (tRNA methyltransferase 1) (hTRM1) (tRNA(guanine-26,N(2)-N(2)) methyltransferase) (tRNA(m(2,2)G26)dimethyltransferase) Dimethylates a single guanine residue at position 26 of most nuclear- and mitochondrial-encoded tRNAs using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:10982862, PubMed:28784718, PubMed:37204604, PubMed:39786990). tRNA guanine(26)-dimethylation is required for redox homeostasis and ensure proper cellular proliferation and oxidative stress survival (PubMed:28784718). {ECO:0000269|PubMed:10982862, ECO:0000269|PubMed:28784718, ECO:0000269|PubMed:37204604, ECO:0000269|PubMed:39786990}.
Q9NZJ0 DTL S410 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9NZT2 OGFR S55 ochoa Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation.
Q9NZT2 OGFR S420 ochoa Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation.
Q9P0L2 MARK1 S390 ochoa Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}.
Q9P0U4 CXXC1 S514 ochoa CXXC-type zinc finger protein 1 (CpG-binding protein) (PHD finger and CXXC domain-containing protein 1) Transcriptional activator that exhibits a unique DNA binding specificity for CpG unmethylated motifs with a preference for CpGG. {ECO:0000269|PubMed:21407193}.
Q9P291 ARMCX1 S44 ochoa Armadillo repeat-containing X-linked protein 1 (ARM protein lost in epithelial cancers on chromosome X 1) (Protein ALEX1) Regulates mitochondrial transport during axon regeneration. Increases the proportion of motile mitochondria by recruiting stationary mitochondria into the motile pool. Enhances mitochondria movement and neurite growth in both adult axons and embryonic neurons. Promotes neuronal survival and axon regeneration after nerve injury. May link mitochondria to the Trak1-kinesin motor complex via its interaction with MIRO1. {ECO:0000250|UniProtKB:Q9CX83}.
Q9P2K8 EIF2AK4 S213 ochoa eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}.
Q9UBB9 TFIP11 S392 ochoa Tuftelin-interacting protein 11 (Septin and tuftelin-interacting protein 1) (STIP-1) Involved in pre-mRNA splicing, specifically in spliceosome disassembly during late-stage splicing events. Intron turnover seems to proceed through reactions in two lariat-intron associated complexes termed Intron Large (IL) and Intron Small (IS). In cooperation with DHX15 seems to mediate the transition of the U2, U5 and U6 snRNP-containing IL complex to the snRNP-free IS complex leading to efficient debranching and turnover of excised introns. May play a role in the differentiation of ameloblasts and odontoblasts or in the forming of the enamel extracellular matrix. {ECO:0000269|PubMed:19103666}.
Q9UBC2 EPS15L1 S434 ochoa Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}.
Q9UBF6 RNF7 S19 ochoa RING-box protein 2 (Rbx2) (EC 2.3.2.27) (EC 2.3.2.32) (CKII beta-binding protein 1) (CKBBP1) (RING finger protein 7) (Regulator of cullins 2) (Sensitive to apoptosis gene protein) Catalytic component of multiple cullin-5-RING E3 ubiquitin-protein ligase complexes (ECS complexes), which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:21980433, PubMed:33268465, PubMed:38418882, PubMed:38574733, PubMed:35512830). It is thereby involved in various biological processes, such as cell cycle progression, signal transduction and transcription (PubMed:21980433, PubMed:33268465, PubMed:38418882, PubMed:38574733). The functional specificity of the E3 ubiquitin-protein ligase ECS complexes depend on the variable SOCS box-containing substrate recognition component (PubMed:21980433, PubMed:33268465). Within ECS complexes, RNF7/RBX2 recruits the E2 ubiquitination enzyme to the complex via its RING-type and brings it into close proximity to the substrate (PubMed:34518685). Catalytic subunit of various SOCS-containing ECS complexes, such as the ECS(SOCS7) complex, that regulate reelin signaling by mediating ubiquitination and degradation of DAB1 (By similarity). The ECS(SOCS2) complex mediates the ubiquitination and subsequent proteasomal degradation of phosphorylated EPOR and GHR (PubMed:21980433, PubMed:25505247). Promotes ubiquitination and degradation of NF1, thereby regulating Ras protein signal transduction (By similarity). As part of the ECS(ASB9) complex, catalyzes ubiquitination and degradation of CKB (PubMed:33268465). The ECS(SPSB3) complex catalyzes ubiquitination of nuclear CGAS (PubMed:38418882). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). As part of some ECS complex, catalyzes 'Lys-11'-linked ubiquitination and degradation of BTRC (PubMed:27910872). ECS complexes and ARIH2 collaborate in tandem to mediate ubiquitination of target proteins; ARIH2 mediating addition of the first ubiquitin on CRLs targets (PubMed:34518685, PubMed:38418882). Specifically catalyzes the neddylation of CUL5 via its interaction with UBE2F (PubMed:19250909). Does not catalyze neddylation of other cullins (CUL1, CUL2, CUL3, CUL4A or CUL4B) (PubMed:19250909). May play a role in protecting cells from apoptosis induced by redox agents (PubMed:10082581). {ECO:0000250|UniProtKB:Q9WTZ1, ECO:0000269|PubMed:10082581, ECO:0000269|PubMed:19250909, ECO:0000269|PubMed:21980433, ECO:0000269|PubMed:25505247, ECO:0000269|PubMed:27910872, ECO:0000269|PubMed:33268465, ECO:0000269|PubMed:34518685, ECO:0000269|PubMed:35512830, ECO:0000269|PubMed:38418882, ECO:0000269|PubMed:38574733}.; FUNCTION: [Isoform 2]: Inactive. {ECO:0000269|PubMed:11506706}.; FUNCTION: (Microbial infection) Following infection by HIV-1 virus, catalytic component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex) hijacked by the HIV-1 Vif protein, which catalyzes ubiquitination and degradation of APOBEC3F and APOBEC3G. {ECO:0000269|PubMed:22190037, ECO:0000269|PubMed:23300442}.
Q9UBS0 RPS6KB2 S24 ochoa Ribosomal protein S6 kinase beta-2 (S6K-beta-2) (S6K2) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 2) (P70S6K2) (p70-S6K 2) (S6 kinase-related kinase) (SRK) (Serine/threonine-protein kinase 14B) (p70 ribosomal S6 kinase beta) (S6K-beta) (p70 S6 kinase beta) (p70 S6K-beta) (p70 S6KB) (p70-beta) Phosphorylates specifically ribosomal protein S6 (PubMed:29750193). Seems to act downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression in an alternative pathway regulated by MEAK7 (PubMed:29750193). {ECO:0000269|PubMed:29750193}.
Q9UBU7 DBF4 S571 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBW5 BIN2 S331 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UBW8 COPS7A S255 ochoa COP9 signalosome complex subunit 7a (SGN7a) (Signalosome subunit 7a) (Dermal papilla-derived protein 10) (JAB1-containing signalosome subunit 7a) Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, JUN, I-kappa-B-alpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}.
Q9UDY2 TJP2 S953 ochoa Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}.
Q9UEE9 CFDP1 S102 ochoa Craniofacial development protein 1 (Bucentaur) May play a role during embryogenesis. {ECO:0000250}.
Q9UER7 DAXX S564 psp Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UEU5 GAGE2D; S32 ochoa G antigen 2D (GAGE-2D) (Cancer/testis antigen 4.8) (CT4.8) (G antigen 8) (GAGE-8) None
Q9UFD9 RIMBP3 S1294 ochoa RIMS-binding protein 3A (RIM-BP3.A) (RIMS-binding protein 3.1) (RIM-BP3.1) Probable component of the manchette, a microtubule-based structure which plays a key role in sperm head morphogenesis during late stages of sperm development. {ECO:0000250|UniProtKB:Q3V0F0}.
Q9UHB6 LIMA1 S263 ochoa LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}.
Q9UHB7 AFF4 S519 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UHW9 SLC12A6 T1048 psp Solute carrier family 12 member 6 (Electroneutral potassium-chloride cotransporter 3) (K-Cl cotransporter 3) [Isoform 1]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10600773, PubMed:11551954, PubMed:16048901, PubMed:18566107, PubMed:19665974, PubMed:21628467, PubMed:27485015). May contribute to cell volume homeostasis in single cells (PubMed:16048901, PubMed:27485015). {ECO:0000269|PubMed:10600773, ECO:0000269|PubMed:11551954, ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:18566107, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21628467, ECO:0000269|PubMed:27485015, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 2]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901, PubMed:33199848, PubMed:34031912). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:33199848, ECO:0000269|PubMed:34031912, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 3]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 4]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 5]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 6]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.
Q9UHX1 PUF60 S443 ochoa Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}.
Q9UJC3 HOOK1 S235 ochoa Protein Hook homolog 1 (h-hook1) (hHK1) Component of the FTS/Hook/FHIP complex (FHF complex) (PubMed:18799622, PubMed:32073997). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex) (PubMed:18799622). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). Required for spermatid differentiation. Probably involved in the positioning of the microtubules of the manchette and the flagellum in relation to the membrane skeleton (By similarity). {ECO:0000250|UniProtKB:Q8BIL5, ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}.
Q9UJV9 DDX41 S83 ochoa Probable ATP-dependent RNA helicase DDX41 (EC 3.6.4.13) (DEAD box protein 41) (DEAD box protein abstrakt homolog) Multifunctional protein that participates in many aspects of cellular RNA metabolism. Plays pivotal roles in innate immune sensing and hematopoietic homeostasis (PubMed:34473945). Recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses (PubMed:23222971). Mechanistically, phosphorylation by BTK allows binding to dsDNA leading to interaction with STING1 (PubMed:25704810). Modulates the homeostasis of dsDNA through its ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity (PubMed:35613581). In turn, induces STING1-mediated type I interferon and cytokine responses to DNA and DNA viruses (PubMed:35613581). Selectively modulates the transcription of certain immunity-associated genes by regulating their alternative splicing (PubMed:33650667). Binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, and prevents their accumulation, thereby maintaining genome stability (PubMed:36229594). Also participates in pre-mRNA splicing, translational regulation and snoRNA processing, which is essential for ribosome biogenesis (PubMed:36229594, PubMed:36780110). {ECO:0000250|UniProtKB:Q91VN6, ECO:0000269|PubMed:23222971, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:25920683, ECO:0000269|PubMed:33650667, ECO:0000269|PubMed:34473945, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:36229594, ECO:0000269|PubMed:36780110}.
Q9UJX4 ANAPC5 S202 ochoa Anaphase-promoting complex subunit 5 (APC5) (Cyclosome subunit 5) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q9UKL3 CASP8AP2 S1674 ochoa CASP8-associated protein 2 (FLICE-associated huge protein) Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}.
Q9UKX2 MYH2 S1704 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9UKX2 MYH2 S1716 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9ULD2 MTUS1 S663 ochoa Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}.
Q9UMR3 TBX20 S312 ochoa T-box transcription factor TBX20 (T-box protein 20) Acts as a transcriptional activator and repressor required for cardiac development and may have key roles in the maintenance of functional and structural phenotypes in adult heart. {ECO:0000250}.
Q9UN30 SCML1 S176 ochoa Sex comb on midleg-like protein 1 Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. May be involved in spermatogenesis during sexual maturation (By similarity). {ECO:0000250}.
Q9UNX4 WDR3 S241 ochoa WD repeat-containing protein 3 Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}.
Q9UP65 PLA2G4C S337 ochoa Cytosolic phospholipase A2 gamma (cPLA2-gamma) (EC 3.1.1.4) (Cytosolic lysophospholipase) (EC 3.1.1.5) (Cytosolic lysophospholipid O-acyltransferase) (EC 2.3.1.-) (Phospholipase A2 group IVC) Calcium-independent phospholipase, lysophospholipase and O-acyltransferase involved in phospholipid remodeling with implications in endoplasmic reticulum membrane homeostasis and lipid droplet biogenesis (PubMed:10085124, PubMed:10358058, PubMed:19501189, PubMed:28336330, PubMed:9705332). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at the sn-2 position of phospholipids with choline and ethanolamine head groups, producing lysophospholipids that are used in deacylation-reacylation cycles (PubMed:10085124, PubMed:10358058, PubMed:19501189, PubMed:28336330, PubMed:9705332). Transfers the sn-1 fatty acyl from one lysophospholipid molecule to the sn-2 position of another lysophospholipid to form diacyl, alkylacyl and alkenylacyl glycerophospholipids. Cleaves ester bonds but not alkyl or alkenyl ether bonds at sn-1 position of lysophospholipids (PubMed:15944408, PubMed:19501189). Catalyzes sn-2 fatty acyl transfer from phospholipids to the sn-2 position of 1-O-alkyl or 1-O-alkenyl lysophospholipids with lower efficiency (PubMed:15944408, PubMed:19501189). In response to dietary fatty acids, may play a role in the formation of nascent lipid droplets from the endoplasmic reticulum likely by regulating the phospholipid composition of these organelles (PubMed:28336330). {ECO:0000269|PubMed:10085124, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:15944408, ECO:0000269|PubMed:19501189, ECO:0000269|PubMed:28336330, ECO:0000269|PubMed:9705332}.; FUNCTION: (Microbial infection) May play a role in replication and assembly of human hepatitis C virus (HCV) (PubMed:23015700, PubMed:28336330). In response to HCV infection, promotes remodeling of host endoplasmic reticulum membranes to form organelle-like structures called membranous web, where HCV replication occur (PubMed:23015700). Can further mediate translocation of replication complexes to lipid droplets to enable virion assembly (PubMed:23015700, PubMed:28336330). {ECO:0000269|PubMed:23015700, ECO:0000269|PubMed:28336330}.; FUNCTION: (Microbial infection) May facilitate human T-lymphotropic virus type 1 (HTLV-1) infection by promoting leukotriene B4 (LTB4) biosynthesis. LTB4 acts as a chemoattractant for HTLV-1-infected CD4-positive T cells and favors cell to cell viral transmission. {ECO:0000269|PubMed:28639618}.
Q9UPN3 MACF1 S4496 ochoa Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}.
Q9UPN6 SCAF8 S779 ochoa SR-related and CTD-associated factor 8 (CDC5L complex-associated protein 7) (RNA-binding motif protein 16) Anti-terminator protein required to prevent early mRNA termination during transcription (PubMed:31104839). Together with SCAF4, acts by suppressing the use of early, alternative poly(A) sites, thereby preventing the accumulation of non-functional truncated proteins (PubMed:31104839). Mechanistically, associates with the phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit (POLR2A), and subsequently binds nascent RNA upstream of early polyadenylation sites to prevent premature mRNA transcript cleavage and polyadenylation (PubMed:31104839). Independently of SCAF4, also acts as a positive regulator of transcript elongation (PubMed:31104839). {ECO:0000269|PubMed:31104839}.
Q9UPN9 TRIM33 S809 ochoa E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}.
Q9UPU5 USP24 S2551 ochoa Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}.
Q9UPU7 TBC1D2B S577 ochoa TBC1 domain family member 2B GTPase-activating protein that plays a role in the early steps of endocytosis (PubMed:32623794). {ECO:0000269|PubMed:32623794}.
Q9UPV9 TRAK1 S543 ochoa Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}.
Q9Y266 NUDC S97 ochoa Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q9Y294 ASF1A S175 ochoa Histone chaperone ASF1A (Anti-silencing function protein 1 homolog A) (hAsf1) (hAsf1a) (CCG1-interacting factor A) (CIA) (hCIA) Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly (PubMed:10759893, PubMed:11897662, PubMed:12842904, PubMed:14718166, PubMed:15664198, PubMed:16151251, PubMed:21454524). Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly and with HIRA to promote replication-independent chromatin assembly (PubMed:11897662, PubMed:14718166, PubMed:15664198). Promotes homologous recombination-mediated repair of double-strand breaks (DSBs) at stalled or collapsed replication forks: acts by mediating histone replacement at DSBs, leading to recruitment of the MMS22L-TONSL complex and subsequent loading of RAD51 (PubMed:29478807). Also involved in the nuclear import of the histone H3-H4 dimer together with importin-4 (IPO4): specifically recognizes and binds newly synthesized histones with the monomethylation of H3 'Lys-9' and acetylation at 'Lys-14' (H3K9me1K14ac) marks, and diacetylation at 'Lys-5' and 'Lys-12' of H4 (H4K5K12ac) marks in the cytosol (PubMed:21454524, PubMed:29408485). Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit (PubMed:15621527). {ECO:0000269|PubMed:10759893, ECO:0000269|PubMed:11897662, ECO:0000269|PubMed:12842904, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527, ECO:0000269|PubMed:15664198, ECO:0000269|PubMed:16151251, ECO:0000269|PubMed:21454524, ECO:0000269|PubMed:29408485, ECO:0000269|PubMed:29478807}.
Q9Y2I9 TBC1D30 S80 ochoa TBC1 domain family member 30 May act as a GTPase-activating protein for Rab family protein(s). {ECO:0000305}.
Q9Y2T1 AXIN2 S244 ochoa Axin-2 (Axin-like protein) (Axil) (Axis inhibition protein 2) (Conductin) Inhibitor of the Wnt signaling pathway. Down-regulates beta-catenin. Probably facilitate the phosphorylation of beta-catenin and APC by GSK3B. {ECO:0000250|UniProtKB:O15169}.
Q9Y3S1 WNK2 S1262 ochoa Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}.
Q9Y3S2 ZNF330 S295 ochoa Zinc finger protein 330 (Nucleolar autoantigen 36) (Nucleolar cysteine-rich protein) None
Q9Y450 HBS1L S65 ochoa HBS1-like protein (EC 3.6.5.-) (ERFS) GTPase component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway (PubMed:21448132, PubMed:23667253, PubMed:27863242). The Pelota-HBS1L complex recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel (PubMed:27863242). Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132, PubMed:32006463). {ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:23667253, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:32006463}.
Q9Y462 ZNF711 S227 ochoa Zinc finger protein 711 (Zinc finger protein 6) Transcription regulator required for brain development (PubMed:20346720). Probably acts as a transcription factor that binds to the promoter of target genes and recruits PHF8 histone demethylase, leading to activated expression of genes involved in neuron development, such as KDM5C (PubMed:20346720, PubMed:31691806). May compete with transcription factor ARX for activation of expression of KDM5C (PubMed:31691806). {ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:31691806}.
Q9Y485 DMXL1 S466 ochoa DmX-like protein 1 (X-like 1 protein) None
Q9Y4B5 MTCL1 S794 ochoa Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}.
Q9Y4B5 MTCL1 S1385 ochoa Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}.
Q9Y4L1 HYOU1 S583 ochoa Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}.
Q9Y4W2 LAS1L S612 ochoa Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}.
Q9Y520 PRRC2C S651 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y5B6 PAXBP1 S155 ochoa PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}.
Q9Y5B9 SUPT16H S650 ochoa FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}.
Q9Y5T5 USP16 S189 ochoa Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}.
Q9Y5T5 USP16 S423 ochoa Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}.
Q9Y5X3 SNX5 S226 psp Sorting nexin-5 Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) (PubMed:15561769). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Does not have in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Involved in retrograde transport of lysosomal enzyme receptor IGF2R (PubMed:17148574, PubMed:18596235). May function as link between endosomal transport vesicles and dynactin (Probable). Plays a role in the internalization of EGFR after EGF stimulation (Probable). Involved in EGFR endosomal sorting and degradation; the function involves PIP5K1C isoform 3 and is retromer-independent (PubMed:23602387). Together with PIP5K1C isoform 3 facilitates HGS interaction with ubiquitinated EGFR, which initiates EGFR sorting to intraluminal vesicles (ILVs) of the multivesicular body for subsequent lysosomal degradation (Probable). Involved in E-cadherin sorting and degradation; inhibits PIP5K1C isoform 3-mediated E-cadherin degradation (PubMed:24610942). Plays a role in macropinocytosis (PubMed:18854019, PubMed:21048941). {ECO:0000269|PubMed:18854019, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:24610942, ECO:0000303|PubMed:15561769, ECO:0000303|PubMed:19619496, ECO:0000303|PubMed:23085988}.
Q9Y675 SNURF S34 ochoa SNRPN upstream reading frame protein None
P27348 YWHAQ S145 Sugiyama 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
P63104 YWHAZ S145 Sugiyama 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}.
Q04917 YWHAH S150 Sugiyama 14-3-3 protein eta (Protein AS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
Q9UNF1 MAGED2 S52 Sugiyama Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}.
O00444 PLK4 S640 Sugiyama Serine/threonine-protein kinase PLK4 (EC 2.7.11.21) (Polo-like kinase 4) (PLK-4) (Serine/threonine-protein kinase 18) (Serine/threonine-protein kinase Sak) Serine/threonine-protein kinase that plays a central role in centriole duplication. Able to trigger procentriole formation on the surface of the parental centriole cylinder, leading to the recruitment of centriole biogenesis proteins such as SASS6, CPAP, CCP110, CEP135 and gamma-tubulin. When overexpressed, it is able to induce centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole during S phase. Phosphorylates 'Ser-151' of FBXW5 during the G1/S transition, leading to inhibit FBXW5 ability to ubiquitinate SASS6. Its central role in centriole replication suggests a possible role in tumorigenesis, centrosome aberrations being frequently observed in tumors. Also involved in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles. Also involved in trophoblast differentiation by phosphorylating HAND1, leading to disrupt the interaction between HAND1 and MDFIC and activate HAND1. Phosphorylates CDC25C and CHEK2. Required for the recruitment of STIL to the centriole and for STIL-mediated centriole amplification (PubMed:22020124). Phosphorylates CEP131 at 'Ser-78' and PCM1 at 'Ser-372' which is essential for proper organization and integrity of centriolar satellites (PubMed:30804208). {ECO:0000269|PubMed:16244668, ECO:0000269|PubMed:16326102, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:18239451, ECO:0000269|PubMed:19164942, ECO:0000269|PubMed:21725316, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27796307, ECO:0000269|PubMed:30804208}.
P05787 KRT8 S410 Sugiyama Keratin, type II cytoskeletal 8 (Cytokeratin-8) (CK-8) (Keratin-8) (K8) (Type-II keratin Kb8) Together with KRT19, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle. {ECO:0000269|PubMed:16000376}.
P19338 NCL S595 Sugiyama Nucleolin (Protein C23) Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}.
P60174 TPI1 S198 Sugiyama Triosephosphate isomerase (TIM) (EC 5.3.1.1) (Methylglyoxal synthase) (EC 4.2.3.3) (Triose-phosphate isomerase) Triosephosphate isomerase is an extremely efficient metabolic enzyme that catalyzes the interconversion between dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (G3P) in glycolysis and gluconeogenesis. {ECO:0000269|PubMed:18562316}.; FUNCTION: It is also responsible for the non-negligible production of methylglyoxal a reactive cytotoxic side-product that modifies and can alter proteins, DNA and lipids. {ECO:0000250|UniProtKB:P00939}.
O60763 USO1 S751 Sugiyama General vesicular transport factor p115 (Protein USO1 homolog) (Transcytosis-associated protein) (TAP) (Vesicle-docking protein) General vesicular transport factor required for intercisternal transport in the Golgi stack; it is required for transcytotic fusion and/or subsequent binding of the vesicles to the target membrane. May well act as a vesicular anchor by interacting with the target membrane and holding the vesicular and target membranes in proximity. {ECO:0000250|UniProtKB:P41542}.
P20810 CAST S337 Sugiyama Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P30044 PRDX5 S171 Sugiyama Peroxiredoxin-5, mitochondrial (EC 1.11.1.24) (Alu corepressor 1) (Antioxidant enzyme B166) (AOEB166) (Liver tissue 2D-page spot 71B) (PLP) (Peroxiredoxin V) (Prx-V) (Peroxisomal antioxidant enzyme) (TPx type VI) (Thioredoxin peroxidase PMP20) (Thioredoxin-dependent peroxiredoxin 5) Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. {ECO:0000269|PubMed:10514471, ECO:0000269|PubMed:10521424, ECO:0000269|PubMed:10751410, ECO:0000269|PubMed:31740833}.
Q13409 DYNC1I2 S224 Sugiyama Cytoplasmic dynein 1 intermediate chain 2 (Cytoplasmic dynein intermediate chain 2) (Dynein intermediate chain 2, cytosolic) (DH IC-2) Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function (PubMed:31079899). Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules (PubMed:31079899). The intermediate chains mediate the binding of dynein to dynactin via its 150 kDa component (p150-glued) DCTN1 (By similarity). Involved in membrane-transport, such as Golgi apparatus, late endosomes and lysosomes (By similarity). {ECO:0000250|UniProtKB:Q62871, ECO:0000269|PubMed:31079899}.
Q14257 RCN2 S207 Sugiyama Reticulocalbin-2 (Calcium-binding protein ERC-55) (E6-binding protein) (E6BP) Not known. Binds calcium.
Q9ULV4 CORO1C S389 Sugiyama Coronin-1C (Coronin-3) (hCRNN4) Plays a role in directed cell migration by regulating the activation and subcellular location of RAC1 (PubMed:25074804, PubMed:25925950). Increases the presence of activated RAC1 at the leading edge of migrating cells (PubMed:25074804, PubMed:25925950). Required for normal organization of the cytoskeleton, including the actin cytoskeleton, microtubules and the vimentin intermediate filaments (By similarity). Plays a role in endoplasmic reticulum-associated endosome fission: localizes to endosome membrane tubules and promotes recruitment of TMCC1, leading to recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). Required for normal cell proliferation, cell migration, and normal formation of lamellipodia (By similarity). Required for normal distribution of mitochondria within cells (By similarity). {ECO:0000250|UniProtKB:Q9WUM4, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:25925950, ECO:0000269|PubMed:30220460, ECO:0000269|PubMed:34106209}.; FUNCTION: [Isoform 3]: Involved in myogenic differentiation. {ECO:0000269|PubMed:19651142}.
Q9Y696 CLIC4 S27 Sugiyama Chloride intracellular channel protein 4 (Glutaredoxin-like oxidoreductase CLIC4) (EC 1.8.-.-) (Intracellular chloride ion channel protein p64H1) In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (PubMed:25581026, PubMed:37759794). Can insert into membranes and form voltage-dependent multi-ion conductive channels. Membrane insertion seems to be redox-regulated and may occur only under oxidizing conditions (By similarity) (PubMed:16176272). Has alternate cellular functions like a potential role in angiogenesis or in maintaining apical-basolateral membrane polarity during mitosis and cytokinesis. Could also promote endothelial cell proliferation and regulate endothelial morphogenesis (tubulogenesis). Promotes cell-surface expression of HRH3. {ECO:0000250|UniProtKB:Q9Z0W7, ECO:0000269|PubMed:12163372, ECO:0000269|PubMed:14569596, ECO:0000269|PubMed:16176272, ECO:0000269|PubMed:16239224, ECO:0000269|PubMed:18302930, ECO:0000269|PubMed:19247789, ECO:0000269|PubMed:25581026, ECO:0000269|PubMed:37759794}.
Q12888 TP53BP1 S197 Sugiyama TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q02809 PLOD1 S346 Sugiyama Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 (EC 1.14.11.4) (Lysyl hydroxylase 1) (LH1) Part of a complex composed of PLOD1, P3H3 and P3H4 that catalyzes hydroxylation of lysine residues in collagen alpha chains and is required for normal assembly and cross-linkling of collagen fibrils (By similarity). Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens (PubMed:10686424, PubMed:15854030, PubMed:8621606). These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links (Probable). {ECO:0000250|UniProtKB:Q9R0E2, ECO:0000269|PubMed:10686424, ECO:0000269|PubMed:15854030, ECO:0000269|PubMed:8621606, ECO:0000305}.
Q9HDC9 APMAP S188 Sugiyama Adipocyte plasma membrane-associated protein (Protein BSCv) Exhibits strong arylesterase activity with beta-naphthyl acetate and phenyl acetate. May play a role in adipocyte differentiation. {ECO:0000269|PubMed:18513186}.
Q9NR30 DDX21 S706 Sugiyama Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}.
O60566 BUB1B S225 Sugiyama Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}.
Q96CW6 SLC7A6OS S32 Sugiyama Probable RNA polymerase II nuclear localization protein SLC7A6OS (ADAMS proteinase-related protein) (Solute carrier family 7 member 6 opposite strand transcript) Directs RNA polymerase II nuclear import. {ECO:0000250}.
Q02878 RPL6 S255 Sugiyama Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
Q96E11 MRRF S239 Sugiyama Ribosome-recycling factor, mitochondrial (RRF) (mtRRF) (Ribosome-releasing factor, mitochondrial) Responsible for the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis (PubMed:19716793, PubMed:33878294). Acts in collaboration with GFM2 (PubMed:33878294). Promotes mitochondrial ribosome recycling by dissolution of intersubunit contacts (PubMed:33878294). {ECO:0000269|PubMed:19716793, ECO:0000269|PubMed:33878294}.
O15541 RNF113A Y100 Sugiyama E3 ubiquitin-protein ligase RNF113A (EC 2.3.2.27) (Cwc24 homolog) (RING finger protein 113A) (Zinc finger protein 183) Required for pre-mRNA splicing as component of the spliceosome (PubMed:29360106, PubMed:29361316). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). E3 ubiquitin-protein ligase that catalyzes the transfer of ubiquitin onto target proteins (PubMed:28978524, PubMed:29144457). Catalyzes polyubiquitination of SNRNP200/BRR2 with non-canonical 'Lys-63'-linked polyubiquitin chains (PubMed:29144457). Plays a role in DNA repair via its role in the synthesis of 'Lys-63'-linked polyubiquitin chains that recruit ALKBH3 and the ASCC complex to sites of DNA damage by alkylating agents (PubMed:29144457). Ubiquitinates CXCR4, leading to its degradation, and thereby contributes to the termination of CXCR4 signaling (PubMed:28978524). {ECO:0000269|PubMed:28978524, ECO:0000269|PubMed:29144457, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9NSE4 IARS2 S98 Sugiyama Isoleucine--tRNA ligase, mitochondrial (EC 6.1.1.5) (Isoleucyl-tRNA synthetase) (IleRS) Aminoacyl-tRNA synthetase that catalyzes the specific attachment of isoleucine to its cognate tRNA (tRNA(Ile)). {ECO:0000250|UniProtKB:P00956}.
P11047 LAMC1 S348 Sugiyama Laminin subunit gamma-1 (Laminin B2 chain) (Laminin-1 subunit gamma) (Laminin-10 subunit gamma) (Laminin-11 subunit gamma) (Laminin-2 subunit gamma) (Laminin-3 subunit gamma) (Laminin-4 subunit gamma) (Laminin-6 subunit gamma) (Laminin-7 subunit gamma) (Laminin-8 subunit gamma) (Laminin-9 subunit gamma) (S-laminin subunit gamma) (S-LAM gamma) Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components.
Q07866 KLC1 S445 Sugiyama Kinesin light chain 1 (KLC 1) Kinesin is a microtubule-associated force-producing protein that may play a role in organelle transport (PubMed:21385839). The light chain may function in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (By similarity). {ECO:0000250|UniProtKB:P37285, ECO:0000269|PubMed:21385839}.
Q03135 CAV1 S88 SIGNOR|ELM|iPTMNet Caveolin-1 May act as a scaffolding protein within caveolar membranes (PubMed:11751885). Forms a stable heterooligomeric complex with CAV2 that targets to lipid rafts and drives caveolae formation. Mediates the recruitment of CAVIN proteins (CAVIN1/2/3/4) to the caveolae (PubMed:19262564). Interacts directly with G-protein alpha subunits and can functionally regulate their activity (By similarity). Involved in the costimulatory signal essential for T-cell receptor (TCR)-mediated T-cell activation. Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Recruits CTNNB1 to caveolar membranes and may regulate CTNNB1-mediated signaling through the Wnt pathway (By similarity). Negatively regulates TGFB1-mediated activation of SMAD2/3 by mediating the internalization of TGFBR1 from membrane rafts leading to its subsequent degradation (PubMed:25893292). Binds 20(S)-hydroxycholesterol (20(S)-OHC) (By similarity). {ECO:0000250|UniProtKB:P49817, ECO:0000269|PubMed:11751885, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:19262564, ECO:0000269|PubMed:25893292}.
Q12824 SMARCB1 S111 Sugiyama SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (BRG1-associated factor 47) (BAF47) (Integrase interactor 1 protein) (SNF5 homolog) (hSNF5) Core component of the BAF (hSWI/SNF) complex. This ATP-dependent chromatin-remodeling complex plays important roles in cell proliferation and differentiation, in cellular antiviral activities and inhibition of tumor formation. The BAF complex is able to create a stable, altered form of chromatin that constrains fewer negative supercoils than normal. This change in supercoiling would be due to the conversion of up to one-half of the nucleosomes on polynucleosomal arrays into asymmetric structures, termed altosomes, each composed of 2 histones octamers. Stimulates in vitro the remodeling activity of SMARCA4/BRG1/BAF190A. Involved in activation of CSF1 promoter. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Plays a key role in cell-cycle control and causes cell cycle arrest in G0/G1. {ECO:0000250|UniProtKB:Q9Z0H3, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:12226744, ECO:0000269|PubMed:14604992, ECO:0000269|PubMed:16267391, ECO:0000269|PubMed:16314535, ECO:0000269|PubMed:9448295}.
Q13057 COASY S507 Sugiyama Bifunctional coenzyme A synthase (CoA synthase) (NBP) (POV-2) [Includes: Phosphopantetheine adenylyltransferase (EC 2.7.7.3) (Dephospho-CoA pyrophosphorylase) (Pantetheine-phosphate adenylyltransferase) (PPAT); Dephospho-CoA kinase (DPCK) (EC 2.7.1.24) (Dephosphocoenzyme A kinase) (DPCOAK)] Bifunctional enzyme that catalyzes the fourth and fifth sequential steps of CoA biosynthetic pathway. The fourth reaction is catalyzed by the phosphopantetheine adenylyltransferase, coded by the coaD domain; the fifth reaction is catalyzed by the dephospho-CoA kinase, coded by the coaE domain. May act as a point of CoA biosynthesis regulation. {ECO:0000269|PubMed:11923312, ECO:0000269|PubMed:24360804}.
O43707 ACTN4 S763 Sugiyama Alpha-actinin-4 (Non-muscle alpha-actinin 4) F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}.
P12814 ACTN1 S744 Sugiyama Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}.
P49585 PCYT1A S174 Sugiyama Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P00505 GOT2 S118 Sugiyama Aspartate aminotransferase, mitochondrial (mAspAT) (EC 2.6.1.1) (EC 2.6.1.7) (Fatty acid-binding protein) (FABP-1) (Glutamate oxaloacetate transaminase 2) (Kynurenine aminotransferase 4) (Kynurenine aminotransferase IV) (Kynurenine--oxoglutarate transaminase 4) (Kynurenine--oxoglutarate transaminase IV) (Plasma membrane-associated fatty acid-binding protein) (FABPpm) (Transaminase A) Catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid (KA). As a member of the malate-aspartate shuttle, it has a key role in the intracellular NAD(H) redox balance. Is important for metabolite exchange between mitochondria and cytosol, and for amino acid metabolism. Facilitates cellular uptake of long-chain free fatty acids. {ECO:0000269|PubMed:31422819, ECO:0000269|PubMed:9537447}.
P57081 WDR4 S128 Sugiyama tRNA (guanine-N(7)-)-methyltransferase non-catalytic subunit WDR4 (Protein Wuho homolog) (hWH) (WD repeat-containing protein 4) Non-catalytic component of the METTL1-WDR4 methyltransferase complex required for the formation of N(7)-methylguanine in a subset of RNA species, such as tRNAs, mRNAs and microRNAs (miRNAs) (PubMed:12403464, PubMed:31031083, PubMed:31031084, PubMed:36599982, PubMed:36599985, PubMed:37369656). In the METTL1-WDR4 methyltransferase complex, WDR4 acts as a scaffold for tRNA-binding (PubMed:36599982, PubMed:36599985, PubMed:37369656). Required for the formation of N(7)-methylguanine at position 46 (m7G46) in a large subset of tRNAs that contain the 5'-RAGGU-3' motif within the variable loop (PubMed:12403464, PubMed:34352206, PubMed:34352207, PubMed:36599982, PubMed:36599985, PubMed:37369656). M7G46 interacts with C13-G22 in the D-loop to stabilize tRNA tertiary structure and protect tRNAs from decay (PubMed:36599982, PubMed:36599985). Also required for the formation of N(7)-methylguanine at internal sites in a subset of mRNAs (PubMed:31031084, PubMed:37379838). Also required for methylation of a specific subset of miRNAs, such as let-7 (PubMed:31031083). Independently of METTL1, also plays a role in genome stability: localizes at the DNA replication site and regulates endonucleolytic activities of FEN1 (PubMed:26751069). {ECO:0000269|PubMed:12403464, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:31031083, ECO:0000269|PubMed:31031084, ECO:0000269|PubMed:34352206, ECO:0000269|PubMed:34352207, ECO:0000269|PubMed:36599982, ECO:0000269|PubMed:36599985, ECO:0000269|PubMed:37369656, ECO:0000269|PubMed:37379838}.
P42684 ABL2 S564 Sugiyama Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}.
P42684 ABL2 S604 Sugiyama Tyrosine-protein kinase ABL2 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 2) (Abelson tyrosine-protein kinase 2) (Abelson-related gene protein) (Tyrosine-protein kinase ARG) Non-receptor tyrosine-protein kinase that plays an ABL1-overlapping role in key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion and receptor endocytosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like MYH10 (involved in movement); CTTN (involved in signaling); or TUBA1 and TUBB (microtubule subunits). Binds directly F-actin and regulates actin cytoskeletal structure through its F-actin-bundling activity. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as CRK, CRKL, DOK1 or ARHGAP35. Adhesion-dependent phosphorylation of ARHGAP35 promotes its association with RASA1, resulting in recruitment of ARHGAP35 to the cell periphery where it inhibits RHO. Phosphorylates multiple receptor tyrosine kinases like PDGFRB and other substrates which are involved in endocytosis regulation such as RIN1. In brain, may regulate neurotransmission by phosphorylating proteins at the synapse. ABL2 also acts as a regulator of multiple pathological signaling cascades during infection. Pathogens can highjack ABL2 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). {ECO:0000250|UniProtKB:Q4JIM5, ECO:0000269|PubMed:15735735, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:18945674}.
P17844 DDX5 S422 Sugiyama Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}.
Q7KZ85 SUPT6H S78 Sugiyama Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}.
P49137 MAPKAPK2 S358 Sugiyama MAP kinase-activated protein kinase 2 (MAPK-activated protein kinase 2) (MAPKAP kinase 2) (MAPKAP-K2) (MAPKAPK-2) (MK-2) (MK2) (EC 2.7.11.1) Stress-activated serine/threonine-protein kinase involved in cytokine production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling, DNA damage response and transcriptional regulation. Following stress, it is phosphorylated and activated by MAP kinase p38-alpha/MAPK14, leading to phosphorylation of substrates. Phosphorylates serine in the peptide sequence, Hyd-X-R-X(2)-S, where Hyd is a large hydrophobic residue. Phosphorylates ALOX5, CDC25B, CDC25C, CEP131, ELAVL1, HNRNPA0, HSP27/HSPB1, KRT18, KRT20, LIMK1, LSP1, PABPC1, PARN, PDE4A, RCSD1, RPS6KA3, TAB3 and TTP/ZFP36. Phosphorylates HSF1; leading to the interaction with HSP90 proteins and inhibiting HSF1 homotrimerization, DNA-binding and transactivation activities (PubMed:16278218). Mediates phosphorylation of HSP27/HSPB1 in response to stress, leading to the dissociation of HSP27/HSPB1 from large small heat-shock protein (sHsps) oligomers and impairment of their chaperone activities and ability to protect against oxidative stress effectively. Involved in inflammatory response by regulating tumor necrosis factor (TNF) and IL6 production post-transcriptionally: acts by phosphorylating AU-rich elements (AREs)-binding proteins ELAVL1, HNRNPA0, PABPC1 and TTP/ZFP36, leading to the regulation of the stability and translation of TNF and IL6 mRNAs. Phosphorylation of TTP/ZFP36, a major post-transcriptional regulator of TNF, promotes its binding to 14-3-3 proteins and reduces its ARE mRNA affinity, leading to inhibition of dependent degradation of ARE-containing transcripts. Phosphorylates CEP131 in response to cellular stress induced by ultraviolet irradiation which promotes binding of CEP131 to 14-3-3 proteins and inhibits formation of novel centriolar satellites (PubMed:26616734). Also involved in late G2/M checkpoint following DNA damage through a process of post-transcriptional mRNA stabilization: following DNA damage, relocalizes from nucleus to cytoplasm and phosphorylates HNRNPA0 and PARN, leading to stabilization of GADD45A mRNA. Involved in toll-like receptor signaling pathway (TLR) in dendritic cells: required for acute TLR-induced macropinocytosis by phosphorylating and activating RPS6KA3. {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:11844797, ECO:0000269|PubMed:12456657, ECO:0000269|PubMed:12565831, ECO:0000269|PubMed:14499342, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:15014438, ECO:0000269|PubMed:15629715, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:16456544, ECO:0000269|PubMed:17481585, ECO:0000269|PubMed:18021073, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:8093612, ECO:0000269|PubMed:8280084, ECO:0000269|PubMed:8774846}.
Q9UK32 RPS6KA6 S438 Sugiyama Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}.
Q92609 TBC1D5 S677 Sugiyama TBC1 domain family member 5 May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}.
P20073 ANXA7 S216 Sugiyama Annexin A7 (Annexin VII) (Annexin-7) (Synexin) Calcium/phospholipid-binding protein which promotes membrane fusion and is involved in exocytosis.
Q13310 PABPC4 S212 Sugiyama Polyadenylate-binding protein 4 (PABP-4) (Poly(A)-binding protein 4) (Activated-platelet protein 1) (APP-1) (Inducible poly(A)-binding protein) (iPABP) Binds the poly(A) tail of mRNA (PubMed:8524242). Binds to SMIM26 mRNA and plays a role in its post-transcriptional regulation (PubMed:37009826). May be involved in cytoplasmic regulatory processes of mRNA metabolism. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo (By similarity). {ECO:0000250|UniProtKB:P11940, ECO:0000269|PubMed:37009826, ECO:0000269|PubMed:8524242}.
Q9NQ29 LUC7L S181 Sugiyama Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}.
Q9Y383 LUC7L2 S181 Sugiyama Putative RNA-binding protein Luc7-like 2 May bind to RNA via its Arg/Ser-rich domain.
Q02880 TOP2B S1135 SIGNOR DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
P25205 MCM3 S41 Sugiyama DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
Q92844 TANK S49 SIGNOR TRAF family member-associated NF-kappa-B activator (TRAF-interacting protein) (I-TRAF) Adapter protein involved in I-kappa-B-kinase (IKK) regulation which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. Acts as a regulator of TRAF function by maintaining them in a latent state. Blocks TRAF2 binding to LMP1 and inhibits LMP1-mediated NF-kappa-B activation. Negatively regulates NF-kappaB signaling and cell survival upon DNA damage (PubMed:25861989). Plays a role as an adapter to assemble ZC3H12A, USP10 in a deubiquitination complex which plays a negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Promotes UBP10-induced deubiquitination of TRAF6 in response to DNA damage (PubMed:25861989). May control negatively TRAF2-mediated NF-kappa-B activation signaled by CD40, TNFR1 and TNFR2. {ECO:0000269|PubMed:12133833, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:25861989}.
Q9BQS8 FYCO1 S425 Sugiyama FYVE and coiled-coil domain-containing protein 1 (Zinc finger FYVE domain-containing protein 7) May mediate microtubule plus end-directed vesicle transport. {ECO:0000269|PubMed:20100911}.
Q16816 PHKG1 S32 Sugiyama Phosphorylase b kinase gamma catalytic chain, skeletal muscle/heart isoform (PHK-gamma-M) (EC 2.7.11.19) (Phosphorylase kinase subunit gamma-1) (Serine/threonine-protein kinase PHKG1) (EC 2.7.11.1, EC 2.7.11.26) Catalytic subunit of the phosphorylase b kinase (PHK), which mediates the neural and hormonal regulation of glycogen breakdown (glycogenolysis) by phosphorylating and thereby activating glycogen phosphorylase. In vitro, phosphorylates PYGM, TNNI3, MAPT/TAU, GAP43 and NRGN/RC3 (By similarity). {ECO:0000250}.
Q9GZM8 NDEL1 S95 PSP Nuclear distribution protein nudE-like 1 (Protein Nudel) (Mitosin-associated protein 1) Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the centripetal motion of secretory vesicles and the coupling of the nucleus and centrosome. Also required during brain development for the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Plays a role, together with DISC1, in the regulation of neurite outgrowth. Required for mitosis in some cell types but appears to be dispensible for mitosis in cortical neuronal progenitors, which instead requires NDE1. Facilitates the polymerization of neurofilaments from the individual subunits NEFH and NEFL. Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). Plays a role, together with DISC1, in the regulation of neurite outgrowth (By similarity). May act as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000250|UniProtKB:Q78PB6, ECO:0000250|UniProtKB:Q9ERR1, ECO:0000269|PubMed:12556484, ECO:0000269|PubMed:14970193, ECO:0000269|PubMed:16291865, ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:34793709}.
Q5S007 LRRK2 S1913 EPSD|PSP Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}.
P30622 CLIP1 S1328 Sugiyama CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}.
Q9NQP4 PFDN4 S103 Sugiyama Prefoldin subunit 4 (Protein C-1) Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins. {ECO:0000269|PubMed:9630229}.
Q6P0Q8 MAST2 S832 Sugiyama Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}.
Q9HAU0 PLEKHA5 S832 Sugiyama Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
P0DPB6 POLR1D S78 Sugiyama DNA-directed RNA polymerases I and III subunit RPAC2 (RNA polymerases I and III subunit AC2) (AC19) (DNA-directed RNA polymerase I subunit D) (RNA polymerase I 16 kDa subunit) (RPA16) (RPC16) (hRPA19) DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and short non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs, respectively. {ECO:0000250|UniProtKB:P28000, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:35637192, ECO:0000269|PubMed:36271492}.
Q96K76 USP47 S920 Sugiyama Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}.
Q9HBH9 MKNK2 S338 Sugiyama MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}.
Q15047 SETDB1 S86 Sugiyama Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}.
A0A0J9YX86 GOLGA8Q S90 ochoa Golgin A8 family member Q None
A0JNW5 BLTP3B S1009 ochoa Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}.
A5PL33 KRBA1 S447 ochoa Protein KRBA1 None
A6NDB9 PALM3 S260 ochoa Paralemmin-3 ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}.
A8TX70 COL6A5 S2255 ochoa Collagen alpha-5(VI) chain (Collagen alpha-1(XXIX) chain) (von Willebrand factor A domain-containing protein 4) Collagen VI acts as a cell-binding protein. {ECO:0000250}.
E9PMD0 None S240 ochoa Uncharacterized protein None
H7C1W4 None S242 ochoa Uncharacterized protein None
I3L0D1 RBAK-RBAKDN S78 ochoa HCG1647537, isoform CRA_b (RBAK-RBAKDN readthrough) None
I6L899 GOLGA8R S90 ochoa Golgin subfamily A member 8R None
O00178 GTPBP1 S72 ochoa GTP-binding protein 1 (G-protein 1) (GP-1) (GP1) Promotes degradation of target mRNA species. Plays a role in the regulation of circadian mRNA stability. Binds GTP and has GTPase activity (By similarity). {ECO:0000250|UniProtKB:D2XV59}.
O00231 PSMD11 S79 ochoa 26S proteasome non-ATPase regulatory subunit 11 (26S proteasome regulatory subunit RPN6) (26S proteasome regulatory subunit S9) (26S proteasome regulatory subunit p44.5) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. In the complex, PSMD11 is required for proteasome assembly. Plays a key role in increased proteasome activity in embryonic stem cells (ESCs): its high expression in ESCs promotes enhanced assembly of the 26S proteasome, followed by higher proteasome activity. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:22972301}.
O00267 SUPT5H S148 ochoa Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}.
O00418 EEF2K S243 ochoa Eukaryotic elongation factor 2 kinase (eEF-2 kinase) (eEF-2K) (EC 2.7.11.20) (Calcium/calmodulin-dependent eukaryotic elongation factor 2 kinase) Threonine kinase that regulates protein synthesis by controlling the rate of peptide chain elongation. Upon activation by a variety of upstream kinases including AMPK or TRPM7, phosphorylates the elongation factor EEF2 at a single site, renders it unable to bind ribosomes and thus inactive. In turn, the rate of protein synthesis is reduced. {ECO:0000269|PubMed:14709557, ECO:0000269|PubMed:9144159}.
O00750 PIK3C2B S225 ochoa Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit beta (PI3K-C2-beta) (PtdIns-3-kinase C2 subunit beta) (EC 2.7.1.137) (EC 2.7.1.154) (C2-PI3K) (Phosphoinositide 3-kinase-C2-beta) Phosphorylates PtdIns and PtdIns4P with a preference for PtdIns (PubMed:10805725, PubMed:11533253, PubMed:9830063). Does not phosphorylate PtdIns(4,5)P2 (PubMed:9830063). May be involved in EGF and PDGF signaling cascades (PubMed:10805725). {ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11533253, ECO:0000269|PubMed:9830063}.
O14490 DLGAP1 S52 ochoa Disks large-associated protein 1 (DAP-1) (Guanylate kinase-associated protein) (hGKAP) (PSD-95/SAP90-binding protein 1) (SAP90/PSD-95-associated protein 1) (SAPAP1) Part of the postsynaptic scaffold in neuronal cells.
O14523 C2CD2L S532 ochoa Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}.
O15061 SYNM S484 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O43298 ZBTB43 S207 ochoa Zinc finger and BTB domain-containing protein 43 (Zinc finger and BTB domain-containing protein 22B) (Zinc finger protein 297B) (ZnF-x) May be involved in transcriptional regulation.
O43303 CCP110 S854 ochoa Centriolar coiled-coil protein of 110 kDa (Centrosomal protein of 110 kDa) (CP110) (Cep110) Necessary for centrosome duplication at different stages of procentriole formation. Acts as a key negative regulator of ciliogenesis in collaboration with CEP97 by capping the mother centriole thereby preventing cilia formation (PubMed:17681131, PubMed:17719545, PubMed:23486064, PubMed:30375385, PubMed:35301795). Also involved in promoting ciliogenesis. May play a role in the assembly of the mother centriole subdistal appendages (SDA) thereby effecting the fusion of recycling endosomes to basal bodies during cilia formation (By similarity). Required for correct spindle formation and has a role in regulating cytokinesis and genome stability via cooperation with CALM1 and CETN2 (PubMed:16760425). {ECO:0000250|UniProtKB:Q7TSH4, ECO:0000269|PubMed:12361598, ECO:0000269|PubMed:16760425, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:23486064, ECO:0000269|PubMed:30375385, ECO:0000269|PubMed:35301795}.
O43829 ZBTB14 S222 ochoa Zinc finger and BTB domain-containing protein 14 (Zinc finger protein 161 homolog) (Zfp-161) (Zinc finger protein 478) (Zinc finger protein 5 homolog) (ZF5) (Zfp-5) (hZF5) Transcriptional activator of the dopamine transporter (DAT), binding it's promoter at the consensus sequence 5'-CCTGCACAGTTCACGGA-3'. Binds to 5'-d(GCC)(n)-3' trinucleotide repeats in promoter regions and acts as a repressor of the FMR1 gene. Transcriptional repressor of MYC and thymidine kinase promoters. {ECO:0000269|PubMed:17714511}.
O60260 PRKN S110 psp E3 ubiquitin-protein ligase parkin (Parkin) (EC 2.3.2.31) (Parkin RBR E3 ubiquitin-protein ligase) (Parkinson juvenile disease protein 2) (Parkinson disease protein 2) Functions within a multiprotein E3 ubiquitin ligase complex, catalyzing the covalent attachment of ubiquitin moieties onto substrate proteins (PubMed:10888878, PubMed:10973942, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:15105460, PubMed:16135753, PubMed:21376232, PubMed:21532592, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:24660806, PubMed:24751536, PubMed:29311685, PubMed:32047033). Substrates include SYT11 and VDAC1 (PubMed:29311685, PubMed:32047033). Other substrates are BCL2, CCNE1, GPR37, RHOT1/MIRO1, MFN1, MFN2, STUB1, SNCAIP, SEPTIN5, TOMM20, USP30, ZNF746, MIRO1 and AIMP2 (PubMed:10888878, PubMed:10973942, PubMed:11431533, PubMed:12150907, PubMed:12628165, PubMed:15105460, PubMed:16135753, PubMed:21376232, PubMed:21532592, PubMed:22396657, PubMed:23620051, PubMed:23754282, PubMed:24660806, PubMed:24751536). Mediates monoubiquitination as well as 'Lys-6', 'Lys-11', 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of substrates depending on the context (PubMed:19229105, PubMed:20889974, PubMed:25474007, PubMed:25621951, PubMed:32047033). Participates in the removal and/or detoxification of abnormally folded or damaged protein by mediating 'Lys-63'-linked polyubiquitination of misfolded proteins such as PARK7: 'Lys-63'-linked polyubiquitinated misfolded proteins are then recognized by HDAC6, leading to their recruitment to aggresomes, followed by degradation (PubMed:17846173, PubMed:19229105). Mediates 'Lys-63'-linked polyubiquitination of a 22 kDa O-linked glycosylated isoform of SNCAIP, possibly playing a role in Lewy-body formation (PubMed:11431533, PubMed:11590439, PubMed:15105460, PubMed:15728840, PubMed:19229105). Mediates monoubiquitination of BCL2, thereby acting as a positive regulator of autophagy (PubMed:20889974). Protects against mitochondrial dysfunction during cellular stress, by acting downstream of PINK1 to coordinate mitochondrial quality control mechanisms that remove and replace dysfunctional mitochondrial components (PubMed:11439185, PubMed:18957282, PubMed:19029340, PubMed:19966284, PubMed:21376232, PubMed:22082830, PubMed:22396657, PubMed:23620051, PubMed:23933751, PubMed:24660806, PubMed:24784582, PubMed:24896179, PubMed:25474007, PubMed:25527291, PubMed:32047033). Depending on the severity of mitochondrial damage and/or dysfunction, activity ranges from preventing apoptosis and stimulating mitochondrial biogenesis to regulating mitochondrial dynamics and eliminating severely damaged mitochondria via mitophagy (PubMed:11439185, PubMed:19029340, PubMed:19801972, PubMed:19966284, PubMed:21376232, PubMed:22082830, PubMed:22396657, PubMed:23620051, PubMed:23685073, PubMed:23933751, PubMed:24896179, PubMed:25527291, PubMed:32047033, PubMed:33499712). Activation and recruitment onto the outer membrane of damaged/dysfunctional mitochondria (OMM) requires PINK1-mediated phosphorylation of both PRKN and ubiquitin (PubMed:24660806, PubMed:24784582, PubMed:25474007, PubMed:25527291). After mitochondrial damage, functions with PINK1 to mediate the decision between mitophagy or preventing apoptosis by inducing either the poly- or monoubiquitination of VDAC1, respectively; polyubiquitination of VDAC1 promotes mitophagy, while monoubiquitination of VDAC1 decreases mitochondrial calcium influx which ultimately inhibits apoptosis (PubMed:27534820, PubMed:32047033). When cellular stress results in irreversible mitochondrial damage, promotes the autophagic degradation of dysfunctional depolarized mitochondria (mitophagy) by promoting the ubiquitination of mitochondrial proteins such as TOMM20, RHOT1/MIRO1, MFN1 and USP30 (PubMed:19029340, PubMed:19966284, PubMed:21753002, PubMed:22396657, PubMed:23620051, PubMed:23685073, PubMed:23933751, PubMed:24896179, PubMed:25527291). Preferentially assembles 'Lys-6'-, 'Lys-11'- and 'Lys-63'-linked polyubiquitin chains, leading to mitophagy (PubMed:25621951, PubMed:32047033). The PINK1-PRKN pathway also promotes fission of damaged mitochondria by PINK1-mediated phosphorylation which promotes the PRKN-dependent degradation of mitochondrial proteins involved in fission such as MFN2 (PubMed:23620051). This prevents the refusion of unhealthy mitochondria with the mitochondrial network or initiates mitochondrial fragmentation facilitating their later engulfment by autophagosomes (PubMed:23620051). Regulates motility of damaged mitochondria via the ubiquitination and subsequent degradation of MIRO1 and MIRO2; in motor neurons, this likely inhibits mitochondrial intracellular anterograde transport along the axons which probably increases the chance of the mitochondria undergoing mitophagy in the soma (PubMed:22396657). Involved in mitochondrial biogenesis via the 'Lys-48'-linked polyubiquitination of transcriptional repressor ZNF746/PARIS which leads to its subsequent proteasomal degradation and allows activation of the transcription factor PPARGC1A (PubMed:21376232). Limits the production of reactive oxygen species (ROS) (PubMed:18541373). Regulates cyclin-E during neuronal apoptosis (PubMed:12628165). In collaboration with CHPF isoform 2, may enhance cell viability and protect cells from oxidative stress (PubMed:22082830). Independently of its ubiquitin ligase activity, protects from apoptosis by the transcriptional repression of p53/TP53 (PubMed:19801972). May protect neurons against alpha synuclein toxicity, proteasomal dysfunction, GPR37 accumulation, and kainate-induced excitotoxicity (PubMed:11439185). May play a role in controlling neurotransmitter trafficking at the presynaptic terminal and in calcium-dependent exocytosis. May represent a tumor suppressor gene (PubMed:12719539). {ECO:0000269|PubMed:10888878, ECO:0000269|PubMed:10973942, ECO:0000269|PubMed:11431533, ECO:0000269|PubMed:11439185, ECO:0000269|PubMed:11590439, ECO:0000269|PubMed:12150907, ECO:0000269|PubMed:12628165, ECO:0000269|PubMed:12719539, ECO:0000269|PubMed:15105460, ECO:0000269|PubMed:15728840, ECO:0000269|PubMed:16135753, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18541373, ECO:0000269|PubMed:18957282, ECO:0000269|PubMed:19029340, ECO:0000269|PubMed:19229105, ECO:0000269|PubMed:19801972, ECO:0000269|PubMed:19966284, ECO:0000269|PubMed:20889974, ECO:0000269|PubMed:21376232, ECO:0000269|PubMed:21532592, ECO:0000269|PubMed:21753002, ECO:0000269|PubMed:22082830, ECO:0000269|PubMed:22396657, ECO:0000269|PubMed:23620051, ECO:0000269|PubMed:23685073, ECO:0000269|PubMed:23754282, ECO:0000269|PubMed:23933751, ECO:0000269|PubMed:24660806, ECO:0000269|PubMed:24751536, ECO:0000269|PubMed:24784582, ECO:0000269|PubMed:24896179, ECO:0000269|PubMed:25474007, ECO:0000269|PubMed:25527291, ECO:0000269|PubMed:25621951, ECO:0000269|PubMed:27534820, ECO:0000269|PubMed:29311685, ECO:0000269|PubMed:32047033, ECO:0000269|PubMed:33499712}.
O60664 PLIN3 S148 ochoa Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}.
O75369 FLNB S2418 ochoa Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro.
O75376 NCOR1 S1383 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75396 SEC22B S168 ochoa Vesicle-trafficking protein SEC22b (ER-Golgi SNARE of 24 kDa) (ERS-24) (ERS24) (SEC22 vesicle-trafficking protein homolog B) (SEC22 vesicle-trafficking protein-like 1) SNARE involved in targeting and fusion of ER-derived transport vesicles with the Golgi complex as well as Golgi-derived retrograde transport vesicles with the ER. {ECO:0000269|PubMed:15272311}.
O75469 NR1I2 S167 psp Nuclear receptor subfamily 1 group I member 2 (Orphan nuclear receptor PAR1) (Orphan nuclear receptor PXR) (Pregnane X receptor) (Steroid and xenobiotic receptor) (SXR) Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes. {ECO:0000269|PubMed:11297522, ECO:0000269|PubMed:11668216, ECO:0000269|PubMed:12578355, ECO:0000269|PubMed:18768384, ECO:0000269|PubMed:19297428, ECO:0000269|PubMed:9727070}.
O75469 NR1I2 S208 psp Nuclear receptor subfamily 1 group I member 2 (Orphan nuclear receptor PAR1) (Orphan nuclear receptor PXR) (Pregnane X receptor) (Steroid and xenobiotic receptor) (SXR) Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes. {ECO:0000269|PubMed:11297522, ECO:0000269|PubMed:11668216, ECO:0000269|PubMed:12578355, ECO:0000269|PubMed:18768384, ECO:0000269|PubMed:19297428, ECO:0000269|PubMed:9727070}.
O75821 EIF3G S266 ochoa Eukaryotic translation initiation factor 3 subunit G (eIF3g) (Eukaryotic translation initiation factor 3 RNA-binding subunit) (eIF-3 RNA-binding subunit) (Eukaryotic translation initiation factor 3 subunit 4) (eIF-3-delta) (eIF3 p42) (eIF3 p44) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). This subunit can bind 18S rRNA. {ECO:0000255|HAMAP-Rule:MF_03006, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
O94880 PHF14 S598 ochoa PHD finger protein 14 Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}.
O95239 KIF4A S507 ochoa Chromosome-associated kinesin KIF4A (Chromokinesin-A) Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}.
O95477 ABCA1 S1255 psp Phospholipid-transporting ATPase ABCA1 (EC 7.6.2.1) (ATP-binding cassette sub-family A member 1) (ATP-binding cassette transporter 1) (ABC-1) (ATP-binding cassette 1) (Cholesterol efflux regulatory protein) Catalyzes the translocation of specific phospholipids from the cytoplasmic to the extracellular/lumenal leaflet of membrane coupled to the hydrolysis of ATP (PubMed:24097981, PubMed:35974019). Thereby, participates in phospholipid transfer to apolipoproteins to form nascent high density lipoproteins/HDLs (PubMed:14754908). Transports preferentially phosphatidylcholine over phosphatidylserine (PubMed:24097981). May play a similar role in the efflux of intracellular cholesterol to apolipoproteins and the formation of nascent high density lipoproteins/HDLs (PubMed:10533863, PubMed:14754908, PubMed:24097981, PubMed:35974019). Translocates phospholipids from the outer face of the plasma membrane and forces it through its gateway and annulus into an elongated hydrophobic tunnel in its extracellular domain (PubMed:35974019). {ECO:0000269|PubMed:10533863, ECO:0000269|PubMed:14754908, ECO:0000269|PubMed:24097981, ECO:0000269|PubMed:35974019}.
O95613 PCNT S2485 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95999 BCL10 S171 psp B-cell lymphoma/leukemia 10 (B-cell CLL/lymphoma 10) (Bcl-10) (CARD-containing molecule enhancing NF-kappa-B) (CARD-like apoptotic protein) (hCLAP) (CED-3/ICH-1 prodomain homologous E10-like regulator) (CIPER) (Cellular homolog of vCARMEN) (cCARMEN) (Cellular-E10) (c-E10) (Mammalian CARD-containing adapter molecule E10) (mE10) Plays a key role in both adaptive and innate immune signaling by bridging CARD domain-containing proteins to immune activation (PubMed:10187770, PubMed:10364242, PubMed:10400625, PubMed:24074955, PubMed:25365219). Acts by channeling adaptive and innate immune signaling downstream of CARD domain-containing proteins CARD9, CARD11 and CARD14 to activate NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:24074955). Recruited by activated CARD domain-containing proteins: homooligomerized CARD domain-containing proteins form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10, subsequent recruitment of MALT1 and formation of a CBM complex (PubMed:24074955). This leads to activation of NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways which stimulate expression of genes encoding pro-inflammatory cytokines and chemokines (PubMed:18287044, PubMed:24074955, PubMed:27777308). Activated by CARD9 downstream of C-type lectin receptors; CARD9-mediated signals are essential for antifungal immunity (PubMed:26488816). Activated by CARD11 downstream of T-cell receptor (TCR) and B-cell receptor (BCR) (PubMed:18264101, PubMed:18287044, PubMed:24074955, PubMed:27777308). Promotes apoptosis, pro-caspase-9 maturation and activation of NF-kappa-B via NIK and IKK (PubMed:10187815). {ECO:0000269|PubMed:10187770, ECO:0000269|PubMed:10187815, ECO:0000269|PubMed:10364242, ECO:0000269|PubMed:10400625, ECO:0000269|PubMed:18264101, ECO:0000269|PubMed:18287044, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:25365219, ECO:0000269|PubMed:26488816, ECO:0000269|PubMed:27777308}.
P00338 LDHA S69 ochoa L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}.
P00387 CYB5R3 S146 ochoa NADH-cytochrome b5 reductase 3 (B5R) (Cytochrome b5 reductase) (EC 1.6.2.2) (Diaphorase-1) Catalyzes the reduction of two molecules of cytochrome b5 using NADH as the electron donor. {ECO:0000269|PubMed:10807796, ECO:0000269|PubMed:1400360, ECO:0000269|PubMed:15953014, ECO:0000269|PubMed:1898726, ECO:0000269|PubMed:2019583, ECO:0000269|PubMed:8119939, ECO:0000269|PubMed:9639531}.
P02748 C9 S261 ochoa Complement component C9 [Cleaved into: Complement component C9a; Complement component C9b] Pore-forming component of the membrane attack complex (MAC), a multiprotein complex activated by the complement cascade, which inserts into a target cell membrane and forms a pore, leading to target cell membrane rupture and cell lysis (PubMed:22832194, PubMed:26841837, PubMed:26841934, PubMed:27052168, PubMed:30552328, PubMed:6177822, PubMed:9212048, PubMed:9634479). The MAC is initiated by proteolytic cleavage of C5 into complement C5b in response to the classical, alternative, lectin and GZMK complement pathways (PubMed:9212048, PubMed:9634479). The complement pathways consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system (PubMed:9212048, PubMed:9634479). Constitutes the pore-forming subunit of the MAC complex: during MAC assembly, C9 associates with the C5b8 intermediate complex, and polymerizes to complete the pore (PubMed:26841934, PubMed:30111885, PubMed:30552328, PubMed:34752492, PubMed:4055801, PubMed:6177822). {ECO:0000269|PubMed:22832194, ECO:0000269|PubMed:26841837, ECO:0000269|PubMed:26841934, ECO:0000269|PubMed:27052168, ECO:0000269|PubMed:30111885, ECO:0000269|PubMed:30552328, ECO:0000269|PubMed:34752492, ECO:0000269|PubMed:4055801, ECO:0000269|PubMed:6177822, ECO:0000269|PubMed:9212048, ECO:0000269|PubMed:9634479}.
P06576 ATP5F1B S106 ochoa ATP synthase F(1) complex subunit beta, mitochondrial (EC 7.1.2.2) (ATP synthase F1 subunit beta) Catalytic subunit beta, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable) (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the subunit alpha (ATP5F1A), forms the catalytic core in the F(1) domain (PubMed:37244256). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:25168243, ECO:0000305|PubMed:36239646, ECO:0000305|PubMed:37244256}.
P06732 CKM S164 ochoa Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}.
P07900 HSP90AA1 S453 ochoa Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P07942 LAMB1 S1666 ochoa Laminin subunit beta-1 (Laminin B1 chain) (Laminin-1 subunit beta) (Laminin-10 subunit beta) (Laminin-12 subunit beta) (Laminin-2 subunit beta) (Laminin-6 subunit beta) (Laminin-8 subunit beta) Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Involved in the organization of the laminar architecture of cerebral cortex. It is probably required for the integrity of the basement membrane/glia limitans that serves as an anchor point for the endfeet of radial glial cells and as a physical barrier to migrating neurons. Radial glial cells play a central role in cerebral cortical development, where they act both as the proliferative unit of the cerebral cortex and a scaffold for neurons migrating toward the pial surface. {ECO:0000269|PubMed:23472759}.
P09936 UCHL1 S188 psp Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCH-L1) (EC 3.4.19.12) (Neuron cytoplasmic protein 9.5) (PGP 9.5) (PGP9.5) (Ubiquitin thioesterase L1) Deubiquitinase that plays a role in the regulation of several processes such as maintenance of synaptic function, cardiac function, inflammatory response or osteoclastogenesis (PubMed:22212137, PubMed:23359680). Abrogates the ubiquitination of multiple proteins including WWTR1/TAZ, EGFR, HIF1A and beta-site amyloid precursor protein cleaving enzyme 1/BACE1 (PubMed:22212137, PubMed:25615526). In addition, recognizes and hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin to maintain a stable pool of monoubiquitin that is a key requirement for the ubiquitin-proteasome and the autophagy-lysosome pathways (PubMed:12408865, PubMed:8639624, PubMed:9774100). Regulates amyloid precursor protein/APP processing by promoting BACE1 degradation resulting in decreased amyloid beta production (PubMed:22212137). Plays a role in the immune response by regulating the ability of MHC I molecules to reach cross-presentation compartments competent for generating Ag-MHC I complexes (By similarity). Mediates the 'Lys-48'-linked deubiquitination of the transcriptional coactivator WWTR1/TAZ leading to its stabilization and inhibition of osteoclastogenesis (By similarity). Deubiquitinates and stabilizes epidermal growth factor receptor EGFR to prevent its degradation and to activate its downstream mediators (By similarity). Modulates oxidative activity in skeletal muscle by regulating key mitochondrial oxidative proteins (By similarity). Enhances the activity of hypoxia-inducible factor 1-alpha/HIF1A by abrogateing its VHL E3 ligase-mediated ubiquitination and consequently inhibiting its degradation (PubMed:25615526). {ECO:0000250|UniProtKB:Q9R0P9, ECO:0000269|PubMed:12408865, ECO:0000269|PubMed:22212137, ECO:0000269|PubMed:23359680, ECO:0000269|PubMed:25615526, ECO:0000269|PubMed:8639624, ECO:0000269|PubMed:9774100}.
P09960 LTA4H S416 psp Leukotriene A-4 hydrolase (LTA-4 hydrolase) (EC 3.3.2.6) (Leukotriene A(4) hydrolase) (Tripeptide aminopeptidase LTA4H) (EC 3.4.11.4) Bifunctional zinc metalloenzyme that comprises both epoxide hydrolase (EH) and aminopeptidase activities. Acts as an epoxide hydrolase to catalyze the conversion of LTA4 to the pro-inflammatory mediator leukotriene B4 (LTB4) (PubMed:11917124, PubMed:12207002, PubMed:15078870, PubMed:18804029, PubMed:1897988, PubMed:1975494, PubMed:2244921). Also has aminopeptidase activity, with high affinity for N-terminal arginines of various synthetic tripeptides (PubMed:18804029, PubMed:20813919). In addition to its pro-inflammatory EH activity, may also counteract inflammation by its aminopeptidase activity, which inactivates by cleavage another neutrophil attractant, the tripeptide Pro-Gly-Pro (PGP), a bioactive fragment of collagen generated by the action of matrix metalloproteinase-9 (MMP9) and prolylendopeptidase (PREPL) (PubMed:20813919, PubMed:24591641). Involved also in the biosynthesis of resolvin E1 and 18S-resolvin E1 from eicosapentaenoic acid, two lipid mediators that show potent anti-inflammatory and pro-resolving actions (PubMed:21206090). {ECO:0000269|PubMed:11917124, ECO:0000269|PubMed:12207002, ECO:0000269|PubMed:15078870, ECO:0000269|PubMed:18804029, ECO:0000269|PubMed:1897988, ECO:0000269|PubMed:1975494, ECO:0000269|PubMed:20813919, ECO:0000269|PubMed:21206090, ECO:0000269|PubMed:2244921, ECO:0000269|PubMed:24591641}.
P10586 PTPRF S1311 ochoa Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one.
P11717 IGF2R S2401 ochoa Cation-independent mannose-6-phosphate receptor (CI Man-6-P receptor) (CI-MPR) (M6PR) (300 kDa mannose 6-phosphate receptor) (MPR 300) (Insulin-like growth factor 2 receptor) (Insulin-like growth factor II receptor) (IGF-II receptor) (M6P/IGF2 receptor) (M6P/IGF2R) (CD antigen CD222) Mediates the transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes (PubMed:18817523, PubMed:2963003). Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelysosomal compartment where the low pH mediates the dissociation of the complex (PubMed:18817523, PubMed:2963003). The receptor is then recycled back to the Golgi for another round of trafficking through its binding to the retromer (PubMed:18817523). This receptor also binds IGF2 (PubMed:18046459). Acts as a positive regulator of T-cell coactivation by binding DPP4 (PubMed:10900005). {ECO:0000269|PubMed:10900005, ECO:0000269|PubMed:18046459, ECO:0000269|PubMed:18817523, ECO:0000269|PubMed:2963003}.
P13010 XRCC5 S255 ochoa X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}.
P13611 VCAN S2941 ochoa Versican core protein (Chondroitin sulfate proteoglycan core protein 2) (Chondroitin sulfate proteoglycan 2) (Glial hyaluronate-binding protein) (GHAP) (Large fibroblast proteoglycan) (PG-M) May play a role in intercellular signaling and in connecting cells with the extracellular matrix. May take part in the regulation of cell motility, growth and differentiation. Binds hyaluronic acid.
P15498 VAV1 S215 ochoa Proto-oncogene vav Couples tyrosine kinase signals with the activation of the Rho/Rac GTPases, thus leading to cell differentiation and/or proliferation.
P15924 DSP S2202 ochoa Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P18583 SON S1670 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P20700 LMNB1 S375 ochoa Lamin-B1 Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:28716252, PubMed:32910914). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:28716252, PubMed:32910914). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:28716252, PubMed:32910914). {ECO:0000269|PubMed:28716252, ECO:0000269|PubMed:32910914}.
P21333 FLNA S2081 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P22314 UBA1 S46 ochoa Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}.
P26639 TARS1 S534 ochoa Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}.
P27448 MARK3 S499 ochoa MAP/microtubule affinity-regulating kinase 3 (EC 2.7.11.1) (C-TAK1) (cTAK1) (Cdc25C-associated protein kinase 1) (ELKL motif kinase 2) (EMK-2) (Protein kinase STK10) (Ser/Thr protein kinase PAR-1) (Par-1a) (Serine/threonine-protein kinase p78) Serine/threonine-protein kinase (PubMed:16822840, PubMed:16980613, PubMed:23666762). Involved in the specific phosphorylation of microtubule-associated proteins for MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Phosphorylates CDC25C on 'Ser-216' (PubMed:12941695). Regulates localization and activity of some histone deacetylases by mediating phosphorylation of HDAC7, promoting subsequent interaction between HDAC7 and 14-3-3 and export from the nucleus (PubMed:16980613). Regulates localization and activity of MITF by mediating its phosphorylation, promoting subsequent interaction between MITF and 14-3-3 and retention in the cytosol (PubMed:16822840). Negatively regulates the Hippo signaling pathway and antagonizes the phosphorylation of LATS1. Cooperates with DLG5 to inhibit the kinase activity of STK3/MST2 toward LATS1 (PubMed:28087714). Phosphorylates PKP2 and KSR1 (PubMed:12941695). {ECO:0000269|PubMed:12941695, ECO:0000269|PubMed:16822840, ECO:0000269|PubMed:16980613, ECO:0000269|PubMed:23666762, ECO:0000269|PubMed:28087714}.
P29084 GTF2E2 S58 ochoa Transcription initiation factor IIE subunit beta (TFIIE-beta) (General transcription factor IIE subunit 2) Recruits TFIIH to the initiation complex and stimulates the RNA polymerase II C-terminal domain kinase and DNA-dependent ATPase activities of TFIIH. Both TFIIH and TFIIE are required for promoter clearance by RNA polymerase. {ECO:0000269|PubMed:1956398, ECO:0000269|PubMed:1956404}.
P29218 IMPA1 S166 ochoa Inositol monophosphatase 1 (IMP 1) (IMPase 1) (EC 3.1.3.25) (D-galactose 1-phosphate phosphatase) (EC 3.1.3.94) (Inositol-1(or 4)-monophosphatase 1) (Lithium-sensitive myo-inositol monophosphatase A1) Phosphatase involved in the dephosphorylation of myo-inositol monophosphates to generate myo-inositol (PubMed:17068342, PubMed:8718889, PubMed:9462881). Is also able to dephosphorylate scyllo-inositol-phosphate, myo-inositol 1,4-diphosphate, scyllo-inositol-1,3-diphosphate and scyllo-inositol-1,4-diphosphate (PubMed:17068342). Also dephosphorylates in vitro other sugar-phosphates including D-galactose-1-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate and 2'-AMP (PubMed:17068342, PubMed:8718889, PubMed:9462881). Responsible for the provision of inositol required for synthesis of phosphatidylinositols and polyphosphoinositides, and involved in maintaining normal brain function (PubMed:26416544, PubMed:8718889). Has been implicated as the pharmacological target for lithium (Li(+)) action in brain, which is used to treat bipolar affective disorder (PubMed:17068342). Is equally active with 1D-myo-inositol 1-phosphate, 1D-myo-inositol 3-phosphate and D-galactose 1-phosphate (PubMed:9462881). {ECO:0000269|PubMed:17068342, ECO:0000269|PubMed:26416544, ECO:0000269|PubMed:8718889, ECO:0000269|PubMed:9462881}.
P29353 SHC1 S513 ochoa SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}.
P30414 NKTR S866 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30622 CLIP1 S1305 ochoa CAP-Gly domain-containing linker protein 1 (Cytoplasmic linker protein 1) (Cytoplasmic linker protein 170 alpha-2) (CLIP-170) (Reed-Sternberg intermediate filament-associated protein) (Restin) Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth and microtubule bundling. Links cytoplasmic vesicles to microtubules and thereby plays an important role in intracellular vesicle trafficking. Plays a role macropinocytosis and endosome trafficking. {ECO:0000269|PubMed:12433698, ECO:0000269|PubMed:17563362, ECO:0000269|PubMed:17889670}.
P31327 CPS1 S468 ochoa Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell.
P35222 CTNNB1 S23 psp Catenin beta-1 (Beta-catenin) Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}.
P36959 GMPR S271 psp GMP reductase 1 (GMPR 1) (EC 1.7.1.7) (Guanosine 5'-monophosphate oxidoreductase 1) (Guanosine monophosphate reductase 1) Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides. {ECO:0000255|HAMAP-Rule:MF_03195}.
P41743 PRKCI S459 ochoa|psp Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}.
P42336 PIK3CA S507 ochoa Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PI3-kinase subunit alpha) (PI3K-alpha) (PI3Kalpha) (PtdIns-3-kinase subunit alpha) (EC 2.7.1.137) (EC 2.7.1.153) (Phosphatidylinositol 4,5-bisphosphate 3-kinase 110 kDa catalytic subunit alpha) (PtdIns-3-kinase subunit p110-alpha) (p110alpha) (Phosphoinositide 3-kinase alpha) (Phosphoinositide-3-kinase catalytic alpha polypeptide) (Serine/threonine protein kinase PIK3CA) (EC 2.7.11.1) Phosphoinositide-3-kinase (PI3K) phosphorylates phosphatidylinositol (PI) and its phosphorylated derivatives at position 3 of the inositol ring to produce 3-phosphoinositides (PubMed:15135396, PubMed:23936502, PubMed:28676499). Uses ATP and PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3) (PubMed:15135396, PubMed:28676499). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to various growth factors. Involved in the activation of AKT1 upon stimulation by receptor tyrosine kinases ligands such as EGF, insulin, IGF1, VEGFA and PDGF. Involved in signaling via insulin-receptor substrate (IRS) proteins. Essential in endothelial cell migration during vascular development through VEGFA signaling, possibly by regulating RhoA activity. Required for lymphatic vasculature development, possibly by binding to RAS and by activation by EGF and FGF2, but not by PDGF. Regulates invadopodia formation through the PDPK1-AKT1 pathway. Participates in cardiomyogenesis in embryonic stem cells through a AKT1 pathway. Participates in vasculogenesis in embryonic stem cells through PDK1 and protein kinase C pathway. In addition to its lipid kinase activity, it displays a serine-protein kinase activity that results in the autophosphorylation of the p85alpha regulatory subunit as well as phosphorylation of other proteins such as 4EBP1, H-Ras, the IL-3 beta c receptor and possibly others (PubMed:23936502, PubMed:28676499). Plays a role in the positive regulation of phagocytosis and pinocytosis (By similarity). {ECO:0000250|UniProtKB:P42337, ECO:0000269|PubMed:15135396, ECO:0000269|PubMed:21708979, ECO:0000269|PubMed:23936502, ECO:0000269|PubMed:26593112, ECO:0000269|PubMed:28676499}.
P42704 LRPPRC S742 ochoa Leucine-rich PPR motif-containing protein, mitochondrial (130 kDa leucine-rich protein) (LRP 130) (GP130) May play a role in RNA metabolism in both nuclei and mitochondria. In the nucleus binds to HNRPA1-associated poly(A) mRNAs and is part of nmRNP complexes at late stages of mRNA maturation which are possibly associated with nuclear mRNA export. Positively modulates nuclear export of mRNAs containing the EIF4E sensitivity element (4ESE) by binding simultaneously to both EIF4E and the 4ESE and acting as a platform for assembly for the RNA export complex (PubMed:19262567, PubMed:28325843). Also binds to exportin XPO1/CRM1 to engage the nuclear pore and traffic the bound mRNAs to the cytoplasm (PubMed:28325843). May bind mature mRNA in the nucleus outer membrane. In mitochondria binds to poly(A) mRNA. Plays a role in translation or stability of mitochondrially encoded cytochrome c oxidase (COX) subunits. May be involved in transcription regulation. Cooperates with PPARGC1A to regulate certain mitochondrially encoded genes and gluconeogenic genes and may regulate docking of PPARGC1A to transcription factors. Seems to be involved in the transcription regulation of the multidrug-related genes MDR1 and MVP. Part of a nuclear factor that binds to the invMED1 element of MDR1 and MVP gene promoters. Binds single-stranded DNA (By similarity). Required for maintaining mitochondrial potential (PubMed:23822101). Suppresses the initiation of basal levels of autophagy and mitophagy by sustaining BCL2 levels (PubMed:23822101). {ECO:0000250, ECO:0000269|PubMed:11585913, ECO:0000269|PubMed:12832482, ECO:0000269|PubMed:15081402, ECO:0000269|PubMed:15139850, ECO:0000269|PubMed:15272088, ECO:0000269|PubMed:17050673, ECO:0000269|PubMed:19262567, ECO:0000269|PubMed:23822101, ECO:0000269|PubMed:28325843}.
P46100 ATRX S1237 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46379 BAG6 S26 psp Large proline-rich protein BAG6 (BAG family molecular chaperone regulator 6) (BCL2-associated athanogene 6) (BAG-6) (HLA-B-associated transcript 3) (Protein G3) (Protein Scythe) ATP-independent molecular chaperone preventing the aggregation of misfolded and hydrophobic patches-containing proteins (PubMed:21636303). Functions as part of a cytosolic protein quality control complex, the BAG6/BAT3 complex, which maintains these client proteins in a soluble state and participates in their proper delivery to the endoplasmic reticulum or alternatively can promote their sorting to the proteasome where they undergo degradation (PubMed:20516149, PubMed:21636303, PubMed:21743475, PubMed:28104892). The BAG6/BAT3 complex is involved in the post-translational delivery of tail-anchored/type II transmembrane proteins to the endoplasmic reticulum membrane. Recruited to ribosomes, it interacts with the transmembrane region of newly synthesized tail-anchored proteins and together with SGTA and ASNA1 mediates their delivery to the endoplasmic reticulum (PubMed:20516149, PubMed:20676083, PubMed:25535373, PubMed:28104892). Client proteins that cannot be properly delivered to the endoplasmic reticulum are ubiquitinated by RNF126, an E3 ubiquitin-protein ligase associated with BAG6 and are sorted to the proteasome (PubMed:24981174, PubMed:27193484, PubMed:28104892). SGTA which prevents the recruitment of RNF126 to BAG6 may negatively regulate the ubiquitination and the proteasomal degradation of client proteins (PubMed:23129660, PubMed:25179605, PubMed:27193484). Similarly, the BAG6/BAT3 complex also functions as a sorting platform for proteins of the secretory pathway that are mislocalized to the cytosol either delivering them to the proteasome for degradation or to the endoplasmic reticulum (PubMed:21743475). The BAG6/BAT3 complex also plays a role in the endoplasmic reticulum-associated degradation (ERAD), a quality control mechanism that eliminates unwanted proteins of the endoplasmic reticulum through their retrotranslocation to the cytosol and their targeting to the proteasome. It maintains these retrotranslocated proteins in an unfolded yet soluble state condition in the cytosol to ensure their proper delivery to the proteasome (PubMed:21636303). BAG6 is also required for selective ubiquitin-mediated degradation of defective nascent chain polypeptides by the proteasome. In this context, it may participate in the production of antigenic peptides and play a role in antigen presentation in immune response (By similarity). BAG6 is also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation. BAG6 may ensure the proper degradation of these proteins and thereby protects the endoplasmic reticulum from protein overload upon stress (PubMed:26565908). By inhibiting the polyubiquitination and subsequent proteasomal degradation of HSPA2 it may also play a role in the assembly of the synaptonemal complex during spermatogenesis (By similarity). Also positively regulates apoptosis by interacting with and stabilizing the proapoptotic factor AIFM1 (By similarity). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:Q9Z1R2, ECO:0000269|PubMed:20516149, ECO:0000269|PubMed:20676083, ECO:0000269|PubMed:21636303, ECO:0000269|PubMed:21743475, ECO:0000269|PubMed:23129660, ECO:0000269|PubMed:24981174, ECO:0000269|PubMed:25179605, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27193484, ECO:0000269|PubMed:28104892}.; FUNCTION: Involved in DNA damage-induced apoptosis: following DNA damage, accumulates in the nucleus and forms a complex with p300/EP300, enhancing p300/EP300-mediated p53/TP53 acetylation leading to increase p53/TP53 transcriptional activity (PubMed:17403783). When nuclear, may also act as a component of some chromatin regulator complex that regulates histone 3 'Lys-4' dimethylation (H3K4me2) (PubMed:18765639). {ECO:0000269|PubMed:17403783, ECO:0000269|PubMed:18765639}.; FUNCTION: Released extracellularly via exosomes, it is a ligand of the natural killer/NK cells receptor NCR3 and stimulates NK cells cytotoxicity. It may thereby trigger NK cells cytotoxicity against neighboring tumor cells and immature myeloid dendritic cells (DC). {ECO:0000269|PubMed:18055229, ECO:0000269|PubMed:18852879}.; FUNCTION: Mediates ricin-induced apoptosis. {ECO:0000269|PubMed:14960581}.
P46937 YAP1 S436 psp Transcriptional coactivator YAP1 (Yes-associated protein 1) (Protein yorkie homolog) (Yes-associated protein YAP65 homolog) Transcriptional regulator with dual roles as a coactivator and corepressor. Critical downstream regulatory target in the Hippo signaling pathway, crucial for organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:17974916, PubMed:18280240, PubMed:18579750, PubMed:21364637, PubMed:30447097). The Hippo signaling pathway core involves a kinase cascade featuring STK3/MST2 and STK4/MST1, along with its regulatory partner SAV1, which phosphorylates and activates LATS1/2 in complex with their regulatory protein, MOB1. This activation leads to the phosphorylation and inactivation of the YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288). Phosphorylation of YAP1 by LATS1/2 prevents its nuclear translocation, thereby regulating the expression of its target genes (PubMed:18158288, PubMed:26598551, PubMed:34404733). The transcriptional regulation of gene expression requires TEAD transcription factors and modulates cell growth, anchorage-independent growth, and induction of epithelial-mesenchymal transition (EMT) (PubMed:18579750). Plays a key role in tissue tension and 3D tissue shape by regulating the cortical actomyosin network, acting via ARHGAP18, a Rho GTPase activating protein that suppresses F-actin polymerization (PubMed:25778702). It also suppresses ciliogenesis by acting as a transcriptional corepressor of TEAD4 target genes AURKA and PLK1 (PubMed:25849865). In conjunction with WWTR1, regulates TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (By similarity). Synergizes with WBP2 to enhance PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:P46938, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:17974916, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:18280240, ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:25778702, ECO:0000269|PubMed:25849865, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:30447097, ECO:0000269|PubMed:34404733}.; FUNCTION: [Isoform 2]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.; FUNCTION: [Isoform 3]: Activates the C-terminal fragment (CTF) of ERBB4 (isoform 3). {ECO:0000269|PubMed:12807903}.
P47712 PLA2G4A S228 psp Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}.
P48444 ARCN1 S220 ochoa Coatomer subunit delta (Archain) (Delta-coat protein) (Delta-COP) Component of the coatomer, a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.
P49802 RGS7 S434 psp Regulator of G-protein signaling 7 (RGS7) GTPase activator component of the RGS7-GNB5 complex that regulates G protein-coupled receptor signaling cascades (PubMed:10521509, PubMed:10862767, PubMed:31189666). The RGS7-GNB5 complex acts as an inhibitor signal transduction by promoting the GTPase activity of G protein alpha subunits, such as GNAO1, thereby driving them into their inactive GDP-bound form (PubMed:10521509, PubMed:10862767). May play a role in synaptic vesicle exocytosis (Probable) (PubMed:12659861). Glycine-dependent regulation of the RGS7-GNB5 complex by GPR158 affects mood and cognition via its ability to regulate neuronal excitability in L2/L3 pyramidal neurons of the prefrontal cortex (By similarity). Modulates the activity of potassium channels that are activated by GNAO1 in response to muscarinic acetylcholine receptor M2/CHRM2 signaling (PubMed:15897264). {ECO:0000250|UniProtKB:O54829, ECO:0000269|PubMed:10521509, ECO:0000269|PubMed:10862767, ECO:0000269|PubMed:15897264, ECO:0000269|PubMed:31189666, ECO:0000305|PubMed:12659861}.
P49815 TSC2 S1365 ochoa Tuberin (Tuberous sclerosis 2 protein) Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}.
P49916 LIG3 S476 ochoa DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}.
P51153 RAB13 S111 ochoa|psp Ras-related protein Rab-13 (EC 3.6.5.2) (Cell growth-inhibiting gene 4 protein) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB13 is involved in endocytic recycling and regulates the transport to the plasma membrane of transmembrane proteins like the tight junction protein OCLN/occludin. Thereby, it regulates the assembly and the activity of tight junctions. Moreover, it may also regulate tight junction assembly by activating the PKA signaling pathway and by reorganizing the actin cytoskeleton through the activation of the downstream effectors PRKACA and MICALL2 respectively. Through its role in tight junction assembly, may play a role in the establishment of Sertoli cell barrier. Plays also a role in angiogenesis through regulation of endothelial cells chemotaxis. Also involved in neurite outgrowth. Has also been proposed to play a role in post-Golgi membrane trafficking from the TGN to the recycling endosome. Finally, it has been involved in insulin-induced transport to the plasma membrane of the glucose transporter GLUT4 and therefore may play a role in glucose homeostasis. {ECO:0000269|PubMed:12058051, ECO:0000269|PubMed:15096524, ECO:0000269|PubMed:15528189, ECO:0000269|PubMed:16525024, ECO:0000269|PubMed:18779367, ECO:0000269|PubMed:20008558, ECO:0000269|PubMed:35343654}.
P51659 HSD17B4 S304 ochoa Peroxisomal multifunctional enzyme type 2 (MFE-2) (17-beta-hydroxysteroid dehydrogenase 4) (17-beta-HSD 4) (D-bifunctional protein) (DBP) (Multifunctional protein 2) (MFP-2) (Short chain dehydrogenase/reductase family 8C member 1) [Cleaved into: (3R)-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.n12); Enoyl-CoA hydratase 2 (EC 4.2.1.107) (EC 4.2.1.119) (3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholest-24-enoyl-CoA hydratase)] Bifunctional enzyme acting on the peroxisomal fatty acid beta-oxidation pathway. Catalyzes two of the four reactions in fatty acid degradation: hydration of 2-enoyl-CoA (trans-2-enoyl-CoA) to produce (3R)-3-hydroxyacyl-CoA, and dehydrogenation of (3R)-3-hydroxyacyl-CoA to produce 3-ketoacyl-CoA (3-oxoacyl-CoA), which is further metabolized by SCPx. Can use straight-chain and branched-chain fatty acids, as well as bile acid intermediates as substrates. {ECO:0000269|PubMed:10671535, ECO:0000269|PubMed:15060085, ECO:0000269|PubMed:8902629, ECO:0000269|PubMed:9089413}.
P52272 HNRNPM S136 ochoa Heterogeneous nuclear ribonucleoprotein M (hnRNP M) Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines.
P52292 KPNA2 S105 psp Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha) Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:7604027, PubMed:7754385). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA1 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:28991411, ECO:0000269|PubMed:32130408, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7604027, ECO:0000269|PubMed:7754385}.
P52895 AKR1C2 S166 ochoa Aldo-keto reductase family 1 member C2 (EC 1.-.-.-) (EC 1.1.1.112) (EC 1.1.1.209) (EC 1.1.1.53) (EC 1.1.1.62) (EC 1.3.1.20) (3-alpha-HSD3) (Chlordecone reductase homolog HAKRD) (Dihydrodiol dehydrogenase 2) (DD-2) (DD2) (Dihydrodiol dehydrogenase/bile acid-binding protein) (DD/BABP) (Type III 3-alpha-hydroxysteroid dehydrogenase) (EC 1.1.1.357) Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids (PubMed:19218247). Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH (PubMed:14672942). Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens (PubMed:10998348). Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:15929998, PubMed:17034817, PubMed:17442338, PubMed:8573067). Also specifically able to produce 17beta-hydroxy-5alpha-androstan-3-one/5alphaDHT (PubMed:10998348). May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate (PubMed:19218247). Displays affinity for bile acids (PubMed:8486699). {ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15929998, ECO:0000269|PubMed:17034817, ECO:0000269|PubMed:17442338, ECO:0000269|PubMed:19218247, ECO:0000269|PubMed:8486699, ECO:0000269|PubMed:8573067}.
P54132 BLM S502 psp RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P55199 ELL S519 ochoa RNA polymerase II elongation factor ELL (Eleven-nineteen lysine-rich leukemia protein) Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Elongation factor component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically required for stimulating the elongation step of RNA polymerase II- and III-dependent snRNA gene transcription (PubMed:23932780). ELL also plays an early role before its assembly into in the SEC complex by stabilizing RNA polymerase II recruitment/initiation and entry into the pause site. Required to stabilize the pre-initiation complex and early elongation. {ECO:0000269|PubMed:16006523, ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:22252557, ECO:0000269|PubMed:23932780, ECO:0000269|PubMed:8596958}.
P62987 UBA52 S65 ochoa|psp Ubiquitin-ribosomal protein eL40 fusion protein (CEP52) (Ubiquitin A-52 residue ribosomal protein fusion product 1) [Cleaved into: Ubiquitin; Large ribosomal subunit protein eL40 (60S ribosomal protein L40) (rpL40)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Large ribosomal subunit protein eL40]: Component of the 60S subunit of the ribosome (PubMed:23169626, PubMed:23636399, PubMed:32669547, PubMed:39048817, PubMed:39103523). Ribosomal protein L40 is essential for translation of a subset of cellular transcripts, and especially for cap-dependent translation of vesicular stomatitis virus mRNAs (PubMed:23169626, PubMed:23636399, PubMed:32669547, PubMed:39048817, PubMed:39103523). {ECO:0000269|PubMed:23169626, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000269|PubMed:39048817, ECO:0000269|PubMed:39103523}.
P78527 PRKDC S3021 ochoa DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}.
P80303 NUCB2 S124 ochoa Nucleobindin-2 (DNA-binding protein NEFA) (Epididymis secretory protein Li 109) (Gastric cancer antigen Zg4) (Prepronesfatin) [Cleaved into: Nesfatin-1] Calcium-binding protein which may have a role in calcium homeostasis (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein (G-protein) alpha subunit GNAI3 (By similarity). {ECO:0000250|UniProtKB:P81117, ECO:0000250|UniProtKB:Q9JI85}.; FUNCTION: [Nesfatin-1]: Anorexigenic peptide, seems to play an important role in hypothalamic pathways regulating food intake and energy homeostasis, acting in a leptin-independent manner. May also exert hypertensive roles and modulate blood pressure through directly acting on peripheral arterial resistance. In intestinal epithelial cells, plays a role in the inhibition of hepatic glucose production via MC4R receptor leading to increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion (PubMed:39562740). {ECO:0000250|UniProtKB:Q9JI85, ECO:0000269|PubMed:39562740}.
Q00987 MDM2 S386 psp E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}.
Q01970 PLCB3 S537 ochoa|psp 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-3) (Phospholipase C-beta-3) (PLC-beta-3) Catalyzes the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:20966218, PubMed:29122926, PubMed:37991948, PubMed:9188725). Key transducer of G protein-coupled receptor signaling: activated by G(q)/G(11) G alpha proteins downstream of G protein-coupled receptors activation (PubMed:20966218, PubMed:37991948). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting RASGRP4 activation by DAG, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:P51432, ECO:0000269|PubMed:20966218, ECO:0000269|PubMed:29122926, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:9188725}.
Q02040 AKAP17A S548 ochoa A-kinase anchor protein 17A (AKAP-17A) (721P) (B-lymphocyte antigen) (Protein XE7) (Protein kinase A-anchoring protein 17A) (PRKA17A) (Splicing factor, arginine/serine-rich 17A) Splice factor regulating alternative splice site selection for certain mRNA precursors. Mediates regulation of pre-mRNA splicing in a PKA-dependent manner. {ECO:0000269|PubMed:16982639, ECO:0000269|PubMed:19840947}.
Q02383 SEMG2 S472 ochoa Semenogelin-2 (Semenogelin II) (SGII) Participates in the formation of a gel matrix (sperm coagulum) entrapping the accessory gland secretions and ejaculated spermatozoa.
Q03001 DST S2529 ochoa Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport.
Q06187 BTK S55 ochoa Tyrosine-protein kinase BTK (EC 2.7.10.2) (Agammaglobulinemia tyrosine kinase) (ATK) (B-cell progenitor kinase) (BPK) (Bruton tyrosine kinase) Non-receptor tyrosine kinase indispensable for B lymphocyte development, differentiation and signaling (PubMed:19290921). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (PubMed:19290921). After BCR engagement and activation at the plasma membrane, phosphorylates PLCG2 at several sites, igniting the downstream signaling pathway through calcium mobilization, followed by activation of the protein kinase C (PKC) family members (PubMed:11606584). PLCG2 phosphorylation is performed in close cooperation with the adapter protein B-cell linker protein BLNK (PubMed:11606584). BTK acts as a platform to bring together a diverse array of signaling proteins and is implicated in cytokine receptor signaling pathways (PubMed:16517732, PubMed:17932028). Plays an important role in the function of immune cells of innate as well as adaptive immunity, as a component of the Toll-like receptors (TLR) pathway (PubMed:16517732). The TLR pathway acts as a primary surveillance system for the detection of pathogens and are crucial to the activation of host defense (PubMed:16517732). Especially, is a critical molecule in regulating TLR9 activation in splenic B-cells (PubMed:16517732, PubMed:17932028). Within the TLR pathway, induces tyrosine phosphorylation of TIRAP which leads to TIRAP degradation (PubMed:16415872). BTK also plays a critical role in transcription regulation (PubMed:19290921). Induces the activity of NF-kappa-B, which is involved in regulating the expression of hundreds of genes (PubMed:19290921). BTK is involved on the signaling pathway linking TLR8 and TLR9 to NF-kappa-B (PubMed:19290921). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (PubMed:34554188). Transiently phosphorylates transcription factor GTF2I on tyrosine residues in response to BCR (PubMed:9012831). GTF2I then translocates to the nucleus to bind regulatory enhancer elements to modulate gene expression (PubMed:9012831). ARID3A and NFAT are other transcriptional target of BTK (PubMed:16738337). BTK is required for the formation of functional ARID3A DNA-binding complexes (PubMed:16738337). There is however no evidence that BTK itself binds directly to DNA (PubMed:16738337). BTK has a dual role in the regulation of apoptosis (PubMed:9751072). Plays a role in STING1-mediated induction of type I interferon (IFN) response by phosphorylating DDX41 (PubMed:25704810). {ECO:0000269|PubMed:11606584, ECO:0000269|PubMed:16415872, ECO:0000269|PubMed:16517732, ECO:0000269|PubMed:16738337, ECO:0000269|PubMed:17932028, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:34554188, ECO:0000269|PubMed:9012831, ECO:0000303|PubMed:19290921, ECO:0000303|PubMed:9751072}.
Q09666 AHNAK S4425 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5190 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12815 TROAP S278 ochoa Tastin (Trophinin-assisting protein) (Trophinin-associated protein) Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation.
Q12824 SMARCB1 S129 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (BRG1-associated factor 47) (BAF47) (Integrase interactor 1 protein) (SNF5 homolog) (hSNF5) Core component of the BAF (hSWI/SNF) complex. This ATP-dependent chromatin-remodeling complex plays important roles in cell proliferation and differentiation, in cellular antiviral activities and inhibition of tumor formation. The BAF complex is able to create a stable, altered form of chromatin that constrains fewer negative supercoils than normal. This change in supercoiling would be due to the conversion of up to one-half of the nucleosomes on polynucleosomal arrays into asymmetric structures, termed altosomes, each composed of 2 histones octamers. Stimulates in vitro the remodeling activity of SMARCA4/BRG1/BAF190A. Involved in activation of CSF1 promoter. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Plays a key role in cell-cycle control and causes cell cycle arrest in G0/G1. {ECO:0000250|UniProtKB:Q9Z0H3, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:12226744, ECO:0000269|PubMed:14604992, ECO:0000269|PubMed:16267391, ECO:0000269|PubMed:16314535, ECO:0000269|PubMed:9448295}.
Q12888 TP53BP1 S233 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12968 NFATC3 S359 ochoa Nuclear factor of activated T-cells, cytoplasmic 3 (NF-ATc3) (NFATc3) (NFATx) (T-cell transcription factor NFAT4) (NF-AT4) (NF-AT4c) Acts as a regulator of transcriptional activation. Binds to the TNFSF11/RANKL promoter region and promotes TNFSF11 transcription (By similarity). Binding to the TNFSF11 promoter region is increased by high levels of Ca(2+) which induce NFATC3 expression and may lead to regulation of TNFSF11 expression in osteoblasts (By similarity). Plays a role in promoting mesenteric arterial wall remodeling in response to the intermittent hypoxia-induced increase in EDN1 and ROCK signaling (By similarity). As a result NFATC3 colocalizes with F-actin filaments, translocates to the nucleus and promotes transcription of the smooth muscle hypertrophy and differentiation marker ACTA2 (By similarity). Promotes lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC4 and STAT3, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity). In conjunction with NFATC4, involved in embryonic heart development via maintenance of cardiomyocyte survival, proliferation and differentiation (By similarity). Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 (PubMed:18815128). Required for thymocyte maturation during DN3 to DN4 transition and during positive selection (By similarity). Positively regulates macrophage-derived polymicrobial clearance, via binding to the promoter region and promoting transcription of NOS2 resulting in subsequent generation of nitric oxide (By similarity). Involved in Ca(2+)-mediated transcriptional responses upon Ca(2+) influx via ORAI1 CRAC channels. {ECO:0000250|UniProtKB:A0A0G2JTY4, ECO:0000250|UniProtKB:P97305, ECO:0000269|PubMed:18815128, ECO:0000269|PubMed:32415068}.
Q13029 PRDM2 S427 ochoa PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}.
Q13098 GPS1 S240 ochoa COP9 signalosome complex subunit 1 (SGN1) (Signalosome subunit 1) (G protein pathway suppressor 1) (GPS-1) (JAB1-containing signalosome subunit 1) (Protein MFH) Essential component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Suppresses G-protein- and mitogen-activated protein kinase-mediated signal transduction. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}.
Q13233 MAP3K1 S67 psp Mitogen-activated protein kinase kinase kinase 1 (EC 2.7.11.25) (MAPK/ERK kinase kinase 1) (MEK kinase 1) (MEKK 1) (EC 2.3.2.27) Component of a protein kinase signal transduction cascade (PubMed:9808624). Activates the ERK and JNK kinase pathways by phosphorylation of MAP2K1 and MAP2K4 (PubMed:9808624). May phosphorylate the MAPK8/JNK1 kinase (PubMed:17761173). Activates CHUK and IKBKB, the central protein kinases of the NF-kappa-B pathway (PubMed:9808624). {ECO:0000269|PubMed:17761173, ECO:0000269|PubMed:9808624}.
Q13263 TRIM28 S489 ochoa Transcription intermediary factor 1-beta (TIF1-beta) (E3 SUMO-protein ligase TRIM28) (EC 2.3.2.27) (KRAB-associated protein 1) (KAP-1) (KRAB-interacting protein 1) (KRIP-1) (Nuclear corepressor KAP-1) (RING finger protein 96) (RING-type E3 ubiquitin transferase TIF1-beta) (Tripartite motif-containing protein 28) Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression. Recruitment of SETDB1 induces heterochromatinization. May play a role as a coactivator for CEBPB and NR3C1 in the transcriptional activation of ORM1. Also a corepressor for ERBB4. Inhibits E2F1 activity by stimulating E2F1-HDAC1 complex formation and inhibiting E2F1 acetylation. May serve as a partial backup to prevent E2F1-mediated apoptosis in the absence of RB1. Important regulator of CDKN1A/p21(CIP1). Has E3 SUMO-protein ligase activity toward itself via its PHD-type zinc finger. Also specifically sumoylates IRF7, thereby inhibiting its transactivation activity. Ubiquitinates p53/TP53 leading to its proteasomal degradation; the function is enhanced by MAGEC2 and MAGEA2, and possibly MAGEA3 and MAGEA6. Mediates the nuclear localization of KOX1, ZNF268 and ZNF300 transcription factors. In association with isoform 2 of ZFP90, is required for the transcriptional repressor activity of FOXP3 and the suppressive function of regulatory T-cells (Treg) (PubMed:23543754). Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with SETDB1, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:Q62318, ECO:0000269|PubMed:10347202, ECO:0000269|PubMed:11959841, ECO:0000269|PubMed:15882967, ECO:0000269|PubMed:16107876, ECO:0000269|PubMed:16862143, ECO:0000269|PubMed:17079232, ECO:0000269|PubMed:17178852, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17942393, ECO:0000269|PubMed:18060868, ECO:0000269|PubMed:18082607, ECO:0000269|PubMed:20424263, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:20864041, ECO:0000269|PubMed:21940674, ECO:0000269|PubMed:23543754, ECO:0000269|PubMed:23665872, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:8769649, ECO:0000269|PubMed:9016654}.; FUNCTION: (Microbial infection) Plays a critical role in the shutdown of lytic gene expression during the early stage of herpes virus 8 primary infection. This inhibition is mediated through interaction with herpes virus 8 protein LANA1. {ECO:0000269|PubMed:24741090}.
Q13315 ATM S85 ochoa|psp Serine-protein kinase ATM (EC 2.7.11.1) (Ataxia telangiectasia mutated) (A-T mutated) Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15064416, PubMed:15448695, PubMed:15456891, PubMed:15790808, PubMed:15916964, PubMed:17923702, PubMed:21757780, PubMed:24534091, PubMed:35076389, PubMed:9733514). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15448695, PubMed:15456891, PubMed:15916964, PubMed:17923702, PubMed:24534091, PubMed:9733514). Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism (By similarity). Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FBXW7, FANCD2, NFKBIA, BRCA1, CREBBP/CBP, RBBP8/CTIP, FBXO46, MRE11, nibrin (NBN), RAD50, RAD17, PELI1, TERF1, UFL1, RAD9, UBQLN4 and DCLRE1C (PubMed:10550055, PubMed:10766245, PubMed:10802669, PubMed:10839545, PubMed:10910365, PubMed:10973490, PubMed:11375976, PubMed:12086603, PubMed:15456891, PubMed:19965871, PubMed:21757780, PubMed:24534091, PubMed:26240375, PubMed:26774286, PubMed:30171069, PubMed:30612738, PubMed:30886146, PubMed:30952868, PubMed:38128537, PubMed:9733515, PubMed:9843217). May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent proteasome degradation (PubMed:19965871). Phosphorylates ATF2 which stimulates its function in DNA damage response (PubMed:15916964). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Phosphorylates TTC5/STRAP at 'Ser-203' in the cytoplasm in response to DNA damage, which promotes TTC5/STRAP nuclear localization (PubMed:15448695). Also involved in pexophagy by mediating phosphorylation of PEX5: translocated to peroxisomes in response to reactive oxygen species (ROS), and catalyzes phosphorylation of PEX5, promoting PEX5 ubiquitination and induction of pexophagy (PubMed:26344566). {ECO:0000250|UniProtKB:Q62388, ECO:0000269|PubMed:10550055, ECO:0000269|PubMed:10766245, ECO:0000269|PubMed:10802669, ECO:0000269|PubMed:10839545, ECO:0000269|PubMed:10910365, ECO:0000269|PubMed:10973490, ECO:0000269|PubMed:11375976, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12556884, ECO:0000269|PubMed:14871926, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:16858402, ECO:0000269|PubMed:17923702, ECO:0000269|PubMed:19431188, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:21757780, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9733514, ECO:0000269|PubMed:9733515, ECO:0000269|PubMed:9843217}.
Q13433 SLC39A6 S220 ochoa Zinc transporter ZIP6 (Estrogen-regulated protein LIV-1) (Solute carrier family 39 member 6) (Zrt- and Irt-like protein 6) (ZIP-6) Zinc-influx transporter which plays a role in zinc homeostasis and in the induction of epithelial-to-mesenchymal transition (EMT) (PubMed:12839489, PubMed:18272141, PubMed:21422171, PubMed:23919497, PubMed:27274087, PubMed:34394081). When associated with SLC39A10, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial- to-mesenchymal transition (EMT) (PubMed:27274087). The SLC39A10-SLC39A6 heterodimer also controls NCAM1 phosphorylation and its integration into focal adhesion complexes during EMT (By similarity). Zinc influx inactivates GSK3B, enabling unphosphorylated SNAI1 in the nucleus to down-regulate adherence genes such as CDH1, causing loss of cell adherence (PubMed:23919497). In addition, the SLC39A10-SLC39A6 heterodimer plays an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Participates in the T-cell receptor signaling regulation by mediating cellular zinc uptake into activated lymphocytes (PubMed:21422171, PubMed:30552163, PubMed:34394081). Regulates the zinc influx necessary for proper meiotic progression to metaphase II (MII) that allows the oocyte-to-egg transition (PubMed:25143461). {ECO:0000250|UniProtKB:Q8C145, ECO:0000269|PubMed:12839489, ECO:0000269|PubMed:18272141, ECO:0000269|PubMed:21422171, ECO:0000269|PubMed:23919497, ECO:0000269|PubMed:25143461, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30552163, ECO:0000269|PubMed:32797246, ECO:0000269|PubMed:34394081}.
Q13449 LSAMP S204 ochoa Limbic system-associated membrane protein (LSAMP) (IgLON family member 3) Mediates selective neuronal growth and axon targeting. Contributes to the guidance of developing axons and remodeling of mature circuits in the limbic system. Essential for normal growth of the hippocampal mossy fiber projection (By similarity). {ECO:0000250}.
Q13625 TP53BP2 S458 ochoa Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}.
Q13813 SPTAN1 S999 ochoa Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) (Fodrin alpha chain) (Spectrin, non-erythroid alpha subunit) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane.
Q14161 GIT2 S384 psp ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}.
Q14324 MYBPC2 S62 ochoa Myosin-binding protein C, fast-type (Fast MyBP-C) (C-protein, skeletal muscle fast isoform) Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F-actin and native thin filaments, and modifies the activity of actin-activated myosin ATPase. It may modulate muscle contraction or may play a more structural role.
Q14699 RFTN1 S199 ochoa Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}.
Q14919 DRAP1 S89 ochoa Dr1-associated corepressor (Dr1-associated protein 1) (Negative cofactor 2-alpha) (NC2-alpha) The association of the DR1/DRAP1 heterodimer with TBP results in a functional repression of both activated and basal transcription of class II genes. This interaction precludes the formation of a transcription-competent complex by inhibiting the association of TFIIA and/or TFIIB with TBP. Can bind to DNA on its own. {ECO:0000269|PubMed:8608938, ECO:0000269|PubMed:8670811}.
Q15042 RAB3GAP1 S539 ochoa Rab3 GTPase-activating protein catalytic subunit (RAB3 GTPase-activating protein 130 kDa subunit) (Rab3-GAP p130) (Rab3-GAP) Catalytic subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:10859313, PubMed:24891604, PubMed:9030515). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (PubMed:10859313). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (PubMed:15696165). The Rab3GAP complex, acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (PubMed:15696165, PubMed:23420520). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (PubMed:9030515, PubMed:9852129). {ECO:0000269|PubMed:10859313, ECO:0000269|PubMed:15696165, ECO:0000269|PubMed:23420520, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9030515, ECO:0000269|PubMed:9852129}.
Q15058 KIF14 S173 ochoa Kinesin-like protein KIF14 Microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity (By similarity). Plays a role in many processes like cell division, cytokinesis and also in cell proliferation and apoptosis (PubMed:16648480, PubMed:24784001). During cytokinesis, targets to central spindle and midbody through its interaction with PRC1 and CIT respectively (PubMed:16431929). Regulates cell growth through regulation of cell cycle progression and cytokinesis (PubMed:24854087). During cell cycle progression acts through SCF-dependent proteasomal ubiquitin-dependent protein catabolic process which controls CDKN1B degradation, resulting in positive regulation of cyclins, including CCNE1, CCND1 and CCNB1 (PubMed:24854087). During late neurogenesis, regulates the cerebellar, cerebral cortex and olfactory bulb development through regulation of apoptosis, cell proliferation and cell division (By similarity). Also is required for chromosome congression and alignment during mitotic cell cycle process (PubMed:15843429). Regulates cell spreading, focal adhesion dynamics, and cell migration through its interaction with RADIL resulting in regulation of RAP1A-mediated inside-out integrin activation by tethering RADIL on microtubules (PubMed:23209302). {ECO:0000250|UniProtKB:L0N7N1, ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:16648480, ECO:0000269|PubMed:23209302, ECO:0000269|PubMed:24784001, ECO:0000269|PubMed:24854087}.
Q15262 PTPRK S828 ochoa Receptor-type tyrosine-protein phosphatase kappa (Protein-tyrosine phosphatase kappa) (R-PTP-kappa) (EC 3.1.3.48) Regulation of processes involving cell contact and adhesion such as growth control, tumor invasion, and metastasis. Negative regulator of EGFR signaling pathway. Forms complexes with beta-catenin and gamma-catenin/plakoglobin. Beta-catenin may be a substrate for the catalytic activity of PTPRK/PTP-kappa. {ECO:0000269|PubMed:19836242}.
Q15361 TTF1 S41 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15361 TTF1 S710 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q2TAC6 KIF19 S895 ochoa Kinesin-like protein KIF19 Plus end-directed microtubule-dependent motor protein that regulates the length of motile cilia by mediating depolymerization of microtubules at ciliary tips. {ECO:0000250}.
Q3V6T2 CCDC88A S1718 ochoa Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}.
Q53F19 NCBP3 S444 ochoa Nuclear cap-binding protein subunit 3 (Protein ELG) Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}.
Q53H12 AGK S350 ochoa Acylglycerol kinase, mitochondrial (hAGK) (EC 2.7.1.107) (EC 2.7.1.138) (EC 2.7.1.94) (Multiple substrate lipid kinase) (HsMuLK) (MuLK) (Multi-substrate lipid kinase) Lipid kinase that can phosphorylate both monoacylglycerol and diacylglycerol to form lysophosphatidic acid (LPA) and phosphatidic acid (PA), respectively (PubMed:15939762). Does not phosphorylate sphingosine (PubMed:15939762). Phosphorylates ceramide (By similarity). Phosphorylates 1,2-dioleoylglycerol more rapidly than 2,3-dioleoylglycerol (By similarity). Independently of its lipid kinase activity, acts as a component of the TIM22 complex (PubMed:28712724, PubMed:28712726). The TIM22 complex mediates the import and insertion of multi-pass transmembrane proteins into the mitochondrial inner membrane by forming a twin-pore translocase that uses the membrane potential as the external driving force (PubMed:28712724, PubMed:28712726). In the TIM22 complex, required for the import of a subset of metabolite carriers into mitochondria, such as ANT1/SLC25A4 and SLC25A24, while it is not required for the import of TIMM23 (PubMed:28712724). Overexpression increases the formation and secretion of LPA, resulting in transactivation of EGFR and activation of the downstream MAPK signaling pathway, leading to increased cell growth (PubMed:15939762). {ECO:0000250|UniProtKB:Q9ESW4, ECO:0000269|PubMed:15939762, ECO:0000269|PubMed:28712724, ECO:0000269|PubMed:28712726}.
Q5BKX8 CAVIN4 S260 ochoa Caveolae-associated protein 4 (Muscle-related coiled-coil protein) (Muscle-restricted coiled-coil protein) Modulates the morphology of formed caveolae in cardiomyocytes, but is not required for caveolar formation. Facilitates the recruitment of MAPK1/3 to caveolae within cardiomyocytes and regulates alpha-1 adrenergic receptor-induced hypertrophic responses in cardiomyocytes through MAPK1/3 activation. Contributes to proper membrane localization and stabilization of caveolin-3 (CAV3) in cardiomyocytes (By similarity). Induces RHOA activation and activates NPPA transcription and myofibrillar organization through the Rho/ROCK signaling pathway (PubMed:18332105). {ECO:0000250|UniProtKB:A2AMM0, ECO:0000269|PubMed:18332105}.
Q5SW79 CEP170 S270 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5SWA1 PPP1R15B S407 ochoa Protein phosphatase 1 regulatory subunit 15B Maintains low levels of EIF2S1 phosphorylation in unstressed cells by promoting its dephosphorylation by PP1. {ECO:0000269|PubMed:26159176, ECO:0000269|PubMed:26307080}.
Q5SWA1 PPP1R15B S614 ochoa Protein phosphatase 1 regulatory subunit 15B Maintains low levels of EIF2S1 phosphorylation in unstressed cells by promoting its dephosphorylation by PP1. {ECO:0000269|PubMed:26159176, ECO:0000269|PubMed:26307080}.
Q5T481 RBM20 S801 ochoa RNA-binding protein 20 (RNA-binding motif protein 20) RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}.
Q5VTT5 MYOM3 S643 ochoa Myomesin-3 (Myomesin family member 3) May link the intermediate filament cytoskeleton to the M-disk of the myofibrils in striated muscle. {ECO:0000250}.
Q5VZL5 ZMYM4 S306 ochoa Zinc finger MYM-type protein 4 (Zinc finger protein 262) Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}.
Q6BDS2 BLTP3A S1087 ochoa Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}.
Q6KC79 NIPBL S679 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6P0N0 MIS18BP1 S134 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6P3S1 DENND1B S562 ochoa DENN domain-containing protein 1B (Connecdenn 2) (Protein FAM31B) Guanine nucleotide exchange factor (GEF) for RAB35 that acts as a regulator of T-cell receptor (TCR) internalization in TH2 cells (PubMed:20154091, PubMed:20937701, PubMed:24520163, PubMed:26774822). Acts by promoting the exchange of GDP to GTP, converting inactive GDP-bound RAB35 into its active GTP-bound form (PubMed:20154091, PubMed:20937701). Plays a role in clathrin-mediated endocytosis (PubMed:20154091). Controls cytokine production in TH2 lymphocytes by controlling the rate of TCR internalization and routing to endosomes: acts by mediating clathrin-mediated endocytosis of TCR via its interaction with the adapter protein complex 2 (AP-2) and GEF activity (PubMed:26774822). Dysregulation leads to impaired TCR down-modulation and recycling, affecting cytokine production in TH2 cells (PubMed:26774822). {ECO:0000269|PubMed:20154091, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:24520163, ECO:0000269|PubMed:26774822}.
Q6VY07 PACS1 S320 ochoa Phosphofurin acidic cluster sorting protein 1 (PACS-1) Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}.
Q7RTP6 MICAL3 S1586 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7Z2K8 GPRIN1 S165 ochoa G protein-regulated inducer of neurite outgrowth 1 (GRIN1) May be involved in neurite outgrowth. {ECO:0000250}.
Q86T90 KIAA1328 S81 ochoa Protein hinderin Competes with SMC1 for binding to SMC3. May affect the availability of SMC3 to engage in the formation of multimeric protein complexes. {ECO:0000269|PubMed:15656913}.
Q86TI0 TBC1D1 S649 ochoa TBC1 domain family member 1 May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}.
Q86V15 CASZ1 S151 ochoa Zinc finger protein castor homolog 1 (Castor-related protein) (Putative survival-related protein) (Zinc finger protein 693) Transcriptional activator (PubMed:23639441, PubMed:27693370). Involved in vascular assembly and morphogenesis through direct transcriptional regulation of EGFL7 (PubMed:23639441). {ECO:0000269|PubMed:23639441, ECO:0000269|PubMed:27693370}.
Q86WG5 SBF2 S1085 ochoa Myotubularin-related protein 13 (Inactive phosphatidylinositol 3-phosphatase 13) (SET-binding factor 2) Guanine nucleotide exchange factor (GEF) which activates RAB21 and possibly RAB28 (PubMed:20937701, PubMed:25648148). Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form (PubMed:20937701, PubMed:25648148). In response to starvation-induced autophagy, activates RAB21 which in turn binds to and regulates SNARE protein VAMP8 endolysosomal transport required for SNARE-mediated autophagosome-lysosome fusion (PubMed:25648148). Acts as an adapter for the phosphatase MTMR2 (By similarity). Increases MTMR2 catalytic activity towards phosphatidylinositol 3,5-bisphosphate and to a lesser extent towards phosphatidylinositol 3-phosphate (By similarity). {ECO:0000250|UniProtKB:E9PXF8, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:25648148}.
Q86X02 CDR2L S419 ochoa Cerebellar degeneration-related protein 2-like (Paraneoplastic 62 kDa antigen) None
Q86YV5 PRAG1 S219 ochoa Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}.
Q8IWQ3 BRSK2 S294 ochoa Serine/threonine-protein kinase BRSK2 (EC 2.7.11.1) (Brain-selective kinase 2) (EC 2.7.11.26) (Brain-specific serine/threonine-protein kinase 2) (BR serine/threonine-protein kinase 2) (Serine/threonine-protein kinase 29) (Serine/threonine-protein kinase SAD-A) Serine/threonine-protein kinase that plays a key role in polarization of neurons and axonogenesis, cell cycle progress and insulin secretion. Phosphorylates CDK16, CDC25C, MAPT/TAU, PAK1 and WEE1. Following phosphorylation and activation by STK11/LKB1, acts as a key regulator of polarization of cortical neurons, probably by mediating phosphorylation of microtubule-associated proteins such as MAPT/TAU at 'Thr-529' and 'Ser-579'. Also regulates neuron polarization by mediating phosphorylation of WEE1 at 'Ser-642' in postmitotic neurons, leading to down-regulate WEE1 activity in polarized neurons. Plays a role in the regulation of the mitotic cell cycle progress and the onset of mitosis. Plays a role in the regulation of insulin secretion in response to elevated glucose levels, probably via phosphorylation of CDK16 and PAK1. While BRSK2 phosphorylated at Thr-174 can inhibit insulin secretion (PubMed:22798068), BRSK2 phosphorylated at Thr-260 can promote insulin secretion (PubMed:22669945). Regulates reorganization of the actin cytoskeleton. May play a role in the apoptotic response triggered by endoplasmic reticulum (ER) stress. {ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:20026642, ECO:0000269|PubMed:21985311, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:22798068, ECO:0000269|PubMed:23029325}.
Q8IYB3 SRRM1 S874 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8N1W1 ARHGEF28 S719 ochoa Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}.
Q8N392 ARHGAP18 S263 ochoa Rho GTPase-activating protein 18 (MacGAP) (Rho-type GTPase-activating protein 18) Rho GTPase activating protein that suppresses F-actin polymerization by inhibiting Rho. Rho GTPase activating proteins act by converting Rho-type GTPases to an inactive GDP-bound state (PubMed:21865595). Plays a key role in tissue tension and 3D tissue shape by regulating cortical actomyosin network formation. Acts downstream of YAP1 and inhibits actin polymerization, which in turn reduces nuclear localization of YAP1 (PubMed:25778702). Regulates cell shape, spreading, and migration (PubMed:21865595). {ECO:0000269|PubMed:21865595, ECO:0000269|PubMed:25778702}.
Q8N3F8 MICALL1 S324 ochoa MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}.
Q8N3R9 PALS1 S245 ochoa Protein PALS1 (MAGUK p55 subfamily member 5) (Membrane protein, palmitoylated 5) (Protein associated with Lin-7 1) Plays a role in tight junction biogenesis and in the establishment of cell polarity in epithelial cells (PubMed:16678097, PubMed:25385611). Also involved in adherens junction biogenesis by ensuring correct localization of the exocyst complex protein EXOC4/SEC8 which allows trafficking of adherens junction structural component CDH1 to the cell surface (By similarity). Plays a role through its interaction with CDH5 in vascular lumen formation and endothelial membrane polarity (PubMed:27466317). Required during embryonic and postnatal retinal development (By similarity). Required for the maintenance of cerebellar progenitor cells in an undifferentiated proliferative state, preventing premature differentiation, and is required for cerebellar histogenesis, fissure formation, cerebellar layer organization and cortical development (By similarity). Plays a role in neuronal progenitor cell survival, potentially via promotion of mTOR signaling (By similarity). Plays a role in the radial and longitudinal extension of the myelin sheath in Schwann cells (By similarity). May modulate SC6A1/GAT1-mediated GABA uptake by stabilizing the transporter (By similarity). Plays a role in the T-cell receptor-mediated activation of NF-kappa-B (PubMed:21479189). Required for localization of EZR to the apical membrane of parietal cells and may play a role in the dynamic remodeling of the apical cytoskeleton (By similarity). Required for the normal polarized localization of the vesicular marker STX4 (By similarity). Required for the correct trafficking of the myelin proteins PMP22 and MAG (By similarity). Involved in promoting phosphorylation and cytoplasmic retention of transcriptional coactivators YAP1 and WWTR1/TAZ which leads to suppression of TGFB1-dependent transcription of target genes such as CCN2/CTGF, SERPINE1/PAI1, SNAI1/SNAIL1 and SMAD7 (By similarity). {ECO:0000250|UniProtKB:B4F7E7, ECO:0000250|UniProtKB:Q9JLB2, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:21479189, ECO:0000269|PubMed:25385611, ECO:0000269|PubMed:27466317}.; FUNCTION: (Microbial infection) Acts as an interaction partner for human coronaviruses SARS-CoV and, probably, SARS-CoV-2 envelope protein E which results in delayed formation of tight junctions and disregulation of cell polarity. {ECO:0000269|PubMed:20861307, ECO:0000303|PubMed:32891874}.
Q8NFA2 NOXO1 S162 ochoa NADPH oxidase organizer 1 (NADPH oxidase regulatory protein) (Nox organizer 1) (Nox-organizing protein 1) (SH3 and PX domain-containing protein 5) Constitutively potentiates the superoxide-generating activity of NOX1 and NOX3 and is required for the biogenesis of otoconia/otolith, which are crystalline structures of the inner ear involved in the perception of gravity. Isoform 3 is more potent than isoform 1 in activating NOX3. Together with NOXA1, may also substitute to NCF1/p47phox and NCF2/p67phox in supporting the phagocyte NOX2/gp91phox superoxide-generating activity. {ECO:0000269|PubMed:12657628, ECO:0000269|PubMed:14617635, ECO:0000269|PubMed:15326186, ECO:0000269|PubMed:15824103, ECO:0000269|PubMed:15949904, ECO:0000269|PubMed:16329988, ECO:0000269|PubMed:17126813, ECO:0000269|PubMed:19755710}.
Q8TC26 TMEM163 S61 ochoa Transmembrane protein 163 Zinc ion transporter that mediates zinc efflux and plays a crucial role in intracellular zinc homeostasis (PubMed:25130899, PubMed:31697912, PubMed:36204728). Binds the divalent cations Zn(2+), Ni(2+), and to a minor extent Cu(2+) (By similarity). Is a functional modulator of P2X purinoceptors, including P2RX1, P2RX3, P2RX4 and P2RX7 (PubMed:32492420). Plays a role in central nervous system development and is required for myelination, and survival and proliferation of oligodendrocytes (PubMed:35455965). {ECO:0000250|UniProtKB:A9CMA6, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:31697912, ECO:0000269|PubMed:32492420, ECO:0000269|PubMed:35455965, ECO:0000269|PubMed:36204728}.
Q8TF72 SHROOM3 S1726 ochoa Protein Shroom3 (Shroom-related protein) (hShrmL) Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}.
Q8TF76 HASPIN S269 psp Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}.
Q8WUM0 NUP133 S501 ochoa Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}.
Q8WUX1 SLC38A5 S36 ochoa Sodium-coupled neutral amino acid transporter 5 (Solute carrier family 38 member 5) (System N transporter 2) Symporter that cotransports neutral amino acids and sodium ions, coupled to an H(+) antiporter activity (PubMed:11243884). Releases L-glutamine and glycine from astroglial cells and may participate in the glutamate/GABA-L-glutamine cycle and the NMDA receptors activation (By similarity). In addition, contributes significantly to L-glutamine uptake in retina, namely in ganglion and Mueller cells therefore, participates in the retinal glutamate-glutamine cycle (By similarity). The transport activity is pH sensitive and Li(+) tolerant (PubMed:11243884). Moreover functions in both direction and is associated with large uncoupled fluxes of protons (By similarity). The transport is electroneutral coupled to the cotransport of 1 Na(+) and the antiport of 1 H(+) (By similarity). May have a particular importance for modulation of net hepatic glutamine flux (By similarity). {ECO:0000250|UniProtKB:A2VCW5, ECO:0000250|UniProtKB:Q3U1J0, ECO:0000269|PubMed:11243884}.
Q8WWN8 ARAP3 S1444 ochoa Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (Centaurin-delta-3) (Cnt-d3) Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency. Acts on ARF6, RAC1, RHOA and CDC42. Plays a role in the internalization of anthrax toxin. {ECO:0000269|PubMed:11804589, ECO:0000269|PubMed:15569923}.
Q8WYH8 ING5 S122 ochoa Inhibitor of growth protein 5 (p28ING5) Component of the HBO1 complex, which specifically mediates acetylation of histone H3 at 'Lys-14' (H3K14ac) and, to a lower extent, acetylation of histone H4 (PubMed:24065767). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). Through chromatin acetylation it may regulate DNA replication and may function as a transcriptional coactivator (PubMed:12750254, PubMed:16387653). Inhibits cell growth, induces a delay in S-phase progression and enhances Fas-induced apoptosis in an INCA1-dependent manner (PubMed:21750715). {ECO:0000269|PubMed:12750254, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21750715, ECO:0000269|PubMed:24065767}.
Q92545 TMEM131 S1424 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92547 TOPBP1 S747 ochoa DNA topoisomerase 2-binding protein 1 (DNA topoisomerase II-beta-binding protein 1) (TopBP1) (DNA topoisomerase II-binding protein 1) Scaffold protein that acts as a key protein-protein adapter in DNA replication and DNA repair (PubMed:10498869, PubMed:11395493, PubMed:11714696, PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:33592542, PubMed:35597237, PubMed:37674080). Composed of multiple BRCT domains, which specifically recognize and bind phosphorylated proteins, bringing proteins together into functional combinations (PubMed:17575048, PubMed:20545769, PubMed:21777809, PubMed:26811421, PubMed:30898438, PubMed:31135337, PubMed:35597237, PubMed:37674080). Required for DNA replication initiation but not for the formation of pre-replicative complexes or the elongation stages (By similarity). Necessary for the loading of replication factors onto chromatin, including GMNC, CDC45, DNA polymerases and components of the GINS complex (By similarity). Plays a central role in DNA repair by bridging proteins and promoting recruitment of proteins to DNA damage sites (PubMed:30898438, PubMed:35597237, PubMed:37674080). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the exchange between the DNA replication factor A (RPA) complex and RAD51 (PubMed:26811421, PubMed:35597237). Mechanistically, TOPBP1 is recruited to DNA damage sites in S-phase via interaction with phosphorylated HTATSF1, and promotes the loading of RAD51, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). Involved in microhomology-mediated end-joining (MMEJ) DNA repair by promoting recruitment of polymerase theta (POLQ) to DNA damage sites during mitosis (PubMed:37674080). MMEJ is an alternative non-homologous end-joining (NHEJ) machinery that takes place during mitosis to repair DSBs in DNA that originate in S-phase (PubMed:37674080). Recognizes and binds POLQ phosphorylated by PLK1, enabling its recruitment to DSBs for subsequent repair (PubMed:37674080). Involved in G1 DNA damage checkpoint by acting as a molecular adapter that couples TP53BP1 and the 9-1-1 complex (PubMed:31135337). In response to DNA damage, triggers the recruitment of checkpoint signaling proteins on chromatin, which activate the CHEK1 signaling pathway and block S-phase progression (PubMed:16530042, PubMed:21777809). Acts as an activator of the kinase activity of ATR (PubMed:16530042, PubMed:21777809). Also required for chromosomal stability when DSBs occur during mitosis by forming filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Together with CIP2A, plays an essential role in the response to genome instability generated by the presence of acentric chromosome fragments derived from shattered chromosomes within micronuclei (PubMed:35121901, PubMed:35842428, PubMed:37165191, PubMed:37316668). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, the CIP2A-TOPBP1 complex tethers chromosome fragments during mitosis to ensure clustered segregation of the fragments to a single daughter cell nucleus, facilitating re-ligation with limited chromosome scattering and loss (PubMed:37165191, PubMed:37316668). Recruits the SWI/SNF chromatin remodeling complex to E2F1-responsive promoters, thereby down-regulating E2F1 activity and inhibiting E2F1-dependent apoptosis during G1/S transition and after DNA damage (PubMed:12697828, PubMed:15075294). {ECO:0000250|UniProtKB:Q800K6, ECO:0000269|PubMed:10498869, ECO:0000269|PubMed:11395493, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:12697828, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:16530042, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21777809, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:30898438, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:33592542, ECO:0000269|PubMed:35121901, ECO:0000269|PubMed:35597237, ECO:0000269|PubMed:35842428, ECO:0000269|PubMed:37165191, ECO:0000269|PubMed:37316668, ECO:0000269|PubMed:37674080}.
Q92551 IP6K1 S175 ochoa Inositol hexakisphosphate kinase 1 (InsP6 kinase 1) (EC 2.7.4.21) (Inositol hexaphosphate kinase 1) Converts inositol hexakisphosphate (InsP6) to diphosphoinositol pentakisphosphate (InsP7/PP-InsP5). Converts 1,3,4,5,6-pentakisphosphate (InsP5) to PP-InsP4.
Q92608 DOCK2 S1731 ochoa Dedicator of cytokinesis protein 2 Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}.
Q92614 MYO18A S234 ochoa Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}.
Q92783 STAM S195 ochoa Signal transducing adapter molecule 1 (STAM-1) Involved in intracellular signal transduction mediated by cytokines and growth factors. Upon IL-2 and GM-CSL stimulation, it plays a role in signaling leading to DNA synthesis and MYC induction. May also play a role in T-cell development. Involved in down-regulation of receptor tyrosine kinase via multivesicular body (MVBs) when complexed with HGS (ESCRT-0 complex). The ESCRT-0 complex binds ubiquitin and acts as a sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.; FUNCTION: (Microbial infection) Plays an important role in Dengue virus entry. {ECO:0000269|PubMed:29742433}.
Q92905 COPS5 S177 psp COP9 signalosome complex subunit 5 (SGN5) (Signalosome subunit 5) (EC 3.4.-.-) (Jun activation domain-binding protein 1) Probable protease subunit of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of the SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. In the complex, it probably acts as the catalytic center that mediates the cleavage of Nedd8 from cullins. It however has no metalloprotease activity by itself and requires the other subunits of the CSN complex. Interacts directly with a large number of proteins that are regulated by the CSN complex, confirming a key role in the complex. Promotes the proteasomal degradation of BRSK2. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:19214193, ECO:0000269|PubMed:20978819, ECO:0000269|PubMed:22609399, ECO:0000269|PubMed:9535219}.
Q93052 LPP S28 ochoa Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}.
Q93075 TATDN2 S299 ochoa 3'-5' RNA nuclease TATDN2 (EC 3.1.13.-) (TatD DNase domain containing 2) Mg(2+)-dependent 3'RNA exonuclease and endonuclease that resolves R-loops via specific degradation of R-loop RNA stucture (PubMed:37953292). Shows no activity against D-loop and minimal activity against the RNA strand of an RNA-DNA hybrid duplex oligomer. Has no 3' or 5' exonuclease activity, no uracil glycosylase activity, and no 5' flap endonuclease activity on DNA substrates (PubMed:37953292). May have a role in maintaining genomic stability through its role in R-loop resolution (PubMed:37953292). {ECO:0000269|PubMed:37953292}.
Q96B97 SH3KBP1 S85 ochoa SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}.
Q96DY7 MTBP S796 ochoa Mdm2-binding protein (hMTBP) Inhibits cell migration in vitro and suppresses the invasive behavior of tumor cells (By similarity). May play a role in MDM2-dependent p53/TP53 homeostasis in unstressed cells. Inhibits autoubiquitination of MDM2, thereby enhancing MDM2 stability. This promotes MDM2-mediated ubiquitination of p53/TP53 and its subsequent degradation. {ECO:0000250, ECO:0000269|PubMed:15632057}.
Q96EH3 MALSU1 S82 ochoa Mitochondrial assembly of ribosomal large subunit protein 1 Required for normal mitochondrial ribosome function and mitochondrial translation (PubMed:22238375, PubMed:23171548). May play a role in ribosome biogenesis by preventing premature association of the 28S and 39S ribosomal subunits (Probable). Interacts with mitochondrial ribosomal protein uL14m (MRPL14), probably blocking formation of intersubunit bridge B8, preventing association of the 28S and 39S ribosomal subunits (Probable). Addition to isolated mitochondrial ribosomal subunits partially inhibits translation, probably by interfering with the association of the 28S and 39S ribosomal subunits and the formation of functional ribosomes (Probable). May also participate in the assembly and/or regulation of the stability of the large subunit of the mitochondrial ribosome (PubMed:22238376, PubMed:23171548). May function as a ribosomal silencing factor (Probable). {ECO:0000269|PubMed:22238375, ECO:0000269|PubMed:22238376, ECO:0000269|PubMed:23171548, ECO:0000305|PubMed:22829778, ECO:0000305|PubMed:28892042}.
Q96GN5 CDCA7L S237 ochoa Cell division cycle-associated 7-like protein (Protein JPO2) (Transcription factor RAM2) Plays a role in transcriptional regulation as a repressor that inhibits monoamine oxidase A (MAOA) activity and gene expression by binding to the promoter. Plays an important oncogenic role in mediating the full transforming effect of MYC in medulloblastoma cells. Involved in apoptotic signaling pathways; May act downstream of P38-kinase and BCL-2, but upstream of CASP3/caspase-3 as well as CCND1/cyclin D1 and E2F1. {ECO:0000269|PubMed:15654081, ECO:0000269|PubMed:15994933, ECO:0000269|PubMed:16829576}.
Q96JH7 VCPIP1 S185 ochoa Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}.
Q96MG2 JSRP1 S46 ochoa Junctional sarcoplasmic reticulum protein 1 (Junctional-face membrane protein of 45 kDa homolog) (JP-45) Involved in skeletal muscle excitation/contraction coupling (EC), probably acting as a regulator of the voltage-sensitive calcium channel CACNA1S. EC is a physiological process whereby an electrical signal (depolarization of the plasma membrane) is converted into a chemical signal, a calcium gradient, by the opening of ryanodine receptor calcium release channels. May regulate CACNA1S membrane targeting and activity. {ECO:0000269|PubMed:22927026}.
Q96MT8 CEP63 S437 ochoa Centrosomal protein of 63 kDa (Cep63) Required for normal spindle assembly (PubMed:21406398, PubMed:21983783, PubMed:26297806, PubMed:35793002). Plays a key role in mother-centriole-dependent centriole duplication; the function seems also to involve CEP152, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:21983783, PubMed:26297806). Reported to be required for centrosomal recruitment of CEP152; however, this function has been questioned (PubMed:21983783, PubMed:26297806). Also recruits CDK1 to centrosomes (PubMed:21406398). Plays a role in DNA damage response (PubMed:21406398). Following DNA damage, such as double-strand breaks (DSBs), is removed from centrosomes; this leads to the inactivation of spindle assembly and delay in mitotic progression (PubMed:21406398). Promotes stabilization of FXR1 protein by inhibiting FXR1 ubiquitination (PubMed:35989368). {ECO:0000269|PubMed:21406398, ECO:0000269|PubMed:21983783, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:35793002, ECO:0000269|PubMed:35989368}.
Q96R06 SPAG5 S835 ochoa Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}.
Q96S38 RPS6KC1 S667 ochoa Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}.
Q96T88 UHRF1 S76 ochoa E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q96T88 UHRF1 S393 ochoa E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q99459 CDC5L S339 ochoa Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}.
Q99708 RBBP8 S593 ochoa|psp DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}.
Q9BXL7 CARD11 S593 ochoa Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}.
Q9BYC5 FUT8 S278 ochoa Alpha-(1,6)-fucosyltransferase (Alpha1-6FucT) (EC 2.4.1.68) (Fucosyltransferase 8) (GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1,6-fucosyltransferase) (GDP-fucose--glycoprotein fucosyltransferase) (Glycoprotein 6-alpha-L-fucosyltransferase) Catalyzes the addition of fucose in alpha 1-6 linkage to the first GlcNAc residue, next to the peptide chains in N-glycans. {ECO:0000269|PubMed:17172260, ECO:0000269|PubMed:29304374, ECO:0000269|PubMed:9133635}.
Q9C0K1 SLC39A8 S278 ochoa Metal cation symporter ZIP8 (BCG-induced integral membrane protein in monocyte clone 103 protein) (LIV-1 subfamily of ZIP zinc transporter 6) (LZT-Hs6) (Solute carrier family 39 member 8) (Zrt- and Irt-like protein 8) (ZIP-8) Electroneutral divalent metal cation:bicarbonate symporter of the plasma membrane mediating the cellular uptake of zinc and manganese, two divalent metal cations important for development, tissue homeostasis and immunity (PubMed:12504855, PubMed:22898811, PubMed:23403290, PubMed:26637978, PubMed:29337306, PubMed:29453449). Transports an electroneutral complex composed of a divalent metal cation and two bicarbonate anions or alternatively a bicarbonate and a selenite anion (PubMed:27166256, PubMed:31699897). Thereby, it also contributes to the cellular uptake of selenium, an essential trace metal and micronutrient (PubMed:27166256). Also imports cadmium a non-essential metal which is cytotoxic and carcinogenic (PubMed:27466201). May also transport iron and cobalt through membranes (PubMed:22898811). Through zinc import, indirectly regulates the metal-dependent transcription factor MTF1 and the expression of some metalloproteases involved in cartilage catabolism and also probably heart development (PubMed:29337306). Also indirectly regulates the expression of proteins involved in cell morphology and cytoskeleton organization (PubMed:29927450). Indirectly controls innate immune function and inflammatory response by regulating zinc cellular uptake which in turn modulates the expression of genes specific of these processes (PubMed:23403290, PubMed:28056086). Protects, for instance, cells from injury and death at the onset of inflammation (PubMed:18390834). By regulating zinc influx into monocytes also directly modulates their adhesion to endothelial cells and arteries (By similarity). Reclaims manganese from the bile at the apical membrane of hepatocytes, thereby regulating the activity of the manganese-dependent enzymes through the systemic levels of the nutrient (PubMed:28481222). Also participates in manganese reabsorption in the proximal tubule of the kidney (PubMed:26637978). By mediating the extracellular uptake of manganese by cells of the blood-brain barrier, may also play a role in the transport of the micronutrient to the brain (PubMed:26637978, PubMed:31699897). With manganese cellular uptake also participates in mitochondrial proper function (PubMed:29453449). Finally, also probably functions intracellularly, translocating zinc from lysosome to cytosol to indirectly enhance the expression of specific genes during TCR-mediated T cell activation (PubMed:19401385). {ECO:0000250|UniProtKB:Q91W10, ECO:0000269|PubMed:12504855, ECO:0000269|PubMed:18390834, ECO:0000269|PubMed:19401385, ECO:0000269|PubMed:22898811, ECO:0000269|PubMed:23403290, ECO:0000269|PubMed:26637978, ECO:0000269|PubMed:27166256, ECO:0000269|PubMed:27466201, ECO:0000269|PubMed:28056086, ECO:0000269|PubMed:28481222, ECO:0000269|PubMed:29337306, ECO:0000269|PubMed:29453449, ECO:0000269|PubMed:29927450, ECO:0000269|PubMed:31699897}.
Q9GZR2 REXO4 S383 ochoa RNA exonuclease 4 (EC 3.1.-.-) (Exonuclease XPMC2) (Prevents mitotic catastrophe 2 protein homolog) (hPMC2) None
Q9GZZ9 UBA5 S358 ochoa Ubiquitin-like modifier-activating enzyme 5 (Ubiquitin-activating enzyme 5) (ThiFP1) (UFM1-activating enzyme) (Ubiquitin-activating enzyme E1 domain-containing protein 1) E1-like enzyme which specifically catalyzes the first step in ufmylation (PubMed:15071506, PubMed:18442052, PubMed:20368332, PubMed:25219498, PubMed:26929408, PubMed:27545674, PubMed:27545681, PubMed:27653677, PubMed:30412706, PubMed:30626644, PubMed:34588452). Activates UFM1 by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a UFM1-E1 thioester and free AMP (PubMed:20368332, PubMed:26929408, PubMed:27653677, PubMed:30412706). Activates UFM1 via a trans-binding mechanism, in which UFM1 interacts with distinct sites in both subunits of the UBA5 homodimer (PubMed:27653677). Trans-binding also promotes stabilization of the UBA5 homodimer, and enhances ATP-binding (PubMed:29295865). Transfer of UFM1 from UBA5 to the E2-like enzyme UFC1 also takes place using a trans mechanism (PubMed:27653677, PubMed:34588452). Ufmylation plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:30412706, PubMed:32160526, PubMed:35394863). Ufmylation is essential for erythroid differentiation of both megakaryocytes and erythrocytes (By similarity). {ECO:0000250|UniProtKB:Q8VE47, ECO:0000269|PubMed:15071506, ECO:0000269|PubMed:18442052, ECO:0000269|PubMed:20368332, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26929408, ECO:0000269|PubMed:27545674, ECO:0000269|PubMed:27545681, ECO:0000269|PubMed:27653677, ECO:0000269|PubMed:29295865, ECO:0000269|PubMed:30412706, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:34588452, ECO:0000269|PubMed:35394863}.
Q9H0E9 BRD8 S383 ochoa Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}.
Q9H1A4 ANAPC1 S564 ochoa Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q9H3R2 MUC13 S471 ochoa Mucin-13 (MUC-13) (Down-regulated in colon cancer 1) Epithelial and hemopoietic transmembrane mucin that may play a role in cell signaling.
Q9H4G0 EPB41L1 S667 ochoa Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases.
Q9H4I2 ZHX3 S899 ochoa Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}.
Q9H6A9 PCNX3 S178 ochoa Pecanex-like protein 3 (Pecanex homolog protein 3) None
Q9HAU5 UPF2 S285 ochoa Regulator of nonsense transcripts 2 (Up-frameshift suppressor 2 homolog) (hUpf2) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC). Recruited by UPF3B associated with the EJC core at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF3B stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:18066079}.
Q9HCE0 EPG5 S188 ochoa Ectopic P granules protein 5 homolog Involved in autophagy. May play a role in a late step of autophagy, such as clearance of autophagosomal cargo. Plays a key role in innate and adaptive immune response triggered by unmethylated cytidine-phosphate-guanosine (CpG) dinucleotides from pathogens, and mediated by the nucleotide-sensing receptor TLR9. It is necessary for the translocation of CpG dinucleotides from early endosomes to late endosomes and lysosomes, where TLR9 is located (PubMed:29130391). {ECO:0000269|PubMed:20550938, ECO:0000269|PubMed:23222957, ECO:0000269|PubMed:29130391}.
Q9NR16 CD163L1 S1426 ochoa Scavenger receptor cysteine-rich type 1 protein M160 (CD163 antigen-like 1) (CD antigen CD163b) None
Q9NR45 NANS S134 ochoa N-acetylneuraminate-9-phosphate synthase (EC 2.5.1.57) (3-deoxy-D-glycero-D-galacto-nononate 9-phosphate synthase) (EC 2.5.1.132) (N-acetylneuraminic acid phosphate synthase) (NANS) (Sialic acid phosphate synthase) (Sialic acid synthase) Catalyzes the condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine 6-phosphate (ManNAc-6-P) to synthesize N-acetylneuraminate-9-phosphate (Neu5Ac-9-P) (PubMed:10749855). Also catalyzes the condensation of PEP and D-mannose 6-phosphate (Man-6-P) to produce 3-deoxy-D-glycero-beta-D-galacto-non-2-ulopyranosonate 9-phosphate (KDN-9-P) (PubMed:10749855). Neu5Ac-9-P and KDN-9-P are the phosphorylated forms of sialic acids N-acetylneuraminic acid (Neu5Ac) and deaminoneuraminic acid (KDN), respectively (PubMed:10749855). Required for brain and skeletal development (PubMed:27213289). {ECO:0000269|PubMed:10749855, ECO:0000269|PubMed:27213289}.
Q9NRX5 SERINC1 S364 ochoa Serine incorporator 1 (Tumor differentially expressed protein 1-like) (Tumor differentially expressed protein 2) Enhances the incorporation of serine into phosphatidylserine and sphingolipids. {ECO:0000250|UniProtKB:Q7TNK0}.
Q9NUQ6 SPATS2L S338 ochoa SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) None
Q9NYW8 RBAK S78 ochoa RB-associated KRAB zinc finger protein (RB-associated KRAB repressor) (hRBaK) (Zinc finger protein 769) May repress E2F-dependent transcription. May promote AR-dependent transcription. {ECO:0000269|PubMed:10702291, ECO:0000269|PubMed:14664718}.
Q9NZJ4 SACS S1779 ochoa Sacsin (DnaJ homolog subfamily C member 29) Co-chaperone which acts as a regulator of the Hsp70 chaperone machinery and may be involved in the processing of other ataxia-linked proteins. {ECO:0000269|PubMed:19208651}.
Q9P0K7 RAI14 S317 ochoa Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}.
Q9P107 GMIP S19 ochoa GEM-interacting protein (GMIP) Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}.
Q9P1Y6 PHRF1 S430 ochoa PHD and RING finger domain-containing protein 1 None
Q9UBC2 EPS15L1 S628 ochoa Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}.
Q9UBU7 DBF4 S420 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UJU2 LEF1 S61 psp Lymphoid enhancer-binding factor 1 (LEF-1) (T cell-specific transcription factor 1-alpha) (TCF1-alpha) Transcription factor that binds DNA in a sequence-specific manner (PubMed:2010090). Participates in the Wnt signaling pathway (By similarity). Activates transcription of target genes in the presence of CTNNB1 and EP300 (By similarity). PIAG antagonizes both Wnt-dependent and Wnt-independent activation by LEF1 (By similarity). TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by LEF1 and CTNNB1 (PubMed:11266540). Regulates T-cell receptor alpha enhancer function (PubMed:19653274). Required for IL17A expressing gamma-delta T-cell maturation and development, via binding to regulator loci of BLK to modulate expression (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, expression is repressed during the bell stage by MSX1-mediated inhibition of CTNNB1 signaling (By similarity). May play a role in hair cell differentiation and follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:P27782, ECO:0000269|PubMed:11266540, ECO:0000269|PubMed:19653274, ECO:0000269|PubMed:2010090}.; FUNCTION: [Isoform 1]: Transcriptionally activates MYC and CCND1 expression and enhances proliferation of pancreatic tumor cells. {ECO:0000269|PubMed:19653274}.; FUNCTION: [Isoform 3]: Lacks the CTNNB1 interaction domain and may therefore be an antagonist for Wnt signaling. {ECO:0000269|PubMed:11326276}.; FUNCTION: [Isoform 5]: Transcriptionally activates the fibronectin promoter, binds to and represses transcription from the E-cadherin promoter in a CTNNB1-independent manner, and is involved in reducing cellular aggregation and increasing cell migration of pancreatic cancer cells. {ECO:0000269|PubMed:19653274}.
Q9UJY4 GGA2 S284 ochoa ADP-ribosylation factor-binding protein GGA2 (Gamma-adaptin-related protein 2) (Golgi-localized, gamma ear-containing, ARF-binding protein 2) (VHS domain and ear domain of gamma-adaptin) (Vear) Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:10747088). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:27901063). Regulates retrograde transport of phosphorylated form of BACE1 from endosomes to the trans-Golgi network (PubMed:15615712). {ECO:0000269|PubMed:10747088, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:27901063}.
Q9UKW4 VAV3 S213 ochoa Guanine nucleotide exchange factor VAV3 (VAV-3) Exchange factor for GTP-binding proteins RhoA, RhoG and, to a lesser extent, Rac1. Binds physically to the nucleotide-free states of those GTPases. Plays an important role in angiogenesis. Its recruitment by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly (By similarity). May be important for integrin-mediated signaling, at least in some cell types. In osteoclasts, along with SYK tyrosine kinase, required for signaling through integrin alpha-v/beta-1 (ITAGV-ITGB1), a crucial event for osteoclast proper cytoskeleton organization and function. This signaling pathway involves RAC1, but not RHO, activation. Necessary for proper wound healing. In the course of wound healing, required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Responsible for integrin beta-2 (ITGB2)-mediated macrophage adhesion and, to a lesser extent, contributes to beta-3 (ITGB3)-mediated adhesion. Does not affect integrin beta-1 (ITGB1)-mediated adhesion (By similarity). {ECO:0000250}.
Q9UL26 RAB22A S175 ochoa Ras-related protein Rab-22A (Rab-22) Plays a role in endocytosis and intracellular protein transport. Mediates trafficking of TF from early endosomes to recycling endosomes (PubMed:16537905). Required for NGF-mediated endocytosis of NTRK1, and subsequent neurite outgrowth (PubMed:21849477). Binds GTP and GDP and has low GTPase activity. Alternates between a GTP-bound active form and a GDP-bound inactive form (PubMed:16537905). {ECO:0000269|PubMed:16537905, ECO:0000269|PubMed:21849477}.
Q9ULS5 TMCC3 S242 ochoa Transmembrane and coiled-coil domain protein 3 None
Q9ULU4 ZMYND8 S1090 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9UMS6 SYNPO2 S212 ochoa Synaptopodin-2 (Genethonin-2) (Myopodin) Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}.
Q9UMX1 SUFU S267 ochoa Suppressor of fused homolog (SUFUH) Negative regulator in the hedgehog/smoothened signaling pathway (PubMed:10559945, PubMed:10564661, PubMed:10806483, PubMed:12068298, PubMed:12975309, PubMed:15367681, PubMed:22365972, PubMed:24217340, PubMed:24311597, PubMed:27234298, PubMed:28965847). Down-regulates GLI1-mediated transactivation of target genes (PubMed:15367681, PubMed:24217340, PubMed:24311597). Down-regulates GLI2-mediated transactivation of target genes (PubMed:24217340, PubMed:24311597). Part of a corepressor complex that acts on DNA-bound GLI1. May also act by linking GLI1 to BTRC and thereby targeting GLI1 to degradation by the proteasome (PubMed:10559945, PubMed:10564661, PubMed:10806483, PubMed:24217340). Sequesters GLI1, GLI2 and GLI3 in the cytoplasm, this effect is overcome by binding of STK36 to both SUFU and a GLI protein (PubMed:10559945, PubMed:10564661, PubMed:10806483, PubMed:24217340). Negative regulator of beta-catenin signaling (By similarity). Regulates the formation of either the repressor form (GLI3R) or the activator form (GLI3A) of the full-length form of GLI3 (GLI3FL) (PubMed:24311597, PubMed:28965847). GLI3FL is complexed with SUFU in the cytoplasm and is maintained in a neutral state (PubMed:24311597, PubMed:28965847). Without the Hh signal, the SUFU-GLI3 complex is recruited to cilia, leading to the efficient processing of GLI3FL into GLI3R (PubMed:24311597, PubMed:28965847). When Hh signaling is initiated, SUFU dissociates from GLI3FL and the latter translocates to the nucleus, where it is phosphorylated, destabilized, and converted to a transcriptional activator (GLI3A) (PubMed:24311597, PubMed:28965847). Required for normal embryonic development (By similarity). Required for the proper formation of hair follicles and the control of epidermal differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z0P7, ECO:0000269|PubMed:10559945, ECO:0000269|PubMed:10564661, ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:12068298, ECO:0000269|PubMed:12975309, ECO:0000269|PubMed:15367681, ECO:0000269|PubMed:22365972, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:27234298, ECO:0000269|PubMed:28965847}.
Q9UPN4 CEP131 S208 ochoa Centrosomal protein of 131 kDa (5-azacytidine-induced protein 1) (Pre-acrosome localization protein 1) Component of centriolar satellites contributing to the building of a complex and dynamic network required to regulate cilia/flagellum formation (PubMed:17954613, PubMed:24185901). In proliferating cells, MIB1-mediated ubiquitination induces its sequestration within centriolar satellites, precluding untimely cilia formation initiation (PubMed:24121310). In contrast, during normal and ultraviolet or heat shock cellular stress-induced ciliogenesis, its non-ubiquitinated form is rapidly displaced from centriolar satellites and recruited to centrosome/basal bodies in a microtubule- and p38 MAPK-dependent manner (PubMed:24121310, PubMed:26616734). Also acts as a negative regulator of BBSome ciliary trafficking (PubMed:24550735). Plays a role in sperm flagellar formation; may be involved in the regulation of intraflagellar transport (IFT) and/or intramanchette (IMT) trafficking, which are important for axoneme extension and/or cargo delivery to the nascent sperm tail (By similarity). Required for optimal cell proliferation and cell cycle progression; may play a role in the regulation of genome stability in non-ciliogenic cells (PubMed:22797915, PubMed:26297806). Involved in centriole duplication (By similarity). Required for CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). Essential for maintaining proper centriolar satellite integrity (PubMed:30804208). {ECO:0000250|UniProtKB:Q62036, ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:22797915, ECO:0000269|PubMed:24121310, ECO:0000269|PubMed:24185901, ECO:0000269|PubMed:24550735, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:26616734, ECO:0000269|PubMed:30804208}.
Q9Y2K1 ZBTB1 S520 ochoa Zinc finger and BTB domain-containing protein 1 Acts as a transcriptional repressor (PubMed:20797634). Represses cAMP-responsive element (CRE)-mediated transcriptional activation (PubMed:21706167). In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis (PubMed:24657165). Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity). {ECO:0000250|UniProtKB:Q91VL9, ECO:0000269|PubMed:20797634, ECO:0000269|PubMed:21706167, ECO:0000269|PubMed:24657165}.
Q9Y3R0 GRIP1 S661 ochoa Glutamate receptor-interacting protein 1 (GRIP-1) May play a role as a localized scaffold for the assembly of a multiprotein signaling complex and as mediator of the trafficking of its binding partners at specific subcellular location in neurons (PubMed:10197531). Through complex formation with NSG1, GRIA2 and STX12 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting (By similarity). {ECO:0000250|UniProtKB:P97879, ECO:0000269|PubMed:10197531}.
Q9Y3X0 CCDC9 S60 ochoa Coiled-coil domain-containing protein 9 Probable component of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. {ECO:0000305|PubMed:33973408}.
Q9Y485 DMXL1 S421 ochoa DmX-like protein 1 (X-like 1 protein) None
Q9Y485 DMXL1 S469 ochoa DmX-like protein 1 (X-like 1 protein) None
Q9Y4F5 CEP170B S932 ochoa Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}.
Q9Y5K6 CD2AP S256 ochoa CD2-associated protein (Adapter protein CMS) (Cas ligand with multiple SH3 domains) Seems to act as an adapter protein between membrane proteins and the actin cytoskeleton (PubMed:10339567). In collaboration with CBLC, modulates the rate of RET turnover and may act as regulatory checkpoint that limits the potency of GDNF on neuronal survival. Controls CBLC function, converting it from an inhibitor to a promoter of RET degradation (By similarity). May play a role in receptor clustering and cytoskeletal polarity in the junction between T-cell and antigen-presenting cell (By similarity). May anchor the podocyte slit diaphragm to the actin cytoskeleton in renal glomerolus. Also required for cytokinesis (PubMed:15800069). Plays a role in epithelial cell junctions formation (PubMed:22891260). {ECO:0000250|UniProtKB:F1LRS8, ECO:0000250|UniProtKB:Q9JLQ0, ECO:0000269|PubMed:10339567, ECO:0000269|PubMed:15800069, ECO:0000269|PubMed:22891260}.
Q9Y6D5 ARFGEF2 S590 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}.
Q9Y6K9 IKBKG S43 psp NF-kappa-B essential modulator (NEMO) (FIP-3) (IkB kinase-associated protein 1) (IKKAP1) (Inhibitor of nuclear factor kappa-B kinase subunit gamma) (I-kappa-B kinase subunit gamma) (IKK-gamma) (IKKG) (IkB kinase subunit gamma) (NF-kappa-B essential modifier) Regulatory subunit of the IKK core complex which phosphorylates inhibitors of NF-kappa-B thus leading to the dissociation of the inhibitor/NF-kappa-B complex and ultimately the degradation of the inhibitor (PubMed:14695475, PubMed:20724660, PubMed:21518757, PubMed:9751060). Its binding to scaffolding polyubiquitin plays a key role in IKK activation by multiple signaling receptor pathways (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308, PubMed:33567255). Can recognize and bind both 'Lys-63'-linked and linear polyubiquitin upon cell stimulation, with a much higher affinity for linear polyubiquitin (PubMed:16547522, PubMed:18287044, PubMed:19033441, PubMed:19185524, PubMed:21606507, PubMed:27777308). Could be implicated in NF-kappa-B-mediated protection from cytokine toxicity. Essential for viral activation of IRF3 (PubMed:19854139). Involved in TLR3- and IFIH1-mediated antiviral innate response; this function requires 'Lys-27'-linked polyubiquitination (PubMed:20724660). {ECO:0000269|PubMed:14695475, ECO:0000269|PubMed:16547522, ECO:0000269|PubMed:18287044, ECO:0000269|PubMed:19033441, ECO:0000269|PubMed:19185524, ECO:0000269|PubMed:19854139, ECO:0000269|PubMed:20724660, ECO:0000269|PubMed:21518757, ECO:0000269|PubMed:21606507, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:33567255, ECO:0000269|PubMed:9751060}.; FUNCTION: (Microbial infection) Also considered to be a mediator for HTLV-1 Tax oncoprotein activation of NF-kappa-B. {ECO:0000269|PubMed:10364167, ECO:0000269|PubMed:11064457}.
Q9Y6Y8 SEC23IP S740 ochoa SEC23-interacting protein (p125) Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}.
P62979 RPS27A S134 Sugiyama Ubiquitin-ribosomal protein eS31 fusion protein (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; Small ribosomal subunit protein eS31 (40S ribosomal protein S27a)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Small ribosomal subunit protein eS31]: Component of the 40S subunit of the ribosome (PubMed:23636399, PubMed:9582194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23636399, PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000305|PubMed:9582194}.
P08236 GUSB S46 Sugiyama Beta-glucuronidase (EC 3.2.1.31) (Beta-G1) Plays an important role in the degradation of dermatan and keratan sulfates.
P23381 WARS1 S213 Sugiyama Tryptophan--tRNA ligase, cytoplasmic (EC 6.1.1.2) (Interferon-induced protein 53) (IFP53) (Tryptophanyl-tRNA synthetase) (TrpRS) (hWRS) [Cleaved into: T1-TrpRS; T2-TrpRS] Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp). {ECO:0000269|PubMed:1373391, ECO:0000269|PubMed:1761529, ECO:0000269|PubMed:28369220}.; FUNCTION: [Isoform 1]: Has no angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.; FUNCTION: [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity (PubMed:11773625, PubMed:11773626, PubMed:14630953). Inhibits fluid shear stress-activated responses of endothelial cells (PubMed:14630953). Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression (PubMed:14630953). {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626, ECO:0000269|PubMed:14630953}.; FUNCTION: [Isoform 2]: Has an angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.
P33316 DUT S164 Sugiyama Deoxyuridine 5'-triphosphate nucleotidohydrolase, mitochondrial (dUTPase) (EC 3.6.1.23) (dUTP pyrophosphatase) Catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate and through its action efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis (PubMed:17880943, PubMed:8631816, PubMed:8805593). Inhibits peroxisome proliferator-activated receptor (PPAR) activity by binding of its N-terminal to PPAR, preventing the latter's dimerization with retinoid X receptor (By similarity). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:P70583, ECO:0000250|UniProtKB:Q9CQ43, ECO:0000269|PubMed:17880943, ECO:0000269|PubMed:8631816, ECO:0000269|PubMed:8805593}.
Q9NRR5 UBQLN4 S274 Sugiyama Ubiquilin-4 (Ataxin-1 interacting ubiquitin-like protein) (A1Up) (Ataxin-1 ubiquitin-like-interacting protein A1U) (Connexin43-interacting protein of 75 kDa) (CIP75) Regulator of protein degradation that mediates the proteasomal targeting of misfolded, mislocalized or accumulated proteins (PubMed:15280365, PubMed:27113755, PubMed:29666234, PubMed:30612738). Acts by binding polyubiquitin chains of target proteins via its UBA domain and by interacting with subunits of the proteasome via its ubiquitin-like domain (PubMed:15280365, PubMed:27113755, PubMed:30612738). Key regulator of DNA repair that represses homologous recombination repair: in response to DNA damage, recruited to sites of DNA damage following phosphorylation by ATM and acts by binding and removing ubiquitinated MRE11 from damaged chromatin, leading to MRE11 degradation by the proteasome (PubMed:30612738). MRE11 degradation prevents homologous recombination repair, redirecting double-strand break repair toward non-homologous end joining (NHEJ) (PubMed:30612738). Specifically recognizes and binds mislocalized transmembrane-containing proteins and targets them to proteasomal degradation (PubMed:27113755). Collaborates with DESI1/POST in the export of ubiquitinated proteins from the nucleus to the cytoplasm (PubMed:29666234). Also plays a role in the regulation of the proteasomal degradation of non-ubiquitinated GJA1 (By similarity). Acts as an adapter protein that recruits UBQLN1 to the autophagy machinery (PubMed:23459205). Mediates the association of UBQLN1 with autophagosomes and the autophagy-related protein LC3 (MAP1LC3A/B/C) and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:23459205). {ECO:0000250|UniProtKB:Q99NB8, ECO:0000269|PubMed:15280365, ECO:0000269|PubMed:23459205, ECO:0000269|PubMed:27113755, ECO:0000269|PubMed:29666234, ECO:0000269|PubMed:30612738}.
Q9UMX0 UBQLN1 S264 Sugiyama Ubiquilin-1 (Protein linking IAP with cytoskeleton 1) (PLIC-1) (hPLIC-1) Plays an important role in the regulation of different protein degradation mechanisms and pathways including ubiquitin-proteasome system (UPS), autophagy and endoplasmic reticulum-associated protein degradation (ERAD) pathway. Mediates the proteasomal targeting of misfolded or accumulated proteins for degradation by binding (via UBA domain) to their polyubiquitin chains and by interacting (via ubiquitin-like domain) with the subunits of the proteasome (PubMed:15147878). Plays a role in the ERAD pathway via its interaction with ER-localized proteins UBXN4, VCP and HERPUD1 and may form a link between the polyubiquitinated ERAD substrates and the proteasome (PubMed:18307982, PubMed:19822669). Involved in the regulation of macroautophagy and autophagosome formation; required for maturation of autophagy-related protein LC3 from the cytosolic form LC3-I to the membrane-bound form LC3-II and may assist in the maturation of autophagosomes to autolysosomes by mediating autophagosome-lysosome fusion (PubMed:19148225, PubMed:20529957, PubMed:23459205). Negatively regulates the TICAM1/TRIF-dependent toll-like receptor signaling pathway by decreasing the abundance of TICAM1 via the autophagic pathway (PubMed:21695056). Promotes the ubiquitination and lysosomal degradation of ORAI1, consequently down-regulating the ORAI1-mediated Ca2+ mobilization (PubMed:23307288). Suppresses the maturation and proteasomal degradation of amyloid beta A4 protein (A4) by stimulating the lysine 63 (K63)-linked polyubiquitination. Delays the maturation of A4 by sequestering it in the Golgi apparatus and preventing its transport to the cell surface for subsequent processing (By similarity). Ubiquitinates BCL2L10 and thereby stabilizes protein abundance (PubMed:22233804). {ECO:0000250|UniProtKB:Q9JJP9, ECO:0000269|PubMed:18307982, ECO:0000269|PubMed:19148225, ECO:0000269|PubMed:19822669, ECO:0000269|PubMed:20529957, ECO:0000269|PubMed:21695056, ECO:0000269|PubMed:22233804, ECO:0000269|PubMed:23307288, ECO:0000269|PubMed:23459205, ECO:0000303|PubMed:15147878}.; FUNCTION: [Isoform 1]: Plays a role in unfolded protein response (UPR) by attenuating the induction of UPR-inducible genes, DDTI3/CHOP, HSPA5 and PDIA2 during ER stress (PubMed:18953672). Plays a key role in the regulation of the levels of PSEN1 by targeting its accumulation to aggresomes which may then be removed from cells by autophagocytosis (PubMed:21143716). {ECO:0000269|PubMed:18953672, ECO:0000269|PubMed:21143716}.; FUNCTION: [Isoform 2]: Plays a role in unfolded protein response (UPR) by attenuating the induction of UPR-inducible genes, DDTI3/CHOP, HSPA5 and PDIA2 during ER stress. {ECO:0000269|PubMed:18953672}.; FUNCTION: [Isoform 3]: Plays a role in unfolded protein response (UPR) by attenuating the induction of UPR-inducible genes, DDTI3/CHOP, HSPA5 and PDIA2 during ER stress (PubMed:18953672). Plays a key role in the regulation of the levels of PSEN1 by targeting its accumulation to aggresomes which may then be removed from cells by autophagocytosis (PubMed:21143716). {ECO:0000269|PubMed:18953672, ECO:0000269|PubMed:21143716}.
Q04446 GBE1 S75 Sugiyama 1,4-alpha-glucan-branching enzyme (EC 2.4.1.18) (Brancher enzyme) (Glycogen-branching enzyme) Glycogen-branching enzyme participates in the glycogen biosynthetic process along with glycogenin and glycogen synthase. Generates alpha-1,6-glucosidic branches from alpha-1,4-linked glucose chains, to increase solubility of the glycogen polymer (PubMed:26199317, PubMed:8463281, PubMed:8613547). {ECO:0000269|PubMed:26199317, ECO:0000269|PubMed:8463281, ECO:0000269|PubMed:8613547}.
O15111 CHUK S356 Sugiyama Inhibitor of nuclear factor kappa-B kinase subunit alpha (I-kappa-B kinase alpha) (IKK-A) (IKK-alpha) (IkBKA) (IkappaB kinase) (EC 2.7.11.10) (Conserved helix-loop-helix ubiquitous kinase) (I-kappa-B kinase 1) (IKK-1) (IKK1) (Nuclear factor NF-kappa-B inhibitor kinase alpha) (NFKBIKA) (Transcription factor 16) (TCF-16) Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B-responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed:30217973). {ECO:0000250|UniProtKB:Q60680, ECO:0000269|PubMed:12789342, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17434128, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20501937, ECO:0000269|PubMed:21765415, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35952808, ECO:0000269|PubMed:9244310, ECO:0000269|PubMed:9252186, ECO:0000269|PubMed:9346484, ECO:0000303|PubMed:18626576}.
Q9H6F5 CCDC86 S136 Sugiyama Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}.
P52564 MAP2K6 S35 Sugiyama Dual specificity mitogen-activated protein kinase kinase 6 (MAP kinase kinase 6) (MAPKK 6) (EC 2.7.12.2) (MAPK/ERK kinase 6) (MEK 6) (Stress-activated protein kinase kinase 3) (SAPK kinase 3) (SAPKK-3) (SAPKK3) Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. With MAP3K3/MKK3, catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinases p38 MAPK11, MAPK12, MAPK13 and MAPK14 and plays an important role in the regulation of cellular responses to cytokines and all kinds of stresses. Especially, MAP2K3/MKK3 and MAP2K6/MKK6 are both essential for the activation of MAPK11 and MAPK13 induced by environmental stress, whereas MAP2K6/MKK6 is the major MAPK11 activator in response to TNF. MAP2K6/MKK6 also phosphorylates and activates PAK6. The p38 MAP kinase signal transduction pathway leads to direct activation of transcription factors. Nuclear targets of p38 MAP kinase include the transcription factors ATF2 and ELK1. Within the p38 MAPK signal transduction pathway, MAP3K6/MKK6 mediates phosphorylation of STAT4 through MAPK14 activation, and is therefore required for STAT4 activation and STAT4-regulated gene expression in response to IL-12 stimulation. The pathway is also crucial for IL-6-induced SOCS3 expression and down-regulation of IL-6-mediated gene induction; and for IFNG-dependent gene transcription. Has a role in osteoclast differentiation through NF-kappa-B transactivation by TNFSF11, and in endochondral ossification and since SOX9 is another likely downstream target of the p38 MAPK pathway. MAP2K6/MKK6 mediates apoptotic cell death in thymocytes. Acts also as a regulator for melanocytes dendricity, through the modulation of Rho family GTPases. {ECO:0000269|PubMed:10961885, ECO:0000269|PubMed:11727828, ECO:0000269|PubMed:15550393, ECO:0000269|PubMed:20869211, ECO:0000269|PubMed:8622669, ECO:0000269|PubMed:8626699, ECO:0000269|PubMed:8663074, ECO:0000269|PubMed:9218798}.
P61158 ACTR3 S232 Sugiyama Actin-related protein 3 (Actin-like protein 3) ATP-binding component of the Arp2/3 complex, a multiprotein complex that mediates actin polymerization upon stimulation by nucleation-promoting factor (NPF) (PubMed:9000076). The Arp2/3 complex mediates the formation of branched actin networks in the cytoplasm, providing the force for cell motility (PubMed:9000076). Seems to contact the pointed end of the daughter actin filament (PubMed:9000076). In podocytes, required for the formation of lamellipodia downstream of AVIL and PLCE1 regulation (PubMed:29058690). In addition to its role in the cytoplasmic cytoskeleton, the Arp2/3 complex also promotes actin polymerization in the nucleus, thereby regulating gene transcription and repair of damaged DNA (PubMed:17220302, PubMed:29925947). The Arp2/3 complex promotes homologous recombination (HR) repair in response to DNA damage by promoting nuclear actin polymerization, leading to drive motility of double-strand breaks (DSBs) (PubMed:29925947). Plays a role in ciliogenesis (PubMed:20393563). {ECO:0000269|PubMed:17220302, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:29058690, ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:9000076}.
O60763 USO1 S33 Sugiyama General vesicular transport factor p115 (Protein USO1 homolog) (Transcytosis-associated protein) (TAP) (Vesicle-docking protein) General vesicular transport factor required for intercisternal transport in the Golgi stack; it is required for transcytotic fusion and/or subsequent binding of the vesicles to the target membrane. May well act as a vesicular anchor by interacting with the target membrane and holding the vesicular and target membranes in proximity. {ECO:0000250|UniProtKB:P41542}.
P43034 PAFAH1B1 S157 Sugiyama Platelet-activating factor acetylhydrolase IB subunit beta (Lissencephaly-1 protein) (LIS-1) (PAF acetylhydrolase 45 kDa subunit) (PAF-AH 45 kDa subunit) (PAF-AH alpha) (PAFAH alpha) Regulatory subunit (beta subunit) of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)), an enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and participates in PAF inactivation. Regulates the PAF-AH (I) activity in a catalytic dimer composition-dependent manner (By similarity). Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing. Required for dynein recruitment to microtubule plus ends and BICD2-bound cargos (PubMed:22956769). May modulate the Reelin pathway through interaction of the PAF-AH (I) catalytic dimer with VLDLR (By similarity). {ECO:0000250|UniProtKB:P43033, ECO:0000250|UniProtKB:P63005, ECO:0000269|PubMed:15173193, ECO:0000269|PubMed:22956769}.
O00232 PSMD12 S21 Sugiyama 26S proteasome non-ATPase regulatory subunit 12 (26S proteasome regulatory subunit RPN5) (26S proteasome regulatory subunit p55) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}.
Q08J23 NSUN2 S322 Sugiyama RNA cytosine C(5)-methyltransferase NSUN2 (EC 2.1.1.-) (Myc-induced SUN domain-containing protein) (Misu) (NOL1/NOP2/Sun domain family member 2) (Substrate of AIM1/Aurora kinase B) (mRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-) (tRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-, EC 2.1.1.203) (tRNA methyltransferase 4 homolog) (hTrm4) RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:17071714, PubMed:22995836, PubMed:31199786, PubMed:31358969). Involved in various processes, such as epidermal stem cell differentiation, testis differentiation and maternal to zygotic transition during early development: acts by increasing protein synthesis; cytosine C(5)-methylation promoting tRNA stability and preventing mRNA decay (PubMed:31199786). Methylates cytosine to 5-methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors (PubMed:17071714, PubMed:22995836, PubMed:31199786). tRNA methylation is required generation of RNA fragments derived from tRNAs (tRFs) (PubMed:31199786). Also mediates C(5)-methylation of mitochondrial tRNAs (PubMed:31276587). Catalyzes cytosine C(5)-methylation of mRNAs, leading to stabilize them and prevent mRNA decay: mRNA stabilization involves YBX1 that specifically recognizes and binds m5C-modified transcripts (PubMed:22395603, PubMed:31358969, PubMed:34556860). Cytosine C(5)-methylation of mRNAs also regulates mRNA export: methylated transcripts are specifically recognized by THOC4/ALYREF, which mediates mRNA nucleo-cytoplasmic shuttling (PubMed:28418038). Also mediates cytosine C(5)-methylation of non-coding RNAs, such as vault RNAs (vtRNAs), promoting their processing into regulatory small RNAs (PubMed:23871666). Cytosine C(5)-methylation of vtRNA VTRNA1.1 promotes its processing into small-vault RNA4 (svRNA4) and regulates epidermal differentiation (PubMed:31186410). May act downstream of Myc to regulate epidermal cell growth and proliferation (By similarity). Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (PubMed:19596847). {ECO:0000250|UniProtKB:Q1HFZ0, ECO:0000269|PubMed:17071714, ECO:0000269|PubMed:19596847, ECO:0000269|PubMed:22395603, ECO:0000269|PubMed:22995836, ECO:0000269|PubMed:23871666, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:31186410, ECO:0000269|PubMed:31199786, ECO:0000269|PubMed:31276587, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:34556860}.
P13569 CFTR S670 PSP Cystic fibrosis transmembrane conductance regulator (CFTR) (ATP-binding cassette sub-family C member 7) (Channel conductance-controlling ATPase) (EC 5.6.1.6) (cAMP-dependent chloride channel) Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis (PubMed:26823428). Mediates the transport of chloride ions across the cell membrane (PubMed:10792060, PubMed:11524016, PubMed:11707463, PubMed:12519745, PubMed:12529365, PubMed:12588899, PubMed:12727866, PubMed:15010471, PubMed:17036051, PubMed:1712898, PubMed:17182731, PubMed:19398555, PubMed:19621064, PubMed:22178883, PubMed:25330774, PubMed:26846474, PubMed:28087700, PubMed:8910473, PubMed:9804160). Possesses an intrinsic ATPase activity and utilizes ATP to gate its channel; the passive flow of anions through the channel is gated by cycles of ATP binding and hydrolysis by the ATP-binding domains (PubMed:11524016, PubMed:15284228, PubMed:26627831, PubMed:8910473). The ion channel is also permeable to HCO(3)(-); selectivity depends on the extracellular chloride concentration (PubMed:15010471, PubMed:19019741). In vitro, mediates ATP-dependent glutathione flux (PubMed:12727866). Exerts its function also by modulating the activity of other ion channels and transporters (PubMed:12403779, PubMed:22121115, PubMed:22178883, PubMed:27941075). Plays an important role in airway fluid homeostasis (PubMed:16645176, PubMed:19621064, PubMed:26823428). Contributes to the regulation of the pH and the ion content of the airway surface fluid layer and thereby plays an important role in defense against pathogens (PubMed:14668433, PubMed:16645176, PubMed:26823428). Modulates the activity of the epithelial sodium channel (ENaC) complex, in part by regulating the cell surface expression of the ENaC complex (PubMed:17182731, PubMed:17434346, PubMed:27941075). Inhibits the activity of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731). Inhibits the activity of the ENaC channel containing subunits SCNN1D, SCNN1B and SCNN1G, but not of the ENaC channel containing subunits SCNN1A, SCNN1B and SCNN1G (PubMed:17182731, PubMed:27941075). May regulate bicarbonate secretion and salvage in epithelial cells by regulating the transporter SLC4A7 (PubMed:12403779). Can inhibit the chloride channel activity of ANO1 (PubMed:22178883). Plays a role in the chloride and bicarbonate homeostasis during sperm epididymal maturation and capacitation (PubMed:19923167, PubMed:27714810, PubMed:29393851). {ECO:0000269|PubMed:10792060, ECO:0000269|PubMed:11524016, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:12403779, ECO:0000269|PubMed:12519745, ECO:0000269|PubMed:12529365, ECO:0000269|PubMed:12588899, ECO:0000269|PubMed:12727866, ECO:0000269|PubMed:14668433, ECO:0000269|PubMed:15010471, ECO:0000269|PubMed:15284228, ECO:0000269|PubMed:16645176, ECO:0000269|PubMed:17036051, ECO:0000269|PubMed:1712898, ECO:0000269|PubMed:17182731, ECO:0000269|PubMed:19019741, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:19621064, ECO:0000269|PubMed:22178883, ECO:0000269|PubMed:25330774, ECO:0000269|PubMed:26627831, ECO:0000269|PubMed:26823428, ECO:0000269|PubMed:26846474, ECO:0000269|PubMed:27714810, ECO:0000269|PubMed:27941075, ECO:0000269|PubMed:28087700, ECO:0000269|PubMed:29393851, ECO:0000269|PubMed:8910473, ECO:0000269|PubMed:9804160, ECO:0000305|PubMed:19923167}.
P35372 OPRM1 S357 SIGNOR Mu-type opioid receptor (M-OR-1) (MOR-1) (Mu opiate receptor) (Mu opioid receptor) (MOP) (hMOP) Receptor for endogenous opioids such as beta-endorphin and endomorphin (PubMed:10529478, PubMed:12589820, PubMed:7891175, PubMed:7905839, PubMed:7957926, PubMed:9689128). Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone (PubMed:10529478, PubMed:10836142, PubMed:12589820, PubMed:19300905, PubMed:7891175, PubMed:7905839, PubMed:7957926, PubMed:9689128). Also activated by enkephalin peptides, such as Met-enkephalin or Met-enkephalin-Arg-Phe, with higher affinity for Met-enkephalin-Arg-Phe (By similarity). Agonist binding to the receptor induces coupling to an inactive GDP-bound heterotrimeric G-protein complex and subsequent exchange of GDP for GTP in the G-protein alpha subunit leading to dissociation of the G-protein complex with the free GTP-bound G-protein alpha and the G-protein beta-gamma dimer activating downstream cellular effectors (PubMed:7905839). The agonist- and cell type-specific activity is predominantly coupled to pertussis toxin-sensitive G(i) and G(o) G alpha proteins, GNAI1, GNAI2, GNAI3 and GNAO1 isoforms Alpha-1 and Alpha-2, and to a lesser extent to pertussis toxin-insensitive G alpha proteins GNAZ and GNA15 (PubMed:12068084). They mediate an array of downstream cellular responses, including inhibition of adenylate cyclase activity and both N-type and L-type calcium channels, activation of inward rectifying potassium channels, mitogen-activated protein kinase (MAPK), phospholipase C (PLC), phosphoinositide/protein kinase (PKC), phosphoinositide 3-kinase (PI3K) and regulation of NF-kappa-B (By similarity). Also couples to adenylate cyclase stimulatory G alpha proteins (By similarity). The selective temporal coupling to G-proteins and subsequent signaling can be regulated by RGSZ proteins, such as RGS9, RGS17 and RGS4 (By similarity). Phosphorylation by members of the GPRK subfamily of Ser/Thr protein kinases and association with beta-arrestins is involved in short-term receptor desensitization (By similarity). Beta-arrestins associate with the GPRK-phosphorylated receptor and uncouple it from the G-protein thus terminating signal transduction (By similarity). The phosphorylated receptor is internalized through endocytosis via clathrin-coated pits which involves beta-arrestins (By similarity). The activation of the ERK pathway occurs either in a G-protein-dependent or a beta-arrestin-dependent manner and is regulated by agonist-specific receptor phosphorylation (By similarity). Acts as a class A G-protein coupled receptor (GPCR) which dissociates from beta-arrestin at or near the plasma membrane and undergoes rapid recycling (By similarity). Receptor down-regulation pathways are varying with the agonist and occur dependent or independent of G-protein coupling (By similarity). Endogenous ligands induce rapid desensitization, endocytosis and recycling (By similarity). Heterooligomerization with other GPCRs can modulate agonist binding, signaling and trafficking properties (By similarity). {ECO:0000250|UniProtKB:P33535, ECO:0000269|PubMed:10529478, ECO:0000269|PubMed:12068084, ECO:0000269|PubMed:12589820, ECO:0000269|PubMed:7891175, ECO:0000269|PubMed:7905839, ECO:0000269|PubMed:7957926, ECO:0000269|PubMed:9689128, ECO:0000303|PubMed:10836142, ECO:0000303|PubMed:19300905}.; FUNCTION: [Isoform 12]: Couples to GNAS and is proposed to be involved in excitatory effects. {ECO:0000269|PubMed:20525224}.; FUNCTION: [Isoform 16]: Does not bind agonists but may act through oligomerization with binding-competent OPRM1 isoforms and reduce their ligand binding activity. {ECO:0000269|PubMed:16580639}.; FUNCTION: [Isoform 17]: Does not bind agonists but may act through oligomerization with binding-competent OPRM1 isoforms and reduce their ligand binding activity. {ECO:0000269|PubMed:16580639}.
Q96S66 CLCC1 S65 Sugiyama Chloride channel CLIC-like protein 1 (ER anion channel 1) (ERAC1) (Mid-1-related chloride channel protein) Anion-selective channel with Ca(2+)-dependent and voltage-independent gating. Permeable to small monovalent anions with selectivity for bromide > chloride > nitrate > fluoride (By similarity). Operates in the endoplasmic reticulum (ER) membrane where it mediates chloride efflux to compensate for the loss of positive charges from the ER lumen upon Ca(2+) release. Contributes to the maintenance of ER Ca(2+) pools and activation of unfolded protein response to prevent accumulation of misfolded proteins in the ER lumen. Particularly involved in ER homeostasis mechanisms underlying motor neurons and retinal photoreceptors survival (By similarity) (PubMed:25698737, PubMed:30157172, PubMed:37142673). {ECO:0000250|UniProtKB:Q99LI2, ECO:0000269|PubMed:25698737, ECO:0000269|PubMed:30157172, ECO:0000269|PubMed:37142673}.
Q8WX92 NELFB S542 Sugiyama Negative elongation factor B (NELF-B) (Cofactor of BRCA1) Essential component of the NELF complex, a complex that negatively regulates the elongation of transcription by RNA polymerase II (PubMed:12612062). The NELF complex, which acts via an association with the DSIF complex and causes transcriptional pausing, is counteracted by the P-TEFb kinase complex (PubMed:10199401). May be able to induce chromatin unfolding (PubMed:11739404). Essential for early embryogenesis; plays an important role in maintaining the undifferentiated state of embryonic stem cells (ESCs) by preventing unscheduled expression of developmental genes (By similarity). Plays a key role in establishing the responsiveness of stem cells to developmental cues; facilitates plasticity and cell fate commitment in ESCs by establishing the appropriate expression level of signaling molecules (By similarity). Supports the transcription of genes involved in energy metabolism in cardiomyocytes; facilitates the association of transcription initiation factors with the promoters of the metabolism-related genes (By similarity). {ECO:0000250|UniProtKB:Q8C4Y3, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:11739404, ECO:0000269|PubMed:12612062}.; FUNCTION: (Microbial infection) The NELF complex is involved in HIV-1 latency possibly involving recruitment of PCF11 to paused RNA polymerase II (PubMed:23884411). In vitro, binds weakly to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1 (PubMed:23884411). {ECO:0000269|PubMed:23884411}.
Q8TF05 PPP4R1 S57 Sugiyama Serine/threonine-protein phosphatase 4 regulatory subunit 1 Regulatory subunit of serine/threonine-protein phosphatase 4. May play a role in regulation of cell division in renal glomeruli. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. Plays a role in the inhibition of TNF-induced NF-kappa-B activation by regulating the dephosphorylation of TRAF2. {ECO:0000269|PubMed:15805470}.; FUNCTION: (Microbial infection) Participates in merkel polyomavirus-mediated inhibition of NF-kappa-B by bridging viral small tumor antigen with NEMO. {ECO:0000269|PubMed:28445980}.
O60829 PAGE4 S79 EPSD|PSP P antigen family member 4 (PAGE-4) (G antigen family C member 1) (PAGE-1) Intrinsically disordered protein that potentiates the transcriptional activator activity of JUN (PubMed:24263171, PubMed:28289210). Protects cells from stress-induced apoptosis by inhibiting reactive oxygen species (ROS) production and via regulation of the MAPK signaling pathway (PubMed:21357425, PubMed:25374899, PubMed:30658679). {ECO:0000269|PubMed:21357425, ECO:0000269|PubMed:24263171, ECO:0000269|PubMed:25374899, ECO:0000269|PubMed:28289210, ECO:0000269|PubMed:30658679}.
P51957 NEK4 S526 Sugiyama Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}.
P07942 LAMB1 S449 Sugiyama Laminin subunit beta-1 (Laminin B1 chain) (Laminin-1 subunit beta) (Laminin-10 subunit beta) (Laminin-12 subunit beta) (Laminin-2 subunit beta) (Laminin-6 subunit beta) (Laminin-8 subunit beta) Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Involved in the organization of the laminar architecture of cerebral cortex. It is probably required for the integrity of the basement membrane/glia limitans that serves as an anchor point for the endfeet of radial glial cells and as a physical barrier to migrating neurons. Radial glial cells play a central role in cerebral cortical development, where they act both as the proliferative unit of the cerebral cortex and a scaffold for neurons migrating toward the pial surface. {ECO:0000269|PubMed:23472759}.
P51114 FXR1 S60 Sugiyama RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}.
Q13043 STK4 S65 Sugiyama Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}.
Q13188 STK3 S62 Sugiyama Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}.
Q15349 RPS6KA2 S454 Sugiyama Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}.
Q15418 RPS6KA1 S457 Sugiyama Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}.
Q15418 RPS6KA1 S402 Sugiyama Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}.
Q86V86 PIM3 S263 Sugiyama Serine/threonine-protein kinase pim-3 (EC 2.7.11.1) Proto-oncogene with serine/threonine kinase activity that can prevent apoptosis, promote cell survival and protein translation. May contribute to tumorigenesis through: the delivery of survival signaling through phosphorylation of BAD which induces release of the anti-apoptotic protein Bcl-X(L), the regulation of cell cycle progression, protein synthesis and by regulation of MYC transcriptional activity. Additionally to this role on tumorigenesis, can also negatively regulate insulin secretion by inhibiting the activation of MAPK1/3 (ERK1/2), through SOCS6. Involved also in the control of energy metabolism and regulation of AMPK activity in modulating MYC and PPARGC1A protein levels and cell growth. {ECO:0000269|PubMed:15540201, ECO:0000269|PubMed:16818649, ECO:0000269|PubMed:17270021, ECO:0000269|PubMed:17876606, ECO:0000269|PubMed:18593906}.
Q86Y07 VRK2 S218 Sugiyama Serine/threonine-protein kinase VRK2 (EC 2.7.11.1) (Vaccinia-related kinase 2) Serine/threonine kinase that regulates several signal transduction pathways (PubMed:14645249, PubMed:16495336, PubMed:16704422, PubMed:17709393, PubMed:18286207, PubMed:18617507, PubMed:20679487). Isoform 1 modulates the stress response to hypoxia and cytokines, such as interleukin-1 beta (IL1B) and this is dependent on its interaction with MAPK8IP1, which assembles mitogen-activated protein kinase (MAPK) complexes (PubMed:17709393). Inhibition of signal transmission mediated by the assembly of MAPK8IP1-MAPK complexes reduces JNK phosphorylation and JUN-dependent transcription (PubMed:18286207). Phosphorylates 'Thr-18' of p53/TP53, histone H3, and may also phosphorylate MAPK8IP1 (PubMed:16704422). Phosphorylates BANF1 and disrupts its ability to bind DNA and reduces its binding to LEM domain-containing proteins (PubMed:16495336). Down-regulates the transactivation of transcription induced by ERBB2, HRAS, BRAF, and MEK1 (PubMed:20679487). Blocks the phosphorylation of ERK in response to ERBB2 and HRAS (PubMed:20679487). Can also phosphorylate the following substrates that are commonly used to establish in vitro kinase activity: casein, MBP and histone H2B, but it is not sure that this is physiologically relevant (PubMed:14645249). {ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:16704422, ECO:0000269|PubMed:17709393, ECO:0000269|PubMed:18286207, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:20679487}.; FUNCTION: [Isoform 2]: Phosphorylates 'Thr-18' of p53/TP53, as well as histone H3. Reduces p53/TP53 ubiquitination by MDM2, promotes p53/TP53 acetylation by EP300 and thereby increases p53/TP53 stability and activity. {ECO:0000269|PubMed:16704422}.
P00451 F8 S1656 SIGNOR Coagulation factor VIII (Antihemophilic factor) (AHF) (Procoagulant component) [Cleaved into: Factor VIIIa heavy chain, 200 kDa isoform; Factor VIIIa heavy chain, 92 kDa isoform; Factor VIII B chain; Factor VIIIa light chain] Factor VIII, along with calcium and phospholipid, acts as a cofactor for F9/factor IXa when it converts F10/factor X to the activated form, factor Xa.
O15042 U2SURP S302 Sugiyama U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
Q9H1R3 MYLK2 S287 Sugiyama Myosin light chain kinase 2, skeletal/cardiac muscle (MLCK2) (EC 2.7.11.18) Implicated in the level of global muscle contraction and cardiac function. Phosphorylates a specific serine in the N-terminus of a myosin light chain. {ECO:0000269|PubMed:11733062}.
Q9C0D5 TANC1 S1830 Sugiyama Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
P56192 MARS1 S472 EPSD|PSP Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}.
Q9UK32 RPS6KA6 S465 Sugiyama Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}.
A0A087WV96 CYP3A7-CYP3A51P S139 ochoa Cytochrome P450 3A (EC 1.14.14.-) Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. {ECO:0000256|RuleBase:RU368049}.
A6H8Y1 BDP1 S292 ochoa Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}.
H0YC42 None S155 ochoa Tumor protein D52 None
O00180 KCNK1 S302 ochoa Potassium channel subfamily K member 1 (Inward rectifying potassium channel protein TWIK-1) (Potassium channel K2P1) (Potassium channel KCNO1) Ion channel that contributes to passive transmembrane potassium transport and to the regulation of the resting membrane potential in brain astrocytes, but also in kidney and in other tissues (PubMed:15820677, PubMed:21653227). Forms dimeric channels through which potassium ions pass in accordance with their electrochemical gradient. The channel is selective for K(+) ions at physiological potassium concentrations and at neutral pH, but becomes permeable to Na(+) at subphysiological K(+) levels and upon acidification of the extracellular medium (PubMed:21653227, PubMed:22431633). The homodimer has very low potassium channel activity, when expressed in heterologous systems, and can function as weakly inward rectifying potassium channel (PubMed:15820677, PubMed:21653227, PubMed:22431633, PubMed:23169818, PubMed:25001086, PubMed:8605869, PubMed:8978667). Channel activity is modulated by activation of serotonin receptors (By similarity). Heterodimeric channels containing KCNK1 and KCNK2 have much higher activity, and may represent the predominant form in astrocytes (By similarity). Heterodimeric channels containing KCNK1 and KCNK3 or KCNK9 have much higher activity (PubMed:23169818). Heterodimeric channels formed by KCNK1 and KCNK9 may contribute to halothane-sensitive currents (PubMed:23169818). Mediates outward rectifying potassium currents in dentate gyrus granule cells and contributes to the regulation of their resting membrane potential (By similarity). Contributes to the regulation of action potential firing in dentate gyrus granule cells and down-regulates their intrinsic excitability (By similarity). In astrocytes, the heterodimer formed by KCNK1 and KCNK2 is required for rapid glutamate release in response to activation of G-protein coupled receptors, such as F2R and CNR1 (By similarity). Required for normal ion and water transport in the kidney (By similarity). Contributes to the regulation of the resting membrane potential of pancreatic beta cells (By similarity). The low channel activity of homodimeric KCNK1 may be due to sumoylation (PubMed:15820677, PubMed:20498050, PubMed:23169818). The low channel activity may be due to rapid internalization from the cell membrane and retention in recycling endosomes (PubMed:19959478). Permeable to monovalent cations with ion selectivity for K(+) > Rb(+) >> NH4(+) >> Cs(+) = Na(+) = Li(+). {ECO:0000250|UniProtKB:O08581, ECO:0000250|UniProtKB:Q9Z2T2, ECO:0000269|PubMed:15820677, ECO:0000269|PubMed:17693262, ECO:0000269|PubMed:19959478, ECO:0000269|PubMed:20498050, ECO:0000269|PubMed:21653227, ECO:0000269|PubMed:22282804, ECO:0000269|PubMed:22431633, ECO:0000269|PubMed:23169818, ECO:0000269|PubMed:25001086, ECO:0000269|PubMed:8605869, ECO:0000269|PubMed:8978667}.
O00267 SUPT5H S149 ochoa Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}.
O00422 SAP18 S119 ochoa Histone deacetylase complex subunit SAP18 (18 kDa Sin3-associated polypeptide) (2HOR0202) (Cell growth-inhibiting gene 38 protein) (Sin3-associated polypeptide p18) Component of the SIN3-repressing complex. Enhances the ability of SIN3-HDAC1-mediated transcriptional repression. When tethered to the promoter, it can direct the formation of a repressive complex to core histone proteins. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit mRNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits the formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. {ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:20966198, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:9150135}.
O00472 ELL2 S502 ochoa RNA polymerase II elongation factor ELL2 Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). Plays a role in immunoglobulin secretion in plasma cells: directs efficient alternative mRNA processing, influencing both proximal poly(A) site choice and exon skipping, as well as immunoglobulin heavy chain (IgH) alternative processing. Probably acts by regulating histone modifications accompanying transition from membrane-specific to secretory IgH mRNA expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23251033}.
O00515 LAD1 S39 ochoa|psp Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00515 LAD1 S498 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O14795 UNC13B S176 ochoa Protein unc-13 homolog B (Munc13-2) (munc13) Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}.
O14994 SYN3 S539 ochoa Synapsin-3 (Synapsin III) May be involved in the regulation of neurotransmitter release and synaptogenesis.
O15013 ARHGEF10 S198 ochoa Rho guanine nucleotide exchange factor 10 May play a role in developmental myelination of peripheral nerves. {ECO:0000269|PubMed:14508709}.
O15061 SYNM S765 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O15061 SYNM S777 ochoa Synemin (Desmuslin) Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}.
O15381 NVL S159 ochoa Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}.
O43314 PPIP5K2 S916 ochoa Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}.
O43491 EPB41L2 S58 ochoa Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
O43491 EPB41L2 S806 ochoa Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
O43493 TGOLN2 S315 ochoa Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) May be involved in regulating membrane traffic to and from trans-Golgi network.
O60238 BNIP3L S35 psp BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}.
O60271 SPAG9 S364 ochoa C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}.
O75150 RNF40 S601 ochoa E3 ubiquitin-protein ligase BRE1B (BRE1-B) (EC 2.3.2.27) (95 kDa retinoblastoma-associated protein) (RBP95) (RING finger protein 40) (RING-type E3 ubiquitin transferase BRE1B) Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role in histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}.
O75376 NCOR1 S821 ochoa Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}.
O75563 SKAP2 S87 ochoa Src kinase-associated phosphoprotein 2 (Pyk2/RAFTK-associated protein) (Retinoic acid-induced protein 70) (SKAP55 homolog) (SKAP-55HOM) (SKAP-HOM) (Src family-associated phosphoprotein 2) (Src kinase-associated phosphoprotein 55-related protein) (Src-associated adapter protein with PH and SH3 domains) May be involved in B-cell and macrophage adhesion processes. In B-cells, may act by coupling the B-cell receptor (BCR) to integrin activation. May play a role in src signaling pathway. {ECO:0000269|PubMed:12893833, ECO:0000269|PubMed:9837776}.
O94874 UFL1 S413 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O95466 FMNL1 S693 ochoa Formin-like protein 1 (CLL-associated antigen KW-13) (Leukocyte formin) May play a role in the control of cell motility and survival of macrophages (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O96017 CHEK2 S516 ochoa|psp Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}.
P01833 PIGR S702 ochoa Polymeric immunoglobulin receptor (PIgR) (Poly-Ig receptor) (Hepatocellular carcinoma-associated protein TB6) [Cleaved into: Secretory component] [Polymeric immunoglobulin receptor]: Mediates selective transcytosis of polymeric IgA and IgM across mucosal epithelial cells. Binds polymeric IgA and IgM at the basolateral surface of epithelial cells. The complex is then transported across the cell to be secreted at the apical surface. During this process, a cleavage occurs that separates the extracellular (known as the secretory component) from the transmembrane segment. {ECO:0000269|PubMed:10229845, ECO:0000269|PubMed:15530357, ECO:0000269|PubMed:9379029}.; FUNCTION: [Secretory component]: Through its N-linked glycans ensures anchoring of secretory IgA (sIgA) molecules to mucus lining the epithelial surface to neutralize extracellular pathogens (PubMed:12150896). On its own (free form) may act as a non-specific microbial scavenger to prevent pathogen interaction with epithelial cells (PubMed:16543244). {ECO:0000269|PubMed:12150896, ECO:0000269|PubMed:16543244}.
P03372 ESR1 S576 psp Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}.
P04233 CD74 S25 ochoa|psp HLA class II histocompatibility antigen gamma chain (HLA-DR antigens-associated invariant chain) (Ia antigen-associated invariant chain) (Ii) (CD antigen CD74) [Cleaved into: Class-II-associated invariant chain peptide (CLIP)] Plays a critical role in MHC class II antigen processing by stabilizing peptide-free class II alpha/beta heterodimers in a complex soon after their synthesis and directing transport of the complex from the endoplasmic reticulum to the endosomal/lysosomal system where the antigen processing and binding of antigenic peptides to MHC class II takes place. Serves as cell surface receptor for the cytokine MIF.; FUNCTION: [Class-II-associated invariant chain peptide]: Binds to the peptide-binding site of MHC class II alpha/beta heterodimers forming an alpha-beta-CLIP complex, thereby preventing the loading of antigenic peptides to the MHC class II complex until its release by HLA-DM in the endosome. {ECO:0000269|PubMed:1448172}.; FUNCTION: [Isoform p41]: Stabilizes the conformation of mature CTSL by binding to its active site and serving as a chaperone to help maintain a pool of mature enzyme in endocytic compartments and extracellular space of antigen-presenting cells (APCs). Has antiviral activity by stymieing the endosomal entry of Ebola virus and coronaviruses, including SARS-CoV-2 (PubMed:32855215). Disrupts cathepsin-mediated Ebola virus glycoprotein processing, which prevents viral fusion and entry. This antiviral activity is specific to p41 isoform (PubMed:32855215). {ECO:0000250|UniProtKB:P04441, ECO:0000269|PubMed:32855215}.
P04406 GAPDH S292 ochoa Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.12) (Peptidyl-cysteine S-nitrosylase GAPDH) (EC 2.6.99.-) Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively (PubMed:11724794, PubMed:3170585). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate (PubMed:11724794, PubMed:3170585). Modulates the organization and assembly of the cytoskeleton (By similarity). Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes (PubMed:23071094). Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation (PubMed:23071094). Also plays a role in innate immunity by promoting TNF-induced NF-kappa-B activation and type I interferon production, via interaction with TRAF2 and TRAF3, respectively (PubMed:23332158, PubMed:27387501). Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis (By similarity). Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC (By similarity). {ECO:0000250|UniProtKB:P04797, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23332158, ECO:0000269|PubMed:27387501, ECO:0000269|PubMed:3170585}.
P05165 PCCA S251 ochoa Propionyl-CoA carboxylase alpha chain, mitochondrial (PCCase subunit alpha) (EC 6.4.1.3) (Propanoyl-CoA:carbon dioxide ligase subunit alpha) This is one of the 2 subunits of the biotin-dependent propionyl-CoA carboxylase (PCC), a mitochondrial enzyme involved in the catabolism of odd chain fatty acids, branched-chain amino acids isoleucine, threonine, methionine, and valine and other metabolites (PubMed:6765947, PubMed:8434582). Propionyl-CoA carboxylase catalyzes the carboxylation of propionyl-CoA/propanoyl-CoA to D-methylmalonyl-CoA/(S)-methylmalonyl-CoA (PubMed:10101253, PubMed:6765947, PubMed:8434582). Within the holoenzyme, the alpha subunit catalyzes the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain, while the beta subunit then transfers the carboxyl group from carboxylated biotin to propionyl-CoA (By similarity). Propionyl-CoA carboxylase also significantly acts on butyryl-CoA/butanoyl-CoA, which is converted to ethylmalonyl-CoA/(2S)-ethylmalonyl-CoA at a much lower rate (PubMed:6765947). Other alternative minor substrates include (2E)-butenoyl-CoA/crotonoyl-CoA (By similarity). {ECO:0000250|UniProtKB:P0DTA4, ECO:0000250|UniProtKB:Q5LUF3, ECO:0000269|PubMed:10101253, ECO:0000269|PubMed:6765947, ECO:0000269|PubMed:8434582}.
P07910 HNRNPC S241 ochoa Heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1/C2) Binds pre-mRNA and nucleates the assembly of 40S hnRNP particles (PubMed:8264621). Interacts with poly-U tracts in the 3'-UTR or 5'-UTR of mRNA and modulates the stability and the level of translation of bound mRNA molecules (PubMed:12509468, PubMed:16010978, PubMed:7567451, PubMed:8264621). Single HNRNPC tetramers bind 230-240 nucleotides. Trimers of HNRNPC tetramers bind 700 nucleotides (PubMed:8264621). May play a role in the early steps of spliceosome assembly and pre-mRNA splicing. N6-methyladenosine (m6A) has been shown to alter the local structure in mRNAs and long non-coding RNAs (lncRNAs) via a mechanism named 'm(6)A-switch', facilitating binding of HNRNPC, leading to regulation of mRNA splicing (PubMed:25719671). {ECO:0000269|PubMed:12509468, ECO:0000269|PubMed:16010978, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:7567451, ECO:0000269|PubMed:8264621}.
P08684 CYP3A4 S139 ochoa Cytochrome P450 3A4 (EC 1.14.14.1) (1,4-cineole 2-exo-monooxygenase) (1,8-cineole 2-exo-monooxygenase) (EC 1.14.14.56) (Albendazole monooxygenase (sulfoxide-forming)) (EC 1.14.14.73) (Albendazole sulfoxidase) (CYPIIIA3) (CYPIIIA4) (Cholesterol 25-hydroxylase) (Cytochrome P450 3A3) (Cytochrome P450 HLp) (Cytochrome P450 NF-25) (Cytochrome P450-PCN1) (Nifedipine oxidase) (Quinine 3-monooxygenase) (EC 1.14.14.55) A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981). {ECO:0000269|PubMed:10681376, ECO:0000269|PubMed:10759686, ECO:0000269|PubMed:11093772, ECO:0000269|PubMed:11159812, ECO:0000269|PubMed:11555828, ECO:0000269|PubMed:11695850, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:14559847, ECO:0000269|PubMed:15373842, ECO:0000269|PubMed:15764715, ECO:0000269|PubMed:19965576, ECO:0000269|PubMed:20702771, ECO:0000269|PubMed:21490593, ECO:0000269|PubMed:21576599, ECO:0000269|PubMed:22773874, ECO:0000269|PubMed:2732228, ECO:0000269|PubMed:29461981, ECO:0000269|PubMed:8968357, ECO:0000269|PubMed:9435160}.
P12882 MYH1 S1600 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P14618 PKM S77 ochoa Pyruvate kinase PKM (EC 2.7.1.40) (Cytosolic thyroid hormone-binding protein) (CTHBP) (Opa-interacting protein 3) (OIP-3) (Pyruvate kinase 2/3) (Pyruvate kinase muscle isozyme) (Threonine-protein kinase PKM2) (EC 2.7.11.1) (Thyroid hormone-binding protein 1) (THBP1) (Tumor M2-PK) (Tyrosine-protein kinase PKM2) (EC 2.7.10.2) (p58) Catalyzes the final rate-limiting step of glycolysis by mediating the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP (PubMed:15996096, PubMed:1854723, PubMed:20847263). The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production (PubMed:15996096, PubMed:1854723, PubMed:20847263). The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation and survival (PubMed:15996096, PubMed:1854723, PubMed:20847263). {ECO:0000269|PubMed:15996096, ECO:0000269|PubMed:1854723, ECO:0000269|PubMed:20847263}.; FUNCTION: [Isoform M2]: Isoform specifically expressed during embryogenesis that has low pyruvate kinase activity by itself and requires allosteric activation by D-fructose 1,6-bisphosphate (FBP) for pyruvate kinase activity (PubMed:18337823, PubMed:20847263). In addition to its pyruvate kinase activity in the cytoplasm, also acts as a regulator of transcription in the nucleus by acting as a protein kinase (PubMed:18191611, PubMed:21620138, PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661). Translocates into the nucleus in response to various signals, such as EGF receptor activation, and homodimerizes, leading to its conversion into a protein threonine- and tyrosine-protein kinase (PubMed:22056988, PubMed:22306293, PubMed:22901803, PubMed:24120661, PubMed:26787900). Catalyzes phosphorylation of STAT3 at 'Tyr-705' and histone H3 at 'Thr-11' (H3T11ph), leading to activate transcription (PubMed:22306293, PubMed:22901803, PubMed:24120661). Its ability to activate transcription plays a role in cancer cells by promoting cell proliferation and promote tumorigenesis (PubMed:18337823, PubMed:22901803, PubMed:26787900). Promotes the expression of the immune checkpoint protein CD274 in BMAL1-deficient macrophages (By similarity). May also act as a translation regulator for a subset of mRNAs, independently of its pyruvate kinase activity: associates with subpools of endoplasmic reticulum-associated ribosomes, binds directly to the mRNAs translated at the endoplasmic reticulum and promotes translation of these endoplasmic reticulum-destined mRNAs (By similarity). Plays a role in caspase independent cell death of tumor cells (PubMed:17308100). {ECO:0000250|UniProtKB:P52480, ECO:0000269|PubMed:17308100, ECO:0000269|PubMed:18191611, ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263, ECO:0000269|PubMed:21620138, ECO:0000269|PubMed:22056988, ECO:0000269|PubMed:22306293, ECO:0000269|PubMed:22901803, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:26787900}.; FUNCTION: [Isoform M1]: Pyruvate kinase isoform expressed in adult tissues, which replaces isoform M2 after birth (PubMed:18337823). In contrast to isoform M2, has high pyruvate kinase activity by itself and does not require allosteric activation by D-fructose 1,6-bisphosphate (FBP) for activity (PubMed:20847263). {ECO:0000269|PubMed:18337823, ECO:0000269|PubMed:20847263}.
P14625 HSP90B1 S172 ochoa Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}.
P14923 JUP T59 ochoa Junction plakoglobin (Catenin gamma) (Desmoplakin III) (Desmoplakin-3) Common junctional plaque protein. The membrane-associated plaques are architectural elements in an important strategic position to influence the arrangement and function of both the cytoskeleton and the cells within the tissue. The presence of plakoglobin in both the desmosomes and in the intermediate junctions suggests that it plays a central role in the structure and function of submembranous plaques. Acts as a substrate for VE-PTP and is required by it to stimulate VE-cadherin function in endothelial cells. Can replace beta-catenin in E-cadherin/catenin adhesion complexes which are proposed to couple cadherins to the actin cytoskeleton (By similarity). {ECO:0000250}.
P16070 CD44 S706 ochoa|psp CD44 antigen (CDw44) (Epican) (Extracellular matrix receptor III) (ECMR-III) (GP90 lymphocyte homing/adhesion receptor) (HUTCH-I) (Heparan sulfate proteoglycan) (Hermes antigen) (Hyaluronate receptor) (Phagocytic glycoprotein 1) (PGP-1) (Phagocytic glycoprotein I) (PGP-I) (CD antigen CD44) Cell-surface receptor that plays a role in cell-cell interactions, cell adhesion and migration, helping them to sense and respond to changes in the tissue microenvironment (PubMed:16541107, PubMed:19703720, PubMed:22726066). Participates thereby in a wide variety of cellular functions including the activation, recirculation and homing of T-lymphocytes, hematopoiesis, inflammation and response to bacterial infection (PubMed:7528188). Engages, through its ectodomain, extracellular matrix components such as hyaluronan/HA, collagen, growth factors, cytokines or proteases and serves as a platform for signal transduction by assembling, via its cytoplasmic domain, protein complexes containing receptor kinases and membrane proteases (PubMed:18757307, PubMed:23589287). Such effectors include PKN2, the RhoGTPases RAC1 and RHOA, Rho-kinases and phospholipase C that coordinate signaling pathways promoting calcium mobilization and actin-mediated cytoskeleton reorganization essential for cell migration and adhesion (PubMed:15123640). {ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:18757307, ECO:0000269|PubMed:19703720, ECO:0000269|PubMed:22726066, ECO:0000269|PubMed:23589287, ECO:0000269|PubMed:7528188}.
P17028 ZNF24 S142 ochoa Zinc finger protein 24 (Retinoic acid suppression protein A) (RSG-A) (Zinc finger and SCAN domain-containing protein 3) (Zinc finger protein 191) (Zinc finger protein KOX17) Transcription factor required for myelination of differentiated oligodendrocytes. Required for the conversion of oligodendrocytes from the premyelinating to the myelinating state. In the developing central nervous system (CNS), involved in the maintenance in the progenitor stage by promoting the cell cycle. Specifically binds to the 5'-TCAT-3' DNA sequence (By similarity). Has transcription repressor activity in vitro. {ECO:0000250, ECO:0000269|PubMed:10585455}.
P18031 PTPN1 S363 ochoa Tyrosine-protein phosphatase non-receptor type 1 (EC 3.1.3.48) (Protein-tyrosine phosphatase 1B) (PTP-1B) Tyrosine-protein phosphatase which acts as a regulator of endoplasmic reticulum unfolded protein response. Mediates dephosphorylation of EIF2AK3/PERK; inactivating the protein kinase activity of EIF2AK3/PERK. May play an important role in CKII- and p60c-src-induced signal transduction cascades. May regulate the EFNA5-EPHA3 signaling pathway which modulates cell reorganization and cell-cell repulsion. May also regulate the hepatocyte growth factor receptor signaling pathway through dephosphorylation of MET. {ECO:0000269|PubMed:18819921, ECO:0000269|PubMed:21135139, ECO:0000269|PubMed:22169477}.
P18206 VCL S721 ochoa Vinculin (Metavinculin) (MV) Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}.
P20815 CYP3A5 S139 ochoa Cytochrome P450 3A5 (EC 1.14.14.1) (CYPIIIA5) (Cytochrome P450-PCN3) A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins (PubMed:10681376, PubMed:11093772, PubMed:12865317, PubMed:2732228). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:10681376, PubMed:11093772, PubMed:12865317, PubMed:2732228). Exhibits high catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes 6beta-hydroxylation of the steroid hormones testosterone, progesterone, and androstenedione (PubMed:2732228). Catalyzes the oxidative conversion of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics, including calcium channel blocking drug nifedipine and immunosuppressive drug cyclosporine (PubMed:2732228). {ECO:0000269|PubMed:10681376, ECO:0000269|PubMed:11093772, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:2732228}.
P21333 FLNA S1923 ochoa Filamin-A (FLN-A) (Actin-binding protein 280) (ABP-280) (Alpha-filamin) (Endothelial actin-binding protein) (Filamin-1) (Non-muscle filamin) Promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton and serves as a scaffold for a wide range of cytoplasmic signaling proteins. Interaction with FLNB may allow neuroblast migration from the ventricular zone into the cortical plate. Tethers cell surface-localized furin, modulates its rate of internalization and directs its intracellular trafficking (By similarity). Involved in ciliogenesis. Plays a role in cell-cell contacts and adherens junctions during the development of blood vessels, heart and brain organs. Plays a role in platelets morphology through interaction with SYK that regulates ITAM- and ITAM-like-containing receptor signaling, resulting in by platelet cytoskeleton organization maintenance (By similarity). During the axon guidance process, required for growth cone collapse induced by SEMA3A-mediated stimulation of neurons (PubMed:25358863). {ECO:0000250, ECO:0000250|UniProtKB:Q8BTM8, ECO:0000269|PubMed:22121117, ECO:0000269|PubMed:25358863}.
P23327 HRC S440 ochoa Sarcoplasmic reticulum histidine-rich calcium-binding protein May play a role in the regulation of calcium sequestration or release in the SR of skeletal and cardiac muscle.
P24462 CYP3A7 S139 ochoa Cytochrome P450 3A7 (EC 1.14.14.1) (CYPIIIA7) (Cytochrome P450-HFLA) (P450HLp2) A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins during embryogenesis (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:12865317, PubMed:14559847, PubMed:17178770, PubMed:9555064). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes 3beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone, DHEA), a precursor in the biosynthesis of androgen and estrogen steroid hormones (PubMed:17178770, PubMed:9555064). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1), particularly D-ring hydroxylated estrone at the C16-alpha position (PubMed:12865317, PubMed:14559847). Mainly hydroxylates all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in atRA clearance during fetal development (PubMed:11093772). Also involved in the oxidative metabolism of xenobiotics including anticonvulsants (PubMed:9555064). {ECO:0000269|PubMed:11093772, ECO:0000269|PubMed:12865317, ECO:0000269|PubMed:14559847, ECO:0000269|PubMed:17178770, ECO:0000269|PubMed:9555064}.
P24534 EEF1B2 S174 ochoa Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}.
P26232 CTNNA2 S651 ochoa Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}.
P27824 CANX S564 ochoa|psp Calnexin (IP90) (Major histocompatibility complex class I antigen-binding protein p88) (p90) Calcium-binding protein that interacts with newly synthesized monoglucosylated glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at the synapse.
P28290 ITPRID2 S376 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P30041 PRDX6 S186 ochoa Peroxiredoxin-6 (EC 1.11.1.27) (1-Cys peroxiredoxin) (1-Cys PRX) (24 kDa protein) (Acidic calcium-independent phospholipase A2) (aiPLA2) (EC 3.1.1.4) (Antioxidant protein 2) (Glutathione-dependent peroxiredoxin) (Liver 2D page spot 40) (Lysophosphatidylcholine acyltransferase 5) (LPC acyltransferase 5) (LPCAT-5) (Lyso-PC acyltransferase 5) (EC 2.3.1.23) (Non-selenium glutathione peroxidase) (NSGPx) (Red blood cells page spot 12) Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively (PubMed:10893423, PubMed:9497358). Can reduce H(2)O(2) and short chain organic, fatty acid, and phospholipid hydroperoxides (PubMed:10893423). Also has phospholipase activity, can therefore either reduce the oxidized sn-2 fatty acyl group of phospholipids (peroxidase activity) or hydrolyze the sn-2 ester bond of phospholipids (phospholipase activity) (PubMed:10893423, PubMed:26830860). These activities are dependent on binding to phospholipids at acidic pH and to oxidized phospholipds at cytosolic pH (PubMed:10893423). Plays a role in cell protection against oxidative stress by detoxifying peroxides and in phospholipid homeostasis (PubMed:10893423). Exhibits acyl-CoA-dependent lysophospholipid acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (PubMed:26830860). Shows a clear preference for LPC as the lysophospholipid and for palmitoyl CoA as the fatty acyl substrate (PubMed:26830860). {ECO:0000269|PubMed:10893423, ECO:0000269|PubMed:26830860, ECO:0000269|PubMed:9497358}.
P30305 CDC25B S373 ochoa M-phase inducer phosphatase 2 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25B) Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner (PubMed:17332740). The three isoforms seem to have a different level of activity (PubMed:1836978). {ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}.
P32314 FOXN2 S365 psp Forkhead box protein N2 (Human T-cell leukemia virus enhancer factor) Binds to the purine-rich region in HTLV-I LTR.
P35609 ACTN2 S411 ochoa Alpha-actinin-2 (Alpha-actinin skeletal muscle isoform 2) (F-actin cross-linking protein) F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein.
P41743 PRKCI S247 ochoa|psp Protein kinase C iota type (EC 2.7.11.13) (Atypical protein kinase C-lambda/iota) (PRKC-lambda/iota) (aPKC-lambda/iota) (nPKC-iota) Calcium- and diacylglycerol-independent serine/ threonine-protein kinase that plays a general protective role against apoptotic stimuli, is involved in NF-kappa-B activation, cell survival, differentiation and polarity, and contributes to the regulation of microtubule dynamics in the early secretory pathway. Is necessary for BCR-ABL oncogene-mediated resistance to apoptotic drug in leukemia cells, protecting leukemia cells against drug-induced apoptosis. In cultured neurons, prevents amyloid beta protein-induced apoptosis by interrupting cell death process at a very early step. In glioblastoma cells, may function downstream of phosphatidylinositol 3-kinase (PI(3)K) and PDPK1 in the promotion of cell survival by phosphorylating and inhibiting the pro-apoptotic factor BAD. Can form a protein complex in non-small cell lung cancer (NSCLC) cells with PARD6A and ECT2 and regulate ECT2 oncogenic activity by phosphorylation, which in turn promotes transformed growth and invasion. In response to nerve growth factor (NGF), acts downstream of SRC to phosphorylate and activate IRAK1, allowing the subsequent activation of NF-kappa-B and neuronal cell survival. Functions in the organization of the apical domain in epithelial cells by phosphorylating EZR. This step is crucial for activation and normal distribution of EZR at the early stages of intestinal epithelial cell differentiation. Forms a protein complex with LLGL1 and PARD6B independently of PARD3 to regulate epithelial cell polarity. Plays a role in microtubule dynamics in the early secretory pathway through interaction with RAB2A and GAPDH and recruitment to vesicular tubular clusters (VTCs). In human coronary artery endothelial cells (HCAEC), is activated by saturated fatty acids and mediates lipid-induced apoptosis. Involved in early synaptic long term potentiation phase in CA1 hippocampal cells and short term memory formation (By similarity). {ECO:0000250|UniProtKB:F1M7Y5, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10467349, ECO:0000269|PubMed:10906326, ECO:0000269|PubMed:11042363, ECO:0000269|PubMed:11724794, ECO:0000269|PubMed:12871960, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15994303, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19327373, ECO:0000269|PubMed:21189248, ECO:0000269|PubMed:21419810, ECO:0000269|PubMed:8226978, ECO:0000269|PubMed:9346882}.
P46087 NOP2 S674 ochoa 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}.
P46821 MAP1B S970 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B S1899 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P48651 PTDSS1 S454 ochoa Phosphatidylserine synthase 1 (PSS-1) (PtdSer synthase 1) (EC 2.7.8.29) (Serine-exchange enzyme I) Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine (PubMed:19014349, PubMed:24241535). Catalyzes mainly the conversion of phosphatidylcholine (PubMed:19014349, PubMed:24241535). Also converts, in vitro and to a lesser extent, phosphatidylethanolamine (PubMed:19014349, PubMed:24241535). {ECO:0000269|PubMed:19014349, ECO:0000269|PubMed:24241535}.
P48681 NES S1442 ochoa Nestin Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}.
P50402 EMD S110 ochoa Emerin Stabilizes and promotes the formation of a nuclear actin cortical network. Stimulates actin polymerization in vitro by binding and stabilizing the pointed end of growing filaments. Inhibits beta-catenin activity by preventing its accumulation in the nucleus. Acts by influencing the nuclear accumulation of beta-catenin through a CRM1-dependent export pathway. Links centrosomes to the nuclear envelope via a microtubule association. Required for proper localization of non-farnesylated prelamin-A/C. Together with NEMP1, contributes to nuclear envelope stiffness in germ cells (PubMed:32923640). EMD and BAF are cooperative cofactors of HIV-1 infection. Association of EMD with the viral DNA requires the presence of BAF and viral integrase. The association of viral DNA with chromatin requires the presence of BAF and EMD. {ECO:0000269|PubMed:15328537, ECO:0000269|PubMed:16680152, ECO:0000269|PubMed:16858403, ECO:0000269|PubMed:17785515, ECO:0000269|PubMed:19323649, ECO:0000269|PubMed:32923640}.
P51636 CAV2 S20 ochoa Caveolin-2 May act as a scaffolding protein within caveolar membranes. Interacts directly with G-protein alpha subunits and can functionally regulate their activity. Acts as an accessory protein in conjunction with CAV1 in targeting to lipid rafts and driving caveolae formation. The Ser-36 phosphorylated form has a role in modulating mitosis in endothelial cells. Positive regulator of cellular mitogenesis of the MAPK signaling pathway. Required for the insulin-stimulated nuclear translocation and activation of MAPK1 and STAT3, and the subsequent regulation of cell cycle progression (By similarity). {ECO:0000250, ECO:0000269|PubMed:15504032, ECO:0000269|PubMed:18081315}.
P52907 CAPZA1 S126 psp F-actin-capping protein subunit alpha-1 (CapZ alpha-1) F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. May play a role in the formation of epithelial cell junctions (PubMed:22891260). Forms, with CAPZB, the barbed end of the fast growing ends of actin filaments in the dynactin complex and stabilizes dynactin structure. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:A0PFK5, ECO:0000269|PubMed:22891260}.
P55884 EIF3B S239 ochoa Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}.
P56856 CLDN18 S217 ochoa Claudin-18 Involved in alveolar fluid homeostasis via regulation of alveolar epithelial tight junction composition and therefore ion transport and solute permeability, potentially via downstream regulation of the actin cytoskeleton organization and beta-2-adrenergic signaling (By similarity). Required for lung alveolarization and maintenance of the paracellular alveolar epithelial barrier (By similarity). Acts to maintain epithelial progenitor cell proliferation and organ size, via regulation of YAP1 localization away from the nucleus and thereby restriction of YAP1 target gene transcription (By similarity). Acts as a negative regulator of RANKL-induced osteoclast differentiation, potentially via relocation of TJP2/ZO-2 away from the nucleus, subsequently involved in bone resorption in response to calcium deficiency (By similarity). Mediates the osteoprotective effects of estrogen, potentially via acting downstream of estrogen signaling independently of RANKL signaling pathways (By similarity). {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A1]: Involved in the maintenance of homeostasis of the alveolar microenvironment via regulation of pH and subsequent T-cell activation in the alveolar space, is therefore indirectly involved in limiting C.neoformans infection. {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A2]: Required for the formation of the gastric paracellular barrier via its role in tight junction formation, thereby involved in the response to gastric acidification. {ECO:0000250|UniProtKB:P56857}.
Q01082 SPTBN1 S2308 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q02952 AKAP12 S792 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02952 AKAP12 S1631 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q05655 PRKCD S331 ochoa Protein kinase C delta type (EC 2.7.11.13) (Tyrosine-protein kinase PRKCD) (EC 2.7.10.2) (nPKC-delta) [Cleaved into: Protein kinase C delta type regulatory subunit; Protein kinase C delta type catalytic subunit (Sphingosine-dependent protein kinase-1) (SDK1)] Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses (PubMed:21406692, PubMed:21810427). Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction (By similarity). Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis (PubMed:21406692, PubMed:21810427). In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53 (PubMed:21406692, PubMed:21810427). In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53 (PubMed:21406692, PubMed:21810427). In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation (By similarity). Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1 (PubMed:15774464). Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways (By similarity). Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways (PubMed:19801500). May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA (PubMed:11748588). In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation (PubMed:16940418). Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release (PubMed:19587372). Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin (PubMed:11877440). The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion (By similarity). Phosphorylates ELAVL1 in response to angiotensin-2 treatment (PubMed:18285462). Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis (PubMed:12649167). Phosphorylates SMPD1 which induces SMPD1 secretion (PubMed:17303575). {ECO:0000250|UniProtKB:P28867, ECO:0000269|PubMed:11748588, ECO:0000269|PubMed:11877440, ECO:0000269|PubMed:12649167, ECO:0000269|PubMed:15774464, ECO:0000269|PubMed:16940418, ECO:0000269|PubMed:17303575, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19587372, ECO:0000269|PubMed:19801500, ECO:0000303|PubMed:21406692, ECO:0000303|PubMed:21810427}.
Q12830 BPTF S1381 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q12830 BPTF S1672 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q12888 TP53BP1 S96 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 S483 ochoa TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12888 TP53BP1 S1778 psp TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}.
Q12923 PTPN13 S499 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q13009 TIAM1 S224 ochoa Rho guanine nucleotide exchange factor TIAM1 (T-lymphoma invasion and metastasis-inducing protein 1) (TIAM-1) Guanyl-nucleotide exchange factor that activates RHO-like proteins and connects extracellular signals to cytoskeletal activities. Activates RAC1, CDC42, and to a lesser extent RHOA and their downstream signaling to regulate processes like cell adhesion and cell migration. {ECO:0000269|PubMed:20361982, ECO:0000269|PubMed:25684205}.
Q13133 NR1H3 S198 ochoa|psp Oxysterols receptor LXR-alpha (Liver X receptor alpha) (Nuclear receptor subfamily 1 group H member 3) Nuclear receptor that exhibits a ligand-dependent transcriptional activation activity (PubMed:19481530, PubMed:25661920, PubMed:37478846). Interaction with retinoic acid receptor (RXR) shifts RXR from its role as a silent DNA-binding partner to an active ligand-binding subunit in mediating retinoid responses through target genes defined by LXRES (PubMed:37478846). LXRES are DR4-type response elements characterized by direct repeats of two similar hexanuclotide half-sites spaced by four nucleotides (By similarity). Plays an important role in the regulation of cholesterol homeostasis, regulating cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR and LRP8 (PubMed:19481530). Interplays functionally with RORA for the regulation of genes involved in liver metabolism (By similarity). Induces LPCAT3-dependent phospholipid remodeling in endoplasmic reticulum (ER) membranes of hepatocytes, driving SREBF1 processing and lipogenesis (By similarity). Via LPCAT3, triggers the incorporation of arachidonate into phosphatidylcholines of ER membranes, increasing membrane dynamics and enabling triacylglycerols transfer to nascent very low-density lipoprotein (VLDL) particles. Via LPCAT3 also counteracts lipid-induced ER stress response and inflammation, likely by modulating SRC kinase membrane compartmentalization and limiting the synthesis of lipid inflammatory mediators (By similarity). {ECO:0000250|UniProtKB:Q9Z0Y9, ECO:0000269|PubMed:19481530, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:37478846}.
Q13415 ORC1 S346 ochoa Origin recognition complex subunit 1 (Replication control protein 1) Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication.
Q14151 SAFB2 S246 ochoa Scaffold attachment factor B2 (SAF-B2) Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation.
Q14157 UBAP2L S265 ochoa Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}.
Q14192 FHL2 S255 ochoa Four and a half LIM domains protein 2 (FHL-2) (LIM domain protein DRAL) (Skeletal muscle LIM-protein 3) (SLIM-3) May function as a molecular transmitter linking various signaling pathways to transcriptional regulation. Negatively regulates the transcriptional repressor E4F1 and may function in cell growth. Inhibits the transcriptional activity of FOXO1 and its apoptotic function by enhancing the interaction of FOXO1 with SIRT1 and FOXO1 deacetylation. Negatively regulates the calcineurin/NFAT signaling pathway in cardiomyocytes (PubMed:28717008). {ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16652157, ECO:0000269|PubMed:18853468, ECO:0000269|PubMed:28717008}.
Q14761 PTPRCAP S163 ochoa|psp Protein tyrosine phosphatase receptor type C-associated protein (PTPRC-associated protein) (CD45-associated protein) (CD45-AP) (Lymphocyte phosphatase-associated phosphoprotein) None
Q14978 NOLC1 S291 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q14980 NUMA1 S1187 ochoa Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}.
Q15032 R3HDM1 S262 ochoa R3H domain-containing protein 1 None
Q15047 SETDB1 S878 ochoa Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}.
Q15424 SAFB S247 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15554 TERF2 S422 ochoa Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}.
Q32MZ4 LRRFIP1 S66 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q52LW3 ARHGAP29 S489 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q52LW3 ARHGAP29 S930 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q53EL6 PDCD4 S49 ochoa Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}.
Q53EZ4 CEP55 S285 ochoa Centrosomal protein of 55 kDa (Cep55) (Up-regulated in colon cancer 6) Plays a role in mitotic exit and cytokinesis (PubMed:16198290, PubMed:17853893). Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis (PubMed:17853893). Not required for microtubule nucleation (PubMed:16198290). Plays a role in the development of the brain and kidney (PubMed:28264986). {ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:28264986}.
Q5JQS6 GCSAML S80 ochoa Germinal center-associated signaling and motility-like protein None
Q5JTV8 TOR1AIP1 S231 ochoa Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}.
Q5QJE6 DNTTIP2 S474 ochoa Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}.
Q5SW79 CEP170 S1059 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T011 SZT2 S1388 ochoa KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}.
Q5T1M5 FKBP15 S1131 ochoa FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}.
Q5T200 ZC3H13 S1501 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T4S7 UBR4 S1734 ochoa E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}.
Q5T5C0 STXBP5 S900 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q5VWQ0 RSBN1 S81 ochoa Lysine-specific demethylase 9 (KDM9) (EC 1.14.11.-) (Round spermatid basic protein 1) Histone demethylase that specifically demethylates dimethylated 'Lys-20' of histone H4 (H4K20me2), thereby modulating chromosome architecture. {ECO:0000250|UniProtKB:Q80T69}.
Q5VZ89 DENND4C S1115 ochoa DENN domain-containing protein 4C Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}.
Q659C4 LARP1B S432 ochoa La-related protein 1B (La ribonucleoprotein domain family member 1B) (La ribonucleoprotein domain family member 2) (La-related protein 2) None
Q6NYC1 JMJD6 S136 ochoa Bifunctional arginine demethylase and lysyl-hydroxylase JMJD6 (EC 1.14.11.-) (Histone arginine demethylase JMJD6) (JmjC domain-containing protein 6) (Jumonji domain-containing protein 6) (Lysyl-hydroxylase JMJD6) (Peptide-lysine 5-dioxygenase JMJD6) (Phosphatidylserine receptor) (Protein PTDSR) Dioxygenase that can both act as a arginine demethylase and a lysyl-hydroxylase (PubMed:17947579, PubMed:20684070, PubMed:21060799, PubMed:22189873, PubMed:24498420). Acts as a lysyl-hydroxylase that catalyzes 5-hydroxylation on specific lysine residues of target proteins such as U2AF2/U2AF65 and LUC7L2. Regulates RNA splicing by mediating 5-hydroxylation of U2AF2/U2AF65, affecting the pre-mRNA splicing activity of U2AF2/U2AF65 (PubMed:19574390). Hydroxylates its own N-terminus, which is required for homooligomerization (PubMed:22189873). Plays a role in the regulation of nucleolar liquid-liquid phase separation (LLPS) by post-translationally modifying LIAT1 at its lysine-rich domain which inhibits LIAT1 nucleolar targeting (By similarity). In addition to peptidyl-lysine 5-dioxygenase activity, may act as an RNA hydroxylase, as suggested by its ability to bind single strand RNA (PubMed:20679243, PubMed:29176719). Also acts as an arginine demethylase which preferentially demethylates asymmetric dimethylation (PubMed:17947579, PubMed:24360279, PubMed:24498420). Demethylates histone H3 at 'Arg-2' (H3R2me) and histone H4 at 'Arg-3' (H4R3me), including mono-, symmetric di- and asymmetric dimethylated forms, thereby playing a role in histone code (PubMed:17947579, PubMed:24360279). However, histone arginine demethylation may not constitute the primary activity in vivo (PubMed:17947579, PubMed:21060799, PubMed:22189873). In collaboration with BRD4, interacts with the positive transcription elongation factor b (P-TEFb) complex in its active form to regulate polymerase II promoter-proximal pause release for transcriptional activation of a large cohort of genes. On distal enhancers, so called anti-pause enhancers, demethylates both histone H4R3me2 and the methyl cap of 7SKsnRNA leading to the dismissal of the 7SKsnRNA:HEXIM1 inhibitor complex. After removal of repressive marks, the complex BRD4:JMJD6 attract and retain the P-TEFb complex on chromatin, leading to its activation, promoter-proximal polymerase II pause release, and transcriptional activation (PubMed:24360279). Demethylates other arginine methylated-proteins such as ESR1 (PubMed:24498420). Has no histone lysine demethylase activity (PubMed:21060799). Required for differentiation of multiple organs during embryogenesis. Acts as a key regulator of hematopoietic differentiation: required for angiogenic sprouting by regulating the pre-mRNA splicing activity of U2AF2/U2AF65 (By similarity). Seems to be necessary for the regulation of macrophage cytokine responses (PubMed:15622002). {ECO:0000250|UniProtKB:Q9ERI5, ECO:0000269|PubMed:15622002, ECO:0000269|PubMed:17947579, ECO:0000269|PubMed:19574390, ECO:0000269|PubMed:20679243, ECO:0000269|PubMed:20684070, ECO:0000269|PubMed:21060799, ECO:0000269|PubMed:22189873, ECO:0000269|PubMed:24360279, ECO:0000269|PubMed:24498420, ECO:0000269|PubMed:29176719}.
Q6Q0C0 TRAF7 S88 ochoa E3 ubiquitin-protein ligase TRAF7 (EC 2.3.2.-) (EC 2.3.2.27) (RING finger and WD repeat-containing protein 1) (RING finger protein 119) (RING-type E3 ubiquitin transferase TRAF7) (TNF receptor-associated factor 7) E3 ubiquitin and SUMO-protein ligase that plays a role in different biological processes such as innate immunity, inflammation or apoptosis (PubMed:15001576, PubMed:37086853). Potentiates MAP3K3-mediated activation of JUN/AP1 and DDIT3 transcriptional regulators (PubMed:14743216). Negatively regulates MYB transcriptional activity by sequestering it to the cytosol via SUMOylation (By similarity). Plays a role in the phosphorylation of MAPK1 and/or MAPK3, probably via its interaction with MAP3K3. Negatively regulates RLR-mediated innate immunity by promoting 'Lys-48'-linked ubiquitination of TBK1 through its RING domain to inhibit the cellular antiviral response (PubMed:37086853). Promotes 'Lys-29'-linked polyubiquitination of NEMO/IKBKG and RELA leading to targeting these two proteins to lysosomal degradative pathways, reducing the transcriptional activity of NF-kappa-B (PubMed:21518757). {ECO:0000250|UniProtKB:Q922B6, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:15001576, ECO:0000269|PubMed:21518757, ECO:0000269|PubMed:29961569, ECO:0000269|PubMed:37086853}.
Q6W2J9 BCOR S1269 ochoa BCL-6 corepressor (BCoR) Transcriptional corepressor. May specifically inhibit gene expression when recruited to promoter regions by sequence-specific DNA-binding proteins such as BCL6 and MLLT3. This repression may be mediated at least in part by histone deacetylase activities which can associate with this corepressor. Involved in the repression of TFAP2A; impairs binding of BCL6 and KDM2B to TFAP2A promoter regions. Via repression of TFAP2A acts as a negative regulator of osteo-dentiogenic capacity in adult stem cells; the function implies inhibition of methylation on histone H3 'Lys-4' (H3K4me3) and 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:10898795, ECO:0000269|PubMed:15004558, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:19578371, ECO:0000269|PubMed:23911289}.
Q6ZV73 FGD6 S196 ochoa FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}.
Q7L9B9 EEPD1 S243 ochoa Endonuclease/exonuclease/phosphatase family domain-containing protein 1 None
Q86W50 METTL16 S484 ochoa RNA N(6)-adenosine-methyltransferase METTL16 (EC 2.1.1.348) (Methyltransferase 10 domain-containing protein) (Methyltransferase-like protein 16) (U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase) (EC 2.1.1.346) RNA N6-methyltransferase that methylates adenosine residues at the N(6) position of a subset of RNAs and is involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts (PubMed:28525753, PubMed:30197297, PubMed:30197299, PubMed:33428944, PubMed:33930289). Able to N6-methylate a subset of mRNAs and U6 small nuclear RNAs (U6 snRNAs) (PubMed:28525753). In contrast to the METTL3-METTL14 heterodimer, only able to methylate a limited number of RNAs: requires both a 5'UACAGAGAA-3' nonamer sequence and a specific RNA structure (PubMed:28525753, PubMed:30197297, PubMed:30197299). Plays a key role in S-adenosyl-L-methionine homeostasis by mediating N6-methylation of MAT2A mRNAs, altering splicing of MAT2A transcripts: in presence of S-adenosyl-L-methionine, binds the 3'-UTR region of MAT2A mRNA and specifically N6-methylates the first hairpin of MAT2A mRNA, preventing recognition of their 3'-splice site by U2AF1/U2AF35, thereby inhibiting splicing and protein production of S-adenosylmethionine synthase (PubMed:28525753, PubMed:33930289). In S-adenosyl-L-methionine-limiting conditions, binds the 3'-UTR region of MAT2A mRNA but stalls due to the lack of a methyl donor, preventing N6-methylation and promoting expression of MAT2A (PubMed:28525753). In addition to mRNAs, also able to mediate N6-methylation of U6 small nuclear RNA (U6 snRNA): specifically N6-methylates adenine in position 43 of U6 snRNAs (PubMed:28525753, PubMed:29051200, PubMed:32266935). Also able to bind various lncRNAs, such as 7SK snRNA (7SK RNA) or 7SL RNA (PubMed:29051200). Specifically binds the 3'-end of the MALAT1 long non-coding RNA (PubMed:27872311). {ECO:0000269|PubMed:27872311, ECO:0000269|PubMed:28525753, ECO:0000269|PubMed:29051200, ECO:0000269|PubMed:30197297, ECO:0000269|PubMed:30197299, ECO:0000269|PubMed:32266935, ECO:0000269|PubMed:33428944}.
Q86X27 RALGPS2 S422 ochoa Ras-specific guanine nucleotide-releasing factor RalGPS2 (Ral GEF with PH domain and SH3-binding motif 2) (RalA exchange factor RalGPS2) Guanine nucleotide exchange factor for the small GTPase RALA. May be involved in cytoskeletal organization. May also be involved in the stimulation of transcription in a Ras-independent fashion (By similarity). {ECO:0000250}.
Q86X53 ERICH1 S238 ochoa Glutamate-rich protein 1 None
Q86YA3 ZGRF1 S793 ochoa 5'-3' DNA helicase ZGRF1 (EC 5.6.2.3) (GRF-type zinc finger domain-containing protein 1) 5'-3' DNA helicase which is recruited to sites of DNA damage and promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination (HR) (PubMed:32640219, PubMed:34552057). Promotes HR by directly stimulating RAD51-mediated strand exchange activity (PubMed:32640219). Not required to load RAD51 at sites of DNA damage but promotes recombinational repair after RAD51 recruitment (PubMed:32640219). Also promotes HR by positively regulating EXO1-mediated DNA end resection of double-strand breaks (PubMed:34552057). Required for recruitment of replication protein RPA2 to DNA damage sites (PubMed:34552057). Promotes the initiation of the G2/M checkpoint but not its maintenance (PubMed:34552057). Catalyzes Holliday junction branch migration and dissociation of D-loops and DNA flaps (PubMed:32640219). {ECO:0000269|PubMed:32640219, ECO:0000269|PubMed:34552057}.
Q8IWS0 PHF6 S49 ochoa PHD finger protein 6 (PHD-like zinc finger protein) Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}.
Q8IX90 SKA3 S248 ochoa Spindle and kinetochore-associated protein 3 Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}.
Q8IXK2 GALNT12 S556 ochoa Polypeptide N-acetylgalactosaminyltransferase 12 (EC 2.4.1.41) (Polypeptide GalNAc transferase 12) (GalNAc-T12) (pp-GaNTase 12) (Protein-UDP acetylgalactosaminyltransferase 12) (UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 12) Catalyzes the initial reaction in O-linked oligosaccharide biosynthesis, the transfer of an N-acetyl-D-galactosamine residue to a serine or threonine residue on the protein receptor. Has activity toward non-glycosylated peptides such as Muc5AC, Muc1a and EA2, and no detectable activity with Muc2 and Muc7. Displays enzymatic activity toward the Gal-NAc-Muc5AC glycopeptide, but no detectable activity to mono-GalNAc-glycosylated Muc1a, Muc2, Muc7 and EA2. May play an important role in the initial step of mucin-type oligosaccharide biosynthesis in digestive organs.
Q8N108 MIER1 S130 ochoa Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}.
Q8N5C6 SRBD1 S152 ochoa S1 RNA-binding domain-containing protein 1 None
Q8N6H7 ARFGAP2 S400 ochoa ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}.
Q8N6S5 ARL6IP6 S60 ochoa ADP-ribosylation factor-like protein 6-interacting protein 6 (ARL-6-interacting protein 6) (Aip-6) (Phosphonoformate immuno-associated protein 1) None
Q8N9M1 C19orf47 S285 ochoa Uncharacterized protein C19orf47 None
Q8NDI1 EHBP1 S302 ochoa EH domain-binding protein 1 May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}.
Q8NDV7 TNRC6A S1212 ochoa Trinucleotide repeat-containing gene 6A protein (CAG repeat protein 26) (EMSY interactor protein) (GW182 autoantigen) (Protein GW1) (Glycine-tryptophan protein of 182 kDa) Plays a role in RNA-mediated gene silencing by both micro-RNAs (miRNAs) and short interfering RNAs (siRNAs). Required for miRNA-dependent repression of translation and for siRNA-dependent endonucleolytic cleavage of complementary mRNAs by argonaute family proteins. As a scaffolding protein, associates with argonaute proteins bound to partially complementary mRNAs, and can simultaneously recruit CCR4-NOT and PAN deadenylase complexes. {ECO:0000269|PubMed:16284622, ECO:0000269|PubMed:16284623, ECO:0000269|PubMed:17596515, ECO:0000269|PubMed:17671087, ECO:0000269|PubMed:19056672, ECO:0000269|PubMed:19304925}.
Q8NEM2 SHCBP1 S54 ochoa SHC SH2 domain-binding protein 1 May play a role in signaling pathways governing cellular proliferation, cell growth and differentiation. May be a component of a novel signaling pathway downstream of Shc. Acts as a positive regulator of FGF signaling in neural progenitor cells. {ECO:0000250|UniProtKB:Q9Z179}.
Q8NEY1 NAV1 S935 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8NHZ8 CDC26 S51 ochoa Anaphase-promoting complex subunit CDC26 (Anaphase-promoting complex subunit 12) (APC12) (Cell division cycle protein 26 homolog) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). May recruit the E2 ubiquitin-conjugating enzymes to the complex (PubMed:18485873). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
Q8TC76 FAM110B S301 ochoa Protein FAM110B May be involved in tumor progression.
Q8TD26 CHD6 S1360 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8WWM7 ATXN2L S276 ochoa Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}.
Q92576 PHF3 S345 ochoa PHD finger protein 3 None
Q92614 MYO18A S52 ochoa Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}.
Q92667 AKAP1 S274 ochoa A-kinase anchor protein 1, mitochondrial (A-kinase anchor protein 149 kDa) (AKAP 149) (Dual specificity A-kinase-anchoring protein 1) (D-AKAP-1) (Protein kinase A-anchoring protein 1) (PRKA1) (Spermatid A-kinase anchor protein 84) (S-AKAP84) Binds to type I and II regulatory subunits of protein kinase A and anchors them to the cytoplasmic face of the mitochondrial outer membrane (By similarity). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Promotes translocation of NDUFS1 into mitochondria to regulate mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) activity (By similarity). {ECO:0000250|UniProtKB:O08715, ECO:0000269|PubMed:31522117}.
Q93052 LPP S126 ochoa Lipoma-preferred partner (LIM domain-containing preferred translocation partner in lipoma) May play a structural role at sites of cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it may also be implicated in signaling events and activation of gene transcription. May be involved in signal transduction from cell adhesion sites to the nucleus allowing successful integration of signals arising from soluble factors and cell-cell adhesion sites. Also suggested to serve as a scaffold protein upon which distinct protein complexes are assembled in the cytoplasm and in the nucleus. {ECO:0000269|PubMed:10637295}.
Q96D46 NMD3 S462 ochoa 60S ribosomal export protein NMD3 (hNMD3) Acts as an adapter for the XPO1/CRM1-mediated export of the 60S ribosomal subunit. {ECO:0000269|PubMed:12724356, ECO:0000269|PubMed:12773398}.
Q96G28 CFAP36 S201 ochoa Cilia- and flagella-associated protein 36 (Coiled-coil domain-containing protein 104) May act as an effector for ARL3.
Q96GU1 PAGE5 S31 ochoa P antigen family member 5 (PAGE-5) (Cancer/testis antigen 16.1) (CT16.1) (G antigen family E member 1) (Prostate-associated gene 5 protein) None
Q96GX5 MASTL S619 ochoa Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}.
Q96J84 KIRREL1 S560 ochoa Kin of IRRE-like protein 1 (Kin of irregular chiasm-like protein 1) (Nephrin-like protein 1) Required for proper function of the glomerular filtration barrier. It is involved in the maintenance of a stable podocyte architecture with interdigitating foot processes connected by specialized cell-cell junctions, known as the slit diaphragm (PubMed:31472902). It is a signaling protein that needs the presence of TEC kinases to fully trans-activate the transcription factor AP-1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:31472902}.
Q96JQ2 CLMN S907 ochoa Calmin (Calponin-like transmembrane domain protein) None
Q96K76 USP47 S1025 ochoa Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}.
Q96MH2 HEXIM2 S169 ochoa Protein HEXIM2 (Hexamethylene bis-acetamide-inducible protein 2) Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor (PubMed:15713661, PubMed:15713662). Core component of the 7SK RNP complex: in cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:15713661, PubMed:15713662). {ECO:0000269|PubMed:15713661, ECO:0000269|PubMed:15713662}.
Q96PD2 DCBLD2 S657 psp Discoidin, CUB and LCCL domain-containing protein 2 (CUB, LCCL and coagulation factor V/VIII-homology domains protein 1) (Endothelial and smooth muscle cell-derived neuropilin-like protein) None
Q96PY5 FMNL2 S677 ochoa Formin-like protein 2 (Formin homology 2 domain-containing protein 2) Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}.
Q96Q15 SMG1 S1907 ochoa Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}.
Q96Q42 ALS2 S466 ochoa Alsin (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 6 protein) (Amyotrophic lateral sclerosis 2 protein) May act as a GTPase regulator. Controls survival and growth of spinal motoneurons (By similarity). {ECO:0000250}.
Q96RE7 NACC1 S125 ochoa Nucleus accumbens-associated protein 1 (NAC-1) (BTB/POZ domain-containing protein 14B) Functions as a transcriptional repressor. Seems to function as a transcriptional corepressor in neuronal cells through recruitment of HDAC3 and HDAC4. Contributes to tumor progression, and tumor cell proliferation and survival. This may be mediated at least in part through repressing transcriptional activity of GADD45GIP1. Required for recruiting the proteasome from the nucleus to the cytoplasm and dendritic spines. {ECO:0000269|PubMed:17130457, ECO:0000269|PubMed:17804717}.
Q96RL1 UIMC1 S205 ochoa|psp BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}.
Q96S38 RPS6KC1 S785 ochoa Ribosomal protein S6 kinase delta-1 (S6K-delta-1) (EC 2.7.11.1) (52 kDa ribosomal protein S6 kinase) (Ribosomal S6 kinase-like protein with two PSK domains 118 kDa protein) (SPHK1-binding protein) May be involved in transmitting sphingosine-1 phosphate (SPP)-mediated signaling into the cell (PubMed:12077123). Plays a role in the recruitment of PRDX3 to early endosomes (PubMed:15750338). {ECO:0000269|PubMed:12077123, ECO:0000269|PubMed:15750338}.
Q96T23 RSF1 Y1363 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q99618 CDCA3 S168 ochoa Cell division cycle-associated protein 3 (Gene-rich cluster protein C8) (Trigger of mitotic entry protein 1) (TOME-1) F-box-like protein which is required for entry into mitosis. Acts by participating in E3 ligase complexes that mediate the ubiquitination and degradation of WEE1 kinase at G2/M phase (By similarity). {ECO:0000250}.
Q99767 APBA2 S238 psp Amyloid-beta A4 precursor protein-binding family A member 2 (Adapter protein X11beta) (Neuron-specific X11L protein) (Neuronal Munc18-1-interacting protein 2) (Mint-2) Putative function in synaptic vesicle exocytosis by binding to STXBP1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta.
Q9BPZ7 MAPKAP1 S459 ochoa Target of rapamycin complex 2 subunit MAPKAP1 (TORC2 subunit MAPKAP1) (Mitogen-activated protein kinase 2-associated protein 1) (Stress-activated map kinase-interacting protein 1) (SAPK-interacting protein 1) (mSIN1) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15467718, PubMed:16919458, PubMed:16962653, PubMed:17043309, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:16919458, PubMed:16962653, PubMed:21806543, PubMed:28264193, PubMed:28968999, PubMed:30837283, PubMed:35926713). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:16962653). Within the mTORC2 complex, MAPKAP1/SIN1 acts as a substrate adapter which recognizes and binds AGC protein kinase family members for phosphorylation by MTOR (PubMed:21806543, PubMed:28264193). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:28264193, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (PubMed:30837283, PubMed:35926713). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). MAPKAP1 inhibits MAP3K2 by preventing its dimerization and autophosphorylation (PubMed:15988011). Inhibits HRAS and KRAS independently of mTORC2 complex (PubMed:17303383, PubMed:34380736, PubMed:35522713). Enhances osmotic stress-induced phosphorylation of ATF2 and ATF2-mediated transcription (PubMed:17054722). Involved in ciliogenesis, regulates cilia length through its interaction with CCDC28B independently of mTORC2 complex (PubMed:23727834). {ECO:0000250|UniProtKB:Q8BKH7, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15988011, ECO:0000269|PubMed:16919458, ECO:0000269|PubMed:16962653, ECO:0000269|PubMed:17043309, ECO:0000269|PubMed:17054722, ECO:0000269|PubMed:17303383, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23727834, ECO:0000269|PubMed:28264193, ECO:0000269|PubMed:28968999, ECO:0000269|PubMed:30837283, ECO:0000269|PubMed:34380736, ECO:0000269|PubMed:35522713, ECO:0000269|PubMed:35926713}.; FUNCTION: [Isoform 4]: In contrast to isoform 1, isoform 2 and isoform 6, isoform 4 is not a component of the a mTORC2 complex. {ECO:0000269|PubMed:26263164}.
Q9BQ89 FAM110A S229 ochoa Protein FAM110A None
Q9BQI3 EIF2AK1 S276 ochoa Eukaryotic translation initiation factor 2-alpha kinase 1 (EC 2.7.11.1) (Heme-controlled repressor) (HCR) (Heme-regulated eukaryotic initiation factor eIF-2-alpha kinase) (Heme-regulated inhibitor) (hHRI) (Hemin-sensitive initiation factor 2-alpha kinase) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress conditions (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). Key activator of the integrated stress response (ISR) required for adaptation to various stress, such as heme deficiency, oxidative stress, osmotic shock, mitochondrial dysfunction and heat shock (PubMed:32132706, PubMed:32132707, PubMed:37327776, PubMed:37550454, PubMed:38340717). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707, PubMed:37327776). Acts as a key sensor of heme-deficiency: in normal conditions, binds hemin via a cysteine thiolate and histidine nitrogenous coordination, leading to inhibit the protein kinase activity (By similarity). This binding occurs with moderate affinity, allowing it to sense the heme concentration within the cell: heme depletion relieves inhibition and stimulates kinase activity, activating the ISR (By similarity). Thanks to this unique heme-sensing capacity, plays a crucial role to shut off protein synthesis during acute heme-deficient conditions (By similarity). In red blood cells (RBCs), controls hemoglobin synthesis ensuring a coordinated regulation of the synthesis of its heme and globin moieties (By similarity). It thereby plays an essential protective role for RBC survival in anemias of iron deficiency (By similarity). Iron deficiency also triggers activation by full-length DELE1 (PubMed:37327776). Also activates the ISR in response to mitochondrial dysfunction: HRI/EIF2AK1 protein kinase activity is activated upon binding to the processed form of DELE1 (S-DELE1), thereby promoting the ATF4-mediated reprogramming (PubMed:32132706, PubMed:32132707). Also acts as an activator of mitophagy in response to mitochondrial damage: catalyzes phosphorylation of eIF-2-alpha (EIF2S1) following activation by S-DELE1, thereby promoting mitochondrial localization of EIF2S1, triggering PRKN-independent mitophagy (PubMed:38340717). {ECO:0000250|UniProtKB:Q9Z2R9, ECO:0000269|PubMed:32132706, ECO:0000269|PubMed:32132707, ECO:0000269|PubMed:32197074, ECO:0000269|PubMed:37550454, ECO:0000269|PubMed:38340717}.
Q9BWL3 C1orf43 S227 ochoa Protein C1orf43 (Hepatitis C virus NS5A-transactivated protein 4) (HCV NS5A-transactivated protein 4) (Protein NICE-3) (S863-3) General regulator of phagocytosis. Required to uptake Gram negative bacterium by macrophages. {ECO:0000269|PubMed:31540829}.
Q9GZT3 SLIRP S69 ochoa SRA stem-loop-interacting RNA-binding protein, mitochondrial RNA-binding protein that acts as a nuclear receptor corepressor. Probably acts by binding the SRA RNA, and repressing the SRA-mediated nuclear receptor coactivation. Binds the STR7 loop of SRA RNA. Also able to repress glucocorticoid (GR), androgen (AR), thyroid (TR) and VDR-mediated transactivation. {ECO:0000269|PubMed:16762838}.
Q9H0A0 NAT10 S675 ochoa RNA cytidine acetyltransferase (EC 2.3.1.-) (18S rRNA cytosine acetyltransferase) (N-acetyltransferase 10) (N-acetyltransferase-like protein) (hALP) RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs (PubMed:25411247, PubMed:25653167, PubMed:30449621, PubMed:35679869). Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation (PubMed:30449621, PubMed:35679869). mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency (PubMed:30449621). Mediates the formation of ac4C at position 1842 in 18S rRNA (PubMed:25411247). May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 and A2 during 18S rRNA synthesis (PubMed:25411247, PubMed:25653167). Catalyzes the formation of ac4C in serine and leucine tRNAs (By similarity). Requires the tRNA-binding adapter protein THUMPD1 for full tRNA acetyltransferase activity but not for 18S rRNA acetylation (PubMed:25653167). In addition to RNA acetyltransferase activity, also able to acetylate lysine residues of proteins, such as histones, microtubules, p53/TP53 and MDM2, in vitro (PubMed:14592445, PubMed:17631499, PubMed:19303003, PubMed:26882543, PubMed:27993683, PubMed:30165671). The relevance of the protein lysine acetyltransferase activity is however unsure in vivo (PubMed:30449621). Activates telomerase activity by stimulating the transcription of TERT, and may also regulate telomerase function by affecting the balance of telomerase subunit assembly, disassembly, and localization (PubMed:14592445, PubMed:18082603). Involved in the regulation of centrosome duplication by acetylating CENATAC during mitosis, promoting SASS6 proteasome degradation (PubMed:31722219). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P53914, ECO:0000269|PubMed:14592445, ECO:0000269|PubMed:17631499, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19303003, ECO:0000269|PubMed:25411247, ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:26882543, ECO:0000269|PubMed:27993683, ECO:0000269|PubMed:30165671, ECO:0000269|PubMed:30449621, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:35679869}.
Q9H0X9 OSBPL5 S325 ochoa Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}.
Q9H160 ING2 S160 ochoa Inhibitor of growth protein 2 (Inhibitor of growth 1-like protein) (ING1Lp) (p32) (p33ING2) Seems to be involved in p53/TP53 activation and p53/TP53-dependent apoptotic pathways, probably by enhancing acetylation of p53/TP53. Component of a mSin3A-like corepressor complex, which is probably involved in deacetylation of nucleosomal histones. ING2 activity seems to be modulated by binding to phosphoinositides (PtdInsPs). {ECO:0000269|PubMed:11481424, ECO:0000269|PubMed:12859901}.
Q9H165 BCL11A S114 ochoa BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}.
Q9H1E3 NUCKS1 S73 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H2P0 ADNP S970 ochoa Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}.
Q9H3R0 KDM4C S481 ochoa Lysine-specific demethylase 4C (EC 1.14.11.66) (Gene amplified in squamous cell carcinoma 1 protein) (GASC-1 protein) (JmjC domain-containing histone demethylation protein 3C) (Jumonji domain-containing protein 2C) ([histone H3]-trimethyl-L-lysine(9) demethylase 4C) Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. {ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:28262558}.
Q9H4I2 ZHX3 S708 ochoa Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}.
Q9H4L5 OSBPL3 S330 ochoa Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}.
Q9H4L7 SMARCAD1 S57 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}.
Q9HCC0 MCCC2 S127 ochoa Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial (MCCase subunit beta) (EC 6.4.1.4) (3-methylcrotonyl-CoA carboxylase 2) (3-methylcrotonyl-CoA carboxylase non-biotin-containing subunit) (3-methylcrotonyl-CoA:carbon dioxide ligase subunit beta) Carboxyltransferase subunit of the 3-methylcrotonyl-CoA carboxylase, an enzyme that catalyzes the conversion of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA, a critical step for leucine and isovaleric acid catabolism. {ECO:0000269|PubMed:17360195}.
Q9NQG5 RPRD1B S171 ochoa Regulation of nuclear pre-mRNA domain-containing protein 1B (Cell cycle-related and expression-elevated protein in tumor) Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. Transcriptional regulator which enhances expression of CCND1. Promotes binding of RNA polymerase II to the CCDN1 promoter and to the termination region before the poly-A site but decreases its binding after the poly-A site. Prevents RNA polymerase II from reading through the 3' end termination site and may allow it to be recruited back to the promoter through promotion of the formation of a chromatin loop. Also enhances the transcription of a number of other cell cycle-related genes including CDK2, CDK4, CDK6 and cyclin-E but not CDKN1A, CDKN1B or cyclin-A. Promotes cell proliferation. {ECO:0000269|PubMed:22231121, ECO:0000269|PubMed:22264791, ECO:0000269|PubMed:24399136, ECO:0000269|PubMed:24997600}.
Q9NQW6 ANLN S72 ochoa Anillin Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}.
Q9NW13 RBM28 S644 ochoa RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9NW68 BSDC1 S374 ochoa BSD domain-containing protein 1 None
Q9NWQ8 PAG1 S318 ochoa Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}.
Q9NYF8 BCLAF1 S206 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9NYV4 CDK12 S1191 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NZ63 C9orf78 S157 ochoa Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}.
Q9NZB2 FAM120A S1040 ochoa Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}.
Q9UDY2 TJP2 S432 ochoa Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}.
Q9UIG0 BAZ1B S160 ochoa Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}.
Q9UK76 JPT1 S71 ochoa Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}.
Q9UKX2 MYH2 S1602 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9UMZ2 SYNRG S469 ochoa Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}.
Q9UN81 L1RE1 S50 ochoa LINE-1 retrotransposable element ORF1 protein (L1ORF1p) (LINE retrotransposable element 1) (LINE1 retrotransposable element 1) Nucleic acid-binding protein which is essential for retrotransposition of LINE-1 elements in the genome. Functions as a nucleic acid chaperone binding its own transcript and therefore preferentially mobilizing the transcript from which they are encoded. {ECO:0000269|PubMed:11158327, ECO:0000269|PubMed:21937507, ECO:0000269|PubMed:28806172, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:8945518}.
Q9UNE7 STUB1 S273 ochoa E3 ubiquitin-protein ligase CHIP (EC 2.3.2.27) (Antigen NY-CO-7) (CLL-associated antigen KW-8) (Carboxy terminus of Hsp70-interacting protein) (RING-type E3 ubiquitin transferase CHIP) (STIP1 homology and U box-containing protein 1) E3 ubiquitin-protein ligase which targets misfolded chaperone substrates towards proteasomal degradation (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462, PubMed:26265139). Plays a role in the maintenance of mitochondrial morphology and promotes mitophagic removal of dysfunctional mitochondria; thereby acts as a protector against apoptosis in response to cellular stress (By similarity). Negatively regulates vascular smooth muscle contraction, via degradation of the transcriptional activator MYOCD and subsequent loss of transcription of genes involved in vascular smooth muscle contraction (By similarity). Promotes survival and proliferation of cardiac smooth muscle cells via ubiquitination and degradation of FOXO1, resulting in subsequent repression of FOXO1-mediated transcription of pro-apoptotic genes (PubMed:19483080). Ubiquitinates ICER-type isoforms of CREM and targets them for proteasomal degradation, thereby acts as a positive effector of MAPK/ERK-mediated inhibition of apoptosis in cardiomyocytes (PubMed:20724525). Inhibits lipopolysaccharide-induced apoptosis and hypertrophy in cardiomyocytes, via ubiquitination and subsequent proteasomal degradation of NFATC3 (PubMed:30980393). Collaborates with ATXN3 in the degradation of misfolded chaperone substrates: ATXN3 restricting the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (PubMed:10330192, PubMed:11146632, PubMed:11557750, PubMed:23990462). Ubiquitinates NOS1 in concert with Hsp70 and Hsp40 (PubMed:15466472). Modulates the activity of several chaperone complexes, including Hsp70, Hsc70 and Hsp90 (PubMed:10330192, PubMed:11146632, PubMed:15466472). Ubiquitinates CHRNA3 targeting it for endoplasmic reticulum-associated degradation in cortical neurons, as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Ubiquitinates and promotes ESR1 proteasomal degradation in response to age-related circulating estradiol (17-beta-estradiol/E2) decline, thereby promotes neuronal apoptosis in response to ischemic reperfusion injury (By similarity). Mediates transfer of non-canonical short ubiquitin chains to HSPA8 that have no effect on HSPA8 degradation (PubMed:11557750, PubMed:23990462). Mediates polyubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair: catalyzes polyubiquitination by amplifying the HUWE1/ARF-BP1-dependent monoubiquitination and leading to POLB-degradation by the proteasome (PubMed:19713937). Mediates polyubiquitination of CYP3A4 (PubMed:19103148). Ubiquitinates EPHA2 and may regulate the receptor stability and activity through proteasomal degradation (PubMed:19567782). Acts as a co-chaperone for HSPA1A and HSPA1B chaperone proteins and promotes ubiquitin-mediated protein degradation (PubMed:27708256). Negatively regulates the suppressive function of regulatory T-cells (Treg) during inflammation by mediating the ubiquitination and degradation of FOXP3 in a HSPA1A/B-dependent manner (PubMed:23973223). Catalyzes monoubiquitination of SIRT6, preventing its degradation by the proteasome (PubMed:24043303). Likely mediates polyubiquitination and down-regulates plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity (PubMed:28813410). Negatively regulates TGF-beta signaling by modulating the basal level of SMAD3 via ubiquitin-mediated degradation (PubMed:24613385). Plays a role in the degradation of TP53 (PubMed:26634371). Mediates ubiquitination of RIPK3 leading to its subsequent proteasome-dependent degradation (PubMed:29883609). May regulate myosin assembly in striated muscles together with UBE4B and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). Ubiquitinates PPARG in macrophages playing a role in M2 macrophages polarization and angiogenesis (By similarity). {ECO:0000250|UniProtKB:A6HD62, ECO:0000250|UniProtKB:Q9WUD1, ECO:0000269|PubMed:10330192, ECO:0000269|PubMed:11146632, ECO:0000269|PubMed:11557750, ECO:0000269|PubMed:15466472, ECO:0000269|PubMed:17369820, ECO:0000269|PubMed:19103148, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:19567782, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20724525, ECO:0000269|PubMed:23973223, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24043303, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:27708256, ECO:0000269|PubMed:28813410, ECO:0000269|PubMed:29883609, ECO:0000269|PubMed:30980393}.
Q9UNF0 PACSIN2 S403 ochoa Protein kinase C and casein kinase substrate in neurons protein 2 (Syndapin-2) (Syndapin-II) (SdpII) Regulates the morphogenesis and endocytosis of caveolae (By similarity). Lipid-binding protein that is able to promote the tubulation of the phosphatidic acid-containing membranes it preferentially binds. Plays a role in intracellular vesicle-mediated transport. Involved in the endocytosis of cell-surface receptors like the EGF receptor, contributing to its internalization in the absence of EGF stimulus (PubMed:21693584, PubMed:23129763, PubMed:23236520, PubMed:23596323). Essential for endothelial organization in sprouting angiogenesis, modulates CDH5-based junctions. Facilitates endothelial front-rear polarity during migration by recruiting EHD4 and MICALL1 to asymmetric adherens junctions between leader and follower cells (By similarity). {ECO:0000250|UniProtKB:Q9WVE8, ECO:0000269|PubMed:21693584, ECO:0000269|PubMed:23129763, ECO:0000269|PubMed:23236520, ECO:0000269|PubMed:23596323}.; FUNCTION: (Microbial infection) Specifically enhances the efficiency of HIV-1 virion spread by cell-to-cell transfer (PubMed:29891700). Also promotes the protrusion engulfment during cell-to-cell spread of bacterial pathogens like Listeria monocytogenes (PubMed:31242077). Involved in lipid droplet formation, which is important for HCV virion assembly (PubMed:31801866). {ECO:0000269|PubMed:29891700, ECO:0000269|PubMed:31242077, ECO:0000269|PubMed:31801866}.
Q9UNZ2 NSFL1C S177 ochoa NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}.
Q9UPU5 USP24 S1305 ochoa Ubiquitin carboxyl-terminal hydrolase 24 (EC 3.4.19.12) (Deubiquitinating enzyme 24) (Ubiquitin thioesterase 24) (Ubiquitin-specific-processing protease 24) Ubiquitin-specific protease that regulates cell survival in various contexts through modulating the protein stability of some of its substrates including DDB2, MCL1 or TP53. Plays a positive role on ferritinophagy where ferritin is degraded in lysosomes and releases free iron. {ECO:0000269|PubMed:23159851, ECO:0000269|PubMed:29695420}.
Q9Y294 ASF1A S172 ochoa Histone chaperone ASF1A (Anti-silencing function protein 1 homolog A) (hAsf1) (hAsf1a) (CCG1-interacting factor A) (CIA) (hCIA) Histone chaperone that facilitates histone deposition and histone exchange and removal during nucleosome assembly and disassembly (PubMed:10759893, PubMed:11897662, PubMed:12842904, PubMed:14718166, PubMed:15664198, PubMed:16151251, PubMed:21454524). Cooperates with chromatin assembly factor 1 (CAF-1) to promote replication-dependent chromatin assembly and with HIRA to promote replication-independent chromatin assembly (PubMed:11897662, PubMed:14718166, PubMed:15664198). Promotes homologous recombination-mediated repair of double-strand breaks (DSBs) at stalled or collapsed replication forks: acts by mediating histone replacement at DSBs, leading to recruitment of the MMS22L-TONSL complex and subsequent loading of RAD51 (PubMed:29478807). Also involved in the nuclear import of the histone H3-H4 dimer together with importin-4 (IPO4): specifically recognizes and binds newly synthesized histones with the monomethylation of H3 'Lys-9' and acetylation at 'Lys-14' (H3K9me1K14ac) marks, and diacetylation at 'Lys-5' and 'Lys-12' of H4 (H4K5K12ac) marks in the cytosol (PubMed:21454524, PubMed:29408485). Required for the formation of senescence-associated heterochromatin foci (SAHF) and efficient senescence-associated cell cycle exit (PubMed:15621527). {ECO:0000269|PubMed:10759893, ECO:0000269|PubMed:11897662, ECO:0000269|PubMed:12842904, ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:15621527, ECO:0000269|PubMed:15664198, ECO:0000269|PubMed:16151251, ECO:0000269|PubMed:21454524, ECO:0000269|PubMed:29408485, ECO:0000269|PubMed:29478807}.
Q9Y450 HBS1L S69 ochoa HBS1-like protein (EC 3.6.5.-) (ERFS) GTPase component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway (PubMed:21448132, PubMed:23667253, PubMed:27863242). The Pelota-HBS1L complex recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel (PubMed:27863242). Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132, PubMed:32006463). {ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:23667253, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:32006463}.
Q9Y520 PRRC2C S376 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y5A6 ZSCAN21 S135 ochoa Zinc finger and SCAN domain-containing protein 21 (Renal carcinoma antigen NY-REN-21) (Zinc finger protein 38 homolog) (Zfp-38) Strong transcriptional activator (By similarity). Plays an important role in spermatogenesis; essential for the progression of meiotic prophase I in spermatocytes (By similarity). {ECO:0000250|UniProtKB:Q07231}.
Q9Y614 ACTL7B S158 ochoa Actin-like protein 7B (Actin-like-7-beta) None
Q9Y6D5 ARFGEF2 S1514 ochoa Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}.
Q9Y6X4 FAM169A S526 ochoa Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) None
O00233 PSMD9 S46 Sugiyama 26S proteasome non-ATPase regulatory subunit 9 (26S proteasome regulatory subunit p27) Acts as a chaperone during the assembly of the 26S proteasome, specifically of the base subcomplex of the PA700/19S regulatory complex (RC). During the base subcomplex assembly is part of an intermediate PSMD9:PSMC6:PSMC3 module, also known as modulator trimer complex; PSMD9 is released during the further base assembly process. {ECO:0000269|PubMed:19490896}.
P33240 CSTF2 S44 Sugiyama Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}.
Q92917 GPKOW S59 Sugiyama G-patch domain and KOW motifs-containing protein (G-patch domain-containing protein 5) (Protein MOS2 homolog) (Protein T54) RNA-binding protein involved in pre-mRNA splicing. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:25296192, ECO:0000305|PubMed:33509932}.
Q92733 PRCC S278 Sugiyama Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}.
Q8NBP7 PCSK9 S225 Sugiyama Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}.
Q92785 DPF2 S251 EPSD Zinc finger protein ubi-d4 (Apoptosis response zinc finger protein) (BRG1-associated factor 45D) (BAF45D) (D4, zinc and double PHD fingers family 2) (Protein requiem) Plays an active role in transcriptional regulation by binding modified histones H3 and H4 (PubMed:27775714, PubMed:28533407). Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (PubMed:28533407). Might also have a role in the development and maturation of lymphoid cells (By similarity). Involved in the regulation of non-canonical NF-kappa-B pathway (PubMed:20460684). {ECO:0000250|UniProtKB:Q61103, ECO:0000269|PubMed:20460684, ECO:0000269|PubMed:27775714, ECO:0000269|PubMed:28533407}.
P11940 PABPC1 S322 Sugiyama Polyadenylate-binding protein 1 (PABP-1) (Poly(A)-binding protein 1) Binds the poly(A) tail of mRNA, including that of its own transcript, and regulates processes of mRNA metabolism such as pre-mRNA splicing and mRNA stability (PubMed:11051545, PubMed:17212783, PubMed:25480299). Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2 (PubMed:11051545, PubMed:20573744). Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Involved in translationally coupled mRNA turnover (PubMed:11051545). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545). Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585). By binding to long poly(A) tails, may protect them from uridylation by ZCCHC6/ZCCHC11 and hence contribute to mRNA stability (PubMed:25480299). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:17212783, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:20573744, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:32245947}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q00610 CLTC S886 Sugiyama Clathrin heavy chain 1 (Clathrin heavy chain on chromosome 17) (CLH-17) Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans-Golgi network. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge (PubMed:15858577, PubMed:16968737, PubMed:21297582). The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Plays a role in early autophagosome formation (PubMed:20639872). Interaction with DNAJC6 mediates the recruitment of HSPA8 to the clathrin lattice and creates local destabilization of the lattice promoting uncoating (By similarity). {ECO:0000250|UniProtKB:P49951, ECO:0000269|PubMed:15858577, ECO:0000269|PubMed:16968737, ECO:0000269|PubMed:20639872, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}.
P51957 NEK4 S772 Sugiyama Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}.
P80303 NUCB2 S96 Sugiyama Nucleobindin-2 (DNA-binding protein NEFA) (Epididymis secretory protein Li 109) (Gastric cancer antigen Zg4) (Prepronesfatin) [Cleaved into: Nesfatin-1] Calcium-binding protein which may have a role in calcium homeostasis (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein (G-protein) alpha subunit GNAI3 (By similarity). {ECO:0000250|UniProtKB:P81117, ECO:0000250|UniProtKB:Q9JI85}.; FUNCTION: [Nesfatin-1]: Anorexigenic peptide, seems to play an important role in hypothalamic pathways regulating food intake and energy homeostasis, acting in a leptin-independent manner. May also exert hypertensive roles and modulate blood pressure through directly acting on peripheral arterial resistance. In intestinal epithelial cells, plays a role in the inhibition of hepatic glucose production via MC4R receptor leading to increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion (PubMed:39562740). {ECO:0000250|UniProtKB:Q9JI85, ECO:0000269|PubMed:39562740}.
P10109 FDX1 S148 Sugiyama Adrenodoxin, mitochondrial (Adrenal ferredoxin) (Ferredoxin-1) (Hepatoredoxin) Essential for the synthesis of various steroid hormones (PubMed:20547883, PubMed:21636783). Participates in the reduction of mitochondrial cytochrome P450 for steroidogenesis (PubMed:20547883, PubMed:21636783). Transfers electrons from adrenodoxin reductase to CYP11A1, a cytochrome P450 that catalyzes cholesterol side-chain cleavage (PubMed:20547883, PubMed:21636783). Does not form a ternary complex with adrenodoxin reductase and CYP11A1 but shuttles between the two enzymes to transfer electrons (By similarity). {ECO:0000250|UniProtKB:P00257, ECO:0000269|PubMed:20547883, ECO:0000269|PubMed:21636783}.
Q9Y6D5 ARFGEF2 S700 Sugiyama Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}.
Q99627 COPS8 S157 Sugiyama COP9 signalosome complex subunit 8 (SGN8) (Signalosome subunit 8) (COP9 homolog) (hCOP9) (JAB1-containing signalosome subunit 8) Component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. {ECO:0000269|PubMed:11285227, ECO:0000269|PubMed:11337588, ECO:0000269|PubMed:12628923, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:9535219}.
Q9HBH9 MKNK2 S166 Sugiyama MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}.
P49790 NUP153 S94 Sugiyama Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}.
Q9UM73 ALK S1448 Sugiyama ALK tyrosine kinase receptor (EC 2.7.10.1) (Anaplastic lymphoma kinase) (CD antigen CD246) Neuronal receptor tyrosine kinase that is essentially and transiently expressed in specific regions of the central and peripheral nervous systems and plays an important role in the genesis and differentiation of the nervous system (PubMed:11121404, PubMed:11387242, PubMed:16317043, PubMed:17274988, PubMed:30061385, PubMed:34646012, PubMed:34819673). Also acts as a key thinness protein involved in the resistance to weight gain: in hypothalamic neurons, controls energy expenditure acting as a negative regulator of white adipose tissue lipolysis and sympathetic tone to fine-tune energy homeostasis (By similarity). Following activation by ALKAL2 ligand at the cell surface, transduces an extracellular signal into an intracellular response (PubMed:30061385, PubMed:33411331, PubMed:34646012, PubMed:34819673). In contrast, ALKAL1 is not a potent physiological ligand for ALK (PubMed:34646012). Ligand-binding to the extracellular domain induces tyrosine kinase activation, leading to activation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:34819673). Phosphorylates almost exclusively at the first tyrosine of the Y-x-x-x-Y-Y motif (PubMed:15226403, PubMed:16878150). Induces tyrosine phosphorylation of CBL, FRS2, IRS1 and SHC1, as well as of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1 (PubMed:15226403, PubMed:16878150). ALK activation may also be regulated by pleiotrophin (PTN) and midkine (MDK) (PubMed:11278720, PubMed:11809760, PubMed:12107166, PubMed:12122009). PTN-binding induces MAPK pathway activation, which is important for the anti-apoptotic signaling of PTN and regulation of cell proliferation (PubMed:11278720, PubMed:11809760, PubMed:12107166). MDK-binding induces phosphorylation of the ALK target insulin receptor substrate (IRS1), activates mitogen-activated protein kinases (MAPKs) and PI3-kinase, resulting also in cell proliferation induction (PubMed:12122009). Drives NF-kappa-B activation, probably through IRS1 and the activation of the AKT serine/threonine kinase (PubMed:15226403, PubMed:16878150). Recruitment of IRS1 to activated ALK and the activation of NF-kappa-B are essential for the autocrine growth and survival signaling of MDK (PubMed:15226403, PubMed:16878150). {ECO:0000250|UniProtKB:P97793, ECO:0000269|PubMed:11121404, ECO:0000269|PubMed:11278720, ECO:0000269|PubMed:11387242, ECO:0000269|PubMed:11809760, ECO:0000269|PubMed:12107166, ECO:0000269|PubMed:12122009, ECO:0000269|PubMed:15226403, ECO:0000269|PubMed:16317043, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:17274988, ECO:0000269|PubMed:30061385, ECO:0000269|PubMed:33411331, ECO:0000269|PubMed:34646012, ECO:0000269|PubMed:34819673}.
Download
reactome_id name p -log10_p
R-HSA-1640170 Cell Cycle 1.727376e-08 7.763
R-HSA-199991 Membrane Trafficking 2.283367e-07 6.641
R-HSA-69620 Cell Cycle Checkpoints 5.251495e-07 6.280
R-HSA-9646399 Aggrephagy 6.363681e-07 6.196
R-HSA-68886 M Phase 1.181844e-06 5.927
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 2.136450e-06 5.670
R-HSA-69278 Cell Cycle, Mitotic 3.046825e-06 5.516
R-HSA-2467813 Separation of Sister Chromatids 4.188356e-06 5.378
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 7.542520e-06 5.122
R-HSA-373753 Nephrin family interactions 6.833588e-06 5.165
R-HSA-68882 Mitotic Anaphase 6.718821e-06 5.173
R-HSA-2555396 Mitotic Metaphase and Anaphase 7.338151e-06 5.134
R-HSA-69481 G2/M Checkpoints 8.774687e-06 5.057
R-HSA-68877 Mitotic Prometaphase 1.168595e-05 4.932
R-HSA-69275 G2/M Transition 1.536658e-05 4.813
R-HSA-437239 Recycling pathway of L1 1.850599e-05 4.733
R-HSA-453274 Mitotic G2-G2/M phases 1.842811e-05 4.735
R-HSA-3700989 Transcriptional Regulation by TP53 2.608690e-05 4.584
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 4.120340e-05 4.385
R-HSA-9663891 Selective autophagy 7.970344e-05 4.099
R-HSA-5653656 Vesicle-mediated transport 8.412727e-05 4.075
R-HSA-69473 G2/M DNA damage checkpoint 1.110192e-04 3.955
R-HSA-8856828 Clathrin-mediated endocytosis 1.656859e-04 3.781
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 2.220237e-04 3.654
R-HSA-111465 Apoptotic cleavage of cellular proteins 2.154463e-04 3.667
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 2.618620e-04 3.582
R-HSA-380259 Loss of Nlp from mitotic centrosomes 2.618620e-04 3.582
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 2.374734e-04 3.624
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 2.657174e-04 3.576
R-HSA-9755779 SARS-CoV-2 targets host intracellular signalling and regulatory pathways 2.655421e-04 3.576
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 2.655421e-04 3.576
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 3.095841e-04 3.509
R-HSA-8854518 AURKA Activation by TPX2 3.932160e-04 3.405
R-HSA-9764561 Regulation of CDH1 Function 3.751416e-04 3.426
R-HSA-9766229 Degradation of CDH1 3.975255e-04 3.401
R-HSA-157858 Gap junction trafficking and regulation 3.975255e-04 3.401
R-HSA-373760 L1CAM interactions 3.787809e-04 3.422
R-HSA-1500931 Cell-Cell communication 3.659184e-04 3.437
R-HSA-8876384 Listeria monocytogenes entry into host cells 4.198488e-04 3.377
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 4.108172e-04 3.386
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 4.228737e-04 3.374
R-HSA-8953854 Metabolism of RNA 5.619879e-04 3.250
R-HSA-190840 Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 6.292609e-04 3.201
R-HSA-190828 Gap junction trafficking 6.568232e-04 3.183
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 6.527688e-04 3.185
R-HSA-389957 Prefoldin mediated transfer of substrate to CCT/TriC 6.659486e-04 3.177
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 7.382750e-04 3.132
R-HSA-9613829 Chaperone Mediated Autophagy 8.134944e-04 3.090
R-HSA-190872 Transport of connexons to the plasma membrane 8.134944e-04 3.090
R-HSA-109581 Apoptosis 7.859000e-04 3.105
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 9.318980e-04 3.031
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 9.387196e-04 3.027
R-HSA-380287 Centrosome maturation 1.169013e-03 2.932
R-HSA-5218920 VEGFR2 mediated vascular permeability 1.269638e-03 2.896
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 1.282839e-03 2.892
R-HSA-6807004 Negative regulation of MET activity 1.308252e-03 2.883
R-HSA-5633007 Regulation of TP53 Activity 1.488961e-03 2.827
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 1.502356e-03 2.823
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 1.575862e-03 2.802
R-HSA-111447 Activation of BAD and translocation to mitochondria 1.575862e-03 2.802
R-HSA-428359 Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... 1.650633e-03 2.782
R-HSA-1632852 Macroautophagy 1.678790e-03 2.775
R-HSA-9927418 Developmental Lineage of Mammary Gland Luminal Epithelial Cells 1.707320e-03 2.768
R-HSA-983189 Kinesins 1.766968e-03 2.753
R-HSA-5357801 Programmed Cell Death 1.744738e-03 2.758
R-HSA-8856688 Golgi-to-ER retrograde transport 1.769336e-03 2.752
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 1.990867e-03 2.701
R-HSA-4420097 VEGFA-VEGFR2 Pathway 2.090766e-03 2.680
R-HSA-6804757 Regulation of TP53 Degradation 2.113114e-03 2.675
R-HSA-9924644 Developmental Lineages of the Mammary Gland 2.367157e-03 2.626
R-HSA-9614399 Regulation of localization of FOXO transcription factors 2.270125e-03 2.644
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 2.583186e-03 2.588
R-HSA-199920 CREB phosphorylation 2.878324e-03 2.541
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 2.878324e-03 2.541
R-HSA-674695 RNA Polymerase II Pre-transcription Events 2.912099e-03 2.536
R-HSA-75153 Apoptotic execution phase 2.947483e-03 2.531
R-HSA-389958 Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 3.013239e-03 2.521
R-HSA-182971 EGFR downregulation 3.013239e-03 2.521
R-HSA-69541 Stabilization of p53 3.283983e-03 2.484
R-HSA-6806003 Regulation of TP53 Expression and Degradation 3.283983e-03 2.484
R-HSA-2028269 Signaling by Hippo 3.238512e-03 2.490
R-HSA-177929 Signaling by EGFR 3.276725e-03 2.485
R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC 3.577226e-03 2.446
R-HSA-8863678 Neurodegenerative Diseases 3.577226e-03 2.446
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 3.577226e-03 2.446
R-HSA-8866427 VLDLR internalisation and degradation 3.990974e-03 2.399
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 3.896459e-03 2.409
R-HSA-6804760 Regulation of TP53 Activity through Methylation 4.010314e-03 2.397
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 4.173625e-03 2.379
R-HSA-6807878 COPI-mediated anterograde transport 4.512022e-03 2.346
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 4.512022e-03 2.346
R-HSA-194138 Signaling by VEGF 4.823944e-03 2.317
R-HSA-9612973 Autophagy 5.005562e-03 2.301
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 5.046271e-03 2.297
R-HSA-9700206 Signaling by ALK in cancer 5.058956e-03 2.296
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 5.058956e-03 2.296
R-HSA-1227986 Signaling by ERBB2 5.099963e-03 2.292
R-HSA-9833482 PKR-mediated signaling 5.186994e-03 2.285
R-HSA-9828211 Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation 5.814056e-03 2.236
R-HSA-196025 Formation of annular gap junctions 5.814056e-03 2.236
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 5.525969e-03 2.258
R-HSA-389977 Post-chaperonin tubulin folding pathway 5.950503e-03 2.225
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 5.814056e-03 2.236
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 5.966349e-03 2.224
R-HSA-69618 Mitotic Spindle Checkpoint 6.224443e-03 2.206
R-HSA-162582 Signal Transduction 6.589686e-03 2.181
R-HSA-422475 Axon guidance 6.775638e-03 2.169
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 7.497042e-03 2.125
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 7.497042e-03 2.125
R-HSA-9673013 Diseases of Telomere Maintenance 7.497042e-03 2.125
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 7.497042e-03 2.125
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 7.497042e-03 2.125
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 7.142574e-03 2.146
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 7.142574e-03 2.146
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 7.142574e-03 2.146
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 7.000049e-03 2.155
R-HSA-9619483 Activation of AMPK downstream of NMDARs 6.927991e-03 2.159
R-HSA-190873 Gap junction degradation 7.835745e-03 2.106
R-HSA-9700645 ALK mutants bind TKIs 7.835745e-03 2.106
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 8.043418e-03 2.095
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 8.075197e-03 2.093
R-HSA-2132295 MHC class II antigen presentation 8.392442e-03 2.076
R-HSA-9675108 Nervous system development 9.405055e-03 2.027
R-HSA-114452 Activation of BH3-only proteins 9.285813e-03 2.032
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 9.850343e-03 2.007
R-HSA-9758274 Regulation of NF-kappa B signaling 9.914088e-03 2.004
R-HSA-9706377 FLT3 signaling by CBL mutants 1.068475e-02 1.971
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 1.125589e-02 1.949
R-HSA-201556 Signaling by ALK 1.053316e-02 1.977
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 1.071591e-02 1.970
R-HSA-199977 ER to Golgi Anterograde Transport 1.156453e-02 1.937
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 1.199764e-02 1.921
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 1.234753e-02 1.908
R-HSA-69563 p53-Dependent G1 DNA Damage Response 1.234753e-02 1.908
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 1.314978e-02 1.881
R-HSA-9668328 Sealing of the nuclear envelope (NE) by ESCRT-III 1.385299e-02 1.858
R-HSA-5689880 Ub-specific processing proteases 1.391682e-02 1.856
R-HSA-5603027 IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... 1.617533e-02 1.791
R-HSA-5602636 IKBKB deficiency causes SCID 1.617533e-02 1.791
R-HSA-9833576 CDH11 homotypic and heterotypic interactions 1.522283e-02 1.818
R-HSA-9824878 Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 1.649593e-02 1.783
R-HSA-390522 Striated Muscle Contraction 1.568075e-02 1.805
R-HSA-9013973 TICAM1-dependent activation of IRF3/IRF7 1.649593e-02 1.783
R-HSA-5693532 DNA Double-Strand Break Repair 1.613529e-02 1.792
R-HSA-1169091 Activation of NF-kappaB in B cells 1.509599e-02 1.821
R-HSA-352238 Breakdown of the nuclear lamina 1.617533e-02 1.791
R-HSA-9764302 Regulation of CDH19 Expression and Function 1.522283e-02 1.818
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 1.484343e-02 1.828
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 1.662770e-02 1.779
R-HSA-69052 Switching of origins to a post-replicative state 1.691671e-02 1.772
R-HSA-190861 Gap junction assembly 1.767338e-02 1.753
R-HSA-912631 Regulation of signaling by CBL 2.011189e-02 1.697
R-HSA-937041 IKK complex recruitment mediated by RIP1 2.011189e-02 1.697
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 2.011189e-02 1.697
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 1.827007e-02 1.738
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 1.991362e-02 1.701
R-HSA-141424 Amplification of signal from the kinetochores 1.991362e-02 1.701
R-HSA-1643713 Signaling by EGFR in Cancer 1.812349e-02 1.742
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 2.033065e-02 1.692
R-HSA-937039 IRAK1 recruits IKK complex 2.033065e-02 1.692
R-HSA-5628897 TP53 Regulates Metabolic Genes 2.005621e-02 1.698
R-HSA-9842663 Signaling by LTK 2.033065e-02 1.692
R-HSA-446728 Cell junction organization 1.905277e-02 1.720
R-HSA-1834941 STING mediated induction of host immune responses 2.011189e-02 1.697
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 2.030931e-02 1.692
R-HSA-5688426 Deubiquitination 2.091385e-02 1.680
R-HSA-72163 mRNA Splicing - Major Pathway 2.136245e-02 1.670
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 2.190321e-02 1.659
R-HSA-9692914 SARS-CoV-1-host interactions 2.199412e-02 1.658
R-HSA-438064 Post NMDA receptor activation events 2.293137e-02 1.640
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 2.758105e-02 1.559
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 2.758105e-02 1.559
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 2.758105e-02 1.559
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 2.758105e-02 1.559
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 2.758105e-02 1.559
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 2.758105e-02 1.559
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 2.758105e-02 1.559
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 2.758105e-02 1.559
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 2.758105e-02 1.559
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 2.758105e-02 1.559
R-HSA-1299308 Tandem of pore domain in a weak inwardly rectifying K+ channels (TWIK) 2.758105e-02 1.559
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 2.758105e-02 1.559
R-HSA-8948747 Regulation of PTEN localization 2.709873e-02 1.567
R-HSA-2470946 Cohesin Loading onto Chromatin 2.709873e-02 1.567
R-HSA-9615710 Late endosomal microautophagy 2.653955e-02 1.576
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 2.466532e-02 1.608
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 2.707153e-02 1.567
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 2.390196e-02 1.622
R-HSA-383280 Nuclear Receptor transcription pathway 2.478126e-02 1.606
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 2.660213e-02 1.575
R-HSA-5693606 DNA Double Strand Break Response 2.461588e-02 1.609
R-HSA-167172 Transcription of the HIV genome 2.660213e-02 1.575
R-HSA-9796292 Formation of axial mesoderm 2.467067e-02 1.608
R-HSA-5357905 Regulation of TNFR1 signaling 2.466532e-02 1.608
R-HSA-2980766 Nuclear Envelope Breakdown 2.602728e-02 1.585
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 2.521917e-02 1.598
R-HSA-9764265 Regulation of CDH1 Expression and Function 2.521917e-02 1.598
R-HSA-9819196 Zygotic genome activation (ZGA) 2.711256e-02 1.567
R-HSA-202403 TCR signaling 2.800279e-02 1.553
R-HSA-6806834 Signaling by MET 2.857245e-02 1.544
R-HSA-444257 RSK activation 3.444267e-02 1.463
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 3.491353e-02 1.457
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 3.112740e-02 1.507
R-HSA-72172 mRNA Splicing 3.427843e-02 1.465
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 3.067213e-02 1.513
R-HSA-8863795 Downregulation of ERBB2 signaling 2.983699e-02 1.525
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 3.091343e-02 1.510
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 2.952871e-02 1.530
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 3.112740e-02 1.507
R-HSA-1295596 Spry regulation of FGF signaling 3.491353e-02 1.457
R-HSA-8982491 Glycogen metabolism 3.345655e-02 1.476
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 3.112740e-02 1.507
R-HSA-9705683 SARS-CoV-2-host interactions 3.239690e-02 1.489
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 3.444267e-02 1.463
R-HSA-8986944 Transcriptional Regulation by MECP2 2.995731e-02 1.523
R-HSA-3270619 IRF3-mediated induction of type I IFN 3.491353e-02 1.457
R-HSA-74160 Gene expression (Transcription) 3.547753e-02 1.450
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 3.549600e-02 1.450
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 3.569517e-02 1.447
R-HSA-450294 MAP kinase activation 3.586518e-02 1.445
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 3.867509e-02 1.413
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 4.022444e-02 1.396
R-HSA-9706369 Negative regulation of FLT3 4.083011e-02 1.389
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 4.121664e-02 1.385
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 4.129689e-02 1.384
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 4.129689e-02 1.384
R-HSA-8941237 Invadopodia formation 4.134393e-02 1.384
R-HSA-9014325 TICAM1,TRAF6-dependent induction of TAK1 complex 5.186903e-02 1.285
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 4.727982e-02 1.325
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 5.029036e-02 1.299
R-HSA-68949 Orc1 removal from chromatin 4.155395e-02 1.381
R-HSA-112382 Formation of RNA Pol II elongation complex 4.155395e-02 1.381
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 4.496603e-02 1.347
R-HSA-72649 Translation initiation complex formation 4.855702e-02 1.314
R-HSA-8957275 Post-translational protein phosphorylation 5.118856e-02 1.291
R-HSA-75955 RNA Polymerase II Transcription Elongation 4.496603e-02 1.347
R-HSA-936964 Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) 4.727982e-02 1.325
R-HSA-9664873 Pexophagy 5.186903e-02 1.285
R-HSA-390466 Chaperonin-mediated protein folding 4.790828e-02 1.320
R-HSA-9762292 Regulation of CDH11 function 5.186903e-02 1.285
R-HSA-5696394 DNA Damage Recognition in GG-NER 4.565582e-02 1.341
R-HSA-5689877 Josephin domain DUBs 5.186903e-02 1.285
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 4.727982e-02 1.325
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 5.029036e-02 1.299
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 4.847757e-02 1.314
R-HSA-9840373 Cellular response to mitochondrial stress 4.270762e-02 1.369
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 4.855702e-02 1.314
R-HSA-975871 MyD88 cascade initiated on plasma membrane 5.118856e-02 1.291
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 5.118856e-02 1.291
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 5.118856e-02 1.291
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 4.405543e-02 1.356
R-HSA-975155 MyD88 dependent cascade initiated on endosome 5.108253e-02 1.292
R-HSA-69615 G1/S DNA Damage Checkpoints 4.163102e-02 1.381
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 4.727982e-02 1.325
R-HSA-1169408 ISG15 antiviral mechanism 4.379469e-02 1.359
R-HSA-5654743 Signaling by FGFR4 4.801804e-02 1.319
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 4.754907e-02 1.323
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 4.727982e-02 1.325
R-HSA-5617833 Cilium Assembly 5.196472e-02 1.284
R-HSA-68875 Mitotic Prophase 5.317609e-02 1.274
R-HSA-166166 MyD88-independent TLR4 cascade 5.378189e-02 1.269
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 5.378189e-02 1.269
R-HSA-5637810 Constitutive Signaling by EGFRvIII 5.426063e-02 1.266
R-HSA-5637812 Signaling by EGFRvIII in Cancer 5.426063e-02 1.266
R-HSA-2559585 Oncogene Induced Senescence 5.520291e-02 1.258
R-HSA-162599 Late Phase of HIV Life Cycle 5.604544e-02 1.251
R-HSA-73857 RNA Polymerase II Transcription 5.609901e-02 1.251
R-HSA-75893 TNF signaling 5.628491e-02 1.250
R-HSA-109606 Intrinsic Pathway for Apoptosis 5.628491e-02 1.250
R-HSA-5654741 Signaling by FGFR3 5.660475e-02 1.247
R-HSA-525793 Myogenesis 5.660566e-02 1.247
R-HSA-5610787 Hedgehog 'off' state 5.702173e-02 1.244
R-HSA-202424 Downstream TCR signaling 5.702332e-02 1.244
R-HSA-9705677 SARS-CoV-2 targets PDZ proteins in cell-cell junction 5.712900e-02 1.243
R-HSA-165181 Inhibition of TSC complex formation by PKB 5.712900e-02 1.243
R-HSA-2559583 Cellular Senescence 5.801723e-02 1.236
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 6.039505e-02 1.219
R-HSA-9682385 FLT3 signaling in disease 6.039505e-02 1.219
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 6.123272e-02 1.213
R-HSA-9665348 Signaling by ERBB2 ECD mutants 6.176735e-02 1.209
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 6.176735e-02 1.209
R-HSA-4419969 Depolymerization of the Nuclear Lamina 6.176735e-02 1.209
R-HSA-162587 HIV Life Cycle 6.186202e-02 1.209
R-HSA-9700649 Drug resistance of ALK mutants 6.190412e-02 1.208
R-HSA-9672387 Defective F8 accelerates dissociation of the A2 domain 6.190412e-02 1.208
R-HSA-9717319 brigatinib-resistant ALK mutants 6.190412e-02 1.208
R-HSA-9717329 lorlatinib-resistant ALK mutants 6.190412e-02 1.208
R-HSA-9672397 Defective F8 secretion 6.190412e-02 1.208
R-HSA-9672395 Defective F8 binding to the cell membrane 6.190412e-02 1.208
R-HSA-9717264 ASP-3026-resistant ALK mutants 6.190412e-02 1.208
R-HSA-9717316 alectinib-resistant ALK mutants 6.190412e-02 1.208
R-HSA-9717301 NVP-TAE684-resistant ALK mutants 6.190412e-02 1.208
R-HSA-9717326 crizotinib-resistant ALK mutants 6.190412e-02 1.208
R-HSA-9717323 ceritinib-resistant ALK mutants 6.190412e-02 1.208
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 6.245741e-02 1.204
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 6.280253e-02 1.202
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 6.280253e-02 1.202
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 6.280253e-02 1.202
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 7.463364e-02 1.127
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 7.463364e-02 1.127
R-HSA-428540 Activation of RAC1 7.274595e-02 1.138
R-HSA-167287 HIV elongation arrest and recovery 6.936610e-02 1.159
R-HSA-167290 Pausing and recovery of HIV elongation 6.936610e-02 1.159
R-HSA-1250196 SHC1 events in ERBB2 signaling 8.357978e-02 1.078
R-HSA-4641257 Degradation of AXIN 6.586749e-02 1.181
R-HSA-8955332 Carboxyterminal post-translational modifications of tubulin 6.608548e-02 1.180
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 7.116367e-02 1.148
R-HSA-5693607 Processing of DNA double-strand break ends 6.353736e-02 1.197
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 6.586749e-02 1.181
R-HSA-453276 Regulation of mitotic cell cycle 7.079746e-02 1.150
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 7.079746e-02 1.150
R-HSA-391251 Protein folding 6.722027e-02 1.172
R-HSA-68867 Assembly of the pre-replicative complex 7.086465e-02 1.150
R-HSA-9754189 Germ layer formation at gastrulation 6.979184e-02 1.156
R-HSA-5689896 Ovarian tumor domain proteases 6.586749e-02 1.181
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 7.211270e-02 1.142
R-HSA-8868773 rRNA processing in the nucleus and cytosol 7.793263e-02 1.108
R-HSA-195253 Degradation of beta-catenin by the destruction complex 6.659959e-02 1.177
R-HSA-199992 trans-Golgi Network Vesicle Budding 7.515622e-02 1.124
R-HSA-68884 Mitotic Telophase/Cytokinesis 7.274595e-02 1.138
R-HSA-9604323 Negative regulation of NOTCH4 signaling 8.396146e-02 1.076
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 6.608548e-02 1.180
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 8.393917e-02 1.076
R-HSA-8941858 Regulation of RUNX3 expression and activity 8.396146e-02 1.076
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 7.765202e-02 1.110
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 7.201861e-02 1.143
R-HSA-948021 Transport to the Golgi and subsequent modification 8.016901e-02 1.096
R-HSA-448424 Interleukin-17 signaling 6.659959e-02 1.177
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 7.852601e-02 1.105
R-HSA-2682334 EPH-Ephrin signaling 6.722027e-02 1.172
R-HSA-162906 HIV Infection 7.871709e-02 1.104
R-HSA-69242 S Phase 7.211270e-02 1.142
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 6.501768e-02 1.187
R-HSA-9854909 Regulation of MITF-M dependent genes involved in invasion 7.463364e-02 1.127
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 6.475257e-02 1.189
R-HSA-421270 Cell-cell junction organization 7.230061e-02 1.141
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 6.328410e-02 1.199
R-HSA-8953897 Cellular responses to stimuli 7.698688e-02 1.114
R-HSA-3322077 Glycogen synthesis 7.832330e-02 1.106
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 7.079746e-02 1.150
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 8.437947e-02 1.074
R-HSA-2428933 SHC-related events triggered by IGF1R 8.437947e-02 1.074
R-HSA-9820865 Z-decay: degradation of maternal mRNAs by zygotically expressed factors 8.437947e-02 1.074
R-HSA-1358803 Downregulation of ERBB2:ERBB3 signaling 8.437947e-02 1.074
R-HSA-4641265 Repression of WNT target genes 8.437947e-02 1.074
R-HSA-198323 AKT phosphorylates targets in the cytosol 8.437947e-02 1.074
R-HSA-209543 p75NTR recruits signalling complexes 8.437947e-02 1.074
R-HSA-5607764 CLEC7A (Dectin-1) signaling 8.668723e-02 1.062
R-HSA-381038 XBP1(S) activates chaperone genes 8.825262e-02 1.054
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 8.920604e-02 1.050
R-HSA-8848021 Signaling by PTK6 8.920604e-02 1.050
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 8.997094e-02 1.046
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 8.997094e-02 1.046
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 9.054593e-02 1.043
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 9.054593e-02 1.043
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 9.054593e-02 1.043
R-HSA-8853884 Transcriptional Regulation by VENTX 9.054593e-02 1.043
R-HSA-170834 Signaling by TGF-beta Receptor Complex 9.095586e-02 1.041
R-HSA-8878159 Transcriptional regulation by RUNX3 9.095586e-02 1.041
R-HSA-73887 Death Receptor Signaling 9.097997e-02 1.041
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 9.121977e-02 1.040
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 9.121977e-02 1.040
R-HSA-69002 DNA Replication Pre-Initiation 9.275772e-02 1.033
R-HSA-5603029 IkBA variant leads to EDA-ID 9.358493e-02 1.029
R-HSA-68689 CDC6 association with the ORC:origin complex 9.358493e-02 1.029
R-HSA-8935964 RUNX1 regulates expression of components of tight junctions 9.358493e-02 1.029
R-HSA-9694493 Maturation of protein E 9.358493e-02 1.029
R-HSA-9683683 Maturation of protein E 9.358493e-02 1.029
R-HSA-9860276 SLC15A4:TASL-dependent IRF5 activation 9.358493e-02 1.029
R-HSA-913531 Interferon Signaling 9.476050e-02 1.023
R-HSA-9029558 NR1H2 & NR1H3 regulate gene expression linked to lipogenesis 9.674798e-02 1.014
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 9.674798e-02 1.014
R-HSA-6811555 PI5P Regulates TP53 Acetylation 9.674798e-02 1.014
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 9.685195e-02 1.014
R-HSA-9034015 Signaling by NTRK3 (TRKC) 9.685195e-02 1.014
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 9.685195e-02 1.014
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 9.740220e-02 1.011
R-HSA-5610783 Degradation of GLI2 by the proteasome 9.740220e-02 1.011
R-HSA-5610780 Degradation of GLI1 by the proteasome 9.740220e-02 1.011
R-HSA-9932298 Degradation of CRY and PER proteins 9.740220e-02 1.011
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 9.920642e-02 1.003
R-HSA-9675126 Diseases of mitotic cell cycle 9.920642e-02 1.003
R-HSA-9614085 FOXO-mediated transcription 9.986907e-02 1.001
R-HSA-8948751 Regulation of PTEN stability and activity 9.992182e-02 1.000
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 1.002999e-01 0.999
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 1.002999e-01 0.999
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 1.019674e-01 0.992
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 1.019674e-01 0.992
R-HSA-9645722 Defective Intrinsic Pathway for Apoptosis Due to p14ARF Loss of Function 1.199796e-01 0.921
R-HSA-5602566 TICAM1 deficiency - HSE 1.199796e-01 0.921
R-HSA-9692912 SARS-CoV-1 targets PDZ proteins in cell-cell junction 1.199796e-01 0.921
R-HSA-9672393 Defective F8 binding to von Willebrand factor 1.199796e-01 0.921
R-HSA-9842640 Signaling by LTK in cancer 1.137370e-01 0.944
R-HSA-113507 E2F-enabled inhibition of pre-replication complex formation 1.137370e-01 0.944
R-HSA-8951430 RUNX3 regulates WNT signaling 1.348690e-01 0.870
R-HSA-203641 NOSTRIN mediated eNOS trafficking 1.348690e-01 0.870
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 1.234880e-01 0.908
R-HSA-176412 Phosphorylation of the APC/C 1.377545e-01 0.861
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 1.377545e-01 0.861
R-HSA-9938206 Developmental Lineage of Mammary Stem Cells 1.068163e-01 0.971
R-HSA-933542 TRAF6 mediated NF-kB activation 1.280501e-01 0.893
R-HSA-429947 Deadenylation of mRNA 1.280501e-01 0.893
R-HSA-420029 Tight junction interactions 1.392773e-01 0.856
R-HSA-5689901 Metalloprotease DUBs 1.508811e-01 0.821
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 1.440237e-01 0.842
R-HSA-5678895 Defective CFTR causes cystic fibrosis 1.274557e-01 0.895
R-HSA-72702 Ribosomal scanning and start codon recognition 1.198111e-01 0.922
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 1.246858e-01 0.904
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 1.518743e-01 0.819
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 1.042529e-01 0.982
R-HSA-74158 RNA Polymerase III Transcription 1.440237e-01 0.842
R-HSA-399954 Sema3A PAK dependent Axon repulsion 1.234880e-01 0.908
R-HSA-975163 IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation 1.098015e-01 0.959
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 1.234880e-01 0.908
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 1.068163e-01 0.971
R-HSA-9006931 Signaling by Nuclear Receptors 1.519596e-01 0.818
R-HSA-5693538 Homology Directed Repair 1.449582e-01 0.839
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 1.439789e-01 0.842
R-HSA-432720 Lysosome Vesicle Biogenesis 1.440237e-01 0.842
R-HSA-1500620 Meiosis 1.463093e-01 0.835
R-HSA-8857538 PTK6 promotes HIF1A stabilization 1.137370e-01 0.944
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 1.344438e-01 0.871
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 1.344438e-01 0.871
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 1.274557e-01 0.895
R-HSA-9009391 Extra-nuclear estrogen signaling 1.092816e-01 0.961
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 1.161865e-01 0.935
R-HSA-4641258 Degradation of DVL 1.538881e-01 0.813
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 1.355981e-01 0.868
R-HSA-168638 NOD1/2 Signaling Pathway 1.251609e-01 0.903
R-HSA-1855167 Synthesis of pyrophosphates in the cytosol 1.172226e-01 0.931
R-HSA-114604 GPVI-mediated activation cascade 1.440237e-01 0.842
R-HSA-3371599 Defective HLCS causes multiple carboxylase deficiency 1.348690e-01 0.870
R-HSA-426117 Cation-coupled Chloride cotransporters 1.348690e-01 0.870
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 1.234880e-01 0.908
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 1.251609e-01 0.903
R-HSA-180585 Vif-mediated degradation of APOBEC3G 1.440237e-01 0.842
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 1.538881e-01 0.813
R-HSA-5620924 Intraflagellar transport 1.525904e-01 0.816
R-HSA-5675482 Regulation of necroptotic cell death 1.075317e-01 0.968
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 1.119135e-01 0.951
R-HSA-6787450 tRNA modification in the mitochondrion 1.525475e-01 0.817
R-HSA-180534 Vpu mediated degradation of CD4 1.161865e-01 0.935
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 1.251609e-01 0.903
R-HSA-169911 Regulation of Apoptosis 1.344438e-01 0.871
R-HSA-1483249 Inositol phosphate metabolism 1.056636e-01 0.976
R-HSA-2219528 PI3K/AKT Signaling in Cancer 1.449582e-01 0.839
R-HSA-176187 Activation of ATR in response to replication stress 1.075317e-01 0.968
R-HSA-69239 Synthesis of DNA 1.460730e-01 0.835
R-HSA-397014 Muscle contraction 1.136467e-01 0.944
R-HSA-418990 Adherens junctions interactions 1.350618e-01 0.869
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 1.344438e-01 0.871
R-HSA-2262752 Cellular responses to stress 1.250177e-01 0.903
R-HSA-212436 Generic Transcription Pathway 1.474874e-01 0.831
R-HSA-5654736 Signaling by FGFR1 1.198111e-01 0.922
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 1.234880e-01 0.908
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 1.274557e-01 0.895
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 1.274557e-01 0.895
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 1.448252e-01 0.839
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 1.268629e-01 0.897
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 1.518743e-01 0.819
R-HSA-193639 p75NTR signals via NF-kB 1.234880e-01 0.908
R-HSA-8949275 RUNX3 Regulates Immune Response and Cell Migration 1.348690e-01 0.870
R-HSA-446353 Cell-extracellular matrix interactions 1.234880e-01 0.908
R-HSA-5620920 Cargo trafficking to the periciliary membrane 1.379417e-01 0.860
R-HSA-381070 IRE1alpha activates chaperones 1.180293e-01 0.928
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 1.195771e-01 0.922
R-HSA-446107 Type I hemidesmosome assembly 1.567827e-01 0.805
R-HSA-3785653 Myoclonic epilepsy of Lafora 1.567827e-01 0.805
R-HSA-1253288 Downregulation of ERBB4 signaling 1.567827e-01 0.805
R-HSA-9637628 Modulation by Mtb of host immune system 1.567827e-01 0.805
R-HSA-73856 RNA Polymerase II Transcription Termination 1.570679e-01 0.804
R-HSA-8939902 Regulation of RUNX2 expression and activity 1.570679e-01 0.804
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 1.628381e-01 0.788
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 1.628381e-01 0.788
R-HSA-9006115 Signaling by NTRK2 (TRKB) 1.628381e-01 0.788
R-HSA-5213460 RIPK1-mediated regulated necrosis 1.640240e-01 0.785
R-HSA-447115 Interleukin-12 family signaling 1.663562e-01 0.779
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 1.664538e-01 0.779
R-HSA-2206292 MPS VII - Sly syndrome (Hyaluronan metabolism) 1.744631e-01 0.758
R-HSA-5619039 Defective SLC12A6 causes agenesis of the corpus callosum, with peripheral neurop... 1.744631e-01 0.758
R-HSA-5602571 TRAF3 deficiency - HSE 1.744631e-01 0.758
R-HSA-9953080 MPS VII - Sly syndrome (CS/DS degradation) 1.744631e-01 0.758
R-HSA-3304347 Loss of Function of SMAD4 in Cancer 1.744631e-01 0.758
R-HSA-5674404 PTEN Loss of Function in Cancer 1.744631e-01 0.758
R-HSA-3311021 SMAD4 MH2 Domain Mutants in Cancer 1.744631e-01 0.758
R-HSA-3315487 SMAD2/3 MH2 Domain Mutants in Cancer 1.744631e-01 0.758
R-HSA-9674519 Defective F8 sulfation at Y1699 2.255764e-01 0.647
R-HSA-9672383 Defective factor IX causes thrombophilia 2.255764e-01 0.647
R-HSA-9672391 Defective F8 cleavage by thrombin 2.255764e-01 0.647
R-HSA-9672396 Defective cofactor function of FVIIIa variant 2.255764e-01 0.647
R-HSA-3878781 Glycogen storage disease type IV (GBE1) 2.255764e-01 0.647
R-HSA-9673202 Defective F9 variant does not activate FX 2.255764e-01 0.647
R-HSA-9909438 3-Methylcrotonyl-CoA carboxylase deficiency 2.735280e-01 0.563
R-HSA-5682113 Defective ABCA1 causes TGD 2.735280e-01 0.563
R-HSA-9013957 TLR3-mediated TICAM1-dependent programmed cell death 3.185131e-01 0.497
R-HSA-1251932 PLCG1 events in ERBB2 signaling 3.185131e-01 0.497
R-HSA-3656532 TGFBR1 KD Mutants in Cancer 3.185131e-01 0.497
R-HSA-1306955 GRB7 events in ERBB2 signaling 3.185131e-01 0.497
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 2.022637e-01 0.694
R-HSA-9034864 Activated NTRK3 signals through RAS 2.255314e-01 0.647
R-HSA-9623433 NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis 2.489777e-01 0.604
R-HSA-9026519 Activated NTRK2 signals through RAS 2.489777e-01 0.604
R-HSA-73980 RNA Polymerase III Transcription Termination 1.834988e-01 0.736
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 1.995521e-01 0.700
R-HSA-9709603 Impaired BRCA2 binding to PALB2 1.995521e-01 0.700
R-HSA-3000484 Scavenging by Class F Receptors 2.724917e-01 0.565
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 2.159221e-01 0.666
R-HSA-9609523 Insertion of tail-anchored proteins into the endoplasmic reticulum membrane 2.159221e-01 0.666
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 2.159221e-01 0.666
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 2.159221e-01 0.666
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 2.159221e-01 0.666
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 2.159221e-01 0.666
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 2.159221e-01 0.666
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 2.959751e-01 0.529
R-HSA-9664565 Signaling by ERBB2 KD Mutants 1.877140e-01 0.727
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 1.877140e-01 0.727
R-HSA-9709570 Impaired BRCA2 binding to RAD51 1.877140e-01 0.727
R-HSA-1227990 Signaling by ERBB2 in Cancer 2.005832e-01 0.698
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 2.005832e-01 0.698
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 2.494168e-01 0.603
R-HSA-177504 Retrograde neurotrophin signalling 3.193418e-01 0.496
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 2.137064e-01 0.670
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 2.137064e-01 0.670
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 1.850552e-01 0.733
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 1.850552e-01 0.733
R-HSA-8943723 Regulation of PTEN mRNA translation 2.836094e-01 0.547
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 2.406143e-01 0.619
R-HSA-1855170 IPs transport between nucleus and cytosol 2.406143e-01 0.619
R-HSA-159227 Transport of the SLBP independent Mature mRNA 2.406143e-01 0.619
R-HSA-167161 HIV Transcription Initiation 2.070036e-01 0.684
R-HSA-75953 RNA Polymerase II Transcription Initiation 2.070036e-01 0.684
R-HSA-72187 mRNA 3'-end processing 1.891776e-01 0.723
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 2.543492e-01 0.595
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 3.008593e-01 0.522
R-HSA-1221632 Meiotic synapsis 1.988146e-01 0.702
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 3.181584e-01 0.497
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 2.822590e-01 0.549
R-HSA-194441 Metabolism of non-coding RNA 2.599977e-01 0.585
R-HSA-191859 snRNP Assembly 2.599977e-01 0.585
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 2.220614e-01 0.654
R-HSA-6807070 PTEN Regulation 2.990842e-01 0.524
R-HSA-8852135 Protein ubiquitination 2.831721e-01 0.548
R-HSA-68962 Activation of the pre-replicative complex 2.005832e-01 0.698
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 1.850552e-01 0.733
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 2.445502e-01 0.612
R-HSA-76046 RNA Polymerase III Transcription Initiation 2.005832e-01 0.698
R-HSA-389359 CD28 dependent Vav1 pathway 2.959751e-01 0.529
R-HSA-8853659 RET signaling 2.963863e-01 0.528
R-HSA-8939211 ESR-mediated signaling 2.924865e-01 0.534
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 2.531732e-01 0.597
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 2.287474e-01 0.641
R-HSA-937042 IRAK2 mediated activation of TAK1 complex 1.793004e-01 0.746
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 3.193418e-01 0.496
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 1.744177e-01 0.758
R-HSA-167169 HIV Transcription Elongation 1.850552e-01 0.733
R-HSA-5658442 Regulation of RAS by GAPs 1.704733e-01 0.768
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 3.008593e-01 0.522
R-HSA-3000157 Laminin interactions 3.181584e-01 0.497
R-HSA-1234174 Cellular response to hypoxia 3.253144e-01 0.488
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 3.105980e-01 0.508
R-HSA-5696398 Nucleotide Excision Repair 3.345362e-01 0.476
R-HSA-6802957 Oncogenic MAPK signaling 2.477658e-01 0.606
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 2.070036e-01 0.684
R-HSA-72737 Cap-dependent Translation Initiation 3.217806e-01 0.492
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 2.256749e-01 0.647
R-HSA-5693537 Resolution of D-Loop Structures 2.543492e-01 0.595
R-HSA-2424491 DAP12 signaling 2.005832e-01 0.698
R-HSA-72613 Eukaryotic Translation Initiation 3.217806e-01 0.492
R-HSA-9603505 NTRK3 as a dependence receptor 1.744631e-01 0.758
R-HSA-191650 Regulation of gap junction activity 3.185131e-01 0.497
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 2.724917e-01 0.565
R-HSA-174490 Membrane binding and targetting of GAG proteins 2.959751e-01 0.529
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 2.664480e-01 0.574
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 2.406143e-01 0.619
R-HSA-9932451 SWI/SNF chromatin remodelers 3.181584e-01 0.497
R-HSA-9932444 ATP-dependent chromatin remodelers 3.181584e-01 0.497
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 2.390895e-01 0.621
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 1.884923e-01 0.725
R-HSA-1257604 PIP3 activates AKT signaling 2.192663e-01 0.659
R-HSA-9851151 MDK and PTN in ALK signaling 3.185131e-01 0.497
R-HSA-73776 RNA Polymerase II Promoter Escape 2.297502e-01 0.639
R-HSA-5626978 TNFR1-mediated ceramide production 3.185131e-01 0.497
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 1.678132e-01 0.775
R-HSA-1483115 Hydrolysis of LPC 3.193418e-01 0.496
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 2.406143e-01 0.619
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 1.797273e-01 0.745
R-HSA-73762 RNA Polymerase I Transcription Initiation 2.182847e-01 0.661
R-HSA-1482788 Acyl chain remodelling of PC 2.543492e-01 0.595
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 3.008593e-01 0.522
R-HSA-1482839 Acyl chain remodelling of PE 2.822590e-01 0.549
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 2.771500e-01 0.557
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 2.425567e-01 0.615
R-HSA-3928664 Ephrin signaling 1.834988e-01 0.736
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 2.592724e-01 0.586
R-HSA-1482801 Acyl chain remodelling of PS 3.181584e-01 0.497
R-HSA-5685942 HDR through Homologous Recombination (HRR) 2.077659e-01 0.682
R-HSA-9703465 Signaling by FLT3 fusion proteins 3.354694e-01 0.474
R-HSA-1855191 Synthesis of IPs in the nucleus 3.193418e-01 0.496
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 3.193418e-01 0.496
R-HSA-9006925 Intracellular signaling by second messengers 3.004785e-01 0.522
R-HSA-5218921 VEGFR2 mediated cell proliferation 3.181584e-01 0.497
R-HSA-432722 Golgi Associated Vesicle Biogenesis 1.988146e-01 0.702
R-HSA-430116 GP1b-IX-V activation signalling 1.793004e-01 0.746
R-HSA-5693548 Sensing of DNA Double Strand Breaks 2.489777e-01 0.604
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 2.682388e-01 0.571
R-HSA-168898 Toll-like Receptor Cascades 1.947279e-01 0.711
R-HSA-73894 DNA Repair 2.484653e-01 0.605
R-HSA-194306 Neurophilin interactions with VEGF and VEGFR 2.255764e-01 0.647
R-HSA-8985801 Regulation of cortical dendrite branching 2.255764e-01 0.647
R-HSA-5140745 WNT5A-dependent internalization of FZD2, FZD5 and ROR2 2.022637e-01 0.694
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 1.834988e-01 0.736
R-HSA-877312 Regulation of IFNG signaling 2.724917e-01 0.565
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 2.682388e-01 0.571
R-HSA-180910 Vpr-mediated nuclear import of PICs 3.105980e-01 0.508
R-HSA-72312 rRNA processing 1.933936e-01 0.714
R-HSA-9006936 Signaling by TGFB family members 2.536017e-01 0.596
R-HSA-9734767 Developmental Cell Lineages 2.048642e-01 0.689
R-HSA-9609690 HCMV Early Events 3.042329e-01 0.517
R-HSA-69306 DNA Replication 3.027273e-01 0.519
R-HSA-400685 Sema4D in semaphorin signaling 3.181584e-01 0.497
R-HSA-1236974 ER-Phagosome pathway 1.804014e-01 0.744
R-HSA-1236394 Signaling by ERBB4 2.733715e-01 0.563
R-HSA-5654732 Negative regulation of FGFR3 signaling 1.751240e-01 0.757
R-HSA-9759475 Regulation of CDH11 Expression and Function 1.877140e-01 0.727
R-HSA-5654733 Negative regulation of FGFR4 signaling 1.877140e-01 0.727
R-HSA-205043 NRIF signals cell death from the nucleus 3.193418e-01 0.496
R-HSA-9022692 Regulation of MECP2 expression and activity 2.406143e-01 0.619
R-HSA-5654727 Negative regulation of FGFR2 signaling 2.682388e-01 0.571
R-HSA-9020702 Interleukin-1 signaling 1.850852e-01 0.733
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 2.411037e-01 0.618
R-HSA-453279 Mitotic G1 phase and G1/S transition 1.718969e-01 0.765
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 1.793004e-01 0.746
R-HSA-9645460 Alpha-protein kinase 1 signaling pathway 2.255314e-01 0.647
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 2.664480e-01 0.574
R-HSA-5654726 Negative regulation of FGFR1 signaling 2.406143e-01 0.619
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 2.543492e-01 0.595
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 3.248718e-01 0.488
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 2.406143e-01 0.619
R-HSA-5619084 ABC transporter disorders 3.130439e-01 0.504
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 2.565424e-01 0.591
R-HSA-445355 Smooth Muscle Contraction 1.988146e-01 0.702
R-HSA-6790901 rRNA modification in the nucleus and cytosol 3.032236e-01 0.518
R-HSA-5654738 Signaling by FGFR2 2.055042e-01 0.687
R-HSA-6794361 Neurexins and neuroligins 1.891776e-01 0.723
R-HSA-1839124 FGFR1 mutant receptor activation 2.406143e-01 0.619
R-HSA-5358351 Signaling by Hedgehog 2.918366e-01 0.535
R-HSA-3323169 Defects in biotin (Btn) metabolism 1.793004e-01 0.746
R-HSA-442380 Zinc influx into cells by the SLC39 gene family 1.793004e-01 0.746
R-HSA-193670 p75NTR negatively regulates cell cycle via SC1 3.185131e-01 0.497
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 2.724917e-01 0.565
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 2.724917e-01 0.565
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 2.325596e-01 0.633
R-HSA-168276 NS1 Mediated Effects on Host Pathways 1.744177e-01 0.758
R-HSA-5362768 Hh mutants are degraded by ERAD 1.959221e-01 0.708
R-HSA-2160916 Hyaluronan degradation 3.181584e-01 0.497
R-HSA-983169 Class I MHC mediated antigen processing & presentation 2.886055e-01 0.540
R-HSA-9824272 Somitogenesis 2.531732e-01 0.597
R-HSA-70221 Glycogen breakdown (glycogenolysis) 3.181584e-01 0.497
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 2.531732e-01 0.597
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 3.142379e-01 0.503
R-HSA-6794362 Protein-protein interactions at synapses 2.477658e-01 0.606
R-HSA-9836573 Mitochondrial RNA degradation 3.008593e-01 0.522
R-HSA-69206 G1/S Transition 1.909381e-01 0.719
R-HSA-449836 Other interleukin signaling 1.995521e-01 0.700
R-HSA-9860931 Response of endothelial cells to shear stress 2.058824e-01 0.686
R-HSA-373755 Semaphorin interactions 1.732966e-01 0.761
R-HSA-392517 Rap1 signalling 1.995521e-01 0.700
R-HSA-5387390 Hh mutants abrogate ligand secretion 2.297502e-01 0.639
R-HSA-180746 Nuclear import of Rev protein 2.682388e-01 0.571
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 2.413849e-01 0.617
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 2.822590e-01 0.549
R-HSA-4608870 Asymmetric localization of PCP proteins 2.531732e-01 0.597
R-HSA-9007101 Rab regulation of trafficking 2.218506e-01 0.654
R-HSA-446652 Interleukin-1 family signaling 2.051758e-01 0.688
R-HSA-1236975 Antigen processing-Cross presentation 2.425567e-01 0.615
R-HSA-9861718 Regulation of pyruvate metabolism 2.651000e-01 0.577
R-HSA-9645723 Diseases of programmed cell death 2.834140e-01 0.548
R-HSA-166520 Signaling by NTRKs 1.826740e-01 0.738
R-HSA-416482 G alpha (12/13) signalling events 3.130439e-01 0.504
R-HSA-9855142 Cellular responses to mechanical stimuli 1.884923e-01 0.725
R-HSA-9816359 Maternal to zygotic transition (MZT) 1.729595e-01 0.762
R-HSA-209560 NF-kB is activated and signals survival 2.489777e-01 0.604
R-HSA-5205685 PINK1-PRKN Mediated Mitophagy 1.751240e-01 0.757
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 1.877140e-01 0.727
R-HSA-9671555 Signaling by PDGFR in disease 2.494168e-01 0.603
R-HSA-8964043 Plasma lipoprotein clearance 1.744177e-01 0.758
R-HSA-70635 Urea cycle 3.354694e-01 0.474
R-HSA-162909 Host Interactions of HIV factors 2.721112e-01 0.565
R-HSA-3858494 Beta-catenin independent WNT signaling 1.868199e-01 0.729
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 2.494168e-01 0.603
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 2.543492e-01 0.595
R-HSA-4086400 PCP/CE pathway 3.130439e-01 0.504
R-HSA-1280215 Cytokine Signaling in Immune system 3.258986e-01 0.487
R-HSA-933543 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 2.255314e-01 0.647
R-HSA-3229121 Glycogen storage diseases 1.678132e-01 0.775
R-HSA-381183 ATF6 (ATF6-alpha) activates chaperone genes 2.489777e-01 0.604
R-HSA-69202 Cyclin E associated events during G1/S transition 2.351627e-01 0.629
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 3.248718e-01 0.488
R-HSA-1483255 PI Metabolism 2.997513e-01 0.523
R-HSA-9674555 Signaling by CSF3 (G-CSF) 1.877140e-01 0.727
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 1.834988e-01 0.736
R-HSA-5687128 MAPK6/MAPK4 signaling 2.477658e-01 0.606
R-HSA-5205647 Mitophagy 2.682388e-01 0.571
R-HSA-1296346 Tandem pore domain potassium channels 2.022637e-01 0.694
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 3.015589e-01 0.521
R-HSA-9730414 MITF-M-regulated melanocyte development 1.712066e-01 0.766
R-HSA-193704 p75 NTR receptor-mediated signalling 1.717779e-01 0.765
R-HSA-163765 ChREBP activates metabolic gene expression 2.255314e-01 0.647
R-HSA-435354 Zinc transporters 3.193418e-01 0.496
R-HSA-193648 NRAGE signals death through JNK 2.287474e-01 0.641
R-HSA-9607240 FLT3 Signaling 1.959221e-01 0.708
R-HSA-9679191 Potential therapeutics for SARS 1.937710e-01 0.713
R-HSA-5358346 Hedgehog ligand biogenesis 3.262807e-01 0.486
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 3.354694e-01 0.474
R-HSA-9694516 SARS-CoV-2 Infection 2.037050e-01 0.691
R-HSA-9679506 SARS-CoV Infections 2.124571e-01 0.673
R-HSA-381033 ATF6 (ATF6-alpha) activates chaperones 2.959751e-01 0.529
R-HSA-9678108 SARS-CoV-1 Infection 1.844466e-01 0.734
R-HSA-9768919 NPAS4 regulates expression of target genes 2.682388e-01 0.571
R-HSA-381119 Unfolded Protein Response (UPR) 2.045410e-01 0.689
R-HSA-9008059 Interleukin-37 signaling 2.005832e-01 0.698
R-HSA-9020591 Interleukin-12 signaling 1.739758e-01 0.760
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 3.387229e-01 0.470
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 3.387229e-01 0.470
R-HSA-9634815 Transcriptional Regulation by NPAS4 3.387229e-01 0.470
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 3.391861e-01 0.470
R-HSA-1852241 Organelle biogenesis and maintenance 3.394553e-01 0.469
R-HSA-9857492 Protein lipoylation 3.425162e-01 0.465
R-HSA-73780 RNA Polymerase III Chain Elongation 3.425162e-01 0.465
R-HSA-110312 Translesion synthesis by REV1 3.425162e-01 0.465
R-HSA-9027284 Erythropoietin activates RAS 3.425162e-01 0.465
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 3.425162e-01 0.465
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 3.425162e-01 0.465
R-HSA-1502540 Signaling by Activin 3.425162e-01 0.465
R-HSA-196780 Biotin transport and metabolism 3.425162e-01 0.465
R-HSA-9909396 Circadian clock 3.491022e-01 0.457
R-HSA-9639288 Amino acids regulate mTORC1 3.512004e-01 0.454
R-HSA-73863 RNA Polymerase I Transcription Termination 3.527574e-01 0.453
R-HSA-445095 Interaction between L1 and Ankyrins 3.527574e-01 0.453
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 3.527574e-01 0.453
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 3.535204e-01 0.452
R-HSA-5602358 Diseases associated with the TLR signaling cascade 3.535204e-01 0.452
R-HSA-5260271 Diseases of Immune System 3.535204e-01 0.452
R-HSA-177243 Interactions of Rev with host cellular proteins 3.535204e-01 0.452
R-HSA-176033 Interactions of Vpr with host cellular proteins 3.535204e-01 0.452
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 3.536766e-01 0.451
R-HSA-449147 Signaling by Interleukins 3.542475e-01 0.451
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 3.588151e-01 0.445
R-HSA-3304356 SMAD2/3 Phosphorylation Motif Mutants in Cancer 3.607152e-01 0.443
R-HSA-110381 Resolution of AP sites via the single-nucleotide replacement pathway 3.607152e-01 0.443
R-HSA-8849472 PTK6 Down-Regulation 3.607152e-01 0.443
R-HSA-426496 Post-transcriptional silencing by small RNAs 3.607152e-01 0.443
R-HSA-8866376 Reelin signalling pathway 3.607152e-01 0.443
R-HSA-3656534 Loss of Function of TGFBR1 in Cancer 3.607152e-01 0.443
R-HSA-429593 Inositol transporters 3.607152e-01 0.443
R-HSA-447038 NrCAM interactions 3.607152e-01 0.443
R-HSA-168316 Assembly of Viral Components at the Budding Site 3.607152e-01 0.443
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 3.610643e-01 0.442
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 3.636996e-01 0.439
R-HSA-156588 Glucuronidation 3.636996e-01 0.439
R-HSA-5656121 Translesion synthesis by POLI 3.654326e-01 0.437
R-HSA-5083636 Defective GALNT12 causes CRCS1 3.654326e-01 0.437
R-HSA-5576886 Phase 4 - resting membrane potential 3.654326e-01 0.437
R-HSA-5099900 WNT5A-dependent internalization of FZD4 3.654326e-01 0.437
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 3.654326e-01 0.437
R-HSA-9708530 Regulation of BACH1 activity 3.654326e-01 0.437
R-HSA-72689 Formation of a pool of free 40S subunits 3.674702e-01 0.435
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 3.678545e-01 0.434
R-HSA-113418 Formation of the Early Elongation Complex 3.699897e-01 0.432
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 3.699897e-01 0.432
R-HSA-77387 Insulin receptor recycling 3.699897e-01 0.432
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 3.741983e-01 0.427
R-HSA-3214815 HDACs deacetylate histones 3.762075e-01 0.425
R-HSA-5655302 Signaling by FGFR1 in disease 3.821695e-01 0.418
R-HSA-5675221 Negative regulation of MAPK pathway 3.821695e-01 0.418
R-HSA-9006335 Signaling by Erythropoietin 3.871357e-01 0.412
R-HSA-5654708 Downstream signaling of activated FGFR3 3.871357e-01 0.412
R-HSA-5655862 Translesion synthesis by POLK 3.880342e-01 0.411
R-HSA-77595 Processing of Intronless Pre-mRNAs 3.880342e-01 0.411
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 3.880342e-01 0.411
R-HSA-975110 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 3.880342e-01 0.411
R-HSA-5578775 Ion homeostasis 3.887110e-01 0.410
R-HSA-3299685 Detoxification of Reactive Oxygen Species 3.887110e-01 0.410
R-HSA-9856651 MITF-M-dependent gene expression 3.890119e-01 0.410
R-HSA-427413 NoRC negatively regulates rRNA expression 3.925149e-01 0.406
R-HSA-5632684 Hedgehog 'on' state 3.925149e-01 0.406
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 3.947772e-01 0.404
R-HSA-190236 Signaling by FGFR 3.960864e-01 0.402
R-HSA-165159 MTOR signalling 3.964471e-01 0.402
R-HSA-3304349 Loss of Function of SMAD2/3 in Cancer 4.003062e-01 0.398
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 4.003062e-01 0.398
R-HSA-166665 Terminal pathway of complement 4.003062e-01 0.398
R-HSA-1483101 Synthesis of PS 4.003062e-01 0.398
R-HSA-195399 VEGF binds to VEGFR leading to receptor dimerization 4.003062e-01 0.398
R-HSA-194313 VEGF ligand-receptor interactions 4.003062e-01 0.398
R-HSA-444821 Relaxin receptors 4.003062e-01 0.398
R-HSA-446388 Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... 4.003062e-01 0.398
R-HSA-9033500 TYSND1 cleaves peroxisomal proteins 4.003062e-01 0.398
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 4.037481e-01 0.394
R-HSA-5654716 Downstream signaling of activated FGFR4 4.041672e-01 0.393
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 4.041672e-01 0.393
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 4.050701e-01 0.392
R-HSA-1963642 PI3K events in ERBB2 signaling 4.102722e-01 0.387
R-HSA-4641263 Regulation of FZD by ubiquitination 4.102722e-01 0.387
R-HSA-9909505 Modulation of host responses by IFN-stimulated genes 4.102722e-01 0.387
R-HSA-1433557 Signaling by SCF-KIT 4.106699e-01 0.387
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 4.136557e-01 0.383
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 4.138646e-01 0.383
R-HSA-4086398 Ca2+ pathway 4.149663e-01 0.382
R-HSA-70171 Glycolysis 4.151919e-01 0.382
R-HSA-76002 Platelet activation, signaling and aggregation 4.198031e-01 0.377
R-HSA-399719 Trafficking of AMPA receptors 4.210580e-01 0.376
R-HSA-186763 Downstream signal transduction 4.210580e-01 0.376
R-HSA-2172127 DAP12 interactions 4.248213e-01 0.372
R-HSA-3928662 EPHB-mediated forward signaling 4.248213e-01 0.372
R-HSA-9907900 Proteasome assembly 4.248213e-01 0.372
R-HSA-429914 Deadenylation-dependent mRNA decay 4.260733e-01 0.371
R-HSA-9013694 Signaling by NOTCH4 4.261607e-01 0.370
R-HSA-187037 Signaling by NTRK1 (TRKA) 4.308298e-01 0.366
R-HSA-180292 GAB1 signalosome 4.321049e-01 0.364
R-HSA-210993 Tie2 Signaling 4.321049e-01 0.364
R-HSA-156711 Polo-like kinase mediated events 4.321049e-01 0.364
R-HSA-2559580 Oxidative Stress Induced Senescence 4.342677e-01 0.362
R-HSA-9662001 Defective factor VIII causes hemophilia A 4.374476e-01 0.359
R-HSA-8951671 RUNX3 regulates YAP1-mediated transcription 4.374476e-01 0.359
R-HSA-5579026 Defective CYP11A1 causes AICSR 4.374476e-01 0.359
R-HSA-3595174 Defective CHST14 causes EDS, musculocontractural type 4.374476e-01 0.359
R-HSA-3595172 Defective CHST3 causes SEDCJD 4.374476e-01 0.359
R-HSA-1483152 Hydrolysis of LPE 4.374476e-01 0.359
R-HSA-3304351 Signaling by TGF-beta Receptor Complex in Cancer 4.374476e-01 0.359
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 4.374476e-01 0.359
R-HSA-69478 G2/M DNA replication checkpoint 4.374476e-01 0.359
R-HSA-447043 Neurofascin interactions 4.374476e-01 0.359
R-HSA-164944 Nef and signal transduction 4.374476e-01 0.359
R-HSA-1538133 G0 and Early G1 4.377841e-01 0.359
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 4.377841e-01 0.359
R-HSA-6783310 Fanconi Anemia Pathway 4.388858e-01 0.358
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 4.388858e-01 0.358
R-HSA-5621481 C-type lectin receptors (CLRs) 4.402756e-01 0.356
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 4.451235e-01 0.352
R-HSA-597592 Post-translational protein modification 4.482311e-01 0.348
R-HSA-5689603 UCH proteinases 4.484449e-01 0.348
R-HSA-9711097 Cellular response to starvation 4.503057e-01 0.346
R-HSA-9793380 Formation of paraxial mesoderm 4.507435e-01 0.346
R-HSA-112043 PLC beta mediated events 4.507435e-01 0.346
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 4.528486e-01 0.344
R-HSA-9675135 Diseases of DNA repair 4.528486e-01 0.344
R-HSA-110320 Translesion Synthesis by POLH 4.534974e-01 0.343
R-HSA-113510 E2F mediated regulation of DNA replication 4.534974e-01 0.343
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 4.534974e-01 0.343
R-HSA-397795 G-protein beta:gamma signalling 4.543235e-01 0.343
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 4.543235e-01 0.343
R-HSA-9733709 Cardiogenesis 4.543235e-01 0.343
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 4.543235e-01 0.343
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 4.629753e-01 0.334
R-HSA-6784531 tRNA processing in the nucleus 4.629753e-01 0.334
R-HSA-186797 Signaling by PDGF 4.629753e-01 0.334
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 4.706561e-01 0.327
R-HSA-8931987 RUNX1 regulates estrogen receptor mediated transcription 4.722908e-01 0.326
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 4.722908e-01 0.326
R-HSA-2562578 TRIF-mediated programmed cell death 4.722908e-01 0.326
R-HSA-3595177 Defective CHSY1 causes TPBS 4.722908e-01 0.326
R-HSA-9031528 NR1H2 & NR1H3 regulate gene expression linked to triglyceride lipolysis in adipo... 4.722908e-01 0.326
R-HSA-9632974 NR1H2 & NR1H3 regulate gene expression linked to gluconeogenesis 4.722908e-01 0.326
R-HSA-72731 Recycling of eIF2:GDP 4.722908e-01 0.326
R-HSA-9031525 NR1H2 & NR1H3 regulate gene expression to limit cholesterol uptake 4.722908e-01 0.326
R-HSA-111367 SLBP independent Processing of Histone Pre-mRNAs 4.722908e-01 0.326
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 4.722908e-01 0.326
R-HSA-8849473 PTK6 Expression 4.722908e-01 0.326
R-HSA-9032845 Activated NTRK2 signals through CDK5 4.722908e-01 0.326
R-HSA-2395516 Electron transport from NADPH to Ferredoxin 4.722908e-01 0.326
R-HSA-1614603 Cysteine formation from homocysteine 4.722908e-01 0.326
R-HSA-8851907 MET activates PI3K/AKT signaling 4.722908e-01 0.326
R-HSA-139915 Activation of PUMA and translocation to mitochondria 4.722908e-01 0.326
R-HSA-9603381 Activated NTRK3 signals through PI3K 4.722908e-01 0.326
R-HSA-447041 CHL1 interactions 4.722908e-01 0.326
R-HSA-5336415 Uptake and function of diphtheria toxin 4.722908e-01 0.326
R-HSA-9823730 Formation of definitive endoderm 4.744204e-01 0.324
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 4.744204e-01 0.324
R-HSA-196108 Pregnenolone biosynthesis 4.744204e-01 0.324
R-HSA-1181150 Signaling by NODAL 4.744204e-01 0.324
R-HSA-1482922 Acyl chain remodelling of PI 4.744204e-01 0.324
R-HSA-1280218 Adaptive Immune System 4.769148e-01 0.322
R-HSA-389356 Co-stimulation by CD28 4.804148e-01 0.318
R-HSA-9659379 Sensory processing of sound 4.814921e-01 0.317
R-HSA-9824446 Viral Infection Pathways 4.862497e-01 0.313
R-HSA-901042 Calnexin/calreticulin cycle 4.867638e-01 0.313
R-HSA-2142845 Hyaluronan metabolism 4.867638e-01 0.313
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 4.867638e-01 0.313
R-HSA-936837 Ion transport by P-type ATPases 4.871838e-01 0.312
R-HSA-6798695 Neutrophil degranulation 4.917434e-01 0.308
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 4.923774e-01 0.308
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 4.923774e-01 0.308
R-HSA-5654704 SHC-mediated cascade:FGFR3 4.948500e-01 0.306
R-HSA-167044 Signalling to RAS 4.948500e-01 0.306
R-HSA-140837 Intrinsic Pathway of Fibrin Clot Formation 4.948500e-01 0.306
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 4.948500e-01 0.306
R-HSA-210991 Basigin interactions 4.948500e-01 0.306
R-HSA-9636383 Prevention of phagosomal-lysosomal fusion 4.948500e-01 0.306
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 4.948500e-01 0.306
R-HSA-198753 ERK/MAPK targets 4.948500e-01 0.306
R-HSA-9931295 PD-L1(CD274) glycosylation and translocation to plasma membrane 4.948500e-01 0.306
R-HSA-168255 Influenza Infection 4.986777e-01 0.302
R-HSA-187687 Signalling to ERKs 5.026302e-01 0.299
R-HSA-5654696 Downstream signaling of activated FGFR2 5.026302e-01 0.299
R-HSA-5654687 Downstream signaling of activated FGFR1 5.026302e-01 0.299
R-HSA-977225 Amyloid fiber formation 5.031862e-01 0.298
R-HSA-111995 phospho-PLA2 pathway 5.049778e-01 0.297
R-HSA-9768778 Regulation of NPAS4 mRNA translation 5.049778e-01 0.297
R-HSA-9660537 Signaling by MRAS-complex mutants 5.049778e-01 0.297
R-HSA-9028335 Activated NTRK2 signals through PI3K 5.049778e-01 0.297
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 5.049778e-01 0.297
R-HSA-164940 Nef mediated downregulation of MHC class I complex cell surface expression 5.049778e-01 0.297
R-HSA-77588 SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs 5.049778e-01 0.297
R-HSA-9927354 Co-stimulation by ICOS 5.049778e-01 0.297
R-HSA-444473 Formyl peptide receptors bind formyl peptides and many other ligands 5.049778e-01 0.297
R-HSA-442729 CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde 5.049778e-01 0.297
R-HSA-9018519 Estrogen-dependent gene expression 5.143361e-01 0.289
R-HSA-5654719 SHC-mediated cascade:FGFR4 5.147671e-01 0.288
R-HSA-8949215 Mitochondrial calcium ion transport 5.147671e-01 0.288
R-HSA-175474 Assembly Of The HIV Virion 5.147671e-01 0.288
R-HSA-69205 G1/S-Specific Transcription 5.182408e-01 0.285
R-HSA-112040 G-protein mediated events 5.227279e-01 0.282
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 5.245489e-01 0.280
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 5.335826e-01 0.273
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 5.337761e-01 0.273
R-HSA-350054 Notch-HLH transcription pathway 5.341568e-01 0.272
R-HSA-166208 mTORC1-mediated signalling 5.341568e-01 0.272
R-HSA-8964038 LDL clearance 5.341568e-01 0.272
R-HSA-9857377 Regulation of MITF-M-dependent genes involved in lysosome biogenesis and autopha... 5.341568e-01 0.272
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 5.341568e-01 0.272
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 5.341568e-01 0.272
R-HSA-5218859 Regulated Necrosis 5.343395e-01 0.272
R-HSA-9634635 Estrogen-stimulated signaling through PRKCZ 5.356420e-01 0.271
R-HSA-9613354 Lipophagy 5.356420e-01 0.271
R-HSA-2465910 MASTL Facilitates Mitotic Progression 5.356420e-01 0.271
R-HSA-2025928 Calcineurin activates NFAT 5.356420e-01 0.271
R-HSA-5649702 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... 5.356420e-01 0.271
R-HSA-176974 Unwinding of DNA 5.356420e-01 0.271
R-HSA-170984 ARMS-mediated activation 5.356420e-01 0.271
R-HSA-198693 AKT phosphorylates targets in the nucleus 5.356420e-01 0.271
R-HSA-9834752 Respiratory syncytial virus genome replication 5.356420e-01 0.271
R-HSA-9013700 NOTCH4 Activation and Transmission of Signal to the Nucleus 5.356420e-01 0.271
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 5.356420e-01 0.271
R-HSA-8851680 Butyrophilin (BTN) family interactions 5.356420e-01 0.271
R-HSA-927802 Nonsense-Mediated Decay (NMD) 5.368479e-01 0.270
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 5.368479e-01 0.270
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 5.466880e-01 0.262
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 5.486442e-01 0.261
R-HSA-4839726 Chromatin organization 5.513459e-01 0.259
R-HSA-912526 Interleukin receptor SHC signaling 5.530081e-01 0.257
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 5.530081e-01 0.257
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 5.530081e-01 0.257
R-HSA-3000170 Syndecan interactions 5.530081e-01 0.257
R-HSA-9937008 Mitochondrial mRNA modification 5.530081e-01 0.257
R-HSA-114608 Platelet degranulation 5.546732e-01 0.256
R-HSA-376176 Signaling by ROBO receptors 5.559952e-01 0.255
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 5.571663e-01 0.254
R-HSA-204005 COPII-mediated vesicle transport 5.571663e-01 0.254
R-HSA-9909648 Regulation of PD-L1(CD274) expression 5.624577e-01 0.250
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 5.634159e-01 0.249
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 5.634159e-01 0.249
R-HSA-9648002 RAS processing 5.634159e-01 0.249
R-HSA-164843 2-LTR circle formation 5.644084e-01 0.248
R-HSA-390450 Folding of actin by CCT/TriC 5.644084e-01 0.248
R-HSA-74749 Signal attenuation 5.644084e-01 0.248
R-HSA-198203 PI3K/AKT activation 5.644084e-01 0.248
R-HSA-1236973 Cross-presentation of particulate exogenous antigens (phagosomes) 5.644084e-01 0.248
R-HSA-9668250 Defective factor IX causes hemophilia B 5.644084e-01 0.248
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 5.644084e-01 0.248
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 5.644084e-01 0.248
R-HSA-9020956 Interleukin-27 signaling 5.644084e-01 0.248
R-HSA-9683686 Maturation of spike protein 5.644084e-01 0.248
R-HSA-382556 ABC-family proteins mediated transport 5.646118e-01 0.248
R-HSA-3000178 ECM proteoglycans 5.683693e-01 0.245
R-HSA-5654688 SHC-mediated cascade:FGFR1 5.713132e-01 0.243
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 5.713132e-01 0.243
R-HSA-8951664 Neddylation 5.757801e-01 0.240
R-HSA-70268 Pyruvate metabolism 5.762087e-01 0.239
R-HSA-9670095 Inhibition of DNA recombination at telomere 5.778890e-01 0.238
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 5.778890e-01 0.238
R-HSA-5696395 Formation of Incision Complex in GG-NER 5.778890e-01 0.238
R-HSA-1251985 Nuclear signaling by ERBB4 5.778890e-01 0.238
R-HSA-5578749 Transcriptional regulation by small RNAs 5.794246e-01 0.237
R-HSA-9842860 Regulation of endogenous retroelements 5.832670e-01 0.234
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 5.842640e-01 0.233
R-HSA-1474165 Reproduction 5.876757e-01 0.231
R-HSA-9839394 TGFBR3 expression 5.890675e-01 0.230
R-HSA-3214842 HDMs demethylate histones 5.890675e-01 0.230
R-HSA-9759811 Regulation of CDH11 mRNA translation by microRNAs 5.913945e-01 0.228
R-HSA-192905 vRNP Assembly 5.913945e-01 0.228
R-HSA-71032 Propionyl-CoA catabolism 5.913945e-01 0.228
R-HSA-9706019 RHOBTB3 ATPase cycle 5.913945e-01 0.228
R-HSA-9020558 Interleukin-2 signaling 5.913945e-01 0.228
R-HSA-9694548 Maturation of spike protein 5.920565e-01 0.228
R-HSA-3214841 PKMTs methylate histone lysines 5.920565e-01 0.228
R-HSA-70326 Glucose metabolism 5.982687e-01 0.223
R-HSA-5673001 RAF/MAP kinase cascade 5.982957e-01 0.223
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 6.015232e-01 0.221
R-HSA-9656223 Signaling by RAF1 mutants 6.059125e-01 0.218
R-HSA-5674135 MAP2K and MAPK activation 6.059125e-01 0.218
R-HSA-6811438 Intra-Golgi traffic 6.059125e-01 0.218
R-HSA-9683701 Translation of Structural Proteins 6.059125e-01 0.218
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 6.062690e-01 0.217
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 6.062690e-01 0.217
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 6.062690e-01 0.217
R-HSA-8874081 MET activates PTK2 signaling 6.062690e-01 0.217
R-HSA-9638630 Attachment of bacteria to epithelial cells 6.062690e-01 0.217
R-HSA-9637687 Suppression of phagosomal maturation 6.062690e-01 0.217
R-HSA-112315 Transmission across Chemical Synapses 6.081286e-01 0.216
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 6.116602e-01 0.213
R-HSA-8878166 Transcriptional regulation by RUNX2 6.150593e-01 0.211
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 6.154303e-01 0.211
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 6.167101e-01 0.210
R-HSA-2022923 DS-GAG biosynthesis 6.167101e-01 0.210
R-HSA-1250342 PI3K events in ERBB4 signaling 6.167101e-01 0.210
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 6.167101e-01 0.210
R-HSA-5339716 Signaling by GSK3beta mutants 6.167101e-01 0.210
R-HSA-416550 Sema4D mediated inhibition of cell attachment and migration 6.167101e-01 0.210
R-HSA-418359 Reduction of cytosolic Ca++ levels 6.167101e-01 0.210
R-HSA-162592 Integration of provirus 6.167101e-01 0.210
R-HSA-379716 Cytosolic tRNA aminoacylation 6.194522e-01 0.208
R-HSA-111996 Ca-dependent events 6.194522e-01 0.208
R-HSA-73854 RNA Polymerase I Promoter Clearance 6.220755e-01 0.206
R-HSA-1980143 Signaling by NOTCH1 6.220755e-01 0.206
R-HSA-174414 Processive synthesis on the C-strand of the telomere 6.229180e-01 0.206
R-HSA-5654699 SHC-mediated cascade:FGFR2 6.229180e-01 0.206
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 6.229180e-01 0.206
R-HSA-389357 CD28 dependent PI3K/Akt signaling 6.229180e-01 0.206
R-HSA-901032 ER Quality Control Compartment (ERQC) 6.229180e-01 0.206
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 6.249114e-01 0.204
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 6.314358e-01 0.200
R-HSA-8943724 Regulation of PTEN gene transcription 6.314358e-01 0.200
R-HSA-379724 tRNA Aminoacylation 6.314358e-01 0.200
R-HSA-2644603 Signaling by NOTCH1 in Cancer 6.314358e-01 0.200
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 6.314358e-01 0.200
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 6.314358e-01 0.200
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 6.314358e-01 0.200
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 6.314358e-01 0.200
R-HSA-9694635 Translation of Structural Proteins 6.323259e-01 0.199
R-HSA-8854214 TBC/RABGAPs 6.326721e-01 0.199
R-HSA-156842 Eukaryotic Translation Elongation 6.342568e-01 0.198
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 6.342568e-01 0.198
R-HSA-5684996 MAPK1/MAPK3 signaling 6.364868e-01 0.196
R-HSA-9755511 KEAP1-NFE2L2 pathway 6.383841e-01 0.195
R-HSA-201681 TCF dependent signaling in response to WNT 6.386769e-01 0.195
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 6.404588e-01 0.194
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 6.404588e-01 0.194
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 6.404588e-01 0.194
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 6.404588e-01 0.194
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 6.404588e-01 0.194
R-HSA-9931530 Phosphorylation and nuclear translocation of the CRY:PER:kinase complex 6.404588e-01 0.194
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 6.404588e-01 0.194
R-HSA-380615 Serotonin clearance from the synaptic cleft 6.404588e-01 0.194
R-HSA-8851805 MET activates RAS signaling 6.404588e-01 0.194
R-HSA-8983432 Interleukin-15 signaling 6.404588e-01 0.194
R-HSA-1679131 Trafficking and processing of endosomal TLR 6.404588e-01 0.194
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 6.404588e-01 0.194
R-HSA-9697154 Disorders of Nervous System Development 6.404588e-01 0.194
R-HSA-9005895 Pervasive developmental disorders 6.404588e-01 0.194
R-HSA-8984722 Interleukin-35 Signalling 6.404588e-01 0.194
R-HSA-8983711 OAS antiviral response 6.404588e-01 0.194
R-HSA-73864 RNA Polymerase I Transcription 6.424049e-01 0.192
R-HSA-168325 Viral Messenger RNA Synthesis 6.426756e-01 0.192
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 6.455599e-01 0.190
R-HSA-69231 Cyclin D associated events in G1 6.455694e-01 0.190
R-HSA-69236 G1 Phase 6.455694e-01 0.190
R-HSA-5683057 MAPK family signaling cascades 6.478421e-01 0.189
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 6.525302e-01 0.185
R-HSA-9609507 Protein localization 6.526571e-01 0.185
R-HSA-9609646 HCMV Infection 6.528260e-01 0.185
R-HSA-1268020 Mitochondrial protein import 6.536880e-01 0.185
R-HSA-5656169 Termination of translesion DNA synthesis 6.545699e-01 0.184
R-HSA-3247509 Chromatin modifying enzymes 6.552348e-01 0.184
R-HSA-9948299 Ribosome-associated quality control 6.574028e-01 0.182
R-HSA-9711123 Cellular response to chemical stress 6.616161e-01 0.179
R-HSA-72306 tRNA processing 6.620936e-01 0.179
R-HSA-8949664 Processing of SMDT1 6.627373e-01 0.179
R-HSA-170968 Frs2-mediated activation 6.627373e-01 0.179
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 6.627373e-01 0.179
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 6.627373e-01 0.179
R-HSA-1059683 Interleukin-6 signaling 6.627373e-01 0.179
R-HSA-9682706 Replication of the SARS-CoV-1 genome 6.627373e-01 0.179
R-HSA-168273 Influenza Viral RNA Transcription and Replication 6.666104e-01 0.176
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 6.695829e-01 0.174
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 6.695829e-01 0.174
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 6.702331e-01 0.174
R-HSA-9649948 Signaling downstream of RAS mutants 6.703908e-01 0.174
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 6.703908e-01 0.174
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 6.703908e-01 0.174
R-HSA-6802949 Signaling by RAS mutants 6.703908e-01 0.174
R-HSA-2428924 IGF1R signaling cascade 6.750223e-01 0.171
R-HSA-112316 Neuronal System 6.834997e-01 0.165
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 6.836366e-01 0.165
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 6.836366e-01 0.165
R-HSA-8963896 HDL assembly 6.836366e-01 0.165
R-HSA-9764562 Regulation of CDH1 mRNA translation by microRNAs 6.836366e-01 0.165
R-HSA-2032785 YAP1- and WWTR1 (TAZ)-stimulated gene expression 6.836366e-01 0.165
R-HSA-9018681 Biosynthesis of protectins 6.836366e-01 0.165
R-HSA-5607763 CLEC7A (Dectin-1) induces NFAT activation 6.836366e-01 0.165
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 6.836366e-01 0.165
R-HSA-391160 Signal regulatory protein family interactions 6.836366e-01 0.165
R-HSA-173599 Formation of the active cofactor, UDP-glucuronate 6.836366e-01 0.165
R-HSA-9023661 Biosynthesis of E-series 18(R)-resolvins 6.836366e-01 0.165
R-HSA-9856872 Malate-aspartate shuttle 6.836366e-01 0.165
R-HSA-5655291 Signaling by FGFR4 in disease 6.836366e-01 0.165
R-HSA-1433559 Regulation of KIT signaling 6.836366e-01 0.165
R-HSA-1482798 Acyl chain remodeling of CL 6.836366e-01 0.165
R-HSA-9679514 SARS-CoV-1 Genome Replication and Transcription 6.836366e-01 0.165
R-HSA-162588 Budding and maturation of HIV virion 6.840631e-01 0.165
R-HSA-9913351 Formation of the dystrophin-glycoprotein complex (DGC) 6.840631e-01 0.165
R-HSA-5694530 Cargo concentration in the ER 6.840631e-01 0.165
R-HSA-9833109 Evasion by RSV of host interferon responses 6.840631e-01 0.165
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 6.853414e-01 0.164
R-HSA-388841 Regulation of T cell activation by CD28 family 6.858501e-01 0.164
R-HSA-9634597 GPER1 signaling 6.939132e-01 0.159
R-HSA-425410 Metal ion SLC transporters 6.939132e-01 0.159
R-HSA-9031628 NGF-stimulated transcription 6.939132e-01 0.159
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 6.954275e-01 0.158
R-HSA-6782315 tRNA modification in the nucleus and cytosol 6.954275e-01 0.158
R-HSA-8948700 Competing endogenous RNAs (ceRNAs) regulate PTEN translation 7.032420e-01 0.153
R-HSA-196299 Beta-catenin phosphorylation cascade 7.032420e-01 0.153
R-HSA-180336 SHC1 events in EGFR signaling 7.032420e-01 0.153
R-HSA-8964315 G beta:gamma signalling through BTK 7.032420e-01 0.153
R-HSA-6785631 ERBB2 Regulates Cell Motility 7.032420e-01 0.153
R-HSA-174430 Telomere C-strand synthesis initiation 7.032420e-01 0.153
R-HSA-418885 DCC mediated attractive signaling 7.032420e-01 0.153
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 7.032420e-01 0.153
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 7.032420e-01 0.153
R-HSA-171007 p38MAPK events 7.032420e-01 0.153
R-HSA-73893 DNA Damage Bypass 7.051895e-01 0.152
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 7.051895e-01 0.152
R-HSA-2871837 FCERI mediated NF-kB activation 7.066320e-01 0.151
R-HSA-199418 Negative regulation of the PI3K/AKT network 7.074145e-01 0.150
R-HSA-68616 Assembly of the ORC complex at the origin of replication 7.114596e-01 0.148
R-HSA-354192 Integrin signaling 7.114596e-01 0.148
R-HSA-1362300 Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... 7.216336e-01 0.142
R-HSA-168275 Entry of Influenza Virion into Host Cell via Endocytosis 7.216336e-01 0.142
R-HSA-5083625 Defective GALNT3 causes HFTC 7.216336e-01 0.142
R-HSA-169893 Prolonged ERK activation events 7.216336e-01 0.142
R-HSA-9754706 Atorvastatin ADME 7.216336e-01 0.142
R-HSA-434316 Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion 7.216336e-01 0.142
R-HSA-9664420 Killing mechanisms 7.216336e-01 0.142
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 7.216336e-01 0.142
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 7.216336e-01 0.142
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 7.216336e-01 0.142
R-HSA-140534 Caspase activation via Death Receptors in the presence of ligand 7.216336e-01 0.142
R-HSA-6803207 TP53 Regulates Transcription of Caspase Activators and Caspases 7.216336e-01 0.142
R-HSA-168268 Virus Assembly and Release 7.216336e-01 0.142
R-HSA-2024101 CS/DS degradation 7.243954e-01 0.140
R-HSA-114508 Effects of PIP2 hydrolysis 7.243954e-01 0.140
R-HSA-199220 Vitamin B5 (pantothenate) metabolism 7.243954e-01 0.140
R-HSA-5223345 Miscellaneous transport and binding events 7.243954e-01 0.140
R-HSA-912446 Meiotic recombination 7.267828e-01 0.139
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 7.275373e-01 0.138
R-HSA-5673000 RAF activation 7.368372e-01 0.133
R-HSA-6814122 Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 7.368372e-01 0.133
R-HSA-5696400 Dual Incision in GG-NER 7.368372e-01 0.133
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 7.368372e-01 0.133
R-HSA-203615 eNOS activation 7.368372e-01 0.133
R-HSA-1980145 Signaling by NOTCH2 7.368372e-01 0.133
R-HSA-8964616 G beta:gamma signalling through CDC42 7.388864e-01 0.131
R-HSA-1250347 SHC1 events in ERBB4 signaling 7.388864e-01 0.131
R-HSA-1963640 GRB2 events in ERBB2 signaling 7.388864e-01 0.131
R-HSA-4420332 Defective B3GALT6 causes EDSP2 and SEMDJL1 7.388864e-01 0.131
R-HSA-3560783 Defective B4GALT7 causes EDS, progeroid type 7.388864e-01 0.131
R-HSA-6783984 Glycine degradation 7.388864e-01 0.131
R-HSA-9651496 Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) 7.388864e-01 0.131
R-HSA-964975 Vitamin B6 activation to pyridoxal phosphate 7.388864e-01 0.131
R-HSA-399997 Acetylcholine regulates insulin secretion 7.388864e-01 0.131
R-HSA-196783 Coenzyme A biosynthesis 7.388864e-01 0.131
R-HSA-9675151 Disorders of Developmental Biology 7.388864e-01 0.131
R-HSA-9027307 Biosynthesis of maresin-like SPMs 7.388864e-01 0.131
R-HSA-389948 Co-inhibition by PD-1 7.412153e-01 0.130
R-HSA-156902 Peptide chain elongation 7.414541e-01 0.130
R-HSA-111885 Opioid Signalling 7.425558e-01 0.129
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 7.487967e-01 0.126
R-HSA-3296482 Defects in vitamin and cofactor metabolism 7.487967e-01 0.126
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 7.550708e-01 0.122
R-HSA-5083632 Defective C1GALT1C1 causes TNPS 7.550708e-01 0.122
R-HSA-3560801 Defective B3GAT3 causes JDSSDHD 7.550708e-01 0.122
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 7.550708e-01 0.122
R-HSA-9020265 Biosynthesis of aspirin-triggered D-series resolvins 7.550708e-01 0.122
R-HSA-9768759 Regulation of NPAS4 gene expression 7.550708e-01 0.122
R-HSA-5210891 Uptake and function of anthrax toxins 7.550708e-01 0.122
R-HSA-9694686 Replication of the SARS-CoV-2 genome 7.550708e-01 0.122
R-HSA-3371556 Cellular response to heat stress 7.582041e-01 0.120
R-HSA-9749641 Aspirin ADME 7.595313e-01 0.119
R-HSA-5663084 Diseases of carbohydrate metabolism 7.595313e-01 0.119
R-HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 7.602857e-01 0.119
R-HSA-111933 Calmodulin induced events 7.602857e-01 0.119
R-HSA-111997 CaM pathway 7.602857e-01 0.119
R-HSA-163560 Triglyceride catabolism 7.602857e-01 0.119
R-HSA-9753281 Paracetamol ADME 7.662227e-01 0.116
R-HSA-1226099 Signaling by FGFR in disease 7.677749e-01 0.115
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 7.702530e-01 0.113
R-HSA-418217 G beta:gamma signalling through PLC beta 7.702530e-01 0.113
R-HSA-500657 Presynaptic function of Kainate receptors 7.702530e-01 0.113
R-HSA-8849932 Synaptic adhesion-like molecules 7.702530e-01 0.113
R-HSA-432142 Platelet sensitization by LDL 7.702530e-01 0.113
R-HSA-111471 Apoptotic factor-mediated response 7.702530e-01 0.113
R-HSA-211000 Gene Silencing by RNA 7.707862e-01 0.113
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 7.710899e-01 0.113
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 7.753261e-01 0.111
R-HSA-3000171 Non-integrin membrane-ECM interactions 7.757957e-01 0.110
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 7.757957e-01 0.110
R-HSA-74752 Signaling by Insulin receptor 7.792127e-01 0.108
R-HSA-9772573 Late SARS-CoV-2 Infection Events 7.792127e-01 0.108
R-HSA-9958790 SLC-mediated transport of inorganic anions 7.819022e-01 0.107
R-HSA-9931953 Biofilm formation 7.819022e-01 0.107
R-HSA-8875878 MET promotes cell motility 7.819022e-01 0.107
R-HSA-5654710 PI-3K cascade:FGFR3 7.844950e-01 0.105
R-HSA-9671793 Diseases of hemostasis 7.844950e-01 0.105
R-HSA-9834899 Specification of the neural plate border 7.844950e-01 0.105
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 7.844950e-01 0.105
R-HSA-844456 The NLRP3 inflammasome 7.844950e-01 0.105
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 7.844950e-01 0.105
R-HSA-9913635 Strand-asynchronous mitochondrial DNA replication 7.844950e-01 0.105
R-HSA-9694682 SARS-CoV-2 Genome Replication and Transcription 7.844950e-01 0.105
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 7.870937e-01 0.104
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 7.896707e-01 0.103
R-HSA-1483257 Phospholipid metabolism 7.897024e-01 0.103
R-HSA-9725554 Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin 7.920550e-01 0.101
R-HSA-8953750 Transcriptional Regulation by E2F6 7.920550e-01 0.101
R-HSA-9909620 Regulation of PD-L1(CD274) translation 7.978550e-01 0.098
R-HSA-163210 Formation of ATP by chemiosmotic coupling 7.978550e-01 0.098
R-HSA-5654720 PI-3K cascade:FGFR4 7.978550e-01 0.098
R-HSA-1362409 Mitochondrial iron-sulfur cluster biogenesis 7.978550e-01 0.098
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 7.978550e-01 0.098
R-HSA-71288 Creatine metabolism 7.978550e-01 0.098
R-HSA-9629569 Protein hydroxylation 7.978550e-01 0.098
R-HSA-445144 Signal transduction by L1 7.978550e-01 0.098
R-HSA-140875 Common Pathway of Fibrin Clot Formation 7.978550e-01 0.098
R-HSA-216083 Integrin cell surface interactions 7.985484e-01 0.098
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 7.997451e-01 0.097
R-HSA-9033241 Peroxisomal protein import 8.008997e-01 0.096
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 8.008997e-01 0.096
R-HSA-195721 Signaling by WNT 8.015610e-01 0.096
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 8.017882e-01 0.096
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 8.017882e-01 0.096
R-HSA-451927 Interleukin-2 family signaling 8.017882e-01 0.096
R-HSA-202433 Generation of second messenger molecules 8.017882e-01 0.096
R-HSA-72764 Eukaryotic Translation Termination 8.062454e-01 0.094
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 8.088637e-01 0.092
R-HSA-351202 Metabolism of polyamines 8.088637e-01 0.092
R-HSA-5602498 MyD88 deficiency (TLR2/4) 8.103874e-01 0.091
R-HSA-202040 G-protein activation 8.103874e-01 0.091
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 8.103874e-01 0.091
R-HSA-9018896 Biosynthesis of E-series 18(S)-resolvins 8.103874e-01 0.091
R-HSA-196836 Vitamin C (ascorbate) metabolism 8.103874e-01 0.091
R-HSA-1482925 Acyl chain remodelling of PG 8.103874e-01 0.091
R-HSA-162594 Early Phase of HIV Life Cycle 8.103874e-01 0.091
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 8.111146e-01 0.091
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 8.111146e-01 0.091
R-HSA-5423646 Aflatoxin activation and detoxification 8.111146e-01 0.091
R-HSA-446203 Asparagine N-linked glycosylation 8.192313e-01 0.087
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 8.193992e-01 0.087
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 8.200473e-01 0.086
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 8.200473e-01 0.086
R-HSA-2022870 CS-GAG biosynthesis 8.221436e-01 0.085
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 8.221436e-01 0.085
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 8.221436e-01 0.085
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 8.221436e-01 0.085
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 8.221436e-01 0.085
R-HSA-977347 Serine metabolism 8.221436e-01 0.085
R-HSA-174403 Glutathione synthesis and recycling 8.221436e-01 0.085
R-HSA-9707616 Heme signaling 8.239858e-01 0.084
R-HSA-375165 NCAM signaling for neurite out-growth 8.239858e-01 0.084
R-HSA-5576891 Cardiac conduction 8.279835e-01 0.082
R-HSA-212165 Epigenetic regulation of gene expression 8.295063e-01 0.081
R-HSA-909733 Interferon alpha/beta signaling 8.311314e-01 0.080
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 8.311561e-01 0.080
R-HSA-1474228 Degradation of the extracellular matrix 8.330047e-01 0.079
R-HSA-6803529 FGFR2 alternative splicing 8.331715e-01 0.079
R-HSA-5654689 PI-3K cascade:FGFR1 8.331715e-01 0.079
R-HSA-912694 Regulation of IFNA/IFNB signaling 8.331715e-01 0.079
R-HSA-9018676 Biosynthesis of D-series resolvins 8.331715e-01 0.079
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 8.331715e-01 0.079
R-HSA-975578 Reactions specific to the complex N-glycan synthesis pathway 8.331715e-01 0.079
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 8.331715e-01 0.079
R-HSA-9669938 Signaling by KIT in disease 8.331715e-01 0.079
R-HSA-9758941 Gastrulation 8.356860e-01 0.078
R-HSA-9637690 Response of Mtb to phagocytosis 8.367834e-01 0.077
R-HSA-211981 Xenobiotics 8.380740e-01 0.077
R-HSA-109582 Hemostasis 8.396892e-01 0.076
R-HSA-2408557 Selenocysteine synthesis 8.417866e-01 0.075
R-HSA-977068 Termination of O-glycan biosynthesis 8.435163e-01 0.074
R-HSA-8854691 Interleukin-20 family signaling 8.435163e-01 0.074
R-HSA-400451 Free fatty acids regulate insulin secretion 8.435163e-01 0.074
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 8.435163e-01 0.074
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 8.435163e-01 0.074
R-HSA-982772 Growth hormone receptor signaling 8.435163e-01 0.074
R-HSA-9018682 Biosynthesis of maresins 8.435163e-01 0.074
R-HSA-3214858 RMTs methylate histone arginines 8.446122e-01 0.073
R-HSA-373752 Netrin-1 signaling 8.446122e-01 0.073
R-HSA-2142691 Synthesis of Leukotrienes (LT) and Eoxins (EX) 8.446122e-01 0.073
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 8.491405e-01 0.071
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 8.520985e-01 0.070
R-HSA-774815 Nucleosome assembly 8.520985e-01 0.070
R-HSA-1489509 DAG and IP3 signaling 8.520985e-01 0.070
R-HSA-76009 Platelet Aggregation (Plug Formation) 8.520985e-01 0.070
R-HSA-192823 Viral mRNA Translation 8.523732e-01 0.069
R-HSA-8963898 Plasma lipoprotein assembly 8.532202e-01 0.069
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 8.532202e-01 0.069
R-HSA-5621575 CD209 (DC-SIGN) signaling 8.532202e-01 0.069
R-HSA-9703648 Signaling by FLT3 ITD and TKD mutants 8.532202e-01 0.069
R-HSA-6783589 Interleukin-6 family signaling 8.532202e-01 0.069
R-HSA-983712 Ion channel transport 8.542649e-01 0.068
R-HSA-2299718 Condensation of Prophase Chromosomes 8.592545e-01 0.066
R-HSA-9839373 Signaling by TGFBR3 8.592545e-01 0.066
R-HSA-8878171 Transcriptional regulation by RUNX1 8.604444e-01 0.065
R-HSA-73886 Chromosome Maintenance 8.607732e-01 0.065
R-HSA-9759194 Nuclear events mediated by NFE2L2 8.607732e-01 0.065
R-HSA-1989781 PPARA activates gene expression 8.617017e-01 0.065
R-HSA-174411 Polymerase switching on the C-strand of the telomere 8.623229e-01 0.064
R-HSA-5654695 PI-3K cascade:FGFR2 8.623229e-01 0.064
R-HSA-9620244 Long-term potentiation 8.623229e-01 0.064
R-HSA-389887 Beta-oxidation of pristanoyl-CoA 8.623229e-01 0.064
R-HSA-9830364 Formation of the nephric duct 8.623229e-01 0.064
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 8.623229e-01 0.064
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 8.695963e-01 0.061
R-HSA-8934593 Regulation of RUNX1 Expression and Activity 8.708616e-01 0.060
R-HSA-1855183 Synthesis of IP2, IP, and Ins in the cytosol 8.708616e-01 0.060
R-HSA-9845614 Sphingolipid catabolism 8.708616e-01 0.060
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 8.708616e-01 0.060
R-HSA-9865118 Diseases of branched-chain amino acid catabolism 8.708616e-01 0.060
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 8.708616e-01 0.060
R-HSA-70263 Gluconeogenesis 8.726241e-01 0.059
R-HSA-6809371 Formation of the cornified envelope 8.739039e-01 0.059
R-HSA-9764560 Regulation of CDH1 Gene Transcription 8.746336e-01 0.058
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 8.762821e-01 0.057
R-HSA-112310 Neurotransmitter release cycle 8.763916e-01 0.057
R-HSA-389661 Glyoxylate metabolism and glycine degradation 8.788613e-01 0.056
R-HSA-171306 Packaging Of Telomere Ends 8.788712e-01 0.056
R-HSA-8949613 Cristae formation 8.788712e-01 0.056
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 8.788712e-01 0.056
R-HSA-3928663 EPHA-mediated growth cone collapse 8.788712e-01 0.056
R-HSA-193807 Synthesis of bile acids and bile salts via 27-hydroxycholesterol 8.788712e-01 0.056
R-HSA-5655332 Signaling by FGFR3 in disease 8.788712e-01 0.056
R-HSA-1266738 Developmental Biology 8.792856e-01 0.056
R-HSA-9748787 Azathioprine ADME 8.848154e-01 0.053
R-HSA-171319 Telomere Extension By Telomerase 8.863845e-01 0.052
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 8.863845e-01 0.052
R-HSA-451326 Activation of kainate receptors upon glutamate binding 8.863845e-01 0.052
R-HSA-622312 Inflammasomes 8.863845e-01 0.052
R-HSA-9757110 Prednisone ADME 8.863845e-01 0.052
R-HSA-168249 Innate Immune System 8.886203e-01 0.051
R-HSA-72086 mRNA Capping 8.934322e-01 0.049
R-HSA-209968 Thyroxine biosynthesis 8.934322e-01 0.049
R-HSA-5334118 DNA methylation 8.934322e-01 0.049
R-HSA-418360 Platelet calcium homeostasis 8.934322e-01 0.049
R-HSA-9018679 Biosynthesis of EPA-derived SPMs 8.934322e-01 0.049
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 8.944129e-01 0.048
R-HSA-73772 RNA Polymerase I Promoter Escape 8.959182e-01 0.048
R-HSA-5339562 Uptake and actions of bacterial toxins 8.959182e-01 0.048
R-HSA-2871796 FCERI mediated MAPK activation 8.968173e-01 0.047
R-HSA-1474290 Collagen formation 8.985415e-01 0.046
R-HSA-9837999 Mitochondrial protein degradation 8.985415e-01 0.046
R-HSA-917937 Iron uptake and transport 8.993077e-01 0.046
R-HSA-888590 GABA synthesis, release, reuptake and degradation 9.000431e-01 0.046
R-HSA-2206281 Mucopolysaccharidoses 9.000431e-01 0.046
R-HSA-112311 Neurotransmitter clearance 9.000431e-01 0.046
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 9.000431e-01 0.046
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 9.062443e-01 0.043
R-HSA-8963693 Aspartate and asparagine metabolism 9.062443e-01 0.043
R-HSA-1793185 Chondroitin sulfate/dermatan sulfate metabolism 9.107173e-01 0.041
R-HSA-9012852 Signaling by NOTCH3 9.107173e-01 0.041
R-HSA-4791275 Signaling by WNT in cancer 9.120611e-01 0.040
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 9.120611e-01 0.040
R-HSA-69190 DNA strand elongation 9.120611e-01 0.040
R-HSA-157579 Telomere Maintenance 9.136653e-01 0.039
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.143338e-01 0.039
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 9.157991e-01 0.038
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 9.175173e-01 0.037
R-HSA-5619115 Disorders of transmembrane transporters 9.192493e-01 0.037
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 9.217292e-01 0.035
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 9.226354e-01 0.035
R-HSA-8964539 Glutamate and glutamine metabolism 9.226354e-01 0.035
R-HSA-189483 Heme degradation 9.226354e-01 0.035
R-HSA-6782135 Dual incision in TC-NER 9.235262e-01 0.035
R-HSA-180786 Extension of Telomeres 9.273963e-01 0.033
R-HSA-8979227 Triglyceride metabolism 9.273963e-01 0.033
R-HSA-352230 Amino acid transport across the plasma membrane 9.273963e-01 0.033
R-HSA-1971475 Glycosaminoglycan-protein linkage region biosynthesis 9.274361e-01 0.033
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 9.274361e-01 0.033
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 9.274361e-01 0.033
R-HSA-392518 Signal amplification 9.274361e-01 0.033
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 9.274361e-01 0.033
R-HSA-8873719 RAB geranylgeranylation 9.310810e-01 0.031
R-HSA-1660661 Sphingolipid de novo biosynthesis 9.310810e-01 0.031
R-HSA-917977 Transferrin endocytosis and recycling 9.319392e-01 0.031
R-HSA-381042 PERK regulates gene expression 9.319392e-01 0.031
R-HSA-2408508 Metabolism of ingested SeMet, Sec, MeSec into H2Se 9.319392e-01 0.031
R-HSA-193775 Synthesis of bile acids and bile salts via 24-hydroxycholesterol 9.319392e-01 0.031
R-HSA-168256 Immune System 9.320703e-01 0.031
R-HSA-877300 Interferon gamma signaling 9.343168e-01 0.030
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.350466e-01 0.029
R-HSA-9664407 Parasite infection 9.350466e-01 0.029
R-HSA-9664417 Leishmania phagocytosis 9.350466e-01 0.029
R-HSA-3371511 HSF1 activation 9.361631e-01 0.029
R-HSA-8941326 RUNX2 regulates bone development 9.361631e-01 0.029
R-HSA-933541 TRAF6 mediated IRF7 activation 9.401251e-01 0.027
R-HSA-110331 Cleavage of the damaged purine 9.401251e-01 0.027
R-HSA-390247 Beta-oxidation of very long chain fatty acids 9.401251e-01 0.027
R-HSA-419037 NCAM1 interactions 9.401251e-01 0.027
R-HSA-8948216 Collagen chain trimerization 9.401251e-01 0.027
R-HSA-157118 Signaling by NOTCH 9.427068e-01 0.026
R-HSA-6785470 tRNA processing in the mitochondrion 9.438415e-01 0.025
R-HSA-73927 Depurination 9.438415e-01 0.025
R-HSA-2046106 alpha-linolenic acid (ALA) metabolism 9.438415e-01 0.025
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 9.438415e-01 0.025
R-HSA-74217 Purine salvage 9.438415e-01 0.025
R-HSA-74751 Insulin receptor signalling cascade 9.441224e-01 0.025
R-HSA-2408522 Selenoamino acid metabolism 9.448046e-01 0.025
R-HSA-72766 Translation 9.466074e-01 0.024
R-HSA-381771 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 9.473273e-01 0.023
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 9.473273e-01 0.023
R-HSA-2672351 Stimuli-sensing channels 9.476836e-01 0.023
R-HSA-3371568 Attenuation phase 9.505970e-01 0.022
R-HSA-8868766 rRNA processing in the mitochondrion 9.505970e-01 0.022
R-HSA-975576 N-glycan antennae elongation in the medial/trans-Golgi 9.505970e-01 0.022
R-HSA-71240 Tryptophan catabolism 9.505970e-01 0.022
R-HSA-379726 Mitochondrial tRNA aminoacylation 9.505970e-01 0.022
R-HSA-193368 Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 9.523245e-01 0.021
R-HSA-196071 Metabolism of steroid hormones 9.523245e-01 0.021
R-HSA-9958863 SLC-mediated transport of amino acids 9.523245e-01 0.021
R-HSA-73933 Resolution of Abasic Sites (AP sites) 9.536640e-01 0.021
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 9.536640e-01 0.021
R-HSA-913709 O-linked glycosylation of mucins 9.547932e-01 0.020
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 9.547932e-01 0.020
R-HSA-3000480 Scavenging by Class A Receptors 9.565407e-01 0.019
R-HSA-442660 SLC-mediated transport of neurotransmitters 9.565407e-01 0.019
R-HSA-400508 Incretin synthesis, secretion, and inactivation 9.592389e-01 0.018
R-HSA-110329 Cleavage of the damaged pyrimidine 9.592389e-01 0.018
R-HSA-73928 Depyrimidination 9.592389e-01 0.018
R-HSA-392499 Metabolism of proteins 9.594252e-01 0.018
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 9.614866e-01 0.017
R-HSA-1474244 Extracellular matrix organization 9.617705e-01 0.017
R-HSA-5683826 Surfactant metabolism 9.641437e-01 0.016
R-HSA-3560782 Diseases associated with glycosaminoglycan metabolism 9.663703e-01 0.015
R-HSA-1614558 Degradation of cysteine and homocysteine 9.663703e-01 0.015
R-HSA-1222556 ROS and RNS production in phagocytes 9.672230e-01 0.014
R-HSA-1592230 Mitochondrial biogenesis 9.675842e-01 0.014
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 9.681673e-01 0.014
R-HSA-72165 mRNA Splicing - Minor Pathway 9.684588e-01 0.014
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 9.684588e-01 0.014
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 9.684588e-01 0.014
R-HSA-2514859 Inactivation, recovery and regulation of the phototransduction cascade 9.684588e-01 0.014
R-HSA-2046104 alpha-linolenic (omega3) and linoleic (omega6) acid metabolism 9.704177e-01 0.013
R-HSA-1483191 Synthesis of PC 9.704177e-01 0.013
R-HSA-3214847 HATs acetylate histones 9.713831e-01 0.013
R-HSA-192105 Synthesis of bile acids and bile salts 9.713831e-01 0.013
R-HSA-1483206 Glycerophospholipid biosynthesis 9.722517e-01 0.012
R-HSA-109704 PI3K Cascade 9.755947e-01 0.011
R-HSA-5655253 Signaling by FGFR2 in disease 9.755947e-01 0.011
R-HSA-3371571 HSF1-dependent transactivation 9.771108e-01 0.010
R-HSA-70895 Branched-chain amino acid catabolism 9.771108e-01 0.010
R-HSA-2514856 The phototransduction cascade 9.771108e-01 0.010
R-HSA-9018677 Biosynthesis of DHA-derived SPMs 9.775859e-01 0.010
R-HSA-9833110 RSV-host interactions 9.786607e-01 0.009
R-HSA-9707564 Cytoprotection by HMOX1 9.799100e-01 0.009
R-HSA-73929 Base-Excision Repair, AP Site Formation 9.811175e-01 0.008
R-HSA-418597 G alpha (z) signalling events 9.822907e-01 0.008
R-HSA-209776 Metabolism of amine-derived hormones 9.833912e-01 0.007
R-HSA-1614635 Sulfur amino acid metabolism 9.838778e-01 0.007
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.838778e-01 0.007
R-HSA-194068 Bile acid and bile salt metabolism 9.841532e-01 0.007
R-HSA-9843745 Adipogenesis 9.842928e-01 0.007
R-HSA-112399 IRS-mediated signalling 9.844233e-01 0.007
R-HSA-1483166 Synthesis of PA 9.844233e-01 0.007
R-HSA-5621480 Dectin-2 family 9.844233e-01 0.007
R-HSA-9748784 Drug ADME 9.846024e-01 0.007
R-HSA-9772572 Early SARS-CoV-2 Infection Events 9.853914e-01 0.006
R-HSA-4085001 Sialic acid metabolism 9.862993e-01 0.006
R-HSA-73884 Base Excision Repair 9.870797e-01 0.006
R-HSA-156590 Glutathione conjugation 9.871509e-01 0.006
R-HSA-1912408 Pre-NOTCH Transcription and Translation 9.877779e-01 0.005
R-HSA-2428928 IRS-related events triggered by IGF1R 9.879495e-01 0.005
R-HSA-211976 Endogenous sterols 9.879495e-01 0.005
R-HSA-8956321 Nucleotide salvage 9.879495e-01 0.005
R-HSA-1442490 Collagen degradation 9.879495e-01 0.005
R-HSA-9616222 Transcriptional regulation of granulopoiesis 9.886986e-01 0.005
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.901040e-01 0.004
R-HSA-5663205 Infectious disease 9.913540e-01 0.004
R-HSA-5619102 SLC transporter disorders 9.916614e-01 0.004
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 9.917332e-01 0.004
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 9.917332e-01 0.004
R-HSA-1296071 Potassium Channels 9.917332e-01 0.004
R-HSA-9830369 Kidney development 9.918013e-01 0.004
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 9.923111e-01 0.003
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.932377e-01 0.003
R-HSA-418555 G alpha (s) signalling events 9.933451e-01 0.003
R-HSA-8978934 Metabolism of cofactors 9.936583e-01 0.003
R-HSA-189445 Metabolism of porphyrins 9.936583e-01 0.003
R-HSA-416476 G alpha (q) signalling events 9.938737e-01 0.003
R-HSA-499943 Interconversion of nucleotide di- and triphosphates 9.940528e-01 0.003
R-HSA-418346 Platelet homeostasis 9.955587e-01 0.002
R-HSA-9610379 HCMV Late Events 9.958608e-01 0.002
R-HSA-6783783 Interleukin-10 signaling 9.959548e-01 0.002
R-HSA-6805567 Keratinization 9.960830e-01 0.002
R-HSA-5579029 Metabolic disorders of biological oxidation enzymes 9.962065e-01 0.002
R-HSA-163685 Integration of energy metabolism 9.967756e-01 0.001
R-HSA-1912422 Pre-NOTCH Expression and Processing 9.970206e-01 0.001
R-HSA-390918 Peroxisomal lipid metabolism 9.972489e-01 0.001
R-HSA-211897 Cytochrome P450 - arranged by substrate type 9.974720e-01 0.001
R-HSA-2029485 Role of phospholipids in phagocytosis 9.976312e-01 0.001
R-HSA-1643685 Disease 9.976702e-01 0.001
R-HSA-9635486 Infection with Mycobacterium tuberculosis 9.983233e-01 0.001
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.985471e-01 0.001
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.986753e-01 0.001
R-HSA-2142753 Arachidonate metabolism 9.986951e-01 0.001
R-HSA-9658195 Leishmania infection 9.987986e-01 0.001
R-HSA-9824443 Parasitic Infection Pathways 9.987986e-01 0.001
R-HSA-77289 Mitochondrial Fatty Acid Beta-Oxidation 9.988074e-01 0.001
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 9.988283e-01 0.001
R-HSA-202733 Cell surface interactions at the vascular wall 9.990422e-01 0.000
R-HSA-422356 Regulation of insulin secretion 9.990779e-01 0.000
R-HSA-156580 Phase II - Conjugation of compounds 9.991275e-01 0.000
R-HSA-9937383 Mitochondrial ribosome-associated quality control 9.993316e-01 0.000
R-HSA-1630316 Glycosaminoglycan metabolism 9.993559e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.994079e-01 0.000
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 9.994123e-01 0.000
R-HSA-5619507 Activation of HOX genes during differentiation 9.994123e-01 0.000
R-HSA-163125 Post-translational modification: synthesis of GPI-anchored proteins 9.994123e-01 0.000
R-HSA-5173105 O-linked glycosylation 9.994447e-01 0.000
R-HSA-5368287 Mitochondrial translation 9.994763e-01 0.000
R-HSA-5419276 Mitochondrial translation termination 9.995741e-01 0.000
R-HSA-9018678 Biosynthesis of specialized proresolving mediators (SPMs) 9.996318e-01 0.000
R-HSA-2980736 Peptide hormone metabolism 9.997763e-01 0.000
R-HSA-3781865 Diseases of glycosylation 9.997852e-01 0.000
R-HSA-375276 Peptide ligand-binding receptors 9.998078e-01 0.000
R-HSA-8957322 Metabolism of steroids 9.998217e-01 0.000
R-HSA-977606 Regulation of Complement cascade 9.998664e-01 0.000
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 9.998748e-01 0.000
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 9.998748e-01 0.000
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 9.998748e-01 0.000
R-HSA-71291 Metabolism of amino acids and derivatives 9.999129e-01 0.000
R-HSA-428157 Sphingolipid metabolism 9.999169e-01 0.000
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.999186e-01 0.000
R-HSA-446219 Synthesis of substrates in N-glycan biosythesis 9.999202e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999672e-01 0.000
R-HSA-166658 Complement cascade 9.999716e-01 0.000
R-HSA-2187338 Visual phototransduction 9.999750e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999811e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999846e-01 0.000
R-HSA-388396 GPCR downstream signalling 9.999846e-01 0.000
R-HSA-446193 Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... 9.999869e-01 0.000
R-HSA-9640148 Infection with Enterobacteria 9.999904e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999927e-01 0.000
R-HSA-418594 G alpha (i) signalling events 9.999968e-01 0.000
R-HSA-611105 Respiratory electron transport 9.999968e-01 0.000
R-HSA-382551 Transport of small molecules 9.999980e-01 0.000
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 9.999981e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.999988e-01 0.000
R-HSA-372790 Signaling by GPCR 9.999993e-01 0.000
R-HSA-211859 Biological oxidations 9.999994e-01 0.000
R-HSA-8978868 Fatty acid metabolism 9.999998e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-500792 GPCR ligand binding 1.000000e+00 0.000
R-HSA-9752946 Expression and translocation of olfactory receptors 1.000000e+00 -0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-381753 Olfactory Signaling Pathway 1.000000e+00 -0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
COTCOT 0.917 0.254 2 0.911
CLK3CLK3 0.906 0.281 1 0.871
CDC7CDC7 0.905 0.122 1 0.905
MOSMOS 0.904 0.219 1 0.923
PRPKPRPK 0.899 -0.081 -1 0.891
PIM3PIM3 0.899 0.105 -3 0.865
DSTYKDSTYK 0.899 0.093 2 0.924
NLKNLK 0.896 0.092 1 0.864
IKKBIKKB 0.895 -0.060 -2 0.787
RAF1RAF1 0.895 -0.054 1 0.880
GCN2GCN2 0.895 -0.127 2 0.841
NDR2NDR2 0.895 0.055 -3 0.869
CAMK1BCAMK1B 0.894 0.026 -3 0.888
BMPR2BMPR2 0.894 -0.021 -2 0.927
TBK1TBK1 0.893 -0.060 1 0.775
CAMK2GCAMK2G 0.893 -0.017 2 0.856
CDKL1CDKL1 0.893 0.078 -3 0.827
MTORMTOR 0.892 -0.132 1 0.825
TGFBR2TGFBR2 0.891 0.062 -2 0.862
ATRATR 0.891 0.013 1 0.872
GRK1GRK1 0.890 0.160 -2 0.814
ERK5ERK5 0.890 0.058 1 0.821
ULK2ULK2 0.890 -0.151 2 0.827
IKKEIKKE 0.890 -0.073 1 0.774
NEK6NEK6 0.890 0.018 -2 0.910
RSK2RSK2 0.890 0.103 -3 0.800
PKN3PKN3 0.889 0.035 -3 0.852
PDHK4PDHK4 0.889 -0.354 1 0.887
PRKD1PRKD1 0.888 0.070 -3 0.842
MST4MST4 0.887 0.065 2 0.901
PIM1PIM1 0.887 0.127 -3 0.812
KISKIS 0.887 0.116 1 0.732
SRPK1SRPK1 0.887 0.123 -3 0.777
NIKNIK 0.887 -0.018 -3 0.904
BMPR1BBMPR1B 0.887 0.257 1 0.840
NEK7NEK7 0.887 -0.098 -3 0.851
SKMLCKSKMLCK 0.887 0.058 -2 0.875
CDKL5CDKL5 0.886 0.076 -3 0.817
PRKD2PRKD2 0.886 0.103 -3 0.797
NDR1NDR1 0.886 0.005 -3 0.861
WNK1WNK1 0.886 -0.005 -2 0.890
IKKAIKKA 0.885 0.028 -2 0.780
MLK1MLK1 0.885 -0.054 2 0.861
CAMLCKCAMLCK 0.885 0.013 -2 0.875
PDHK1PDHK1 0.885 -0.255 1 0.880
NUAK2NUAK2 0.885 0.019 -3 0.867
GRK6GRK6 0.885 0.045 1 0.878
HIPK4HIPK4 0.884 0.077 1 0.822
P90RSKP90RSK 0.884 0.048 -3 0.803
DAPK2DAPK2 0.884 0.013 -3 0.889
RIPK3RIPK3 0.884 -0.086 3 0.778
PKCDPKCD 0.884 0.091 2 0.841
LATS2LATS2 0.884 0.033 -5 0.778
GRK5GRK5 0.883 -0.147 -3 0.877
CHAK2CHAK2 0.883 -0.021 -1 0.873
FAM20CFAM20C 0.883 0.147 2 0.652
RSK3RSK3 0.882 0.042 -3 0.794
MAPKAPK3MAPKAPK3 0.882 0.025 -3 0.797
TGFBR1TGFBR1 0.882 0.164 -2 0.863
MAPKAPK2MAPKAPK2 0.881 0.088 -3 0.758
PKN2PKN2 0.881 0.007 -3 0.858
MARK4MARK4 0.881 -0.043 4 0.867
AMPKA1AMPKA1 0.881 0.004 -3 0.876
CAMK2DCAMK2D 0.881 -0.014 -3 0.857
ICKICK 0.881 0.053 -3 0.861
P70S6KBP70S6KB 0.881 0.039 -3 0.823
ALK4ALK4 0.880 0.105 -2 0.887
ATMATM 0.880 0.053 1 0.820
CAMK2BCAMK2B 0.880 0.101 2 0.827
SRPK2SRPK2 0.879 0.109 -3 0.701
ULK1ULK1 0.879 -0.210 -3 0.834
HUNKHUNK 0.878 -0.179 2 0.834
LATS1LATS1 0.878 0.121 -3 0.884
TSSK2TSSK2 0.878 0.003 -5 0.853
NEK9NEK9 0.877 -0.139 2 0.879
WNK3WNK3 0.877 -0.245 1 0.845
ANKRD3ANKRD3 0.877 -0.101 1 0.880
BCKDKBCKDK 0.877 -0.197 -1 0.824
ALK2ALK2 0.877 0.193 -2 0.871
CDK8CDK8 0.877 0.046 1 0.708
AURCAURC 0.877 0.087 -2 0.672
PKACGPKACG 0.877 0.013 -2 0.760
ACVR2BACVR2B 0.877 0.164 -2 0.864
TSSK1TSSK1 0.876 0.032 -3 0.896
DLKDLK 0.876 -0.163 1 0.863
ACVR2AACVR2A 0.876 0.137 -2 0.854
PKRPKR 0.876 0.070 1 0.864
PLK1PLK1 0.876 0.015 -2 0.877
GRK4GRK4 0.876 -0.108 -2 0.858
AMPKA2AMPKA2 0.875 0.004 -3 0.846
MLK3MLK3 0.875 0.010 2 0.794
MLK2MLK2 0.874 -0.133 2 0.862
SRPK3SRPK3 0.874 0.072 -3 0.749
GRK7GRK7 0.874 0.107 1 0.806
CLK4CLK4 0.874 0.112 -3 0.797
RSK4RSK4 0.873 0.094 -3 0.774
CAMK2ACAMK2A 0.873 0.054 2 0.841
MASTLMASTL 0.873 -0.381 -2 0.848
CLK1CLK1 0.872 0.134 -3 0.774
DYRK2DYRK2 0.872 0.077 1 0.736
BMPR1ABMPR1A 0.872 0.231 1 0.831
TTBK2TTBK2 0.871 -0.206 2 0.732
PRKD3PRKD3 0.871 0.030 -3 0.767
CAMK4CAMK4 0.871 -0.098 -3 0.844
IRE1IRE1 0.871 -0.116 1 0.807
NUAK1NUAK1 0.870 -0.017 -3 0.820
NIM1NIM1 0.870 -0.124 3 0.809
MSK2MSK2 0.870 -0.021 -3 0.762
CDK19CDK19 0.870 0.046 1 0.667
PAK1PAK1 0.870 -0.021 -2 0.796
CDK1CDK1 0.870 0.102 1 0.667
RIPK1RIPK1 0.870 -0.265 1 0.830
JNK2JNK2 0.869 0.124 1 0.655
YSK4YSK4 0.869 -0.093 1 0.810
CDK5CDK5 0.869 0.098 1 0.728
MLK4MLK4 0.869 -0.020 2 0.771
PKCBPKCB 0.869 0.033 2 0.790
CDK7CDK7 0.869 0.023 1 0.713
MNK2MNK2 0.869 0.006 -2 0.811
IRE2IRE2 0.869 -0.058 2 0.797
AURBAURB 0.869 0.048 -2 0.672
MEK1MEK1 0.869 -0.182 2 0.869
CLK2CLK2 0.869 0.185 -3 0.784
PKACBPKACB 0.868 0.091 -2 0.692
PKCAPKCA 0.868 0.029 2 0.783
MELKMELK 0.868 -0.044 -3 0.828
JNK3JNK3 0.868 0.093 1 0.693
PAK3PAK3 0.868 -0.077 -2 0.797
PLK3PLK3 0.868 -0.022 2 0.799
PKCGPKCG 0.868 -0.004 2 0.787
VRK2VRK2 0.867 -0.225 1 0.900
DNAPKDNAPK 0.867 0.057 1 0.760
MSK1MSK1 0.866 0.035 -3 0.768
P38AP38A 0.866 0.076 1 0.732
QSKQSK 0.866 -0.033 4 0.844
TLK2TLK2 0.866 -0.037 1 0.833
PHKG1PHKG1 0.866 -0.062 -3 0.849
CHK1CHK1 0.866 -0.016 -3 0.854
MYLK4MYLK4 0.865 -0.002 -2 0.788
CDK18CDK18 0.865 0.082 1 0.638
PAK6PAK6 0.865 0.039 -2 0.725
PKG2PKG2 0.865 0.042 -2 0.690
PRKXPRKX 0.864 0.127 -3 0.710
NEK2NEK2 0.864 -0.133 2 0.853
SMG1SMG1 0.864 -0.048 1 0.823
PIM2PIM2 0.864 0.063 -3 0.772
SIKSIK 0.864 -0.034 -3 0.787
QIKQIK 0.864 -0.151 -3 0.850
MNK1MNK1 0.864 0.008 -2 0.821
PKCHPKCH 0.864 -0.027 2 0.774
HIPK1HIPK1 0.864 0.104 1 0.751
SGK3SGK3 0.863 0.041 -3 0.781
CDK13CDK13 0.863 0.012 1 0.684
P38BP38B 0.863 0.091 1 0.665
AKT2AKT2 0.863 0.061 -3 0.716
BRAFBRAF 0.863 -0.043 -4 0.857
AURAAURA 0.863 0.028 -2 0.645
CHAK1CHAK1 0.863 -0.157 2 0.809
PERKPERK 0.863 -0.093 -2 0.890
HIPK2HIPK2 0.862 0.112 1 0.647
PKCZPKCZ 0.862 -0.058 2 0.824
ERK1ERK1 0.862 0.066 1 0.653
CDK2CDK2 0.861 0.029 1 0.749
PRP4PRP4 0.861 0.060 -3 0.786
P38GP38G 0.861 0.082 1 0.581
PAK2PAK2 0.860 -0.096 -2 0.784
MARK2MARK2 0.860 -0.054 4 0.767
BRSK1BRSK1 0.860 -0.073 -3 0.816
HRIHRI 0.860 -0.164 -2 0.898
MARK3MARK3 0.860 -0.047 4 0.801
ERK2ERK2 0.859 0.024 1 0.698
CDK17CDK17 0.859 0.055 1 0.587
MEKK1MEKK1 0.859 -0.138 1 0.843
GRK2GRK2 0.858 -0.090 -2 0.742
CDK3CDK3 0.858 0.122 1 0.606
DYRK1ADYRK1A 0.858 0.051 1 0.774
DCAMKL1DCAMKL1 0.858 -0.012 -3 0.815
PLK4PLK4 0.857 -0.134 2 0.658
ZAKZAK 0.857 -0.142 1 0.819
DRAK1DRAK1 0.857 -0.123 1 0.781
TLK1TLK1 0.857 -0.090 -2 0.877
BRSK2BRSK2 0.857 -0.134 -3 0.836
MEKK3MEKK3 0.857 -0.183 1 0.829
MEKK2MEKK2 0.857 -0.104 2 0.844
CAMK1GCAMK1G 0.856 -0.053 -3 0.786
MAPKAPK5MAPKAPK5 0.856 -0.137 -3 0.732
NEK5NEK5 0.856 -0.106 1 0.848
MST3MST3 0.856 -0.007 2 0.876
CDK12CDK12 0.855 0.011 1 0.657
HIPK3HIPK3 0.855 0.043 1 0.746
SMMLCKSMMLCK 0.855 -0.028 -3 0.839
MEK5MEK5 0.855 -0.324 2 0.862
WNK4WNK4 0.855 -0.147 -2 0.883
TAO3TAO3 0.855 -0.030 1 0.827
IRAK4IRAK4 0.854 -0.114 1 0.815
MARK1MARK1 0.854 -0.098 4 0.824
CDK9CDK9 0.854 -0.024 1 0.691
AKT1AKT1 0.854 0.063 -3 0.732
DYRK4DYRK4 0.854 0.077 1 0.663
PKACAPKACA 0.853 0.058 -2 0.638
PASKPASK 0.853 -0.011 -3 0.875
SNRKSNRK 0.853 -0.266 2 0.716
P38DP38D 0.853 0.102 1 0.604
CDK16CDK16 0.853 0.095 1 0.606
CDK14CDK14 0.853 0.056 1 0.682
GAKGAK 0.853 0.042 1 0.859
CK2A2CK2A2 0.852 0.141 1 0.763
CK1ECK1E 0.852 -0.045 -3 0.568
PHKG2PHKG2 0.852 -0.050 -3 0.824
PINK1PINK1 0.852 -0.232 1 0.847
PKCTPKCT 0.851 -0.034 2 0.784
DCAMKL2DCAMKL2 0.851 -0.060 -3 0.839
DYRK1BDYRK1B 0.851 0.051 1 0.686
MPSK1MPSK1 0.851 -0.013 1 0.798
SSTKSSTK 0.851 -0.035 4 0.834
P70S6KP70S6K 0.851 -0.027 -3 0.728
DYRK3DYRK3 0.850 0.056 1 0.755
DAPK3DAPK3 0.850 0.052 -3 0.827
CAMK1DCAMK1D 0.849 0.008 -3 0.713
CAMKK1CAMKK1 0.849 -0.145 -2 0.812
CDK10CDK10 0.848 0.079 1 0.666
TAO2TAO2 0.848 -0.085 2 0.894
NEK8NEK8 0.848 -0.162 2 0.861
GSK3AGSK3A 0.847 0.007 4 0.454
EEF2KEEF2K 0.846 0.005 3 0.863
GSK3BGSK3B 0.846 -0.052 4 0.442
ERK7ERK7 0.845 0.034 2 0.582
PLK2PLK2 0.845 0.044 -3 0.840
MST2MST2 0.845 -0.060 1 0.839
TTBK1TTBK1 0.845 -0.226 2 0.649
PKCIPKCI 0.845 -0.054 2 0.793
GCKGCK 0.844 -0.025 1 0.826
CK1DCK1D 0.844 -0.038 -3 0.514
TNIKTNIK 0.844 0.027 3 0.891
LKB1LKB1 0.844 -0.120 -3 0.844
GRK3GRK3 0.844 -0.084 -2 0.696
NEK11NEK11 0.843 -0.247 1 0.820
CAMKK2CAMKK2 0.843 -0.160 -2 0.803
TAK1TAK1 0.843 -0.055 1 0.858
PKCEPKCE 0.843 0.023 2 0.773
JNK1JNK1 0.843 0.047 1 0.645
IRAK1IRAK1 0.842 -0.313 -1 0.790
PAK5PAK5 0.842 -0.044 -2 0.657
PDK1PDK1 0.842 -0.147 1 0.822
MINKMINK 0.842 -0.051 1 0.820
HGKHGK 0.841 -0.056 3 0.889
CK1G1CK1G1 0.841 -0.096 -3 0.568
NEK4NEK4 0.841 -0.154 1 0.815
DAPK1DAPK1 0.841 0.010 -3 0.807
CK1A2CK1A2 0.840 -0.052 -3 0.513
AKT3AKT3 0.840 0.059 -3 0.649
MAKMAK 0.840 0.126 -2 0.754
CK2A1CK2A1 0.840 0.094 1 0.739
MAP3K15MAP3K15 0.840 -0.147 1 0.801
MRCKBMRCKB 0.839 0.051 -3 0.762
PAK4PAK4 0.839 -0.034 -2 0.663
ROCK2ROCK2 0.839 0.067 -3 0.811
SGK1SGK1 0.838 0.051 -3 0.633
MRCKAMRCKA 0.838 0.036 -3 0.780
MEKK6MEKK6 0.838 -0.176 1 0.821
CHK2CHK2 0.838 -0.002 -3 0.660
PKN1PKN1 0.838 -0.032 -3 0.744
CDK6CDK6 0.838 0.039 1 0.661
NEK1NEK1 0.837 -0.118 1 0.821
VRK1VRK1 0.837 -0.169 2 0.872
LRRK2LRRK2 0.837 -0.206 2 0.885
MST1MST1 0.837 -0.084 1 0.821
HPK1HPK1 0.836 -0.065 1 0.810
LOKLOK 0.836 -0.085 -2 0.797
CAMK1ACAMK1A 0.836 0.003 -3 0.680
CDK4CDK4 0.836 0.032 1 0.646
KHS1KHS1 0.835 0.002 1 0.811
MOKMOK 0.835 0.088 1 0.753
KHS2KHS2 0.834 0.031 1 0.820
PDHK3_TYRPDHK3_TYR 0.834 0.253 4 0.926
TTKTTK 0.834 0.080 -2 0.882
BUB1BUB1 0.833 0.046 -5 0.797
DMPK1DMPK1 0.833 0.092 -3 0.788
SBKSBK 0.832 0.031 -3 0.596
SLKSLK 0.831 -0.115 -2 0.739
YSK1YSK1 0.831 -0.110 2 0.855
MEK2MEK2 0.829 -0.321 2 0.843
PBKPBK 0.828 -0.060 1 0.779
RIPK2RIPK2 0.827 -0.346 1 0.775
OSR1OSR1 0.827 -0.049 2 0.837
STK33STK33 0.825 -0.258 2 0.641
ROCK1ROCK1 0.824 0.034 -3 0.777
PDHK4_TYRPDHK4_TYR 0.824 0.078 2 0.915
TESK1_TYRTESK1_TYR 0.823 -0.063 3 0.911
ALPHAK3ALPHAK3 0.822 -0.002 -1 0.816
PKG1PKG1 0.822 -0.031 -2 0.603
MAP2K4_TYRMAP2K4_TYR 0.822 -0.064 -1 0.906
CRIKCRIK 0.822 0.037 -3 0.729
NEK3NEK3 0.822 -0.220 1 0.787
MAP2K6_TYRMAP2K6_TYR 0.821 -0.002 -1 0.910
EPHA6EPHA6 0.821 0.151 -1 0.916
BMPR2_TYRBMPR2_TYR 0.821 0.043 -1 0.913
BIKEBIKE 0.820 0.007 1 0.730
HASPINHASPIN 0.819 -0.038 -1 0.717
PDHK1_TYRPDHK1_TYR 0.819 -0.029 -1 0.928
PKMYT1_TYRPKMYT1_TYR 0.819 -0.133 3 0.882
MAP2K7_TYRMAP2K7_TYR 0.818 -0.263 2 0.896
MYO3BMYO3B 0.818 -0.083 2 0.866
ASK1ASK1 0.817 -0.196 1 0.792
PINK1_TYRPINK1_TYR 0.817 -0.177 1 0.866
EPHB4EPHB4 0.816 0.085 -1 0.891
LIMK2_TYRLIMK2_TYR 0.815 -0.050 -3 0.908
MYO3AMYO3A 0.815 -0.099 1 0.808
TXKTXK 0.815 0.190 1 0.866
RETRET 0.814 -0.085 1 0.837
TAO1TAO1 0.813 -0.137 1 0.758
TYK2TYK2 0.812 -0.132 1 0.837
MST1RMST1R 0.811 -0.120 3 0.848
TYRO3TYRO3 0.810 -0.093 3 0.835
ROS1ROS1 0.810 -0.075 3 0.808
ABL2ABL2 0.810 0.027 -1 0.859
CSF1RCSF1R 0.810 -0.048 3 0.828
JAK2JAK2 0.809 -0.106 1 0.835
YANK3YANK3 0.809 -0.125 2 0.413
YES1YES1 0.809 0.016 -1 0.890
EPHA4EPHA4 0.808 0.046 2 0.796
FERFER 0.808 -0.036 1 0.902
LCKLCK 0.808 0.122 -1 0.890
LIMK1_TYRLIMK1_TYR 0.808 -0.269 2 0.893
SRMSSRMS 0.807 0.039 1 0.885
BLKBLK 0.807 0.152 -1 0.894
HCKHCK 0.807 0.025 -1 0.885
JAK3JAK3 0.806 -0.074 1 0.819
EPHB1EPHB1 0.806 0.019 1 0.881
FGRFGR 0.806 -0.081 1 0.861
INSRRINSRR 0.806 -0.041 3 0.787
EPHB2EPHB2 0.805 0.065 -1 0.874
DDR1DDR1 0.805 -0.199 4 0.845
EPHB3EPHB3 0.805 0.021 -1 0.878
STLK3STLK3 0.805 -0.243 1 0.785
ABL1ABL1 0.804 -0.024 -1 0.852
ITKITK 0.804 0.006 -1 0.853
TNK2TNK2 0.804 -0.029 3 0.810
AAK1AAK1 0.803 0.053 1 0.620
FGFR2FGFR2 0.801 -0.129 3 0.833
KITKIT 0.801 -0.104 3 0.831
PDGFRBPDGFRB 0.801 -0.146 3 0.843
TECTEC 0.800 0.014 -1 0.797
FLT3FLT3 0.800 -0.118 3 0.829
JAK1JAK1 0.800 -0.039 1 0.782
FYNFYN 0.799 0.099 -1 0.871
CK1ACK1A 0.799 -0.107 -3 0.423
KDRKDR 0.799 -0.095 3 0.794
BMXBMX 0.799 -0.000 -1 0.780
MERTKMERTK 0.798 -0.044 3 0.811
TEKTEK 0.798 -0.130 3 0.776
TNNI3K_TYRTNNI3K_TYR 0.798 -0.053 1 0.841
AXLAXL 0.798 -0.106 3 0.815
EPHA7EPHA7 0.798 0.009 2 0.801
NEK10_TYRNEK10_TYR 0.797 -0.144 1 0.711
METMET 0.796 -0.086 3 0.825
FGFR1FGFR1 0.796 -0.169 3 0.808
BTKBTK 0.795 -0.137 -1 0.815
TNK1TNK1 0.795 -0.152 3 0.810
ALKALK 0.794 -0.114 3 0.764
FRKFRK 0.794 -0.019 -1 0.897
LTKLTK 0.793 -0.112 3 0.783
LYNLYN 0.793 -0.015 3 0.747
EPHA3EPHA3 0.793 -0.100 2 0.773
PDGFRAPDGFRA 0.792 -0.249 3 0.842
EPHA1EPHA1 0.792 -0.066 3 0.805
FLT1FLT1 0.791 -0.110 -1 0.881
EPHA5EPHA5 0.791 0.013 2 0.784
NTRK1NTRK1 0.791 -0.203 -1 0.855
WEE1_TYRWEE1_TYR 0.790 -0.147 -1 0.787
PTK6PTK6 0.790 -0.214 -1 0.778
ERBB2ERBB2 0.790 -0.175 1 0.802
PTK2BPTK2B 0.790 -0.025 -1 0.830
FGFR3FGFR3 0.789 -0.150 3 0.806
EPHA8EPHA8 0.788 -0.018 -1 0.869
DDR2DDR2 0.788 -0.052 3 0.783
NTRK2NTRK2 0.787 -0.224 3 0.792
INSRINSR 0.786 -0.185 3 0.761
FLT4FLT4 0.786 -0.209 3 0.784
SRCSRC 0.786 -0.040 -1 0.865
EGFREGFR 0.785 -0.064 1 0.712
PTK2PTK2 0.785 0.056 -1 0.847
NTRK3NTRK3 0.784 -0.166 -1 0.808
MATKMATK 0.783 -0.150 -1 0.780
SYKSYK 0.783 0.060 -1 0.834
CK1G3CK1G3 0.781 -0.102 -3 0.375
CSKCSK 0.779 -0.176 2 0.803
FGFR4FGFR4 0.779 -0.111 -1 0.817
EPHA2EPHA2 0.779 -0.025 -1 0.834
YANK2YANK2 0.774 -0.167 2 0.431
IGF1RIGF1R 0.772 -0.168 3 0.698
ERBB4ERBB4 0.771 -0.055 1 0.730
MUSKMUSK 0.771 -0.187 1 0.694
CK1G2CK1G2 0.763 -0.102 -3 0.477
FESFES 0.760 -0.157 -1 0.757
ZAP70ZAP70 0.755 -0.062 -1 0.750