Motif 706 (n=364)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0JNW5 | BLTP3B | S987 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A3KN83 | SBNO1 | S693 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A6ND36 | FAM83G | S365 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
B8ZZF3 | None | S389 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Cofactor required for Sp1 transcriptional activation subunit 7) (Mediator complex subunit 26) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. {ECO:0000256|ARBA:ARBA00057523}. |
H0YHG0 | None | S476 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
H0YHG0 | None | S500 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
M0R1X1 | None | S75 | ochoa | KRAB domain-containing protein | None |
O00244 | ATOX1 | S44 | ochoa | Copper transport protein ATOX1 (Metal transport protein ATX1) | Binds and deliver cytosolic copper to the copper ATPase proteins. May be important in cellular antioxidant defense. |
O00515 | LAD1 | S123 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O00763 | ACACB | S222 | ochoa|psp | Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) | Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism (PubMed:16854592, PubMed:19236960, PubMed:19900410, PubMed:20457939, PubMed:20952656, PubMed:26976583). Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:19236960, PubMed:20457939, PubMed:20952656, PubMed:26976583). Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation (By similarity). Together with its cytosolic isozyme ACACA, which is involved in de novo fatty acid biosynthesis, promotes lipid storage (By similarity). {ECO:0000250|UniProtKB:E9Q4Z2, ECO:0000269|PubMed:16854592, ECO:0000269|PubMed:19236960, ECO:0000269|PubMed:19900410, ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:26976583}. |
O14530 | TXNDC9 | S188 | ochoa | Thioredoxin domain-containing protein 9 (ATP-binding protein associated with cell differentiation) (Protein 1-4) | Significantly diminishes the chaperonin TCP1 complex ATPase activity, thus negatively impacts protein folding, including that of actin or tubulin. {ECO:0000269|PubMed:16415341}. |
O14980 | XPO1 | S183 | ochoa | Exportin-1 (Exp1) (Chromosome region maintenance 1 protein homolog) | Mediates the nuclear export of cellular proteins (cargos) bearing a leucine-rich nuclear export signal (NES) and of RNAs. In the nucleus, in association with RANBP3, binds cooperatively to the NES on its target protein and to the GTPase RAN in its active GTP-bound form (Ran-GTP). Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the cargo from the export receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Involved in U3 snoRNA transport from Cajal bodies to nucleoli. Binds to late precursor U3 snoRNA bearing a TMG cap. {ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:20921223, ECO:0000269|PubMed:9311922, ECO:0000269|PubMed:9323133}.; FUNCTION: (Microbial infection) Mediates the export of unspliced or incompletely spliced RNAs out of the nucleus from different viruses including HIV-1, HTLV-1 and influenza A. Interacts with, and mediates the nuclear export of HIV-1 Rev and HTLV-1 Rex proteins. Involved in HTLV-1 Rex multimerization. {ECO:0000269|PubMed:14612415, ECO:0000269|PubMed:9837918}. |
O15068 | MCF2L | S1041 | ochoa | Guanine nucleotide exchange factor DBS (DBL's big sister) (MCF2-transforming sequence-like protein) | Guanine nucleotide exchange factor that catalyzes guanine nucleotide exchange on RHOA and CDC42, and thereby contributes to the regulation of RHOA and CDC42 signaling pathways (By similarity). Seems to lack activity with RAC1. Becomes activated and highly tumorigenic by truncation of the N-terminus (By similarity). Isoform 5 activates CDC42 (PubMed:15157669). {ECO:0000250|UniProtKB:Q63406, ECO:0000269|PubMed:15157669}.; FUNCTION: [Isoform 3]: Does not catalyze guanine nucleotide exchange on CDC42 (PubMed:15157669). {ECO:0000269|PubMed:15157669}. |
O15350 | TP73 | S333 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O43524 | FOXO3 | S257 | ochoa | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O60488 | ACSL4 | S344 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60934 | NBN | S411 | ochoa | Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) | Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}. |
O75038 | PLCH2 | S579 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}. |
O75410 | TACC1 | S228 | psp | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75475 | PSIP1 | S206 | ochoa|psp | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O75554 | WBP4 | S277 | ochoa | WW domain-binding protein 4 (WBP-4) (Formin-binding protein 21) (WW domain-containing-binding protein 4) | Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:19592703, PubMed:28781166, PubMed:9724750). May play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex (PubMed:9724750). {ECO:0000269|PubMed:19592703, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:9724750}. |
O75694 | NUP155 | S486 | ochoa | Nuclear pore complex protein Nup155 (155 kDa nucleoporin) (Nucleoporin Nup155) | Essential component of nuclear pore complex. Could be essessential for embryogenesis. Nucleoporins may be involved both in binding and translocating proteins during nucleocytoplasmic transport. {ECO:0000250|UniProtKB:Q99P88}. |
O75914 | PAK3 | S50 | psp | Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}. |
O76003 | GLRX3 | S118 | ochoa | Glutaredoxin-3 (PKC-interacting cousin of thioredoxin) (PICOT) (PKC-theta-interacting protein) (PKCq-interacting protein) (Thioredoxin-like protein 2) | Together with BOLA2, acts as a cytosolic iron-sulfur (Fe-S) cluster assembly factor that facilitates [2Fe-2S] cluster insertion into a subset of cytosolic proteins (PubMed:26613676, PubMed:27519415). Acts as a critical negative regulator of cardiac hypertrophy and a positive inotropic regulator (By similarity). Required for hemoglobin maturation (PubMed:23615448). Does not possess any thyoredoxin activity since it lacks the conserved motif that is essential for catalytic activity. {ECO:0000250|UniProtKB:Q9CQM9, ECO:0000269|PubMed:23615448, ECO:0000269|PubMed:26613676, ECO:0000269|PubMed:27519415}. |
O76021 | RSL1D1 | S361 | ochoa | Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) | Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}. |
O94875 | SORBS2 | S207 | psp | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94885 | SASH1 | S137 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94916 | NFAT5 | S649 | ochoa | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O95183 | VAMP5 | S49 | ochoa | Vesicle-associated membrane protein 5 (VAMP-5) (Myobrevin) | May participate in trafficking events that are associated with myogenesis, such as myoblast fusion and/or GLUT4 trafficking. |
O95402 | MED26 | S381 | ochoa | Mediator of RNA polymerase II transcription subunit 26 (Activator-recruited cofactor 70 kDa component) (ARC70) (Cofactor required for Sp1 transcriptional activation subunit 7) (CRSP complex subunit 7) (Mediator complex subunit 26) (Transcriptional coactivator CRSP70) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. |
O95573 | ACSL3 | S353 | ochoa | Fatty acid CoA ligase Acsl3 (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 3) (LACS 3) (Long-chain-fatty-acid--CoA ligase 3) (EC 6.2.1.3) (Medium-chain acyl-CoA ligase Acsl3) (EC 6.2.1.2) | Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:22633490). Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins) (PubMed:18003621). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). {ECO:0000250|UniProtKB:Q63151, ECO:0000269|PubMed:18003621, ECO:0000269|PubMed:22633490}. |
P05455 | SSB | S153 | ochoa | Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) | Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}. |
P11388 | TOP2A | S1504 | ochoa | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P13010 | XRCC5 | S143 | ochoa | X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}. |
P16435 | POR | S62 | ochoa | NADPH--cytochrome P450 reductase (CPR) (P450R) (EC 1.6.2.4) | This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5. {ECO:0000255|HAMAP-Rule:MF_03212}. |
P20929 | NEB | S925 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P21359 | NF1 | S2523 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P23458 | JAK1 | S515 | psp | Tyrosine-protein kinase JAK1 (EC 2.7.10.2) (Janus kinase 1) (JAK-1) | Tyrosine kinase of the non-receptor type, involved in the IFN-alpha/beta/gamma signal pathway (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). Kinase partner for the interleukin (IL)-2 receptor (PubMed:11909529) as well as interleukin (IL)-10 receptor (PubMed:12133952). Kinase partner for the type I interferon receptor IFNAR2 (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). In response to interferon-binding to IFNAR1-IFNAR2 heterodimer, phosphorylates and activates its binding partner IFNAR2, creating docking sites for STAT proteins (PubMed:7759950). Directly phosphorylates STAT proteins but also activates STAT signaling through the transactivation of other JAK kinases associated with signaling receptors (PubMed:16239216, PubMed:32750333, PubMed:8232552). {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12133952, ECO:0000269|PubMed:16239216, ECO:0000269|PubMed:28111307, ECO:0000269|PubMed:32750333, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:8232552}. |
P23528 | CFL1 | S113 | ochoa | Cofilin-1 (18 kDa phosphoprotein) (p18) (Cofilin, non-muscle isoform) | Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity (PubMed:11812157). In conjunction with the subcortical maternal complex (SCMC), plays an essential role for zygotes to progress beyond the first embryonic cell divisions via regulation of actin dynamics (PubMed:15580268). Required for the centralization of the mitotic spindle and symmetric division of zygotes (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization in epithelial cells (PubMed:21834987). Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). Required for neural tube morphogenesis and neural crest cell migration (By similarity). {ECO:0000250|UniProtKB:P18760, ECO:0000269|PubMed:11812157, ECO:0000269|PubMed:15580268, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:23633677}. |
P25100 | ADRA1D | S332 | psp | Alpha-1D adrenergic receptor (Alpha-1A adrenergic receptor) (Alpha-1D adrenoreceptor) (Alpha-1D adrenoceptor) (Alpha-adrenergic receptor 1a) | This alpha-adrenergic receptor mediates its effect through the influx of extracellular calcium. |
P26583 | HMGB2 | S115 | ochoa | High mobility group protein B2 (High mobility group protein 2) (HMG-2) | Multifunctional protein with various roles in different cellular compartments. May act in a redox sensitive manner. In the nucleus is an abundant chromatin-associated non-histone protein involved in transcription, chromatin remodeling and V(D)J recombination and probably other processes. Binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:11909973, PubMed:18413230, PubMed:19522541, PubMed:19965638, PubMed:20123072, PubMed:7797075). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). Proposed to be involved in the innate immune response to nucleic acids by acting as a promiscuous immunogenic DNA/RNA sensor which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). In the extracellular compartment acts as a chemokine. Promotes proliferation and migration of endothelial cells implicating AGER/RAGE (PubMed:19811285). Has antimicrobial activity in gastrointestinal epithelial tissues (PubMed:23877675). Involved in inflammatory response to antigenic stimulus coupled with pro-inflammatory activity (By similarity). Involved in modulation of neurogenesis probably by regulation of neural stem proliferation (By similarity). Involved in articular cartilage surface maintenance implicating LEF1 and the Wnt/beta-catenin pathway (By similarity). {ECO:0000250|UniProtKB:P09429, ECO:0000250|UniProtKB:P30681, ECO:0000269|PubMed:11909973, ECO:0000269|PubMed:18413230, ECO:0000269|PubMed:19522541, ECO:0000269|PubMed:19811285, ECO:0000269|PubMed:19965638, ECO:0000269|PubMed:23877675, ECO:0000269|PubMed:7797075, ECO:0000305|PubMed:20123072}. |
P29375 | KDM5A | S225 | ochoa|psp | Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) | Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}. |
P30307 | CDC25C | S247 | psp | M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) | Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}. |
P30556 | AGTR1 | S338 | psp | Type-1 angiotensin II receptor (AT1AR) (AT1BR) (Angiotensin II type-1 receptor) (AT1 receptor) | Receptor for angiotensin II, a vasoconstricting peptide, which acts as a key regulator of blood pressure and sodium retention by the kidney (PubMed:15611106, PubMed:1567413, PubMed:25913193, PubMed:26420482, PubMed:30639100, PubMed:32079768, PubMed:8987975). The activated receptor in turn couples to G-alpha proteins G(q) (GNAQ, GNA11, GNA14 or GNA15) and thus activates phospholipase C and increases the cytosolic Ca(2+) concentrations, which in turn triggers cellular responses such as stimulation of protein kinase C (PubMed:15611106). {ECO:0000269|PubMed:15611106, ECO:0000269|PubMed:1567413, ECO:0000269|PubMed:25913193, ECO:0000269|PubMed:26420482, ECO:0000269|PubMed:30639100, ECO:0000269|PubMed:32079768, ECO:0000269|PubMed:8987975}.; FUNCTION: (Microbial infection) During SARS coronavirus-2/SARS-CoV-2 infection, it is able to recognize and internalize the complex formed by secreted ACE2 and SARS-CoV-2 spike protein through DNM2/dynamin 2-dependent endocytosis. {ECO:0000269|PubMed:33713620}. |
P35610 | SOAT1 | S38 | ochoa | Sterol O-acyltransferase 1 (EC 2.3.1.26) (Acyl-coenzyme A:cholesterol acyltransferase 1) (ACAT-1) (Cholesterol acyltransferase 1) | Catalyzes the formation of fatty acid-cholesterol esters, which are less soluble in membranes than cholesterol (PubMed:16154994, PubMed:16647063, PubMed:32433613, PubMed:32433614, PubMed:32944968, PubMed:9020103). Plays a role in lipoprotein assembly and dietary cholesterol absorption (PubMed:16154994, PubMed:9020103). Preferentially utilizes oleoyl-CoA ((9Z)-octadecenoyl-CoA) as a substrate: shows a higher activity towards an acyl-CoA substrate with a double bond at the delta-9 position (9Z) than towards saturated acyl-CoA or an unsaturated acyl-CoA with a double bond at the delta-7 (7Z) or delta-11 (11Z) positions (PubMed:11294643, PubMed:32433614). {ECO:0000269|PubMed:11294643, ECO:0000269|PubMed:16154994, ECO:0000269|PubMed:16647063, ECO:0000269|PubMed:32433613, ECO:0000269|PubMed:32433614, ECO:0000269|PubMed:32944968, ECO:0000269|PubMed:9020103}. |
P38432 | COIL | S446 | ochoa | Coilin (p80-coilin) | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}. |
P45378 | TNNT3 | S166 | ochoa | Troponin T, fast skeletal muscle (TnTf) (Beta-TnTF) (Fast skeletal muscle troponin T) (fTnT) | Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P46100 | ATRX | S1154 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46940 | IQGAP1 | S1443 | ochoa|psp | Ras GTPase-activating-like protein IQGAP1 (p195) | Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}. |
P49321 | NASP | S706 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P53814 | SMTN | S734 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P54132 | BLM | S175 | psp | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P55884 | EIF3B | S447 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P57737 | CORO7 | S880 | ochoa | Coronin-7 (Crn7) (70 kDa WD repeat tumor rejection antigen homolog) | F-actin regulator involved in anterograde Golgi to endosome transport: upon ubiquitination via 'Lys-33'-linked ubiquitin chains by the BCR(KLHL20) E3 ubiquitin ligase complex, interacts with EPS15 and localizes to the trans-Golgi network, where it promotes actin polymerization, thereby facilitating post-Golgi trafficking. May play a role in the maintenance of the Golgi apparatus morphology. {ECO:0000269|PubMed:16905771, ECO:0000269|PubMed:24768539}. |
P60228 | EIF3E | S412 | ochoa | Eukaryotic translation initiation factor 3 subunit E (eIF3e) (Eukaryotic translation initiation factor 3 subunit 6) (Viral integration site protein INT-6 homolog) (eIF-3 p48) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). Required for nonsense-mediated mRNA decay (NMD); may act in conjunction with UPF2 to divert mRNAs from translation to the NMD pathway (PubMed:17468741). May interact with MCM7 and EPAS1 and regulate the proteasome-mediated degradation of these proteins (PubMed:17310990, PubMed:17324924). {ECO:0000255|HAMAP-Rule:MF_03004, ECO:0000269|PubMed:17310990, ECO:0000269|PubMed:17324924, ECO:0000269|PubMed:17468741, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
P61289 | PSME3 | S24 | ochoa | Proteasome activator complex subunit 3 (11S regulator complex subunit gamma) (REG-gamma) (Activator of multicatalytic protease subunit 3) (Ki nuclear autoantigen) (Proteasome activator 28 subunit gamma) (PA28g) (PA28gamma) | Subunit of the 11S REG-gamma (also called PA28-gamma) proteasome regulator, a doughnut-shaped homoheptamer which associates with the proteasome. 11S REG-gamma activates the trypsin-like catalytic subunit of the proteasome but inhibits the chymotrypsin-like and postglutamyl-preferring (PGPH) subunits. Facilitates the MDM2-p53/TP53 interaction which promotes ubiquitination- and MDM2-dependent proteasomal degradation of p53/TP53, limiting its accumulation and resulting in inhibited apoptosis after DNA damage. May also be involved in cell cycle regulation. Mediates CCAR2 and CHEK2-dependent SIRT1 inhibition (PubMed:25361978). {ECO:0000269|PubMed:10835274, ECO:0000269|PubMed:11185562, ECO:0000269|PubMed:11432824, ECO:0000269|PubMed:15111123, ECO:0000269|PubMed:18309296, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:9325261}. |
P62277 | RPS13 | S30 | ochoa | Small ribosomal subunit protein uS15 (40S ribosomal protein S13) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P82979 | SARNP | S163 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
P82979 | SARNP | S187 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
Q01484 | ANK2 | S2662 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02078 | MEF2A | S104 | ochoa | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02952 | AKAP12 | S505 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03188 | CENPC | S615 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q09666 | AHNAK | S3362 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12899 | TRIM26 | S49 | ochoa | Tripartite motif-containing protein 26 (EC 2.3.2.27) (Acid finger protein) (AFP) (RING finger protein 95) (Zinc finger protein 173) | E3 ubiquitin-protein ligase which regulates the IFN-beta production and antiviral response downstream of various DNA-encoded pattern-recognition receptors (PRRs). Also plays a central role in determining the response to different forms of oxidative stress by controlling levels of DNA glycosylases NEIL1, NEIL3 and NTH1 that are involved in repair of damaged DNA (PubMed:29610152, PubMed:36232914). Promotes nuclear IRF3 ubiquitination and proteasomal degradation (PubMed:25763818). Bridges together TBK1 and NEMO during the innate response to viral infection leading to the activation of TBK1. Positively regulates LPS-mediated inflammatory innate immune response by catalyzing the 'Lys-11'-linked polyubiquitination of TAB1 to enhance its activation and subsequent NF-kappa-B and MAPK signaling (PubMed:34017102). In a manner independent of its catalytic activity, inhibits WWP2, a SOX2-directed E3 ubiquitin ligase, and thus protects SOX2 from polyubiquitination and proteasomal degradation (PubMed:34732716). Ubiquitinates the histone acetyltransferase protein complex component PHF20 and thereby triggers its degradation in the nucleus after its recruitment by the histone demethylase KDM6B, serving as a scaffold protein (PubMed:23452852). Upon induction by TGF-beta, ubiquitinates the TFIID component TAF7 for proteasomal degradation (PubMed:29203640). Induces ferroptosis by ubiquitinating SLC7A11, a critical protein for lipid reactive oxygen species (ROS) scavenging (By similarity). Inhibits directly hepatitis B virus replication by mediating HBX ubiquitination and subsequent degradation (PubMed:35872575). {ECO:0000250|UniProtKB:Q99PN3, ECO:0000269|PubMed:23452852, ECO:0000269|PubMed:25763818, ECO:0000269|PubMed:26611359, ECO:0000269|PubMed:29203640, ECO:0000269|PubMed:29610152, ECO:0000269|PubMed:34017102, ECO:0000269|PubMed:34732716, ECO:0000269|PubMed:35872575, ECO:0000269|PubMed:36232914}.; FUNCTION: (Microbial infection) Promotes herpes simplex virus type 2/HHV-2 infection in vaginal epithelial cells by decreasing the nuclear localization of IRF3, the primary mediator of type I interferon activation. {ECO:0000269|PubMed:33419081}. |
Q13085 | ACACA | S80 | ochoa|psp | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13136 | PPFIA1 | S150 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13416 | ORC2 | S143 | ochoa | Origin recognition complex subunit 2 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}. |
Q13554 | CAMK2B | S280 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit beta (CaM kinase II subunit beta) (CaMK-II subunit beta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in dendritic spine and synapse formation, neuronal plasticity and regulation of sarcoplasmic reticulum Ca(2+) transport in skeletal muscle (PubMed:16690701). In neurons, plays an essential structural role in the reorganization of the actin cytoskeleton during plasticity by binding and bundling actin filaments in a kinase-independent manner. This structural function is required for correct targeting of CaMK2A, which acts downstream of NMDAR to promote dendritic spine and synapse formation and maintain synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In developing hippocampal neurons, promotes arborization of the dendritic tree and in mature neurons, promotes dendritic remodeling. Also regulates the migration of developing neurons (PubMed:29100089). Participates in the modulation of skeletal muscle function in response to exercise (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of triadin, a ryanodine receptor-coupling factor, and phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). Phosphorylates reticulophagy regulator RETREG1 at 'Ser-151' under endoplasmic reticulum stress conditions which enhances RETREG1 oligomerization and its membrane scission and reticulophagy activity (PubMed:31930741). {ECO:0000250|UniProtKB:P08413, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:29100089, ECO:0000269|PubMed:31930741}. |
Q13557 | CAMK2D | S280 | ochoa | Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}. |
Q13576 | IQGAP2 | S1358 | ochoa | Ras GTPase-activating-like protein IQGAP2 | Binds to activated CDC42 and RAC1 but does not seem to stimulate their GTPase activity. Associates with calmodulin. |
Q14139 | UBE4A | S940 | ochoa | Ubiquitin conjugation factor E4 A (EC 2.3.2.27) (RING-type E3 ubiquitin transferase E4 A) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases. May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase. Mediates 'Lys-48'-linked polyubiquitination of substrates. {ECO:0000250|UniProtKB:E9Q735, ECO:0000250|UniProtKB:P54860}. |
Q14151 | SAFB2 | S31 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14161 | GIT2 | S255 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14244 | MAP7 | S283 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14498 | RBM39 | S24 | ochoa | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14669 | TRIP12 | S1577 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14690 | PDCD11 | S1476 | ochoa | Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) | Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}. |
Q15326 | ZMYND11 | S138 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15334 | LLGL1 | S663 | ochoa|psp | Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) | Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}. |
Q15361 | TTF1 | S41 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q15468 | STIL | S1108 | ochoa|psp | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15678 | PTPN14 | S809 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15746 | MYLK | S947 | ochoa|psp | Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] | Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}. |
Q15835 | GRK1 | S21 | psp | Rhodopsin kinase GRK1 (RK) (EC 2.7.11.14) (G protein-coupled receptor kinase 1) | Retina-specific kinase involved in the signal turnoff via phosphorylation of rhodopsin (RHO), the G protein- coupled receptor that initiates the phototransduction cascade (PubMed:15946941). This rapid desensitization is essential for scotopic vision and permits rapid adaptation to changes in illumination (By similarity). May play a role in the maintenance of the outer nuclear layer in the retina (By similarity). {ECO:0000250|UniProtKB:Q9WVL4, ECO:0000269|PubMed:15946941}. |
Q16236 | NFE2L2 | S40 | psp | Nuclear factor erythroid 2-related factor 2 (NF-E2-related factor 2) (NFE2-related factor 2) (Nrf-2) (Nuclear factor, erythroid derived 2, like 2) | Transcription factor that plays a key role in the response to oxidative stress: binds to antioxidant response (ARE) elements present in the promoter region of many cytoprotective genes, such as phase 2 detoxifying enzymes, and promotes their expression, thereby neutralizing reactive electrophiles (PubMed:11035812, PubMed:19489739, PubMed:29018201, PubMed:31398338). In normal conditions, ubiquitinated and degraded in the cytoplasm by the BCR(KEAP1) complex (PubMed:11035812, PubMed:15601839, PubMed:29018201). In response to oxidative stress, electrophile metabolites inhibit activity of the BCR(KEAP1) complex, promoting nuclear accumulation of NFE2L2/NRF2, heterodimerization with one of the small Maf proteins and binding to ARE elements of cytoprotective target genes (PubMed:19489739, PubMed:29590092). The NFE2L2/NRF2 pathway is also activated in response to selective autophagy: autophagy promotes interaction between KEAP1 and SQSTM1/p62 and subsequent inactivation of the BCR(KEAP1) complex, leading to NFE2L2/NRF2 nuclear accumulation and expression of cytoprotective genes (PubMed:20452972). The NFE2L2/NRF2 pathway is also activated during the unfolded protein response (UPR), contributing to redox homeostasis and cell survival following endoplasmic reticulum stress (By similarity). May also be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region (PubMed:7937919). Also plays an important role in the regulation of the innate immune response and antiviral cytosolic DNA sensing. It is a critical regulator of the innate immune response and survival during sepsis by maintaining redox homeostasis and restraint of the dysregulation of pro-inflammatory signaling pathways like MyD88-dependent and -independent and TNF-alpha signaling (By similarity). Suppresses macrophage inflammatory response by blocking pro-inflammatory cytokine transcription and the induction of IL6 (By similarity). Binds to the proximity of pro-inflammatory genes in macrophages and inhibits RNA Pol II recruitment. The inhibition is independent of the NRF2-binding motif and reactive oxygen species level (By similarity). Represses antiviral cytosolic DNA sensing by suppressing the expression of the adapter protein STING1 and decreasing responsiveness to STING1 agonists while increasing susceptibility to infection with DNA viruses (PubMed:30158636). Once activated, limits the release of pro-inflammatory cytokines in response to human coronavirus SARS-CoV-2 infection and to virus-derived ligands through a mechanism that involves inhibition of IRF3 dimerization. Also inhibits both SARS-CoV-2 replication, as well as the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism (PubMed:33009401). {ECO:0000250|UniProtKB:Q60795, ECO:0000269|PubMed:11035812, ECO:0000269|PubMed:15601839, ECO:0000269|PubMed:19489739, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:29018201, ECO:0000269|PubMed:29590092, ECO:0000269|PubMed:30158636, ECO:0000269|PubMed:31398338, ECO:0000269|PubMed:33009401, ECO:0000269|PubMed:7937919}. |
Q16531 | DDB1 | S662 | ochoa | DNA damage-binding protein 1 (DDB p127 subunit) (DNA damage-binding protein a) (DDBa) (Damage-specific DNA-binding protein 1) (HBV X-associated protein 1) (XAP-1) (UV-damaged DNA-binding factor) (UV-damaged DNA-binding protein 1) (UV-DDB 1) (XPE-binding factor) (XPE-BF) (Xeroderma pigmentosum group E-complementing protein) (XPCe) | Protein, which is both involved in DNA repair and protein ubiquitination, as part of the UV-DDB complex and DCX (DDB1-CUL4-X-box) complexes, respectively (PubMed:14739464, PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16407252, PubMed:16482215, PubMed:16940174, PubMed:17079684). Core component of the UV-DDB complex (UV-damaged DNA-binding protein complex), a complex that recognizes UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches (PubMed:15448697, PubMed:16260596, PubMed:16407242, PubMed:16940174). Also functions as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355, PubMed:28886238). The functional specificity of the DCX E3 ubiquitin-protein ligase complex is determined by the variable substrate recognition component recruited by DDB1 (PubMed:14739464, PubMed:16407252, PubMed:16482215, PubMed:17079684, PubMed:18332868, PubMed:18381890, PubMed:19966799, PubMed:22118460, PubMed:25043012, PubMed:25108355). DCX(DDB2) (also known as DDB1-CUL4-ROC1, CUL4-DDB-ROC1 and CUL4-DDB-RBX1) may ubiquitinate histone H2A, histone H3 and histone H4 at sites of UV-induced DNA damage (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). The ubiquitination of histones may facilitate their removal from the nucleosome and promote subsequent DNA repair (PubMed:16473935, PubMed:16678110, PubMed:17041588, PubMed:18593899). DCX(DDB2) also ubiquitinates XPC, which may enhance DNA-binding by XPC and promote NER (PubMed:15882621). DCX(DTL) plays a role in PCNA-dependent polyubiquitination of CDT1 and MDM2-dependent ubiquitination of TP53 in response to radiation-induced DNA damage and during DNA replication (PubMed:17041588). DCX(ERCC8) (the CSA complex) plays a role in transcription-coupled repair (TCR) (PubMed:12732143, PubMed:32355176, PubMed:38316879). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). DDB1-mediated CRY1 degradation promotes FOXO1 protein stability and FOXO1-mediated gluconeogenesis in the liver (By similarity). By acting on TET dioxygenses, essential for oocyte maintenance at the primordial follicle stage, hence essential for female fertility (By similarity). Maternal factor required for proper zygotic genome activation and genome reprogramming (By similarity). {ECO:0000250|UniProtKB:Q3U1J4, ECO:0000269|PubMed:12732143, ECO:0000269|PubMed:14739464, ECO:0000269|PubMed:15448697, ECO:0000269|PubMed:15882621, ECO:0000269|PubMed:16260596, ECO:0000269|PubMed:16407242, ECO:0000269|PubMed:16407252, ECO:0000269|PubMed:16473935, ECO:0000269|PubMed:16482215, ECO:0000269|PubMed:16678110, ECO:0000269|PubMed:16940174, ECO:0000269|PubMed:17041588, ECO:0000269|PubMed:17079684, ECO:0000269|PubMed:18332868, ECO:0000269|PubMed:18381890, ECO:0000269|PubMed:18593899, ECO:0000269|PubMed:19966799, ECO:0000269|PubMed:22118460, ECO:0000269|PubMed:25043012, ECO:0000269|PubMed:25108355, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:28886238, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:38316879}. |
Q17R91 | DIAPH2 | S820 | psp | Protein diaphanous homolog 2 (Diaphanous-related formin-2) | None |
Q17R98 | ZNF827 | S246 | ochoa | Zinc finger protein 827 | As part of a ribonucleoprotein complex composed at least of HNRNPK, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Could also recruit the nucleosome remodeling and histone deacetylase/NuRD complex to telomeric regions of chromosomes to regulate chromatin remodeling as part of telomere maintenance (PubMed:25150861). {ECO:0000269|PubMed:25150861, ECO:0000269|PubMed:33174841}. |
Q2M2Z5 | KIZ | S620 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q3YEC7 | RABL6 | S402 | ochoa | Rab-like protein 6 (GTP-binding protein Parf) (Partner of ARF) (Rab-like protein 1) (RBEL1) | May enhance cellular proliferation. May reduce growth inhibitory activity of CDKN2A. {ECO:0000269|PubMed:16582619}. |
Q5JSH3 | WDR44 | S126 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5T7B8 | KIF24 | S574 | ochoa | Kinesin-like protein KIF24 | Microtubule-dependent motor protein that acts as a negative regulator of ciliogenesis by mediating recruitment of CCP110 to mother centriole in cycling cells, leading to restrict nucleation of cilia at centrioles. Mediates depolymerization of microtubules of centriolar origin, possibly to suppress aberrant cilia formation (PubMed:21620453). Following activation by NEK2 involved in disassembly of primary cilium during G2/M phase but does not disassemble fully formed ciliary axonemes. As cilium assembly and disassembly is proposed to coexist in a dynamic equilibrium may suppress nascent cilium assembly and, potentially, ciliar re-assembly in cells that have already disassembled their cilia ensuring the completion of cilium removal in the later stages of the cell cycle (PubMed:26290419). Plays an important role in recruiting MPHOSPH9, a negative regulator of cilia formation to the distal end of mother centriole (PubMed:30375385). {ECO:0000269|PubMed:21620453, ECO:0000269|PubMed:26290419, ECO:0000269|PubMed:30375385}. |
Q5VT06 | CEP350 | S105 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VUA4 | ZNF318 | S1267 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VZ89 | DENND4C | S1046 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZK9 | CARMIL1 | S968 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q641Q2 | WASHC2A | S648 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q68DI1 | ZNF776 | S75 | ochoa | Zinc finger protein 776 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q68DQ2 | CRYBG3 | S636 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6KC79 | NIPBL | S553 | ochoa|psp | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6NUK1 | SLC25A24 | S177 | ochoa | Mitochondrial adenyl nucleotide antiporter SLC25A24 (Mitochondrial ATP-Mg/Pi carrier protein 1) (Mitochondrial Ca(2+)-dependent solute carrier protein 1) (Short calcium-binding mitochondrial carrier protein 1) (SCaMC-1) (Solute carrier family 25 member 24) | Electroneutral antiporter that mediates the transport of adenyl nucleotides through the inner mitochondrial membrane. Originally identified as an ATP-magnesium/inorganic phosphate antiporter, it also acts as a broad specificity adenyl nucleotide antiporter. By regulating the mitochondrial matrix adenyl nucleotide pool could adapt to changing cellular energetic demands and indirectly regulate adenyl nucleotide-dependent metabolic pathways (PubMed:15123600, PubMed:22015608). In vitro, a low activity is also observed with guanyl and pyrimidine nucleotides (PubMed:15123600). May play a role in protecting cells against oxidative stress-induced cell death, by buffering calcium levels in the mitochondrial matrix through the formation of calcium-phosphate precipitates (PubMed:22015608, PubMed:29100093). {ECO:0000269|PubMed:15123600, ECO:0000269|PubMed:22015608, ECO:0000269|PubMed:29100093}. |
Q6P4R8 | NFRKB | S298 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6ZVF9 | GPRIN3 | S526 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q7Z3T8 | ZFYVE16 | S218 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q86UE4 | MTDH | S562 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UR5 | RIMS1 | S1416 | ochoa | Regulating synaptic membrane exocytosis protein 1 (Rab-3-interacting molecule 1) (RIM 1) (Rab-3-interacting protein 2) | Rab effector involved in exocytosis (By similarity). May act as scaffold protein that regulates neurotransmitter release at the active zone. Essential for maintaining normal probability of neurotransmitter release and for regulating release during short-term synaptic plasticity (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q99NE5, ECO:0000269|PubMed:23999003}. |
Q86VF7 | NRAP | S613 | ochoa | Nebulin-related-anchoring protein (N-RAP) | May be involved in anchoring the terminal actin filaments in the myofibril to the membrane and in transmitting tension from the myofibrils to the extracellular matrix. {ECO:0000250|UniProtKB:Q80XB4}. |
Q86X27 | RALGPS2 | S23 | ochoa | Ras-specific guanine nucleotide-releasing factor RalGPS2 (Ral GEF with PH domain and SH3-binding motif 2) (RalA exchange factor RalGPS2) | Guanine nucleotide exchange factor for the small GTPase RALA. May be involved in cytoskeletal organization. May also be involved in the stimulation of transcription in a Ras-independent fashion (By similarity). {ECO:0000250}. |
Q86YT6 | MIB1 | S408 | ochoa | E3 ubiquitin-protein ligase MIB1 (EC 2.3.2.27) (DAPK-interacting protein 1) (DIP-1) (Mind bomb homolog 1) (RING-type E3 ubiquitin transferase MIB1) (Zinc finger ZZ type with ankyrin repeat domain protein 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of Delta receptors, which act as ligands of Notch proteins. Positively regulates the Delta-mediated Notch signaling by ubiquitinating the intracellular domain of Delta, leading to endocytosis of Delta receptors. Probably mediates ubiquitination and subsequent proteasomal degradation of DAPK1, thereby antagonizing anti-apoptotic effects of DAPK1 to promote TNF-induced apoptosis (By similarity). Involved in ubiquitination of centriolar satellite CEP131, CEP290 and PCM1 proteins and hence inhibits primary cilium formation in proliferating cells. Mediates 'Lys-63'-linked polyubiquitination of TBK1, which probably participates in kinase activation. {ECO:0000250, ECO:0000269|PubMed:24121310}.; FUNCTION: (Microbial infection) During adenovirus infection, mediates ubiquitination of Core-capsid bridging protein. This allows viral genome delivery into nucleus for infection. {ECO:0000269|PubMed:31851912}. |
Q8IWP9 | CCDC28A | S103 | ochoa | Coiled-coil domain-containing protein 28A (CCRL1AP) | None |
Q8IWS0 | PHF6 | S120 | ochoa | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q8IXJ9 | ASXL1 | S526 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IYL3 | C1orf174 | S45 | ochoa | UPF0688 protein C1orf174 | None |
Q8N4T4 | ARHGEF39 | S110 | ochoa | Rho guanine nucleotide exchange factor 39 | Promotes cell proliferation. {ECO:0000269|PubMed:22327280}. |
Q8N554 | ZNF276 | S360 | ochoa | Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) | May be involved in transcriptional regulation. |
Q8N554 | ZNF276 | S382 | ochoa | Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) | May be involved in transcriptional regulation. |
Q8NC51 | SERBP1 | S25 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8TEW0 | PARD3 | S873 | ochoa|psp | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEW8 | PARD3B | S730 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF71 | SLC16A10 | S268 | ochoa | Monocarboxylate transporter 10 (MCT 10) (Aromatic amino acid transporter 1) (Solute carrier family 16 member 10) (T-type amino acid transporter 1) | Sodium- and proton-independent thyroid hormones and aromatic acids transporter (PubMed:11827462, PubMed:18337592, PubMed:28754537). Mediates both uptake and efflux of 3,5,3'-triiodothyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) with high affinity, suggesting a role in the homeostasis of thyroid hormone levels (PubMed:18337592). Responsible for low affinity bidirectional transport of the aromatic amino acids, such as phenylalanine, tyrosine, tryptophan and L-3,4-dihydroxyphenylalanine (L-dopa) (PubMed:11827462, PubMed:28754537). Plays an important role in homeostasis of aromatic amino acids (By similarity). {ECO:0000250|UniProtKB:Q3U9N9, ECO:0000269|PubMed:11827462, ECO:0000269|PubMed:18337592, ECO:0000269|PubMed:28754537}. |
Q8WVC0 | LEO1 | S614 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q8WVS4 | DYNC2I1 | S27 | ochoa | Cytoplasmic dynein 2 intermediate chain 1 (Dynein 2 intermediate chain 1) (WD repeat-containing protein 60) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 2 complex (dynein-2 complex), a motor protein complex that drives the movement of cargos along microtubules within cilia and flagella in concert with the intraflagellar transport (IFT) system (PubMed:23910462, PubMed:25205765, PubMed:29742051, PubMed:31451806). DYNC2I1 plays a major role in retrograde ciliary protein trafficking in cilia and flagella (PubMed:29742051, PubMed:30320547, PubMed:30649997). Also requires to maintain a functional transition zone (PubMed:30320547). {ECO:0000269|PubMed:23910462, ECO:0000269|PubMed:25205765, ECO:0000269|PubMed:29742051, ECO:0000269|PubMed:30320547, ECO:0000269|PubMed:30649997, ECO:0000269|PubMed:31451806}. |
Q8WXD5 | GEMIN6 | S95 | ochoa | Gem-associated protein 6 (Gemin-6) (SIP2) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. {ECO:0000269|PubMed:11748230, ECO:0000269|PubMed:18984161}. |
Q8WYL5 | SSH1 | S812 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYP5 | AHCTF1 | S2120 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q92536 | SLC7A6 | S30 | ochoa | Y+L amino acid transporter 2 (Cationic amino acid transporter, y+ system) (Solute carrier family 7 member 6) (y(+)L-type amino acid transporter 2) (Y+LAT2) (y+LAT-2) | Heterodimer with SLC3A2, that functions as an antiporter which operates as an efflux route by exporting cationic amino acids such as L-arginine from inside the cells in exchange with neutral amino acids like L-leucine, L-glutamine and isoleucine, plus sodium ions and may participate in nitric oxide synthesis (PubMed:10903140, PubMed:11311135, PubMed:14603368, PubMed:15756301, PubMed:16785209, PubMed:17329401, PubMed:19562367, PubMed:31705628, PubMed:9829974). Also exchanges L-arginine with L-lysine in a sodium-independent manner (PubMed:10903140). The transport mechanism is electroneutral and operates with a stoichiometry of 1:1 (PubMed:10903140). Contributes to ammonia-induced increase of L-arginine uptake in cerebral cortical astrocytes leading to ammonia-dependent increase of nitric oxide (NO) production via inducible nitric oxide synthase (iNOS) induction, and protein nitration (By similarity). May mediate transport of ornithine in retinal pigment epithelial (RPE) cells (PubMed:17197568). May also transport glycine betaine in a sodium dependent manner from the cumulus granulosa into the enclosed oocyte (By similarity). {ECO:0000250|UniProtKB:D3ZMM8, ECO:0000250|UniProtKB:Q8BGK6, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:14603368, ECO:0000269|PubMed:15756301, ECO:0000269|PubMed:16785209, ECO:0000269|PubMed:17197568, ECO:0000269|PubMed:17329401, ECO:0000269|PubMed:19562367, ECO:0000269|PubMed:31705628, ECO:0000269|PubMed:9829974}. |
Q92622 | RUBCN | S390 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q969I6 | SLC38A4 | S49 | ochoa | Sodium-coupled neutral amino acid transporter 4 (Amino acid transporter A3) (Na(+)-coupled neutral amino acid transporter 4) (Solute carrier family 38 member 4) (System A amino acid transporter 3) (System N amino acid transporter 3) | Symporter that cotransports neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:11342143, PubMed:19015196, PubMed:33928121). The transport is electrogenic, pH dependent and partially tolerates substitution of Na(+) by Li(+) (PubMed:11414754). Preferentially transports smaller amino acids, such as glycine, L-alanine, L-serine, L-asparagine and L-threonine, followed by L-cysteine, L-histidine, L-proline and L-glutamine and L-methionine (PubMed:11414754, PubMed:33928121). {ECO:0000269|PubMed:11342143, ECO:0000269|PubMed:11414754, ECO:0000269|PubMed:19015196, ECO:0000269|PubMed:33928121}. |
Q96AT1 | KIAA1143 | S105 | ochoa | Uncharacterized protein KIAA1143 | None |
Q96BY6 | DOCK10 | S195 | ochoa | Dedicator of cytokinesis protein 10 (Zizimin-3) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 and RAC1 by exchanging bound GDP for free GTP. Essential for dendritic spine morphogenesis in Purkinje cells and in hippocampal neurons, via a CDC42-mediated pathway. Sustains B-cell lymphopoiesis in secondary lymphoid tissues and regulates FCER2/CD23 expression. {ECO:0000250|UniProtKB:Q8BZN6}. |
Q96EA4 | SPDL1 | S515 | ochoa | Protein Spindly (hSpindly) (Arsenite-related gene 1 protein) (Coiled-coil domain-containing protein 99) (Rhabdomyosarcoma antigen MU-RMS-40.4A) (Spindle apparatus coiled-coil domain-containing protein 1) | Required for the localization of dynein and dynactin to the mitotic kintochore. Dynein is believed to control the initial lateral interaction between the kinetochore and spindle microtubules and to facilitate the subsequent formation of end-on kinetochore-microtubule attachments mediated by the NDC80 complex. Also required for correct spindle orientation. Does not appear to be required for the removal of spindle assembly checkpoint (SAC) proteins from the kinetochore upon bipolar spindle attachment (PubMed:17576797, PubMed:19468067). Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25035494). Plays a role in cell migration (PubMed:30258100). {ECO:0000255|HAMAP-Rule:MF_03041, ECO:0000269|PubMed:17576797, ECO:0000269|PubMed:19468067, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:30258100}. |
Q96F86 | EDC3 | S163 | ochoa | Enhancer of mRNA-decapping protein 3 (LSM16 homolog) (YjeF N-terminal domain-containing protein 2) (YjeF_N2) (hYjeF_N2) (YjeF domain-containing protein 1) | Binds single-stranded RNA. Involved in the process of mRNA degradation and in the positive regulation of mRNA decapping. May play a role in spermiogenesis and oogenesis. {ECO:0000269|PubMed:16364915, ECO:0000269|PubMed:17533573, ECO:0000269|PubMed:18678652, ECO:0000269|PubMed:25701870}. |
Q96HH9 | GRAMD2B | S26 | ochoa | GRAM domain-containing protein 2B (HCV NS3-transactivated protein 2) | None |
Q96JC1 | VPS39 | S441 | ochoa | Vam6/Vps39-like protein (TRAP1-like protein) (hVam6p) | Regulator of TGF-beta/activin signaling, inhibiting SMAD3- and activating SMAD2-dependent transcription. Acts by interfering with SMAD3/SMAD4 complex formation, this would lead to inhibition of SMAD3-dependent transcription and relieve SMAD3 inhibition of SMAD2-dependent promoters, thus increasing SMAD2-dependent transcription. Does not affect TGF-beta-induced SMAD2 or SMAD3 phosphorylation, nor SMAD2/SMAD4 complex formation. {ECO:0000269|PubMed:12941698}.; FUNCTION: Plays a role in vesicle-mediated protein trafficking to lysosomal compartments including the endocytic membrane transport and autophagic pathways. Acts as a component of the HOPS endosomal tethering complex. This complex is proposed to be involved in the Rab5-to-Rab7 endosome conversion probably implicating MON1A/B, and via binding SNAREs and SNARE complexes to mediate tethering and docking events during SNARE-mediated membrane fusion. The HOPS complex is proposed to be recruited to Rab7 on the late endosomal membrane and to regulate late endocytic, phagocytic and autophagic traffic towards lysosomes (PubMed:23351085). Involved in homotypic vesicle fusions between late endosomes and in heterotypic fusions between late endosomes and lysosomes (PubMed:11448994, PubMed:23167963, PubMed:23351085). Required for fusion of endosomes and autophagosomes with lysosomes (PubMed:25783203, PubMed:37821429). {ECO:0000269|PubMed:11448994, ECO:0000269|PubMed:23167963, ECO:0000269|PubMed:25783203, ECO:0000269|PubMed:33422265, ECO:0000269|PubMed:37821429, ECO:0000305|PubMed:23351085}. |
Q96N67 | DOCK7 | S970 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96NG3 | ODAD4 | S624 | ochoa | Outer dynein arm-docking complex subunit 4 (Tetratricopeptide repeat protein 25) (TPR repeat protein 25) | Component of the outer dynein arm-docking complex (ODA-DC) that mediates outer dynein arms (ODA) binding onto the doublet microtubule. Plays an essential role for the assembly of ODA-DC and for the docking of ODA in ciliary axoneme. {ECO:0000269|PubMed:27486780}. |
Q96QE3 | ATAD5 | S756 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96RL1 | UIMC1 | S547 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL1 | UIMC1 | S684 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q9BTC0 | DIDO1 | S1312 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BVI0 | PHF20 | S519 | ochoa | PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) | Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}. |
Q9BX63 | BRIP1 | S1003 | ochoa | Fanconi anemia group J protein (EC 5.6.2.3) (BRCA1-associated C-terminal helicase 1) (BRCA1-interacting protein C-terminal helicase 1) (BRCA1-interacting protein 1) (DNA 5'-3' helicase FANCJ) | DNA-dependent ATPase and 5'-3' DNA helicase required for the maintenance of chromosomal stability (PubMed:11301010, PubMed:14983014, PubMed:16116421, PubMed:16153896, PubMed:17596542, PubMed:36608669). Acts late in the Fanconi anemia pathway, after FANCD2 ubiquitination (PubMed:14983014, PubMed:16153896). Involved in the repair of DNA double-strand breaks by homologous recombination in a manner that depends on its association with BRCA1 (PubMed:14983014, PubMed:16153896). Involved in the repair of abasic sites at replication forks by promoting the degradation of DNA-protein cross-links: acts by catalyzing unfolding of HMCES DNA-protein cross-link via its helicase activity, exposing the underlying DNA and enabling cleavage of the DNA-protein adduct by the SPRTN metalloprotease (PubMed:16116421, PubMed:36608669). Can unwind RNA:DNA substrates (PubMed:14983014). Unwinds G-quadruplex DNA; unwinding requires a 5'-single stranded tail (PubMed:18426915, PubMed:20639400). {ECO:0000269|PubMed:11301010, ECO:0000269|PubMed:14983014, ECO:0000269|PubMed:16116421, ECO:0000269|PubMed:16153896, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639400, ECO:0000269|PubMed:36608669}. |
Q9BXF6 | RAB11FIP5 | S188 | ochoa|psp | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXS6 | NUSAP1 | S149 | ochoa | Nucleolar and spindle-associated protein 1 (NuSAP) | Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}. |
Q9BZF1 | OSBPL8 | S120 | ochoa | Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}. |
Q9C0B9 | ZCCHC2 | S564 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9H0H5 | RACGAP1 | S187 | ochoa | Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}. |
Q9H0X9 | OSBPL5 | S88 | ochoa | Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}. |
Q9H223 | EHD4 | S459 | ochoa | EH domain-containing protein 4 (Hepatocellular carcinoma-associated protein 10/11) (PAST homolog 4) | ATP- and membrane-binding protein that probably controls membrane reorganization/tubulation upon ATP hydrolysis. Plays a role in early endosomal transport (PubMed:17233914, PubMed:18331452). During sprouting angiogenesis, in complex with PACSIN2 and MICALL1, forms recycling endosome-like tubular structure at asymmetric adherens junctions to control CDH5 trafficking (By similarity). {ECO:0000250|UniProtKB:Q9EQP2, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:18331452}. |
Q9H2G2 | SLK | S781 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2H9 | SLC38A1 | S49 | ochoa | Sodium-coupled neutral amino acid symporter 1 (Amino acid transporter A1) (N-system amino acid transporter 2) (Solute carrier family 38 member 1) (System A amino acid transporter 1) (System N amino acid transporter 1) | Symporter that cotransports short-chain neutral amino acids and sodium ions from the extraccellular to the intracellular side of the cell membrane (PubMed:10891391, PubMed:20599747). The transport is elctrogenic, pH dependent and driven by the Na(+) electrochemical gradient (PubMed:10891391). Participates in the astroglia-derived glutamine transport into GABAergic interneurons for neurotransmitter GABA de novo synthesis (By similarity). May also contributes to amino acid transport in placental trophoblasts (PubMed:20599747). Also regulates synaptic plasticity (PubMed:12388062). {ECO:0000250|UniProtKB:Q8K2P7, ECO:0000250|UniProtKB:Q9JM15, ECO:0000269|PubMed:10891391, ECO:0000269|PubMed:12388062, ECO:0000269|PubMed:20599747}. |
Q9H2M9 | RAB3GAP2 | S916 | ochoa | Rab3 GTPase-activating protein non-catalytic subunit (RGAP-iso) (Rab3 GTPase-activating protein 150 kDa subunit) (Rab3-GAP p150) (Rab3-GAP150) (Rab3-GAP regulatory subunit) | Regulatory subunit of the Rab3 GTPase-activating (Rab3GAP) complex composed of RAB3GAP1 and RAB3GAP2, which has GTPase-activating protein (GAP) activity towards various Rab3 subfamily members (RAB3A, RAB3B, RAB3C and RAB3D), RAB5A and RAB43, and guanine nucleotide exchange factor (GEF) activity towards RAB18 (PubMed:24891604, PubMed:9733780). As part of the Rab3GAP complex, acts as a GAP for Rab3 proteins by converting active RAB3-GTP to the inactive form RAB3-GDP (By similarity). Rab3 proteins are involved in regulated exocytosis of neurotransmitters and hormones (By similarity). The Rab3GAP complex acts as a GEF for RAB18 by promoting the conversion of inactive RAB18-GDP to the active form RAB18-GTP (PubMed:24891604). Recruits and stabilizes RAB18 at the cis-Golgi membrane in human fibroblasts where RAB18 is most likely activated (PubMed:26063829). Also involved in RAB18 recruitment at the endoplasmic reticulum (ER) membrane where it maintains proper ER structure (PubMed:24891604). Required for normal eye and brain development (By similarity). May participate in neurodevelopmental processes such as proliferation, migration and differentiation before synapse formation, and non-synaptic vesicular release of neurotransmitters (By similarity). {ECO:0000250|UniProtKB:Q15042, ECO:0000269|PubMed:24891604, ECO:0000269|PubMed:26063829, ECO:0000269|PubMed:9733780}. |
Q9H4M9 | EHD1 | S456 | ochoa | EH domain-containing protein 1 (PAST homolog 1) (hPAST1) (Testilin) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis. In vitro causes vesiculation of endocytic membranes (PubMed:24019528). Acts in early endocytic membrane fusion and membrane trafficking of recycling endosomes (PubMed:15020713, PubMed:17233914, PubMed:20801876). Recruited to endosomal membranes upon nerve growth factor stimulation, indirectly regulates neurite outgrowth (By similarity). Plays a role in myoblast fusion (By similarity). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle (CV), an early step in cilium biogenesis (PubMed:31615969). Proposed to be required for the fusion of distal appendage vesicles (DAVs) to form the CV by recruiting SNARE complex component SNAP29. Is required for recruitment of transition zone proteins CEP290, RPGRIP1L, TMEM67 and B9D2, and of IFT20 following DAV reorganization before Rab8-dependent ciliary membrane extension. Required for the loss of CCP110 form the mother centriole essential for the maturation of the basal body during ciliogenesis (PubMed:25686250). {ECO:0000250|UniProtKB:Q641Z6, ECO:0000250|UniProtKB:Q9WVK4, ECO:0000269|PubMed:15020713, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000269|PubMed:31615969}. |
Q9H5P4 | PDZD7 | S436 | ochoa | PDZ domain-containing protein 7 | In cochlear developing hair cells, essential in organizing the USH2 complex at stereocilia ankle links. Blocks inhibition of adenylate cyclase activity mediated by ADGRV1. {ECO:0000250|UniProtKB:E9Q9W7}. |
Q9H7N4 | SCAF1 | S1197 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H814 | PHAX | S146 | ochoa | Phosphorylated adapter RNA export protein (RNA U small nuclear RNA export adapter protein) | A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus (PubMed:39011894). Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner (By similarity). Also plays a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Also binds to telomerase RNA. {ECO:0000250, ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:15574333}. |
Q9HC77 | CPAP | S467 | psp | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCE1 | MOV10 | S432 | ochoa | Helicase MOV-10 (EC 3.6.4.13) (Armitage homolog) (Moloney leukemia virus 10 protein) | 5' to 3' RNA helicase that is involved in a number of cellular roles ranging from mRNA metabolism and translation, modulation of viral infectivity, inhibition of retrotransposition, or regulation of synaptic transmission (PubMed:23093941). Plays an important role in innate antiviral immunity by promoting type I interferon production (PubMed:27016603, PubMed:27974568, PubMed:35157734). Mechanistically, specifically uses IKKepsilon/IKBKE as the mediator kinase for IRF3 activation (PubMed:27016603, PubMed:35157734). Blocks HIV-1 virus replication at a post-entry step (PubMed:20215113). Counteracts HIV-1 Vif-mediated degradation of APOBEC3G through its helicase activity by interfering with the ubiquitin-proteasome pathway (PubMed:29258557). Also inhibits hepatitis B virus/HBV replication by interacting with HBV RNA and thereby inhibiting the early step of viral reverse transcription (PubMed:31722967). Contributes to UPF1 mRNA target degradation by translocation along 3' UTRs (PubMed:24726324). Required for microRNA (miRNA)-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:16289642, PubMed:17507929, PubMed:22791714). In cooperation with FMR1, regulates miRNA-mediated translational repression by AGO2 (PubMed:25464849). Restricts retrotransposition of long interspersed element-1 (LINE-1) in cooperation with TUT4 and TUT7 counteracting the RNA chaperonne activity of L1RE1 (PubMed:23093941, PubMed:30122351). Facilitates LINE-1 uridylation by TUT4 and TUT7 (PubMed:30122351). Required for embryonic viability and for normal central nervous system development and function. Plays two critical roles in early brain development: suppresses retroelements in the nucleus by directly inhibiting cDNA synthesis, while regulates cytoskeletal mRNAs to influence neurite outgrowth in the cytosol (By similarity). May function as a messenger ribonucleoprotein (mRNP) clearance factor (PubMed:24726324). {ECO:0000250|UniProtKB:P23249, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:20215113, ECO:0000269|PubMed:22791714, ECO:0000269|PubMed:23093941, ECO:0000269|PubMed:24726324, ECO:0000269|PubMed:25464849, ECO:0000269|PubMed:27016603, ECO:0000269|PubMed:27974568, ECO:0000269|PubMed:29258557, ECO:0000269|PubMed:30122351, ECO:0000269|PubMed:31722967, ECO:0000269|PubMed:35157734}.; FUNCTION: (Microbial infection) Required for RNA-directed transcription and replication of the human hepatitis delta virus (HDV). Interacts with small capped HDV RNAs derived from genomic hairpin structures that mark the initiation sites of RNA-dependent HDV RNA transcription. {ECO:0000269|PubMed:18552826}. |
Q9HCI7 | MSL2 | S447 | ochoa | E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q9NR00 | TCIM | S21 | ochoa | Transcriptional and immune response regulator (Thyroid cancer protein 1) (TC-1) | Seems to be involved in the regulation of cell growth an differentiation, may play different and opposite roles depending on the tissue or cell type. May enhance the WNT-CTNNB1 pathway by relieving antagonistic activity of CBY1 (PubMed:16424001, PubMed:16730711). Enhances the proliferation of follicular dendritic cells (PubMed:16730711). Plays a role in the mitogen-activated MAPK2/3 signaling pathway, positively regulates G1-to-S-phase transition of the cell cycle (PubMed:18959821). In endothelial cells, enhances key inflammatory mediators and inflammatory response through the modulation of NF-kappaB transcriptional regulatory activity (PubMed:19684084). Involved in the regulation of heat shock response, seems to play a positive feedback with HSF1 to modulate heat-shock downstream gene expression (PubMed:17603013). Plays a role in the regulation of hematopoiesis even if the mechanisms are unknown (By similarity). In cancers such as thyroid or lung cancer, it has been described as promoter of cell proliferation, G1-to-S-phase transition and inhibitor of apoptosis (PubMed:15087392, PubMed:24941347). However, it negatively regulates self-renewal of liver cancer cells via suppresion of NOTCH2 signaling (PubMed:25985737). {ECO:0000250|UniProtKB:Q9D915, ECO:0000269|PubMed:15087392, ECO:0000269|PubMed:16424001, ECO:0000269|PubMed:16730711, ECO:0000269|PubMed:17603013, ECO:0000269|PubMed:18959821, ECO:0000269|PubMed:19684084, ECO:0000269|PubMed:24941347, ECO:0000269|PubMed:25985737, ECO:0000305}. |
Q9NS87 | KIF15 | S1083 | ochoa | Kinesin-like protein KIF15 (Kinesin-like protein 2) (hKLP2) (Kinesin-like protein 7) (Serologically defined breast cancer antigen NY-BR-62) | Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly. {ECO:0000250}. |
Q9NUQ6 | SPATS2L | S120 | ochoa | SPATS2-like protein (DNA polymerase-transactivated protein 6) (Stress granule and nucleolar protein) (SGNP) | None |
Q9NVN8 | GNL3L | S22 | ochoa | Guanine nucleotide-binding protein-like 3-like protein | Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}. |
Q9NW68 | BSDC1 | S372 | ochoa | BSD domain-containing protein 1 | None |
Q9NZM3 | ITSN2 | S571 | ochoa | Intersectin-2 (SH3 domain-containing protein 1B) (SH3P18) (SH3P18-like WASP-associated protein) | Adapter protein that may provide indirect link between the endocytic membrane traffic and the actin assembly machinery. May regulate the formation of clathrin-coated vesicles (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:23999003}. |
Q9NZN3 | EHD3 | S456 | ochoa | EH domain-containing protein 3 (PAST homolog 3) | ATP- and membrane-binding protein that controls membrane reorganization/tubulation upon ATP hydrolysis (PubMed:25686250). In vitro causes tubulation of endocytic membranes (PubMed:24019528). Binding to phosphatidic acid induces its membrane tubulation activity (By similarity). Plays a role in endocytic transport. Involved in early endosome to recycling endosome compartment (ERC), retrograde early endosome to Golgi, and endosome to plasma membrane (rapid recycling) protein transport. Involved in the regulation of Golgi maintenance and morphology (PubMed:16251358, PubMed:17233914, PubMed:19139087, PubMed:23781025). Involved in the recycling of internalized D1 dopamine receptor (PubMed:21791287). Plays a role in cardiac protein trafficking probably implicating ANK2 (PubMed:20489164). Involved in the ventricular membrane targeting of SLC8A1 and CACNA1C and probably the atrial membrane localization of CACNA1GG and CACNA1H implicated in the regulation of atrial myocyte excitability and cardiac conduction (By similarity). In conjunction with EHD4 may be involved in endocytic trafficking of KDR/VEGFR2 implicated in control of glomerular function (By similarity). Involved in the rapid recycling of integrin beta-3 implicated in cell adhesion maintenance (PubMed:23781025). Involved in the unidirectional retrograde dendritic transport of endocytosed BACE1 and in efficient sorting of BACE1 to axons implicating a function in neuronal APP processing (By similarity). Plays a role in the formation of the ciliary vesicle, an early step in cilium biogenesis; possibly sharing redundant functions with EHD1 (PubMed:25686250). {ECO:0000250|UniProtKB:Q9QXY6, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:17233914, ECO:0000269|PubMed:19139087, ECO:0000269|PubMed:21791287, ECO:0000269|PubMed:23781025, ECO:0000269|PubMed:24019528, ECO:0000269|PubMed:25686250, ECO:0000305|PubMed:20489164}. |
Q9P2J5 | LARS1 | S396 | ochoa | Leucine--tRNA ligase, cytoplasmic (EC 6.1.1.4) (Leucyl-tRNA synthetase) (LeuRS) (cLRS) | Aminoacyl-tRNA synthetase that catalyzes the specific attachment of leucine to its cognate tRNA (tRNA(Leu)) (PubMed:25051973, PubMed:32232361). It performs tRNA aminoacylation in a two-step reaction: Leu is initially activated by ATP to form a leucyl-adenylate (Leu-AMP) intermediate; then the leucyl moiety is transferred to the acceptor 3' end of the tRNA to yield leucyl-tRNA (PubMed:25051973). To improve the fidelity of catalytic reactions, it is also able to hydrolyze misactivated aminoacyl-adenylate intermediates (pre-transfer editing) and mischarged aminoacyl-tRNAs (post-transfer editing) (PubMed:25051973). {ECO:0000269|PubMed:19426743, ECO:0000269|PubMed:25051973, ECO:0000269|PubMed:32232361}. |
Q9P2Y5 | UVRAG | S550 | ochoa|psp | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9UBY5 | LPAR3 | S227 | ochoa | Lysophosphatidic acid receptor 3 (LPA receptor 3) (LPA-3) (Lysophosphatidic acid receptor Edg-7) | Receptor for lysophosphatidic acid (LPA), a mediator of diverse cellular activities. May play a role in the development of ovarian cancer. Seems to be coupled to the G(i)/G(o) and G(q) families of heteromeric G proteins. |
Q9UEE9 | CFDP1 | S222 | ochoa | Craniofacial development protein 1 (Bucentaur) | May play a role during embryogenesis. {ECO:0000250}. |
Q9UHB6 | LIMA1 | S61 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UKJ3 | GPATCH8 | S653 | ochoa | G patch domain-containing protein 8 | None |
Q9UKX7 | NUP50 | S263 | ochoa | Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) | Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}. |
Q9UL54 | TAOK2 | S656 | ochoa | Serine/threonine-protein kinase TAO2 (EC 2.7.11.1) (Kinase from chicken homolog C) (hKFC-C) (Prostate-derived sterile 20-like kinase 1) (PSK-1) (PSK1) (Prostate-derived STE20-like kinase 1) (Thousand and one amino acid protein kinase 2) | Serine/threonine-protein kinase involved in different processes such as membrane blebbing and apoptotic bodies formation DNA damage response and MAPK14/p38 MAPK stress-activated MAPK cascade. Phosphorylates itself, MBP, activated MAPK8, MAP2K3, MAP2K6 and tubulins. Activates the MAPK14/p38 MAPK signaling pathway through the specific activation and phosphorylation of the upstream MAP2K3 and MAP2K6 kinases. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Isoform 1, but not isoform 2, plays a role in apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation. This function, which requires the activation of MAPK8/JNK and nuclear localization of C-terminally truncated isoform 1, may be linked to the mitochondrial CASP9-associated death pathway. Isoform 1 binds to microtubules and affects their organization and stability independently of its kinase activity. Prevents MAP3K7-mediated activation of CHUK, and thus NF-kappa-B activation, but not that of MAPK8/JNK. May play a role in the osmotic stress-MAPK8 pathway. Isoform 2, but not isoform 1, is required for PCDH8 endocytosis. Following homophilic interactions between PCDH8 extracellular domains, isoform 2 phosphorylates and activates MAPK14/p38 MAPK which in turn phosphorylates isoform 2. This process leads to PCDH8 endocytosis and CDH2 cointernalization. Both isoforms are involved in MAPK14 phosphorylation. {ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:11279118, ECO:0000269|PubMed:12639963, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:17158878, ECO:0000269|PubMed:17396146}. |
Q9ULL8 | SHROOM4 | S1020 | ochoa | Protein Shroom4 (Second homolog of apical protein) | Probable regulator of cytoskeletal architecture that plays an important role in development. May regulate cellular and cytoskeletal architecture by modulating the spatial distribution of myosin II (By similarity). {ECO:0000250, ECO:0000269|PubMed:16684770}. |
Q9ULR0 | ISY1 | S247 | ochoa | Pre-mRNA-splicing factor ISY1 homolog | Component of the spliceosome C complex required for the selective processing of microRNAs during embryonic stem cell differentiation (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). Required during the transition of embryonic stem cells (ESCs) from the naive to primed state (By similarity). By enhancing miRNA biogenesis, promotes exit of ESCs from the naive state to an intermediate state of poised pluripotency, which precedes transition to the primed state (By similarity). Involved in pre-mRNA splicing as component of the spliceosome. {ECO:0000250|UniProtKB:Q69ZQ2, ECO:0000269|PubMed:29301961, ECO:0000305|PubMed:11991638, ECO:0000305|PubMed:25599396}. |
Q9UNP9 | PPIE | S91 | ochoa | Peptidyl-prolyl cis-trans isomerase E (PPIase E) (EC 5.2.1.8) (Cyclophilin E) (Cyclophilin-33) (Rotamase E) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346). Combines RNA-binding and PPIase activities (PubMed:18258190, PubMed:20460131, PubMed:20677832, PubMed:8977107). Binds mRNA and has a preference for single-stranded RNA molecules with poly-A and poly-U stretches, suggesting it binds to the poly(A)-region in the 3'-UTR of mRNA molecules (PubMed:18258190, PubMed:20460131, PubMed:8977107). Catalyzes the cis-trans isomerization of proline imidic peptide bonds in proteins (PubMed:18258190, PubMed:20541251, PubMed:20677832, PubMed:8977107). Inhibits KMT2A activity; this requires proline isomerase activity (PubMed:20460131, PubMed:20541251, PubMed:20677832). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:18258190, ECO:0000269|PubMed:20460131, ECO:0000269|PubMed:20541251, ECO:0000269|PubMed:20677832, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:8977107}. |
Q9UPP1 | PHF8 | S1024 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPV9 | TRAK1 | S203 | ochoa | Trafficking kinesin-binding protein 1 (106 kDa O-GlcNAc transferase-interacting protein) (Protein Milton) | Involved in the regulation of endosome-to-lysosome trafficking, including endocytic trafficking of EGF-EGFR complexes and GABA-A receptors (PubMed:18675823). Involved in mitochondrial motility. When O-glycosylated, abolishes mitochondrial motility. Crucial for recruiting OGT to the mitochondrial surface of neuronal processes (PubMed:24995978). TRAK1 and RHOT form an essential protein complex that links KIF5 to mitochondria for light chain-independent, anterograde transport of mitochondria (By similarity). {ECO:0000250|UniProtKB:Q960V3, ECO:0000269|PubMed:18675823, ECO:0000269|PubMed:24995978}. |
Q9UQM7 | CAMK2A | S279 | psp | Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaM kinase II subunit alpha) (CaMK-II subunit alpha) (EC 2.7.11.17) | Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (PubMed:11972023). In response to interferon-beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2-arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). {ECO:0000250|UniProtKB:P11275, ECO:0000250|UniProtKB:P11798, ECO:0000269|PubMed:11972023, ECO:0000269|PubMed:23805378, ECO:0000269|PubMed:28130356, ECO:0000269|PubMed:29100089}. |
Q9Y281 | CFL2 | S113 | ochoa | Cofilin-2 (Cofilin, muscle isoform) | Controls reversibly actin polymerization and depolymerization in a pH-sensitive manner. Its F-actin depolymerization activity is regulated by association with CSPR3 (PubMed:19752190). It has the ability to bind G- and F-actin in a 1:1 ratio of cofilin to actin. It is the major component of intranuclear and cytoplasmic actin rods. Required for muscle maintenance. May play a role during the exchange of alpha-actin forms during the early postnatal remodeling of the sarcomere (By similarity). {ECO:0000250|UniProtKB:P45591, ECO:0000269|PubMed:19752190}. |
Q9Y2W1 | THRAP3 | S408 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y3S1 | WNK2 | S1919 | ochoa | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
Q9Y490 | TLN1 | S45 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y4B5 | MTCL1 | S741 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y597 | KCTD3 | S743 | ochoa | BTB/POZ domain-containing protein KCTD3 (Renal carcinoma antigen NY-REN-45) | Accessory subunit of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) up-regulating its cell-surface expression and current density without affecting its voltage dependence and kinetics. {ECO:0000250|UniProtKB:Q8BFX3}. |
Q9Y5B9 | SUPT16H | S360 | ochoa | FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}. |
Q9Y6H5 | SNCAIP | S305 | ochoa | Synphilin-1 (Sph1) (Alpha-synuclein-interacting protein) | Isoform 2 inhibits the ubiquitin ligase activity of SIAH1 and inhibits proteasomal degradation of target proteins. Isoform 2 inhibits autoubiquitination and proteasomal degradation of SIAH1, and thereby increases cellular levels of SIAH. Isoform 2 modulates SNCA monoubiquitination by SIAH1. {ECO:0000269|PubMed:16595633, ECO:0000269|PubMed:19224863}. |
Q9Y6M5 | SLC30A1 | S466 | ochoa | Proton-coupled zinc antiporter SLC30A1 (Solute carrier family 30 member 1) (Zinc transporter 1) | Zinc ion:proton antiporter that could function at the plasma membrane mediating zinc efflux from cells against its electrochemical gradient protecting them from intracellular zinc accumulation and toxicity (PubMed:31471319). Alternatively, could prevent the transport to the plasma membrane of CACNB2, the L-type calcium channels regulatory subunit, through a yet to be defined mechanism. By modulating the expression of these channels at the plasma membrane, could prevent calcium and zinc influx into cells. By the same mechanism, could also prevent L-type calcium channels-mediated heavy metal influx into cells (By similarity). In some cells, could also function as a zinc ion:proton antiporter mediating zinc entry into the lumen of cytoplasmic vesicles. In macrophages, can increase zinc ions concentration into the lumen of cytoplasmic vesicles containing engulfed bacteria and could help inactivate them (PubMed:32441444). Forms a complex with TMC6/EVER1 and TMC8/EVER2 at the ER membrane of keratynocytes which facilitates zinc uptake into the ER (PubMed:18158319). Down-regulates the activity of transcription factors induced by zinc and cytokines (PubMed:18158319). {ECO:0000250|UniProtKB:Q62720, ECO:0000269|PubMed:18158319, ECO:0000269|PubMed:31471319, ECO:0000269|PubMed:32441444}. |
Q9Y6R4 | MAP3K4 | S164 | ochoa | Mitogen-activated protein kinase kinase kinase 4 (EC 2.7.11.25) (MAP three kinase 1) (MAPK/ERK kinase kinase 4) (MEK kinase 4) (MEKK 4) | Component of a protein kinase signal transduction cascade. Activates the CSBP2, P38 and JNK MAPK pathways, but not the ERK pathway. Specifically phosphorylates and activates MAP2K4 and MAP2K6. {ECO:0000269|PubMed:12052864, ECO:0000269|PubMed:9305639}. |
P27695 | APEX1 | S66 | Sugiyama | DNA repair nuclease/redox regulator APEX1 (EC 3.1.11.2) (EC 3.1.21.-) (APEX nuclease) (APEN) (Apurinic-apyrimidinic endonuclease 1) (AP endonuclease 1) (APE-1) (DNA-(apurinic or apyrimidinic site) endonuclease) (Redox factor-1) (REF-1) [Cleaved into: DNA repair nuclease/redox regulator APEX1, mitochondrial] | Multifunctional protein that plays a central role in the cellular response to oxidative stress. The two major activities of APEX1 are DNA repair and redox regulation of transcriptional factors (PubMed:11118054, PubMed:11452037, PubMed:15831793, PubMed:18439621, PubMed:18579163, PubMed:21762700, PubMed:24079850, PubMed:8355688, PubMed:9108029, PubMed:9560228). Functions as an apurinic/apyrimidinic (AP) endodeoxyribonuclease in the base excision repair (BER) pathway of DNA lesions induced by oxidative and alkylating agents. Initiates repair of AP sites in DNA by catalyzing hydrolytic incision of the phosphodiester backbone immediately adjacent to the damage, generating a single-strand break with 5'-deoxyribose phosphate and 3'-hydroxyl ends. Also incises at AP sites in the DNA strand of DNA/RNA hybrids, single-stranded DNA regions of R-loop structures, and single-stranded RNA molecules (PubMed:15380100, PubMed:16617147, PubMed:18439621, PubMed:19123919, PubMed:19188445, PubMed:19934257, PubMed:20699270, PubMed:21762700, PubMed:24079850, PubMed:8932375, PubMed:8995436, PubMed:9804799). Operates at switch sites of immunoglobulin (Ig) constant regions where it mediates Ig isotype class switch recombination. Processes AP sites induced by successive action of AICDA and UNG. Generates staggered nicks in opposite DNA strands resulting in the formation of double-strand DNA breaks that are finally resolved via non-homologous end joining repair pathway (By similarity). Has 3'-5' exodeoxyribonuclease activity on mismatched deoxyribonucleotides at the 3' termini of nicked or gapped DNA molecules during short-patch BER (PubMed:11832948, PubMed:1719477). Possesses DNA 3' phosphodiesterase activity capable of removing lesions (such as phosphoglycolate and 8-oxoguanine) blocking the 3' side of DNA strand breaks (PubMed:15831793, PubMed:7516064). Also acts as an endoribonuclease involved in the control of single-stranded RNA metabolism. Plays a role in regulating MYC mRNA turnover by preferentially cleaving in between UA and CA dinucleotides of the MYC coding region determinant (CRD). In association with NMD1, plays a role in the rRNA quality control process during cell cycle progression (PubMed:19188445, PubMed:19401441, PubMed:21762700). Acts as a loading factor for POLB onto non-incised AP sites in DNA and stimulates the 5'-terminal deoxyribose 5'-phosphate (dRp) excision activity of POLB (PubMed:9207062). Exerts reversible nuclear redox activity to regulate DNA binding affinity and transcriptional activity of transcriptional factors by controlling the redox status of their DNA-binding domain, such as the FOS/JUN AP-1 complex after exposure to IR (PubMed:10023679, PubMed:11118054, PubMed:11452037, PubMed:18579163, PubMed:8355688, PubMed:9108029). Involved in calcium-dependent down-regulation of parathyroid hormone (PTH) expression by binding to negative calcium response elements (nCaREs). Together with HNRNPL or the dimer XRCC5/XRCC6, associates with nCaRE, acting as an activator of transcriptional repression (PubMed:11809897, PubMed:14633989, PubMed:8621488). May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation (PubMed:21496894). Stimulates the YBX1-mediated MDR1 promoter activity, when acetylated at Lys-6 and Lys-7, leading to drug resistance (PubMed:18809583). Plays a role in protection from granzyme-mediated cellular repair leading to cell death (PubMed:18179823). Binds DNA and RNA. Associates, together with YBX1, on the MDR1 promoter. Together with NPM1, associates with rRNA (PubMed:19188445, PubMed:19401441, PubMed:20699270). {ECO:0000250|UniProtKB:P28352, ECO:0000269|PubMed:10023679, ECO:0000269|PubMed:11118054, ECO:0000269|PubMed:11452037, ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:11832948, ECO:0000269|PubMed:12524539, ECO:0000269|PubMed:14633989, ECO:0000269|PubMed:15380100, ECO:0000269|PubMed:15831793, ECO:0000269|PubMed:16617147, ECO:0000269|PubMed:1719477, ECO:0000269|PubMed:18179823, ECO:0000269|PubMed:18439621, ECO:0000269|PubMed:18579163, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19123919, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:19401441, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20699270, ECO:0000269|PubMed:21496894, ECO:0000269|PubMed:21762700, ECO:0000269|PubMed:24079850, ECO:0000269|PubMed:7516064, ECO:0000269|PubMed:8355688, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:8932375, ECO:0000269|PubMed:8995436, ECO:0000269|PubMed:9108029, ECO:0000269|PubMed:9207062, ECO:0000269|PubMed:9560228, ECO:0000269|PubMed:9804799}. |
O94804 | STK10 | S541 | Sugiyama | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
P05997 | COL5A2 | S1277 | Sugiyama | Collagen alpha-2(V) chain | Type V collagen is a member of group I collagen (fibrillar forming collagen). It is a minor connective tissue component of nearly ubiquitous distribution. Type V collagen binds to DNA, heparan sulfate, thrombospondin, heparin, and insulin. Type V collagen is a key determinant in the assembly of tissue-specific matrices (By similarity). {ECO:0000250}. |
P46778 | RPL21 | S104 | Sugiyama | Large ribosomal subunit protein eL21 (60S ribosomal protein L21) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000305|PubMed:12962325}. |
Q08499 | PDE4D | S125 | SIGNOR | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
P24539 | ATP5PB | S142 | Sugiyama | ATP synthase peripheral stalk subunit b, mitochondrial (ATP synthase F(0) complex subunit B1, mitochondrial) (ATP synthase peripheral stalk-membrane subunit b) (ATP synthase proton-transporting mitochondrial F(0) complex subunit B1) (ATP synthase subunit b) (ATPase subunit b) | Subunit b, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). Part of the complex F(0) domain (PubMed:37244256). Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements (By similarity). {ECO:0000250|UniProtKB:P13619, ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P09497 | CLTB | S121 | Sugiyama | Clathrin light chain B (Lcb) | Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. |
P51813 | BMX | S187 | Sugiyama | Cytoplasmic tyrosine-protein kinase BMX (EC 2.7.10.2) (Bone marrow tyrosine kinase gene in chromosome X protein) (Epithelial and endothelial tyrosine kinase) (ETK) (NTK38) | Non-receptor tyrosine kinase that plays central but diverse modulatory roles in various signaling processes involved in the regulation of actin reorganization, cell migration, cell proliferation and survival, cell adhesion, and apoptosis. Participates in signal transduction stimulated by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen receptors and integrins. Induces tyrosine phosphorylation of BCAR1 in response to integrin regulation. Activation of BMX by integrins is mediated by PTK2/FAK1, a key mediator of integrin signaling events leading to the regulation of actin cytoskeleton and cell motility. Plays a critical role in TNF-induced angiogenesis, and implicated in the signaling of TEK and FLT1 receptors, 2 important receptor families essential for angiogenesis. Required for the phosphorylation and activation of STAT3, a transcription factor involved in cell differentiation. Also involved in interleukin-6 (IL6) induced differentiation. Also plays a role in programming adaptive cytoprotection against extracellular stress in different cell systems, salivary epithelial cells, brain endothelial cells, and dermal fibroblasts. May be involved in regulation of endocytosis through its interaction with an endosomal protein RUFY1. May also play a role in the growth and differentiation of hematopoietic cells; as well as in signal transduction in endocardial and arterial endothelial cells. {ECO:0000269|PubMed:10688651, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:12370298, ECO:0000269|PubMed:12832404, ECO:0000269|PubMed:15788485, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:9520419}. |
P07900 | HSP90AA1 | S406 | Sugiyama | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P08238 | HSP90AB1 | S398 | Sugiyama | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P33176 | KIF5B | S55 | Sugiyama | Kinesin-1 heavy chain (Conventional kinesin heavy chain) (Ubiquitous kinesin heavy chain) (UKHC) | Microtubule-dependent motor required for normal distribution of mitochondria and lysosomes. Can induce formation of neurite-like membrane protrusions in non-neuronal cells in a ZFYVE27-dependent manner (By similarity). Regulates centrosome and nuclear positioning during mitotic entry. During the G2 phase of the cell cycle in a BICD2-dependent manner, antagonizes dynein function and drives the separation of nuclei and centrosomes (PubMed:20386726). Required for anterograde axonal transportation of MAPK8IP3/JIP3 which is essential for MAPK8IP3/JIP3 function in axon elongation (By similarity). Through binding with PLEKHM2 and ARL8B, directs lysosome movement toward microtubule plus ends (Probable). Involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). {ECO:0000250|UniProtKB:Q2PQA9, ECO:0000250|UniProtKB:Q61768, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:24088571, ECO:0000305|PubMed:22172677, ECO:0000305|PubMed:24088571}. |
P51955 | NEK2 | S402 | EPSD|PSP | Serine/threonine-protein kinase Nek2 (EC 2.7.11.1) (HSPK 21) (Never in mitosis A-related kinase 2) (NimA-related protein kinase 2) (NimA-like protein kinase 1) | Protein kinase which is involved in the control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Regulates centrosome separation (essential for the formation of bipolar spindles and high-fidelity chromosome separation) by phosphorylating centrosomal proteins such as CROCC, CEP250 and NINL, resulting in their displacement from the centrosomes. Regulates kinetochore microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in regulation of mitotic checkpoint protein complex via phosphorylation of CDC20 and MAD2L1. Plays an active role in chromatin condensation during the first meiotic division through phosphorylation of HMGA2. Phosphorylates: PPP1CC; SGO1; NECAB3 and NPM1. Essential for localization of MAD2L1 to kinetochore and MAPK1 and NPM1 to the centrosome. Phosphorylates CEP68 and CNTLN directly or indirectly (PubMed:24554434). NEK2-mediated phosphorylation of CEP68 promotes CEP68 dissociation from the centrosome and its degradation at the onset of mitosis (PubMed:25704143). Involved in the regulation of centrosome disjunction (PubMed:26220856). Phosphorylates CCDC102B either directly or indirectly which causes CCDC102B to dissociate from the centrosome and allows for centrosome separation (PubMed:30404835). {ECO:0000269|PubMed:11742531, ECO:0000269|PubMed:12857871, ECO:0000269|PubMed:14978040, ECO:0000269|PubMed:15358203, ECO:0000269|PubMed:15388344, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:17626005, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18297113, ECO:0000269|PubMed:20034488, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:30404835}.; FUNCTION: [Isoform 1]: Phosphorylates and activates NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.; FUNCTION: [Isoform 2]: Not present in the nucleolus and, in contrast to isoform 1, does not phosphorylate and activate NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}. |
Q96GQ7 | DDX27 | S98 | Sugiyama | Probable ATP-dependent RNA helicase DDX27 (EC 3.6.4.13) (DEAD box protein 27) | Probable ATP-dependent RNA helicase. Component of the nucleolar ribosomal RNA (rRNA) processing machinery that regulates 3' end formation of ribosomal 47S rRNA (PubMed:25825154). {ECO:0000269|PubMed:25825154}. |
Q15831 | STK11 | S69 | Sugiyama | Serine/threonine-protein kinase STK11 (EC 2.7.11.1) (Liver kinase B1) (LKB1) (hLKB1) (Renal carcinoma antigen NY-REN-19) | Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with NUAK1, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:11430832, ECO:0000269|PubMed:12805220, ECO:0000269|PubMed:14517248, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15016379, ECO:0000269|PubMed:15733851, ECO:0000269|PubMed:15987703, ECO:0000269|PubMed:17108107, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.; FUNCTION: [Isoform 2]: Has a role in spermiogenesis. {ECO:0000250}. |
Q5S007 | LRRK2 | S2370 | Sugiyama | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q8N5S9 | CAMKK1 | S149 | Sugiyama | Calcium/calmodulin-dependent protein kinase kinase 1 (CaM-KK 1) (CaM-kinase kinase 1) (CaMKK 1) (EC 2.7.11.17) (CaM-kinase IV kinase) (Calcium/calmodulin-dependent protein kinase kinase alpha) (CaM-KK alpha) (CaM-kinase kinase alpha) (CaMKK alpha) | Calcium/calmodulin-dependent protein kinase that belongs to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Phosphorylates CAMK1, CAMK1D, CAMK1G and CAMK4. Involved in regulating cell apoptosis. Promotes cell survival by phosphorylating AKT1/PKB that inhibits pro-apoptotic BAD/Bcl2-antagonist of cell death. {ECO:0000269|PubMed:12935886}. |
Q8NG66 | NEK11 | S37 | Sugiyama | Serine/threonine-protein kinase Nek11 (EC 2.7.11.1) (Never in mitosis A-related kinase 11) (NimA-related protein kinase 11) | Protein kinase which plays an important role in the G2/M checkpoint response to DNA damage. Controls degradation of CDC25A by directly phosphorylating it on residues whose phosphorylation is required for BTRC-mediated polyubiquitination and degradation. {ECO:0000269|PubMed:12154088, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422}. |
Q69YH5 | CDCA2 | S542 | SIGNOR | Cell division cycle-associated protein 2 (Recruits PP1 onto mitotic chromatin at anaphase protein) (Repo-Man) | Regulator of chromosome structure during mitosis required for condensin-depleted chromosomes to retain their compact architecture through anaphase. Acts by mediating the recruitment of phopsphatase PP1-gamma subunit (PPP1CC) to chromatin at anaphase and into the following interphase. At anaphase onset, its association with chromatin targets a pool of PPP1CC to dephosphorylate substrates. {ECO:0000269|PubMed:16492807, ECO:0000269|PubMed:16998479}. |
Q9BYP7 | WNK3 | S424 | Sugiyama | Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) | Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}. |
Q9Y3S1 | WNK2 | S472 | Sugiyama | Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) | Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}. |
O00203 | AP3B1 | Y274 | ochoa | AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}. |
O00203 | AP3B1 | S276 | ochoa | AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}. |
O00567 | NOP56 | T468 | ochoa | Nucleolar protein 56 (Nucleolar protein 5A) | Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
O15033 | AREL1 | S337 | ochoa | Apoptosis-resistant E3 ubiquitin protein ligase 1 (EC 2.3.2.26) (Apoptosis-resistant HECT-type E3 ubiquitin transferase 1) | E3 ubiquitin-protein ligase that catalyzes 'Lys-11'- or 'Lys-33'-linked polyubiquitin chains, with some preference for 'Lys-33' linkages (PubMed:25752577). E3 ubiquitin-protein ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:23479728, PubMed:31578312). Ubiquitinates SEPTIN4, DIABLO/SMAC and HTRA2 in vitro (PubMed:23479728). Modulates pulmonary inflammation by targeting SOCS2 for ubiquitination and subsequent degradation by the proteasome (PubMed:31578312). {ECO:0000269|PubMed:23479728, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:31578312}. |
O15033 | AREL1 | S339 | ochoa | Apoptosis-resistant E3 ubiquitin protein ligase 1 (EC 2.3.2.26) (Apoptosis-resistant HECT-type E3 ubiquitin transferase 1) | E3 ubiquitin-protein ligase that catalyzes 'Lys-11'- or 'Lys-33'-linked polyubiquitin chains, with some preference for 'Lys-33' linkages (PubMed:25752577). E3 ubiquitin-protein ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:23479728, PubMed:31578312). Ubiquitinates SEPTIN4, DIABLO/SMAC and HTRA2 in vitro (PubMed:23479728). Modulates pulmonary inflammation by targeting SOCS2 for ubiquitination and subsequent degradation by the proteasome (PubMed:31578312). {ECO:0000269|PubMed:23479728, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:31578312}. |
O15440 | ABCC5 | S505 | ochoa | ATP-binding cassette sub-family C member 5 (EC 7.6.2.-) (EC 7.6.2.2) (Multi-specific organic anion transporter C) (MOAT-C) (Multidrug resistance-associated protein 5) (SMRP) (pABC11) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of endogenous metabolites such as cAMP and cGMP, folic acid and N-lactoyl-amino acids (in vitro) (PubMed:10893247, PubMed:12637526, PubMed:12695538, PubMed:15899835, PubMed:17229149, PubMed:25964343). Also acts as a general glutamate conjugate and analog transporter that can limit the brain levels of endogenous metabolites, drugs, and toxins (PubMed:26515061). Confers resistance to the antiviral agent PMEA (PubMed:12695538). Able to transport several anticancer drugs including methotrexate, and nucleotide analogs in vitro, however it does with low affinity, thus the exact role of ABCC5 in mediating resistance still needs to be elucidated (PubMed:10840050, PubMed:12435799, PubMed:12695538, PubMed:15899835). Acts as a heme transporter required for the translocation of cytosolic heme to the secretory pathway (PubMed:24836561). May play a role in energy metabolism by regulating the glucagon-like peptide 1 (GLP-1) secretion from enteroendocrine cells (By similarity). {ECO:0000250|UniProtKB:Q9R1X5, ECO:0000269|PubMed:10840050, ECO:0000269|PubMed:10893247, ECO:0000269|PubMed:12435799, ECO:0000269|PubMed:12637526, ECO:0000269|PubMed:12695538, ECO:0000269|PubMed:15899835, ECO:0000269|PubMed:17229149, ECO:0000269|PubMed:24836561, ECO:0000269|PubMed:25964343, ECO:0000269|PubMed:26515061}. |
O15446 | POLR1G | S488 | ochoa | DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}. |
O15498 | YKT6 | S174 | ochoa|psp | Synaptobrevin homolog YKT6 (EC 2.3.1.-) | Vesicular soluble NSF attachment protein receptor (v-SNARE) mediating vesicle docking and fusion to a specific acceptor cellular compartment. Functions in endoplasmic reticulum to Golgi transport; as part of a SNARE complex composed of GOSR1, GOSR2 and STX5. Functions in early/recycling endosome to TGN transport; as part of a SNARE complex composed of BET1L, GOSR1 and STX5. Has a S-palmitoyl transferase activity. {ECO:0000269|PubMed:15215310, ECO:0000269|PubMed:9211930}. |
O43491 | EPB41L2 | S87 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O60563 | CCNT1 | S499 | ochoa | Cyclin-T1 (CycT1) (Cyclin-T) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}. |
O75038 | PLCH2 | S605 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}. |
O75151 | PHF2 | S882 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75822 | EIF3J | S208 | ochoa | Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
O75962 | TRIO | S2631 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O76021 | RSL1D1 | S469 | ochoa | Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) | Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}. |
O94804 | STK10 | S516 | ochoa | Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) | Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}. |
O94885 | SASH1 | S442 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
P00390 | GSR | S446 | ochoa | Glutathione reductase, mitochondrial (GR) (GRase) (EC 1.8.1.7) | Catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH). Constitutes the major mechanism to maintain a high GSH:GSSG ratio in the cytosol. {ECO:0000269|PubMed:17185460}. |
P04279 | SEMG1 | S313 | ochoa | Semenogelin-1 (Cancer/testis antigen 103) (Semenogelin I) (SGI) [Cleaved into: Alpha-inhibin-92; Alpha-inhibin-31; Seminal basic protein] | Predominant protein in semen. It participates in the formation of a gel matrix entrapping the accessory gland secretions and ejaculated spermatozoa. Fragments of semenogelin and/or fragments of the related proteins may contribute to the activation of progressive sperm movements as the gel-forming proteins are fragmented by KLK3/PSA. {ECO:0000269|PubMed:19889947}.; FUNCTION: Alpha-inhibin-92 and alpha-inhibin-31, derived from the proteolytic degradation of semenogelin, inhibit the secretion of pituitary follicle-stimulating hormone. {ECO:0000269|PubMed:19889947}. |
P06241 | FYN | S188 | ochoa | Tyrosine-protein kinase Fyn (EC 2.7.10.2) (Proto-oncogene Syn) (Proto-oncogene c-Fyn) (Src-like kinase) (SLK) (p59-Fyn) | Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance (PubMed:11536198, PubMed:15489916, PubMed:15557120, PubMed:16387660, PubMed:20100835, PubMed:7568038, PubMed:7822789). Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain (PubMed:15489916). Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions (PubMed:15489916). Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin) (PubMed:17194753). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT (PubMed:14707117, PubMed:15536091). Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage (PubMed:16841086). Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL1 and TRPC6 (PubMed:14761972, PubMed:18258597, PubMed:19179337). Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein (PubMed:11162638, PubMed:12788081, PubMed:19652227). Involved in reelin signaling by mediating phosphorylation of DAB1 following reelin (RELN)-binding to its receptor (By similarity). Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation (PubMed:22080863). Phosphorylates PTK2B/PYK2 in response to T-cell receptor activation (PubMed:20028775). Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts (PubMed:18056706). CSK maintains LCK and FYN in an inactive form (By similarity). Promotes CD28-induced phosphorylation of VAV1 (PubMed:11005864). In mast cells, phosphorylates CLNK after activation of immunoglobulin epsilon receptor signaling (By similarity). Can also promote CD244-mediated NK cell activation (PubMed:15713798). {ECO:0000250|UniProtKB:P39688, ECO:0000269|PubMed:11005864, ECO:0000269|PubMed:11162638, ECO:0000269|PubMed:11536198, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:14707117, ECO:0000269|PubMed:14761972, ECO:0000269|PubMed:15536091, ECO:0000269|PubMed:15557120, ECO:0000269|PubMed:15713798, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:16841086, ECO:0000269|PubMed:17194753, ECO:0000269|PubMed:18056706, ECO:0000269|PubMed:18258597, ECO:0000269|PubMed:19179337, ECO:0000269|PubMed:19652227, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:7568038, ECO:0000269|PubMed:7822789, ECO:0000303|PubMed:15489916}. |
P06748 | NPM1 | S217 | ochoa | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07947 | YES1 | S197 | ochoa | Tyrosine-protein kinase Yes (EC 2.7.10.2) (Proto-oncogene c-Yes) (p61-Yes) | Non-receptor protein tyrosine kinase that is involved in the regulation of cell growth and survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation. Stimulation by receptor tyrosine kinases (RTKs) including EGFR, PDGFR, CSF1R and FGFR leads to recruitment of YES1 to the phosphorylated receptor, and activation and phosphorylation of downstream substrates. Upon EGFR activation, promotes the phosphorylation of PARD3 to favor epithelial tight junction assembly. Participates in the phosphorylation of specific junctional components such as CTNND1 by stimulating the FYN and FER tyrosine kinases at cell-cell contacts. Upon T-cell stimulation by CXCL12, phosphorylates collapsin response mediator protein 2/DPYSL2 and induces T-cell migration. Participates in CD95L/FASLG signaling pathway and mediates AKT-mediated cell migration. Plays a role in cell cycle progression by phosphorylating the cyclin-dependent kinase 4/CDK4 thus regulating the G1 phase. Also involved in G2/M progression and cytokinesis. Catalyzes phosphorylation of organic cation transporter OCT2 which induces its transport activity (PubMed:26979622). {ECO:0000269|PubMed:11901164, ECO:0000269|PubMed:18479465, ECO:0000269|PubMed:19276087, ECO:0000269|PubMed:21566460, ECO:0000269|PubMed:21713032, ECO:0000269|PubMed:26979622}. |
P07948 | LYN | S168 | ochoa | Tyrosine-protein kinase Lyn (EC 2.7.10.2) (Lck/Yes-related novel protein tyrosine kinase) (V-yes-1 Yamaguchi sarcoma viral related oncogene homolog) (p53Lyn) (p56Lyn) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. Functions primarily as negative regulator, but can also function as activator, depending on the context. Required for the initiation of the B-cell response, but also for its down-regulation and termination. Plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self-tolerance. Acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. Plays a role in the inflammatory response to bacterial lipopolysaccharide. Mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. Acts downstream of EPOR, KIT, MPL, the chemokine receptor CXCR4, as well as the receptors for IL3, IL5 and CSF2. Plays an important role in integrin signaling. Regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. Involved in the regulation of endothelial activation, neutrophil adhesion and transendothelial migration (PubMed:36932076). Down-regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. Phosphorylates LIME1 in response to CD22 activation. Phosphorylates BTK, CBL, CD5, CD19, CD72, CD79A, CD79B, CSF2RB, DOK1, HCLS1, LILRB3/PIR-B, MS4A2/FCER1B, SYK and TEC. Promotes phosphorylation of SIRPA, PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1. Mediates phosphorylation of the BCR-ABL fusion protein. Required for rapid phosphorylation of FER in response to FCER1 activation. Mediates KIT phosphorylation. Acts as an effector of EPOR (erythropoietin receptor) in controlling KIT expression and may play a role in erythroid differentiation during the switch between proliferation and maturation. Depending on the context, activates or inhibits several signaling cascades. Regulates phosphatidylinositol 3-kinase activity and AKT1 activation. Regulates activation of the MAP kinase signaling cascade, including activation of MAP2K1/MEK1, MAPK1/ERK2, MAPK3/ERK1, MAPK8/JNK1 and MAPK9/JNK2. Mediates activation of STAT5A and/or STAT5B. Phosphorylates LPXN on 'Tyr-72'. Kinase activity facilitates TLR4-TLR6 heterodimerization and signal initiation. Phosphorylates SCIMP on 'Tyr-107'; this enhances binding of SCIMP to TLR4, promoting the phosphorylation of TLR4, and a selective cytokine response to lipopolysaccharide in macrophages (By similarity). Phosphorylates CLNK (By similarity). Phosphorylates BCAR1/CAS and NEDD9/HEF1 (PubMed:9020138). {ECO:0000250|UniProtKB:P25911, ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:10748115, ECO:0000269|PubMed:10891478, ECO:0000269|PubMed:11435302, ECO:0000269|PubMed:11517336, ECO:0000269|PubMed:11825908, ECO:0000269|PubMed:14726379, ECO:0000269|PubMed:15795233, ECO:0000269|PubMed:16467205, ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:17977829, ECO:0000269|PubMed:18056483, ECO:0000269|PubMed:18070987, ECO:0000269|PubMed:18235045, ECO:0000269|PubMed:18577747, ECO:0000269|PubMed:18802065, ECO:0000269|PubMed:19290919, ECO:0000269|PubMed:20037584, ECO:0000269|PubMed:36122175, ECO:0000269|PubMed:36932076, ECO:0000269|PubMed:7687428, ECO:0000269|PubMed:9020138}. |
P09234 | SNRPC | S19 | ochoa | U1 small nuclear ribonucleoprotein C (U1 snRNP C) (U1-C) (U1C) | Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre-mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRPC/U1-C is directly involved in initial 5' splice-site recognition for both constitutive and regulated alternative splicing. The interaction with the 5' splice-site seems to precede base-pairing between the pre-mRNA and the U1 snRNA. Stimulates commitment or early (E) complex formation by stabilizing the base pairing of the 5' end of the U1 snRNA and the 5' splice-site region. {ECO:0000255|HAMAP-Rule:MF_03153, ECO:0000269|PubMed:1826349, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:2136774, ECO:0000269|PubMed:8798632}. |
P09769 | FGR | S183 | ochoa | Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}. |
P17844 | DDX5 | S30 | ochoa | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P20265 | POU3F2 | S341 | ochoa | POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) | Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}. |
P20810 | CAST | S663 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P22314 | UBA1 | S284 | ochoa | Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) | Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}. |
P28290 | ITPRID2 | S706 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P29374 | ARID4A | S840 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29374 | ARID4A | S1076 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29966 | MARCKS | S163 | ochoa|psp | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P30414 | NKTR | S416 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P32519 | ELF1 | S163 | ochoa | ETS-related transcription factor Elf-1 (E74-like factor 1) | Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}. |
P34932 | HSPA4 | S556 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P45973 | CBX5 | S92 | ochoa|psp | Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) | Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}. |
P46100 | ATRX | S1155 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P48751 | SLC4A3 | S297 | ochoa | Anion exchange protein 3 (AE 3) (Anion exchanger 3) (CAE3/BAE3) (Cardiac/brain band 3-like protein) (Neuronal band 3-like protein) (Solute carrier family 4 member 3) | Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:29167417, PubMed:7923606). May be involved in the regulation of intracellular pH, and the modulation of cardiac action potential (PubMed:29167417). {ECO:0000269|PubMed:29167417, ECO:0000269|PubMed:7923606}. |
P49756 | RBM25 | S226 | ochoa | RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) | RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}. |
P49792 | RANBP2 | S2606 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P51787 | KCNQ1 | S409 | ochoa|psp | Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) | Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}. |
P55197 | MLLT10 | S220 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P55197 | MLLT10 | S303 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
P55197 | MLLT10 | S456 | ochoa | Protein AF-10 (ALL1-fused gene from chromosome 10 protein) | Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}. |
Q00013 | MPP1 | S237 | ochoa | 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) | Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}. |
Q03164 | KMT2A | S197 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05086 | UBE3A | S100 | ochoa | Ubiquitin-protein ligase E3A (EC 2.3.2.26) (E6AP ubiquitin-protein ligase) (HECT-type ubiquitin transferase E3A) (Human papillomavirus E6-associated protein) (Oncogenic protein-associated protein E6-AP) (Renal carcinoma antigen NY-REN-54) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and transfers it to its substrates (PubMed:10373495, PubMed:16772533, PubMed:19204938, PubMed:19233847, PubMed:19325566, PubMed:19591933, PubMed:22645313, PubMed:24273172, PubMed:24728990, PubMed:30020076). Several substrates have been identified including the BMAL1, ARC, LAMTOR1, RAD23A and RAD23B, MCM7 (which is involved in DNA replication), annexin A1, the PML tumor suppressor, and the cell cycle regulator CDKN1B (PubMed:10373495, PubMed:19204938, PubMed:19325566, PubMed:19591933, PubMed:22645313, PubMed:24728990, PubMed:30020076). Additionally, may function as a cellular quality control ubiquitin ligase by helping the degradation of the cytoplasmic misfolded proteins (PubMed:19233847). Finally, UBE3A also promotes its own degradation in vivo. Plays an important role in the regulation of the circadian clock: involved in the ubiquitination of the core clock component BMAL1, leading to its proteasomal degradation (PubMed:24728990). Acts as transcriptional coactivator of progesterone receptor PGR upon progesterone hormone activation (PubMed:16772533). Acts as a regulator of synaptic development by mediating ubiquitination and degradation of ARC (By similarity). Required for synaptic remodeling in neurons by mediating ubiquitination and degradation of LAMTOR1, thereby limiting mTORC1 signaling and activity-dependent synaptic remodeling (By similarity). Synergizes with WBP2 in enhancing PGR activity (PubMed:16772533). {ECO:0000250|UniProtKB:O08759, ECO:0000269|PubMed:10373495, ECO:0000269|PubMed:16772533, ECO:0000269|PubMed:19204938, ECO:0000269|PubMed:19233847, ECO:0000269|PubMed:19325566, ECO:0000269|PubMed:19591933, ECO:0000269|PubMed:22645313, ECO:0000269|PubMed:24273172, ECO:0000269|PubMed:24728990, ECO:0000269|PubMed:30020076}.; FUNCTION: (Microbial infection) Catalyzes the high-risk human papilloma virus E6-mediated ubiquitination of p53/TP53, contributing to the neoplastic progression of cells infected by these viruses. {ECO:0000269|PubMed:8380895}. |
Q08174 | PCDH1 | S902 | ochoa | Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) | May be involved in cell-cell interaction processes and in cell adhesion. |
Q08945 | SSRP1 | S667 | ochoa | FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}. |
Q09472 | EP300 | S1033 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q12873 | CHD3 | S333 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q12929 | EPS8 | S517 | ochoa | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q12955 | ANK3 | S4350 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q13017 | ARHGAP5 | S1142 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13136 | PPFIA1 | S787 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13185 | CBX3 | S93 | ochoa|psp | Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) | Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}. |
Q13435 | SF3B2 | S319 | ochoa | Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q13835 | PKP1 | S185 | ochoa|psp | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q14141 | SEPTIN6 | S411 | ochoa | Septin-6 | Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Involved in cytokinesis. May play a role in HCV RNA replication. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17229681, ECO:0000269|PubMed:17803907, ECO:0000305|PubMed:25588830}. |
Q14432 | PDE3A | S496 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14498 | RBM39 | S23 | ochoa | RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) | RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}. |
Q14684 | RRP1B | S350 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14839 | CHD4 | S105 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q15003 | NCAPH | S201 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15052 | ARHGEF6 | S622 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15648 | MED1 | S675 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q16533 | SNAPC1 | S294 | ochoa | snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}. |
Q5JTJ3 | COA6 | S84 | ochoa | Cytochrome c oxidase assembly factor 6 homolog | Involved in the maturation of the mitochondrial respiratory chain complex IV subunit MT-CO2/COX2. Thereby, may regulate early steps of complex IV assembly. Mitochondrial respiratory chain complex IV or cytochrome c oxidase is the component of the respiratory chain that catalyzes the transfer of electrons from intermembrane space cytochrome c to molecular oxygen in the matrix and as a consequence contributes to the proton gradient involved in mitochondrial ATP synthesis. May also be required for efficient formation of respiratory supercomplexes comprised of complexes III and IV. {ECO:0000269|PubMed:24549041, ECO:0000269|PubMed:25959673, ECO:0000269|PubMed:26160915}. |
Q5S007 | LRRK2 | S935 | ochoa|psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5S007 | LRRK2 | S1627 | psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5SW79 | CEP170 | S356 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T200 | ZC3H13 | S949 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S993 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T5C0 | STXBP5 | S1131 | ochoa | Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) | Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}. |
Q5VUA4 | ZNF318 | S991 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q63HN8 | RNF213 | S82 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q641Q2 | WASHC2A | S314 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q674X7 | KAZN | S367 | ochoa | Kazrin | Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}. |
Q6AI08 | HEATR6 | S306 | ochoa | HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) | Amplification-dependent oncogene. |
Q6P0N0 | MIS18BP1 | S695 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6ZNL6 | FGD5 | S633 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZNL6 | FGD5 | S635 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q7Z699 | SPRED1 | S308 | ochoa | Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1) | Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase (By similarity). Negatively regulates hematopoiesis of bone marrow (By similarity). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Attenuates actin stress fiber formation via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:18216281). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S8, ECO:0000269|PubMed:18216281}. |
Q8IYB3 | SRRM1 | S431 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8N1G1 | REXO1 | S365 | ochoa | RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) | Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}. |
Q8N1G1 | REXO1 | S422 | ochoa | RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) | Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}. |
Q8N302 | AGGF1 | S306 | ochoa | Angiogenic factor with G patch and FHA domains 1 (Angiogenic factor VG5Q) (hVG5Q) (G patch domain-containing protein 7) (Vasculogenesis gene on 5q protein) | Promotes angiogenesis and the proliferation of endothelial cells. Able to bind to endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. {ECO:0000269|PubMed:14961121}. |
Q8N3U4 | STAG2 | S1061 | ochoa | Cohesin subunit SA-2 (SCC3 homolog 2) (Stromal antigen 2) | Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. {ECO:0000269|PubMed:12034751}. |
Q8N884 | CGAS | S263 | psp | Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) | Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}. |
Q8NC51 | SERBP1 | S199 | ochoa | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NI27 | THOC2 | S1516 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8TBA6 | GOLGA5 | S130 | ochoa | Golgin subfamily A member 5 (Cell proliferation-inducing gene 31 protein) (Golgin-84) (Protein Ret-II) (RET-fused gene 5 protein) | Involved in maintaining Golgi structure. Stimulates the formation of Golgi stacks and ribbons. Involved in intra-Golgi retrograde transport. {ECO:0000269|PubMed:12538640, ECO:0000269|PubMed:15718469}. |
Q8TD26 | CHD6 | S85 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8TD26 | CHD6 | S185 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8WUA2 | PPIL4 | S374 | ochoa | Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) | PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}. |
Q92887 | ABCC2 | S283 | ochoa | ATP-binding cassette sub-family C member 2 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multidrug resistance protein) (Canalicular multispecific organic anion transporter 1) (Multidrug resistance-associated protein 2) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Also mediates hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505). {ECO:0000269|PubMed:10220572, ECO:0000269|PubMed:10421658, ECO:0000269|PubMed:11500505, ECO:0000269|PubMed:12441801, ECO:0000269|PubMed:16332456}. |
Q96A57 | TMEM230 | S24 | ochoa | Transmembrane protein 230 | Involved in trafficking and recycling of synaptic vesicles. {ECO:0000269|PubMed:27270108}. |
Q96N46 | TTC14 | S671 | ochoa | Tetratricopeptide repeat protein 14 (TPR repeat protein 14) | None |
Q96T21 | SECISBP2 | S370 | ochoa | Selenocysteine insertion sequence-binding protein 2 (SECIS-binding protein 2) | mRNA-binding protein that binds to the SECIS (selenocysteine insertion sequence) element present in the 3'-UTR of mRNAs encoding selenoproteins and facilitates the incorporation of the rare amino acid selenocysteine (PubMed:35709277). Insertion of selenocysteine at UGA codons is mediated by SECISBP2 and EEFSEC: SECISBP2 (1) specifically binds the SECIS sequence once the 80S ribosome encounters an in-frame UGA codon and (2) contacts the RPS27A/eS31 of the 40S ribosome before ribosome stalling (PubMed:35709277). (3) GTP-bound EEFSEC then delivers selenocysteinyl-tRNA(Sec) to the 80S ribosome and adopts a preaccommodated state conformation (PubMed:35709277). (4) After GTP hydrolysis, EEFSEC dissociates from the assembly, selenocysteinyl-tRNA(Sec) accommodates, and peptide bond synthesis and selenoprotein elongation occur (PubMed:35709277). {ECO:0000269|PubMed:35709277}. |
Q96T58 | SPEN | S1485 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99549 | MPHOSPH8 | S142 | ochoa | M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) | Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q99569 | PKP4 | S778 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99575 | POP1 | S371 | ochoa | Ribonucleases P/MRP protein subunit POP1 (hPOP1) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}. |
Q9BRU9 | UTP23 | S200 | ochoa | rRNA-processing protein UTP23 homolog | Involved in rRNA-processing and ribosome biogenesis. {ECO:0000250}. |
Q9BT09 | CNPY3 | S212 | ochoa | Protein canopy homolog 3 (CTG repeat protein 4a) (Expanded repeat-domain protein CAG/CTG 5) (Protein associated with TLR4) (Trinucleotide repeat-containing gene 5 protein) | Toll-like receptor (TLR)-specific co-chaperone for HSP90B1. Required for proper TLR folding, except that of TLR3, and hence controls TLR exit from the endoplasmic reticulum. Consequently, required for both innate and adaptive immune responses (By similarity). {ECO:0000250}. |
Q9BY44 | EIF2A | S526 | ochoa | Eukaryotic translation initiation factor 2A (eIF-2A) (65 kDa eukaryotic translation initiation factor 2A) [Cleaved into: Eukaryotic translation initiation factor 2A, N-terminally processed] | Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner. {ECO:0000269|PubMed:12133843}. |
Q9BZ95 | NSD3 | S585 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9C0C2 | TNKS1BP1 | S1711 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9H079 | KATNBL1 | S61 | ochoa | KATNB1-like protein 1 (Katanin p80 subunit B-like 1) | Regulates microtubule-severing activity of KATNAL1 in a concentration-dependent manner in vitro. {ECO:0000269|PubMed:26929214}. |
Q9H0H5 | RACGAP1 | S280 | ochoa | Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) | Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}. |
Q9H1E3 | NUCKS1 | S54 | ochoa | Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) | Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}. |
Q9H2G2 | SLK | S779 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H425 | C1orf198 | S37 | ochoa|psp | Uncharacterized protein C1orf198 | None |
Q9H5I5 | PIEZO2 | S1515 | ochoa | Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}. |
Q9H9J4 | USP42 | S1226 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9H9Q4 | NHEJ1 | S278 | ochoa | Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}. |
Q9HCG8 | CWC22 | S106 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCK8 | CHD8 | S1523 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NZV1 | CRIM1 | S980 | ochoa | Cysteine-rich motor neuron 1 protein (CRIM-1) (Cysteine-rich repeat-containing protein S52) [Cleaved into: Processed cysteine-rich motor neuron 1 protein] | May play a role in CNS development by interacting with growth factors implicated in motor neuron differentiation and survival. May play a role in capillary formation and maintenance during angiogenesis. Modulates BMP activity by affecting its processing and delivery to the cell surface. {ECO:0000269|PubMed:12464430, ECO:0000269|PubMed:12805376}. |
Q9P0V9 | SEPTIN10 | S434 | ochoa | Septin-10 | Filament-forming cytoskeletal GTPase. May play a role in cytokinesis (Potential). {ECO:0000305}. |
Q9P2X3 | IMPACT | S297 | ochoa | Protein IMPACT (Imprinted and ancient gene protein homolog) | Translational regulator that ensures constant high levels of translation upon a variety of stress conditions, such as amino acid starvation, UV-C irradiation, proteasome inhibitor treatment and glucose deprivation. Plays a role as a negative regulator of the EIF2AK4/GCN2 kinase activity; impairs GCN1-mediated EIF2AK4/GCN2 activation, and hence EIF2AK4/GCN2-mediated eIF-2-alpha phosphorylation and subsequent down-regulation of protein synthesis. May be required to regulate translation in specific neuronal cells under amino acid starvation conditions by preventing GCN2 activation and therefore ATF4 synthesis. Through its inhibitory action on EIF2AK4/GCN2, plays a role in differentiation of neuronal cells by stimulating neurite outgrowth. {ECO:0000250|UniProtKB:O55091}. |
Q9UBN7 | HDAC6 | S43 | ochoa|psp | Protein deacetylase HDAC6 (EC 3.5.1.-) (E3 ubiquitin-protein ligase HDAC6) (EC 2.3.2.-) (Tubulin-lysine deacetylase HDAC6) (EC 3.5.1.-) | Deacetylates a wide range of non-histone substrates (PubMed:12024216, PubMed:18606987, PubMed:20308065, PubMed:24882211, PubMed:26246421, PubMed:30538141, PubMed:31857589, PubMed:30770470, PubMed:38534334, PubMed:39567688). Plays a central role in microtubule-dependent cell motility by mediating deacetylation of tubulin (PubMed:12024216, PubMed:20308065, PubMed:26246421). Required for cilia disassembly via deacetylation of alpha-tubulin (PubMed:17604723, PubMed:26246421). Alpha-tubulin deacetylation results in destabilization of dynamic microtubules (By similarity). Promotes deacetylation of CTTN, leading to actin polymerization, promotion of autophagosome-lysosome fusion and completion of autophagy (PubMed:30538141). Deacetylates SQSTM1 (PubMed:31857589). Deacetylates peroxiredoxins PRDX1 and PRDX2, decreasing their reducing activity (PubMed:18606987). Deacetylates antiviral protein RIGI in the presence of viral mRNAs which is required for viral RNA detection by RIGI (By similarity). Sequentially deacetylates and polyubiquitinates DNA mismatch repair protein MSH2 which leads to MSH2 degradation, reducing cellular sensitivity to DNA-damaging agents and decreasing cellular DNA mismatch repair activities (PubMed:24882211). Deacetylates DNA mismatch repair protein MLH1 which prevents recruitment of the MutL alpha complex (formed by the MLH1-PMS2 heterodimer) to the MutS alpha complex (formed by the MSH2-MSH6 heterodimer), leading to tolerance of DNA damage (PubMed:30770470). Deacetylates RHOT1/MIRO1 which blocks mitochondrial transport and mediates axon growth inhibition (By similarity). Deacetylates transcription factor SP1 which leads to increased expression of ENG, positively regulating angiogenesis (PubMed:38534334). Deacetylates KHDRBS1/SAM68 which regulates alternative splicing by inhibiting the inclusion of CD44 alternate exons (PubMed:26080397). Acts as a valine sensor by binding to valine through the primate-specific SE14 repeat region (PubMed:39567688). In valine deprivation conditions, translocates from the cytoplasm to the nucleus where it deacetylates TET2 which promotes TET2-dependent DNA demethylation, leading to DNA damage (PubMed:39567688). Promotes odontoblast differentiation following IPO7-mediated nuclear import and subsequent repression of RUNX2 expression (By similarity). In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome (PubMed:17846173). Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and targets them to the aggresome, facilitating their clearance by autophagy (PubMed:17846173). Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer (PubMed:24413532). {ECO:0000250|UniProtKB:D3ZVD8, ECO:0000250|UniProtKB:Q9Z2V5, ECO:0000269|PubMed:12024216, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:17846173, ECO:0000269|PubMed:18606987, ECO:0000269|PubMed:20308065, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:24882211, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26246421, ECO:0000269|PubMed:30538141, ECO:0000269|PubMed:30770470, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:38534334, ECO:0000269|PubMed:39567688}.; FUNCTION: (Microbial infection) Deacetylates the SARS-CoV-2 N protein which promotes association of the viral N protein with human G3BP1, leading to disruption of cellular stress granule formation and facilitating viral replication. {ECO:0000269|PubMed:39135075}. |
Q9UEW8 | STK39 | S323 | psp | STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}. |
Q9UGI8 | TES | S168 | ochoa | Testin (TESS) | Scaffold protein that may play a role in cell adhesion, cell spreading and in the reorganization of the actin cytoskeleton. Plays a role in the regulation of cell proliferation. May act as a tumor suppressor. Inhibits tumor cell growth. {ECO:0000269|PubMed:11420696, ECO:0000269|PubMed:12571287, ECO:0000269|PubMed:12695497}. |
Q9UGU5 | HMGXB4 | Y84 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UIJ5 | ZDHHC2 | S341 | ochoa | Palmitoyltransferase ZDHHC2 (EC 2.3.1.225) (Acyltransferase ZDHHC2) (EC 2.3.1.-) (Reduced expression associated with metastasis protein) (Ream) (Reduced expression in cancer protein) (Rec) (Zinc finger DHHC domain-containing protein 2) (DHHC-2) (Zinc finger protein 372) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates and is involved in a variety of cellular processes (PubMed:18296695, PubMed:18508921, PubMed:19144824, PubMed:21343290, PubMed:22034844, PubMed:23793055). Has no stringent fatty acid selectivity and in addition to palmitate can also transfer onto target proteins myristate from tetradecanoyl-CoA and stearate from octadecanoyl-CoA (By similarity). In the nervous system, plays a role in long term synaptic potentiation by palmitoylating AKAP5 through which it regulates protein trafficking from the dendritic recycling endosomes to the plasma membrane and controls both structural and functional plasticity at excitatory synapses (By similarity). In dendrites, mediates the palmitoylation of DLG4 when synaptic activity decreases and induces synaptic clustering of DLG4 and associated AMPA-type glutamate receptors (By similarity). Also mediates the de novo and turnover palmitoylation of RGS7BP, a shuttle for Gi/o-specific GTPase-activating proteins/GAPs, promoting its localization to the plasma membrane in response to the activation of G protein-coupled receptors. Through the localization of these GTPase-activating proteins/GAPs, it also probably plays a role in G protein-coupled receptors signaling in neurons (By similarity). Also probably plays a role in cell adhesion by palmitoylating CD9 and CD151 to regulate their expression and function (PubMed:18508921). Palmitoylates the endoplasmic reticulum protein CKAP4 and regulates its localization to the plasma membrane (PubMed:18296695, PubMed:19144824). Could also palmitoylate LCK and regulate its localization to the plasma membrane (PubMed:22034844). {ECO:0000250|UniProtKB:P59267, ECO:0000250|UniProtKB:Q9JKR5, ECO:0000269|PubMed:18296695, ECO:0000269|PubMed:18508921, ECO:0000269|PubMed:19144824, ECO:0000269|PubMed:21343290, ECO:0000269|PubMed:22034844, ECO:0000269|PubMed:23793055}.; FUNCTION: (Microbial infection) Promotes Chikungunya virus (CHIKV) replication by mediating viral nsp1 palmitoylation. {ECO:0000269|PubMed:30404808}. |
Q9UK53 | ING1 | T318 | ochoa | Inhibitor of growth protein 1 | Cooperates with p53/TP53 in the negative regulatory pathway of cell growth by modulating p53-dependent transcriptional activation. Implicated as a tumor suppressor gene. {ECO:0000269|PubMed:9440695}. |
Q9UKK3 | PARP4 | S1529 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9ULD2 | MTUS1 | S774 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULU4 | ZMYND8 | S33 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UNL4 | ING4 | S118 | ochoa | Inhibitor of growth protein 4 (p29ING4) | Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}. |
Q9UPP1 | PHF8 | S857 | ochoa|psp | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPY3 | DICER1 | S1470 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9UQ35 | SRRM2 | S178 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQR1 | ZNF148 | S306 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y250 | LZTS1 | S231 | ochoa | Leucine zipper putative tumor suppressor 1 (F37/esophageal cancer-related gene-coding leucine-zipper motif) (Fez1) | Involved in the regulation of cell growth. May stabilize the active CDC2-cyclin B1 complex and thereby contribute to the regulation of the cell cycle and the prevention of uncontrolled cell proliferation. May act as a tumor suppressor. {ECO:0000269|PubMed:10097140, ECO:0000269|PubMed:11464283, ECO:0000269|PubMed:11504921}. |
Q9Y2J2 | EPB41L3 | S92 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2X3 | NOP58 | T508 | ochoa | Nucleolar protein 58 (Nucleolar protein 5) | Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}. |
Q9Y6Q9 | NCOA3 | S771 | ochoa | Nuclear receptor coactivator 3 (NCoA-3) (EC 2.3.1.48) (ACTR) (Amplified in breast cancer 1 protein) (AIB-1) (CBP-interacting protein) (pCIP) (Class E basic helix-loop-helix protein 42) (bHLHe42) (Receptor-associated coactivator 3) (RAC-3) (Steroid receptor coactivator protein 3) (SRC-3) (Thyroid hormone receptor activator molecule 1) (TRAM-1) | Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Plays a central role in creating a multisubunit coactivator complex, which probably acts via remodeling of chromatin. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ER), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Displays histone acetyltransferase activity. Also involved in the coactivation of the NF-kappa-B pathway via its interaction with the NFKB1 subunit. |
P27348 | YWHAQ | S145 | Sugiyama | 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
P63104 | YWHAZ | S145 | Sugiyama | 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}. |
P62191 | PSMC1 | Y25 | Sugiyama | 26S proteasome regulatory subunit 4 (P26s4) (26S proteasome AAA-ATPase subunit RPT2) (Proteasome 26S subunit ATPase 1) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798}. |
O95835 | LATS1 | S593 | Sugiyama | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
P31946 | YWHAB | S147 | Sugiyama | 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}. |
Q86UP2 | KTN1 | S156 | Sugiyama | Kinectin (CG-1 antigen) (Kinesin receptor) | Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin. |
P08195 | SLC3A2 | S286 | Sugiyama | Amino acid transporter heavy chain SLC3A2 (4F2 cell-surface antigen heavy chain) (4F2hc) (4F2 heavy chain antigen) (Lymphocyte activation antigen 4F2 large subunit) (Solute carrier family 3 member 2) (CD antigen CD98) | Acts as a chaperone that facilitates biogenesis and trafficking of functional transporters heterodimers to the plasma membrane. Forms heterodimer with SLC7 family transporters (SLC7A5, SLC7A6, SLC7A7, SLC7A8, SLC7A10 and SLC7A11), a group of amino-acid antiporters (PubMed:10574970, PubMed:10903140, PubMed:11557028, PubMed:30867591, PubMed:33298890, PubMed:33758168, PubMed:34880232, PubMed:9751058, PubMed:9829974, PubMed:9878049). Heterodimers function as amino acids exchangers, the specificity of the substrate depending on the SLC7A subunit. Heterodimers SLC3A2/SLC7A6 or SLC3A2/SLC7A7 mediate the uptake of dibasic amino acids (PubMed:10903140, PubMed:9829974). Heterodimer SLC3A2/SLC7A11 functions as an antiporter by mediating the exchange of extracellular anionic L-cystine and intracellular L-glutamate across the cellular plasma membrane (PubMed:34880232). SLC3A2/SLC7A10 translocates small neutral L- and D-amino acids across the plasma membrane (By similarity). SLC3A2/SLC75 or SLC3A2/SLC7A8 translocates neutral amino acids with broad specificity, thyroid hormones and L-DOPA (PubMed:10574970, PubMed:11389679, PubMed:11557028, PubMed:11564694, PubMed:11742812, PubMed:12117417, PubMed:12225859, PubMed:12716892, PubMed:15980244, PubMed:30867591, PubMed:33298890, PubMed:33758168). SLC3A2 is essential for plasma membrane localization, stability, and the transport activity of SLC7A5 and SLC7A8 (PubMed:10391915, PubMed:10574970, PubMed:11311135, PubMed:15769744, PubMed:33066406). When associated with LAPTM4B, the heterodimer SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Modulates integrin-related signaling and is essential for integrin-dependent cell spreading, migration and tumor progression (PubMed:11121428, PubMed:15625115). {ECO:0000250|UniProtKB:P63115, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11121428, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11389679, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:11742812, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15625115, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15980244, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:33066406, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:33758168, ECO:0000269|PubMed:34880232, ECO:0000269|PubMed:9751058, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.; FUNCTION: (Microbial infection) Acts as a receptor for malaria parasite Plasmodium vivax (Thai isolate) in immature red blood cells. {ECO:0000269|PubMed:34294905}. |
Q16513 | PKN2 | S37 | Sugiyama | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q8N568 | DCLK2 | Y57 | Sugiyama | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q8WTQ7 | GRK7 | S490 | SIGNOR|Sugiyama | Rhodopsin kinase GRK7 (EC 2.7.11.14) (G protein-coupled receptor kinase 7) (G protein-coupled receptor kinase GRK7) | Retina-specific kinase involved in the shutoff of the photoresponse and adaptation to changing light conditions via cone opsin phosphorylation, including rhodopsin (RHO). {ECO:0000269|PubMed:15946941}. |
P11413 | G6PD | S278 | PSP | Glucose-6-phosphate 1-dehydrogenase (G6PD) (EC 1.1.1.49) | Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis. {ECO:0000269|PubMed:15858258, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:26479991, ECO:0000269|PubMed:35122041, ECO:0000269|PubMed:38066190, ECO:0000269|PubMed:743300}. |
P25205 | MCM3 | S277 | Sugiyama | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P18124 | RPL7 | S149 | Sugiyama | Large ribosomal subunit protein uL30 (60S ribosomal protein L7) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). Binds to G-rich structures in 28S rRNA and in mRNAs (PubMed:12962325). Plays a regulatory role in the translation apparatus; inhibits cell-free translation of mRNAs (PubMed:12962325). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-1640170 | Cell Cycle | 0.000003 | 5.465 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.000014 | 4.839 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.000063 | 4.199 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.000092 | 4.035 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.000110 | 3.960 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.000263 | 3.580 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.000348 | 3.459 |
R-HSA-3371556 | Cellular response to heat stress | 0.000373 | 3.428 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.000388 | 3.411 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.000348 | 3.459 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 0.000450 | 3.347 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.000490 | 3.309 |
R-HSA-69481 | G2/M Checkpoints | 0.000565 | 3.248 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.000727 | 3.138 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.000716 | 3.145 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.000745 | 3.128 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000844 | 3.074 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.001090 | 2.963 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.001078 | 2.967 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 0.001274 | 2.895 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.001383 | 2.859 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.001774 | 2.751 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.001774 | 2.751 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.001774 | 2.751 |
R-HSA-6802949 | Signaling by RAS mutants | 0.001774 | 2.751 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.002153 | 2.667 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.002577 | 2.589 |
R-HSA-5683057 | MAPK family signaling cascades | 0.002591 | 2.586 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.002745 | 2.562 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.002882 | 2.540 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.003284 | 2.484 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.004324 | 2.364 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.004379 | 2.359 |
R-HSA-210990 | PECAM1 interactions | 0.004405 | 2.356 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.004532 | 2.344 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.004665 | 2.331 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.005069 | 2.295 |
R-HSA-162909 | Host Interactions of HIV factors | 0.005358 | 2.271 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.005499 | 2.260 |
R-HSA-8953854 | Metabolism of RNA | 0.005596 | 2.252 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.005760 | 2.240 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.006144 | 2.212 |
R-HSA-373755 | Semaphorin interactions | 0.006638 | 2.178 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.006424 | 2.192 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.006534 | 2.185 |
R-HSA-72172 | mRNA Splicing | 0.006646 | 2.177 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.007631 | 2.117 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.007661 | 2.116 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 0.008744 | 2.058 |
R-HSA-1433559 | Regulation of KIT signaling | 0.008751 | 2.058 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.008917 | 2.050 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.009596 | 2.018 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.010096 | 1.996 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.010121 | 1.995 |
R-HSA-114452 | Activation of BH3-only proteins | 0.010246 | 1.989 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.010121 | 1.995 |
R-HSA-163685 | Integration of energy metabolism | 0.010096 | 1.996 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.010832 | 1.965 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.010832 | 1.965 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 0.011722 | 1.931 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.012120 | 1.916 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.013214 | 1.879 |
R-HSA-68886 | M Phase | 0.013779 | 1.861 |
R-HSA-162906 | HIV Infection | 0.013540 | 1.868 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.013380 | 1.874 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.013150 | 1.881 |
R-HSA-72649 | Translation initiation complex formation | 0.015359 | 1.814 |
R-HSA-5673000 | RAF activation | 0.015774 | 1.802 |
R-HSA-180746 | Nuclear import of Rev protein | 0.015774 | 1.802 |
R-HSA-9614085 | FOXO-mediated transcription | 0.015018 | 1.823 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.015804 | 1.801 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.018802 | 1.726 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.022865 | 1.641 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.022865 | 1.641 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.018758 | 1.727 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.020851 | 1.681 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.020851 | 1.681 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.020851 | 1.681 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.020851 | 1.681 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.025404 | 1.595 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 0.025404 | 1.595 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.019842 | 1.702 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.024502 | 1.611 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.017354 | 1.761 |
R-HSA-191859 | snRNP Assembly | 0.020656 | 1.685 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.020656 | 1.685 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.019261 | 1.715 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.022821 | 1.642 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.018065 | 1.743 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.016788 | 1.775 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.021329 | 1.671 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.022821 | 1.642 |
R-HSA-9711123 | Cellular response to chemical stress | 0.017978 | 1.745 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 0.018802 | 1.726 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.025404 | 1.595 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.024502 | 1.611 |
R-HSA-912631 | Regulation of signaling by CBL | 0.018758 | 1.727 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.020851 | 1.681 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.019513 | 1.710 |
R-HSA-162587 | HIV Life Cycle | 0.021995 | 1.658 |
R-HSA-422475 | Axon guidance | 0.024140 | 1.617 |
R-HSA-9675108 | Nervous system development | 0.025106 | 1.600 |
R-HSA-111933 | Calmodulin induced events | 0.018421 | 1.735 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.020656 | 1.685 |
R-HSA-111997 | CaM pathway | 0.018421 | 1.735 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.024263 | 1.615 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 0.022865 | 1.641 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.016461 | 1.784 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.025661 | 1.591 |
R-HSA-4839726 | Chromatin organization | 0.024295 | 1.614 |
R-HSA-193648 | NRAGE signals death through JNK | 0.017354 | 1.761 |
R-HSA-109581 | Apoptosis | 0.025712 | 1.590 |
R-HSA-9679506 | SARS-CoV Infections | 0.015973 | 1.797 |
R-HSA-2262752 | Cellular responses to stress | 0.026984 | 1.569 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 0.027255 | 1.565 |
R-HSA-68877 | Mitotic Prometaphase | 0.027360 | 1.563 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.027865 | 1.555 |
R-HSA-9669938 | Signaling by KIT in disease | 0.027865 | 1.555 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.031953 | 1.495 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.033056 | 1.481 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.033056 | 1.481 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.029770 | 1.526 |
R-HSA-8953897 | Cellular responses to stimuli | 0.032224 | 1.492 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.031382 | 1.503 |
R-HSA-111996 | Ca-dependent events | 0.029770 | 1.526 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.030801 | 1.511 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 0.031953 | 1.495 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.033154 | 1.479 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.033154 | 1.479 |
R-HSA-162582 | Signal Transduction | 0.033565 | 1.474 |
R-HSA-164843 | 2-LTR circle formation | 0.036944 | 1.432 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.035980 | 1.444 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.035658 | 1.448 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.038151 | 1.418 |
R-HSA-9620244 | Long-term potentiation | 0.035980 | 1.444 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.037760 | 1.423 |
R-HSA-8939211 | ESR-mediated signaling | 0.038787 | 1.411 |
R-HSA-3214842 | HDMs demethylate histones | 0.035980 | 1.444 |
R-HSA-74160 | Gene expression (Transcription) | 0.037854 | 1.422 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 0.036944 | 1.432 |
R-HSA-1489509 | DAG and IP3 signaling | 0.035658 | 1.448 |
R-HSA-75153 | Apoptotic execution phase | 0.037760 | 1.423 |
R-HSA-5357801 | Programmed Cell Death | 0.038457 | 1.415 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.041358 | 1.383 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.038443 | 1.415 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.041990 | 1.377 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.041990 | 1.377 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.041990 | 1.377 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.042172 | 1.375 |
R-HSA-389356 | Co-stimulation by CD28 | 0.042172 | 1.375 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 0.042211 | 1.375 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.045154 | 1.345 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.045154 | 1.345 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.045154 | 1.345 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.045154 | 1.345 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.045154 | 1.345 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.045172 | 1.345 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.045172 | 1.345 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.045172 | 1.345 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.048470 | 1.315 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.051883 | 1.285 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.051833 | 1.285 |
R-HSA-162592 | Integration of provirus | 0.047741 | 1.321 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.050982 | 1.293 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.054422 | 1.264 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.046988 | 1.328 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.053517 | 1.272 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.047741 | 1.321 |
R-HSA-69275 | G2/M Transition | 0.051052 | 1.292 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.053605 | 1.271 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.053051 | 1.275 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.046652 | 1.331 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.055409 | 1.256 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.055409 | 1.256 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.055409 | 1.256 |
R-HSA-9843745 | Adipogenesis | 0.056708 | 1.246 |
R-HSA-73930 | Abasic sugar-phosphate removal via the single-nucleotide replacement pathway | 0.066963 | 1.174 |
R-HSA-176034 | Interactions of Tat with host cellular proteins | 0.066963 | 1.174 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.059526 | 1.225 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.062794 | 1.202 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.062794 | 1.202 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.066648 | 1.176 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.068887 | 1.162 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.068887 | 1.162 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.059526 | 1.225 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.070608 | 1.151 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.066648 | 1.176 |
R-HSA-418885 | DCC mediated attractive signaling | 0.072189 | 1.142 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.062794 | 1.202 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.062794 | 1.202 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.070608 | 1.151 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.070608 | 1.151 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.058173 | 1.235 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.059526 | 1.225 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.066648 | 1.176 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.058523 | 1.233 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.058026 | 1.236 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.066139 | 1.180 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.062794 | 1.202 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.062794 | 1.202 |
R-HSA-196780 | Biotin transport and metabolism | 0.072189 | 1.142 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.062794 | 1.202 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 0.059526 | 1.225 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.062794 | 1.202 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.062794 | 1.202 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.058153 | 1.235 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.059047 | 1.229 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.062599 | 1.203 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.068878 | 1.162 |
R-HSA-983189 | Kinesins | 0.074446 | 1.128 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.074672 | 1.127 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.074672 | 1.127 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.074672 | 1.127 |
R-HSA-112043 | PLC beta mediated events | 0.077573 | 1.110 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.078817 | 1.103 |
R-HSA-3371511 | HSF1 activation | 0.078837 | 1.103 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.080464 | 1.094 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.080765 | 1.093 |
R-HSA-9707616 | Heme signaling | 0.080765 | 1.093 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.088275 | 1.054 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.088275 | 1.054 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.088275 | 1.054 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.088275 | 1.054 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.088275 | 1.054 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.088275 | 1.054 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.088275 | 1.054 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.088275 | 1.054 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.088275 | 1.054 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.088275 | 1.054 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.088275 | 1.054 |
R-HSA-5660862 | Defective SLC7A7 causes lysinuric protein intolerance (LPI) | 0.109101 | 0.962 |
R-HSA-5679001 | Defective ABCC2 causes DJS | 0.109101 | 0.962 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.091918 | 1.037 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.091918 | 1.037 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.096467 | 1.016 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.096467 | 1.016 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.096467 | 1.016 |
R-HSA-3928664 | Ephrin signaling | 0.099745 | 1.001 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.101105 | 0.995 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.083101 | 1.080 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.105830 | 0.975 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.095490 | 1.020 |
R-HSA-167169 | HIV Transcription Elongation | 0.096467 | 1.016 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.104421 | 0.981 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.088275 | 1.054 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.099745 | 1.001 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.087463 | 1.058 |
R-HSA-3371568 | Attenuation phase | 0.096467 | 1.016 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.109184 | 0.962 |
R-HSA-2028269 | Signaling by Hippo | 0.092607 | 1.033 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.091918 | 1.037 |
R-HSA-392517 | Rap1 signalling | 0.107030 | 0.970 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.083101 | 1.080 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.101105 | 0.995 |
R-HSA-156711 | Polo-like kinase mediated events | 0.099745 | 1.001 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.091918 | 1.037 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.097559 | 1.011 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.107030 | 0.970 |
R-HSA-168255 | Influenza Infection | 0.091523 | 1.038 |
R-HSA-68875 | Mitotic Prophase | 0.093005 | 1.031 |
R-HSA-112040 | G-protein mediated events | 0.097672 | 1.010 |
R-HSA-9824446 | Viral Infection Pathways | 0.083395 | 1.079 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.105830 | 0.975 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 0.091918 | 1.037 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.113700 | 0.944 |
R-HSA-373753 | Nephrin family interactions | 0.114453 | 0.941 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.114453 | 0.941 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.115534 | 0.937 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.116083 | 0.935 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.116879 | 0.932 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.129453 | 0.888 |
R-HSA-9818025 | NFE2L2 regulating TCA cycle genes | 0.149341 | 0.826 |
R-HSA-9032759 | NTRK2 activates RAC1 | 0.149341 | 0.826 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 0.187768 | 0.726 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.187768 | 0.726 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.187768 | 0.726 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 0.187768 | 0.726 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.206328 | 0.685 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.206328 | 0.685 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.206328 | 0.685 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 0.224464 | 0.649 |
R-HSA-9768778 | Regulation of NPAS4 mRNA translation | 0.224464 | 0.649 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.224464 | 0.649 |
R-HSA-196025 | Formation of annular gap junctions | 0.224464 | 0.649 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.224464 | 0.649 |
R-HSA-9020958 | Interleukin-21 signaling | 0.242187 | 0.616 |
R-HSA-190873 | Gap junction degradation | 0.242187 | 0.616 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.242187 | 0.616 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.259506 | 0.586 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.259506 | 0.586 |
R-HSA-9759811 | Regulation of CDH11 mRNA translation by microRNAs | 0.276430 | 0.558 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 0.292969 | 0.533 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.292969 | 0.533 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.309130 | 0.510 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.309130 | 0.510 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.177653 | 0.750 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.177653 | 0.750 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.324924 | 0.488 |
R-HSA-774815 | Nucleosome assembly | 0.125558 | 0.901 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.125558 | 0.901 |
R-HSA-399956 | CRMPs in Sema3A signaling | 0.340356 | 0.468 |
R-HSA-8948700 | Competing endogenous RNAs (ceRNAs) regulate PTEN translation | 0.355438 | 0.449 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.355438 | 0.449 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.355438 | 0.449 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.151886 | 0.818 |
R-HSA-72187 | mRNA 3'-end processing | 0.162872 | 0.788 |
R-HSA-390522 | Striated Muscle Contraction | 0.236294 | 0.627 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.185512 | 0.732 |
R-HSA-6782135 | Dual incision in TC-NER | 0.197127 | 0.705 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.270303 | 0.568 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.226870 | 0.644 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.226870 | 0.644 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.245108 | 0.611 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.288424 | 0.540 |
R-HSA-380287 | Centrosome maturation | 0.300923 | 0.522 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.202557 | 0.693 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.197574 | 0.704 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.152637 | 0.816 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.273757 | 0.563 |
R-HSA-8983432 | Interleukin-15 signaling | 0.309130 | 0.510 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.300923 | 0.522 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.236294 | 0.627 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.286296 | 0.543 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.292969 | 0.533 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.266593 | 0.574 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.206286 | 0.686 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.309130 | 0.510 |
R-HSA-877300 | Interferon gamma signaling | 0.228111 | 0.642 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.309130 | 0.510 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 0.324924 | 0.488 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.194207 | 0.712 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.332704 | 0.478 |
R-HSA-1059683 | Interleukin-6 signaling | 0.324924 | 0.488 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.187768 | 0.726 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.202557 | 0.693 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.340356 | 0.468 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.304273 | 0.517 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.265972 | 0.575 |
R-HSA-9020558 | Interleukin-2 signaling | 0.276430 | 0.558 |
R-HSA-9839394 | TGFBR3 expression | 0.161338 | 0.792 |
R-HSA-1500620 | Meiosis | 0.170125 | 0.769 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.208913 | 0.680 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.208913 | 0.680 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.208913 | 0.680 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.208913 | 0.680 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.149341 | 0.826 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.168776 | 0.773 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 0.187768 | 0.726 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.287310 | 0.542 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.251239 | 0.600 |
R-HSA-8984722 | Interleukin-35 Signalling | 0.309130 | 0.510 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.292969 | 0.533 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.130683 | 0.884 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.143769 | 0.842 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.209870 | 0.678 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.129671 | 0.887 |
R-HSA-8985947 | Interleukin-9 signaling | 0.224464 | 0.649 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.345594 | 0.461 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.143769 | 0.842 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.149341 | 0.826 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 0.168776 | 0.773 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.242187 | 0.616 |
R-HSA-176974 | Unwinding of DNA | 0.242187 | 0.616 |
R-HSA-6803544 | Ion influx/efflux at host-pathogen interface | 0.259506 | 0.586 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.259506 | 0.586 |
R-HSA-192905 | vRNP Assembly | 0.276430 | 0.558 |
R-HSA-5658623 | FGFRL1 modulation of FGFR1 signaling | 0.276430 | 0.558 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.309130 | 0.510 |
R-HSA-877312 | Regulation of IFNG signaling | 0.309130 | 0.510 |
R-HSA-68949 | Orc1 removal from chromatin | 0.162872 | 0.788 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.131872 | 0.880 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.304273 | 0.517 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.123844 | 0.907 |
R-HSA-9646399 | Aggrephagy | 0.295799 | 0.529 |
R-HSA-170968 | Frs2-mediated activation | 0.324924 | 0.488 |
R-HSA-5689603 | UCH proteinases | 0.307183 | 0.513 |
R-HSA-9020956 | Interleukin-27 signaling | 0.259506 | 0.586 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.242187 | 0.616 |
R-HSA-73894 | DNA Repair | 0.173590 | 0.760 |
R-HSA-167172 | Transcription of the HIV genome | 0.257392 | 0.589 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.206328 | 0.685 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.259506 | 0.586 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.137447 | 0.862 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.169462 | 0.771 |
R-HSA-3214815 | HDACs deacetylate histones | 0.179775 | 0.745 |
R-HSA-6811438 | Intra-Golgi traffic | 0.312729 | 0.505 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.288424 | 0.540 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.156705 | 0.805 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.208913 | 0.680 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.130006 | 0.886 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.257392 | 0.589 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.245562 | 0.610 |
R-HSA-438064 | Post NMDA receptor activation events | 0.183680 | 0.736 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.295799 | 0.529 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.295799 | 0.529 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.265972 | 0.575 |
R-HSA-5617833 | Cilium Assembly | 0.212064 | 0.674 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.149341 | 0.826 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.187768 | 0.726 |
R-HSA-210455 | Astrocytic Glutamate-Glutamine Uptake And Metabolism | 0.224464 | 0.649 |
R-HSA-112313 | Neurotransmitter uptake and metabolism In glial cells | 0.224464 | 0.649 |
R-HSA-170984 | ARMS-mediated activation | 0.242187 | 0.616 |
R-HSA-112411 | MAPK1 (ERK2) activation | 0.242187 | 0.616 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.122004 | 0.914 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.153289 | 0.814 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.292969 | 0.533 |
R-HSA-5689901 | Metalloprotease DUBs | 0.169462 | 0.771 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.355438 | 0.449 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.214864 | 0.668 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.295799 | 0.529 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.307183 | 0.513 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.265972 | 0.575 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.122004 | 0.914 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.261793 | 0.582 |
R-HSA-913531 | Interferon Signaling | 0.333088 | 0.477 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.328326 | 0.484 |
R-HSA-200425 | Carnitine shuttle | 0.145323 | 0.838 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.130683 | 0.884 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 0.242187 | 0.616 |
R-HSA-1679131 | Trafficking and processing of endosomal TLR | 0.309130 | 0.510 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.340356 | 0.468 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.287310 | 0.542 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.287310 | 0.542 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.269758 | 0.569 |
R-HSA-2408557 | Selenocysteine synthesis | 0.260933 | 0.583 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.274494 | 0.561 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.261793 | 0.582 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.258850 | 0.587 |
R-HSA-9907900 | Proteasome assembly | 0.120507 | 0.919 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.304273 | 0.517 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.346295 | 0.461 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.346295 | 0.461 |
R-HSA-3214847 | HATs acetylate histones | 0.250913 | 0.600 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.129453 | 0.888 |
R-HSA-9707587 | Regulation of HMOX1 expression and activity | 0.129453 | 0.888 |
R-HSA-8866376 | Reelin signalling pathway | 0.149341 | 0.826 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.206328 | 0.685 |
R-HSA-5576890 | Phase 3 - rapid repolarisation | 0.206328 | 0.685 |
R-HSA-390696 | Adrenoceptors | 0.224464 | 0.649 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 0.242187 | 0.616 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 0.242187 | 0.616 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.242187 | 0.616 |
R-HSA-110056 | MAPK3 (ERK1) activation | 0.259506 | 0.586 |
R-HSA-425381 | Bicarbonate transporters | 0.276430 | 0.558 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.145323 | 0.838 |
R-HSA-428540 | Activation of RAC1 | 0.292969 | 0.533 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.169462 | 0.771 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 0.324924 | 0.488 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.355438 | 0.449 |
R-HSA-8875878 | MET promotes cell motility | 0.278810 | 0.555 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.214864 | 0.668 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.226870 | 0.644 |
R-HSA-211000 | Gene Silencing by RNA | 0.143769 | 0.842 |
R-HSA-68882 | Mitotic Anaphase | 0.183218 | 0.737 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.124979 | 0.903 |
R-HSA-397014 | Muscle contraction | 0.172094 | 0.764 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.186047 | 0.730 |
R-HSA-5683826 | Surfactant metabolism | 0.120507 | 0.919 |
R-HSA-73886 | Chromosome Maintenance | 0.204407 | 0.690 |
R-HSA-212436 | Generic Transcription Pathway | 0.230273 | 0.638 |
R-HSA-373752 | Netrin-1 signaling | 0.337948 | 0.471 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.309130 | 0.510 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.295799 | 0.529 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.245108 | 0.611 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.354606 | 0.450 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.276103 | 0.559 |
R-HSA-977225 | Amyloid fiber formation | 0.338522 | 0.470 |
R-HSA-165159 | MTOR signalling | 0.321162 | 0.493 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.149341 | 0.826 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.168776 | 0.773 |
R-HSA-164944 | Nef and signal transduction | 0.187768 | 0.726 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.242187 | 0.616 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.355438 | 0.449 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.355438 | 0.449 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.261793 | 0.582 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.220850 | 0.656 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.150878 | 0.821 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.282189 | 0.549 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.294669 | 0.531 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.127805 | 0.893 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.282189 | 0.549 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.245562 | 0.610 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.337948 | 0.471 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.236045 | 0.627 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.351045 | 0.455 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.332704 | 0.478 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.319716 | 0.495 |
R-HSA-1227986 | Signaling by ERBB2 | 0.208913 | 0.680 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.212528 | 0.673 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 0.242187 | 0.616 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.242187 | 0.616 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 0.259506 | 0.586 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.309130 | 0.510 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.309130 | 0.510 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.210947 | 0.676 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 0.329569 | 0.482 |
R-HSA-2029481 | FCGR activation | 0.216574 | 0.664 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.332255 | 0.479 |
R-HSA-6794361 | Neurexins and neuroligins | 0.162872 | 0.788 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.191297 | 0.718 |
R-HSA-9659379 | Sensory processing of sound | 0.325986 | 0.487 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.226870 | 0.644 |
R-HSA-9675135 | Diseases of DNA repair | 0.130683 | 0.884 |
R-HSA-166520 | Signaling by NTRKs | 0.338760 | 0.470 |
R-HSA-435368 | Zinc efflux and compartmentalization by the SLC30 family | 0.149341 | 0.826 |
R-HSA-9635465 | Suppression of apoptosis | 0.276430 | 0.558 |
R-HSA-525793 | Myogenesis | 0.169462 | 0.771 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.322337 | 0.492 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.325369 | 0.488 |
R-HSA-195721 | Signaling by WNT | 0.316139 | 0.500 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.244784 | 0.611 |
R-HSA-69541 | Stabilization of p53 | 0.287310 | 0.542 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.288424 | 0.540 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.181849 | 0.740 |
R-HSA-9006936 | Signaling by TGFB family members | 0.231819 | 0.635 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.145323 | 0.838 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.161338 | 0.792 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.185904 | 0.731 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.185512 | 0.732 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.270303 | 0.568 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.170125 | 0.769 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.246838 | 0.608 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.269758 | 0.569 |
R-HSA-111885 | Opioid Signalling | 0.130006 | 0.886 |
R-HSA-9607240 | FLT3 Signaling | 0.304273 | 0.517 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.324924 | 0.488 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.255913 | 0.592 |
R-HSA-9833110 | RSV-host interactions | 0.281192 | 0.551 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.240978 | 0.618 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 0.354606 | 0.450 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.224464 | 0.649 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.242187 | 0.616 |
R-HSA-210991 | Basigin interactions | 0.122004 | 0.914 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.292969 | 0.533 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.355438 | 0.449 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.269758 | 0.569 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.162497 | 0.789 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.261793 | 0.582 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.355438 | 0.449 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.202276 | 0.694 |
R-HSA-9020591 | Interleukin-12 signaling | 0.307183 | 0.513 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.185512 | 0.732 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.168438 | 0.774 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.209870 | 0.678 |
R-HSA-422356 | Regulation of insulin secretion | 0.245934 | 0.609 |
R-HSA-435354 | Zinc transporters | 0.340356 | 0.468 |
R-HSA-1538133 | G0 and Early G1 | 0.219370 | 0.659 |
R-HSA-9008059 | Interleukin-37 signaling | 0.202557 | 0.693 |
R-HSA-5578775 | Ion homeostasis | 0.185512 | 0.732 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.232921 | 0.633 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 0.324924 | 0.488 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.347808 | 0.459 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 0.340356 | 0.468 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.357297 | 0.447 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.357297 | 0.447 |
R-HSA-5693538 | Homology Directed Repair | 0.363872 | 0.439 |
R-HSA-73887 | Death Receptor Signaling | 0.365941 | 0.437 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.369775 | 0.432 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.370175 | 0.432 |
R-HSA-169893 | Prolonged ERK activation events | 0.370175 | 0.432 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.370175 | 0.432 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.370175 | 0.432 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.370175 | 0.432 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.370175 | 0.432 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.370175 | 0.432 |
R-HSA-9754706 | Atorvastatin ADME | 0.370175 | 0.432 |
R-HSA-1989781 | PPARA activates gene expression | 0.370478 | 0.431 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.371115 | 0.430 |
R-HSA-9031628 | NGF-stimulated transcription | 0.371115 | 0.430 |
R-HSA-1500931 | Cell-Cell communication | 0.373919 | 0.427 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.375998 | 0.425 |
R-HSA-199991 | Membrane Trafficking | 0.378946 | 0.421 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.379306 | 0.421 |
R-HSA-9766229 | Degradation of CDH1 | 0.379306 | 0.421 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.379306 | 0.421 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.379306 | 0.421 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.379553 | 0.421 |
R-HSA-447115 | Interleukin-12 family signaling | 0.382209 | 0.418 |
R-HSA-9711097 | Cellular response to starvation | 0.384090 | 0.416 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 0.384576 | 0.415 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.384576 | 0.415 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.384576 | 0.415 |
R-HSA-5576893 | Phase 2 - plateau phase | 0.384576 | 0.415 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.384576 | 0.415 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.384576 | 0.415 |
R-HSA-1566977 | Fibronectin matrix formation | 0.384576 | 0.415 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.384576 | 0.415 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.386920 | 0.412 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.388405 | 0.411 |
R-HSA-156902 | Peptide chain elongation | 0.388405 | 0.411 |
R-HSA-9645723 | Diseases of programmed cell death | 0.388405 | 0.411 |
R-HSA-2132295 | MHC class II antigen presentation | 0.389809 | 0.409 |
R-HSA-912446 | Meiotic recombination | 0.395551 | 0.403 |
R-HSA-2514856 | The phototransduction cascade | 0.395551 | 0.403 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.398649 | 0.399 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.398649 | 0.399 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.398649 | 0.399 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.398649 | 0.399 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 0.398649 | 0.399 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 0.398649 | 0.399 |
R-HSA-109582 | Hemostasis | 0.401710 | 0.396 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.403601 | 0.394 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.403601 | 0.394 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.403601 | 0.394 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.406901 | 0.391 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.410457 | 0.387 |
R-HSA-1221632 | Meiotic synapsis | 0.411599 | 0.386 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.411599 | 0.386 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.411599 | 0.386 |
R-HSA-445355 | Smooth Muscle Contraction | 0.411599 | 0.386 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.412400 | 0.385 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 0.412400 | 0.385 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.412400 | 0.385 |
R-HSA-432142 | Platelet sensitization by LDL | 0.412400 | 0.385 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 0.412400 | 0.385 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.412400 | 0.385 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.412400 | 0.385 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.413030 | 0.384 |
R-HSA-1280218 | Adaptive Immune System | 0.418192 | 0.379 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.419139 | 0.378 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.419544 | 0.377 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.420730 | 0.376 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.425227 | 0.371 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.425838 | 0.371 |
R-HSA-844456 | The NLRP3 inflammasome | 0.425838 | 0.371 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.425838 | 0.371 |
R-HSA-449836 | Other interleukin signaling | 0.425838 | 0.371 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 0.425838 | 0.371 |
R-HSA-1266738 | Developmental Biology | 0.427218 | 0.369 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.427434 | 0.369 |
R-HSA-9753281 | Paracetamol ADME | 0.427434 | 0.369 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.427434 | 0.369 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.435268 | 0.361 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.435268 | 0.361 |
R-HSA-1474165 | Reproduction | 0.436056 | 0.360 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.437336 | 0.359 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.437336 | 0.359 |
R-HSA-9909620 | Regulation of PD-L1(CD274) translation | 0.438970 | 0.358 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 0.438970 | 0.358 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.438970 | 0.358 |
R-HSA-1181150 | Signaling by NODAL | 0.438970 | 0.358 |
R-HSA-5576891 | Cardiac conduction | 0.441141 | 0.355 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.443044 | 0.354 |
R-HSA-5621480 | Dectin-2 family | 0.443044 | 0.354 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.443355 | 0.353 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.443355 | 0.353 |
R-HSA-9909396 | Circadian clock | 0.446211 | 0.350 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.447195 | 0.350 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.449348 | 0.347 |
R-HSA-5688426 | Deubiquitination | 0.450665 | 0.346 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.450760 | 0.346 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.450760 | 0.346 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.450760 | 0.346 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.451802 | 0.345 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.451802 | 0.345 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.451802 | 0.345 |
R-HSA-198753 | ERK/MAPK targets | 0.451802 | 0.345 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 0.451802 | 0.345 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.451802 | 0.345 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.451802 | 0.345 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.451802 | 0.345 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.455315 | 0.342 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.456100 | 0.341 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.456100 | 0.341 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.456918 | 0.340 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.458415 | 0.339 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.458415 | 0.339 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.464341 | 0.333 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.466008 | 0.332 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.466008 | 0.332 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.471340 | 0.327 |
R-HSA-70171 | Glycolysis | 0.473051 | 0.325 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.473538 | 0.325 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.476595 | 0.322 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.476595 | 0.322 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.476595 | 0.322 |
R-HSA-166208 | mTORC1-mediated signalling | 0.476595 | 0.322 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.476595 | 0.322 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.476595 | 0.322 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.476595 | 0.322 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.476595 | 0.322 |
R-HSA-8964038 | LDL clearance | 0.476595 | 0.322 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.476595 | 0.322 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.478905 | 0.320 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.481003 | 0.318 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.481003 | 0.318 |
R-HSA-9948299 | Ribosome-associated quality control | 0.481275 | 0.318 |
R-HSA-6807070 | PTEN Regulation | 0.486215 | 0.313 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 0.488568 | 0.311 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.488568 | 0.311 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.488568 | 0.311 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.488568 | 0.311 |
R-HSA-982772 | Growth hormone receptor signaling | 0.488568 | 0.311 |
R-HSA-3000170 | Syndecan interactions | 0.488568 | 0.311 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.488568 | 0.311 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.488568 | 0.311 |
R-HSA-192823 | Viral mRNA Translation | 0.490520 | 0.309 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.491136 | 0.309 |
R-HSA-9664407 | Parasite infection | 0.491136 | 0.309 |
R-HSA-9664417 | Leishmania phagocytosis | 0.491136 | 0.309 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.496280 | 0.304 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.500269 | 0.301 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.500269 | 0.301 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.500269 | 0.301 |
R-HSA-429947 | Deadenylation of mRNA | 0.500269 | 0.301 |
R-HSA-1234174 | Cellular response to hypoxia | 0.503004 | 0.298 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.503004 | 0.298 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.503030 | 0.298 |
R-HSA-1266695 | Interleukin-7 signaling | 0.511702 | 0.291 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.511702 | 0.291 |
R-HSA-420029 | Tight junction interactions | 0.511702 | 0.291 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 0.511702 | 0.291 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.517333 | 0.286 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.518986 | 0.285 |
R-HSA-69239 | Synthesis of DNA | 0.518986 | 0.285 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.522875 | 0.282 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.522875 | 0.282 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.522875 | 0.282 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.522875 | 0.282 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.522875 | 0.282 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 0.522875 | 0.282 |
R-HSA-70635 | Urea cycle | 0.522875 | 0.282 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.522875 | 0.282 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.524395 | 0.280 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.524395 | 0.280 |
R-HSA-983712 | Ion channel transport | 0.525615 | 0.279 |
R-HSA-72312 | rRNA processing | 0.526315 | 0.279 |
R-HSA-449147 | Signaling by Interleukins | 0.528434 | 0.277 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.530131 | 0.276 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.533793 | 0.273 |
R-HSA-8949613 | Cristae formation | 0.533793 | 0.273 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.533793 | 0.273 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.533793 | 0.273 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.533793 | 0.273 |
R-HSA-201451 | Signaling by BMP | 0.533793 | 0.273 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.533793 | 0.273 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.533793 | 0.273 |
R-HSA-264876 | Insulin processing | 0.533793 | 0.273 |
R-HSA-9828806 | Maturation of hRSV A proteins | 0.533793 | 0.273 |
R-HSA-446728 | Cell junction organization | 0.534144 | 0.272 |
R-HSA-69242 | S Phase | 0.534490 | 0.272 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.538230 | 0.269 |
R-HSA-622312 | Inflammasomes | 0.544461 | 0.264 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.545158 | 0.263 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.545158 | 0.263 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.545158 | 0.263 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.545158 | 0.263 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.546574 | 0.262 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.546574 | 0.262 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.551937 | 0.258 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.553162 | 0.257 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.553589 | 0.257 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.554806 | 0.256 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.554886 | 0.256 |
R-HSA-9615710 | Late endosomal microautophagy | 0.554886 | 0.256 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.554886 | 0.256 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.554886 | 0.256 |
R-HSA-180024 | DARPP-32 events | 0.554886 | 0.256 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.554886 | 0.256 |
R-HSA-157118 | Signaling by NOTCH | 0.556653 | 0.254 |
R-HSA-4086398 | Ca2+ pathway | 0.558645 | 0.253 |
R-HSA-5663205 | Infectious disease | 0.561564 | 0.251 |
R-HSA-2424491 | DAP12 signaling | 0.565073 | 0.248 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.565073 | 0.248 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.565073 | 0.248 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.565073 | 0.248 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.565073 | 0.248 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.565073 | 0.248 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.565073 | 0.248 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 0.565073 | 0.248 |
R-HSA-9612973 | Autophagy | 0.571432 | 0.243 |
R-HSA-8852135 | Protein ubiquitination | 0.571845 | 0.243 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.573218 | 0.242 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.575028 | 0.240 |
R-HSA-112316 | Neuronal System | 0.577317 | 0.239 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.582444 | 0.235 |
R-HSA-376176 | Signaling by ROBO receptors | 0.583094 | 0.234 |
R-HSA-70326 | Glucose metabolism | 0.583600 | 0.234 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.584755 | 0.233 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.584755 | 0.233 |
R-HSA-69190 | DNA strand elongation | 0.584755 | 0.233 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.584757 | 0.233 |
R-HSA-9694635 | Translation of Structural Proteins | 0.584757 | 0.233 |
R-HSA-4086400 | PCP/CE pathway | 0.591105 | 0.228 |
R-HSA-5619084 | ABC transporter disorders | 0.591105 | 0.228 |
R-HSA-72766 | Translation | 0.592853 | 0.227 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.593821 | 0.226 |
R-HSA-354192 | Integrin signaling | 0.594260 | 0.226 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 0.594260 | 0.226 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.594260 | 0.226 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.594260 | 0.226 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.594260 | 0.226 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.594260 | 0.226 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.594260 | 0.226 |
R-HSA-421270 | Cell-cell junction organization | 0.596837 | 0.224 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.603548 | 0.219 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.603548 | 0.219 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.603548 | 0.219 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.603548 | 0.219 |
R-HSA-189483 | Heme degradation | 0.603548 | 0.219 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.603583 | 0.219 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.603583 | 0.219 |
R-HSA-9833482 | PKR-mediated signaling | 0.603583 | 0.219 |
R-HSA-6806834 | Signaling by MET | 0.603583 | 0.219 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.612624 | 0.213 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.612624 | 0.213 |
R-HSA-203615 | eNOS activation | 0.612624 | 0.213 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.612624 | 0.213 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.612624 | 0.213 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.612624 | 0.213 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.612624 | 0.213 |
R-HSA-2142845 | Hyaluronan metabolism | 0.612624 | 0.213 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.612624 | 0.213 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.612624 | 0.213 |
R-HSA-6809371 | Formation of the cornified envelope | 0.618653 | 0.209 |
R-HSA-5619102 | SLC transporter disorders | 0.619440 | 0.208 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.621493 | 0.207 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.621493 | 0.207 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.621493 | 0.207 |
R-HSA-187687 | Signalling to ERKs | 0.621493 | 0.207 |
R-HSA-169911 | Regulation of Apoptosis | 0.621493 | 0.207 |
R-HSA-381042 | PERK regulates gene expression | 0.621493 | 0.207 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.621493 | 0.207 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.621493 | 0.207 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.627671 | 0.202 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.628294 | 0.202 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.628294 | 0.202 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.628294 | 0.202 |
R-HSA-194138 | Signaling by VEGF | 0.628294 | 0.202 |
R-HSA-69206 | G1/S Transition | 0.628294 | 0.202 |
R-HSA-8853659 | RET signaling | 0.630160 | 0.201 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.630160 | 0.201 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.630160 | 0.201 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.630160 | 0.201 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.630160 | 0.201 |
R-HSA-72306 | tRNA processing | 0.636040 | 0.197 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.638628 | 0.195 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.638628 | 0.195 |
R-HSA-4641258 | Degradation of DVL | 0.638628 | 0.195 |
R-HSA-4641257 | Degradation of AXIN | 0.638628 | 0.195 |
R-HSA-419037 | NCAM1 interactions | 0.638628 | 0.195 |
R-HSA-8948216 | Collagen chain trimerization | 0.638628 | 0.195 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.639282 | 0.194 |
R-HSA-5653656 | Vesicle-mediated transport | 0.639422 | 0.194 |
R-HSA-418990 | Adherens junctions interactions | 0.643927 | 0.191 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.644981 | 0.190 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.646903 | 0.189 |
R-HSA-9931953 | Biofilm formation | 0.646903 | 0.189 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.646903 | 0.189 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.646903 | 0.189 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.648180 | 0.188 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.648180 | 0.188 |
R-HSA-71336 | Pentose phosphate pathway | 0.654989 | 0.184 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.654989 | 0.184 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.654989 | 0.184 |
R-HSA-201556 | Signaling by ALK | 0.654989 | 0.184 |
R-HSA-9663891 | Selective autophagy | 0.656164 | 0.183 |
R-HSA-1236974 | ER-Phagosome pathway | 0.661650 | 0.179 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.662891 | 0.179 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.662891 | 0.179 |
R-HSA-451927 | Interleukin-2 family signaling | 0.662891 | 0.179 |
R-HSA-71240 | Tryptophan catabolism | 0.662891 | 0.179 |
R-HSA-202433 | Generation of second messenger molecules | 0.662891 | 0.179 |
R-HSA-112310 | Neurotransmitter release cycle | 0.667065 | 0.176 |
R-HSA-73884 | Base Excision Repair | 0.667065 | 0.176 |
R-HSA-6798695 | Neutrophil degranulation | 0.667396 | 0.176 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.670612 | 0.174 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.670612 | 0.174 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.670612 | 0.174 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.670612 | 0.174 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.670612 | 0.174 |
R-HSA-9694548 | Maturation of spike protein | 0.670612 | 0.174 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.672410 | 0.172 |
R-HSA-1643685 | Disease | 0.675176 | 0.171 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.677686 | 0.169 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.678156 | 0.169 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.678156 | 0.169 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.678156 | 0.169 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.678156 | 0.169 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.678156 | 0.169 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.678156 | 0.169 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.678156 | 0.169 |
R-HSA-9683701 | Translation of Structural Proteins | 0.678156 | 0.169 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.679803 | 0.168 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.682892 | 0.166 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.685528 | 0.164 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.685528 | 0.164 |
R-HSA-73928 | Depyrimidination | 0.685528 | 0.164 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.685528 | 0.164 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.688029 | 0.162 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.692732 | 0.159 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.692732 | 0.159 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.692732 | 0.159 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.699305 | 0.155 |
R-HSA-2172127 | DAP12 interactions | 0.699771 | 0.155 |
R-HSA-190828 | Gap junction trafficking | 0.699771 | 0.155 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.699771 | 0.155 |
R-HSA-375280 | Amine ligand-binding receptors | 0.699771 | 0.155 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.699771 | 0.155 |
R-HSA-69236 | G1 Phase | 0.699771 | 0.155 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.706650 | 0.151 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.706650 | 0.151 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.706650 | 0.151 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.706650 | 0.151 |
R-HSA-9824272 | Somitogenesis | 0.706650 | 0.151 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.706770 | 0.151 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.707416 | 0.150 |
R-HSA-1632852 | Macroautophagy | 0.707416 | 0.150 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.707898 | 0.150 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.708556 | 0.150 |
R-HSA-157579 | Telomere Maintenance | 0.712697 | 0.147 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.713371 | 0.147 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.713371 | 0.147 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.713371 | 0.147 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.713371 | 0.147 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.719268 | 0.143 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.719938 | 0.143 |
R-HSA-5620924 | Intraflagellar transport | 0.726356 | 0.139 |
R-HSA-425410 | Metal ion SLC transporters | 0.726356 | 0.139 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.732627 | 0.135 |
R-HSA-73893 | DNA Damage Bypass | 0.732627 | 0.135 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.732627 | 0.135 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.734488 | 0.134 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.735895 | 0.133 |
R-HSA-9748787 | Azathioprine ADME | 0.738754 | 0.132 |
R-HSA-9864848 | Complex IV assembly | 0.744742 | 0.128 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.744742 | 0.128 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.744742 | 0.128 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.744742 | 0.128 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.748757 | 0.126 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.748757 | 0.126 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.750592 | 0.125 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.750592 | 0.125 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.750592 | 0.125 |
R-HSA-446652 | Interleukin-1 family signaling | 0.752590 | 0.123 |
R-HSA-69306 | DNA Replication | 0.756089 | 0.121 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.756309 | 0.121 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.756309 | 0.121 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.756309 | 0.121 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.761895 | 0.118 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.761895 | 0.118 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.765286 | 0.116 |
R-HSA-2672351 | Stimuli-sensing channels | 0.765286 | 0.116 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.767354 | 0.115 |
R-HSA-9610379 | HCMV Late Events | 0.769689 | 0.114 |
R-HSA-5654736 | Signaling by FGFR1 | 0.772687 | 0.112 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.772991 | 0.112 |
R-HSA-202403 | TCR signaling | 0.773191 | 0.112 |
R-HSA-6803157 | Antimicrobial peptides | 0.777056 | 0.110 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.783928 | 0.106 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.784614 | 0.105 |
R-HSA-416476 | G alpha (q) signalling events | 0.785529 | 0.105 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.787967 | 0.103 |
R-HSA-186712 | Regulation of beta-cell development | 0.787967 | 0.103 |
R-HSA-180786 | Extension of Telomeres | 0.787967 | 0.103 |
R-HSA-379724 | tRNA Aminoacylation | 0.792830 | 0.101 |
R-HSA-351202 | Metabolism of polyamines | 0.792830 | 0.101 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.792830 | 0.101 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.797581 | 0.098 |
R-HSA-450294 | MAP kinase activation | 0.797581 | 0.098 |
R-HSA-1442490 | Collagen degradation | 0.797581 | 0.098 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.802223 | 0.096 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.802223 | 0.096 |
R-HSA-1268020 | Mitochondrial protein import | 0.802223 | 0.096 |
R-HSA-186797 | Signaling by PDGF | 0.802223 | 0.096 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.802223 | 0.096 |
R-HSA-373760 | L1CAM interactions | 0.802533 | 0.096 |
R-HSA-9007101 | Rab regulation of trafficking | 0.805954 | 0.094 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.805954 | 0.094 |
R-HSA-8848021 | Signaling by PTK6 | 0.806759 | 0.093 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.806759 | 0.093 |
R-HSA-8951664 | Neddylation | 0.807947 | 0.093 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.809322 | 0.092 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.809708 | 0.092 |
R-HSA-5690714 | CD22 mediated BCR regulation | 0.811192 | 0.091 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.811192 | 0.091 |
R-HSA-5689880 | Ub-specific processing proteases | 0.820729 | 0.086 |
R-HSA-196807 | Nicotinate metabolism | 0.823890 | 0.084 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.825309 | 0.083 |
R-HSA-9658195 | Leishmania infection | 0.825309 | 0.083 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.827930 | 0.082 |
R-HSA-5218859 | Regulated Necrosis | 0.827930 | 0.082 |
R-HSA-168256 | Immune System | 0.831639 | 0.080 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.831878 | 0.080 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.835736 | 0.078 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.835736 | 0.078 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.835736 | 0.078 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.835736 | 0.078 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.835736 | 0.078 |
R-HSA-448424 | Interleukin-17 signaling | 0.835736 | 0.078 |
R-HSA-8978934 | Metabolism of cofactors | 0.839505 | 0.076 |
R-HSA-5632684 | Hedgehog 'on' state | 0.839505 | 0.076 |
R-HSA-3000178 | ECM proteoglycans | 0.839505 | 0.076 |
R-HSA-189445 | Metabolism of porphyrins | 0.839505 | 0.076 |
R-HSA-114608 | Platelet degranulation | 0.840242 | 0.076 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.843188 | 0.074 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.843188 | 0.074 |
R-HSA-9749641 | Aspirin ADME | 0.846787 | 0.072 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.850109 | 0.071 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.853739 | 0.069 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.853739 | 0.069 |
R-HSA-917937 | Iron uptake and transport | 0.853739 | 0.069 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.856545 | 0.067 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.859110 | 0.066 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.863582 | 0.064 |
R-HSA-6783783 | Interleukin-10 signaling | 0.863582 | 0.064 |
R-HSA-216083 | Integrin cell surface interactions | 0.863582 | 0.064 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.872765 | 0.059 |
R-HSA-9609690 | HCMV Early Events | 0.874229 | 0.058 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.878541 | 0.056 |
R-HSA-388396 | GPCR downstream signalling | 0.881261 | 0.055 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.885637 | 0.053 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.887446 | 0.052 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.888845 | 0.051 |
R-HSA-382551 | Transport of small molecules | 0.890744 | 0.050 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.891863 | 0.050 |
R-HSA-6805567 | Keratinization | 0.894430 | 0.048 |
R-HSA-2187338 | Visual phototransduction | 0.894828 | 0.048 |
R-HSA-9758941 | Gastrulation | 0.898649 | 0.046 |
R-HSA-202424 | Downstream TCR signaling | 0.899147 | 0.046 |
R-HSA-8957322 | Metabolism of steroids | 0.899772 | 0.046 |
R-HSA-391251 | Protein folding | 0.905940 | 0.043 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.905940 | 0.043 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.910214 | 0.041 |
R-HSA-1474290 | Collagen formation | 0.910214 | 0.041 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.916264 | 0.038 |
R-HSA-1296071 | Potassium Channels | 0.916264 | 0.038 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.916264 | 0.038 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.920070 | 0.036 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.920070 | 0.036 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.920070 | 0.036 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.920070 | 0.036 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.920070 | 0.036 |
R-HSA-190236 | Signaling by FGFR | 0.920070 | 0.036 |
R-HSA-5610787 | Hedgehog 'off' state | 0.923703 | 0.034 |
R-HSA-9020702 | Interleukin-1 signaling | 0.925457 | 0.034 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.927171 | 0.033 |
R-HSA-1483255 | PI Metabolism | 0.927171 | 0.033 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.928740 | 0.032 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.928846 | 0.032 |
R-HSA-418594 | G alpha (i) signalling events | 0.931135 | 0.031 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.933644 | 0.030 |
R-HSA-418555 | G alpha (s) signalling events | 0.934208 | 0.030 |
R-HSA-418346 | Platelet homeostasis | 0.935170 | 0.029 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.938119 | 0.028 |
R-HSA-5419276 | Mitochondrial translation termination | 0.939542 | 0.027 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.939542 | 0.027 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.940933 | 0.026 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.940933 | 0.026 |
R-HSA-392499 | Metabolism of proteins | 0.941401 | 0.026 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.943620 | 0.025 |
R-HSA-2559583 | Cellular Senescence | 0.944608 | 0.025 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.944918 | 0.025 |
R-HSA-372790 | Signaling by GPCR | 0.946055 | 0.024 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.947424 | 0.023 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.948634 | 0.023 |
R-HSA-9609646 | HCMV Infection | 0.949171 | 0.023 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.949816 | 0.022 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.949816 | 0.022 |
R-HSA-2980736 | Peptide hormone metabolism | 0.952100 | 0.021 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.954280 | 0.020 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.954280 | 0.020 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.955204 | 0.020 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.956362 | 0.019 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.957367 | 0.019 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.957367 | 0.019 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.958348 | 0.018 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.960557 | 0.017 |
R-HSA-597592 | Post-translational protein modification | 0.964266 | 0.016 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.964548 | 0.016 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.965433 | 0.015 |
R-HSA-168249 | Innate Immune System | 0.970165 | 0.013 |
R-HSA-5368287 | Mitochondrial translation | 0.972623 | 0.012 |
R-HSA-5358351 | Signaling by Hedgehog | 0.972623 | 0.012 |
R-HSA-9748784 | Drug ADME | 0.974139 | 0.011 |
R-HSA-1483257 | Phospholipid metabolism | 0.976914 | 0.010 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.977888 | 0.010 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.978820 | 0.009 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.979786 | 0.009 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.980709 | 0.008 |
R-HSA-9609507 | Protein localization | 0.981154 | 0.008 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.985899 | 0.006 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.985963 | 0.006 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.986411 | 0.006 |
R-HSA-8978868 | Fatty acid metabolism | 0.989516 | 0.005 |
R-HSA-611105 | Respiratory electron transport | 0.989735 | 0.004 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.991487 | 0.004 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.991924 | 0.004 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.992307 | 0.003 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.992773 | 0.003 |
R-HSA-9640148 | Infection with Enterobacteria | 0.994282 | 0.002 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.996422 | 0.002 |
R-HSA-15869 | Metabolism of nucleotides | 0.997424 | 0.001 |
R-HSA-1474244 | Extracellular matrix organization | 0.997444 | 0.001 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.997929 | 0.001 |
R-HSA-9734767 | Developmental Cell Lineages | 0.998634 | 0.001 |
R-HSA-500792 | GPCR ligand binding | 0.999929 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999961 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999972 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 0.999990 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | 0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.904 | 0.397 | 1 | 0.895 |
COT |
0.901 | 0.171 | 2 | 0.919 |
MOS |
0.894 | 0.246 | 1 | 0.871 |
NLK |
0.892 | 0.278 | 1 | 0.893 |
KIS |
0.891 | 0.333 | 1 | 0.822 |
CDC7 |
0.890 | 0.064 | 1 | 0.840 |
PIM3 |
0.890 | 0.135 | -3 | 0.876 |
MTOR |
0.889 | 0.049 | 1 | 0.824 |
NDR2 |
0.887 | 0.101 | -3 | 0.893 |
CAMK1B |
0.886 | 0.097 | -3 | 0.903 |
PRPK |
0.886 | -0.102 | -1 | 0.877 |
CDKL1 |
0.884 | 0.105 | -3 | 0.829 |
RAF1 |
0.884 | -0.038 | 1 | 0.823 |
NUAK2 |
0.884 | 0.139 | -3 | 0.891 |
IKKB |
0.883 | -0.067 | -2 | 0.753 |
ERK5 |
0.883 | 0.127 | 1 | 0.838 |
GRK1 |
0.883 | 0.221 | -2 | 0.848 |
MST4 |
0.882 | 0.140 | 2 | 0.894 |
PKN3 |
0.882 | 0.086 | -3 | 0.870 |
PIM1 |
0.882 | 0.172 | -3 | 0.831 |
SRPK1 |
0.882 | 0.193 | -3 | 0.782 |
NDR1 |
0.880 | 0.081 | -3 | 0.886 |
ATR |
0.880 | 0.011 | 1 | 0.826 |
RSK2 |
0.880 | 0.116 | -3 | 0.814 |
DSTYK |
0.880 | -0.020 | 2 | 0.933 |
CAMK2G |
0.880 | -0.023 | 2 | 0.849 |
TBK1 |
0.879 | -0.109 | 1 | 0.733 |
BMPR2 |
0.879 | -0.153 | -2 | 0.872 |
NIK |
0.879 | 0.078 | -3 | 0.921 |
PKN2 |
0.878 | 0.116 | -3 | 0.890 |
WNK1 |
0.878 | 0.067 | -2 | 0.857 |
GCN2 |
0.878 | -0.189 | 2 | 0.851 |
PDHK4 |
0.878 | -0.300 | 1 | 0.845 |
CDKL5 |
0.878 | 0.093 | -3 | 0.817 |
AMPKA1 |
0.877 | 0.116 | -3 | 0.903 |
ICK |
0.877 | 0.143 | -3 | 0.863 |
PRKD2 |
0.876 | 0.112 | -3 | 0.825 |
SKMLCK |
0.876 | 0.089 | -2 | 0.856 |
HIPK4 |
0.876 | 0.143 | 1 | 0.837 |
PKCD |
0.875 | 0.125 | 2 | 0.854 |
PRKD1 |
0.875 | 0.045 | -3 | 0.853 |
CDK8 |
0.875 | 0.230 | 1 | 0.786 |
CAMLCK |
0.875 | 0.047 | -2 | 0.853 |
IKKE |
0.874 | -0.141 | 1 | 0.721 |
PKACG |
0.874 | 0.100 | -2 | 0.765 |
P70S6KB |
0.874 | 0.089 | -3 | 0.845 |
MARK4 |
0.874 | 0.047 | 4 | 0.903 |
CDK1 |
0.874 | 0.300 | 1 | 0.761 |
SRPK2 |
0.873 | 0.164 | -3 | 0.708 |
DAPK2 |
0.873 | 0.044 | -3 | 0.901 |
P90RSK |
0.873 | 0.050 | -3 | 0.806 |
JNK2 |
0.873 | 0.328 | 1 | 0.761 |
LATS2 |
0.873 | 0.046 | -5 | 0.770 |
RIPK3 |
0.873 | -0.053 | 3 | 0.732 |
TGFBR2 |
0.873 | -0.050 | -2 | 0.796 |
ULK2 |
0.873 | -0.224 | 2 | 0.842 |
MLK1 |
0.872 | -0.063 | 2 | 0.877 |
CLK4 |
0.872 | 0.219 | -3 | 0.817 |
GRK5 |
0.872 | -0.100 | -3 | 0.883 |
IKKA |
0.872 | -0.009 | -2 | 0.737 |
CDK5 |
0.872 | 0.292 | 1 | 0.814 |
RSK3 |
0.872 | 0.051 | -3 | 0.806 |
AMPKA2 |
0.872 | 0.104 | -3 | 0.878 |
AURC |
0.871 | 0.130 | -2 | 0.690 |
JNK3 |
0.871 | 0.306 | 1 | 0.790 |
GRK6 |
0.871 | 0.021 | 1 | 0.809 |
PDHK1 |
0.871 | -0.287 | 1 | 0.831 |
CDK7 |
0.871 | 0.230 | 1 | 0.804 |
CLK1 |
0.871 | 0.240 | -3 | 0.805 |
CHAK2 |
0.871 | -0.021 | -1 | 0.872 |
HUNK |
0.871 | -0.086 | 2 | 0.849 |
CLK2 |
0.871 | 0.299 | -3 | 0.801 |
DYRK2 |
0.870 | 0.244 | 1 | 0.794 |
CDK19 |
0.870 | 0.230 | 1 | 0.756 |
LATS1 |
0.870 | 0.137 | -3 | 0.896 |
WNK3 |
0.869 | -0.152 | 1 | 0.787 |
SRPK3 |
0.869 | 0.139 | -3 | 0.755 |
CDK18 |
0.869 | 0.285 | 1 | 0.746 |
NEK6 |
0.869 | -0.108 | -2 | 0.825 |
TSSK2 |
0.869 | 0.046 | -5 | 0.834 |
TSSK1 |
0.869 | 0.091 | -3 | 0.918 |
GRK7 |
0.868 | 0.172 | 1 | 0.766 |
BMPR1B |
0.868 | 0.145 | 1 | 0.762 |
CAMK4 |
0.868 | 0.024 | -3 | 0.881 |
NEK7 |
0.868 | -0.201 | -3 | 0.837 |
MAPKAPK3 |
0.867 | 0.010 | -3 | 0.822 |
CAMK2D |
0.866 | -0.041 | -3 | 0.876 |
ATM |
0.866 | 0.015 | 1 | 0.773 |
RSK4 |
0.866 | 0.122 | -3 | 0.789 |
P38A |
0.866 | 0.255 | 1 | 0.813 |
NUAK1 |
0.866 | 0.049 | -3 | 0.853 |
HIPK1 |
0.866 | 0.274 | 1 | 0.810 |
HIPK2 |
0.866 | 0.289 | 1 | 0.733 |
PRKX |
0.865 | 0.195 | -3 | 0.753 |
CDK17 |
0.865 | 0.278 | 1 | 0.701 |
CAMK2B |
0.865 | 0.078 | 2 | 0.810 |
MAPKAPK2 |
0.865 | 0.058 | -3 | 0.778 |
PKACB |
0.865 | 0.144 | -2 | 0.701 |
BCKDK |
0.865 | -0.182 | -1 | 0.829 |
ERK1 |
0.865 | 0.262 | 1 | 0.758 |
ERK2 |
0.865 | 0.250 | 1 | 0.790 |
DLK |
0.865 | -0.146 | 1 | 0.797 |
CDK13 |
0.864 | 0.218 | 1 | 0.785 |
P38G |
0.864 | 0.289 | 1 | 0.691 |
PAK1 |
0.864 | 0.040 | -2 | 0.794 |
PRKD3 |
0.863 | 0.056 | -3 | 0.797 |
P38B |
0.863 | 0.270 | 1 | 0.761 |
ANKRD3 |
0.863 | -0.128 | 1 | 0.826 |
QIK |
0.863 | 0.003 | -3 | 0.878 |
IRE1 |
0.863 | -0.060 | 1 | 0.755 |
CAMK2A |
0.863 | 0.074 | 2 | 0.833 |
AURB |
0.863 | 0.093 | -2 | 0.684 |
MELK |
0.863 | 0.039 | -3 | 0.861 |
ULK1 |
0.862 | -0.246 | -3 | 0.817 |
MASTL |
0.862 | -0.301 | -2 | 0.802 |
GRK4 |
0.862 | -0.082 | -2 | 0.847 |
QSK |
0.862 | 0.069 | 4 | 0.882 |
PKCB |
0.862 | 0.076 | 2 | 0.809 |
CDK2 |
0.862 | 0.183 | 1 | 0.811 |
NIM1 |
0.862 | -0.066 | 3 | 0.781 |
CDK14 |
0.862 | 0.290 | 1 | 0.782 |
CDK10 |
0.862 | 0.322 | 1 | 0.772 |
MYLK4 |
0.862 | 0.073 | -2 | 0.792 |
PKCG |
0.862 | 0.060 | 2 | 0.806 |
RIPK1 |
0.862 | -0.175 | 1 | 0.779 |
PKCA |
0.862 | 0.075 | 2 | 0.799 |
MSK2 |
0.861 | 0.001 | -3 | 0.770 |
FAM20C |
0.861 | 0.058 | 2 | 0.624 |
SIK |
0.861 | 0.068 | -3 | 0.820 |
PKR |
0.861 | 0.003 | 1 | 0.808 |
TGFBR1 |
0.861 | 0.022 | -2 | 0.800 |
ALK4 |
0.861 | -0.027 | -2 | 0.824 |
MNK2 |
0.861 | 0.055 | -2 | 0.792 |
CDK3 |
0.861 | 0.273 | 1 | 0.718 |
MLK3 |
0.861 | -0.015 | 2 | 0.810 |
PAK3 |
0.860 | -0.012 | -2 | 0.792 |
PIM2 |
0.860 | 0.119 | -3 | 0.795 |
MNK1 |
0.860 | 0.096 | -2 | 0.809 |
SGK3 |
0.860 | 0.105 | -3 | 0.817 |
IRE2 |
0.860 | -0.027 | 2 | 0.819 |
PKG2 |
0.860 | 0.100 | -2 | 0.706 |
TTBK2 |
0.859 | -0.159 | 2 | 0.747 |
MLK2 |
0.859 | -0.167 | 2 | 0.872 |
AKT2 |
0.859 | 0.103 | -3 | 0.739 |
NEK9 |
0.859 | -0.238 | 2 | 0.890 |
MSK1 |
0.858 | 0.057 | -3 | 0.782 |
CDK9 |
0.858 | 0.204 | 1 | 0.790 |
PHKG1 |
0.858 | -0.002 | -3 | 0.877 |
CDK12 |
0.858 | 0.218 | 1 | 0.762 |
PAK6 |
0.858 | 0.091 | -2 | 0.721 |
CDK16 |
0.858 | 0.296 | 1 | 0.720 |
PKCH |
0.857 | 0.034 | 2 | 0.797 |
DYRK1A |
0.857 | 0.188 | 1 | 0.843 |
ALK2 |
0.857 | 0.059 | -2 | 0.813 |
DNAPK |
0.857 | 0.032 | 1 | 0.727 |
MARK3 |
0.857 | 0.074 | 4 | 0.855 |
PLK1 |
0.857 | -0.099 | -2 | 0.791 |
ACVR2B |
0.857 | 0.025 | -2 | 0.800 |
ACVR2A |
0.856 | -0.003 | -2 | 0.789 |
YSK4 |
0.856 | -0.111 | 1 | 0.755 |
PKCZ |
0.856 | 0.010 | 2 | 0.843 |
HIPK3 |
0.856 | 0.212 | 1 | 0.810 |
DYRK4 |
0.856 | 0.264 | 1 | 0.750 |
MEK1 |
0.856 | -0.171 | 2 | 0.882 |
CAMK1G |
0.856 | 0.038 | -3 | 0.811 |
BRSK1 |
0.855 | 0.010 | -3 | 0.848 |
PAK2 |
0.855 | -0.020 | -2 | 0.780 |
MARK2 |
0.855 | 0.049 | 4 | 0.816 |
AURA |
0.855 | 0.056 | -2 | 0.660 |
P38D |
0.855 | 0.281 | 1 | 0.720 |
DYRK1B |
0.854 | 0.239 | 1 | 0.770 |
VRK2 |
0.854 | -0.236 | 1 | 0.858 |
CHK1 |
0.853 | -0.008 | -3 | 0.873 |
BRSK2 |
0.852 | -0.033 | -3 | 0.873 |
CHAK1 |
0.852 | -0.131 | 2 | 0.820 |
SMG1 |
0.852 | -0.070 | 1 | 0.779 |
DYRK3 |
0.852 | 0.200 | 1 | 0.801 |
MARK1 |
0.851 | 0.028 | 4 | 0.874 |
BMPR1A |
0.851 | 0.097 | 1 | 0.749 |
AKT1 |
0.851 | 0.111 | -3 | 0.763 |
MST3 |
0.851 | 0.086 | 2 | 0.891 |
PRP4 |
0.851 | 0.100 | -3 | 0.757 |
DCAMKL1 |
0.851 | 0.049 | -3 | 0.851 |
MLK4 |
0.851 | -0.090 | 2 | 0.787 |
NEK2 |
0.850 | -0.153 | 2 | 0.869 |
MEKK3 |
0.850 | -0.075 | 1 | 0.773 |
PKACA |
0.850 | 0.110 | -2 | 0.659 |
DRAK1 |
0.850 | -0.069 | 1 | 0.731 |
TAO3 |
0.849 | 0.063 | 1 | 0.784 |
PLK3 |
0.849 | -0.102 | 2 | 0.809 |
SSTK |
0.849 | 0.066 | 4 | 0.869 |
SMMLCK |
0.849 | 0.029 | -3 | 0.861 |
GAK |
0.848 | 0.163 | 1 | 0.834 |
GRK2 |
0.848 | -0.065 | -2 | 0.734 |
PASK |
0.848 | 0.059 | -3 | 0.883 |
CK1E |
0.848 | 0.044 | -3 | 0.558 |
BRAF |
0.848 | -0.088 | -4 | 0.837 |
SNRK |
0.848 | -0.159 | 2 | 0.742 |
PHKG2 |
0.847 | 0.040 | -3 | 0.871 |
MPSK1 |
0.847 | 0.075 | 1 | 0.784 |
MEK5 |
0.847 | -0.218 | 2 | 0.878 |
JNK1 |
0.846 | 0.241 | 1 | 0.749 |
PKCT |
0.845 | 0.020 | 2 | 0.803 |
CDK6 |
0.845 | 0.259 | 1 | 0.768 |
PERK |
0.845 | -0.168 | -2 | 0.834 |
HRI |
0.845 | -0.199 | -2 | 0.835 |
MEKK2 |
0.845 | -0.096 | 2 | 0.862 |
MEKK1 |
0.845 | -0.173 | 1 | 0.787 |
TLK2 |
0.845 | -0.168 | 1 | 0.758 |
DCAMKL2 |
0.845 | 0.013 | -3 | 0.872 |
PINK1 |
0.845 | -0.138 | 1 | 0.848 |
CAMK1D |
0.844 | 0.061 | -3 | 0.754 |
WNK4 |
0.844 | -0.127 | -2 | 0.832 |
IRAK4 |
0.844 | -0.096 | 1 | 0.760 |
ZAK |
0.844 | -0.158 | 1 | 0.751 |
CDK4 |
0.843 | 0.254 | 1 | 0.752 |
P70S6K |
0.843 | 0.004 | -3 | 0.750 |
PLK4 |
0.843 | -0.145 | 2 | 0.673 |
DAPK3 |
0.842 | 0.094 | -3 | 0.854 |
TAO2 |
0.842 | 0.009 | 2 | 0.902 |
ERK7 |
0.842 | 0.122 | 2 | 0.608 |
GSK3A |
0.842 | 0.083 | 4 | 0.476 |
PKCI |
0.841 | 0.025 | 2 | 0.815 |
CK1D |
0.841 | 0.055 | -3 | 0.509 |
PKCE |
0.841 | 0.093 | 2 | 0.793 |
NEK5 |
0.841 | -0.168 | 1 | 0.798 |
CK2A2 |
0.841 | 0.131 | 1 | 0.686 |
TLK1 |
0.840 | -0.141 | -2 | 0.824 |
MAK |
0.840 | 0.213 | -2 | 0.721 |
GCK |
0.839 | 0.040 | 1 | 0.773 |
MAPKAPK5 |
0.838 | -0.168 | -3 | 0.739 |
NEK11 |
0.838 | -0.131 | 1 | 0.783 |
SGK1 |
0.837 | 0.097 | -3 | 0.654 |
MRCKA |
0.837 | 0.117 | -3 | 0.818 |
PAK5 |
0.837 | 0.020 | -2 | 0.663 |
GSK3B |
0.837 | -0.005 | 4 | 0.466 |
MRCKB |
0.837 | 0.111 | -3 | 0.802 |
DAPK1 |
0.836 | 0.065 | -3 | 0.831 |
NEK8 |
0.836 | -0.157 | 2 | 0.880 |
EEF2K |
0.836 | 0.005 | 3 | 0.846 |
PDK1 |
0.835 | -0.081 | 1 | 0.798 |
CK1A2 |
0.835 | 0.021 | -3 | 0.510 |
AKT3 |
0.835 | 0.083 | -3 | 0.669 |
MOK |
0.835 | 0.186 | 1 | 0.791 |
ROCK2 |
0.835 | 0.131 | -3 | 0.845 |
PKN1 |
0.835 | 0.028 | -3 | 0.772 |
GRK3 |
0.834 | -0.048 | -2 | 0.699 |
HPK1 |
0.834 | 0.037 | 1 | 0.764 |
MST2 |
0.833 | -0.074 | 1 | 0.783 |
TAK1 |
0.833 | -0.034 | 1 | 0.798 |
TNIK |
0.833 | 0.022 | 3 | 0.861 |
CAMKK1 |
0.833 | -0.224 | -2 | 0.757 |
CK1G1 |
0.833 | -0.045 | -3 | 0.563 |
MINK |
0.832 | -0.036 | 1 | 0.764 |
TTBK1 |
0.832 | -0.202 | 2 | 0.664 |
CHK2 |
0.832 | 0.031 | -3 | 0.692 |
CAMK1A |
0.832 | 0.054 | -3 | 0.719 |
DMPK1 |
0.832 | 0.174 | -3 | 0.830 |
PAK4 |
0.832 | 0.014 | -2 | 0.670 |
LRRK2 |
0.831 | -0.090 | 2 | 0.900 |
LKB1 |
0.831 | -0.143 | -3 | 0.848 |
HGK |
0.831 | -0.047 | 3 | 0.858 |
LOK |
0.831 | -0.017 | -2 | 0.779 |
IRAK1 |
0.831 | -0.292 | -1 | 0.777 |
KHS2 |
0.830 | 0.095 | 1 | 0.771 |
SLK |
0.830 | -0.014 | -2 | 0.730 |
MAP3K15 |
0.830 | -0.105 | 1 | 0.747 |
CK2A1 |
0.829 | 0.096 | 1 | 0.658 |
CAMKK2 |
0.829 | -0.214 | -2 | 0.754 |
KHS1 |
0.829 | 0.040 | 1 | 0.761 |
MEKK6 |
0.828 | -0.141 | 1 | 0.754 |
MST1 |
0.828 | -0.062 | 1 | 0.762 |
SBK |
0.827 | 0.067 | -3 | 0.620 |
NEK4 |
0.827 | -0.197 | 1 | 0.765 |
BUB1 |
0.826 | 0.055 | -5 | 0.805 |
PBK |
0.824 | 0.021 | 1 | 0.762 |
NEK1 |
0.824 | -0.167 | 1 | 0.770 |
PDHK3_TYR |
0.823 | 0.224 | 4 | 0.931 |
PLK2 |
0.823 | -0.063 | -3 | 0.786 |
ROCK1 |
0.822 | 0.106 | -3 | 0.814 |
VRK1 |
0.822 | -0.224 | 2 | 0.889 |
YSK1 |
0.822 | -0.073 | 2 | 0.867 |
CRIK |
0.820 | 0.080 | -3 | 0.753 |
HASPIN |
0.818 | 0.015 | -1 | 0.694 |
RIPK2 |
0.818 | -0.288 | 1 | 0.733 |
PKG1 |
0.817 | 0.017 | -2 | 0.634 |
PDHK4_TYR |
0.817 | 0.160 | 2 | 0.922 |
TTK |
0.816 | -0.021 | -2 | 0.812 |
TESK1_TYR |
0.816 | 0.032 | 3 | 0.881 |
MEK2 |
0.815 | -0.339 | 2 | 0.853 |
OSR1 |
0.814 | -0.064 | 2 | 0.851 |
STK33 |
0.814 | -0.223 | 2 | 0.657 |
BIKE |
0.814 | 0.050 | 1 | 0.733 |
ALPHAK3 |
0.814 | 0.008 | -1 | 0.803 |
MAP2K6_TYR |
0.813 | 0.048 | -1 | 0.911 |
MAP2K4_TYR |
0.813 | -0.027 | -1 | 0.901 |
MAP2K7_TYR |
0.811 | -0.130 | 2 | 0.904 |
BMPR2_TYR |
0.811 | 0.065 | -1 | 0.907 |
PKMYT1_TYR |
0.810 | -0.045 | 3 | 0.844 |
PDHK1_TYR |
0.810 | 0.015 | -1 | 0.918 |
PINK1_TYR |
0.810 | -0.079 | 1 | 0.830 |
LIMK2_TYR |
0.808 | 0.021 | -3 | 0.920 |
TAO1 |
0.808 | -0.070 | 1 | 0.717 |
MYO3A |
0.807 | -0.064 | 1 | 0.755 |
MYO3B |
0.807 | -0.073 | 2 | 0.877 |
ASK1 |
0.807 | -0.168 | 1 | 0.744 |
NEK3 |
0.806 | -0.269 | 1 | 0.738 |
EPHA6 |
0.803 | 0.033 | -1 | 0.883 |
LIMK1_TYR |
0.802 | -0.142 | 2 | 0.900 |
RET |
0.800 | -0.155 | 1 | 0.783 |
EPHB4 |
0.798 | -0.056 | -1 | 0.866 |
YANK3 |
0.798 | -0.104 | 2 | 0.421 |
AAK1 |
0.797 | 0.088 | 1 | 0.642 |
TYK2 |
0.797 | -0.226 | 1 | 0.782 |
MST1R |
0.796 | -0.183 | 3 | 0.790 |
CK1A |
0.795 | -0.022 | -3 | 0.419 |
ROS1 |
0.795 | -0.166 | 3 | 0.756 |
TYRO3 |
0.795 | -0.191 | 3 | 0.781 |
TXK |
0.794 | 0.033 | 1 | 0.783 |
YES1 |
0.794 | -0.073 | -1 | 0.850 |
JAK3 |
0.793 | -0.106 | 1 | 0.766 |
DDR1 |
0.793 | -0.200 | 4 | 0.859 |
JAK2 |
0.793 | -0.231 | 1 | 0.780 |
CSF1R |
0.792 | -0.166 | 3 | 0.771 |
STLK3 |
0.792 | -0.231 | 1 | 0.726 |
FGR |
0.791 | -0.131 | 1 | 0.807 |
INSRR |
0.790 | -0.119 | 3 | 0.729 |
ABL2 |
0.790 | -0.111 | -1 | 0.815 |
BLK |
0.790 | 0.055 | -1 | 0.852 |
LCK |
0.790 | 0.012 | -1 | 0.847 |
FER |
0.790 | -0.175 | 1 | 0.835 |
EPHA4 |
0.789 | -0.058 | 2 | 0.804 |
HCK |
0.788 | -0.098 | -1 | 0.846 |
ITK |
0.787 | -0.090 | -1 | 0.825 |
NEK10_TYR |
0.787 | -0.145 | 1 | 0.685 |
FGFR2 |
0.787 | -0.163 | 3 | 0.774 |
KDR |
0.787 | -0.111 | 3 | 0.731 |
TNK2 |
0.787 | -0.132 | 3 | 0.728 |
TNNI3K_TYR |
0.786 | -0.079 | 1 | 0.781 |
EPHB1 |
0.785 | -0.139 | 1 | 0.806 |
SRMS |
0.785 | -0.138 | 1 | 0.811 |
EPHB2 |
0.785 | -0.086 | -1 | 0.844 |
ABL1 |
0.785 | -0.152 | -1 | 0.802 |
FLT3 |
0.784 | -0.189 | 3 | 0.775 |
EPHB3 |
0.784 | -0.126 | -1 | 0.848 |
KIT |
0.784 | -0.180 | 3 | 0.773 |
TNK1 |
0.784 | -0.158 | 3 | 0.761 |
PDGFRB |
0.783 | -0.251 | 3 | 0.786 |
TEK |
0.783 | -0.180 | 3 | 0.712 |
FYN |
0.782 | 0.025 | -1 | 0.829 |
JAK1 |
0.782 | -0.144 | 1 | 0.731 |
WEE1_TYR |
0.782 | -0.110 | -1 | 0.770 |
FGFR1 |
0.782 | -0.204 | 3 | 0.744 |
BMX |
0.781 | -0.080 | -1 | 0.740 |
TEC |
0.781 | -0.114 | -1 | 0.747 |
FLT1 |
0.781 | -0.098 | -1 | 0.869 |
MET |
0.780 | -0.130 | 3 | 0.756 |
CK1G3 |
0.779 | -0.022 | -3 | 0.375 |
BTK |
0.779 | -0.226 | -1 | 0.781 |
AXL |
0.778 | -0.234 | 3 | 0.752 |
FGFR3 |
0.777 | -0.162 | 3 | 0.744 |
MERTK |
0.776 | -0.206 | 3 | 0.747 |
EPHA7 |
0.776 | -0.121 | 2 | 0.812 |
PDGFRA |
0.776 | -0.328 | 3 | 0.779 |
FRK |
0.775 | -0.122 | -1 | 0.852 |
EPHA3 |
0.775 | -0.178 | 2 | 0.781 |
ALK |
0.774 | -0.232 | 3 | 0.694 |
ERBB2 |
0.774 | -0.209 | 1 | 0.736 |
LYN |
0.773 | -0.125 | 3 | 0.696 |
DDR2 |
0.773 | -0.096 | 3 | 0.712 |
FLT4 |
0.773 | -0.224 | 3 | 0.727 |
LTK |
0.772 | -0.235 | 3 | 0.716 |
NTRK1 |
0.771 | -0.315 | -1 | 0.838 |
EPHA5 |
0.771 | -0.103 | 2 | 0.794 |
EPHA1 |
0.771 | -0.207 | 3 | 0.733 |
SYK |
0.770 | 0.059 | -1 | 0.817 |
PTK6 |
0.770 | -0.322 | -1 | 0.740 |
PTK2 |
0.770 | 0.026 | -1 | 0.836 |
INSR |
0.769 | -0.247 | 3 | 0.708 |
SRC |
0.768 | -0.110 | -1 | 0.813 |
NTRK2 |
0.768 | -0.323 | 3 | 0.728 |
EPHA8 |
0.767 | -0.124 | -1 | 0.838 |
EGFR |
0.766 | -0.126 | 1 | 0.649 |
PTK2B |
0.765 | -0.171 | -1 | 0.769 |
YANK2 |
0.765 | -0.132 | 2 | 0.439 |
MATK |
0.765 | -0.192 | -1 | 0.740 |
NTRK3 |
0.763 | -0.265 | -1 | 0.787 |
CK1G2 |
0.761 | -0.015 | -3 | 0.477 |
FGFR4 |
0.761 | -0.178 | -1 | 0.787 |
CSK |
0.759 | -0.262 | 2 | 0.813 |
EPHA2 |
0.756 | -0.138 | -1 | 0.808 |
ERBB4 |
0.755 | -0.084 | 1 | 0.662 |
MUSK |
0.754 | -0.221 | 1 | 0.639 |
IGF1R |
0.754 | -0.231 | 3 | 0.645 |
ZAP70 |
0.745 | -0.038 | -1 | 0.736 |
FES |
0.737 | -0.256 | -1 | 0.708 |