Motif 695 (n=1,052)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0JLT2 MED19 S194 ochoa Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
A0JLT2 MED19 S196 ochoa Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
H0YHG0 None S476 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
H7BZ11 RPL36A-HNRNPH2 S46 ochoa RPL36A-HNRNPH2 readthrough None
O00401 WASL Y175 ochoa Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}.
O00522 KRIT1 S32 ochoa Krev interaction trapped protein 1 (Krev interaction trapped 1) (Cerebral cavernous malformations 1 protein) Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity (By similarity). Negative regulator of angiogenesis. Inhibits endothelial proliferation, apoptosis, migration, lumen formation and sprouting angiogenesis in primary endothelial cells. Promotes AKT phosphorylation in a NOTCH-dependent and independent manner, and inhibits ERK1/2 phosphorylation indirectly through activation of the DELTA-NOTCH cascade. Acts in concert with CDH5 to establish and maintain correct endothelial cell polarity and vascular lumen and these effects are mediated by recruitment and activation of the Par polarity complex and RAP1B. Required for the localization of phosphorylated PRKCZ, PARD3, TIAM1 and RAP1B to the cell junction, and cell junction stabilization. Plays a role in integrin signaling via its interaction with ITGB1BP1; this prevents the interaction between ITGB1 and ITGB1BP1. Microtubule-associated protein that binds to phosphatidylinositol 4,5-bisphosphate (PIP2)-containing membranes in a GTP-bound RAP1-dependent manner. Plays an important role in the maintenance of the intracellular reactive oxygen species (ROS) homeostasis to prevent oxidative cellular damage. Regulates the homeostasis of intracellular ROS through an antioxidant pathway involving FOXO1 and SOD2. Facilitates the down-regulation of cyclin-D1 (CCND1) levels required for cell transition from proliferative growth to quiescence by preventing the accumulation of intracellular ROS through the modulation of FOXO1 and SOD2 levels. May play a role in the regulation of macroautophagy through the down-regulation of the mTOR pathway (PubMed:26417067). {ECO:0000250|UniProtKB:Q6S5J6, ECO:0000269|PubMed:11741838, ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:20332120, ECO:0000269|PubMed:20616044, ECO:0000269|PubMed:20668652, ECO:0000269|PubMed:21633110, ECO:0000269|PubMed:23317506, ECO:0000269|PubMed:26417067}.
O00567 NOP56 S465 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S466 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S467 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 T468 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S569 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S570 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O14617 AP3D1 T826 ochoa AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}.
O14617 AP3D1 S827 ochoa AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}.
O14617 AP3D1 S829 ochoa AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}.
O14646 CHD1 S1328 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14647 CHD2 S132 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14647 CHD2 S1373 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O15014 ZNF609 S620 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15040 TECPR2 S448 ochoa Tectonin beta-propeller repeat-containing protein 2 (WD repeat-containing protein KIAA0329/KIAA0297) Probably plays a role as positive regulator of autophagy. {ECO:0000269|PubMed:23176824}.
O15040 TECPR2 S449 ochoa Tectonin beta-propeller repeat-containing protein 2 (WD repeat-containing protein KIAA0329/KIAA0297) Probably plays a role as positive regulator of autophagy. {ECO:0000269|PubMed:23176824}.
O15042 U2SURP S181 ochoa U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
O15355 PPM1G S527 ochoa Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) None
O15381 NVL S207 ochoa Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}.
O15381 NVL S211 ochoa Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}.
O15381 NVL S215 ochoa Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}.
O15440 ABCC5 S501 ochoa ATP-binding cassette sub-family C member 5 (EC 7.6.2.-) (EC 7.6.2.2) (Multi-specific organic anion transporter C) (MOAT-C) (Multidrug resistance-associated protein 5) (SMRP) (pABC11) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of endogenous metabolites such as cAMP and cGMP, folic acid and N-lactoyl-amino acids (in vitro) (PubMed:10893247, PubMed:12637526, PubMed:12695538, PubMed:15899835, PubMed:17229149, PubMed:25964343). Also acts as a general glutamate conjugate and analog transporter that can limit the brain levels of endogenous metabolites, drugs, and toxins (PubMed:26515061). Confers resistance to the antiviral agent PMEA (PubMed:12695538). Able to transport several anticancer drugs including methotrexate, and nucleotide analogs in vitro, however it does with low affinity, thus the exact role of ABCC5 in mediating resistance still needs to be elucidated (PubMed:10840050, PubMed:12435799, PubMed:12695538, PubMed:15899835). Acts as a heme transporter required for the translocation of cytosolic heme to the secretory pathway (PubMed:24836561). May play a role in energy metabolism by regulating the glucagon-like peptide 1 (GLP-1) secretion from enteroendocrine cells (By similarity). {ECO:0000250|UniProtKB:Q9R1X5, ECO:0000269|PubMed:10840050, ECO:0000269|PubMed:10893247, ECO:0000269|PubMed:12435799, ECO:0000269|PubMed:12637526, ECO:0000269|PubMed:12695538, ECO:0000269|PubMed:15899835, ECO:0000269|PubMed:17229149, ECO:0000269|PubMed:24836561, ECO:0000269|PubMed:25964343, ECO:0000269|PubMed:26515061}.
O15440 ABCC5 S509 ochoa ATP-binding cassette sub-family C member 5 (EC 7.6.2.-) (EC 7.6.2.2) (Multi-specific organic anion transporter C) (MOAT-C) (Multidrug resistance-associated protein 5) (SMRP) (pABC11) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of endogenous metabolites such as cAMP and cGMP, folic acid and N-lactoyl-amino acids (in vitro) (PubMed:10893247, PubMed:12637526, PubMed:12695538, PubMed:15899835, PubMed:17229149, PubMed:25964343). Also acts as a general glutamate conjugate and analog transporter that can limit the brain levels of endogenous metabolites, drugs, and toxins (PubMed:26515061). Confers resistance to the antiviral agent PMEA (PubMed:12695538). Able to transport several anticancer drugs including methotrexate, and nucleotide analogs in vitro, however it does with low affinity, thus the exact role of ABCC5 in mediating resistance still needs to be elucidated (PubMed:10840050, PubMed:12435799, PubMed:12695538, PubMed:15899835). Acts as a heme transporter required for the translocation of cytosolic heme to the secretory pathway (PubMed:24836561). May play a role in energy metabolism by regulating the glucagon-like peptide 1 (GLP-1) secretion from enteroendocrine cells (By similarity). {ECO:0000250|UniProtKB:Q9R1X5, ECO:0000269|PubMed:10840050, ECO:0000269|PubMed:10893247, ECO:0000269|PubMed:12435799, ECO:0000269|PubMed:12637526, ECO:0000269|PubMed:12695538, ECO:0000269|PubMed:15899835, ECO:0000269|PubMed:17229149, ECO:0000269|PubMed:24836561, ECO:0000269|PubMed:25964343, ECO:0000269|PubMed:26515061}.
O43167 ZBTB24 S151 ochoa Zinc finger and BTB domain-containing protein 24 (Zinc finger protein 450) May be involved in BMP2-induced transcription. {ECO:0000250}.
O60231 DHX16 S107 ochoa Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}.
O60245 PCDH7 T924 ochoa Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) None
O60353 FZD6 S526 ochoa Frizzled-6 (Fz-6) (hFz6) Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Together with FZD3, is involved in the neural tube closure and plays a role in the regulation of the establishment of planar cell polarity (PCP), particularly in the orientation of asymmetric bundles of stereocilia on the apical faces of a subset of auditory and vestibular sensory cells located in the inner ear (By similarity). {ECO:0000250|UniProtKB:Q61089}.
O60503 ADCY9 S354 ochoa Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}.
O60503 ADCY9 S357 ochoa Adenylate cyclase type 9 (EC 4.6.1.1) (ATP pyrophosphate-lyase 9) (Adenylate cyclase type IX) (ACIX) (Adenylyl cyclase 9) (AC9) Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:10987815, PubMed:12972952, PubMed:15879435, PubMed:9628827). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827). {ECO:0000269|PubMed:10987815, ECO:0000269|PubMed:12972952, ECO:0000269|PubMed:15879435, ECO:0000269|PubMed:9628827}.
O60524 NEMF S900 ochoa Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}.
O60524 NEMF S903 ochoa Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}.
O60551 NMT2 S38 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60832 DKC1 S453 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
O60832 DKC1 S455 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
O60832 DKC1 T458 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
O60832 DKC1 S485 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
O60841 EIF5B S113 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S190 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S222 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B T301 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B T303 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S435 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S767 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75131 CPNE3 S242 ochoa Copine-3 (Copine III) Calcium-dependent phospholipid-binding protein that plays a role in ERBB2-mediated tumor cell migration in response to growth factor heregulin stimulation (PubMed:20010870). {ECO:0000269|PubMed:20010870}.
O75131 CPNE3 S243 ochoa Copine-3 (Copine III) Calcium-dependent phospholipid-binding protein that plays a role in ERBB2-mediated tumor cell migration in response to growth factor heregulin stimulation (PubMed:20010870). {ECO:0000269|PubMed:20010870}.
O75475 PSIP1 S208 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75764 TCEA3 S81 ochoa Transcription elongation factor A protein 3 (Transcription elongation factor S-II protein 3) (Transcription elongation factor TFIIS.h) Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus.
O75822 EIF3J S208 ochoa Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
O75914 PAK3 S50 psp Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}.
O76021 RSL1D1 S413 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76094 SRP72 S541 ochoa Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}.
O94874 UFL1 S429 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94874 UFL1 S431 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94885 SASH1 S135 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
O94885 SASH1 S137 ochoa SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}.
P05114 HMGN1 S25 ochoa|psp Non-histone chromosomal protein HMG-14 (High mobility group nucleosome-binding domain-containing protein 1) Binds to the inner side of the nucleosomal DNA thus altering the interaction between the DNA and the histone octamer. May be involved in the process which maintains transcribable genes in a unique chromatin conformation. Inhibits the phosphorylation of nucleosomal histones H3 and H2A by RPS6KA5/MSK1 and RPS6KA3/RSK2 (By similarity). {ECO:0000250}.
P07305 H1-0 S92 ochoa Histone H1.0 (Histone H1') (Histone H1(0)) [Cleaved into: Histone H1.0, N-terminally processed] Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. The histones H1.0 are found in cells that are in terminal stages of differentiation or that have low rates of cell division.
P07814 EPRS1 Y950 ochoa Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}.
P07814 EPRS1 S954 ochoa Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}.
P07900 HSP90AA1 S263 ochoa|psp Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P08238 HSP90AB1 S255 ochoa|psp Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P10412 H1-4 S102 ochoa Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10412 H1-4 S104 ochoa Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10412 H1-4 S187 ochoa|psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P11387 TOP1 S21 ochoa|psp DNA topoisomerase 1 (EC 5.6.2.1) (DNA topoisomerase I) Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Involved in the circadian transcription of the core circadian clock component BMAL1 by altering the chromatin structure around the ROR response elements (ROREs) on the BMAL1 promoter. {ECO:0000250|UniProtKB:Q13472, ECO:0000269|PubMed:14594810, ECO:0000269|PubMed:16033260, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:22904072, ECO:0000269|PubMed:2833744}.
P11388 TOP2A S1476 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P16401 H1-5 S105 ochoa Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16401 H1-5 S107 ochoa Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16401 H1-5 S189 ochoa|psp Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16402 H1-3 S103 ochoa Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16402 H1-3 S105 ochoa Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16402 H1-3 S189 psp Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16403 H1-2 S102 ochoa Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16403 H1-2 S104 ochoa Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P17677 GAP43 S41 ochoa Neuromodulin (Axonal membrane protein GAP-43) (Growth-associated protein 43) (Neural phosphoprotein B-50) (pp46) This protein is associated with nerve growth. It is a major component of the motile 'growth cones' that form the tips of elongating axons. Plays a role in axonal and dendritic filopodia induction. {ECO:0000269|PubMed:14978216, ECO:0000269|PubMed:21152083}.
P18583 SON S94 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P18583 SON T97 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P18583 SON T100 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P20042 EIF2S2 S67 ochoa|psp Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P20042 EIF2S2 T111 ochoa Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P20810 CAST S113 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P20810 CAST S660 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P20810 CAST S663 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P22314 UBA1 S284 ochoa Ubiquitin-like modifier-activating enzyme 1 (EC 6.2.1.45) (Protein A1S9) (Ubiquitin-activating enzyme E1) Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system (PubMed:1447181, PubMed:1606621, PubMed:33108101). Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:1447181). Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites (PubMed:22456334). {ECO:0000269|PubMed:1447181, ECO:0000269|PubMed:1606621, ECO:0000269|PubMed:22456334, ECO:0000269|PubMed:33108101}.
P22492 H1-6 S108 ochoa Histone H1t (Testicular H1 histone) Testis-specific histone H1 that forms less compacted chromatin compared to other H1 histone subtypes (PubMed:26757249). Formation of more relaxed chromatin may be required to promote chromatin architecture required for proper chromosome regulation during meiosis, such as homologous recombination (PubMed:26757249). Histones H1 act as linkers that bind to nucleosomes and compact polynucleosomes into a higher-order chromatin configuration (Probable). {ECO:0000269|PubMed:26757249, ECO:0000305}.
P23528 CFL1 S113 ochoa Cofilin-1 (18 kDa phosphoprotein) (p18) (Cofilin, non-muscle isoform) Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity (PubMed:11812157). In conjunction with the subcortical maternal complex (SCMC), plays an essential role for zygotes to progress beyond the first embryonic cell divisions via regulation of actin dynamics (PubMed:15580268). Required for the centralization of the mitotic spindle and symmetric division of zygotes (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization in epithelial cells (PubMed:21834987). Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). Required for neural tube morphogenesis and neural crest cell migration (By similarity). {ECO:0000250|UniProtKB:P18760, ECO:0000269|PubMed:11812157, ECO:0000269|PubMed:15580268, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:23633677}.
P23634 ATP2B4 S328 ochoa Plasma membrane calcium-transporting ATPase 4 (PMCA4) (EC 7.2.2.10) (Matrix-remodeling-associated protein 1) (Plasma membrane calcium ATPase isoform 4) (Plasma membrane calcium pump isoform 4) Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity). {ECO:0000250|UniProtKB:Q6Q477, ECO:0000269|PubMed:8530416}.
P25440 BRD2 S538 ochoa Bromodomain-containing protein 2 (O27.1.1) Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}.
P26232 CTNNA2 S901 ochoa Catenin alpha-2 (Alpha N-catenin) (Alpha-catenin-related protein) May function as a linker between cadherin adhesion receptors and the cytoskeleton to regulate cell-cell adhesion and differentiation in the nervous system (By similarity). Required for proper regulation of cortical neuronal migration and neurite growth (PubMed:30013181). It acts as a negative regulator of Arp2/3 complex activity and Arp2/3-mediated actin polymerization (PubMed:30013181). It thereby suppresses excessive actin branching which would impair neurite growth and stability (PubMed:30013181). Regulates morphological plasticity of synapses and cerebellar and hippocampal lamination during development. Functions in the control of startle modulation (By similarity). {ECO:0000250|UniProtKB:Q61301, ECO:0000269|PubMed:30013181}.
P28290 ITPRID2 S330 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P29374 ARID4A S840 ochoa AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P29966 MARCKS S159 psp Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P30260 CDC27 S384 ochoa Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
P30414 NKTR S419 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30419 NMT1 S47 ochoa Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}.
P31629 HIVEP2 S166 ochoa Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation.
P31629 HIVEP2 S169 ochoa Transcription factor HIVEP2 (Human immunodeficiency virus type I enhancer-binding protein 2) (HIV-EP2) (MHC-binding protein 2) (MBP-2) This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, somatostatin receptor II, and interferon-beta genes. It may act in T-cell activation.
P34932 HSPA4 S556 ochoa Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) None
P35251 RFC1 S1106 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35269 GTF2F1 S218 ochoa General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}.
P35611 ADD1 S716 psp Alpha-adducin (Erythrocyte adducin subunit alpha) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin.
P35612 ADD2 S701 ochoa|psp Beta-adducin (Erythrocyte adducin subunit beta) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}.
P35612 ADD2 S703 ochoa|psp Beta-adducin (Erythrocyte adducin subunit beta) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}.
P35659 DEK S303 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P38432 COIL S184 psp Coilin (p80-coilin) Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}.
P39748 FEN1 S349 ochoa Flap endonuclease 1 (FEN-1) (EC 3.1.-.-) (DNase IV) (Flap structure-specific endonuclease 1) (Maturation factor 1) (MF1) (hFEN-1) Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA. {ECO:0000255|HAMAP-Rule:MF_03140, ECO:0000269|PubMed:10744741, ECO:0000269|PubMed:11986308, ECO:0000269|PubMed:18443037, ECO:0000269|PubMed:20729856, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:7961795, ECO:0000269|PubMed:8621570}.
P39748 FEN1 S351 ochoa Flap endonuclease 1 (FEN-1) (EC 3.1.-.-) (DNase IV) (Flap structure-specific endonuclease 1) (Maturation factor 1) (MF1) (hFEN-1) Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA. {ECO:0000255|HAMAP-Rule:MF_03140, ECO:0000269|PubMed:10744741, ECO:0000269|PubMed:11986308, ECO:0000269|PubMed:18443037, ECO:0000269|PubMed:20729856, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:7961795, ECO:0000269|PubMed:8621570}.
P39748 FEN1 S352 ochoa Flap endonuclease 1 (FEN-1) (EC 3.1.-.-) (DNase IV) (Flap structure-specific endonuclease 1) (Maturation factor 1) (MF1) (hFEN-1) Structure-specific nuclease with 5'-flap endonuclease and 5'-3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. It enters the flap from the 5'-end and then tracks to cleave the flap base, leaving a nick for ligation. Also involved in the long patch base excision repair (LP-BER) pathway, by cleaving within the apurinic/apyrimidinic (AP) site-terminated flap. Acts as a genome stabilization factor that prevents flaps from equilibrating into structures that lead to duplications and deletions. Also possesses 5'-3' exonuclease activity on nicked or gapped double-stranded DNA, and exhibits RNase H activity. Also involved in replication and repair of rDNA and in repairing mitochondrial DNA. {ECO:0000255|HAMAP-Rule:MF_03140, ECO:0000269|PubMed:10744741, ECO:0000269|PubMed:11986308, ECO:0000269|PubMed:18443037, ECO:0000269|PubMed:20729856, ECO:0000269|PubMed:26751069, ECO:0000269|PubMed:7961795, ECO:0000269|PubMed:8621570}.
P41220 RGS2 S46 psp Regulator of G-protein signaling 2 (RGS2) (Cell growth-inhibiting gene 31 protein) (G0/G1 switch regulatory protein 8) Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form (PubMed:11063746, PubMed:19478087). It is involved in the negative regulation of the angiotensin-activated signaling pathway (PubMed:28784619). Plays a role in the regulation of blood pressure in response to signaling via G protein-coupled receptors and GNAQ. Plays a role in regulating the constriction and relaxation of vascular smooth muscle (By similarity). Binds EIF2B5 and blocks its activity, thereby inhibiting the translation of mRNA into protein (PubMed:19736320). {ECO:0000250|UniProtKB:O08849, ECO:0000269|PubMed:11063746, ECO:0000269|PubMed:11278586, ECO:0000269|PubMed:17901199, ECO:0000269|PubMed:19736320, ECO:0000269|PubMed:28784619, ECO:0000305|PubMed:7643615}.
P42166 TMPO S180 ochoa Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
P42568 MLLT3 S311 ochoa Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}.
P42696 RBM34 S90 ochoa RNA-binding protein 34 (RNA-binding motif protein 34) None
P42696 RBM34 S92 ochoa RNA-binding protein 34 (RNA-binding motif protein 34) None
P42696 RBM34 S99 ochoa RNA-binding protein 34 (RNA-binding motif protein 34) None
P46100 ATRX S788 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S930 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1156 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46940 IQGAP1 S1540 ochoa Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
P49006 MARCKSL1 S71 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P49756 RBM25 S226 ochoa RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}.
P49792 RANBP2 S2605 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S2606 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P50579 METAP2 S29 ochoa Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis.
P51787 KCNQ1 S409 ochoa|psp Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}.
P51955 NEK2 S397 ochoa Serine/threonine-protein kinase Nek2 (EC 2.7.11.1) (HSPK 21) (Never in mitosis A-related kinase 2) (NimA-related protein kinase 2) (NimA-like protein kinase 1) Protein kinase which is involved in the control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Regulates centrosome separation (essential for the formation of bipolar spindles and high-fidelity chromosome separation) by phosphorylating centrosomal proteins such as CROCC, CEP250 and NINL, resulting in their displacement from the centrosomes. Regulates kinetochore microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in regulation of mitotic checkpoint protein complex via phosphorylation of CDC20 and MAD2L1. Plays an active role in chromatin condensation during the first meiotic division through phosphorylation of HMGA2. Phosphorylates: PPP1CC; SGO1; NECAB3 and NPM1. Essential for localization of MAD2L1 to kinetochore and MAPK1 and NPM1 to the centrosome. Phosphorylates CEP68 and CNTLN directly or indirectly (PubMed:24554434). NEK2-mediated phosphorylation of CEP68 promotes CEP68 dissociation from the centrosome and its degradation at the onset of mitosis (PubMed:25704143). Involved in the regulation of centrosome disjunction (PubMed:26220856). Phosphorylates CCDC102B either directly or indirectly which causes CCDC102B to dissociate from the centrosome and allows for centrosome separation (PubMed:30404835). {ECO:0000269|PubMed:11742531, ECO:0000269|PubMed:12857871, ECO:0000269|PubMed:14978040, ECO:0000269|PubMed:15358203, ECO:0000269|PubMed:15388344, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:17626005, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18297113, ECO:0000269|PubMed:20034488, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:30404835}.; FUNCTION: [Isoform 1]: Phosphorylates and activates NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.; FUNCTION: [Isoform 2]: Not present in the nucleolus and, in contrast to isoform 1, does not phosphorylate and activate NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.
P53804 TTC3 S1009 ochoa E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}.
P54132 BLM S175 psp RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P54821 PRRX1 S74 ochoa Paired mesoderm homeobox protein 1 (Homeobox protein PHOX1) (Paired-related homeobox protein 1) (PRX-1) Master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-beta signaling by remodeling a super-enhancer landscape. Through this function, plays an essential role in wound healing process (PubMed:35589735). Acts as a transcriptional regulator of muscle creatine kinase (MCK) and so has a role in the establishment of diverse mesodermal muscle types. The protein binds to an A/T-rich element in the muscle creatine enhancer (By similarity). May play a role in homeostasis and regeneration of bone, white adipose tissue and derm (By similarity). {ECO:0000250|UniProtKB:P63013, ECO:0000269|PubMed:35589735}.; FUNCTION: [Isoform 1]: Transcriptional activator, when transfected in fibroblastic or myoblastic cell lines. This activity may be masked by the C-terminal OAR domain. {ECO:0000250|UniProtKB:P63013}.; FUNCTION: [Isoform 2]: Transcriptional repressor, when transfected in fibroblastic or myoblastic cell lines. {ECO:0000250|UniProtKB:P63013}.
P55036 PSMD4 S358 ochoa 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}.
P55197 MLLT10 S215 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55197 MLLT10 S217 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55197 MLLT10 S219 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55197 MLLT10 S220 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55210 CASP7 S21 ochoa Caspase-7 (CASP-7) (EC 3.4.22.60) (Apoptotic protease Mch-3) (CMH-1) (ICE-like apoptotic protease 3) (ICE-LAP3) [Cleaved into: Caspase-7 subunit p20; Caspase-7 subunit p11] Thiol protease involved in different programmed cell death processes, such as apoptosis, pyroptosis or granzyme-mediated programmed cell death, by proteolytically cleaving target proteins (PubMed:11257230, PubMed:11257231, PubMed:11701129, PubMed:15314233, PubMed:16916640, PubMed:17646170, PubMed:18723680, PubMed:19581639, PubMed:8521391, PubMed:8567622, PubMed:8576161, PubMed:9070923). Has a marked preference for Asp-Glu-Val-Asp (DEVD) consensus sequences, with some plasticity for alternate non-canonical sequences (PubMed:12824163, PubMed:15314233, PubMed:17697120, PubMed:19581639, PubMed:20566630, PubMed:23650375, PubMed:23897474, PubMed:27032039). Its involvement in the different programmed cell death processes is probably determined by upstream proteases that activate CASP7 (By similarity). Acts as an effector caspase involved in the execution phase of apoptosis: following cleavage and activation by initiator caspases (CASP8, CASP9 and/or CASP10), mediates execution of apoptosis by catalyzing cleavage of proteins, such as CLSPN, PARP1, PTGES3 and YY1 (PubMed:10497198, PubMed:16123041, PubMed:16374543, PubMed:16916640, PubMed:18723680, PubMed:20566630, PubMed:21555521, PubMed:22184066, PubMed:22451931, PubMed:27889207, PubMed:28863261, PubMed:31586028, PubMed:34156061, PubMed:35338844, PubMed:35446120). Compared to CASP3, acts as a minor executioner caspase and cleaves a limited set of target proteins (PubMed:18723680). Acts as a key regulator of the inflammatory response in response to bacterial infection by catalyzing cleavage and activation of the sphingomyelin phosphodiesterase SMPD1 in the extracellular milieu, thereby promoting membrane repair (PubMed:21157428). Regulates pyroptosis in intestinal epithelial cells: cleaved and activated by CASP1 in response to S.typhimurium infection, promoting its secretion to the extracellular milieu, where it catalyzes activation of SMPD1, generating ceramides that repair membranes and counteract the action of gasdermin-D (GSDMD) pores (By similarity). Regulates granzyme-mediated programmed cell death in hepatocytes: cleaved and activated by granzyme B (GZMB) in response to bacterial infection, promoting its secretion to the extracellular milieu, where it catalyzes activation of SMPD1, generating ceramides that repair membranes and counteract the action of perforin (PRF1) pores (By similarity). Following cleavage by CASP1 in response to inflammasome activation, catalyzes processing and inactivation of PARP1, alleviating the transcription repressor activity of PARP1 (PubMed:22464733). Acts as an inhibitor of type I interferon production during virus-induced apoptosis by mediating cleavage of antiviral proteins CGAS, IRF3 and MAVS, thereby preventing cytokine overproduction (By similarity). Cleaves and activates sterol regulatory element binding proteins (SREBPs) (PubMed:8643593). Cleaves phospholipid scramblase proteins XKR4, XKR8 and XKR9 (By similarity). In case of infection, catalyzes cleavage of Kaposi sarcoma-associated herpesvirus protein ORF57, thereby preventing expression of viral lytic genes (PubMed:20159985). Cleaves BIRC6 following inhibition of BIRC6-caspase binding by DIABLO/SMAC (PubMed:36758104, PubMed:36758106). {ECO:0000250|UniProtKB:P97864, ECO:0000269|PubMed:10497198, ECO:0000269|PubMed:11257230, ECO:0000269|PubMed:11257231, ECO:0000269|PubMed:11701129, ECO:0000269|PubMed:12824163, ECO:0000269|PubMed:15314233, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:16374543, ECO:0000269|PubMed:16916640, ECO:0000269|PubMed:17646170, ECO:0000269|PubMed:17697120, ECO:0000269|PubMed:18723680, ECO:0000269|PubMed:19581639, ECO:0000269|PubMed:20159985, ECO:0000269|PubMed:20566630, ECO:0000269|PubMed:21157428, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:22184066, ECO:0000269|PubMed:22451931, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:23650375, ECO:0000269|PubMed:23897474, ECO:0000269|PubMed:27032039, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:28863261, ECO:0000269|PubMed:31586028, ECO:0000269|PubMed:34156061, ECO:0000269|PubMed:35338844, ECO:0000269|PubMed:35446120, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758106, ECO:0000269|PubMed:8521391, ECO:0000269|PubMed:8567622, ECO:0000269|PubMed:8576161, ECO:0000269|PubMed:8643593, ECO:0000269|PubMed:9070923}.; FUNCTION: [Isoform Beta]: Lacks enzymatic activity. {ECO:0000269|PubMed:8521391}.
P62979 RPS27A S65 ochoa Ubiquitin-ribosomal protein eS31 fusion protein (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; Small ribosomal subunit protein eS31 (40S ribosomal protein S27a)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Small ribosomal subunit protein eS31]: Component of the 40S subunit of the ribosome (PubMed:23636399, PubMed:9582194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23636399, PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000305|PubMed:9582194}.
P63165 SUMO1 S31 ochoa Small ubiquitin-related modifier 1 (SUMO-1) (GAP-modifying protein 1) (GMP1) (SMT3 homolog 3) (Sentrin) (Ubiquitin-homology domain protein PIC1) (Ubiquitin-like protein SMT3C) (Smt3C) (Ubiquitin-like protein UBL1) Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Involved for instance in targeting RANGAP1 to the nuclear pore complex protein RANBP2. Covalently attached to the voltage-gated potassium channel KCNB1; this modulates the gating characteristics of KCNB1 (PubMed:19223394). Polymeric SUMO1 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins. May also regulate a network of genes involved in palate development. Covalently attached to ZFHX3 (PubMed:24651376). {ECO:0000269|PubMed:18408734, ECO:0000269|PubMed:18538659, ECO:0000269|PubMed:19223394, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24651376, ECO:0000269|PubMed:9019411, ECO:0000269|PubMed:9162015}.
P78362 SRPK2 S250 ochoa SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
P78559 MAP1A S384 ochoa Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements.
P82979 SARNP S163 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
P83881 RPL36A S46 ochoa Large ribosomal subunit protein eL42 (60S ribosomal protein L36a) (60S ribosomal protein L44) (Cell growth-inhibiting gene 15 protein) (Cell migration-inducing gene 6 protein) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P83916 CBX1 S89 ochoa Chromobox protein homolog 1 (HP1Hsbeta) (Heterochromatin protein 1 homolog beta) (HP1 beta) (Heterochromatin protein p25) (M31) (Modifier 1 protein) (p25beta) Component of heterochromatin. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. Interaction with lamin B receptor (LBR) can contribute to the association of the heterochromatin with the inner nuclear membrane. {ECO:0000250|UniProtKB:P83917}.
P83916 CBX1 S91 ochoa Chromobox protein homolog 1 (HP1Hsbeta) (Heterochromatin protein 1 homolog beta) (HP1 beta) (Heterochromatin protein p25) (M31) (Modifier 1 protein) (p25beta) Component of heterochromatin. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. Interaction with lamin B receptor (LBR) can contribute to the association of the heterochromatin with the inner nuclear membrane. {ECO:0000250|UniProtKB:P83917}.
P84101 SERF2 S41 ochoa Small EDRK-rich factor 2 (Gastric cancer-related protein VRG107) (Protein 4F5-related) (4F5rel) (h4F5rel) Positive regulator of amyloid protein aggregation and proteotoxicity (PubMed:20723760). Induces conformational changes in amyloid proteins, such as HTT, driving them into compact formations preceding the formation of aggregates (PubMed:20723760). {ECO:0000269|PubMed:20723760}.
P98175 RBM10 S622 ochoa RNA-binding protein 10 (G patch domain-containing protein 9) (RNA-binding motif protein 10) (RNA-binding protein S1-1) (S1-1) Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May be involved in post-transcriptional processing, most probably in mRNA splicing (PubMed:18315527). Binds to RNA homopolymers, with a preference for poly(G) and poly(U) and little for poly(A) (By similarity). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000250|UniProtKB:P70501, ECO:0000269|PubMed:18315527, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:28431233}.
Q00013 MPP1 S234 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q00059 TFAM S128 ochoa Transcription factor A, mitochondrial (mtTFA) (Mitochondrial transcription factor 1) (MtTF1) (Transcription factor 6) (TCF-6) (Transcription factor 6-like 2) Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation (PubMed:29445193, PubMed:32183942). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:20410300). Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase (PubMed:22037172). Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites (PubMed:22037172). Is able to unwind DNA (PubMed:22037172). Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes (PubMed:1737790). Required for maintenance of normal levels of mitochondrial DNA (PubMed:19304746, PubMed:22841477). May play a role in organizing and compacting mitochondrial DNA (PubMed:22037171). {ECO:0000269|PubMed:1737790, ECO:0000269|PubMed:19304746, ECO:0000269|PubMed:20410300, ECO:0000269|PubMed:22037171, ECO:0000269|PubMed:22037172, ECO:0000269|PubMed:22841477, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:29445193, ECO:0000269|PubMed:32183942}.
Q01082 SPTBN1 S2338 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q01780 EXOSC10 S785 ochoa Exosome complex component 10 (EC 3.1.13.-) (Autoantigen PM/Scl 2) (P100 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 100 kDa) (PM/Scl-100) (Polymyositis/scleroderma autoantigen 2) Catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. EXOSC10 is required for nucleolar localization of C1D and probably mediates the association of MTREX, C1D and MPHOSPH6 with the RNA exosome involved in the maturation of 5.8S rRNA. Plays a role in the recruitment of replication protein A complex (RPA) and RAD51 to DNA double-strand breaks caused by irradiation, contributing to DNA repair by homologous recombination (PubMed:25632158, PubMed:31086179). Regulates levels of damage-induced RNAs in order to prevent DNA-RNA hybrid formation at DNA double-strand breaks and limit DNA end resection after damage (PubMed:31086179). Plays a role in oocyte development, maturation and survival (By similarity). Required for normal testis development and mitotic division of spermatogonia (By similarity). Plays a role in proper embryo development (By similarity). Required for global protein translation (PubMed:26857222, PubMed:36912080). Required for cell proliferation (PubMed:36912080). Regulates metabolism of C9orf72-derived repeat RNA that can be translated into toxic dipeptide repeat proteins (PubMed:32830871). {ECO:0000250|UniProtKB:P56960, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:17545563, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19056938, ECO:0000269|PubMed:20368444, ECO:0000269|PubMed:20699273, ECO:0000269|PubMed:25632158, ECO:0000269|PubMed:26857222, ECO:0000269|PubMed:31086179, ECO:0000269|PubMed:32830871, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:36912080}.
Q02880 TOP2B S1526 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q03164 KMT2A S194 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A S197 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A S202 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A S2420 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q08174 PCDH1 Y897 ochoa Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) May be involved in cell-cell interaction processes and in cell adhesion.
Q08174 PCDH1 S902 ochoa Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) May be involved in cell-cell interaction processes and in cell adhesion.
Q08945 SSRP1 S621 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q09666 AHNAK S4960 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12802 AKAP13 S1750 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12872 SFSWAP S742 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q12872 SFSWAP S743 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q12955 ANK3 S4350 ochoa Ankyrin-3 (ANK-3) (Ankyrin-G) Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}.
Q13017 ARHGAP5 S1138 ochoa Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}.
Q13017 ARHGAP5 S1142 ochoa Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}.
Q13017 ARHGAP5 S1218 ochoa Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}.
Q13136 PPFIA1 S787 ochoa Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}.
Q13177 PAK2 S209 ochoa Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}.
Q13206 DDX10 S809 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13427 PPIG S173 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13428 TCOF1 S1383 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13428 TCOF1 S1434 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13435 SF3B2 S317 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S319 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S861 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13523 PRP4K S32 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S36 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S257 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13555 CAMK2G S315 ochoa Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}.
Q13586 STIM1 S667 ochoa Stromal interaction molecule 1 Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}.
Q13601 KRR1 S238 ochoa KRR1 small subunit processome component homolog (HIV-1 Rev-binding protein 2) (KRR-R motif-containing protein 1) (Rev-interacting protein 1) (Rip-1) Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}.
Q14151 SAFB2 S507 ochoa Scaffold attachment factor B2 (SAF-B2) Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation.
Q14151 SAFB2 S513 ochoa Scaffold attachment factor B2 (SAF-B2) Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation.
Q14185 DOCK1 S1681 ochoa Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}.
Q14498 RBM39 S24 ochoa RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}.
Q14527 HLTF S400 ochoa Helicase-like transcription factor (EC 2.3.2.27) (EC 3.6.4.-) (DNA-binding protein/plasminogen activator inhibitor 1 regulator) (HIP116) (RING finger protein 80) (RING-type E3 ubiquitin transferase HLTF) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3) (Sucrose nonfermenting protein 2-like 3) Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. {ECO:0000250, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:18316726, ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:7876228, ECO:0000269|PubMed:8672239, ECO:0000269|PubMed:9126292}.
Q14568 HSP90AA2P S263 ochoa Heat shock protein HSP 90-alpha A2 (Heat shock 90 kDa protein 1 alpha-like 3) (Heat shock protein HSP 90-alpha A2 pseudogene) (Heat shock protein family C member 2) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q14684 RRP1B S350 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14684 RRP1B S392 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14684 RRP1B S460 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14690 PDCD11 S36 ochoa Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}.
Q14839 CHD4 S103 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14839 CHD4 S105 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14839 CHD4 S108 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14839 CHD4 Y110 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14839 CHD4 S277 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q15003 NCAPH S201 ochoa Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}.
Q15054 POLD3 S269 ochoa DNA polymerase delta subunit 3 (DNA polymerase delta subunit C) (DNA polymerase delta subunit p66) (DNA polymerase delta subunit p68) Accessory component of both the DNA polymerase delta complex and the DNA polymerase zeta complex (PubMed:17317665, PubMed:22801543, PubMed:24449906). As a component of the trimeric and tetrameric DNA polymerase delta complexes (Pol-delta3 and Pol-delta4, respectively), plays a role in high fidelity genome replication, including in lagging strand synthesis, and repair. Required for optimal Pol-delta activity. Stabilizes the Pol-delta complex and plays a major role in Pol-delta stimulation by PCNA (PubMed:10219083, PubMed:10852724, PubMed:11595739, PubMed:16510448, PubMed:24035200). Pol-delta3 and Pol-delta4 are characterized by the absence or the presence of POLD4. They exhibit differences in catalytic activity. Most notably, Pol-delta3 shows higher proofreading activity than Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may also be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation. In this context, POLD3, along with PCNA and RFC1-replication factor C complex, is required to recruit POLD1, the catalytic subunit of the polymerase delta complex, to DNA damage sites (PubMed:20227374). Under conditions of DNA replication stress, required for the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine or abasic sites performed by Pol-delta4, independently of DNA polymerase zeta (REV3L) or eta (POLH). Facilitates abasic site bypass by DNA polymerase delta by promoting extension from the nucleotide inserted opposite the lesion (PubMed:19074196, PubMed:25628356, PubMed:27185888). Also involved in TLS, as a component of the tetrameric DNA polymerase zeta complex. Along with POLD2, dramatically increases the efficiency and processivity of DNA synthesis of the DNA polymerase zeta complex compared to the minimal zeta complex, consisting of only REV3L and REV7 (PubMed:24449906). {ECO:0000269|PubMed:10219083, ECO:0000269|PubMed:10852724, ECO:0000269|PubMed:11595739, ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:25628356, ECO:0000269|PubMed:27185888, ECO:0000269|PubMed:38099988}.
Q15287 RNPS1 S27 ochoa RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Enhances the formation of the ATP-dependent A complex of the spliceosome. Involved in both constitutive splicing and, in association with SRP54 and TRA2B/SFRS10, in distinctive modulation of alternative splicing in a substrate-dependent manner. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Participates in mRNA 3'-end cleavage. Involved in UPF2-dependent nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Also mediates increase of mRNA abundance and translational efficiency. Binds spliced mRNA 20-25 nt upstream of exon-exon junctions. {ECO:0000269|PubMed:10449421, ECO:0000269|PubMed:11546874, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:14729963, ECO:0000269|PubMed:14752011, ECO:0000269|PubMed:15684395, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:17586820, ECO:0000269|PubMed:22203037}.
Q15291 RBBP5 S433 ochoa Retinoblastoma-binding protein 5 (RBBP-5) (Retinoblastoma-binding protein RBQ-3) In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). Does not affect ES cell self-renewal (By similarity). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3 (PubMed:19556245). Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:19556245). In association with ASH2L and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:Q8BX09, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}.
Q15311 RALBP1 S62 ochoa RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15311 RALBP1 S118 ochoa|psp RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15361 TTF1 S40 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15361 TTF1 T263 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15397 PUM3 S100 ochoa Pumilio homolog 3 (HBV X-transactivated gene 5 protein) (HBV XAg-transactivated protein 5) (Minor histocompatibility antigen HA-8) (HLA-HA8) Inhibits the poly(ADP-ribosyl)ation activity of PARP1 and the degradation of PARP1 by CASP3 following genotoxic stress (PubMed:21266351). Binds to double-stranded RNA or DNA without sequence specificity (PubMed:25512524). Involved in development of the eye and of primordial germ cells (By similarity). {ECO:0000250|UniProtKB:X1WGX5, ECO:0000269|PubMed:21266351, ECO:0000269|PubMed:25512524}.
Q15397 PUM3 S103 ochoa Pumilio homolog 3 (HBV X-transactivated gene 5 protein) (HBV XAg-transactivated protein 5) (Minor histocompatibility antigen HA-8) (HLA-HA8) Inhibits the poly(ADP-ribosyl)ation activity of PARP1 and the degradation of PARP1 by CASP3 following genotoxic stress (PubMed:21266351). Binds to double-stranded RNA or DNA without sequence specificity (PubMed:25512524). Involved in development of the eye and of primordial germ cells (By similarity). {ECO:0000250|UniProtKB:X1WGX5, ECO:0000269|PubMed:21266351, ECO:0000269|PubMed:25512524}.
Q15544 TAF11 S74 ochoa Transcription initiation factor TFIID subunit 11 (TFIID subunit p30-beta) (Transcription initiation factor TFIID 28 kDa subunit) (TAF(II)28) (TAFII-28) (TAFII28) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). TAF11, together with TAF13 and TBP, play key roles during promoter binding by the TFIID and TFIIA transcription factor complexes (PubMed:33795473). {ECO:0000269|PubMed:33795473}.
Q15648 MED1 S671 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S673 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1493 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15652 JMJD1C S1631 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15652 JMJD1C S1634 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15678 PTPN14 S807 ochoa Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}.
Q15910 EZH2 S475 ochoa Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}.
Q16533 SNAPC1 S292 ochoa snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}.
Q16533 SNAPC1 S294 ochoa snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}.
Q16568 CARTPT S48 ochoa Cocaine- and amphetamine-regulated transcript protein [Cleaved into: CART(1-39); CART(42-89)] Satiety factor closely associated with the actions of leptin and neuropeptide Y; this anorectic peptide inhibits both normal and starvation-induced feeding and completely blocks the feeding response induced by neuropeptide Y and regulated by leptin in the hypothalamus. It promotes neuronal development and survival in vitro. {ECO:0000269|PubMed:9590691}.
Q16637 SMN1 S63 ochoa|psp Survival motor neuron protein (Component of gems 1) (Gemin-1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}.
Q1ED39 KNOP1 S50 ochoa Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) None
Q1ED39 KNOP1 S52 ochoa Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) None
Q1ED39 KNOP1 S132 ochoa Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) None
Q2TBE0 CWF19L2 S75 ochoa CWF19-like protein 2 None
Q32MZ4 LRRFIP1 S555 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q32MZ4 LRRFIP1 S564 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q32MZ4 LRRFIP1 S565 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q3B726 POLR1F S211 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F T264 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F S297 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F S299 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3YEC7 RABL6 S640 ochoa Rab-like protein 6 (GTP-binding protein Parf) (Partner of ARF) (Rab-like protein 1) (RBEL1) May enhance cellular proliferation. May reduce growth inhibitory activity of CDKN2A. {ECO:0000269|PubMed:16582619}.
Q3YEC7 RABL6 S641 ochoa Rab-like protein 6 (GTP-binding protein Parf) (Partner of ARF) (Rab-like protein 1) (RBEL1) May enhance cellular proliferation. May reduce growth inhibitory activity of CDKN2A. {ECO:0000269|PubMed:16582619}.
Q4G0J3 LARP7 S258 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4G0J3 LARP7 S261 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4G0J3 LARP7 S265 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4G0J3 LARP7 T344 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4G0J3 LARP7 S350 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q56P03 EAPP S109 ochoa E2F-associated phosphoprotein (EAPP) May play an important role in the fine-tuning of both major E2F1 activities, the regulation of the cell-cycle and the induction of apoptosis. Promotes S-phase entry, and inhibits p14(ARP) expression. {ECO:0000269|PubMed:15716352}.
Q56P03 EAPP S111 ochoa E2F-associated phosphoprotein (EAPP) May play an important role in the fine-tuning of both major E2F1 activities, the regulation of the cell-cycle and the induction of apoptosis. Promotes S-phase entry, and inhibits p14(ARP) expression. {ECO:0000269|PubMed:15716352}.
Q58FF8 HSP90AB2P S177 ochoa Putative heat shock protein HSP 90-beta 2 (Heat shock protein 90-beta b) (Heat shock protein 90Bb) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q58FG0 HSP90AA5P S89 ochoa Putative heat shock protein HSP 90-alpha A5 (Heat shock protein 90-alpha E) (Heat shock protein 90Ae) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q5BKY9 FAM133B S82 ochoa Protein FAM133B None
Q5BKY9 FAM133B S86 ochoa Protein FAM133B None
Q5BKY9 FAM133B S148 ochoa Protein FAM133B None
Q5BKY9 FAM133B S191 ochoa Protein FAM133B None
Q5BKY9 FAM133B S192 ochoa Protein FAM133B None
Q5BKY9 FAM133B S194 ochoa Protein FAM133B None
Q5F1R6 DNAJC21 S370 ochoa DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}.
Q5SSJ5 HP1BP3 S110 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5SSJ5 HP1BP3 S111 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5T0N5 FNBP1L S300 ochoa Formin-binding protein 1-like (Transducer of Cdc42-dependent actin assembly protein 1) (Toca-1) Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. May bind to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promote membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by activating the WASL/N-WASP-WASPIP/WIP complex, the predominant form of WASL/N-WASP in cells. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Essential for autophagy of intracellular bacterial pathogens. {ECO:0000269|PubMed:15260990, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:19342671}.
Q5T0N5 FNBP1L S302 ochoa Formin-binding protein 1-like (Transducer of Cdc42-dependent actin assembly protein 1) (Toca-1) Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during endocytosis. May bind to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promote membrane invagination and the formation of tubules. Also promotes CDC42-induced actin polymerization by activating the WASL/N-WASP-WASPIP/WIP complex, the predominant form of WASL/N-WASP in cells. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. Essential for autophagy of intracellular bacterial pathogens. {ECO:0000269|PubMed:15260990, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:19342671}.
Q5T200 ZC3H13 S943 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 T948 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S949 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S986 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S993 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T5C0 STXBP5 S1131 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q5TB80 CEP162 S21 ochoa Centrosomal protein of 162 kDa (Cep162) (Protein QN1 homolog) Required to promote assembly of the transition zone in primary cilia. Acts by specifically recognizing and binding the axonemal microtubule. Localizes to the distal ends of centrioles before ciliogenesis and directly binds to axonemal microtubule, thereby promoting and restricting transition zone formation specifically at the cilia base. Required to mediate CEP290 association with microtubules. {ECO:0000269|PubMed:23644468}.
Q5UIP0 RIF1 S1556 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VWG9 TAF3 S518 ochoa Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}.
Q63HN8 RNF213 S82 ochoa E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}.
Q6AI08 HEATR6 S306 ochoa HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) Amplification-dependent oncogene.
Q6AI08 HEATR6 S307 ochoa HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) Amplification-dependent oncogene.
Q6AI08 HEATR6 S309 ochoa HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) Amplification-dependent oncogene.
Q6FIF0 ZFAND6 S125 ochoa AN1-type zinc finger protein 6 (Associated with PRK1 protein) (Zinc finger A20 domain-containing protein 3) Involved in regulation of TNF-alpha induced NF-kappa-B activation and apoptosis. Involved in modulation of 'Lys-48'-linked polyubiquitination status of TRAF2 and decreases association of TRAF2 with RIPK1. Required for PTS1 target sequence-dependent protein import into peroxisomes and PEX5 stability; may cooperate with PEX6. In vitro involved in PEX5 export from the cytosol to peroxisomes (By similarity). {ECO:0000250, ECO:0000269|PubMed:19285159, ECO:0000269|PubMed:21810480}.
Q6KC79 NIPBL S318 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL Y1159 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL S1160 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6NWY9 PRPF40B S766 ochoa Pre-mRNA-processing factor 40 homolog B (Huntingtin yeast partner C) (Huntingtin-interacting protein C) May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:9700202}.
Q6NWY9 PRPF40B S767 ochoa Pre-mRNA-processing factor 40 homolog B (Huntingtin yeast partner C) (Huntingtin-interacting protein C) May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:9700202}.
Q6P0N0 MIS18BP1 S772 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6P0N0 MIS18BP1 S773 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6P4R8 NFRKB S298 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6PD62 CTR9 S941 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PEV8 FAM199X S323 ochoa Protein FAM199X None
Q6SJ93 FAM111B S288 ochoa Serine protease FAM111B (EC 3.4.21.-) (Cancer-associated nucleoprotein) Serine protease. {ECO:0000250|UniProtKB:Q96PZ2}.
Q6UB99 ANKRD11 S437 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q6UB99 ANKRD11 S613 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q6UB99 ANKRD11 S614 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q6UN15 FIP1L1 S554 ochoa Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}.
Q6WKZ4 RAB11FIP1 S195 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 T196 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 T197 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S199 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6ZNL6 FGD5 S632 ochoa FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}.
Q6ZNL6 FGD5 S635 ochoa FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}.
Q6ZW76 ANKS3 S375 ochoa Ankyrin repeat and SAM domain-containing protein 3 May be involved in vasopressin signaling in the kidney. {ECO:0000250|UniProtKB:Q9CZK6}.
Q71F23 CENPU S194 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q7Z478 DHX29 S200 ochoa ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}.
Q7Z4S6 KIF21A S1239 ochoa Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}.
Q7Z5K2 WAPL S461 ochoa Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}.
Q7Z699 SPRED1 S304 ochoa Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1) Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase (By similarity). Negatively regulates hematopoiesis of bone marrow (By similarity). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Attenuates actin stress fiber formation via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:18216281). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S8, ECO:0000269|PubMed:18216281}.
Q7Z699 SPRED1 S308 ochoa Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1) Tyrosine kinase substrate that inhibits growth-factor-mediated activation of MAP kinase (By similarity). Negatively regulates hematopoiesis of bone marrow (By similarity). Inhibits fibroblast growth factor (FGF)-induced retinal lens fiber differentiation, probably by inhibiting FGF-mediated phosphorylation of ERK1/2 (By similarity). Attenuates actin stress fiber formation via inhibition of TESK1-mediated phosphorylation of cofilin (PubMed:18216281). Inhibits TGFB-induced epithelial-to-mesenchymal transition in lens epithelial cells (By similarity). {ECO:0000250|UniProtKB:Q924S8, ECO:0000269|PubMed:18216281}.
Q7Z6E9 RBBP6 S995 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z7L1 SLFN11 S142 ochoa Schlafen family member 11 (EC 3.1.-.-) Inhibitor of DNA replication that promotes cell death in response to DNA damage (PubMed:22927417, PubMed:26658330, PubMed:29395061). Acts as a guardian of the genome by killing cells with defective replication (PubMed:29395061). Persistently blocks stressed replication forks by opening chromatin across replication initiation sites at stressed replication forks, possibly leading to unwind DNA ahead of the MCM helicase and block fork progression, ultimately leading to cell death (PubMed:29395061). Upon DNA damage, inhibits translation of ATR or ATM based on distinct codon usage without disrupting early DNA damage response signaling (PubMed:30374083). Antiviral restriction factor with manganese-dependent type II tRNA endoribonuclease (PubMed:36115853). A single tRNA molecule is bound and cleaved by the SLFN11 dimer (PubMed:36115853). Specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1) by acting as a specific inhibitor of the synthesis of retroviruses encoded proteins in a codon-usage-dependent manner (PubMed:23000900). Impairs the replication of human cytomegalovirus (HCMV) and some Flaviviruses (PubMed:35105802, PubMed:36115853). Exploits the unique viral codon bias towards A/T nucleotides (PubMed:23000900). Also acts as an interferon (IFN)-induced antiviral protein which acts as an inhibitor of retrovirus protein synthesis (PubMed:23000900). {ECO:0000269|PubMed:22927417, ECO:0000269|PubMed:23000900, ECO:0000269|PubMed:26658330, ECO:0000269|PubMed:29395061, ECO:0000269|PubMed:30374083, ECO:0000269|PubMed:35105802, ECO:0000269|PubMed:36115853}.
Q86U86 PBRM1 S498 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86UE4 MTDH S146 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH S426 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH S562 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UX7 FERMT3 S132 ochoa Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}.
Q86Y13 DZIP3 S645 ochoa E3 ubiquitin-protein ligase DZIP3 (EC 2.3.2.27) (DAZ-interacting protein 3) (RING-type E3 ubiquitin transferase DZIP3) (RNA-binding ubiquitin ligase of 138 kDa) (hRUL138) E3 Ubiquitin ligase proteins mediate ubiquitination and subsequent proteasomal degradation of target proteins. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Able to specifically bind RNA. {ECO:0000269|PubMed:12538761}.
Q8IWS0 PHF6 S145 ochoa PHD finger protein 6 (PHD-like zinc finger protein) Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}.
Q8IYB3 SRRM1 S795 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB3 SRRM1 S797 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB3 SRRM1 S802 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IYB5 SMAP1 S152 ochoa Stromal membrane-associated protein 1 GTPase activating protein that acts on ARF6. Plays a role in clathrin-dependent endocytosis. May play a role in erythropoiesis (By similarity). {ECO:0000250}.
Q8IYB5 SMAP1 S154 ochoa Stromal membrane-associated protein 1 GTPase activating protein that acts on ARF6. Plays a role in clathrin-dependent endocytosis. May play a role in erythropoiesis (By similarity). {ECO:0000250}.
Q8N137 CNTROB S76 ochoa Centrobin (Centrosomal BRCA2-interacting protein) (LYST-interacting protein 8) Required for centriole duplication. Inhibition of centriole duplication leading to defects in cytokinesis. {ECO:0000269|PubMed:16275750}.
Q8N488 RYBP S99 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N488 RYBP S101 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N4X5 AFAP1L2 S223 ochoa Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}.
Q8N567 ZCCHC9 S48 ochoa Zinc finger CCHC domain-containing protein 9 May down-regulate transcription mediated by NF-kappa-B and the serum response element. {ECO:0000269|PubMed:18721783}.
Q8N568 DCLK2 S55 ochoa Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}.
Q8N5G2 MACO1 S244 ochoa Macoilin (Macoilin-1) (Transmembrane protein 57) Plays a role in the regulation of neuronal activity. {ECO:0000269|PubMed:21589894}.
Q8N5G2 MACO1 S337 ochoa Macoilin (Macoilin-1) (Transmembrane protein 57) Plays a role in the regulation of neuronal activity. {ECO:0000269|PubMed:21589894}.
Q8N8V4 ANKS4B S196 ochoa Ankyrin repeat and SAM domain-containing protein 4B (Harmonin-interacting ankyrin repeat-containing protein) (Harp) As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length. Plays a role in assembly of the complex (PubMed:26812018). May play a role in cellular response to endoplasmic reticulum stress (By similarity). {ECO:0000250|UniProtKB:Q8K3X6, ECO:0000269|PubMed:26812018}.
Q8N9E0 FAM133A S149 ochoa Protein FAM133A None
Q8N9E0 FAM133A S151 ochoa Protein FAM133A None
Q8NCF5 NFATC2IP S170 ochoa NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}.
Q8NE71 ABCF1 S20 ochoa ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
Q8NE71 ABCF1 S22 ochoa ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
Q8NE71 ABCF1 S24 ochoa ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
Q8NE71 ABCF1 S166 ochoa ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
Q8NHP6 MOSPD2 S299 ochoa Motile sperm domain-containing protein 2 Endoplasmic reticulum-anchored protein that mediates the formation of contact sites between the endoplasmic (ER) and endosomes, mitochondria or Golgi through interaction with conventional- and phosphorylated-FFAT-containing organelle-bound proteins (PubMed:29858488, PubMed:33124732, PubMed:35389430). In addition, forms endoplasmic reticulum (ER)-lipid droplets (LDs) contacts through a direct protein-membrane interaction and participates in LDs homeostasis (PubMed:35389430). The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs (PubMed:35389430). Promotes migration of primary monocytes and neutrophils, in response to various chemokines (PubMed:28137892). {ECO:0000269|PubMed:28137892, ECO:0000269|PubMed:29858488, ECO:0000269|PubMed:33124732, ECO:0000269|PubMed:35389430}.
Q8NI08 NCOA7 S89 ochoa Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}.
Q8NI27 THOC2 S1520 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TAQ2 SMARCC2 S283 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TD26 CHD6 S185 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TDD1 DDX54 S75 ochoa ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}.
Q8WUA2 PPIL4 S374 ochoa Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}.
Q8WUA2 PPIL4 S471 ochoa Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}.
Q8WUF8 ARB2A S217 ochoa Cotranscriptional regulator ARB2A (ARB2 cotranscriptional regulator A) (Cotranscriptional regulator FAM172A) (Protein FAM172A) Plays a role in the regulation of alternative splicing, by interacting with AGO2 and CHD7. Seems to be required for stabilizing protein-protein interactions at the chromatin-spliceosome interface. May have hydrolase activity. {ECO:0000250|UniProtKB:Q3TNH5}.
Q8WUF8 ARB2A S219 ochoa Cotranscriptional regulator ARB2A (ARB2 cotranscriptional regulator A) (Cotranscriptional regulator FAM172A) (Protein FAM172A) Plays a role in the regulation of alternative splicing, by interacting with AGO2 and CHD7. Seems to be required for stabilizing protein-protein interactions at the chromatin-spliceosome interface. May have hydrolase activity. {ECO:0000250|UniProtKB:Q3TNH5}.
Q8WUF8 ARB2A S220 ochoa Cotranscriptional regulator ARB2A (ARB2 cotranscriptional regulator A) (Cotranscriptional regulator FAM172A) (Protein FAM172A) Plays a role in the regulation of alternative splicing, by interacting with AGO2 and CHD7. Seems to be required for stabilizing protein-protein interactions at the chromatin-spliceosome interface. May have hydrolase activity. {ECO:0000250|UniProtKB:Q3TNH5}.
Q8WVC0 LEO1 S637 ochoa RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}.
Q92522 H1-10 S27 ochoa Histone H1.10 (Histone H1x) Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures.
Q92539 LPIN2 S150 ochoa Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}.
Q92794 KAT6A S1136 ochoa Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}.
Q92887 ABCC2 S281 ochoa ATP-binding cassette sub-family C member 2 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multidrug resistance protein) (Canalicular multispecific organic anion transporter 1) (Multidrug resistance-associated protein 2) ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Also mediates hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505). {ECO:0000269|PubMed:10220572, ECO:0000269|PubMed:10421658, ECO:0000269|PubMed:11500505, ECO:0000269|PubMed:12441801, ECO:0000269|PubMed:16332456}.
Q92887 ABCC2 S283 ochoa ATP-binding cassette sub-family C member 2 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multidrug resistance protein) (Canalicular multispecific organic anion transporter 1) (Multidrug resistance-associated protein 2) ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Also mediates hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505). {ECO:0000269|PubMed:10220572, ECO:0000269|PubMed:10421658, ECO:0000269|PubMed:11500505, ECO:0000269|PubMed:12441801, ECO:0000269|PubMed:16332456}.
Q969Q0 RPL36AL S46 ochoa Ribosomal protein eL42-like (60S ribosomal protein L36a-like) (Large ribosomal subunit protein eL42-like) None
Q96C57 CUSTOS S175 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96C57 CUSTOS S179 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96C57 CUSTOS S223 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96EA4 SPDL1 S515 ochoa Protein Spindly (hSpindly) (Arsenite-related gene 1 protein) (Coiled-coil domain-containing protein 99) (Rhabdomyosarcoma antigen MU-RMS-40.4A) (Spindle apparatus coiled-coil domain-containing protein 1) Required for the localization of dynein and dynactin to the mitotic kintochore. Dynein is believed to control the initial lateral interaction between the kinetochore and spindle microtubules and to facilitate the subsequent formation of end-on kinetochore-microtubule attachments mediated by the NDC80 complex. Also required for correct spindle orientation. Does not appear to be required for the removal of spindle assembly checkpoint (SAC) proteins from the kinetochore upon bipolar spindle attachment (PubMed:17576797, PubMed:19468067). Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25035494). Plays a role in cell migration (PubMed:30258100). {ECO:0000255|HAMAP-Rule:MF_03041, ECO:0000269|PubMed:17576797, ECO:0000269|PubMed:19468067, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:30258100}.
Q96JB1 DNAH8 S3112 ochoa Dynein axonemal heavy chain 8 (Axonemal beta dynein heavy chain 8) (Ciliary dynein heavy chain 8) Force generating protein component of the outer dynein arms (ODAs) in the sperm flagellum. Produces force towards the minus ends of microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Involved in sperm motility; implicated in sperm flagellar assembly. {ECO:0000269|PubMed:32619401}.
Q96JM3 CHAMP1 S603 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96LR5 UBE2E2 S26 ochoa Ubiquitin-conjugating enzyme E2 E2 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme E2) (UbcH8) (Ubiquitin carrier protein E2) (Ubiquitin-protein ligase E2) Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-11'- and 'Lys-48'-, as well as 'Lys-63'-linked polyubiquitination. Catalyzes the ISGylation of influenza A virus NS1 protein. {ECO:0000269|PubMed:20061386, ECO:0000269|PubMed:20133869, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:9371400}.
Q96NL8 CFAP418 S65 ochoa Cilia- and flagella-associated protein 418 May be involved in photoreceptor outer segment disk morphogenesis (By similarity). {ECO:0000250|UniProtKB:Q3UJP5}.
Q96QE3 ATAD5 S651 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96QE3 ATAD5 S653 ochoa|psp ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96RU3 FNBP1 S301 ochoa Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}.
Q96RU3 FNBP1 S303 ochoa Formin-binding protein 1 (Formin-binding protein 17) (hFBP17) May act as a link between RND2 signaling and regulation of the actin cytoskeleton (By similarity). Required to coordinate membrane tubulation with reorganization of the actin cytoskeleton during the late stage of clathrin-mediated endocytosis. Binds to lipids such as phosphatidylinositol 4,5-bisphosphate and phosphatidylserine and promotes membrane invagination and the formation of tubules. Also enhances actin polymerization via the recruitment of WASL/N-WASP, which in turn activates the Arp2/3 complex. Actin polymerization may promote the fission of membrane tubules to form endocytic vesicles. May be required for the lysosomal retention of FASLG/FASL. {ECO:0000250, ECO:0000269|PubMed:15252009, ECO:0000269|PubMed:16318909, ECO:0000269|PubMed:16326391, ECO:0000269|PubMed:16418535, ECO:0000269|PubMed:17512409}.
Q96T21 SECISBP2 S370 ochoa Selenocysteine insertion sequence-binding protein 2 (SECIS-binding protein 2) mRNA-binding protein that binds to the SECIS (selenocysteine insertion sequence) element present in the 3'-UTR of mRNAs encoding selenoproteins and facilitates the incorporation of the rare amino acid selenocysteine (PubMed:35709277). Insertion of selenocysteine at UGA codons is mediated by SECISBP2 and EEFSEC: SECISBP2 (1) specifically binds the SECIS sequence once the 80S ribosome encounters an in-frame UGA codon and (2) contacts the RPS27A/eS31 of the 40S ribosome before ribosome stalling (PubMed:35709277). (3) GTP-bound EEFSEC then delivers selenocysteinyl-tRNA(Sec) to the 80S ribosome and adopts a preaccommodated state conformation (PubMed:35709277). (4) After GTP hydrolysis, EEFSEC dissociates from the assembly, selenocysteinyl-tRNA(Sec) accommodates, and peptide bond synthesis and selenoprotein elongation occur (PubMed:35709277). {ECO:0000269|PubMed:35709277}.
Q96T23 RSF1 S689 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T58 SPEN S1802 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q96T88 UHRF1 S368 ochoa E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q99250 SCN2A S1968 ochoa Sodium channel protein type 2 subunit alpha (HBSC II) (Sodium channel protein brain II subunit alpha) (Sodium channel protein type II subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.2) Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient (PubMed:1325650, PubMed:17021166, PubMed:28256214, PubMed:29844171). Implicated in the regulation of hippocampal replay occurring within sharp wave ripples (SPW-R) important for memory (By similarity). {ECO:0000250|UniProtKB:B1AWN6, ECO:0000269|PubMed:1325650, ECO:0000269|PubMed:17021166, ECO:0000269|PubMed:28256214, ECO:0000269|PubMed:29844171}.
Q99459 CDC5L S253 ochoa Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}.
Q99549 MPHOSPH8 S136 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S138 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S142 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S164 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S316 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99569 PKP4 S776 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99569 PKP4 S778 ochoa Plakophilin-4 (p0071) Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}.
Q99575 POP1 S367 ochoa Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q99575 POP1 S371 ochoa Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q99986 VRK1 S342 ochoa|psp Serine/threonine-protein kinase VRK1 (EC 2.7.11.1) (Vaccinia-related kinase 1) Serine/threonine kinase involved in the regulation of key cellular processes including the cell cycle, nuclear condensation, transcription regulation, and DNA damage response (PubMed:14645249, PubMed:18617507, PubMed:19103756, PubMed:33076429). Controls chromatin organization and remodeling by mediating phosphorylation of histone H3 on 'Thr-4' and histone H2AX (H2aXT4ph) (PubMed:31527692, PubMed:37179361). It also phosphorylates KAT5 in response to DNA damage, promoting KAT5 association with chromatin and histone acetyltransferase activity (PubMed:33076429). Is involved in the regulation of cell cycle progression of neural progenitors, and is required for proper cortical neuronal migration (By similarity). Is involved in neurite elongation and branching in motor neurons, and has an essential role in Cajal bodies assembly, acting through COIL phosphorylation and the control of coilin degradation (PubMed:21920476, PubMed:31090908, PubMed:31527692). Involved in Golgi disassembly during the cell cycle: following phosphorylation by PLK3 during mitosis, it is required to induce Golgi fragmentation (PubMed:19103756). Phosphorylates BANF1: disrupts its ability to bind DNA, reduces its binding to LEM domain-containing proteins and causes its relocalization from the nucleus to the cytoplasm (PubMed:16495336). Phosphorylates TP53BP1 and p53/TP53 on 'Thr-18', preventing the interaction between p53/TP53 and MDM2 (PubMed:10951572, PubMed:31527692). Phosphorylates ATF2 which activates its transcriptional activity (PubMed:15105425). Phosphorylates JUN (PubMed:31527692). {ECO:0000250|UniProtKB:Q80X41, ECO:0000269|PubMed:10951572, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:15105425, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:19103756, ECO:0000269|PubMed:21920476, ECO:0000269|PubMed:31090908, ECO:0000269|PubMed:31527692, ECO:0000269|PubMed:33076429, ECO:0000269|PubMed:37179361}.
Q9BQ39 DDX50 S45 ochoa ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}.
Q9BQ70 TCF25 T113 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BQ70 TCF25 S119 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BQG0 MYBBP1A S1163 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BQG0 MYBBP1A S1166 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BRK0 REEP2 S208 ochoa Receptor expression-enhancing protein 2 Required for endoplasmic reticulum (ER) network formation, shaping and remodeling. May enhance the cell surface expression of odorant receptors (By similarity). {ECO:0000250, ECO:0000269|PubMed:24388663}.
Q9BRP8 PYM1 S139 ochoa Partner of Y14 and mago (PYM homolog 1 exon junction complex-associated factor) (Protein wibg homolog) Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as an EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a translation-independent disassembly of the EJC from spliced mRNAs, by restricting its activity to mRNAs that have been translated. Interferes with NMD and enhances translation of spliced mRNAs, probably by antagonizing EJC functions. May bind RNA; the relevance of RNA-binding remains unclear in vivo, RNA-binding was detected by PubMed:14968132, while PubMed:19410547 did not detect RNA-binding activity independently of the EJC. {ECO:0000269|PubMed:18026120, ECO:0000269|PubMed:19410547}.
Q9BRP8 PYM1 S144 ochoa Partner of Y14 and mago (PYM homolog 1 exon junction complex-associated factor) (Protein wibg homolog) Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as an EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a translation-independent disassembly of the EJC from spliced mRNAs, by restricting its activity to mRNAs that have been translated. Interferes with NMD and enhances translation of spliced mRNAs, probably by antagonizing EJC functions. May bind RNA; the relevance of RNA-binding remains unclear in vivo, RNA-binding was detected by PubMed:14968132, while PubMed:19410547 did not detect RNA-binding activity independently of the EJC. {ECO:0000269|PubMed:18026120, ECO:0000269|PubMed:19410547}.
Q9BT09 CNPY3 S212 ochoa Protein canopy homolog 3 (CTG repeat protein 4a) (Expanded repeat-domain protein CAG/CTG 5) (Protein associated with TLR4) (Trinucleotide repeat-containing gene 5 protein) Toll-like receptor (TLR)-specific co-chaperone for HSP90B1. Required for proper TLR folding, except that of TLR3, and hence controls TLR exit from the endoplasmic reticulum. Consequently, required for both innate and adaptive immune responses (By similarity). {ECO:0000250}.
Q9BU76 MMTAG2 S177 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BU76 MMTAG2 S178 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BU76 MMTAG2 S181 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BV40 VAMP8 S55 ochoa|psp Vesicle-associated membrane protein 8 (VAMP-8) (Endobrevin) (EDB) SNAREs, soluble N-ethylmaleimide-sensitive factor-attachment protein receptors, are essential proteins for fusion of cellular membranes. SNAREs localized on opposing membranes assemble to form a trans-SNARE complex, an extended, parallel four alpha-helical bundle that drives membrane fusion. VAMP8 is a SNARE involved in autophagy through the direct control of autophagosome membrane fusion with the lysososome membrane via its interaction with the STX17-SNAP29 binary t-SNARE complex (PubMed:23217709, PubMed:25686604). Also required for dense-granule secretion in platelets (PubMed:12130530). Also plays a role in regulated enzyme secretion in pancreatic acinar cells (By similarity). Involved in the abscission of the midbody during cell division, which leads to completely separate daughter cells (By similarity). Involved in the homotypic fusion of early and late endosomes (By similarity). Also participates in the activation of type I interferon antiviral response through a TRIM6-dependent mechanism (PubMed:31694946). {ECO:0000250|UniProtKB:Q9WUF4, ECO:0000269|PubMed:12130530, ECO:0000269|PubMed:23217709, ECO:0000269|PubMed:25686604, ECO:0000269|PubMed:31694946}.
Q9BVI0 PHF20 S519 ochoa PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}.
Q9BVJ6 UTP14A S538 ochoa U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) May be required for ribosome biogenesis. {ECO:0000250}.
Q9BXY4 RSPO3 S240 ochoa R-spondin-3 (Protein with TSP type-1 repeat) (hPWTSR) (Roof plate-specific spondin-3) (hRspo3) (Thrombospondin type-1 domain-containing protein 2) Activator of the canonical Wnt signaling pathway by acting as a ligand for LGR4-6 receptors, which acts as a key regulator of angiogenesis. Upon binding to LGR4-6 (LGR4, LGR5 or LGR6), LGR4-6 associate with phosphorylated LRP6 and frizzled receptors that are activated by extracellular Wnt receptors, triggering the canonical Wnt signaling pathway to increase expression of target genes. Also regulates the canonical Wnt/beta-catenin-dependent pathway and non-canonical Wnt signaling by acting as an inhibitor of ZNRF3, an important regulator of the Wnt signaling pathway. Acts as a ligand for frizzled FZD8 and LRP6. May negatively regulate the TGF-beta pathway (PubMed:21727895, PubMed:21909076, PubMed:22615920). Acts as a key regulator of angiogenesis by controlling vascular stability and pruning: acts by activating the non-canonical Wnt signaling pathway in endothelial cells (By similarity) (PubMed:21727895, PubMed:21909076, PubMed:22615920). Can also amplify Wnt signaling pathway independently of LGR4-6 receptors, possibly by acting as a direct antagonistic ligand to RNF43 and ZNRF3 (PubMed:29769720). {ECO:0000250|UniProtKB:Q2TJ95, ECO:0000269|PubMed:21727895, ECO:0000269|PubMed:21909076, ECO:0000269|PubMed:22615920, ECO:0000269|PubMed:29769720}.
Q9BXY4 RSPO3 S241 ochoa R-spondin-3 (Protein with TSP type-1 repeat) (hPWTSR) (Roof plate-specific spondin-3) (hRspo3) (Thrombospondin type-1 domain-containing protein 2) Activator of the canonical Wnt signaling pathway by acting as a ligand for LGR4-6 receptors, which acts as a key regulator of angiogenesis. Upon binding to LGR4-6 (LGR4, LGR5 or LGR6), LGR4-6 associate with phosphorylated LRP6 and frizzled receptors that are activated by extracellular Wnt receptors, triggering the canonical Wnt signaling pathway to increase expression of target genes. Also regulates the canonical Wnt/beta-catenin-dependent pathway and non-canonical Wnt signaling by acting as an inhibitor of ZNRF3, an important regulator of the Wnt signaling pathway. Acts as a ligand for frizzled FZD8 and LRP6. May negatively regulate the TGF-beta pathway (PubMed:21727895, PubMed:21909076, PubMed:22615920). Acts as a key regulator of angiogenesis by controlling vascular stability and pruning: acts by activating the non-canonical Wnt signaling pathway in endothelial cells (By similarity) (PubMed:21727895, PubMed:21909076, PubMed:22615920). Can also amplify Wnt signaling pathway independently of LGR4-6 receptors, possibly by acting as a direct antagonistic ligand to RNF43 and ZNRF3 (PubMed:29769720). {ECO:0000250|UniProtKB:Q2TJ95, ECO:0000269|PubMed:21727895, ECO:0000269|PubMed:21909076, ECO:0000269|PubMed:22615920, ECO:0000269|PubMed:29769720}.
Q9BY44 EIF2A S524 ochoa Eukaryotic translation initiation factor 2A (eIF-2A) (65 kDa eukaryotic translation initiation factor 2A) [Cleaved into: Eukaryotic translation initiation factor 2A, N-terminally processed] Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner. {ECO:0000269|PubMed:12133843}.
Q9BY44 EIF2A S526 ochoa Eukaryotic translation initiation factor 2A (eIF-2A) (65 kDa eukaryotic translation initiation factor 2A) [Cleaved into: Eukaryotic translation initiation factor 2A, N-terminally processed] Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner. {ECO:0000269|PubMed:12133843}.
Q9BY44 EIF2A S528 ochoa Eukaryotic translation initiation factor 2A (eIF-2A) (65 kDa eukaryotic translation initiation factor 2A) [Cleaved into: Eukaryotic translation initiation factor 2A, N-terminally processed] Functions in the early steps of protein synthesis of a small number of specific mRNAs. Acts by directing the binding of methionyl-tRNAi to 40S ribosomal subunits. In contrast to the eIF-2 complex, it binds methionyl-tRNAi to 40S subunits in a codon-dependent manner, whereas the eIF-2 complex binds methionyl-tRNAi to 40S subunits in a GTP-dependent manner. {ECO:0000269|PubMed:12133843}.
Q9BZ95 NSD3 S585 ochoa Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}.
Q9C0B9 ZCCHC2 S564 ochoa Zinc finger CCHC domain-containing protein 2 None
Q9C0C2 TNKS1BP1 S1711 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0C9 UBE2O S407 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9C0C9 UBE2O S515 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9GZR7 DDX24 S824 ochoa ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
Q9H089 LSG1 S628 ochoa Large subunit GTPase 1 homolog (hLsg1) (EC 3.6.5.-) Functions as a GTPase (PubMed:16209721). May act by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm during the 60S ribosomal subunit maturation (PubMed:31148378). {ECO:0000269|PubMed:16209721, ECO:0000269|PubMed:31148378}.
Q9H0A0 NAT10 S934 ochoa RNA cytidine acetyltransferase (EC 2.3.1.-) (18S rRNA cytosine acetyltransferase) (N-acetyltransferase 10) (N-acetyltransferase-like protein) (hALP) RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs (PubMed:25411247, PubMed:25653167, PubMed:30449621, PubMed:35679869). Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation (PubMed:30449621, PubMed:35679869). mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency (PubMed:30449621). Mediates the formation of ac4C at position 1842 in 18S rRNA (PubMed:25411247). May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 and A2 during 18S rRNA synthesis (PubMed:25411247, PubMed:25653167). Catalyzes the formation of ac4C in serine and leucine tRNAs (By similarity). Requires the tRNA-binding adapter protein THUMPD1 for full tRNA acetyltransferase activity but not for 18S rRNA acetylation (PubMed:25653167). In addition to RNA acetyltransferase activity, also able to acetylate lysine residues of proteins, such as histones, microtubules, p53/TP53 and MDM2, in vitro (PubMed:14592445, PubMed:17631499, PubMed:19303003, PubMed:26882543, PubMed:27993683, PubMed:30165671). The relevance of the protein lysine acetyltransferase activity is however unsure in vivo (PubMed:30449621). Activates telomerase activity by stimulating the transcription of TERT, and may also regulate telomerase function by affecting the balance of telomerase subunit assembly, disassembly, and localization (PubMed:14592445, PubMed:18082603). Involved in the regulation of centrosome duplication by acetylating CENATAC during mitosis, promoting SASS6 proteasome degradation (PubMed:31722219). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P53914, ECO:0000269|PubMed:14592445, ECO:0000269|PubMed:17631499, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19303003, ECO:0000269|PubMed:25411247, ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:26882543, ECO:0000269|PubMed:27993683, ECO:0000269|PubMed:30165671, ECO:0000269|PubMed:30449621, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:35679869}.
Q9H0A0 NAT10 S990 ochoa RNA cytidine acetyltransferase (EC 2.3.1.-) (18S rRNA cytosine acetyltransferase) (N-acetyltransferase 10) (N-acetyltransferase-like protein) (hALP) RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs (PubMed:25411247, PubMed:25653167, PubMed:30449621, PubMed:35679869). Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation (PubMed:30449621, PubMed:35679869). mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency (PubMed:30449621). Mediates the formation of ac4C at position 1842 in 18S rRNA (PubMed:25411247). May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 and A2 during 18S rRNA synthesis (PubMed:25411247, PubMed:25653167). Catalyzes the formation of ac4C in serine and leucine tRNAs (By similarity). Requires the tRNA-binding adapter protein THUMPD1 for full tRNA acetyltransferase activity but not for 18S rRNA acetylation (PubMed:25653167). In addition to RNA acetyltransferase activity, also able to acetylate lysine residues of proteins, such as histones, microtubules, p53/TP53 and MDM2, in vitro (PubMed:14592445, PubMed:17631499, PubMed:19303003, PubMed:26882543, PubMed:27993683, PubMed:30165671). The relevance of the protein lysine acetyltransferase activity is however unsure in vivo (PubMed:30449621). Activates telomerase activity by stimulating the transcription of TERT, and may also regulate telomerase function by affecting the balance of telomerase subunit assembly, disassembly, and localization (PubMed:14592445, PubMed:18082603). Involved in the regulation of centrosome duplication by acetylating CENATAC during mitosis, promoting SASS6 proteasome degradation (PubMed:31722219). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P53914, ECO:0000269|PubMed:14592445, ECO:0000269|PubMed:17631499, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19303003, ECO:0000269|PubMed:25411247, ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:26882543, ECO:0000269|PubMed:27993683, ECO:0000269|PubMed:30165671, ECO:0000269|PubMed:30449621, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:35679869}.
Q9H1E3 NUCKS1 S54 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H1E3 NUCKS1 S144 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H2G2 SLK S777 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H2G2 SLK S779 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H2P0 ADNP S997 ochoa Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}.
Q9H2P0 ADNP S1001 ochoa Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}.
Q9H2Y7 ZNF106 S1025 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H2Y7 ZNF106 S1026 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H2Y7 ZNF106 S1343 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H4G0 EPB41L1 S75 ochoa Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases.
Q9H501 ESF1 S77 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S79 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S82 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S150 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S153 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H5I5 PIEZO2 S1515 ochoa Piezo-type mechanosensitive ion channel component 2 (Protein FAM38B) Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Expressed in sensory neurons, is essential for diverse physiological processes, including respiratory control, systemic metabolism, urinary function, and proprioception (By similarity). Mediates airway stretch sensing, enabling efficient respiration at birth and maintaining normal breathing in adults (By similarity). It regulates brown and beige adipose tissue morphology and function, preventing systemic hypermetabolism (By similarity). In the lower urinary tract, acts as a sensor in both the bladder urothelium and innervating sensory neurons being required for bladder-stretch sensing and urethral micturition reflexes, ensuring proper urinary function (PubMed:33057202). Additionally, PIEZO2 serves as the principal mechanotransducer in proprioceptors, facilitating proprioception and coordinated body movements (By similarity). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). Required for Merkel-cell mechanotransduction (By similarity). Plays a major role in light-touch mechanosensation (By similarity). {ECO:0000250|UniProtKB:Q8CD54, ECO:0000269|PubMed:33057202, ECO:0000269|PubMed:37590348}.
Q9H8M2 BRD9 S49 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9H8M2 BRD9 S50 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9H8M2 BRD9 Y51 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9H8M2 BRD9 Y52 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9H8M2 BRD9 S56 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9H9J4 USP42 S1181 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9J4 USP42 S1219 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9J4 USP42 S1222 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9J4 USP42 S1226 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9S0 NANOG S79 psp Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog) Transcription regulator involved in inner cell mass and embryonic stem (ES) cells proliferation and self-renewal. Imposes pluripotency on ES cells and prevents their differentiation towards extraembryonic endoderm and trophectoderm lineages. Blocks bone morphogenetic protein-induced mesoderm differentiation of ES cells by physically interacting with SMAD1 and interfering with the recruitment of coactivators to the active SMAD transcriptional complexes. Acts as a transcriptional activator or repressor. Binds optimally to the DNA consensus sequence 5'-TAAT[GT][GT]-3' or 5'-[CG][GA][CG]C[GC]ATTAN[GC]-3'. Binds to the POU5F1/OCT4 promoter (PubMed:25825768). Able to autorepress its expression in differentiating (ES) cells: binds to its own promoter following interaction with ZNF281/ZFP281, leading to recruitment of the NuRD complex and subsequent repression of expression. When overexpressed, promotes cells to enter into S phase and proliferation. {ECO:0000269|PubMed:15983365, ECO:0000269|PubMed:16000880, ECO:0000269|PubMed:16391521, ECO:0000269|PubMed:25825768}.
Q9HAW4 CLSPN S232 ochoa Claspin (hClaspin) Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}.
Q9NPF5 DMAP1 S448 ochoa DNA methyltransferase 1-associated protein 1 (DNMAP1) (DNMT1-associated protein 1) Involved in transcription repression and activation. Its interaction with HDAC2 may provide a mechanism for histone deacetylation in heterochromatin following replication of DNA at late firing origins. Can also repress transcription independently of histone deacetylase activity. May specifically potentiate DAXX-mediated repression of glucocorticoid receptor-dependent transcription. Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Participates in the nuclear localization of URI1 and increases its transcriptional corepressor activity. {ECO:0000269|PubMed:14665632, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:14978102, ECO:0000269|PubMed:15367675}.
Q9NPG3 UBN1 S173 ochoa Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}.
Q9NPG3 UBN1 S175 ochoa Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}.
Q9NPI1 BRD7 S47 ochoa Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}.
Q9NPI1 BRD7 S279 ochoa Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}.
Q9NS56 TOPORS S866 ochoa E3 ubiquitin-protein ligase Topors (EC 2.3.2.27) (RING-type E3 ubiquitin transferase Topors) (SUMO1-protein E3 ligase Topors) (Topoisomerase I-binding RING finger protein) (Topoisomerase I-binding arginine/serine-rich protein) (Tumor suppressor p53-binding protein 3) (p53-binding protein 3) (p53BP3) Functions as an E3 ubiquitin-protein ligase and as an E3 SUMO1-protein ligase. Probable tumor suppressor involved in cell growth, cell proliferation and apoptosis that regulates p53/TP53 stability through ubiquitin-dependent degradation. May regulate chromatin modification through sumoylation of several chromatin modification-associated proteins. May be involved in DNA damage-induced cell death through IKBKE sumoylation. {ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15735665, ECO:0000269|PubMed:16122737, ECO:0000269|PubMed:17803295, ECO:0000269|PubMed:18077445, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:20188669}.
Q9NTJ3 SMC4 S355 ochoa Structural maintenance of chromosomes protein 4 (SMC protein 4) (SMC-4) (Chromosome-associated polypeptide C) (hCAP-C) (XCAP-C homolog) Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}.
Q9NVI1 FANCI T1310 ochoa Fanconi anemia group I protein (Protein FACI) Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}.
Q9NVP1 DDX18 S44 ochoa ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}.
Q9NW75 GPATCH2 S195 ochoa G patch domain-containing protein 2 Enhances the ATPase activity of DHX15 in vitro. {ECO:0000269|PubMed:19432882}.
Q9NWH9 SLTM S294 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NWT1 PAK1IP1 S369 ochoa p21-activated protein kinase-interacting protein 1 (PAK/PLC-interacting protein 1) (hPIP1) (PAK1-interacting protein 1) (WD repeat-containing protein 84) Negatively regulates the PAK1 kinase. PAK1 is a member of the PAK kinase family, which has been shown to play a positive role in the regulation of signaling pathways involving MAPK8 and RELA. PAK1 exists as an inactive homodimer, which is activated by binding of small GTPases such as CDC42 to an N-terminal regulatory domain. PAK1IP1 also binds to the N-terminus of PAK1, and inhibits the specific activation of PAK1 by CDC42. May be involved in ribosomal large subunit assembly (PubMed:24120868). {ECO:0000269|PubMed:11371639, ECO:0000269|PubMed:24120868}.
Q9NXE8 CWC25 S170 ochoa Pre-mRNA-splicing factor CWC25 homolog (Coiled-coil domain-containing protein 49) (Spliceosome-associated protein homolog CWC25) Involved in pre-mRNA splicing as component of the spliceosome. {ECO:0000269|PubMed:29301961}.
Q9NYV4 CDK12 S30 ochoa Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}.
Q9NZJ0 DTL S186 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9P0M6 MACROH2A2 S129 ochoa Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}.
Q9P246 STIM2 S718 ochoa Stromal interaction molecule 2 Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}.
Q9P246 STIM2 S719 ochoa Stromal interaction molecule 2 Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRAC) channels ORAI1, ORAI2 and ORAI3. May inhibit STIM1-mediated Ca(2+) influx. {ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16860747, ECO:0000269|PubMed:17905723, ECO:0000269|PubMed:18160041, ECO:0000269|PubMed:21217057, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:23359669}.
Q9P275 USP36 S939 ochoa Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}.
Q9P2D1 CHD7 S633 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2D1 CHD7 S637 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2E9 RRBP1 S615 ochoa Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
Q9P2X3 IMPACT S297 ochoa Protein IMPACT (Imprinted and ancient gene protein homolog) Translational regulator that ensures constant high levels of translation upon a variety of stress conditions, such as amino acid starvation, UV-C irradiation, proteasome inhibitor treatment and glucose deprivation. Plays a role as a negative regulator of the EIF2AK4/GCN2 kinase activity; impairs GCN1-mediated EIF2AK4/GCN2 activation, and hence EIF2AK4/GCN2-mediated eIF-2-alpha phosphorylation and subsequent down-regulation of protein synthesis. May be required to regulate translation in specific neuronal cells under amino acid starvation conditions by preventing GCN2 activation and therefore ATF4 synthesis. Through its inhibitory action on EIF2AK4/GCN2, plays a role in differentiation of neuronal cells by stimulating neurite outgrowth. {ECO:0000250|UniProtKB:O55091}.
Q9UBI6 GNG12 S49 ochoa Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.
Q9UBW5 BIN2 S504 ochoa Bridging integrator 2 (Breast cancer-associated protein 1) Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}.
Q9UER7 DAXX S618 ochoa Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UEY8 ADD3 S681 ochoa Gamma-adducin (Adducin-like protein 70) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}.
Q9UEY8 ADD3 S683 ochoa Gamma-adducin (Adducin-like protein 70) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}.
Q9UGU5 HMGXB4 S80 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UGU5 HMGXB4 Y83 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UGU5 HMGXB4 S156 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UHB7 AFF4 S553 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UHB7 AFF4 S598 ochoa AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}.
Q9UIF8 BAZ2B S2019 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UK53 ING1 S316 ochoa Inhibitor of growth protein 1 Cooperates with p53/TP53 in the negative regulatory pathway of cell growth by modulating p53-dependent transcriptional activation. Implicated as a tumor suppressor gene. {ECO:0000269|PubMed:9440695}.
Q9UK53 ING1 T318 ochoa Inhibitor of growth protein 1 Cooperates with p53/TP53 in the negative regulatory pathway of cell growth by modulating p53-dependent transcriptional activation. Implicated as a tumor suppressor gene. {ECO:0000269|PubMed:9440695}.
Q9UL36 ZNF236 S450 ochoa Zinc finger protein 236 May be involved in transcriptional regulation.
Q9ULD4 BRPF3 S76 ochoa Bromodomain and PHD finger-containing protein 3 Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}.
Q9ULT8 HECTD1 S481 ochoa E3 ubiquitin-protein ligase HECTD1 (EC 2.3.2.26) (E3 ligase for inhibin receptor) (EULIR) (HECT domain-containing protein 1) E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:33711283). Mediates 'Lys-63'-linked polyubiquitination of HSP90AA1 which leads to its intracellular localization and reduced secretion (By similarity). Negatively regulating HSP90AA1 secretion in cranial mesenchyme cells may impair their emigration and may be essential for the correct development of the cranial neural folds and neural tube closure (By similarity). Catalyzes ubiquitination and degradation of ZNF622, an assembly factor for the ribosomal 60S subunit, in hematopoietic cells, thereby promoting hematopoietic stem cell renewal (PubMed:33711283). {ECO:0000250|UniProtKB:Q69ZR2, ECO:0000269|PubMed:33711283}.
Q9ULU4 ZMYND8 S676 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9ULW0 TPX2 S125 ochoa|psp Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}.
Q9UNF1 MAGED2 S162 ochoa Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}.
Q9UNL4 ING4 S118 ochoa Inhibitor of growth protein 4 (p29ING4) Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}.
Q9UNL4 ING4 S119 ochoa Inhibitor of growth protein 4 (p29ING4) Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}.
Q9UNL4 ING4 S123 ochoa Inhibitor of growth protein 4 (p29ING4) Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}.
Q9UPP1 PHF8 S854 ochoa|psp Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}.
Q9UQ35 SRRM2 S177 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S178 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ35 SRRM2 S179 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9UQ80 PA2G4 S360 ochoa|psp Proliferation-associated protein 2G4 (Cell cycle protein p38-2G4 homolog) (hG4-1) (ErbB3-binding protein 1) May play a role in a ERBB3-regulated signal transduction pathway. Seems be involved in growth regulation. Acts a corepressor of the androgen receptor (AR) and is regulated by the ERBB3 ligand neuregulin-1/heregulin (HRG). Inhibits transcription of some E2F1-regulated promoters, probably by recruiting histone acetylase (HAT) activity. Binds RNA. Associates with 28S, 18S and 5.8S mature rRNAs, several rRNA precursors and probably U3 small nucleolar RNA. May be involved in regulation of intermediate and late steps of rRNA processing. May be involved in ribosome assembly. Mediates cap-independent translation of specific viral IRESs (internal ribosomal entry site) (By similarity). Regulates cell proliferation, differentiation, and survival. Isoform 1 suppresses apoptosis whereas isoform 2 promotes cell differentiation (By similarity). {ECO:0000250|UniProtKB:P50580, ECO:0000250|UniProtKB:Q6AYD3, ECO:0000269|PubMed:11268000, ECO:0000269|PubMed:12682367, ECO:0000269|PubMed:15064750, ECO:0000269|PubMed:15583694, ECO:0000269|PubMed:16832058}.
Q9UQR1 ZNF148 S301 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9UQR1 ZNF148 S304 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9UQR1 ZNF148 S306 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9Y281 CFL2 S113 ochoa Cofilin-2 (Cofilin, muscle isoform) Controls reversibly actin polymerization and depolymerization in a pH-sensitive manner. Its F-actin depolymerization activity is regulated by association with CSPR3 (PubMed:19752190). It has the ability to bind G- and F-actin in a 1:1 ratio of cofilin to actin. It is the major component of intranuclear and cytoplasmic actin rods. Required for muscle maintenance. May play a role during the exchange of alpha-actin forms during the early postnatal remodeling of the sarcomere (By similarity). {ECO:0000250|UniProtKB:P45591, ECO:0000269|PubMed:19752190}.
Q9Y2J2 EPB41L3 S88 ochoa Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}.
Q9Y2J2 EPB41L3 S91 ochoa Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}.
Q9Y2W1 THRAP3 S746 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2W1 THRAP3 S747 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2X3 NOP58 S440 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y2X3 NOP58 S502 ochoa|psp Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y2X3 NOP58 S509 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y3B9 RRP15 S107 ochoa RRP15-like protein (Ribosomal RNA-processing protein 15) None
Q9Y520 PRRC2C S1280 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9Y5T5 USP16 S330 psp Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}.
Q9Y6J0 CABIN1 S386 ochoa Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}.
Q9Y3B8 REXO2 S203 Sugiyama Oligoribonuclease, mitochondrial (EC 3.1.15.-) (RNA exonuclease 2 homolog) (Small fragment nuclease) 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides (PubMed:23741365, PubMed:30926754, PubMed:31588022, PubMed:32365187). Binds and degrades longer oligonucleotides with a lower affinity (PubMed:30926754, PubMed:31588022, PubMed:32365187). Plays dual roles in mitochondria, scavenging nanoRNAs (small RNA oligonucleotides of <5 nucleotides) that are produced by the degradosome and clearing short RNAs that are generated by RNA processing (PubMed:30926754, PubMed:31588022, PubMed:32365187). Essential for correct initiation of mitochondrial transcription, degrading mitochondrial RNA dinucleotides to prevent RNA-primed transcription at non-canonical sites in the mitochondrial genome (PubMed:31588022). Essential for embryonic development (By similarity). {ECO:0000250|UniProtKB:Q9D8S4, ECO:0000269|PubMed:23741365, ECO:0000269|PubMed:30926754, ECO:0000269|PubMed:31588022, ECO:0000269|PubMed:32365187}.; FUNCTION: [Isoform 3]: 3'-to-5'exoribonuclease that preferentially degrades DNA and RNA oligonucleotides composed of only two nucleotides. {ECO:0000269|PubMed:10851236, ECO:0000269|PubMed:16682444}.
O95625 ZBTB11 S537 EPSD|PSP Zinc finger and BTB domain-containing protein 11 May be involved in transcriptional regulation. {ECO:0000305}.
P13667 PDIA4 S495 Sugiyama Protein disulfide-isomerase A4 (EC 5.3.4.1) (Endoplasmic reticulum resident protein 70) (ER protein 70) (ERp70) (Endoplasmic reticulum resident protein 72) (ER protein 72) (ERp-72) (ERp72) None
P61247 RPS3A S203 Sugiyama Small ribosomal subunit protein eS1 (40S ribosomal protein S3a) (v-fos transformation effector protein) (Fte-1) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity). {ECO:0000255|HAMAP-Rule:MF_03122, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P30101 PDIA3 Y479 Sugiyama Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
Q8TBF4 ZCRB1 S117 Sugiyama Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (U11/U12 small nuclear ribonucleoprotein 31 kDa protein) (U11/U12 snRNP 31 kDa protein) (U11/U12-31K) None
Q9H1E3 NUCKS1 Y146 Sugiyama Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
P55036 PSMD4 S115 Sugiyama 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}.
Q9H1E3 NUCKS1 S149 Sugiyama Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
P37108 SRP14 S84 Sugiyama Signal recognition particle 14 kDa protein (SRP14) (18 kDa Alu RNA-binding protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:11089964). SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP (PubMed:11089964). The complex of SRP9 and SRP14 is required for SRP RNA binding (PubMed:11089964). {ECO:0000269|PubMed:11089964}.
Q05519 SRSF11 Y425 Sugiyama Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) May function in pre-mRNA splicing.
P09884 POLA1 Y414 Sugiyama DNA polymerase alpha catalytic subunit (EC 2.7.7.7) (DNA polymerase alpha catalytic subunit p180) Catalytic subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis. During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, a regulatory subunit POLA2 and two primase subunits PRIM1 and PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1. The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands. These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively. The reason this transfer occurs is because the polymerase alpha has limited processivity and lacks intrinsic 3' exonuclease activity for proofreading error, and therefore is not well suited for replicating long complexes. In the cytosol, responsible for a substantial proportion of the physiological concentration of cytosolic RNA:DNA hybrids, which are necessary to prevent spontaneous activation of type I interferon responses (PubMed:27019227). {ECO:0000269|PubMed:26975377, ECO:0000269|PubMed:27019227, ECO:0000269|PubMed:31006512, ECO:0000269|PubMed:9518481}.
P62834 RAP1A Y159 Sugiyama Ras-related protein Rap-1A (EC 3.6.5.2) (C21KG) (G-22K) (GTP-binding protein smg p21A) (Ras-related protein Krev-1) Counteracts the mitogenic function of Ras, at least partly because it can interact with Ras GAPs and RAF in a competitive manner. Together with ITGB1BP1, regulates KRIT1 localization to microtubules and membranes (PubMed:17916086). Plays a role in nerve growth factor (NGF)-induced neurite outgrowth. Plays a role in the regulation of embryonic blood vessel formation. Involved in the establishment of basal endothelial barrier function. Facilitates the progressive accumulation of CDH1 at mature desmosome junctions via cAMP-dependent signaling and its interaction with PKP3 (PubMed:25208567). May be involved in the regulation of the vascular endothelial growth factor receptor KDR expression at endothelial cell-cell junctions. {ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:25208567}.
P46778 RPL21 S104 Sugiyama Large ribosomal subunit protein eL21 (60S ribosomal protein L21) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000305|PubMed:12962325}.
O60739 EIF1B T46 Sugiyama Eukaryotic translation initiation factor 1b (eIF1b) (Protein translation factor SUI1 homolog GC20) Probably involved in translation.
P41567 EIF1 T46 Sugiyama Eukaryotic translation initiation factor 1 (eIF1) (A121) (Protein translation factor SUI1 homolog) (Sui1iso1) Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon (PubMed:12435632, PubMed:14600024, PubMed:9732867). Together with eIF1A (EIF1AX), EIF1 facilitates scanning and is essential for start codon recognition on the basis of AUG nucleotide context and location relative to the 5'-cap (PubMed:12435632, PubMed:14600024, PubMed:9732867). Participates to initiation codon selection by influencing the conformation of the 40S ribosomal subunit and the positions of bound mRNA and initiator tRNA; this is possible after its binding to the interface surface of the platform of the 40S ribosomal subunit close to the P-site (PubMed:14600024). Together with eIF1A (EIF1AX), also regulates the opening and closing of the mRNA binding channel, which ensures mRNA recruitment, scanning and the fidelity of initiation codon selection (PubMed:9732867). Continuously monitors and protects against premature and partial base-pairing of codons in the 5'-UTR with the anticodon of initiator tRNA (PubMed:12435632, PubMed:9732867). Together with eIF1A (EIF1AX), acts for ribosomal scanning, promotion of the assembly of 48S complex at the initiation codon (43S PIC becomes 48S PIC after the start codon is reached), and dissociation of aberrant complexes (PubMed:9732867). Interacts with EIF4G1, which in a mutual exclusive interaction associates either with EIF1 or with EIF4E on a common binding site (PubMed:29987188). EIF4G1-EIF1 complex promotes ribosome scanning (on both short and long 5'UTR), leaky scanning (on short 5'UTR) which is the bypass of the initial start codon, and discrimination against cap-proximal AUG (PubMed:29987188). Is probably maintained within the 43S PIC in open conformation thanks to eIF1A-EIF5 interaction (PubMed:24319994). Once the correct start codon is reached, EIF1 is physically excluded from the decoding site, shifting the PIC into the closed conformation and arresting it at the start codon (PubMed:22813744). {ECO:0000269|PubMed:12435632, ECO:0000269|PubMed:14600024, ECO:0000269|PubMed:22813744, ECO:0000269|PubMed:29987188, ECO:0000269|PubMed:9732867}.
O75822 EIF3J S202 Sugiyama Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.
Q86UE4 MTDH T148 Sugiyama Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q92915 FGF14 S226 SIGNOR Fibroblast growth factor 14 (FGF-14) (Fibroblast growth factor homologous factor 4) (FHF-4) Probably involved in nervous system development and function.
P78362 SRPK2 S253 Sugiyama SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
P42224 STAT1 S132 Sugiyama Signal transducer and activator of transcription 1-alpha/beta (Transcription factor ISGF-3 components p91/p84) Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors (PubMed:12764129, PubMed:12855578, PubMed:15322115, PubMed:23940278, PubMed:34508746, PubMed:35568036, PubMed:9724754). Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus (PubMed:28753426, PubMed:35568036). ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state (PubMed:28753426, PubMed:35568036). In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated (PubMed:26479788). It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state (PubMed:8156998). Becomes activated in response to KITLG/SCF and KIT signaling (PubMed:15526160). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:19088846). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylated at Thr-749 by IKBKB which promotes binding of STAT1 to the 5'-TTTGAGGC-3' sequence in the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). Phosphorylation at Thr-749 also promotes binding of STAT1 to the 5'-TTTGAGTC-3' sequence in the IL12B promoter and activation of IL12B transcription (PubMed:32209697). Involved in food tolerance in small intestine: associates with the Gasdermin-D, p13 cleavage product (13 kDa GSDMD) and promotes transcription of CIITA, inducing type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:P42225, ECO:0000269|PubMed:12764129, ECO:0000269|PubMed:12855578, ECO:0000269|PubMed:15322115, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:23940278, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28753426, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:34508746, ECO:0000269|PubMed:35568036, ECO:0000269|PubMed:8156998, ECO:0000269|PubMed:9724754, ECO:0000303|PubMed:15526160}.
Q9H788 SH2D4A S187 Sugiyama SH2 domain-containing protein 4A (Protein SH(2)A) (Protein phosphatase 1 regulatory subunit 38) Inhibits estrogen-induced cell proliferation by competing with PLCG for binding to ESR1, blocking the effect of estrogen on PLCG and repressing estrogen-induced proliferation. May play a role in T-cell development and function. {ECO:0000269|PubMed:18641339, ECO:0000269|PubMed:19712589}.
Q8N5S9 CAMKK1 S149 Sugiyama Calcium/calmodulin-dependent protein kinase kinase 1 (CaM-KK 1) (CaM-kinase kinase 1) (CaMKK 1) (EC 2.7.11.17) (CaM-kinase IV kinase) (Calcium/calmodulin-dependent protein kinase kinase alpha) (CaM-KK alpha) (CaM-kinase kinase alpha) (CaMKK alpha) Calcium/calmodulin-dependent protein kinase that belongs to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Phosphorylates CAMK1, CAMK1D, CAMK1G and CAMK4. Involved in regulating cell apoptosis. Promotes cell survival by phosphorylating AKT1/PKB that inhibits pro-apoptotic BAD/Bcl2-antagonist of cell death. {ECO:0000269|PubMed:12935886}.
Q9BYP7 WNK3 S422 Sugiyama Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}.
Q9BYP7 WNK3 S424 Sugiyama Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}.
Q9GZR7 DDX24 S828 Sugiyama ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
O60231 DHX16 T110 Sugiyama Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}.
Q9Y3S1 WNK2 S472 Sugiyama Serine/threonine-protein kinase WNK2 (EC 2.7.11.1) (Antigen NY-CO-43) (Protein kinase lysine-deficient 2) (Protein kinase with no lysine 2) (Serologically defined colon cancer antigen 43) Serine/threonine-protein kinase component of the WNK2-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis, cell signaling, survival, and proliferation (PubMed:17667937, PubMed:18593598, PubMed:21733846). The WNK2-SPAK/OSR1 kinase cascade is composed of WNK2, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (By similarity). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, regulating their activity (By similarity). Acts as an activator and inhibitor of sodium-coupled chloride cotransporters and potassium-coupled chloride cotransporters respectively (PubMed:21733846). Activates SLC12A2, SCNN1A, SCNN1B, SCNN1D and SGK1 and inhibits SLC12A5 (PubMed:21733846). Negatively regulates the EGF-induced activation of the ERK/MAPK-pathway and the downstream cell cycle progression (PubMed:17667937, PubMed:18593598). Affects MAPK3/MAPK1 activity by modulating the activity of MAP2K1 and this modulation depends on phosphorylation of MAP2K1 by PAK1 (PubMed:17667937, PubMed:18593598). WNK2 acts by interfering with the activity of PAK1 by controlling the balance of the activity of upstream regulators of PAK1 activity, RHOA and RAC1, which display reciprocal activity (PubMed:17667937, PubMed:18593598). {ECO:0000250|UniProtKB:Q9H4A3, ECO:0000269|PubMed:17667937, ECO:0000269|PubMed:18593598, ECO:0000269|PubMed:21733846}.
A2RU30 TESPA1 S334 ochoa Protein TESPA1 (Thymocyte-expressed positive selection-associated protein 1) Required for the development and maturation of T-cells, its function being essential for the late stages of thymocyte development (By similarity). Plays a role in T-cell antigen receptor (TCR)-mediated activation of the ERK and NFAT signaling pathways, possibly by serving as a scaffolding protein that promotes the assembly of the LAT signalosome in thymocytes. May play a role in the regulation of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release and mitochondrial Ca(2+) uptake via the mitochondria-associated endoplasmic reticulum membrane (MAM) compartment. {ECO:0000250, ECO:0000269|PubMed:22561606}.
A8MT19 RHPN2P1 S549 ochoa Putative rhophilin-2-like protein RHPN2P1 (Rhophilin-2 pseudogene 1) None
O00203 AP3B1 Y274 ochoa AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}.
O00203 AP3B1 S276 ochoa AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}.
O00567 NOP56 S461 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S462 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O14686 KMT2D S1671 ochoa Histone-lysine N-methyltransferase 2D (Lysine N-methyltransferase 2D) (EC 2.1.1.364) (ALL1-related protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 2) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17500065, PubMed:25561738). Acts as a coactivator for estrogen receptor by being recruited by ESR1, thereby activating transcription (PubMed:16603732). {ECO:0000269|PubMed:16603732, ECO:0000269|PubMed:17500065, ECO:0000269|PubMed:25561738}.
O15078 CEP290 S2369 ochoa Centrosomal protein of 290 kDa (Cep290) (Bardet-Biedl syndrome 14 protein) (Cancer/testis antigen 87) (CT87) (Nephrocystin-6) (Tumor antigen se2-2) Involved in early and late steps in cilia formation. Its association with CCP110 is required for inhibition of primary cilia formation by CCP110 (PubMed:18694559). May play a role in early ciliogenesis in the disappearance of centriolar satellites and in the transition of primary ciliar vesicles (PCVs) to capped ciliary vesicles (CCVs). Required for the centrosomal recruitment of RAB8A and for the targeting of centriole satellite proteins to centrosomes such as of PCM1 (PubMed:24421332). Required for the correct localization of ciliary and phototransduction proteins in retinal photoreceptor cells; may play a role in ciliary transport processes (By similarity). Required for efficient recruitment of RAB8A to primary cilium (PubMed:17705300). In the ciliary transition zone is part of the tectonic-like complex which is required for tissue-specific ciliogenesis and may regulate ciliary membrane composition (By similarity). Involved in regulation of the BBSome complex integrity, specifically for presence of BBS2, BBS5 and BBS8/TTC8 in the complex, and in ciliary targeting of selected BBSome cargos. May play a role in controlling entry of the BBSome complex to cilia possibly implicating IQCB1/NPHP5 (PubMed:25552655). Activates ATF4-mediated transcription (PubMed:16682973). {ECO:0000250|UniProtKB:Q6A078, ECO:0000269|PubMed:16682973, ECO:0000269|PubMed:17705300, ECO:0000269|PubMed:18694559, ECO:0000269|PubMed:24421332, ECO:0000269|PubMed:25552655}.
O15234 CASC3 S148 ochoa Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}.
O15539 RGS5 S84 psp Regulator of G-protein signaling 5 (RGS5) Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. Binds to G(i)-alpha and G(o)-alpha, but not to G(s)-alpha (By similarity). {ECO:0000250}.
O43395 PRPF3 S609 ochoa U4/U6 small nuclear ribonucleoprotein Prp3 (Pre-mRNA-splicing factor 3) (hPrp3) (U4/U6 snRNP 90 kDa protein) Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28781166, ECO:0000305|PubMed:20595234}.
O43432 EIF4G3 S492 ochoa Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}.
O60566 BUB1B S525 ochoa Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}.
O60701 UGDH S476 ochoa UDP-glucose 6-dehydrogenase (UDP-Glc dehydrogenase) (UDP-GlcDH) (UDPGDH) (EC 1.1.1.22) Catalyzes the formation of UDP-alpha-D-glucuronate, a constituent of complex glycosaminoglycans (PubMed:21502315, PubMed:21961565, PubMed:22123821, PubMed:23106432, PubMed:25478983, PubMed:27966912, PubMed:30420606, PubMed:30457329). Required for the biosynthesis of chondroitin sulfate and heparan sulfate. Required for embryonic development via its role in the biosynthesis of glycosaminoglycans (By similarity). Required for proper brain and neuronal development (PubMed:32001716). {ECO:0000250|UniProtKB:O70475, ECO:0000269|PubMed:21502315, ECO:0000269|PubMed:21961565, ECO:0000269|PubMed:22123821, ECO:0000269|PubMed:23106432, ECO:0000269|PubMed:25478983, ECO:0000269|PubMed:27966912, ECO:0000269|PubMed:30420606, ECO:0000269|PubMed:30457329, ECO:0000269|PubMed:32001716}.
O60841 EIF5B Y134 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S183 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75131 CPNE3 S240 ochoa Copine-3 (Copine III) Calcium-dependent phospholipid-binding protein that plays a role in ERBB2-mediated tumor cell migration in response to growth factor heregulin stimulation (PubMed:20010870). {ECO:0000269|PubMed:20010870}.
O75132 ZBED4 S1055 ochoa Zinc finger BED domain-containing protein 4 Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}.
O75151 PHF2 S882 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75475 PSIP1 S206 ochoa|psp PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O94763 URI1 S449 ochoa Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination.
O95218 ZRANB2 Y114 ochoa Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}.
O95453 PARN T594 ochoa Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}.
O95696 BRD1 S506 ochoa Bromodomain-containing protein 1 (BR140-like protein) (Bromodomain and PHD finger-containing protein 2) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, that acts as a regulator of hematopoiesis (PubMed:16387653, PubMed:21753189, PubMed:21880731). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby promoting erythroid differentiation (PubMed:21753189). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21880731}.
P05204 HMGN2 S25 psp Non-histone chromosomal protein HMG-17 (High mobility group nucleosome-binding domain-containing protein 2) Binds to the inner side of the nucleosomal DNA thus altering the interaction between the DNA and the histone octamer. May be involved in the process which maintains transcribable genes in a unique chromatin conformation (By similarity). {ECO:0000250}.
P05814 CSN2 S21 psp Beta-casein Important role in determination of the surface properties of the casein micelles.
P06748 NPM1 S218 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
P08567 PLEK S132 ochoa Pleckstrin (Platelet 47 kDa protein) (p47) Major protein kinase C substrate of platelets.
P09429 HMGB1 S42 ochoa|psp High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P20265 POU3F2 S337 ochoa POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}.
P20265 POU3F2 S339 ochoa POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}.
P20810 CAST S41 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P24534 EEF1B2 S112 ochoa Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}.
P29374 ARID4A S839 ochoa AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P30414 NKTR S416 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30414 NKTR S1207 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P34932 HSPA4 S552 ochoa Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) None
P35251 RFC1 S1104 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35611 ADD1 S64 ochoa Alpha-adducin (Erythrocyte adducin subunit alpha) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin.
P35611 ADD1 S707 psp Alpha-adducin (Erythrocyte adducin subunit alpha) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin.
P40926 MDH2 S310 ochoa Malate dehydrogenase, mitochondrial (EC 1.1.1.37) None
P43243 MATR3 S620 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P45378 TNNT3 S160 ochoa Troponin T, fast skeletal muscle (TnTf) (Beta-TnTF) (Fast skeletal muscle troponin T) (fTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P45973 CBX5 S92 ochoa|psp Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}.
P46100 ATRX S1154 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S743 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46940 IQGAP1 S1441 ochoa|psp Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
P48751 SLC4A3 S297 ochoa Anion exchange protein 3 (AE 3) (Anion exchanger 3) (CAE3/BAE3) (Cardiac/brain band 3-like protein) (Neuronal band 3-like protein) (Solute carrier family 4 member 3) Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:29167417, PubMed:7923606). May be involved in the regulation of intracellular pH, and the modulation of cardiac action potential (PubMed:29167417). {ECO:0000269|PubMed:29167417, ECO:0000269|PubMed:7923606}.
P49585 PCYT1A S233 ochoa Choline-phosphate cytidylyltransferase A (EC 2.7.7.15) (CCT-alpha) (CTP:phosphocholine cytidylyltransferase A) (CCT A) (CT A) (Phosphorylcholine transferase A) Catalyzes the key rate-limiting step in the CDP-choline pathway for phosphatidylcholine biosynthesis. {ECO:0000269|PubMed:10480912, ECO:0000269|PubMed:30559292, ECO:0000269|PubMed:7918629}.
P49802 RGS7 S434 psp Regulator of G-protein signaling 7 (RGS7) GTPase activator component of the RGS7-GNB5 complex that regulates G protein-coupled receptor signaling cascades (PubMed:10521509, PubMed:10862767, PubMed:31189666). The RGS7-GNB5 complex acts as an inhibitor signal transduction by promoting the GTPase activity of G protein alpha subunits, such as GNAO1, thereby driving them into their inactive GDP-bound form (PubMed:10521509, PubMed:10862767). May play a role in synaptic vesicle exocytosis (Probable) (PubMed:12659861). Glycine-dependent regulation of the RGS7-GNB5 complex by GPR158 affects mood and cognition via its ability to regulate neuronal excitability in L2/L3 pyramidal neurons of the prefrontal cortex (By similarity). Modulates the activity of potassium channels that are activated by GNAO1 in response to muscarinic acetylcholine receptor M2/CHRM2 signaling (PubMed:15897264). {ECO:0000250|UniProtKB:O54829, ECO:0000269|PubMed:10521509, ECO:0000269|PubMed:10862767, ECO:0000269|PubMed:15897264, ECO:0000269|PubMed:31189666, ECO:0000305|PubMed:12659861}.
P50579 METAP2 T30 ochoa Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis.
P51532 SMARCA4 S1422 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51788 CLCN2 S731 ochoa Chloride channel protein 2 (ClC-2) Voltage-gated and osmosensitive chloride channel. Forms a homodimeric channel where each subunit has its own ion conduction pathway. Conducts double-barreled currents controlled by two types of gates, two fast glutamate gates that control each subunit independently and a slow common gate that opens and shuts off both subunits simultaneously. Displays inward rectification currents activated upon membrane hyperpolarization and extracellular hypotonicity (PubMed:16155254, PubMed:17567819, PubMed:19191339, PubMed:23632988, PubMed:29403011, PubMed:29403012, PubMed:36964785, PubMed:38345841). Contributes to chloride conductance involved in neuron excitability. In hippocampal neurons, generates a significant part of resting membrane conductance and provides an additional chloride efflux pathway to prevent chloride accumulation in dendrites upon GABA receptor activation. In glia, associates with the auxiliary subunit HEPACAM/GlialCAM at astrocytic processes and myelinated fiber tracts where it may regulate transcellular chloride flux buffering extracellular chloride and potassium concentrations (PubMed:19191339, PubMed:22405205, PubMed:23707145). Regulates aldosterone production in adrenal glands. The opening of CLCN2 channels at hyperpolarized membrane potentials in the glomerulosa causes cell membrane depolarization, activation of voltage-gated calcium channels and increased expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis (PubMed:29403011, PubMed:29403012). Contributes to chloride conductance in retinal pigment epithelium involved in phagocytosis of shed photoreceptor outer segments and photoreceptor renewal (PubMed:36964785). Conducts chloride currents at the basolateral membrane of epithelial cells with a role in chloride reabsorption rather than secretion (By similarity) (PubMed:16155254). Permeable to small monovalent anions with chloride > thiocyanate > bromide > nitrate > iodide ion selectivity (By similarity) (PubMed:29403012). {ECO:0000250|UniProtKB:P35525, ECO:0000250|UniProtKB:Q9R0A1, ECO:0000269|PubMed:16155254, ECO:0000269|PubMed:17567819, ECO:0000269|PubMed:19191339, ECO:0000269|PubMed:22405205, ECO:0000269|PubMed:23632988, ECO:0000269|PubMed:23707145, ECO:0000269|PubMed:29403011, ECO:0000269|PubMed:29403012, ECO:0000269|PubMed:36964785, ECO:0000269|PubMed:38345841}.
P52895 AKR1C2 S166 ochoa Aldo-keto reductase family 1 member C2 (EC 1.-.-.-) (EC 1.1.1.112) (EC 1.1.1.209) (EC 1.1.1.53) (EC 1.1.1.62) (EC 1.3.1.20) (3-alpha-HSD3) (Chlordecone reductase homolog HAKRD) (Dihydrodiol dehydrogenase 2) (DD-2) (DD2) (Dihydrodiol dehydrogenase/bile acid-binding protein) (DD/BABP) (Type III 3-alpha-hydroxysteroid dehydrogenase) (EC 1.1.1.357) Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids (PubMed:19218247). Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH (PubMed:14672942). Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens (PubMed:10998348). Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol) (PubMed:15929998, PubMed:17034817, PubMed:17442338, PubMed:8573067). Also specifically able to produce 17beta-hydroxy-5alpha-androstan-3-one/5alphaDHT (PubMed:10998348). May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate (PubMed:19218247). Displays affinity for bile acids (PubMed:8486699). {ECO:0000269|PubMed:10998348, ECO:0000269|PubMed:14672942, ECO:0000269|PubMed:15929998, ECO:0000269|PubMed:17034817, ECO:0000269|PubMed:17442338, ECO:0000269|PubMed:19218247, ECO:0000269|PubMed:8486699, ECO:0000269|PubMed:8573067}.
P54132 BLM S168 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P55081 MFAP1 Y47 ochoa Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}.
P55199 ELL S437 ochoa RNA polymerase II elongation factor ELL (Eleven-nineteen lysine-rich leukemia protein) Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Elongation factor component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically required for stimulating the elongation step of RNA polymerase II- and III-dependent snRNA gene transcription (PubMed:23932780). ELL also plays an early role before its assembly into in the SEC complex by stabilizing RNA polymerase II recruitment/initiation and entry into the pause site. Required to stabilize the pre-initiation complex and early elongation. {ECO:0000269|PubMed:16006523, ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:22252557, ECO:0000269|PubMed:23932780, ECO:0000269|PubMed:8596958}.
P55201 BRPF1 T139 ochoa Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}.
P57078 RIPK4 S438 ochoa Receptor-interacting serine/threonine-protein kinase 4 (EC 2.7.11.1) (Ankyrin repeat domain-containing protein 3) (PKC-delta-interacting protein kinase) Serine/threonine protein kinase (By similarity). Required for embryonic skin development and correct skin homeostasis in adults, via phosphorylation of PKP1 and subsequent promotion of keratinocyte differentiation and cell adhesion (By similarity). It is a direct transcriptional target of TP63 (PubMed:22197488). Plays a role in NF-kappa-B activation (PubMed:12446564). {ECO:0000250|UniProtKB:Q9ERK0, ECO:0000269|PubMed:12446564, ECO:0000269|PubMed:22197488}.
P62314 SNRPD1 S73 ochoa Small nuclear ribonucleoprotein Sm D1 (Sm-D1) (Sm-D autoantigen) (snRNP core protein D1) Plays a role in pre-mRNA splicing as a core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome (PubMed:11991638, PubMed:18984161, PubMed:19325628, PubMed:23333303, PubMed:25555158, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Component of both the pre-catalytic spliceosome B complex and activated spliceosome C complexes (PubMed:11991638, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077). May act as a charged protein scaffold to promote snRNP assembly or strengthen snRNP-snRNP interactions through non-specific electrostatic contacts with RNA (PubMed:23333303). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:23333303, ECO:0000269|PubMed:25555158, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006, ECO:0000305|PubMed:23333303}.
P78337 PITX1 S70 ochoa Pituitary homeobox 1 (Hindlimb-expressed homeobox protein backfoot) (Homeobox protein PITX1) (Paired-like homeodomain transcription factor 1) Sequence-specific transcription factor that binds gene promoters and activates their transcription. May play a role in the development of anterior structures, and in particular, the brain and facies and in specifying the identity or structure of hindlimb. {ECO:0000250|UniProtKB:P56673}.
Q00013 MPP1 S237 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q01105 SET S161 ochoa Protein SET (HLA-DR-associated protein II) (Inhibitor of granzyme A-activated DNase) (IGAAD) (PHAPII) (Phosphatase 2A inhibitor I2PP2A) (I-2PP2A) (Template-activating factor I) (TAF-I) Multitasking protein, involved in apoptosis, transcription, nucleosome assembly and histone chaperoning. Isoform 2 anti-apoptotic activity is mediated by inhibition of the GZMA-activated DNase, NME1. In the course of cytotoxic T-lymphocyte (CTL)-induced apoptosis, GZMA cleaves SET, disrupting its binding to NME1 and releasing NME1 inhibition. Isoform 1 and isoform 2 are potent inhibitors of protein phosphatase 2A. Isoform 1 and isoform 2 inhibit EP300/CREBBP and PCAF-mediated acetylation of histones (HAT) and nucleosomes, most probably by masking the accessibility of lysines of histones to the acetylases. The predominant target for inhibition is histone H4. HAT inhibition leads to silencing of HAT-dependent transcription and prevents active demethylation of DNA. Both isoforms stimulate DNA replication of the adenovirus genome complexed with viral core proteins; however, isoform 2 specific activity is higher. {ECO:0000269|PubMed:11555662, ECO:0000269|PubMed:12628186}.
Q01831 XPC S347 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02880 TOP2B Y1558 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q03164 KMT2A S252 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q08945 SSRP1 S510 psp FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q09666 AHNAK S613 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4486 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5190 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12923 PTPN13 S1627 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q12955 ANK3 S4349 ochoa Ankyrin-3 (ANK-3) (Ankyrin-G) Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}.
Q13144 EIF2B5 S466 psp Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}.
Q13206 DDX10 S807 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13435 SF3B2 S435 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13459 MYO9B S1408 ochoa Unconventional myosin-IXb (Unconventional myosin-9b) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}.
Q13555 CAMK2G S311 ochoa Calcium/calmodulin-dependent protein kinase type II subunit gamma (CaM kinase II subunit gamma) (CaMK-II subunit gamma) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in sarcoplasmic reticulum Ca(2+) transport in skeletal muscle and may function in dendritic spine and synapse formation and neuronal plasticity (PubMed:16690701). In slow-twitch muscles, is involved in regulation of sarcoplasmic reticulum (SR) Ca(2+) transport and in fast-twitch muscle participates in the control of Ca(2+) release from the SR through phosphorylation of the ryanodine receptor-coupling factor triadin (PubMed:16690701). In the central nervous system, it is involved in the regulation of neurite formation and arborization (PubMed:30184290). It may participate in the promotion of dendritic spine and synapse formation and maintenance of synaptic plasticity which enables long-term potentiation (LTP) and hippocampus-dependent learning. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q923T9, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:30184290}.
Q13576 IQGAP2 S1356 ochoa Ras GTPase-activating-like protein IQGAP2 Binds to activated CDC42 and RAC1 but does not seem to stimulate their GTPase activity. Associates with calmodulin.
Q14527 HLTF S398 ochoa Helicase-like transcription factor (EC 2.3.2.27) (EC 3.6.4.-) (DNA-binding protein/plasminogen activator inhibitor 1 regulator) (HIP116) (RING finger protein 80) (RING-type E3 ubiquitin transferase HLTF) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3) (Sucrose nonfermenting protein 2-like 3) Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. {ECO:0000250, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:18316726, ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:7876228, ECO:0000269|PubMed:8672239, ECO:0000269|PubMed:9126292}.
Q14677 CLINT1 S166 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14680 MELK S505 ochoa|psp Maternal embryonic leucine zipper kinase (hMELK) (EC 2.7.11.1) (Protein kinase Eg3) (pEg3 kinase) (Protein kinase PK38) (hPK38) (Tyrosine-protein kinase MELK) (EC 2.7.10.2) Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, self-renewal of stem cells, apoptosis and splicing regulation. Has a broad substrate specificity; phosphorylates BCL2L14, CDC25B, MAP3K5/ASK1 and ZNF622. Acts as an activator of apoptosis by phosphorylating and activating MAP3K5/ASK1. Acts as a regulator of cell cycle, notably by mediating phosphorylation of CDC25B, promoting localization of CDC25B to the centrosome and the spindle poles during mitosis. Plays a key role in cell proliferation and carcinogenesis. Required for proliferation of embryonic and postnatal multipotent neural progenitors. Phosphorylates and inhibits BCL2L14, possibly leading to affect mammary carcinogenesis by mediating inhibition of the pro-apoptotic function of BCL2L14. Also involved in the inhibition of spliceosome assembly during mitosis by phosphorylating ZNF622, thereby contributing to its redirection to the nucleus. May also play a role in primitive hematopoiesis. {ECO:0000269|PubMed:11802789, ECO:0000269|PubMed:12400006, ECO:0000269|PubMed:14699119, ECO:0000269|PubMed:15908796, ECO:0000269|PubMed:16216881, ECO:0000269|PubMed:17280616}.
Q14692 BMS1 S49 ochoa Ribosome biogenesis protein BMS1 homolog (EC 3.6.5.-) (Ribosome assembly protein BMS1 homolog) GTPase required for the synthesis of 40S ribosomal subunits and for processing of pre-ribosomal RNA (pre-rRNA) at sites A0, A1, and A2. Controls access of pre-rRNA intermediates to RCL1 during ribosome biogenesis by binding RCL1 in a GTP-dependent manner, and delivering it to pre-ribosomes. GTP-binding and/or GTP hydrolysis may induce conformational rearrangements within the BMS1-RCL1 complex allowing the interaction of RCL1 with its RNA substrate. Required for RCL1 import into the nucleus. {ECO:0000250|UniProtKB:Q08965}.
Q14789 GOLGB1 S133 ochoa Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) May participate in forming intercisternal cross-bridges of the Golgi complex.
Q15147 PLCB4 S891 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}.
Q15361 TTF1 S41 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15648 MED1 S1347 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1479 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1481 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1482 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q16513 PKN2 S167 ochoa Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}.
Q16533 SNAPC1 S289 ochoa snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}.
Q16533 SNAPC1 S290 ochoa snRNA-activating protein complex subunit 1 (SNAPc subunit 1) (Proximal sequence element-binding transcription factor subunit gamma) (PSE-binding factor subunit gamma) (PTF subunit gamma) (Small nuclear RNA-activating complex polypeptide 1) (snRNA-activating protein complex 43 kDa subunit) (SNAPc 43 kDa subunit) Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023}.
Q16666 IFI16 S113 ochoa Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16891 IMMT S115 ochoa MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}.
Q1ED39 KNOP1 S48 ochoa Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) None
Q2NL82 TSR1 S377 ochoa Pre-rRNA-processing protein TSR1 homolog Required during maturation of the 40S ribosomal subunit in the nucleolus. {ECO:0000250}.
Q3B726 POLR1F S259 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q4LE39 ARID4B S790 ochoa AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}.
Q562F6 SGO2 S1181 ochoa Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}.
Q56P03 EAPP Y106 ochoa E2F-associated phosphoprotein (EAPP) May play an important role in the fine-tuning of both major E2F1 activities, the regulation of the cell-cycle and the induction of apoptosis. Promotes S-phase entry, and inhibits p14(ARP) expression. {ECO:0000269|PubMed:15716352}.
Q5JR59 MTUS2 S1302 ochoa Microtubule-associated tumor suppressor candidate 2 (Cardiac zipper protein) (Microtubule plus-end tracking protein TIP150) (Tracking protein of 150 kDa) Binds microtubules. Together with MAPRE1 may target the microtubule depolymerase KIF2C to the plus-end of microtubules. May regulate the dynamics of microtubules at their growing distal tip. {ECO:0000269|PubMed:19543227}.
Q5T0W9 FAM83B S804 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T200 ZC3H13 T985 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T4S7 UBR4 S3356 ochoa E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}.
Q5T5P2 KIAA1217 S1554 ochoa Sickle tail protein homolog Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}.
Q5VZK9 CARMIL1 S1043 ochoa F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}.
Q6KC79 NIPBL S1090 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL S1096 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6P1J9 CDC73 S178 ochoa Parafibromin (Cell division cycle protein 73 homolog) (Hyperparathyroidism 2 protein) Tumor suppressor probably involved in transcriptional and post-transcriptional control pathways. May be involved in cell cycle progression through the regulation of cyclin D1/PRAD1 expression. Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the cleavage and polyadenylation specificity factor (CPSF) complex and the cleavage stimulation factor (CSTF) complex, and with Wnt signaling. Involved in polyadenylation of mRNA precursors. {ECO:0000269|PubMed:15580289, ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15923622, ECO:0000269|PubMed:16630820, ECO:0000269|PubMed:16989776, ECO:0000269|PubMed:19136632, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PKG0 LARP1 S228 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6PL18 ATAD2 S1151 ochoa ATPase family AAA domain-containing protein 2 (EC 3.6.1.-) (AAA nuclear coregulator cancer-associated protein) (ANCCA) May be a transcriptional coactivator of the nuclear receptor ESR1 required to induce the expression of a subset of estradiol target genes, such as CCND1, MYC and E2F1. May play a role in the recruitment or occupancy of CREBBP at some ESR1 target gene promoters. May be required for histone hyperacetylation. Involved in the estrogen-induced cell proliferation and cell cycle progression of breast cancer cells. {ECO:0000269|PubMed:17998543}.
Q6SJ93 FAM111B T290 ochoa Serine protease FAM111B (EC 3.4.21.-) (Cancer-associated nucleoprotein) Serine protease. {ECO:0000250|UniProtKB:Q96PZ2}.
Q6UB98 ANKRD12 S1079 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UXM1 LRIG3 S949 ochoa Leucine-rich repeats and immunoglobulin-like domains protein 3 (LIG-3) May play a role in craniofacial and inner ear morphogenesis during embryonic development. May act within the otic vesicle epithelium to control formation of the lateral semicircular canal in the inner ear, possibly by restricting the expression of NTN1 (By similarity). {ECO:0000250}.
Q6VY07 PACS1 S381 ochoa Phosphofurin acidic cluster sorting protein 1 (PACS-1) Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}.
Q6ZNL6 FGD5 S633 ochoa FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}.
Q71F23 CENPU S190 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q76FK4 NOL8 S838 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q7Z4V5 HDGFL2 S396 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q7Z4V5 HDGFL2 S397 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q7Z7E8 UBE2Q1 S217 ochoa Ubiquitin-conjugating enzyme E2 Q1 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme Q1) (Protein NICE-5) (Ubiquitin carrier protein Q1) (Ubiquitin-protein ligase Q1) Catalyzes the covalent attachment of ubiquitin to other proteins (PubMed:22496338). May be involved in hormonal homeostasis in females. Involved in regulation of B4GALT1 cell surface expression, B4GALT1-mediated cell adhesion to laminin and embryoid body formation (By similarity). {ECO:0000250|UniProtKB:Q7TSS2, ECO:0000269|PubMed:22496338}.
Q86U06 RBM23 S43 ochoa Probable RNA-binding protein 23 (CAPER beta) (CAPERbeta) (RNA-binding motif protein 23) (RNA-binding region-containing protein 4) (Splicing factor SF2) RNA-binding protein that acts both as a transcription coactivator and pre-mRNA splicing factor (PubMed:15694343). Regulates steroid hormone receptor-mediated transcription, independently of the pre-mRNA splicing factor activity (PubMed:15694343). {ECO:0000269|PubMed:15694343}.
Q86U06 RBM23 S45 ochoa Probable RNA-binding protein 23 (CAPER beta) (CAPERbeta) (RNA-binding motif protein 23) (RNA-binding region-containing protein 4) (Splicing factor SF2) RNA-binding protein that acts both as a transcription coactivator and pre-mRNA splicing factor (PubMed:15694343). Regulates steroid hormone receptor-mediated transcription, independently of the pre-mRNA splicing factor activity (PubMed:15694343). {ECO:0000269|PubMed:15694343}.
Q86UK7 ZNF598 S572 ochoa E3 ubiquitin-protein ligase ZNF598 (EC 2.3.2.27) (Zinc finger protein 598) E3 ubiquitin-protein ligase that plays a key role in the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, leading to degradation of nascent peptide chains (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:32099016, PubMed:32579943, PubMed:33581075). ZNF598 is activated when ribosomes are stalled within an mRNA following translation of prematurely polyadenylated mRNAs (PubMed:28065601, PubMed:28132843, PubMed:28685749). Acts as a ribosome collision sensor: specifically recognizes and binds collided di-ribosome, which arises when a trailing ribosome encounters a slower leading ribosome, leading to terminally arrest translation (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:30293783). Following binding to colliding ribosomes, mediates monoubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS3/uS3, and 'Lys-63'-linked polyubiquitination of RPS20/uS10 (PubMed:28065601, PubMed:28132843, PubMed:28685749). Polyubiquitination of RPS20/uS10 promotes recruitment of the RQT (ribosome quality control trigger) complex, which drives the disassembly of stalled ribosomes, followed by degradation of nascent peptides (PubMed:32099016, PubMed:32579943, PubMed:36302773). E3 ubiquitin-protein ligase activity is dependent on the E2 ubiquitin-conjugating enzyme UBE2D3 (PubMed:28685749). Also acts as an adapter that recruits the 4EHP-GYF2 complex to mRNAs (PubMed:22751931, PubMed:32726578). Independently of its role in RQC, may also act as a negative regulator of interferon-stimulated gene (ISG) expression (PubMed:29719242). {ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:28065601, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:29719242, ECO:0000269|PubMed:30293783, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33581075, ECO:0000269|PubMed:36302773}.; FUNCTION: (Microbial infection) Required for poxvirus protein synthesis by mediating ubiquitination of RPS10/eS10 and RPS20/uS10 (PubMed:29719242). Poxvirus encoding mRNAs contain unusual 5' poly(A) leaders and ZNF598 is required for their translational efficiency, possibly via its ability to suppress readthrough or sliding on shorter poly(A) tracts (PubMed:29719242). {ECO:0000269|PubMed:29719242}.
Q8IUC4 RHPN2 S652 ochoa Rhophilin-2 (76 kDa RhoB effector protein) (GTP-Rho-binding protein 2) (p76RBE) Binds specifically to GTP-Rho. May function in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity. {ECO:0000269|PubMed:12221077}.
Q8IW00 VSTM4 S223 ochoa V-set and transmembrane domain-containing protein 4 [Cleaved into: Peptide Lv] Peptide Lv enhances L-type voltage-gated calcium channel (L-VGCC) currents in retinal photoreceptors. {ECO:0000250|UniProtKB:T1NXB5}.
Q8IW00 VSTM4 S224 ochoa V-set and transmembrane domain-containing protein 4 [Cleaved into: Peptide Lv] Peptide Lv enhances L-type voltage-gated calcium channel (L-VGCC) currents in retinal photoreceptors. {ECO:0000250|UniProtKB:T1NXB5}.
Q8IWU2 LMTK2 S672 ochoa Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) Phosphorylates PPP1C, phosphorylase b and CFTR.
Q8IYL3 C1orf174 S45 ochoa UPF0688 protein C1orf174 None
Q8IYW5 RNF168 S195 ochoa E3 ubiquitin-protein ligase RNF168 (hRNF168) (EC 2.3.2.27) (RING finger protein 168) (RING-type E3 ubiquitin transferase RNF168) E3 ubiquitin-protein ligase required for accumulation of repair proteins to sites of DNA damage. Acts with UBE2N/UBC13 to amplify the RNF8-dependent histone ubiquitination. Recruited to sites of DNA damage at double-strand breaks (DSBs) by binding to ubiquitinated histone H2A and H2AX and amplifies the RNF8-dependent H2A ubiquitination, promoting the formation of 'Lys-63'-linked ubiquitin conjugates. This leads to concentrate ubiquitinated histones H2A and H2AX at DNA lesions to the threshold required for recruitment of TP53BP1 and BRCA1. Also recruited at DNA interstrand cross-links (ICLs) sites and promotes accumulation of 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. Following DNA damage, promotes the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF8, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. Not able to initiate 'Lys-63'-linked ubiquitination in vitro; possibly due to partial occlusion of the UBE2N/UBC13-binding region. Catalyzes monoubiquitination of 'Lys-13' and 'Lys-15' of nucleosomal histone H2A (H2AK13Ub and H2AK15Ub, respectively). {ECO:0000255|HAMAP-Rule:MF_03066, ECO:0000269|PubMed:19203578, ECO:0000269|PubMed:19203579, ECO:0000269|PubMed:20550933, ECO:0000269|PubMed:22373579, ECO:0000269|PubMed:22705371, ECO:0000269|PubMed:22713238, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:22980979, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538}.
Q8N344 MIER2 S177 ochoa Mesoderm induction early response protein 2 (Mi-er2) Transcriptional repressor. {ECO:0000250}.
Q8N4X5 AFAP1L2 Y307 ochoa Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}.
Q8N8V4 ANKS4B T193 ochoa Ankyrin repeat and SAM domain-containing protein 4B (Harmonin-interacting ankyrin repeat-containing protein) (Harp) As part of the intermicrovillar adhesion complex/IMAC plays a role in epithelial brush border differentiation, controlling microvilli organization and length. Plays a role in assembly of the complex (PubMed:26812018). May play a role in cellular response to endoplasmic reticulum stress (By similarity). {ECO:0000250|UniProtKB:Q8K3X6, ECO:0000269|PubMed:26812018}.
Q8N9T8 KRI1 T91 ochoa Protein KRI1 homolog None
Q8NC51 SERBP1 S85 ochoa SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}.
Q8NE71 ABCF1 T21 ochoa ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
Q8NEF9 SRFBP1 S215 ochoa Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}.
Q8NI27 THOC2 S1364 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TD26 CHD6 S85 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TED9 AFAP1L1 S385 ochoa Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}.
Q8TED9 AFAP1L1 S387 ochoa Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}.
Q8WVC0 LEO1 S607 ochoa RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}.
Q8WXX7 AUTS2 S149 ochoa Autism susceptibility gene 2 protein Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}.
Q92541 RTF1 S58 ochoa RNA polymerase-associated protein RTF1 homolog Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}.
Q93074 MED12 S1778 ochoa Mediator of RNA polymerase II transcription subunit 12 (Activator-recruited cofactor 240 kDa component) (ARC240) (CAG repeat protein 45) (Mediator complex subunit 12) (OPA-containing protein) (Thyroid hormone receptor-associated protein complex 230 kDa component) (Trap230) (Trinucleotide repeat-containing gene 11 protein) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional pre-initiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. {ECO:0000269|PubMed:16565090, ECO:0000269|PubMed:16595664, ECO:0000269|PubMed:17000779}.
Q96AT1 KIAA1143 S105 ochoa Uncharacterized protein KIAA1143 None
Q96C57 CUSTOS T182 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96MU7 YTHDC1 S315 ochoa YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) Regulator of alternative splicing that specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs (PubMed:25242552, PubMed:26318451, PubMed:26876937, PubMed:28984244). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in the efficiency of mRNA splicing, processing and stability (PubMed:25242552, PubMed:26318451). Acts as a key regulator of exon-inclusion or exon-skipping during alternative splicing via interaction with mRNA splicing factors SRSF3 and SRSF10 (PubMed:26876937). Specifically binds m6A-containing mRNAs and promotes recruitment of SRSF3 to its mRNA-binding elements adjacent to m6A sites, leading to exon-inclusion during alternative splicing (PubMed:26876937). In contrast, interaction with SRSF3 prevents interaction with SRSF10, a splicing factor that promotes exon skipping: this prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May also regulate alternative splice site selection (PubMed:20167602). Also involved in nuclear export of m6A-containing mRNAs via interaction with SRSF3: interaction with SRSF3 facilitates m6A-containing mRNA-binding to both SRSF3 and NXF1, promoting mRNA nuclear export (PubMed:28984244). Involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts, probably by binding m6A-containing MAT2A mRNAs (By similarity). Also recognizes and binds m6A on other RNA molecules (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: recognizes and binds m6A-containing Xist and promotes transcription repression activity of Xist (PubMed:27602518). Also recognizes and binds m6A-containing single-stranded DNA (PubMed:32663306). Involved in germline development: required for spermatogonial development in males and oocyte growth and maturation in females, probably via its role in alternative splicing (By similarity). {ECO:0000250|UniProtKB:E9Q5K9, ECO:0000269|PubMed:20167602, ECO:0000269|PubMed:25242552, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26876937, ECO:0000269|PubMed:27602518, ECO:0000269|PubMed:28984244, ECO:0000269|PubMed:32663306}.
Q96N46 TTC14 S669 ochoa Tetratricopeptide repeat protein 14 (TPR repeat protein 14) None
Q96QE3 ATAD5 S217 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96RL1 UIMC1 S44 ochoa BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}.
Q96RS0 TGS1 S405 ochoa Trimethylguanosine synthase (EC 2.1.1.-) (CLL-associated antigen KW-2) (Cap-specific guanine-N(2) methyltransferase) (Hepatocellular carcinoma-associated antigen 137) (Nuclear receptor coactivator 6-interacting protein) (PRIP-interacting protein with methyltransferase motif) (PIMT) (PIPMT) Catalyzes the 2 serial methylation steps for the conversion of the 7-monomethylguanosine (m(7)G) caps of snRNAs and snoRNAs to a 2,2,7-trimethylguanosine (m(2,2,7)G) cap structure. The enzyme is specific for guanine, and N7 methylation must precede N2 methylation. Hypermethylation of the m7G cap of U snRNAs leads to their concentration in nuclear foci, their colocalization with coilin and the formation of canonical Cajal bodies (CBs). Plays a role in transcriptional regulation. {ECO:0000269|PubMed:11517327, ECO:0000269|PubMed:11912212, ECO:0000269|PubMed:16687569, ECO:0000269|PubMed:18775984}.
Q99460 PSMD1 T830 ochoa 26S proteasome non-ATPase regulatory subunit 1 (26S proteasome regulatory subunit RPN2) (26S proteasome regulatory subunit S1) (26S proteasome subunit p112) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}.
Q99549 MPHOSPH8 S319 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S403 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99848 EBNA1BP2 S269 ochoa Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) Required for the processing of the 27S pre-rRNA. {ECO:0000250}.
Q9BQ70 TCF25 T111 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BVS4 RIOK2 S487 ochoa Serine/threonine-protein kinase RIO2 (EC 2.7.11.1) (RIO kinase 2) Serine/threonine-protein kinase involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in export of the 40S pre-ribosome particles (pre-40S) from the nucleus to the cytoplasm. Its kinase activity is required for the release of NOB1, PNO1 and LTV1 from the late pre-40S and the processing of 18S-E pre-rRNA to the mature 18S rRNA (PubMed:19564402). Regulates the timing of the metaphase-anaphase transition during mitotic progression, and its phosphorylation, most likely by PLK1, regulates this function (PubMed:21880710). {ECO:0000269|PubMed:16037817, ECO:0000269|PubMed:19564402, ECO:0000269|PubMed:21880710}.
Q9BW30 TPPP3 S158 ochoa Tubulin polymerization-promoting protein family member 3 (TPPP/p20) Regulator of microtubule dynamic that has microtubule bundling activity (PubMed:17105200, PubMed:19633818). Required for embryo implantation; possibly by regulating beta-catenin (By similarity). Also required for decidualization via regulation of beta-catenin (PubMed:30667362). {ECO:0000250|UniProtKB:Q9CRB6, ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:19633818, ECO:0000269|PubMed:30667362}.
Q9BXW9 FANCD2 S1407 ochoa|psp Fanconi anemia group D2 protein (Protein FACD2) Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}.
Q9BY42 RTF2 S207 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BYT3 STK33 S43 ochoa Serine/threonine-protein kinase 33 (EC 2.7.11.1) Serine/threonine protein kinase required for spermatid differentiation and male fertility (PubMed:37146716, PubMed:38781365). Promotes sperm flagella assembly during spermatogenesis by mediating phosphorylation of fibrous sheath proteins AKAP3 and AKAP4 (By similarity). Also phosphorylates vimentin/VIM, thereby regulating the dynamic behavior of the intermediate filament cytoskeleton (By similarity). {ECO:0000250|UniProtKB:Q924X7, ECO:0000269|PubMed:37146716, ECO:0000269|PubMed:38781365}.
Q9C0C2 TNKS1BP1 S1708 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0C2 TNKS1BP1 S1709 ochoa 182 kDa tankyrase-1-binding protein None
Q9C0C9 UBE2O S401 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9H0H5 RACGAP1 S164 ochoa|psp Rac GTPase-activating protein 1 (Male germ cell RacGap) (MgcRacGAP) (Protein CYK4 homolog) (CYK4) (HsCYK-4) Component of the centralspindlin complex that serves as a microtubule-dependent and Rho-mediated signaling required for the myosin contractile ring formation during the cell cycle cytokinesis. Required for proper attachment of the midbody to the cell membrane during cytokinesis. Sequentially binds to ECT2 and RAB11FIP3 which regulates cleavage furrow ingression and abscission during cytokinesis (PubMed:18511905). Plays key roles in controlling cell growth and differentiation of hematopoietic cells through mechanisms other than regulating Rac GTPase activity (PubMed:10979956). Has a critical role in erythropoiesis (PubMed:34818416). Also involved in the regulation of growth-related processes in adipocytes and myoblasts. May be involved in regulating spermatogenesis and in the RACGAP1 pathway in neuronal proliferation. Shows strong GAP (GTPase activation) activity towards CDC42 and RAC1 and less towards RHOA. Essential for the early stages of embryogenesis. May play a role in regulating cortical activity through RHOA during cytokinesis. May participate in the regulation of sulfate transport in male germ cells. {ECO:0000269|PubMed:10979956, ECO:0000269|PubMed:11085985, ECO:0000269|PubMed:11278976, ECO:0000269|PubMed:11782313, ECO:0000269|PubMed:14729465, ECO:0000269|PubMed:15642749, ECO:0000269|PubMed:16103226, ECO:0000269|PubMed:16129829, ECO:0000269|PubMed:16236794, ECO:0000269|PubMed:18511905, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:23235882, ECO:0000269|PubMed:9497316}.
Q9H1E3 NUCKS1 S50 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H2B2 SYT4 S69 ochoa Synaptotagmin-4 (Synaptotagmin IV) (SytIV) Synaptotagmin family member which does not bind Ca(2+) (By similarity) (PubMed:23999003). Involved in neuronal dense core vesicles (DCVs) mobility through its interaction with KIF1A. Upon increased neuronal activity, phosphorylation by MAPK8/JNK1 destabilizes the interaction with KIF1A and captures DCVs to synapses (By similarity). Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:P50232, ECO:0000269|PubMed:23999003}.
Q9H501 ESF1 S75 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 T630 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9HC77 CPAP S759 ochoa Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}.
Q9HCG8 CWC22 S102 ochoa Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}.
Q9HCK8 CHD8 S1523 ochoa Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}.
Q9HD26 GOPC S151 ochoa Golgi-associated PDZ and coiled-coil motif-containing protein (CFTR-associated ligand) (Fused in glioblastoma) (PDZ protein interacting specifically with TC10) (PIST) Plays a role in intracellular protein trafficking and degradation (PubMed:11707463, PubMed:14570915, PubMed:15358775). May regulate CFTR chloride currents and acid-induced ASIC3 currents by modulating cell surface expression of both channels (By similarity). May also regulate the intracellular trafficking of the ADR1B receptor (PubMed:15358775). May play a role in autophagy (By similarity). Together with MARCHF2 mediates the ubiquitination and lysosomal degradation of CFTR (PubMed:23818989). Overexpression results in CFTR intracellular retention and lysosomaldegradation in the lysosomes (PubMed:11707463, PubMed:14570915). {ECO:0000250|UniProtKB:Q8BH60, ECO:0000269|PubMed:11707463, ECO:0000269|PubMed:14570915, ECO:0000269|PubMed:15358775, ECO:0000269|PubMed:23818989}.
Q9NPI1 BRD7 S42 ochoa Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}.
Q9NR30 DDX21 S121 ochoa|psp Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}.
Q9NSI6 BRWD1 S2162 ochoa Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
Q9NW13 RBM28 S202 ochoa RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9UBU7 DBF4 T273 ochoa|psp Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UGU5 HMGXB4 S79 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UGU5 HMGXB4 Y84 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UGU5 HMGXB4 S205 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UK61 TASOR S694 ochoa Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q9UKV3 ACIN1 S1180 psp Apoptotic chromatin condensation inducer in the nucleus (Acinus) Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}.
Q9ULU4 ZMYND8 S28 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9ULW0 TPX2 S539 ochoa Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}.
Q9UPP1 PHF8 Y852 ochoa Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}.
Q9UPP1 PHF8 S857 ochoa|psp Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}.
Q9UQR1 ZNF148 S297 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9Y210 TRPC6 S840 ochoa Short transient receptor potential channel 6 (TrpC6) (Transient receptor protein 6) (TRP-6) Forms a receptor-activated non-selective calcium permeant cation channel (PubMed:19936226, PubMed:23291369, PubMed:26892346, PubMed:9930701). Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C (PubMed:26892346). Seems not to be activated by intracellular calcium store depletion. {ECO:0000269|PubMed:19936226, ECO:0000269|PubMed:23291369, ECO:0000269|PubMed:26892346, ECO:0000269|PubMed:9930701}.
Q9Y266 NUDC S139 ochoa Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q9Y2X3 NOP58 T508 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y5J1 UTP18 S121 ochoa U3 small nucleolar RNA-associated protein 18 homolog (WD repeat-containing protein 50) Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. {ECO:0000269|PubMed:34516797}.
Q9Y6R0 NUMBL S224 ochoa Numb-like protein (Numb-related protein) (Numb-R) Plays a role in the process of neurogenesis. Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate. Not required for the proliferation of neural progenitor cells before the onset of embryonic neurogenesis. Also required postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity. Negative regulator of NF-kappa-B signaling pathway. The inhibition of NF-kappa-B activation is mediated at least in part, by preventing MAP3K7IP2 to interact with polyubiquitin chains of TRAF6 and RIPK1 and by stimulating the 'Lys-48'-linked polyubiquitination and degradation of TRAF6 in cortical neurons. {ECO:0000269|PubMed:18299187, ECO:0000269|PubMed:20079715}.
P30101 PDIA3 T485 Sugiyama Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
Q9UGY1 NOL12 S21 Sugiyama Nucleolar protein 12 Multifunctional RNA binding protein that plays a role in RNA metabolism and DNA maintenance. Participates in the resolution of DNA stress and the maintenance of genome integrity by localizing to sites of DNA insults (PubMed:29069457). Also plays a role in proper nucleolar organization by limiting nucleolar size and regulating nucleolar number. Mechanistically, regulates the nucleolar levels of fibrillarin and nucleolin, two key players in pre-rRNA processing and ribosome assembly (PubMed:30988155). {ECO:0000269|PubMed:29069457, ECO:0000269|PubMed:30988155}.
P62191 PSMC1 Y25 Sugiyama 26S proteasome regulatory subunit 4 (P26s4) (26S proteasome AAA-ATPase subunit RPT2) (Proteasome 26S subunit ATPase 1) Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC1 belongs to the heterohexameric ring of AAA (ATPases associated with diverse cellular activities) proteins that unfolds ubiquitinated target proteins that are concurrently translocated into a proteolytic chamber and degraded into peptides. {ECO:0000269|PubMed:1317798}.
Q99543 DNAJC2 S275 Sugiyama DnaJ homolog subfamily C member 2 (M-phase phosphoprotein 11) (Zuotin-related factor 1) [Cleaved into: DnaJ homolog subfamily C member 2, N-terminally processed] Acts both as a chaperone in the cytosol and as a chromatin regulator in the nucleus. When cytosolic, acts as a molecular chaperone: component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, stimulates the ATPase activity of the ribosome-associated pool of Hsp70-type chaperones HSPA14 that bind to the nascent polypeptide chain. When nuclear, mediates the switching from polycomb-repressed genes to an active state: specifically recruited at histone H2A ubiquitinated at 'Lys-119' (H2AK119ub), and promotes the displacement of the polycomb PRC1 complex from chromatin, thereby facilitating transcription activation. {ECO:0000269|PubMed:15802566, ECO:0000269|PubMed:16002468, ECO:0000269|PubMed:21179169}.
Q8ND56 LSM14A S300 Sugiyama Protein LSM14 homolog A (Protein FAM61A) (Protein SCD6 homolog) (Putative alpha-synuclein-binding protein) (AlphaSNBP) (RNA-associated protein 55A) (hRAP55) (hRAP55A) Essential for formation of P-bodies, cytoplasmic structures that provide storage sites for translationally inactive mRNAs and protect them from degradation (PubMed:16484376, PubMed:17074753, PubMed:29510985). Acts as a repressor of mRNA translation (PubMed:29510985). May play a role in mitotic spindle assembly (PubMed:26339800). {ECO:0000269|PubMed:16484376, ECO:0000269|PubMed:17074753, ECO:0000269|PubMed:26339800, ECO:0000269|PubMed:29510985}.
Q8TA86 RP9 S167 Sugiyama Retinitis pigmentosa 9 protein (Pim-1-associated protein) (PAP-1) Is thought to be a target protein for the PIM1 kinase. May play some roles in B-cell proliferation in association with PIM1 (By similarity). {ECO:0000250}.
P13667 PDIA4 S126 Sugiyama Protein disulfide-isomerase A4 (EC 5.3.4.1) (Endoplasmic reticulum resident protein 70) (ER protein 70) (ERp70) (Endoplasmic reticulum resident protein 72) (ER protein 72) (ERp-72) (ERp72) None
P12272 PTHLH T108 GPS6|ELM|iPTMNet|EPSD Parathyroid hormone-related protein (PTH-rP) (PTHrP) (Parathyroid hormone-like protein) (PLP) [Cleaved into: PTHrP[1-36]; PTHrP[38-94]; Osteostatin (PTHrP[107-139])] Neuroendocrine peptide which is a critical regulator of cellular and organ growth, development, migration, differentiation and survival and of epithelial calcium ion transport (PubMed:12538599, PubMed:35932760, PubMed:3616618). Acts by binding to its receptor, PTH1R, activating G protein-coupled receptor signaling (PubMed:19674967, PubMed:35932760). Regulates endochondral bone development and epithelial-mesenchymal interactions during the formation of the mammary glands and teeth (By similarity). Required for skeletal homeostasis (PubMed:12538599). Promotes mammary mesenchyme differentiation and bud outgrowth by modulating mesenchymal cell responsiveness to BMPs (PubMed:12538599). Up-regulates BMPR1A expression in the mammary mesenchyme and this increases the sensitivity of these cells to BMPs and allows them to respond to BMP4 in a paracrine and/or autocrine fashion (By similarity). BMP4 signaling in the mesenchyme, in turn, triggers epithelial outgrowth and augments MSX2 expression, which causes the mammary mesenchyme to inhibit hair follicle formation within the nipple sheath (By similarity). Promotes colon cancer cell migration and invasion in an integrin alpha-6/beta-1-dependent manner through activation of Rac1 (PubMed:20637541). {ECO:0000250|UniProtKB:P22858, ECO:0000269|PubMed:19674967, ECO:0000269|PubMed:20637541, ECO:0000269|PubMed:35932760, ECO:0000269|PubMed:3616618, ECO:0000303|PubMed:12538599}.; FUNCTION: [Osteostatin]: Potent inhibitor of osteoclastic bone resorption. {ECO:0000269|PubMed:1915066, ECO:0000269|PubMed:1954916, ECO:0000269|PubMed:20637541, ECO:0000269|PubMed:9048639, ECO:0000269|PubMed:9144344}.
Q86UP2 KTN1 S156 Sugiyama Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
P27797 CALR S189 Sugiyama Calreticulin (CRP55) (Calregulin) (Endoplasmic reticulum resident protein 60) (ERp60) (HACBP) (grp60) Calcium-binding chaperone that promotes folding, oligomeric assembly and quality control in the endoplasmic reticulum (ER) via the calreticulin/calnexin cycle. This lectin interacts transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER (PubMed:7876246). Interacts with the DNA-binding domain of NR3C1 and mediates its nuclear export (PubMed:11149926). Involved in maternal gene expression regulation. May participate in oocyte maturation via the regulation of calcium homeostasis (By similarity). Present in the cortical granules of non-activated oocytes, is exocytosed during the cortical reaction in response to oocyte activation and might participate in the block to polyspermy (By similarity). {ECO:0000250|UniProtKB:P28491, ECO:0000250|UniProtKB:Q8K3H7, ECO:0000269|PubMed:11149926, ECO:0000269|PubMed:7876246}.
Q9BXP5 SRRT S703 Sugiyama Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}.
Q15831 STK11 S69 Sugiyama Serine/threonine-protein kinase STK11 (EC 2.7.11.1) (Liver kinase B1) (LKB1) (hLKB1) (Renal carcinoma antigen NY-REN-19) Tumor suppressor serine/threonine-protein kinase that controls the activity of AMP-activated protein kinase (AMPK) family members, thereby playing a role in various processes such as cell metabolism, cell polarity, apoptosis and DNA damage response. Acts by phosphorylating the T-loop of AMPK family proteins, thus promoting their activity: phosphorylates PRKAA1, PRKAA2, BRSK1, BRSK2, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, SIK1, SIK2, SIK3 and SNRK but not MELK. Also phosphorylates non-AMPK family proteins such as STRADA, PTEN and possibly p53/TP53. Acts as a key upstream regulator of AMPK by mediating phosphorylation and activation of AMPK catalytic subunits PRKAA1 and PRKAA2 and thereby regulates processes including: inhibition of signaling pathways that promote cell growth and proliferation when energy levels are low, glucose homeostasis in liver, activation of autophagy when cells undergo nutrient deprivation, and B-cell differentiation in the germinal center in response to DNA damage. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton. Required for cortical neuron polarization by mediating phosphorylation and activation of BRSK1 and BRSK2, leading to axon initiation and specification. Involved in DNA damage response: interacts with p53/TP53 and recruited to the CDKN1A/WAF1 promoter to participate in transcription activation. Able to phosphorylate p53/TP53; the relevance of such result in vivo is however unclear and phosphorylation may be indirect and mediated by downstream STK11/LKB1 kinase NUAK1. Also acts as a mediator of p53/TP53-dependent apoptosis via interaction with p53/TP53: translocates to the mitochondrion during apoptosis and regulates p53/TP53-dependent apoptosis pathways. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with NUAK1, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:11430832, ECO:0000269|PubMed:12805220, ECO:0000269|PubMed:14517248, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15016379, ECO:0000269|PubMed:15733851, ECO:0000269|PubMed:15987703, ECO:0000269|PubMed:17108107, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.; FUNCTION: [Isoform 2]: Has a role in spermiogenesis. {ECO:0000250}.
Q92499 DDX1 S113 Sugiyama ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}.
P27824 CANX S74 Sugiyama Calnexin (IP90) (Major histocompatibility complex class I antigen-binding protein p88) (p90) Calcium-binding protein that interacts with newly synthesized monoglucosylated glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at the synapse.
K7ENP7 None S26 ochoa INO80 complex subunit C None
O00294 TULP1 S219 ochoa Tubby-related protein 1 (Tubby-like protein 1) Required for normal development of photoreceptor synapses. Required for normal photoreceptor function and for long-term survival of photoreceptor cells. Interacts with cytoskeleton proteins and may play a role in protein transport in photoreceptor cells (By similarity). Binds lipids, especially phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 3,4-bisphosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 3,4,5-bisphosphate, phosphatidylserine and phosphatidic acid (in vitro). Contribute to stimulation of phagocytosis of apoptotic retinal pigment epithelium (RPE) cells and macrophages. {ECO:0000250, ECO:0000269|PubMed:16303976, ECO:0000269|PubMed:19837063}.
O14544 SOCS6 S70 ochoa Suppressor of cytokine signaling 6 (SOCS-6) (Cytokine-inducible SH2 protein 4) (CIS-4) (Suppressor of cytokine signaling 4) (SOCS-4) SOCS family proteins form part of a classical negative feedback system that regulates cytokine signal transduction. May be a substrate recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (By similarity). Regulates KIT degradation by ubiquitination of the tyrosine-phosphorylated receptor. {ECO:0000250, ECO:0000269|PubMed:21030588}.
O14617 AP3D1 S721 ochoa AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}.
O15440 ABCC5 S502 ochoa ATP-binding cassette sub-family C member 5 (EC 7.6.2.-) (EC 7.6.2.2) (Multi-specific organic anion transporter C) (MOAT-C) (Multidrug resistance-associated protein 5) (SMRP) (pABC11) ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of endogenous metabolites such as cAMP and cGMP, folic acid and N-lactoyl-amino acids (in vitro) (PubMed:10893247, PubMed:12637526, PubMed:12695538, PubMed:15899835, PubMed:17229149, PubMed:25964343). Also acts as a general glutamate conjugate and analog transporter that can limit the brain levels of endogenous metabolites, drugs, and toxins (PubMed:26515061). Confers resistance to the antiviral agent PMEA (PubMed:12695538). Able to transport several anticancer drugs including methotrexate, and nucleotide analogs in vitro, however it does with low affinity, thus the exact role of ABCC5 in mediating resistance still needs to be elucidated (PubMed:10840050, PubMed:12435799, PubMed:12695538, PubMed:15899835). Acts as a heme transporter required for the translocation of cytosolic heme to the secretory pathway (PubMed:24836561). May play a role in energy metabolism by regulating the glucagon-like peptide 1 (GLP-1) secretion from enteroendocrine cells (By similarity). {ECO:0000250|UniProtKB:Q9R1X5, ECO:0000269|PubMed:10840050, ECO:0000269|PubMed:10893247, ECO:0000269|PubMed:12435799, ECO:0000269|PubMed:12637526, ECO:0000269|PubMed:12695538, ECO:0000269|PubMed:15899835, ECO:0000269|PubMed:17229149, ECO:0000269|PubMed:24836561, ECO:0000269|PubMed:25964343, ECO:0000269|PubMed:26515061}.
O43314 PPIP5K2 S38 ochoa Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 (EC 2.7.4.24) (Diphosphoinositol pentakisphosphate kinase 2) (Histidine acid phosphatase domain-containing protein 1) (InsP6 and PP-IP5 kinase 2) (VIP1 homolog 2) (hsVIP2) Bifunctional inositol kinase that acts in concert with the IP6K kinases IP6K1, IP6K2 and IP6K3 to synthesize the diphosphate group-containing inositol pyrophosphates diphosphoinositol pentakisphosphate, PP-InsP5, and bis-diphosphoinositol tetrakisphosphate, (PP)2-InsP4 (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). PP-InsP5 and (PP)2-InsP4, also respectively called InsP7 and InsP8, regulate a variety of cellular processes, including apoptosis, vesicle trafficking, cytoskeletal dynamics, exocytosis, insulin signaling and neutrophil activation (PubMed:17690096, PubMed:17702752, PubMed:21222653, PubMed:29590114). Phosphorylates inositol hexakisphosphate (InsP6) at position 1 to produce PP-InsP5 which is in turn phosphorylated by IP6Ks to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Alternatively, phosphorylates PP-InsP5 at position 1, produced by IP6Ks from InsP6, to produce (PP)2-InsP4 (PubMed:17690096, PubMed:17702752). Required for normal hearing (PubMed:29590114). {ECO:0000269|PubMed:17690096, ECO:0000269|PubMed:17702752, ECO:0000269|PubMed:21222653, ECO:0000269|PubMed:29590114}.
O43432 EIF4G3 S495 ochoa Eukaryotic translation initiation factor 4 gamma 3 (eIF-4-gamma 3) (eIF-4G 3) (eIF4G 3) (eIF-4-gamma II) (eIF4GII) Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:9418880). Functional homolog of EIF4G1 (PubMed:9418880). {ECO:0000269|PubMed:9418880}.
O60870 KIN S238 ochoa DNA/RNA-binding protein KIN17 (Binding to curved DNA) (KIN, antigenic determinant of recA protein homolog) Involved in DNA replication and the cellular response to DNA damage. May participate in DNA replication factories and create a bridge between DNA replication and repair mediated by high molecular weight complexes. May play a role in illegitimate recombination and regulation of gene expression. May participate in mRNA processing. Binds, in vitro, to double-stranded DNA. Also shown to bind preferentially to curved DNA in vitro and in vivo (By similarity). Binds via its C-terminal domain to RNA in vitro. {ECO:0000250|UniProtKB:Q8K339, ECO:0000269|PubMed:11880372, ECO:0000269|PubMed:12359749, ECO:0000269|PubMed:12754299, ECO:0000269|PubMed:12853634, ECO:0000269|PubMed:15831485, ECO:0000269|PubMed:17045609}.
O75363 BCAS1 S323 ochoa Breast carcinoma-amplified sequence 1 (Amplified and overexpressed in breast cancer) (Novel amplified in breast cancer 1) Required for myelination. {ECO:0000250|UniProtKB:Q80YN3}.
O76021 RSL1D1 T415 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76039 CDKL5 S394 ochoa Cyclin-dependent kinase-like 5 (EC 2.7.11.22) (Serine/threonine-protein kinase 9) Mediates phosphorylation of MECP2 (PubMed:15917271, PubMed:16935860). May regulate ciliogenesis (PubMed:29420175). {ECO:0000269|PubMed:15917271, ECO:0000269|PubMed:16935860, ECO:0000269|PubMed:29420175}.
P10398 ARAF S272 ochoa Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}.
P11388 TOP2A S1474 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P17858 PFKL S377 ochoa ATP-dependent 6-phosphofructokinase, liver type (ATP-PFK) (PFK-L) (EC 2.7.1.11) (6-phosphofructokinase type B) (Phosphofructo-1-kinase isozyme B) (PFK-B) (Phosphohexokinase) Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis (PubMed:22923583). Negatively regulates the phagocyte oxidative burst in response to bacterial infection by controlling cellular NADPH biosynthesis and NADPH oxidase-derived reactive oxygen species. Upon macrophage activation, drives the metabolic switch toward glycolysis, thus preventing glucose turnover that produces NADPH via pentose phosphate pathway (By similarity). {ECO:0000250|UniProtKB:P12382, ECO:0000255|HAMAP-Rule:MF_03184, ECO:0000269|PubMed:22923583}.
P18887 XRCC1 S418 ochoa DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}.
P25054 APC S2034 psp Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P30533 LRPAP1 S139 ochoa Alpha-2-macroglobulin receptor-associated protein (Alpha-2-MRAP) (Low density lipoprotein receptor-related protein-associated protein 1) (RAP) Molecular chaperone for LDL receptor-related proteins that may regulate their ligand binding activity along the secretory pathway. {ECO:0000269|PubMed:32296178, ECO:0000269|PubMed:7774585}.
P32314 FOXN2 S369 psp Forkhead box protein N2 (Human T-cell leukemia virus enhancer factor) Binds to the purine-rich region in HTLV-I LTR.
P33981 TTK S837 ochoa Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P35610 SOAT1 S33 ochoa Sterol O-acyltransferase 1 (EC 2.3.1.26) (Acyl-coenzyme A:cholesterol acyltransferase 1) (ACAT-1) (Cholesterol acyltransferase 1) Catalyzes the formation of fatty acid-cholesterol esters, which are less soluble in membranes than cholesterol (PubMed:16154994, PubMed:16647063, PubMed:32433613, PubMed:32433614, PubMed:32944968, PubMed:9020103). Plays a role in lipoprotein assembly and dietary cholesterol absorption (PubMed:16154994, PubMed:9020103). Preferentially utilizes oleoyl-CoA ((9Z)-octadecenoyl-CoA) as a substrate: shows a higher activity towards an acyl-CoA substrate with a double bond at the delta-9 position (9Z) than towards saturated acyl-CoA or an unsaturated acyl-CoA with a double bond at the delta-7 (7Z) or delta-11 (11Z) positions (PubMed:11294643, PubMed:32433614). {ECO:0000269|PubMed:11294643, ECO:0000269|PubMed:16154994, ECO:0000269|PubMed:16647063, ECO:0000269|PubMed:32433613, ECO:0000269|PubMed:32433614, ECO:0000269|PubMed:32944968, ECO:0000269|PubMed:9020103}.
P36578 RPL4 S365 ochoa Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P40222 TXLNA S148 ochoa Alpha-taxilin May be involved in intracellular vesicle traffic and potentially in calcium-dependent exocytosis in neuroendocrine cells.
P41182 BCL6 S361 ochoa B-cell lymphoma 6 protein (BCL-6) (B-cell lymphoma 5 protein) (BCL-5) (Protein LAZ-3) (Zinc finger and BTB domain-containing protein 27) (Zinc finger protein 51) Transcriptional repressor mainly required for germinal center (GC) formation and antibody affinity maturation which has different mechanisms of action specific to the lineage and biological functions. Forms complexes with different corepressors and histone deacetylases to repress the transcriptional expression of different subsets of target genes. Represses its target genes by binding directly to the DNA sequence 5'-TTCCTAGAA-3' (BCL6-binding site) or indirectly by repressing the transcriptional activity of transcription factors. In GC B-cells, represses genes that function in differentiation, inflammation, apoptosis and cell cycle control, also autoregulates its transcriptional expression and up-regulates, indirectly, the expression of some genes important for GC reactions, such as AICDA, through the repression of microRNAs expression, like miR155. An important function is to allow GC B-cells to proliferate very rapidly in response to T-cell dependent antigens and tolerate the physiological DNA breaks required for immunglobulin class switch recombination and somatic hypermutation without inducing a p53/TP53-dependent apoptotic response. In follicular helper CD4(+) T-cells (T(FH) cells), promotes the expression of T(FH)-related genes but inhibits the differentiation of T(H)1, T(H)2 and T(H)17 cells. Also required for the establishment and maintenance of immunological memory for both T- and B-cells. Suppresses macrophage proliferation through competition with STAT5 for STAT-binding motifs binding on certain target genes, such as CCL2 and CCND2. In response to genotoxic stress, controls cell cycle arrest in GC B-cells in both p53/TP53-dependedent and -independent manners. Besides, also controls neurogenesis through the alteration of the composition of NOTCH-dependent transcriptional complexes at selective NOTCH targets, such as HES5, including the recruitment of the deacetylase SIRT1 and resulting in an epigenetic silencing leading to neuronal differentiation. {ECO:0000269|PubMed:10981963, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12414651, ECO:0000269|PubMed:12504096, ECO:0000269|PubMed:15454082, ECO:0000269|PubMed:15577913, ECO:0000269|PubMed:16142238, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:18212045, ECO:0000269|PubMed:18280243, ECO:0000269|PubMed:22113614, ECO:0000269|PubMed:23166356, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:9649500}.
P42166 TMPO S177 ochoa Lamina-associated polypeptide 2, isoform alpha (Thymopoietin isoform alpha) (TP alpha) (Thymopoietin-related peptide isoform alpha) (TPRP isoform alpha) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May be involved in the structural organization of the nucleus and in the post-mitotic nuclear assembly. Plays an important role, together with LMNA, in the nuclear anchorage of RB1.; FUNCTION: TP and TP5 may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
P51532 SMARCA4 S1421 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51787 KCNQ1 T404 ochoa Potassium voltage-gated channel subfamily KQT member 1 (IKs producing slow voltage-gated potassium channel subunit alpha KvLQT1) (KQT-like 1) (Voltage-gated potassium channel subunit Kv7.1) Pore-forming subunit of the voltage-gated potassium (Kv) channel involved in the regulation of cardiomyocyte excitability and important in normal development and functions of myocardium, inner ear, stomach and colon (PubMed:10646604, PubMed:25441029). Associates with KCNE beta subunits that modulates current kinetics (PubMed:10646604, PubMed:11101505, PubMed:19687231, PubMed:8900283, PubMed:9108097, PubMed:9312006). Induces a voltage-dependent current by rapidly activating and slowly deactivating potassium-selective outward current (PubMed:10646604, PubMed:11101505, PubMed:25441029, PubMed:8900283, PubMed:9108097, PubMed:9312006). Also promotes a delayed voltage activated potassium current showing outward rectification characteristic (By similarity). During beta-adrenergic receptor stimulation, participates in cardiac repolarization by associating with KCNE1 to form the I(Ks) cardiac potassium current that increases the amplitude and slows down the activation kinetics of outward potassium current I(Ks) (By similarity) (PubMed:10646604, PubMed:11101505, PubMed:8900283, PubMed:9108097, PubMed:9312006). Muscarinic agonist oxotremorine-M strongly suppresses KCNQ1/KCNE1 current (PubMed:10713961). When associated with KCNE3, forms the potassium channel that is important for cyclic AMP-stimulated intestinal secretion of chloride ions (PubMed:10646604). This interaction with KCNE3 is reduced by 17beta-estradiol, resulting in the reduction of currents (By similarity). During conditions of increased substrate load, maintains the driving force for proximal tubular and intestinal sodium ions absorption, gastric acid secretion, and cAMP-induced jejunal chloride ions secretion (By similarity). Allows the provision of potassium ions to the luminal membrane of the secretory canaliculus in the resting state as well as during stimulated acid secretion (By similarity). When associated with KCNE2, forms a heterooligomer complex leading to currents with an apparently instantaneous activation, a rapid deactivation process and a linear current-voltage relationship and decreases the amplitude of the outward current (PubMed:11101505). When associated with KCNE4, inhibits voltage-gated potassium channel activity (PubMed:19687231). When associated with KCNE5, this complex only conducts current upon strong and continued depolarization (PubMed:12324418). Also forms a heterotetramer with KCNQ5; has a voltage-gated potassium channel activity (PubMed:24855057). Binds with phosphatidylinositol 4,5-bisphosphate (PubMed:25037568). KCNQ1-KCNE2 channel associates with Na(+)-coupled myo-inositol symporter in the apical membrane of choroid plexus epithelium and regulates the myo-inositol gradient between blood and cerebrospinal fluid with an impact on neuron excitability (By similarity). {ECO:0000250|UniProtKB:P97414, ECO:0000250|UniProtKB:Q9Z0N7, ECO:0000269|PubMed:10646604, ECO:0000269|PubMed:10713961, ECO:0000269|PubMed:11101505, ECO:0000269|PubMed:12324418, ECO:0000269|PubMed:19687231, ECO:0000269|PubMed:24595108, ECO:0000269|PubMed:24855057, ECO:0000269|PubMed:25037568, ECO:0000269|PubMed:8900283, ECO:0000269|PubMed:9108097, ECO:0000269|PubMed:9312006}.; FUNCTION: [Isoform 2]: Non-functional alone but modulatory when coexpressed with the full-length isoform 1. {ECO:0000269|PubMed:9305853}.
P78362 SRPK2 S248 ochoa SRSF protein kinase 2 (EC 2.7.11.1) (SFRS protein kinase 2) (Serine/arginine-rich protein-specific kinase 2) (SR-protein-specific kinase 2) [Cleaved into: SRSF protein kinase 2 N-terminal; SRSF protein kinase 2 C-terminal] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing (PubMed:18559500, PubMed:21056976, PubMed:9472028). Promotes neuronal apoptosis by up-regulating cyclin-D1 (CCND1) expression (PubMed:19592491). This is done by the phosphorylation of SRSF2, leading to the suppression of p53/TP53 phosphorylation thereby relieving the repressive effect of p53/TP53 on cyclin-D1 (CCND1) expression (PubMed:21205200). Phosphorylates ACIN1, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not cyclin A2 up-regulation (PubMed:18559500). Plays an essential role in spliceosomal B complex formation via the phosphorylation of DDX23/PRP28 (PubMed:18425142). Probably by phosphorylating DDX23, leads to the suppression of incorrect R-loops formed during transcription; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:28076779). Can mediate hepatitis B virus (HBV) core protein phosphorylation (PubMed:12134018). Plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles (PubMed:16122776). {ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:18425142, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21056976, ECO:0000269|PubMed:21205200, ECO:0000269|PubMed:28076779, ECO:0000269|PubMed:9472028}.
Q01082 SPTBN1 S769 ochoa Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}.
Q02539 H1-1 S107 ochoa Histone H1.1 (Histone H1a) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
Q02952 AKAP12 S514 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A S3215 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q06787 FMR1 S599 ochoa Fragile X messenger ribonucleoprotein 1 (Fragile X messenger ribonucleoprotein) (FMRP) (Protein FMR-1) Multifunctional polyribosome-associated RNA-binding protein that plays a central role in neuronal development and synaptic plasticity through the regulation of alternative mRNA splicing, mRNA stability, mRNA dendritic transport and postsynaptic local protein synthesis of target mRNAs (PubMed:12417522, PubMed:16631377, PubMed:18653529, PubMed:19166269, PubMed:23235829, PubMed:25464849). Acts as an mRNA regulator by mediating formation of some phase-separated membraneless compartment: undergoes liquid-liquid phase separation upon binding to target mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (PubMed:12417522, PubMed:30765518, PubMed:31439799). Plays a role in the alternative splicing of its own mRNA (PubMed:18653529). Stabilizes the scaffolding postsynaptic density protein DLG4/PSD-95 and the myelin basic protein (MBP) mRNAs in hippocampal neurons and glial cells, respectively; this stabilization is further increased in response to metabotropic glutamate receptor (mGluR) stimulation (By similarity). Plays a role in selective delivery of a subset of dendritic mRNAs to synaptic sites in response to mGluR activation in a kinesin-dependent manner (By similarity). Undergoes liquid-liquid phase separation following phosphorylation and interaction with CAPRIN1, promoting formation of cytoplasmic ribonucleoprotein granules that concentrate mRNAs with factors that inhibit translation and mediate deadenylation of target mRNAs (PubMed:31439799). Acts as a repressor of mRNA translation in synaptic regions by mediating formation of neuronal ribonucleoprotein granules and promoting recruitmtent of EIF4EBP2 (PubMed:30765518). Plays a role as a repressor of mRNA translation during the transport of dendritic mRNAs to postsynaptic dendritic spines (PubMed:11157796, PubMed:11532944, PubMed:12594214, PubMed:23235829). Component of the CYFIP1-EIF4E-FMR1 complex which blocks cap-dependent mRNA translation initiation (By similarity). Represses mRNA translation by stalling ribosomal translocation during elongation (By similarity). Reports are contradictory with regards to its ability to mediate translation inhibition of MBP mRNA in oligodendrocytes (PubMed:23891804). Also involved in the recruitment of the RNA helicase MOV10 to a subset of mRNAs and hence regulates microRNA (miRNA)-mediated translational repression by AGO2 (PubMed:14703574, PubMed:17057366, PubMed:25464849). Facilitates the assembly of miRNAs on specific target mRNAs (PubMed:17057366). Also plays a role as an activator of mRNA translation of a subset of dendritic mRNAs at synapses (PubMed:19097999, PubMed:19166269). In response to mGluR stimulation, FMR1-target mRNAs are rapidly derepressed, allowing for local translation at synapses (By similarity). Binds to a large subset of dendritic mRNAs that encode a myriad of proteins involved in pre- and postsynaptic functions (PubMed:11157796, PubMed:11719189, PubMed:12594214, PubMed:17417632, PubMed:23235829, PubMed:24448548, PubMed:7692601). Binds to 5'-ACU[GU]-3' and/or 5'-[AU]GGA-3' RNA consensus sequences within mRNA targets, mainly at coding sequence (CDS) and 3'-untranslated region (UTR) and less frequently at 5'-UTR (PubMed:23235829). Binds to intramolecular G-quadruplex structures in the 5'- or 3'-UTRs of mRNA targets (PubMed:11719189, PubMed:18579868, PubMed:25464849, PubMed:25692235). Binds to G-quadruplex structures in the 3'-UTR of its own mRNA (PubMed:11532944, PubMed:12594214, PubMed:15282548, PubMed:18653529, PubMed:7692601). Also binds to RNA ligands harboring a kissing complex (kc) structure; this binding may mediate the association of FMR1 with polyribosomes (PubMed:15805463). Binds mRNAs containing U-rich target sequences (PubMed:12927206). Binds to a triple stem-loop RNA structure, called Sod1 stem loop interacting with FMRP (SoSLIP), in the 5'-UTR region of superoxide dismutase SOD1 mRNA (PubMed:19166269). Binds to the dendritic, small non-coding brain cytoplasmic RNA 1 (BC1); which may increase the association of the CYFIP1-EIF4E-FMR1 complex to FMR1 target mRNAs at synapses (By similarity). Plays a role in mRNA nuclear export (PubMed:31753916). Specifically recognizes and binds a subset of N6-methyladenosine (m6A)-containing mRNAs, promoting their nuclear export in a XPO1/CRM1-dependent manner (PubMed:31753916). Together with export factor NXF2, is involved in the regulation of the NXF1 mRNA stability in neurons (By similarity). Associates with export factor NXF1 mRNA-containing ribonucleoprotein particles (mRNPs) in a NXF2-dependent manner (By similarity). Binds to a subset of miRNAs in the brain (PubMed:14703574, PubMed:17057366). May associate with nascent transcripts in a nuclear protein NXF1-dependent manner (PubMed:18936162). In vitro, binds to RNA homomer; preferentially on poly(G) and to a lesser extent on poly(U), but not on poly(A) or poly(C) (PubMed:12950170, PubMed:15381419, PubMed:7688265, PubMed:7781595, PubMed:8156595). Moreover, plays a role in the modulation of the sodium-activated potassium channel KCNT1 gating activity (PubMed:20512134). Negatively regulates the voltage-dependent calcium channel current density in soma and presynaptic terminals of dorsal root ganglion (DRG) neurons, and hence regulates synaptic vesicle exocytosis (By similarity). Modulates the voltage-dependent calcium channel CACNA1B expression at the plasma membrane by targeting the channels for proteasomal degradation (By similarity). Plays a role in regulation of MAP1B-dependent microtubule dynamics during neuronal development (By similarity). Has been shown to play a translation-independent role in the modulation of presynaptic action potential (AP) duration and neurotransmitter release via large-conductance calcium-activated potassium (BK) channels in hippocampal and cortical excitatory neurons (PubMed:25561520). May be involved in the control of DNA damage response (DDR) mechanisms through the regulation of ATR-dependent signaling pathways such as histone H2AX/H2A.x and BRCA1 phosphorylations (PubMed:24813610). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates (PubMed:39106863). {ECO:0000250|UniProtKB:P35922, ECO:0000250|UniProtKB:Q80WE1, ECO:0000269|PubMed:11157796, ECO:0000269|PubMed:11532944, ECO:0000269|PubMed:11719189, ECO:0000269|PubMed:12417522, ECO:0000269|PubMed:12594214, ECO:0000269|PubMed:12927206, ECO:0000269|PubMed:12950170, ECO:0000269|PubMed:14703574, ECO:0000269|PubMed:15282548, ECO:0000269|PubMed:15381419, ECO:0000269|PubMed:15805463, ECO:0000269|PubMed:16631377, ECO:0000269|PubMed:17057366, ECO:0000269|PubMed:17417632, ECO:0000269|PubMed:18579868, ECO:0000269|PubMed:18653529, ECO:0000269|PubMed:18936162, ECO:0000269|PubMed:19097999, ECO:0000269|PubMed:19166269, ECO:0000269|PubMed:20512134, ECO:0000269|PubMed:23235829, ECO:0000269|PubMed:23891804, ECO:0000269|PubMed:24448548, ECO:0000269|PubMed:24813610, ECO:0000269|PubMed:25464849, ECO:0000269|PubMed:25561520, ECO:0000269|PubMed:25692235, ECO:0000269|PubMed:30765518, ECO:0000269|PubMed:31439799, ECO:0000269|PubMed:31753916, ECO:0000269|PubMed:39106863, ECO:0000269|PubMed:7688265, ECO:0000269|PubMed:7692601, ECO:0000269|PubMed:7781595, ECO:0000269|PubMed:8156595}.; FUNCTION: [Isoform 10]: Binds to RNA homomer; preferentially on poly(G) and to a lesser extent on poly(U), but not on poly(A) or poly(C) (PubMed:24204304). May bind to RNA in Cajal bodies (PubMed:24204304). {ECO:0000269|PubMed:24204304}.; FUNCTION: [Isoform 6]: Binds to RNA homomer; preferentially on poly(G) and to a lesser extent on poly(U), but not on poly(A) or poly(C) (PubMed:24204304). May bind to RNA in Cajal bodies (PubMed:24204304). {ECO:0000269|PubMed:24204304}.; FUNCTION: (Microbial infection) Acts as a positive regulator of influenza A virus (IAV) replication. Required for the assembly and nuclear export of the viral ribonucleoprotein (vRNP) components. {ECO:0000269|PubMed:24514761}.
Q12904 AIMP1 S106 ochoa Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}.
Q13428 TCOF1 T1385 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13459 MYO9B S766 ochoa Unconventional myosin-IXb (Unconventional myosin-9b) Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}.
Q14141 SEPTIN6 S408 ochoa Septin-6 Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Involved in cytokinesis. May play a role in HCV RNA replication. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17229681, ECO:0000269|PubMed:17803907, ECO:0000305|PubMed:25588830}.
Q14684 RRP1B S422 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14684 RRP1B S579 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q15648 MED1 S672 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q16181 SEPTIN7 S334 ochoa Septin-7 (CDC10 protein homolog) Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPTIN12, SEPTIN6, SEPTIN2 and probably SEPTIN4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation (PubMed:25588830). {ECO:0000269|PubMed:17803907, ECO:0000269|PubMed:18460473, ECO:0000305|PubMed:25588830}.
Q5T200 ZC3H13 S265 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5TB80 CEP162 S24 ochoa Centrosomal protein of 162 kDa (Cep162) (Protein QN1 homolog) Required to promote assembly of the transition zone in primary cilia. Acts by specifically recognizing and binding the axonemal microtubule. Localizes to the distal ends of centrioles before ciliogenesis and directly binds to axonemal microtubule, thereby promoting and restricting transition zone formation specifically at the cilia base. Required to mediate CEP290 association with microtubules. {ECO:0000269|PubMed:23644468}.
Q5VT97 SYDE2 S626 ochoa Rho GTPase-activating protein SYDE2 (Synapse defective protein 1 homolog 2) (Protein syd-1 homolog 2) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}.
Q6P2E9 EDC4 S892 ochoa Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}.
Q6PI98 INO80C S26 ochoa INO80 complex subunit C (IES6 homolog) (hIes6) Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair.
Q6ZNL6 FGD5 S1330 ochoa FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}.
Q8IV61 RASGRP3 S628 ochoa Ras guanyl-releasing protein 3 (Calcium and DAG-regulated guanine nucleotide exchange factor III) (Guanine nucleotide exchange factor for Rap1) Guanine nucleotide exchange factor (GEF) for Ras and Rap1. {ECO:0000269|PubMed:10934204}.
Q8IX21 SLF2 S485 ochoa SMC5-SMC6 complex localization factor protein 2 (Smc5/6 localization factor 1) Plays a role in the DNA damage response (DDR) pathway by regulating postreplication repair of UV-damaged DNA and genomic stability maintenance (PubMed:25931565). The SLF1-SLF2 complex acts to link RAD18 with the SMC5-SMC6 complex at replication-coupled interstrand cross-links (ICL) and DNA double-strand breaks (DSBs) sites on chromatin during DNA repair in response to stalled replication forks (PubMed:25931565). Promotes the recruitment of the SMC5-SMC6 complex to DNA lesions (PubMed:25931565). Plays a role in SMC5-SMC6 complex recruitment for viral restriction. Forms a complex with SIMC1 and this complex is required to recruit SMC5-SMC6 complex to PML nuclear bodies and sites of viral replication (PubMed:36373674). {ECO:0000269|PubMed:25931565, ECO:0000269|PubMed:36373674}.
Q8N4X5 AFAP1L2 S309 ochoa Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}.
Q8N960 CEP120 S347 ochoa Centrosomal protein of 120 kDa (Cep120) (Coiled-coil domain-containing protein 100) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors and for proper positioning of neurons during brain development. Also implicated in the migration and selfrenewal of neural progenitors. Required for centriole duplication and maturation during mitosis and subsequent ciliogenesis (By similarity). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). {ECO:0000250|UniProtKB:Q7TSG1, ECO:0000269|PubMed:27185865}.
Q8NCN4 RNF169 S427 ochoa E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}.
Q8NEY1 NAV1 S194 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8NHM5 KDM2B S914 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8WVM8 SCFD1 S297 ochoa Sec1 family domain-containing protein 1 (SLY1 homolog) (Sly1p) (Syntaxin-binding protein 1-like 2) Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its interaction with COG4. Involved in vesicular transport between the endoplasmic reticulum and the Golgi (By similarity). {ECO:0000250}.
Q96B97 SH3KBP1 S193 ochoa SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}.
Q96C24 SYTL4 S211 ochoa Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}.
Q96M11 HYLS1 S79 ochoa Centriolar and ciliogenesis-associated protein HYLS1 (Hydrolethalus syndrome protein 1) Plays a role in ciliogenesis. {ECO:0000250|UniProtKB:A0A1L8ER70, ECO:0000250|UniProtKB:Q95X94}.
Q9BQ39 DDX50 T47 ochoa ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}.
Q9BTC0 DIDO1 S500 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9H1E3 NUCKS1 S181 ochoa|psp Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9NRX4 PHPT1 S94 ochoa 14 kDa phosphohistidine phosphatase (EC 3.9.1.3) (Phosphohistidine phosphatase 1) (PHPT1) (Protein histidine phosphatase) (PHP) (Protein janus-A homolog) Exhibits phosphohistidine phosphatase activity. {ECO:0000269|PubMed:19836471, ECO:0000269|PubMed:25574816}.
Q9NSI6 BRWD1 S2166 ochoa Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}.
Q9NWH9 SLTM S289 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9P275 USP36 S646 ochoa Ubiquitin carboxyl-terminal hydrolase 36 (EC 2.3.2.-) (EC 3.4.19.12) (Deubiquitinating enzyme 36) (Ubiquitin thioesterase 36) (Ubiquitin-specific-processing protease 36) Deubiquitinase essential for the regulation of nucleolar structure and function (PubMed:19208757, PubMed:22902402, PubMed:29273634). Required for cell and organism viability (PubMed:19208757, PubMed:22902402, PubMed:29273634). Plays an important role in ribosomal RNA processing and protein synthesis, which is mediated, at least in part, through deubiquitination of DHX33, NPM1 and FBL, regulating their protein stability (PubMed:19208757, PubMed:22902402, PubMed:29273634, PubMed:36912080). Functions as a transcriptional repressor by deubiquiting histone H2B at the promoters of genes critical for cellular differentiation, such as CDKN1A, thereby preventing histone H3 'Lys-4' trimethylation (H3K4) (PubMed:29274341). Specifically deubiquitinates MYC in the nucleolus, leading to prevent MYC degradation by the proteasome: acts by specifically interacting with isoform 3 of FBXW7 (FBW7gamma) in the nucleolus and counteracting ubiquitination of MYC by the SCF(FBW7) complex (PubMed:25775507). In contrast, it does not interact with isoform 1 of FBXW7 (FBW7alpha) in the nucleoplasm (PubMed:25775507). Interacts to and regulates the actions of E3 ubiquitin-protein ligase NEDD4L over substrates such as NTRK1, KCNQ2 and KCNQ3, affecting their expression an functions (PubMed:27445338). Deubiquitinates SOD2, regulates SOD2 protein stability (PubMed:21268071). Deubiquitinase activity is required to control selective autophagy activation by ubiquitinated proteins (PubMed:22622177). Promotes CEP63 stabilization through 'Lys-48'-linked deubiquitination leading to increased stability (PubMed:35989368). Acts as a SUMO ligase to promote EXOSC10 sumoylation critical for the nucleolar RNA exosome function in rRNA processing (PubMed:36912080). Binds to pre-rRNAs (PubMed:36912080). {ECO:0000269|PubMed:19208757, ECO:0000269|PubMed:21268071, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:22902402, ECO:0000269|PubMed:25775507, ECO:0000269|PubMed:27445338, ECO:0000269|PubMed:29273634, ECO:0000269|PubMed:29274341, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36912080}.
Q9UEW8 STK39 S323 psp STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}.
Q9UGU5 HMGXB4 S155 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9ULV4 CORO1C S434 ochoa Coronin-1C (Coronin-3) (hCRNN4) Plays a role in directed cell migration by regulating the activation and subcellular location of RAC1 (PubMed:25074804, PubMed:25925950). Increases the presence of activated RAC1 at the leading edge of migrating cells (PubMed:25074804, PubMed:25925950). Required for normal organization of the cytoskeleton, including the actin cytoskeleton, microtubules and the vimentin intermediate filaments (By similarity). Plays a role in endoplasmic reticulum-associated endosome fission: localizes to endosome membrane tubules and promotes recruitment of TMCC1, leading to recruitment of the endoplasmic reticulum to endosome tubules for fission (PubMed:30220460). Endosome membrane fission of early and late endosomes is essential to separate regions destined for lysosomal degradation from carriers to be recycled to the plasma membrane (PubMed:30220460). Required for normal cell proliferation, cell migration, and normal formation of lamellipodia (By similarity). Required for normal distribution of mitochondria within cells (By similarity). {ECO:0000250|UniProtKB:Q9WUM4, ECO:0000269|PubMed:25074804, ECO:0000269|PubMed:25925950, ECO:0000269|PubMed:30220460, ECO:0000269|PubMed:34106209}.; FUNCTION: [Isoform 3]: Involved in myogenic differentiation. {ECO:0000269|PubMed:19651142}.
Q9Y520 PRRC2C S1282 ochoa Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}.
Q9UQ35 SRRM2 S172 Sugiyama Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
P23381 WARS1 S353 Sugiyama Tryptophan--tRNA ligase, cytoplasmic (EC 6.1.1.2) (Interferon-induced protein 53) (IFP53) (Tryptophanyl-tRNA synthetase) (TrpRS) (hWRS) [Cleaved into: T1-TrpRS; T2-TrpRS] Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp). {ECO:0000269|PubMed:1373391, ECO:0000269|PubMed:1761529, ECO:0000269|PubMed:28369220}.; FUNCTION: [Isoform 1]: Has no angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.; FUNCTION: [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity (PubMed:11773625, PubMed:11773626, PubMed:14630953). Inhibits fluid shear stress-activated responses of endothelial cells (PubMed:14630953). Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression (PubMed:14630953). {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626, ECO:0000269|PubMed:14630953}.; FUNCTION: [Isoform 2]: Has an angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.
Q8NBS9 TXNDC5 S125 Sugiyama Thioredoxin domain-containing protein 5 (EC 1.8.4.-) (EC 5.3.4.1) (Endoplasmic reticulum resident protein 46) (ER protein 46) (ERp46) (Thioredoxin-like protein p46) Protein disulfide isomerase of the endoplasmic reticulum lumen involved in the formation of disulfide bonds in proteins. Can reduce insulin disulfide bonds. {ECO:0000250|UniProtKB:Q91W90}.
A0A0A6YYK5 None S23 ochoa Uncharacterized protein None
A2A2Y4 FRMD3 S416 ochoa FERM domain-containing protein 3 (Band 4.1-like protein 4O) (Ovary type protein 4.1) (4.1O) Putative tumor suppressor gene that may be implicated in the origin and progression of lung cancer. {ECO:0000269|PubMed:17260017}.
H0YHG0 None S444 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
O14924 RGS12 S874 ochoa Regulator of G-protein signaling 12 (RGS12) Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. {ECO:0000250|UniProtKB:O08774}.; FUNCTION: [Isoform 5]: Behaves as a cell cycle-dependent transcriptional repressor, promoting inhibition of S-phase DNA synthesis. {ECO:0000269|PubMed:12024043}.
O60231 DHX16 S106 ochoa Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}.
O60583 CCNT2 S424 ochoa Cyclin-T2 (CycT2) Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin T) complex, also called positive transcription elongation factor B (P-TEFB), which is proposed to facilitate the transition from abortive to production elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNAP II) (PubMed:15563843, PubMed:9499409). The activity of this complex is regulated by binding with 7SK snRNA (PubMed:11713533). Plays a role during muscle differentiation; P-TEFB complex interacts with MYOD1; this tripartite complex promotes the transcriptional activity of MYOD1 through its CDK9-mediated phosphorylation and binds the chromatin of promoters and enhancers of muscle-specific genes; this event correlates with hyperphosphorylation of the CTD domain of RNA pol II (By similarity). In addition, enhances MYOD1-dependent transcription through interaction with PKN1 (PubMed:16331689). Involved in early embryo development (By similarity). {ECO:0000250|UniProtKB:Q7TQK0, ECO:0000269|PubMed:11713533, ECO:0000269|PubMed:15563843, ECO:0000269|PubMed:16331689, ECO:0000269|PubMed:9499409}.; FUNCTION: (Microbial infection) Promotes transcriptional activation of early and late herpes simplex virus 1/HHV-1 promoters. {ECO:0000269|PubMed:21509660}.
O60664 PLIN3 S148 ochoa Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}.
O75762 TRPA1 S428 psp Transient receptor potential cation channel subfamily A member 1 (Ankyrin-like with transmembrane domains protein 1) (Transformation-sensitive protein p120) (p120) (Wasabi receptor) Ligand-activated Ca(2+)-permeable, nonselective cation channel involved in pain detection and possibly also in cold perception, oxygen concentration perception, cough, itch, and inner ear function (PubMed:17259981, PubMed:21195050, PubMed:21873995, PubMed:23199233, PubMed:25389312, PubMed:33152265). Has a relatively high Ca(2+) selectivity, with a preference for divalent over monovalent cations (Ca(2+) > Ba(2+) > Mg(2+) > NH4(+) > Li(+) > K(+)), the influx of cation into the cytoplasm leads to membrane depolarization (PubMed:19202543, PubMed:21195050). Has a central role in the pain response to endogenous inflammatory mediators, such as bradykinin and to a diverse array of irritants. Activated by a large variety of structurally unrelated electrophilic and non-electrophilic chemical compounds, such as allylthiocyanate (AITC) from mustard oil or wasabi, cinnamaldehyde, diallyl disulfide (DADS) from garlic, and acrolein, an environmental irritant (PubMed:20547126, PubMed:25389312, PubMed:27241698, PubMed:30878828). Electrophilic ligands activate TRPA1 by interacting with critical N-terminal Cys residues in a covalent manner (PubMed:17164327, PubMed:27241698, PubMed:31866091, PubMed:32641835). Non-electrophile agonists bind at distinct sites in the transmembrane domain to promote channel activation (PubMed:33152265). Also acts as an ionotropic cannabinoid receptor by being activated by delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana (PubMed:25389312). May be a component for the mechanosensitive transduction channel of hair cells in inner ear, thereby participating in the perception of sounds (By similarity). {ECO:0000250|UniProtKB:Q8BLA8, ECO:0000269|PubMed:17164327, ECO:0000269|PubMed:17259981, ECO:0000269|PubMed:19202543, ECO:0000269|PubMed:20547126, ECO:0000269|PubMed:21195050, ECO:0000269|PubMed:21873995, ECO:0000269|PubMed:23199233, ECO:0000269|PubMed:25389312, ECO:0000269|PubMed:27241698, ECO:0000269|PubMed:30878828, ECO:0000269|PubMed:31866091, ECO:0000269|PubMed:32641835, ECO:0000269|PubMed:33152265}.
O95359 TACC2 S2118 ochoa Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}.
O95602 POLR1A S1265 ochoa DNA-directed RNA polymerase I subunit RPA1 (RNA polymerase I subunit A1) (EC 2.7.7.6) (A190) (DNA-directed RNA polymerase I largest subunit) (DNA-directed RNA polymerase I subunit A) (RNA polymerase I 194 kDa subunit) (RPA194) Catalytic core component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Transcribes 47S pre-rRNAs from multicopy rRNA gene clusters, giving rise to 5.8S, 18S and 28S ribosomal RNAs (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Pol I-mediated transcription cycle proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol I pre-initiation complex (PIC) is recruited by the selectivity factor 1 (SL1/TIF-IB) complex bound to the core promoter that precedes an rDNA repeat unit. The PIC assembly bends the promoter favoring the formation of the transcription bubble and promoter escape. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Highly processive, assembles in structures referred to as 'Miller trees' where many elongating Pol I complexes queue and transcribe the same rDNA coding regions. At terminator sequences downstream of the rDNA gene, PTRF interacts with Pol I and halts Pol I transcription leading to the release of the RNA transcript and polymerase from the DNA (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). Forms Pol I active center together with the second largest subunit POLR1B/RPA2. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR1A/RPA1 contributing a Mg(2+)-coordinating DxDGD motif, and POLR1B/RPA2 participating in the coordination of a second Mg(2+) ion and providing lysine residues believed to facilitate Watson-Crick base pairing between the incoming nucleotide and the template base. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphodiester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate. Has proofreading activity: Pauses and backtracks to allow the cleavage of a missincorporated nucleotide via POLR1H/RPA12. High Pol I processivity is associated with decreased transcription fidelity (By similarity) (PubMed:11250903, PubMed:11283244, PubMed:16858408, PubMed:34671025, PubMed:34887565, PubMed:36271492). {ECO:0000250|UniProtKB:P10964, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
O95785 WIZ S1352 ochoa Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}.
O96017 CHEK2 S260 ochoa|psp Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}.
P00918 CA2 S151 ochoa Carbonic anhydrase 2 (EC 4.2.1.1) (Carbonate dehydratase II) (Carbonic anhydrase C) (CAC) (Carbonic anhydrase II) (CA-II) (Cyanamide hydratase CA2) (EC 4.2.1.69) Catalyzes the reversible hydration of carbon dioxide (PubMed:11327835, PubMed:11802772, PubMed:11831900, PubMed:12056894, PubMed:12171926, PubMed:1336460, PubMed:14736236, PubMed:15300855, PubMed:15453828, PubMed:15667203, PubMed:15865431, PubMed:16106378, PubMed:16214338, PubMed:16290146, PubMed:16686544, PubMed:16759856, PubMed:16807956, PubMed:17127057, PubMed:17251017, PubMed:17314045, PubMed:17330962, PubMed:17346964, PubMed:17540563, PubMed:17588751, PubMed:17705204, PubMed:18024029, PubMed:18162396, PubMed:18266323, PubMed:18374572, PubMed:18481843, PubMed:18618712, PubMed:18640037, PubMed:18942852, PubMed:1909891, PubMed:1910042, PubMed:19170619, PubMed:19186056, PubMed:19206230, PubMed:19520834, PubMed:19778001, PubMed:7761440, PubMed:7901850, PubMed:8218160, PubMed:8262987, PubMed:8399159, PubMed:8451242, PubMed:8485129, PubMed:8639494, PubMed:9265618, PubMed:9398308). Can also hydrate cyanamide to urea (PubMed:10550681, PubMed:11015219). Stimulates the chloride-bicarbonate exchange activity of SLC26A6 (PubMed:15990874). Essential for bone resorption and osteoclast differentiation (PubMed:15300855). Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. {ECO:0000269|PubMed:10550681, ECO:0000269|PubMed:11015219, ECO:0000269|PubMed:11327835, ECO:0000269|PubMed:11802772, ECO:0000269|PubMed:11831900, ECO:0000269|PubMed:12056894, ECO:0000269|PubMed:12171926, ECO:0000269|PubMed:1336460, ECO:0000269|PubMed:14736236, ECO:0000269|PubMed:15300855, ECO:0000269|PubMed:15453828, ECO:0000269|PubMed:15667203, ECO:0000269|PubMed:15865431, ECO:0000269|PubMed:15990874, ECO:0000269|PubMed:16106378, ECO:0000269|PubMed:16214338, ECO:0000269|PubMed:16290146, ECO:0000269|PubMed:16686544, ECO:0000269|PubMed:16759856, ECO:0000269|PubMed:16807956, ECO:0000269|PubMed:17127057, ECO:0000269|PubMed:17251017, ECO:0000269|PubMed:17314045, ECO:0000269|PubMed:17330962, ECO:0000269|PubMed:17346964, ECO:0000269|PubMed:17540563, ECO:0000269|PubMed:17588751, ECO:0000269|PubMed:17705204, ECO:0000269|PubMed:18024029, ECO:0000269|PubMed:18162396, ECO:0000269|PubMed:18266323, ECO:0000269|PubMed:18374572, ECO:0000269|PubMed:18481843, ECO:0000269|PubMed:18618712, ECO:0000269|PubMed:18640037, ECO:0000269|PubMed:18942852, ECO:0000269|PubMed:1909891, ECO:0000269|PubMed:1910042, ECO:0000269|PubMed:19170619, ECO:0000269|PubMed:19186056, ECO:0000269|PubMed:19206230, ECO:0000269|PubMed:19520834, ECO:0000269|PubMed:19778001, ECO:0000269|PubMed:7761440, ECO:0000269|PubMed:7901850, ECO:0000269|PubMed:8218160, ECO:0000269|PubMed:8262987, ECO:0000269|PubMed:8399159, ECO:0000269|PubMed:8451242, ECO:0000269|PubMed:8485129, ECO:0000269|PubMed:8639494, ECO:0000269|PubMed:9265618, ECO:0000269|PubMed:9398308}.
P05090 APOD S169 ochoa Apolipoprotein D (Apo-D) (ApoD) APOD occurs in the macromolecular complex with lecithin-cholesterol acyltransferase. It is probably involved in the transport and binding of bilin. Appears to be able to transport a variety of ligands in a number of different contexts.
P06400 RB1 S855 ochoa Retinoblastoma-associated protein (p105-Rb) (p110-RB1) (pRb) (Rb) (pp110) Tumor suppressor that is a key regulator of the G1/S transition of the cell cycle (PubMed:10499802). The hypophosphorylated form binds transcription regulators of the E2F family, preventing transcription of E2F-responsive genes (PubMed:10499802). Both physically blocks E2Fs transactivating domain and recruits chromatin-modifying enzymes that actively repress transcription (PubMed:10499802). Cyclin and CDK-dependent phosphorylation of RB1 induces its dissociation from E2Fs, thereby activating transcription of E2F responsive genes and triggering entry into S phase (PubMed:10499802). RB1 also promotes the G0-G1 transition upon phosphorylation and activation by CDK3/cyclin-C (PubMed:15084261). Directly involved in heterochromatin formation by maintaining overall chromatin structure and, in particular, that of constitutive heterochromatin by stabilizing histone methylation. Recruits and targets histone methyltransferases SUV39H1, KMT5B and KMT5C, leading to epigenetic transcriptional repression. Controls histone H4 'Lys-20' trimethylation. Inhibits the intrinsic kinase activity of TAF1. Mediates transcriptional repression by SMARCA4/BRG1 by recruiting a histone deacetylase (HDAC) complex to the c-FOS promoter. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex (By similarity). {ECO:0000250|UniProtKB:P13405, ECO:0000250|UniProtKB:P33568, ECO:0000269|PubMed:10499802, ECO:0000269|PubMed:15084261}.; FUNCTION: (Microbial infection) In case of viral infections, interactions with SV40 large T antigen, HPV E7 protein or adenovirus E1A protein induce the disassembly of RB1-E2F1 complex thereby disrupting RB1's activity. {ECO:0000269|PubMed:1316611, ECO:0000269|PubMed:17974914, ECO:0000269|PubMed:18701596, ECO:0000269|PubMed:2839300, ECO:0000269|PubMed:8892909}.
P07237 P4HB S190 ochoa Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}.
P09429 HMGB1 S39 ochoa|psp High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P13010 XRCC5 S585 ochoa X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}.
P16949 STMN1 S25 ochoa|psp Stathmin (Leukemia-associated phosphoprotein p18) (Metablastin) (Oncoprotein 18) (Op18) (Phosphoprotein p19) (pp19) (Prosolin) (Protein Pr22) (pp17) Involved in the regulation of the microtubule (MT) filament system by destabilizing microtubules. Prevents assembly and promotes disassembly of microtubules. Phosphorylation at Ser-16 may be required for axon formation during neurogenesis. Involved in the control of the learned and innate fear (By similarity). {ECO:0000250}.
P18583 SON S90 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P20929 NEB S1865 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P21728 DRD1 S254 psp D(1A) dopamine receptor (Dopamine D1 receptor) Dopamine receptor whose activity is mediated by G proteins which activate adenylyl cyclase.
P21757 MSR1 S27 ochoa Macrophage scavenger receptor types I and II (Macrophage acetylated LDL receptor I and II) (Scavenger receptor class A member 1) (CD antigen CD204) Membrane glycoproteins implicated in the pathologic deposition of cholesterol in arterial walls during atherogenesis. Two types of receptor subunits exist. These receptors mediate the endocytosis of a diverse group of macromolecules, including modified low density lipoproteins (LDL) (PubMed:2251254). Isoform III does not internalize acetylated LDL (PubMed:9548586). {ECO:0000269|PubMed:2251254, ECO:0000269|PubMed:9548586}.
P23381 WARS1 S351 ochoa Tryptophan--tRNA ligase, cytoplasmic (EC 6.1.1.2) (Interferon-induced protein 53) (IFP53) (Tryptophanyl-tRNA synthetase) (TrpRS) (hWRS) [Cleaved into: T1-TrpRS; T2-TrpRS] Catalyzes the attachment of tryptophan to tRNA(Trp) in a two-step reaction: tryptophan is first activated by ATP to form Trp-AMP and then transferred to the acceptor end of the tRNA(Trp). {ECO:0000269|PubMed:1373391, ECO:0000269|PubMed:1761529, ECO:0000269|PubMed:28369220}.; FUNCTION: [Isoform 1]: Has no angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.; FUNCTION: [T2-TrpRS]: Possesses an angiostatic activity but has no aminoacylation activity (PubMed:11773625, PubMed:11773626, PubMed:14630953). Inhibits fluid shear stress-activated responses of endothelial cells (PubMed:14630953). Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression (PubMed:14630953). {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626, ECO:0000269|PubMed:14630953}.; FUNCTION: [Isoform 2]: Has an angiostatic activity. {ECO:0000269|PubMed:11773625, ECO:0000269|PubMed:11773626}.
P30050 RPL12 S76 ochoa Large ribosomal subunit protein uL11 (60S ribosomal protein L12) Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}.
P35348 ADRA1A S250 psp Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}.
P35368 ADRA1B S267 ochoa Alpha-1B adrenergic receptor (Alpha-1B adrenoreceptor) (Alpha-1B adrenoceptor) This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine (PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}.
P35609 ACTN2 S595 ochoa Alpha-actinin-2 (Alpha-actinin skeletal muscle isoform 2) (F-actin cross-linking protein) F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein.
P35612 ADD2 S699 ochoa Beta-adducin (Erythrocyte adducin subunit beta) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to the erythrocyte membrane receptor SLC2A1/GLUT1 and may therefore provide a link between the spectrin cytoskeleton to the plasma membrane. Binds to calmodulin. Calmodulin binds preferentially to the beta subunit. {ECO:0000269|PubMed:18347014}.
P39023 RPL3 S265 ochoa Large ribosomal subunit protein uL3 (60S ribosomal protein L3) (HIV-1 TAR RNA-binding protein B) (TARBP-B) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547, PubMed:35674491). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
P40818 USP8 S160 ochoa Ubiquitin carboxyl-terminal hydrolase 8 (EC 3.4.19.12) (Deubiquitinating enzyme 8) (Ubiquitin isopeptidase Y) (hUBPy) (Ubiquitin thioesterase 8) (Ubiquitin-specific-processing protease 8) Hydrolase that can remove conjugated ubiquitin from proteins and therefore plays an important regulatory role at the level of protein turnover by preventing degradation. Converts both 'Lys-48' an 'Lys-63'-linked ubiquitin chains. Catalytic activity is enhanced in the M phase. Involved in cell proliferation. Required to enter into S phase in response to serum stimulation. May regulate T-cell anergy mediated by RNF128 via the formation of a complex containing RNF128 and OTUB1. Probably regulates the stability of STAM2 and RASGRF1. Regulates endosomal ubiquitin dynamics, cargo sorting, membrane traffic at early endosomes, and maintenance of ESCRT-0 stability. The level of protein ubiquitination on endosomes is essential for maintaining the morphology of the organelle. Deubiquitinates EPS15 and controls tyrosine kinase stability. Removes conjugated ubiquitin from EGFR thus regulating EGFR degradation and downstream MAPK signaling. Involved in acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Deubiquitinates BIRC6/bruce and KIF23/MKLP1. Deubiquitinates BACE1 which inhibits BACE1 lysosomal degradation and modulates BACE-mediated APP cleavage and amyloid-beta formation (PubMed:27302062). {ECO:0000269|PubMed:16520378, ECO:0000269|PubMed:17711858, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:27302062, ECO:0000269|PubMed:9628861}.
P41236 PPP1R2 S28 ochoa Protein phosphatase inhibitor 2 (IPP-2) Inhibitor of protein-phosphatase 1.
P42766 RPL35 T59 ochoa Large ribosomal subunit protein uL29 (60S ribosomal protein L35) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
P49792 RANBP2 T2602 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P52179 MYOM1 S1065 ochoa Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P53396 ACLY S451 ochoa|psp ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}.
P55197 MLLT10 S298 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P57789 KCNK10 S439 ochoa Potassium channel subfamily K member 10 (Outward rectifying potassium channel protein TREK-2) (TREK-2 K(+) channel subunit) K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate. Converts to voltage-independent 'leak' conductance mode upon stimulation by various stimuli including mechanical membrane stretch, acidic pH, heat and lipids (PubMed:10880510, PubMed:25766236, PubMed:26919430, PubMed:38605031). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:30573346). In trigeminal ganglia sensory neurons, the heterodimer of KCNK10/TREK-2 and KCNK18/TRESK inhibits neuronal firing and neurogenic inflammation by stabilizing the resting membrane potential at K(+) equilibrium potential as well as by regulating the threshold of action potentials and the spike frequency (By similarity). Permeable to other monovalent ions such as Rb(+) and Cs(+) (PubMed:26919430). {ECO:0000250|UniProtKB:Q8BUW1, ECO:0000269|PubMed:10880510, ECO:0000269|PubMed:25766236, ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:30573346, ECO:0000269|PubMed:38605031}.
P78371 CCT2 S254 ochoa T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}.
P82979 SARNP S131 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
Q02880 TOP2B S1478 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q03188 CENPC S73 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q08AD1 CAMSAP2 S1029 ochoa Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}.
Q12873 CHD3 S93 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q13061 TRDN S605 ochoa Triadin Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}.
Q13177 PAK2 S381 ochoa Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}.
Q13435 SF3B2 T315 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13492 PICALM S20 ochoa Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}.
Q13625 TP53BP2 S296 ochoa Apoptosis-stimulating of p53 protein 2 (Bcl2-binding protein) (Bbp) (Renal carcinoma antigen NY-REN-51) (Tumor suppressor p53-binding protein 2) (53BP2) (p53-binding protein 2) (p53BP2) Regulator that plays a central role in regulation of apoptosis and cell growth via its interactions with proteins such as TP53 (PubMed:12524540). Regulates TP53 by enhancing the DNA binding and transactivation function of TP53 on the promoters of proapoptotic genes in vivo. Inhibits the ability of NAE1 to conjugate NEDD8 to CUL1, and thereby decreases NAE1 ability to induce apoptosis. Impedes cell cycle progression at G2/M. Its apoptosis-stimulating activity is inhibited by its interaction with DDX42. {ECO:0000269|PubMed:11684014, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:12694406, ECO:0000269|PubMed:19377511}.
Q14184 DOC2B Y301 psp Double C2-like domain-containing protein beta (Doc2-beta) Calcium sensor which positively regulates SNARE-dependent fusion of vesicles with membranes. Binds phospholipids in a calcium-dependent manner and may act at the priming stage of fusion by modifying membrane curvature to stimulate fusion. Involved in calcium-triggered exocytosis in chromaffin cells and calcium-dependent spontaneous release of neurotransmitter in absence of action potentials in neuronal cells. Involved both in glucose-stimulated insulin secretion in pancreatic cells and insulin-dependent GLUT4 transport to the plasma membrane in adipocytes (By similarity). {ECO:0000250, ECO:0000269|PubMed:9804756}.
Q14978 NOLC1 S265 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q15424 SAFB S589 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15785 TOMM34 S153 ochoa Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}.
Q52LD8 RFTN2 S405 ochoa Raftlin-2 (Raft-linking protein 2) Upon bacterial lipopolysaccharide stimulation, mediates clathrin-dependent internalization of TLR4 in dendritic cells, resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production. May regulate B-cell antigen receptor-mediated signaling. {ECO:0000250|UniProtKB:Q8CHX7}.
Q5CZC0 FSIP2 S3181 ochoa Fibrous sheath-interacting protein 2 Plays a role in spermatogenesis. {ECO:0000305|PubMed:30137358}.
Q5SW79 CEP170 S1059 ochoa Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}.
Q5T481 RBM20 S801 ochoa RNA-binding protein 20 (RNA-binding motif protein 20) RNA-binding protein that acts as a regulator of mRNA splicing of a subset of genes encoding key structural proteins involved in cardiac development, such as TTN (Titin), CACNA1C, CAMK2D or PDLIM5/ENH (PubMed:22466703, PubMed:24960161, PubMed:26604136, PubMed:27496873, PubMed:27531932, PubMed:29895960, PubMed:30948719, PubMed:32840935, PubMed:34732726, PubMed:35427468). Acts as a repressor of mRNA splicing: specifically binds the 5'UCUU-3' motif that is predominantly found within intronic sequences of pre-mRNAs, leading to the exclusion of specific exons in target transcripts (PubMed:24960161, PubMed:30948719, PubMed:34732726). RBM20-mediated exon skipping is hormone-dependent and is essential for TTN isoform transition in both cardiac and skeletal muscles (PubMed:27531932, PubMed:30948719). RBM20-mediated exon skipping of TTN provides substrates for the formation of circular RNA (circRNAs) from the TTN transcripts (PubMed:27531932, PubMed:34732726). Together with RBM24, promotes the expression of short isoforms of PDLIM5/ENH in cardiomyocytes (By similarity). {ECO:0000250|UniProtKB:E9PT37, ECO:0000269|PubMed:22466703, ECO:0000269|PubMed:24960161, ECO:0000269|PubMed:26604136, ECO:0000269|PubMed:27496873, ECO:0000269|PubMed:27531932, ECO:0000269|PubMed:29895960, ECO:0000269|PubMed:30948719, ECO:0000269|PubMed:32840935, ECO:0000269|PubMed:34732726, ECO:0000269|PubMed:35427468}.
Q6FIF0 ZFAND6 S136 ochoa AN1-type zinc finger protein 6 (Associated with PRK1 protein) (Zinc finger A20 domain-containing protein 3) Involved in regulation of TNF-alpha induced NF-kappa-B activation and apoptosis. Involved in modulation of 'Lys-48'-linked polyubiquitination status of TRAF2 and decreases association of TRAF2 with RIPK1. Required for PTS1 target sequence-dependent protein import into peroxisomes and PEX5 stability; may cooperate with PEX6. In vitro involved in PEX5 export from the cytosol to peroxisomes (By similarity). {ECO:0000250, ECO:0000269|PubMed:19285159, ECO:0000269|PubMed:21810480}.
Q6NXS1 PPP1R2B S28 ochoa Protein phosphatase inhibitor 2 family member B (PPP1R2 family member B) (Protein phosphatase 1, regulatory subunit 2 pseudogene 3) (Protein phosphatase inhibitor 2-like protein 3) Inhibitor of protein-phosphatase 1. {ECO:0000269|PubMed:23506001}.
Q6R327 RICTOR S1101 ochoa Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}.
Q6STE5 SMARCD3 S178 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 3 (60 kDa BRG-1/Brm-associated factor subunit C) (BRG1-associated factor 60C) (BAF60C) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Stimulates nuclear receptor mediated transcription. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:Q6P9Z1, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:8804307, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q6WKZ4 RAB11FIP1 S156 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6ZN17 LIN28B S105 ochoa Protein lin-28 homolog B (Lin-28B) Suppressor of microRNA (miRNA) biogenesis, including that of let-7 and possibly of miR107, miR-143 and miR-200c. Binds primary let-7 transcripts (pri-let-7), including pri-let-7g and pri-let-7a-1, and sequester them in the nucleolus, away from the microprocessor complex, hence preventing their processing into mature miRNA (PubMed:22118463). Does not act on pri-miR21 (PubMed:22118463). The repression of let-7 expression is required for normal development and contributes to maintain the pluripotent state of embryonic stem cells by preventing let-7-mediated differentiation. When overexpressed, recruits ZCCHC11/TUT4 uridylyltransferase to pre-let-7 transcripts, leading to their terminal uridylation and degradation (PubMed:19703396). This activity might not be relevant in vivo, as LIN28B-mediated inhibition of let-7 miRNA maturation appears to be ZCCHC11-independent (PubMed:22118463). Interaction with target pre-miRNAs occurs via an 5'-GGAG-3' motif in the pre-miRNA terminal loop. Mediates MYC-induced let-7 repression (By similarity). When overexpressed, isoform 1 stimulates growth of the breast adenocarcinoma cell line MCF-7. Isoform 2 has no effect on cell growth. {ECO:0000250|UniProtKB:Q45KJ6, ECO:0000269|PubMed:16971064, ECO:0000269|PubMed:18951094, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22118463}.
Q6ZNL6 FGD5 S1328 ochoa FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}.
Q71F56 MED13L S762 ochoa Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway.
Q7L273 KCTD9 S318 ochoa BTB/POZ domain-containing protein KCTD9 Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex, which mediates the ubiquitination of target proteins, leading to their degradation by the proteasome. {ECO:0000305}.
Q7L804 RAB11FIP2 S150 ochoa Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}.
Q7Z6E9 RBBP6 S1648 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6M3 MILR1 S41 ochoa Allergin-1 (Allergy inhibitory receptor 1) (Mast cell antigen 32) (MCA-32) (Mast cell immunoglobulin-like receptor 1) Immunoglobulin-like receptor which plays an inhibitory role in degranulation of mast cells. Negatively regulates IgE-mediated mast cell activation and suppresses the type I immediate hypersensitivity reaction (By similarity). {ECO:0000250}.
Q7Z7C8 TAF8 S282 ochoa Transcription initiation factor TFIID subunit 8 (Protein taube nuss) (TBP-associated factor 43 kDa) (TBP-associated factor 8) (Transcription initiation factor TFIID 43 kDa subunit) (TAFII-43) (TAFII43) (hTAFII43) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF8 is involved in forming the TFIID-B module, together with TAF5 (PubMed:33795473). Mediates both basal and activator-dependent transcription (PubMed:14580349). Plays a role in the differentiation of preadipocyte fibroblasts to adipocytes, however, does not seem to play a role in differentiation of myoblasts (PubMed:14580349). Required for the integration of TAF10 in the TAF complex (PubMed:14580349). May be important for survival of cells of the inner cell mass which constitute the pluripotent cell population of the early embryo (By similarity). {ECO:0000250|UniProtKB:Q9EQH4, ECO:0000269|PubMed:14580349, ECO:0000269|PubMed:33795473}.
Q86UW6 N4BP2 S751 ochoa NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}.
Q86VP1 TAX1BP1 S240 ochoa Tax1-binding protein 1 (TRAF6-binding protein) Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}.
Q86YS7 C2CD5 S606 ochoa C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}.
Q8N1W1 ARHGEF28 S624 ochoa Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}.
Q8N3Z6 ZCCHC7 S121 ochoa Zinc finger CCHC domain-containing protein 7 (TRAMP-like complex RNA-binding factor ZCCHC7) None
Q8N5G2 MACO1 S335 ochoa Macoilin (Macoilin-1) (Transmembrane protein 57) Plays a role in the regulation of neuronal activity. {ECO:0000269|PubMed:21589894}.
Q8NI27 THOC2 S1514 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TEQ6 GEMIN5 S810 ochoa Gem-associated protein 5 (Gemin5) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}.
Q8TF01 PNISR S672 ochoa Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) None
Q8WYP5 AHCTF1 S2181 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92539 LPIN2 S135 ochoa Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}.
Q92545 TMEM131 S1363 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92608 DOCK2 S1592 ochoa Dedicator of cytokinesis protein 2 Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2. {ECO:0000269|PubMed:21613211}.
Q96BK5 PINX1 S23 ochoa PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96CN7 ISOC1 S166 ochoa Isochorismatase domain-containing protein 1 None
Q96JJ7 TMX3 S433 ochoa Protein disulfide-isomerase TMX3 (EC 5.3.4.1) (Thioredoxin domain-containing protein 10) (Thioredoxin-related transmembrane protein 3) Probable disulfide isomerase, which participates in the folding of proteins containing disulfide bonds. May act as a dithiol oxidase (PubMed:15623505). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:31304984). {ECO:0000269|PubMed:15623505, ECO:0000269|PubMed:31304984}.
Q96MD7 C9orf85 S21 ochoa Uncharacterized protein C9orf85 None
Q96PY6 NEK1 S1008 ochoa Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}.
Q96RT1 ERBIN S620 ochoa Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}.
Q96ST3 SIN3A S421 ochoa Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}.
Q9BTE3 MCMBP S162 ochoa Mini-chromosome maintenance complex-binding protein (MCM-BP) (MCM-binding protein) Associated component of the MCM complex that acts as a regulator of DNA replication. Binds to the MCM complex during late S phase and promotes the disassembly of the MCM complex from chromatin, thereby acting as a key regulator of pre-replication complex (pre-RC) unloading from replicated DNA. Can dissociate the MCM complex without addition of ATP; probably acts by destabilizing interactions of each individual subunits of the MCM complex. Required for sister chromatid cohesion. {ECO:0000269|PubMed:20090939, ECO:0000269|PubMed:21196493}.
Q9BVJ6 UTP14A S748 ochoa U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) May be required for ribosome biogenesis. {ECO:0000250}.
Q9H4A3 WNK1 S1978 ochoa Serine/threonine-protein kinase WNK1 (EC 2.7.11.1) (Erythrocyte 65 kDa protein) (p65) (Kinase deficient protein) (Protein kinase lysine-deficient 1) (Protein kinase with no lysine 1) (hWNK1) Serine/threonine-protein kinase component of the WNK1-SPAK/OSR1 kinase cascade, which acts as a key regulator of blood pressure and regulatory volume increase by promoting ion influx (PubMed:15883153, PubMed:17190791, PubMed:31656913, PubMed:34289367, PubMed:36318922). WNK1 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK1 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK1-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:15883153, PubMed:16263722, PubMed:17190791, PubMed:19739668, PubMed:21321328, PubMed:22989884, PubMed:25477473, PubMed:34289367, PubMed:36318922). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A5/KCC2 and SLC12A6/KCC3, regulating their activity (PubMed:16263722, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:19665974, PubMed:21321328). Also acts as a regulator of angiogenesis in endothelial cells via activation of OXSR1/OSR1 and STK39/SPAK: activation of OXSR1/OSR1 regulates chemotaxis and invasion, while STK39/SPAK regulates endothelial cell proliferation (PubMed:25362046). Also acts independently of the WNK1-SPAK/OSR1 kinase cascade by catalyzing phosphorylation of other substrates, such as SYT2, PCF11 and NEDD4L (PubMed:29196535). Mediates phosphorylation of SYT2, regulating SYT2 association with phospholipids and membrane-binding (By similarity). Regulates mRNA export in the nucleus by mediating phosphorylation of PCF11, thereby decreasing the association between PCF11 and POLR2A/RNA polymerase II and promoting mRNA export to the cytoplasm (PubMed:29196535). Acts as a negative regulator of autophagy (PubMed:27911840). Required for the abscission step during mitosis, independently of the WNK1-SPAK/OSR1 kinase cascade (PubMed:21220314). May also play a role in actin cytoskeletal reorganization (PubMed:10660600). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as SLC4A4, SLC26A6, SLC26A9, TRPV4 and CFTR (By similarity). Involved in the regulation of epithelial Na(+) channel (ENaC) by promoting activation of SGK1 in a kinase-independent manner: probably acts as a scaffold protein that promotes the recruitment of SGK1 to the mTORC2 complex in response to chloride, leading to mTORC2-dependent phosphorylation and activation of SGK1 (PubMed:36373794). Acts as an assembly factor for the ER membrane protein complex independently of its protein kinase activity: associates with EMC2 in the cytoplasm via its amphipathic alpha-helix, and prevents EMC2 ubiquitination and subsequent degradation, thereby promoting EMC2 stabilization (PubMed:33964204). {ECO:0000250|UniProtKB:P83741, ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:10660600, ECO:0000269|PubMed:15883153, ECO:0000269|PubMed:16263722, ECO:0000269|PubMed:17190791, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:19739668, ECO:0000269|PubMed:21220314, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:25477473, ECO:0000269|PubMed:27911840, ECO:0000269|PubMed:29196535, ECO:0000269|PubMed:31656913, ECO:0000269|PubMed:33964204, ECO:0000269|PubMed:34289367, ECO:0000269|PubMed:36318922, ECO:0000269|PubMed:36373794}.; FUNCTION: [Isoform 3]: Kinase-defective isoform specifically expressed in kidney, which acts as a dominant-negative regulator of the longer isoform 1 (PubMed:14645531). Does not directly inhibit WNK4 and has no direct effect on sodium and chloride ion transport (By similarity). Down-regulates sodium-chloride cotransporter activity indirectly by inhibiting isoform 1, it associates with isoform 1 and attenuates its kinase activity (By similarity). In kidney, may play an important role regulating sodium and potassium balance (By similarity). {ECO:0000250|UniProtKB:Q9JIH7, ECO:0000269|PubMed:14645531}.
Q9H4I2 ZHX3 S599 ochoa Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}.
Q9H7N4 SCAF1 S624 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9HAU0 PLEKHA5 S855 ochoa Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) None
Q9HCM1 RESF1 S1356 ochoa Retroelement silencing factor 1 Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}.
Q9HDC5 JPH1 S590 ochoa Junctophilin-1 (JP-1) (Junctophilin type 1) Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes.
Q9NPI1 BRD7 S46 ochoa Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}.
Q9NQS7 INCENP S899 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NRJ4 TULP4 S1374 ochoa Tubby-related protein 4 (Tubby superfamily protein) (Tubby-like protein 4) May be a substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. {ECO:0000250}.
Q9NVN8 GNL3L S42 ochoa Guanine nucleotide-binding protein-like 3-like protein Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}.
Q9NVP1 DDX18 S90 ochoa ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}.
Q9NZZ3 CHMP5 S26 ochoa Charged multivesicular body protein 5 (Chromatin-modifying protein 5) (SNF7 domain-containing protein 2) (Vacuolar protein sorting-associated protein 60) (Vps60) (hVps60) Probable peripherally associated component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses) (PubMed:14519844). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. Involved in HIV-1 p6- and p9-dependent virus release (PubMed:14519844). {ECO:0000269|PubMed:14519844}.
Q9UBU7 DBF4 S354 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBU8 MORF4L1 S47 ochoa Mortality factor 4-like protein 1 (MORF-related gene 15 protein) (MRG15) (Protein MSL3-1) (Transcription factor-like protein MRG15) Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:12391155, PubMed:14966270, PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Required for homologous recombination repair (HRR) and resistance to mitomycin C (MMC). Involved in the localization of PALB2, BRCA2 and RAD51, but not BRCA1, to DNA-damage foci. {ECO:0000269|PubMed:12391155, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:20332121, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}.
Q9UEW8 STK39 S315 ochoa STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}.
Q9UEY8 ADD3 S679 ochoa Gamma-adducin (Adducin-like protein 70) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}.
Q9UGU0 TCF20 S476 ochoa Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}.
Q9UHB6 LIMA1 S55 ochoa LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}.
Q9ULW0 TPX2 S121 ochoa|psp Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}.
Q9UNF1 MAGED2 S157 ochoa Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}.
Q9UQR1 ZNF148 S336 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9Y2Z0 SUGT1 S331 ochoa|psp Protein SGT1 homolog (Protein 40-6-3) (Sgt1) (Suppressor of G2 allele of SKP1 homolog) May play a role in ubiquitination and subsequent proteasomal degradation of target proteins.
Q9Y3B9 RRP15 S85 ochoa RRP15-like protein (Ribosomal RNA-processing protein 15) None
Q9Y462 ZNF711 S459 ochoa Zinc finger protein 711 (Zinc finger protein 6) Transcription regulator required for brain development (PubMed:20346720). Probably acts as a transcription factor that binds to the promoter of target genes and recruits PHF8 histone demethylase, leading to activated expression of genes involved in neuron development, such as KDM5C (PubMed:20346720, PubMed:31691806). May compete with transcription factor ARX for activation of expression of KDM5C (PubMed:31691806). {ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:31691806}.
Q9Y5A9 YTHDF2 S238 ochoa YTH domain-containing family protein 2 (DF2) (CLL-associated antigen KW-14) (High-glucose-regulated protein 8) (Renal carcinoma antigen NY-REN-2) Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:24284625, PubMed:26046440, PubMed:26318451, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:25412658, PubMed:25412661, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT and ribonuclease P/MRP complexes, depending on the context (PubMed:24284625, PubMed:26046440, PubMed:27558897, PubMed:30930054, PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:32492408). M6A-containing mRNAs containing a binding site for RIDA/HRSP12 (5'-GGUUC-3') are preferentially degraded by endoribonucleolytic cleavage: cooperative binding of RIDA/HRSP12 and YTHDF2 to transcripts leads to recruitment of the ribonuclease P/MRP complex (PubMed:30930054). Other m6A-containing mRNAs undergo deadenylation via direct interaction between YTHDF2 and CNOT1, leading to recruitment of the CCR4-NOT and subsequent deadenylation of m6A-containing mRNAs (PubMed:27558897). Required maternally to regulate oocyte maturation: probably acts by binding to m6A-containing mRNAs, thereby regulating maternal transcript dosage during oocyte maturation, which is essential for the competence of oocytes to sustain early zygotic development (By similarity). Also required during spermatogenesis: regulates spermagonial adhesion by promoting degradation of m6A-containing transcripts coding for matrix metallopeptidases (By similarity). Also involved in hematopoietic stem cells specification by binding to m6A-containing mRNAs, leading to promote their degradation (PubMed:30065315). Also acts as a regulator of neural development by promoting m6A-dependent degradation of neural development-related mRNA targets (By similarity). Inhibits neural specification of induced pluripotent stem cells by binding to methylated neural-specific mRNAs and promoting their degradation, thereby restraining neural differentiation (PubMed:32169943). Regulates circadian regulation of hepatic lipid metabolism: acts by promoting m6A-dependent degradation of PPARA transcripts (PubMed:30428350). Regulates the innate immune response to infection by inhibiting the type I interferon response: acts by binding to m6A-containing IFNB transcripts and promoting their degradation (PubMed:30559377). May also act as a promoter of cap-independent mRNA translation following heat shock stress: upon stress, relocalizes to the nucleus and specifically binds mRNAs with some m6A methylation mark at their 5'-UTR, protecting demethylation of mRNAs by FTO, thereby promoting cap-independent mRNA translation (PubMed:26458103). Regulates mitotic entry by promoting the phase-specific m6A-dependent degradation of WEE1 transcripts (PubMed:32267835). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:31642031, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind RNAs modified by C5-methylcytosine (m5C) and act as a regulator of rRNA processing (PubMed:31815440). {ECO:0000250|UniProtKB:Q91YT7, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:25412658, ECO:0000269|PubMed:25412661, ECO:0000269|PubMed:26046440, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:27558897, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:30065315, ECO:0000269|PubMed:30428350, ECO:0000269|PubMed:30559377, ECO:0000269|PubMed:30930054, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:31642031, ECO:0000269|PubMed:31815440, ECO:0000269|PubMed:32169943, ECO:0000269|PubMed:32267835, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: (Microbial infection) Promotes viral gene expression and replication of polyomavirus SV40: acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29447282). {ECO:0000269|PubMed:29447282}.; FUNCTION: (Microbial infection) Promotes viral gene expression and virion production of kaposis sarcoma-associated herpesvirus (KSHV) at some stage of the KSHV life cycle (in iSLK.219 and iSLK.BAC16 cells) (PubMed:29659627). Acts by binding to N6-methyladenosine (m6A)-containing viral RNAs (PubMed:29659627). {ECO:0000269|PubMed:29659627}.
Q9Y6Y8 SEC23IP S728 ochoa SEC23-interacting protein (p125) Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}.
P37108 SRP14 S25 Sugiyama Signal recognition particle 14 kDa protein (SRP14) (18 kDa Alu RNA-binding protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:11089964). SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP (PubMed:11089964). The complex of SRP9 and SRP14 is required for SRP RNA binding (PubMed:11089964). {ECO:0000269|PubMed:11089964}.
P62917 RPL8 S138 Sugiyama Large ribosomal subunit protein uL2 (60S ribosomal protein L8) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
P10809 HSPD1 S187 Sugiyama 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}.
P31939 ATIC S338 Sugiyama Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}.
Q5SSJ5 HP1BP3 S227 Sugiyama Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
P43490 NAMPT S35 Sugiyama Nicotinamide phosphoribosyltransferase (NAmPRTase) (Nampt) (EC 2.4.2.12) (Pre-B-cell colony-enhancing factor 1) (Pre-B cell-enhancing factor) (Visfatin) Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway. The secreted form behaves both as a cytokine with immunomodulating properties and an adipokine with anti-diabetic properties, it has no enzymatic activity, partly because of lack of activation by ATP, which has a low level in extracellular space and plasma. Plays a role in the modulation of circadian clock function. NAMPT-dependent oscillatory production of NAD regulates oscillation of clock target gene expression by releasing the core clock component: CLOCK-BMAL1 heterodimer from NAD-dependent SIRT1-mediated suppression (By similarity). {ECO:0000250|UniProtKB:Q99KQ4, ECO:0000269|PubMed:24130902}.
Q14192 FHL2 S121 Sugiyama Four and a half LIM domains protein 2 (FHL-2) (LIM domain protein DRAL) (Skeletal muscle LIM-protein 3) (SLIM-3) May function as a molecular transmitter linking various signaling pathways to transcriptional regulation. Negatively regulates the transcriptional repressor E4F1 and may function in cell growth. Inhibits the transcriptional activity of FOXO1 and its apoptotic function by enhancing the interaction of FOXO1 with SIRT1 and FOXO1 deacetylation. Negatively regulates the calcineurin/NFAT signaling pathway in cardiomyocytes (PubMed:28717008). {ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16652157, ECO:0000269|PubMed:18853468, ECO:0000269|PubMed:28717008}.
P05771 PRKCB S85 Sugiyama Protein kinase C beta type (PKC-B) (PKC-beta) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity (PubMed:11598012). Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A (PubMed:20228790). In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. Participates in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4. Phosphorylates SLC2A1/GLUT1, promoting glucose uptake by SLC2A1/GLUT1 (PubMed:25982116). Under high glucose in pancreatic beta-cells, is probably involved in the inhibition of the insulin gene transcription, via regulation of MYC expression. In endothelial cells, activation of PRKCB induces increased phosphorylation of RB1, increased VEGFA-induced cell proliferation, and inhibits PI3K/AKT-dependent nitric oxide synthase (NOS3/eNOS) regulation by insulin, which causes endothelial dysfunction. Also involved in triglyceride homeostasis (By similarity). Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription (PubMed:19176525). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P68404, ECO:0000269|PubMed:11598012, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:25982116, ECO:0000269|PubMed:36040231}.
P17252 PRKCA S85 Sugiyama Protein kinase C alpha type (PKC-A) (PKC-alpha) (EC 2.7.11.13) Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that is involved in positive and negative regulation of cell proliferation, apoptosis, differentiation, migration and adhesion, tumorigenesis, cardiac hypertrophy, angiogenesis, platelet function and inflammation, by directly phosphorylating targets such as RAF1, BCL2, CSPG4, TNNT2/CTNT, or activating signaling cascade involving MAPK1/3 (ERK1/2) and RAP1GAP. Involved in cell proliferation and cell growth arrest by positive and negative regulation of the cell cycle. Can promote cell growth by phosphorylating and activating RAF1, which mediates the activation of the MAPK/ERK signaling cascade, and/or by up-regulating CDKN1A, which facilitates active cyclin-dependent kinase (CDK) complex formation in glioma cells. In intestinal cells stimulated by the phorbol ester PMA, can trigger a cell cycle arrest program which is associated with the accumulation of the hyper-phosphorylated growth-suppressive form of RB1 and induction of the CDK inhibitors CDKN1A and CDKN1B. Exhibits anti-apoptotic function in glioma cells and protects them from apoptosis by suppressing the p53/TP53-mediated activation of IGFBP3, and in leukemia cells mediates anti-apoptotic action by phosphorylating BCL2. During macrophage differentiation induced by macrophage colony-stimulating factor (CSF1), is translocated to the nucleus and is associated with macrophage development. After wounding, translocates from focal contacts to lamellipodia and participates in the modulation of desmosomal adhesion. Plays a role in cell motility by phosphorylating CSPG4, which induces association of CSPG4 with extensive lamellipodia at the cell periphery and polarization of the cell accompanied by increases in cell motility. During chemokine-induced CD4(+) T cell migration, phosphorylates CDC42-guanine exchange factor DOCK8 resulting in its dissociation from LRCH1 and the activation of GTPase CDC42 (PubMed:28028151). Is highly expressed in a number of cancer cells where it can act as a tumor promoter and is implicated in malignant phenotypes of several tumors such as gliomas and breast cancers. Negatively regulates myocardial contractility and positively regulates angiogenesis, platelet aggregation and thrombus formation in arteries. Mediates hypertrophic growth of neonatal cardiomyocytes, in part through a MAPK1/3 (ERK1/2)-dependent signaling pathway, and upon PMA treatment, is required to induce cardiomyocyte hypertrophy up to heart failure and death, by increasing protein synthesis, protein-DNA ratio and cell surface area. Regulates cardiomyocyte function by phosphorylating cardiac troponin T (TNNT2/CTNT), which induces significant reduction in actomyosin ATPase activity, myofilament calcium sensitivity and myocardial contractility. In angiogenesis, is required for full endothelial cell migration, adhesion to vitronectin (VTN), and vascular endothelial growth factor A (VEGFA)-dependent regulation of kinase activation and vascular tube formation. Involved in the stabilization of VEGFA mRNA at post-transcriptional level and mediates VEGFA-induced cell proliferation. In the regulation of calcium-induced platelet aggregation, mediates signals from the CD36/GP4 receptor for granule release, and activates the integrin heterodimer ITGA2B-ITGB3 through the RAP1GAP pathway for adhesion. During response to lipopolysaccharides (LPS), may regulate selective LPS-induced macrophage functions involved in host defense and inflammation. But in some inflammatory responses, may negatively regulate NF-kappa-B-induced genes, through IL1A-dependent induction of NF-kappa-B inhibitor alpha (NFKBIA/IKBA). Upon stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA), phosphorylates EIF4G1, which modulates EIF4G1 binding to MKNK1 and may be involved in the regulation of EIF4E phosphorylation. Phosphorylates KIT, leading to inhibition of KIT activity. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. Phosphorylates SOCS2 at 'Ser-52' facilitating its ubiquitination and proteasomal degradation (By similarity). Phosphorylates KLHL3 in response to angiotensin II signaling, decreasing the interaction between KLHL3 and WNK4 (PubMed:25313067). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000250|UniProtKB:P20444, ECO:0000269|PubMed:10848585, ECO:0000269|PubMed:11909826, ECO:0000269|PubMed:12724315, ECO:0000269|PubMed:12832403, ECO:0000269|PubMed:15016832, ECO:0000269|PubMed:15504744, ECO:0000269|PubMed:15526160, ECO:0000269|PubMed:18056764, ECO:0000269|PubMed:19176525, ECO:0000269|PubMed:21576361, ECO:0000269|PubMed:21806543, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:25313067, ECO:0000269|PubMed:28028151, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9738012, ECO:0000269|PubMed:9830023, ECO:0000269|PubMed:9873035, ECO:0000269|PubMed:9927633}.
Q9BRT6 LLPH Y93 Sugiyama Protein LLP homolog (Protein LAPS18-like) In hippocampal neurons, regulates dendritic and spine growth and synaptic transmission. {ECO:0000250|UniProtKB:Q9D945}.
Q9P2N5 RBM27 S798 EPSD RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q04864 REL S272 Sugiyama Proto-oncogene c-Rel Proto-oncogene that may play a role in differentiation and lymphopoiesis. NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The NF-kappa-B heterodimer RELA/p65-c-Rel is a transcriptional activator.
Q96S66 CLCC1 S65 Sugiyama Chloride channel CLIC-like protein 1 (ER anion channel 1) (ERAC1) (Mid-1-related chloride channel protein) Anion-selective channel with Ca(2+)-dependent and voltage-independent gating. Permeable to small monovalent anions with selectivity for bromide > chloride > nitrate > fluoride (By similarity). Operates in the endoplasmic reticulum (ER) membrane where it mediates chloride efflux to compensate for the loss of positive charges from the ER lumen upon Ca(2+) release. Contributes to the maintenance of ER Ca(2+) pools and activation of unfolded protein response to prevent accumulation of misfolded proteins in the ER lumen. Particularly involved in ER homeostasis mechanisms underlying motor neurons and retinal photoreceptors survival (By similarity) (PubMed:25698737, PubMed:30157172, PubMed:37142673). {ECO:0000250|UniProtKB:Q99LI2, ECO:0000269|PubMed:25698737, ECO:0000269|PubMed:30157172, ECO:0000269|PubMed:37142673}.
Q8WUA2 PPIL4 Y466 Sugiyama Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}.
A8MPP1 DDX11L8 S279 Sugiyama Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) Putative DNA helicase. {ECO:0000305}.
Q96FC9 DDX11 S277 Sugiyama ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}.
Q8IVD9 NUDCD3 S193 Sugiyama NudC domain-containing protein 3 None
Q9NSE4 IARS2 S176 Sugiyama Isoleucine--tRNA ligase, mitochondrial (EC 6.1.1.5) (Isoleucyl-tRNA synthetase) (IleRS) Aminoacyl-tRNA synthetase that catalyzes the specific attachment of isoleucine to its cognate tRNA (tRNA(Ile)). {ECO:0000250|UniProtKB:P00956}.
Q96PF2 TSSK2 S258 Sugiyama Testis-specific serine/threonine-protein kinase 2 (TSK-2) (TSK2) (TSSK-2) (Testis-specific kinase 2) (EC 2.7.11.1) (DiGeorge syndrome protein G) (DGS-G) (Serine/threonine-protein kinase 22B) Testis-specific serine/threonine-protein kinase required during spermatid development. Phosphorylates TSKS at 'Ser-288' and SPAG16. Involved in the late stages of spermatogenesis, during the reconstruction of the cytoplasm. During spermatogenesis, required for the transformation of a ring-shaped structure around the base of the flagellum originating from the chromatoid body. {ECO:0000269|PubMed:15044604, ECO:0000269|PubMed:18533145, ECO:0000269|PubMed:20729278}.
O00567 NOP56 S520 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O14974 PPP1R12A S20 psp Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}.
O15042 U2SURP S174 ochoa U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
O75151 PHF2 S879 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
P30101 PDIA3 S478 ochoa Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
P53567 CEBPG S62 ochoa CCAAT/enhancer-binding protein gamma (C/EBP gamma) Transcription factor that binds to the promoter and the enhancer regions of target genes. Binds to the enhancer element PRE-I (positive regulatory element-I) of the IL-4 gene (PubMed:7665092). Binds to the promoter and the enhancer of the immunoglobulin heavy chain. Binds to GPE1, a cis-acting element in the G-CSF gene promoter. {ECO:0000250|UniProtKB:P26801, ECO:0000250|UniProtKB:P53568, ECO:0000269|PubMed:7665092}.
Q06210 GFPT1 S235 psp Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 (EC 2.6.1.16) (D-fructose-6-phosphate amidotransferase 1) (Glutamine:fructose-6-phosphate amidotransferase 1) (GFAT 1) (GFAT1) (Hexosephosphate aminotransferase 1) Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes BMAL1 and CRY1 (By similarity). Has a role in fine tuning the metabolic fluctuations of cytosolic UDP-GlcNAc and its effects on hyaluronan synthesis that occur during tissue remodeling (PubMed:26887390). {ECO:0000250|UniProtKB:P47856, ECO:0000269|PubMed:26887390}.
Q15424 SAFB S507 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q5JSH3 WDR44 S411 ochoa WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}.
Q6GQQ9 OTUD7B S478 ochoa OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}.
Q6PD62 CTR9 T975 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q86UP2 KTN1 T149 ochoa Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
Q8IUC4 RHPN2 S616 ochoa Rhophilin-2 (76 kDa RhoB effector protein) (GTP-Rho-binding protein 2) (p76RBE) Binds specifically to GTP-Rho. May function in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity. {ECO:0000269|PubMed:12221077}.
Q8N9Q2 SREK1IP1 T100 ochoa Protein SREK1IP1 (SFRS12-interacting protein 1) (SREK1-interacting protein 1) (Splicing regulatory protein of 18 kDa) (p18SRP) Possible splicing regulator involved in the control of cellular survival.
Q8WWQ0 PHIP T1570 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q96EU6 RRP36 Y138 Sugiyama Ribosomal RNA processing protein 36 homolog Involved in the early processing steps of the pre-rRNA in the maturation pathway leading to the 18S rRNA. {ECO:0000269|PubMed:20038530}.
P42696 RBM34 T91 Sugiyama RNA-binding protein 34 (RNA-binding motif protein 34) None
H0YHG0 None S475 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
O00479 HMGN4 S29 ochoa High mobility group nucleosome-binding domain-containing protein 4 (Non-histone chromosomal protein HMG-17-like 3) (Non-histone chromosomal protein) None
O00567 NOP56 T543 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O15042 U2SURP S175 ochoa U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) None
O15504 NUP42 S98 ochoa Nucleoporin NUP42 (NLP-1) (NUP42 homolog) (Nucleoporin hCG1) (Nucleoporin-42) (Nucleoporin-like protein 2) Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. {ECO:0000269|PubMed:10610322, ECO:0000269|PubMed:16000379}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it may participate in the docking of viral Vpr at the nuclear envelope. {ECO:0000269|PubMed:12228227}.
O43159 RRP8 S80 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O43290 SART1 S762 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43719 HTATSF1 S485 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O75132 ZBED4 S1058 ochoa Zinc finger BED domain-containing protein 4 Transcriptional regulator that binds to poly-guanine tracts in gene promoters and activates transcription (By similarity). Able to bind single- and double-stranded DNA and RNA (By similarity). {ECO:0000250|UniProtKB:Q80WQ9}.
O75475 PSIP1 S271 ochoa|psp PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
P05204 HMGN2 S29 ochoa|psp Non-histone chromosomal protein HMG-17 (High mobility group nucleosome-binding domain-containing protein 2) Binds to the inner side of the nucleosomal DNA thus altering the interaction between the DNA and the histone octamer. May be involved in the process which maintains transcribable genes in a unique chromatin conformation (By similarity). {ECO:0000250}.
P10398 ARAF S274 ochoa Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}.
P12882 MYH1 S1069 ochoa Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}.
P20810 CAST S87 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P29536 LMOD1 S135 ochoa Leiomodin-1 (64 kDa autoantigen 1D) (64 kDa autoantigen 1D3) (64 kDa autoantigen D1) (Leiomodin, muscle form) (Smooth muscle leiomodin) (SM-Lmod) (Thyroid-associated ophthalmopathy autoantigen) Required for proper contractility of visceral smooth muscle cells (PubMed:28292896). Mediates nucleation of actin filaments. {ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:28292896}.
P35251 RFC1 Y106 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35269 GTF2F1 S221 ochoa General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}.
P35659 DEK S301 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P42568 MLLT3 S321 ochoa Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}.
P46100 ATRX S1153 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1155 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P82979 SARNP S162 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
Q09472 EP300 S1031 ochoa Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}.
Q12904 AIMP1 S107 ochoa Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}.
Q13151 HNRNPA0 S119 ochoa Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}.
Q13153 PAK1 T229 ochoa Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}.
Q13206 DDX10 S804 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13428 TCOF1 S1350 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13435 SF3B2 S307 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q14498 RBM39 S23 ochoa RNA-binding protein 39 (CAPER alpha) (CAPERalpha) (Hepatocellular carcinoma protein 1) (RNA-binding motif protein 39) (RNA-binding region-containing protein 2) (Splicing factor HCC1) RNA-binding protein that acts as a pre-mRNA splicing factor (PubMed:15694343, PubMed:24795046, PubMed:28302793, PubMed:28437394, PubMed:31271494). Acts by promoting exon inclusion via regulation of exon cassette splicing (PubMed:31271494). Also acts as a transcriptional coactivator for steroid nuclear receptors ESR1/ER-alpha and ESR2/ER-beta, and JUN/AP-1, independently of the pre-mRNA splicing factor activity (By similarity). {ECO:0000250|UniProtKB:Q8VH51, ECO:0000269|PubMed:15694343, ECO:0000269|PubMed:24795046, ECO:0000269|PubMed:28302793, ECO:0000269|PubMed:28437394, ECO:0000269|PubMed:31271494}.
Q14527 HLTF S397 ochoa Helicase-like transcription factor (EC 2.3.2.27) (EC 3.6.4.-) (DNA-binding protein/plasminogen activator inhibitor 1 regulator) (HIP116) (RING finger protein 80) (RING-type E3 ubiquitin transferase HLTF) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3) (Sucrose nonfermenting protein 2-like 3) Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. {ECO:0000250, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:18316726, ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:7876228, ECO:0000269|PubMed:8672239, ECO:0000269|PubMed:9126292}.
Q14978 NOLC1 S128 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q14978 NOLC1 S266 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q15648 MED1 S675 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15746 MYLK S1209 ochoa Myosin light chain kinase, smooth muscle (MLCK) (smMLCK) (EC 2.7.11.18) (Kinase-related protein) (KRP) (Telokin) [Cleaved into: Myosin light chain kinase, smooth muscle, deglutamylated form] Calcium/calmodulin-dependent myosin light chain kinase implicated in smooth muscle contraction via phosphorylation of myosin light chains (MLC). Also regulates actin-myosin interaction through a non-kinase activity. Phosphorylates PTK2B/PYK2 and myosin light-chains. Involved in the inflammatory response (e.g. apoptosis, vascular permeability, leukocyte diapedesis), cell motility and morphology, airway hyperreactivity and other activities relevant to asthma. Required for tonic airway smooth muscle contraction that is necessary for physiological and asthmatic airway resistance. Necessary for gastrointestinal motility. Implicated in the regulation of endothelial as well as vascular permeability, probably via the regulation of cytoskeletal rearrangements. In the nervous system it has been shown to control the growth initiation of astrocytic processes in culture and to participate in transmitter release at synapses formed between cultured sympathetic ganglion cells. Critical participant in signaling sequences that result in fibroblast apoptosis. Plays a role in the regulation of epithelial cell survival. Required for epithelial wound healing, especially during actomyosin ring contraction during purse-string wound closure. Mediates RhoA-dependent membrane blebbing. Triggers TRPC5 channel activity in a calcium-dependent signaling, by inducing its subcellular localization at the plasma membrane. Promotes cell migration (including tumor cells) and tumor metastasis. PTK2B/PYK2 activation by phosphorylation mediates ITGB2 activation and is thus essential to trigger neutrophil transmigration during acute lung injury (ALI). May regulate optic nerve head astrocyte migration. Probably involved in mitotic cytoskeletal regulation. Regulates tight junction probably by modulating ZO-1 exchange in the perijunctional actomyosin ring. Mediates burn-induced microvascular barrier injury; triggers endothelial contraction in the development of microvascular hyperpermeability by phosphorylating MLC. Essential for intestinal barrier dysfunction. Mediates Giardia spp.-mediated reduced epithelial barrier function during giardiasis intestinal infection via reorganization of cytoskeletal F-actin and tight junctional ZO-1. Necessary for hypotonicity-induced Ca(2+) entry and subsequent activation of volume-sensitive organic osmolyte/anion channels (VSOAC) in cervical cancer cells. Responsible for high proliferative ability of breast cancer cells through anti-apoptosis. {ECO:0000269|PubMed:11113114, ECO:0000269|PubMed:11976941, ECO:0000269|PubMed:15020676, ECO:0000269|PubMed:15825080, ECO:0000269|PubMed:16284075, ECO:0000269|PubMed:16723733, ECO:0000269|PubMed:18587400, ECO:0000269|PubMed:18710790, ECO:0000269|PubMed:19826488, ECO:0000269|PubMed:20139351, ECO:0000269|PubMed:20181817, ECO:0000269|PubMed:20375339, ECO:0000269|PubMed:20453870}.
Q16666 IFI16 T117 ochoa Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q5T0W9 FAM83B S803 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T200 ZC3H13 T984 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5UIP0 RIF1 S1554 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q6P158 DHX57 S77 ochoa Putative ATP-dependent RNA helicase DHX57 (EC 3.6.4.13) (DEAH box protein 57) Probable ATP-binding RNA helicase.
Q6PD62 CTR9 S943 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6RI45 BRWD3 S1577 ochoa Bromodomain and WD repeat-containing protein 3 Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:21834987}.
Q6RI45 BRWD3 S1579 ochoa Bromodomain and WD repeat-containing protein 3 Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000269|PubMed:21834987}.
Q71F23 CENPU S111 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q71H61 ILDR2 S604 ochoa Immunoglobulin-like domain-containing receptor 2 (Angulin-3) May be involved in ER stress pathways with effects on lipid homeostasis and insulin secretion. With ILDR1 and LSR, involved in the maintain of the epithelial barrier function through the recruitment of MARVELD2/tricellulin to tricellular tight junctions (By similarity). Also functions as a B7-like protein family member expressed on immune cells and inflamed tissue and with T-cell inhibitory activity (PubMed:29431694). In the inner ear, may regulate alternative pre-mRNA splicing via binding to TRA2A, TRA2B and SRSF1 (By similarity). {ECO:0000250|UniProtKB:B5TVM2, ECO:0000269|PubMed:29431694}.
Q76FK4 NOL8 S378 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q7Z4V5 HDGFL2 S395 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q8N554 ZNF276 S379 ochoa Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) May be involved in transcriptional regulation.
Q8N554 ZNF276 S382 ochoa Zinc finger protein 276 (Zfp-276) (Zinc finger protein 477) May be involved in transcriptional regulation.
Q8NI27 THOC2 S1516 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8WUF8 ARB2A S216 ochoa Cotranscriptional regulator ARB2A (ARB2 cotranscriptional regulator A) (Cotranscriptional regulator FAM172A) (Protein FAM172A) Plays a role in the regulation of alternative splicing, by interacting with AGO2 and CHD7. Seems to be required for stabilizing protein-protein interactions at the chromatin-spliceosome interface. May have hydrolase activity. {ECO:0000250|UniProtKB:Q3TNH5}.
Q96AC1 FERMT2 S371 ochoa Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}.
Q96JH7 VCPIP1 S998 ochoa|psp Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}.
Q96LT9 RNPC3 S115 ochoa RNA-binding region-containing protein 3 (RNA-binding motif protein 40) (RNA-binding protein 40) (U11/U12 small nuclear ribonucleoprotein 65 kDa protein) (U11/U12 snRNP 65 kDa protein) (U11/U12-65K) Participates in pre-mRNA U12-dependent splicing, performed by the minor spliceosome which removes U12-type introns. U12-type introns comprises less than 1% of all non-coding sequences. Binds to the 3'-stem-loop of m(7)G-capped U12 snRNA. {ECO:0000269|PubMed:16096647, ECO:0000269|PubMed:19447915, ECO:0000269|PubMed:24480542, ECO:0000269|PubMed:29255062}.
Q96N46 TTC14 S671 ochoa Tetratricopeptide repeat protein 14 (TPR repeat protein 14) None
Q99549 MPHOSPH8 S400 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q9BUL5 PHF23 S79 ochoa PHD finger protein 23 (PDH-containing protein JUNE-1) Acts as a negative regulator of autophagy, through promoting ubiquitination and degradation of LRSAM1, an E3 ubiquitin ligase that promotes autophagy in response to starvation or infecting bacteria. {ECO:0000269|PubMed:25484098}.
Q9BZI7 UPF3B S30 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9GZR7 DDX24 S82 ochoa ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
Q9H2G2 SLK S667 ochoa STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}.
Q9H2P0 ADNP S1000 ochoa Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}.
Q9NYF8 BCLAF1 S427 ochoa Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}.
Q9UDY2 TJP2 S1068 ochoa Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}.
Q9UKA4 AKAP11 S1103 ochoa A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) Binds to type II regulatory subunits of protein kinase A and anchors/targets them.
Q9UKX2 MYH2 S1071 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9Y388 RBMX2 S232 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9P0K7 RAI14 S798 Sugiyama Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}.
Q8TA86 RP9 T168 Sugiyama Retinitis pigmentosa 9 protein (Pim-1-associated protein) (PAP-1) Is thought to be a target protein for the PIM1 kinase. May play some roles in B-cell proliferation in association with PIM1 (By similarity). {ECO:0000250}.
Q04864 REL S274 Sugiyama Proto-oncogene c-Rel Proto-oncogene that may play a role in differentiation and lymphopoiesis. NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The NF-kappa-B heterodimer RELA/p65-c-Rel is a transcriptional activator.
A8MSY1 STIMATE-MUSTN1 S268 ochoa Musculoskeletal embryonic nuclear protein 1 None
E9PCH4 None S694 ochoa Rap guanine nucleotide exchange factor 6 None
O60841 EIF5B S135 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S137 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S186 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75151 PHF2 S681 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75400 PRPF40A S883 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O76021 RSL1D1 S317 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
P06748 NPM1 S214 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
Q01831 XPC S346 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q03188 CENPC S613 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q13136 PPFIA1 S785 ochoa Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}.
Q13206 DDX10 S803 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q14586 ZNF267 S229 ochoa Zinc finger protein 267 (Zinc finger protein HZF2) May be involved in transcriptional regulation.
Q5UIP0 RIF1 S1427 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q86TL2 STIMATE S268 ochoa Store-operated calcium entry regulator STIMATE (STIM-activating enhancer encoded by TMEM110) (Transmembrane protein 110) Acts as a regulator of store-operated Ca(2+) entry (SOCE) at junctional sites that connect the endoplasmic reticulum (ER) and plasma membrane (PM), called ER-plasma membrane (ER-PM) junction or cortical ER (PubMed:26322679, PubMed:26644574). SOCE is a Ca(2+) influx following depletion of intracellular Ca(2+) stores (PubMed:26322679). Acts by interacting with STIM1, promoting STIM1 conformational switch (PubMed:26322679). Involved in STIM1 relocalization to ER-PM junctions (PubMed:26644574). Contributes to the maintenance and reorganization of store-dependent ER-PM junctions (PubMed:26644574). {ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:26644574}.
Q8TEU7 RAPGEF6 S644 ochoa Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}.
Q99490 AGAP2 S681 ochoa Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}.
Q99607 ELF4 S186 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q9BW71 HIRIP3 S196 ochoa HIRA-interacting protein 3 Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}.
Q9Y6R1 SLC4A4 S257 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
P37108 SRP14 Y83 Sugiyama Signal recognition particle 14 kDa protein (SRP14) (18 kDa Alu RNA-binding protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:11089964). SRP9 together with SRP14 and the Alu portion of the SRP RNA, constitutes the elongation arrest domain of SRP (PubMed:11089964). The complex of SRP9 and SRP14 is required for SRP RNA binding (PubMed:11089964). {ECO:0000269|PubMed:11089964}.
O15117 FYB1 Y462 ochoa FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}.
O60832 DKC1 S451 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
P35659 DEK S251 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
Q14684 RRP1B S458 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q8IX03 WWC1 S654 ochoa Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}.
Q99442 SEC62 S117 ochoa Translocation protein SEC62 (Translocation protein 1) (TP-1) (hTP-1) Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. {ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
O60231 DHX16 S112 Sugiyama Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}.
Download
reactome_id name p -log10_p
R-HSA-8953854 Metabolism of RNA 4.687584e-12 11.329
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 1.364158e-08 7.865
R-HSA-72172 mRNA Splicing 1.278351e-08 7.893
R-HSA-8868773 rRNA processing in the nucleus and cytosol 7.510036e-09 8.124
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 3.702504e-08 7.432
R-HSA-72163 mRNA Splicing - Major Pathway 4.917437e-08 7.308
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 9.949739e-08 7.002
R-HSA-75153 Apoptotic execution phase 2.129034e-07 6.672
R-HSA-72312 rRNA processing 5.321132e-07 6.274
R-HSA-1640170 Cell Cycle 1.939011e-06 5.712
R-HSA-140342 Apoptosis induced DNA fragmentation 2.365275e-06 5.626
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 5.718707e-06 5.243
R-HSA-4839726 Chromatin organization 5.504999e-06 5.259
R-HSA-72737 Cap-dependent Translation Initiation 8.248130e-06 5.084
R-HSA-72613 Eukaryotic Translation Initiation 8.248130e-06 5.084
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 1.006048e-05 4.997
R-HSA-3247509 Chromatin modifying enzymes 1.377612e-05 4.861
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 2.857648e-05 4.544
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 3.556785e-05 4.449
R-HSA-69278 Cell Cycle, Mitotic 4.309970e-05 4.366
R-HSA-927802 Nonsense-Mediated Decay (NMD) 5.291232e-05 4.276
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 5.291232e-05 4.276
R-HSA-156842 Eukaryotic Translation Elongation 6.694476e-05 4.174
R-HSA-376176 Signaling by ROBO receptors 7.455920e-05 4.127
R-HSA-9948299 Ribosome-associated quality control 8.525484e-05 4.069
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 9.177064e-05 4.037
R-HSA-72689 Formation of a pool of free 40S subunits 1.016661e-04 3.993
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 1.082400e-04 3.966
R-HSA-156902 Peptide chain elongation 1.400602e-04 3.854
R-HSA-68886 M Phase 1.542493e-04 3.812
R-HSA-212165 Epigenetic regulation of gene expression 1.845091e-04 3.734
R-HSA-5633007 Regulation of TP53 Activity 1.761650e-04 3.754
R-HSA-2408557 Selenocysteine synthesis 1.829269e-04 3.738
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 1.905111e-04 3.720
R-HSA-109581 Apoptosis 2.032590e-04 3.692
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 2.104898e-04 3.677
R-HSA-399954 Sema3A PAK dependent Axon repulsion 2.300784e-04 3.638
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 2.700457e-04 3.569
R-HSA-72764 Eukaryotic Translation Termination 3.397306e-04 3.469
R-HSA-674695 RNA Polymerase II Pre-transcription Events 3.627063e-04 3.440
R-HSA-112382 Formation of RNA Pol II elongation complex 4.100693e-04 3.387
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 4.039443e-04 3.394
R-HSA-75955 RNA Polymerase II Transcription Elongation 4.654311e-04 3.332
R-HSA-168255 Influenza Infection 6.638365e-04 3.178
R-HSA-192823 Viral mRNA Translation 6.860247e-04 3.164
R-HSA-168273 Influenza Viral RNA Transcription and Replication 8.706414e-04 3.060
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 9.356596e-04 3.029
R-HSA-9711097 Cellular response to starvation 1.052619e-03 2.978
R-HSA-5357801 Programmed Cell Death 1.304912e-03 2.884
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 1.302489e-03 2.885
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 1.341514e-03 2.872
R-HSA-6790901 rRNA modification in the nucleus and cytosol 1.444318e-03 2.840
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 1.814935e-03 2.741
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 1.949271e-03 2.710
R-HSA-3700989 Transcriptional Regulation by TP53 2.085192e-03 2.681
R-HSA-9932451 SWI/SNF chromatin remodelers 2.795222e-03 2.554
R-HSA-9932444 ATP-dependent chromatin remodelers 2.795222e-03 2.554
R-HSA-68875 Mitotic Prophase 3.002577e-03 2.523
R-HSA-73886 Chromosome Maintenance 3.203831e-03 2.494
R-HSA-9673013 Diseases of Telomere Maintenance 3.652284e-03 2.437
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 3.652284e-03 2.437
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 3.652284e-03 2.437
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 3.652284e-03 2.437
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 3.652284e-03 2.437
R-HSA-69620 Cell Cycle Checkpoints 3.544924e-03 2.450
R-HSA-2408522 Selenoamino acid metabolism 3.574605e-03 2.447
R-HSA-9614657 FOXO-mediated transcription of cell death genes 3.823839e-03 2.418
R-HSA-162906 HIV Infection 3.836628e-03 2.416
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 5.742834e-03 2.241
R-HSA-72187 mRNA 3'-end processing 5.742834e-03 2.241
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 6.313870e-03 2.200
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 7.202984e-03 2.142
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 7.703679e-03 2.113
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 7.472034e-03 2.127
R-HSA-8878171 Transcriptional regulation by RUNX1 7.498786e-03 2.125
R-HSA-111465 Apoptotic cleavage of cellular proteins 7.352737e-03 2.134
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 9.026315e-03 2.044
R-HSA-141424 Amplification of signal from the kinetochores 9.911458e-03 2.004
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 9.911458e-03 2.004
R-HSA-74160 Gene expression (Transcription) 1.009316e-02 1.996
R-HSA-72731 Recycling of eIF2:GDP 1.023273e-02 1.990
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 1.083723e-02 1.965
R-HSA-72766 Translation 1.092152e-02 1.962
R-HSA-2299718 Condensation of Prophase Chromosomes 1.092183e-02 1.962
R-HSA-5621575 CD209 (DC-SIGN) signaling 1.127029e-02 1.948
R-HSA-69618 Mitotic Spindle Checkpoint 1.147921e-02 1.940
R-HSA-162587 HIV Life Cycle 1.233564e-02 1.909
R-HSA-9675108 Nervous system development 1.228729e-02 1.911
R-HSA-422475 Axon guidance 1.247129e-02 1.904
R-HSA-8852135 Protein ubiquitination 1.251850e-02 1.902
R-HSA-73856 RNA Polymerase II Transcription Termination 1.255404e-02 1.901
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 1.378730e-02 1.861
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 1.378730e-02 1.861
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 1.378730e-02 1.861
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 1.378730e-02 1.861
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 1.378730e-02 1.861
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 1.378730e-02 1.861
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 1.378730e-02 1.861
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 1.378730e-02 1.861
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 1.378730e-02 1.861
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 1.378730e-02 1.861
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 1.378730e-02 1.861
R-HSA-390696 Adrenoceptors 1.318935e-02 1.880
R-HSA-68877 Mitotic Prometaphase 1.464832e-02 1.834
R-HSA-2467813 Separation of Sister Chromatids 1.690646e-02 1.772
R-HSA-4641263 Regulation of FZD by ubiquitination 1.704551e-02 1.768
R-HSA-9824446 Viral Infection Pathways 1.725955e-02 1.763
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 1.756371e-02 1.755
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 1.824670e-02 1.739
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 2.093133e-02 1.679
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 2.093133e-02 1.679
R-HSA-4419969 Depolymerization of the Nuclear Lamina 1.968551e-02 1.706
R-HSA-9613829 Chaperone Mediated Autophagy 1.968551e-02 1.706
R-HSA-68882 Mitotic Anaphase 1.918987e-02 1.717
R-HSA-2555396 Mitotic Metaphase and Anaphase 1.990891e-02 1.701
R-HSA-3214841 PKMTs methylate histone lysines 2.082988e-02 1.681
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 2.143089e-02 1.669
R-HSA-5693532 DNA Double-Strand Break Repair 2.155731e-02 1.666
R-HSA-73857 RNA Polymerase II Transcription 2.162017e-02 1.665
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 2.255756e-02 1.647
R-HSA-73762 RNA Polymerase I Transcription Initiation 2.477177e-02 1.606
R-HSA-427413 NoRC negatively regulates rRNA expression 2.558543e-02 1.592
R-HSA-373753 Nephrin family interactions 2.568645e-02 1.590
R-HSA-3214847 HATs acetylate histones 2.603932e-02 1.584
R-HSA-2980766 Nuclear Envelope Breakdown 2.674305e-02 1.573
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 2.869639e-02 1.542
R-HSA-2262752 Cellular responses to stress 2.903931e-02 1.537
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 2.905565e-02 1.537
R-HSA-69186 Lagging Strand Synthesis 2.905565e-02 1.537
R-HSA-428540 Activation of RAC1 2.943532e-02 1.531
R-HSA-9930044 Nuclear RNA decay 3.053676e-02 1.515
R-HSA-191859 snRNP Assembly 3.074401e-02 1.512
R-HSA-194441 Metabolism of non-coding RNA 3.074401e-02 1.512
R-HSA-69109 Leading Strand Synthesis 3.460806e-02 1.461
R-HSA-69091 Polymerase switching 3.460806e-02 1.461
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 3.267470e-02 1.486
R-HSA-5696394 DNA Damage Recognition in GG-NER 3.347340e-02 1.475
R-HSA-774815 Nucleosome assembly 3.156949e-02 1.501
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 3.156949e-02 1.501
R-HSA-72165 mRNA Splicing - Minor Pathway 3.408015e-02 1.467
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 3.408015e-02 1.467
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 3.657973e-02 1.437
R-HSA-5696398 Nucleotide Excision Repair 3.708618e-02 1.431
R-HSA-201681 TCF dependent signaling in response to WNT 3.715163e-02 1.430
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 3.874275e-02 1.412
R-HSA-168316 Assembly of Viral Components at the Budding Site 3.874275e-02 1.412
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 3.967067e-02 1.402
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 3.985752e-02 1.399
R-HSA-389359 CD28 dependent Vav1 pathway 4.021801e-02 1.396
R-HSA-9661070 Defective translocation of RB1 mutants to the nucleus 4.307516e-02 1.366
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 4.307516e-02 1.366
R-HSA-69166 Removal of the Flap Intermediate 4.625754e-02 1.335
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 4.504621e-02 1.346
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 4.467774e-02 1.350
R-HSA-6804757 Regulation of TP53 Degradation 4.330821e-02 1.363
R-HSA-8953897 Cellular responses to stimuli 4.236892e-02 1.373
R-HSA-381119 Unfolded Protein Response (UPR) 4.679352e-02 1.330
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 4.693288e-02 1.329
R-HSA-157579 Telomere Maintenance 5.266651e-02 1.278
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 5.271715e-02 1.278
R-HSA-69183 Processive synthesis on the lagging strand 5.271715e-02 1.278
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 5.364978e-02 1.270
R-HSA-73863 RNA Polymerase I Transcription Termination 5.968810e-02 1.224
R-HSA-432722 Golgi Associated Vesicle Biogenesis 5.524671e-02 1.258
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 5.524671e-02 1.258
R-HSA-72649 Translation initiation complex formation 5.879618e-02 1.231
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 6.247877e-02 1.204
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 6.220276e-02 1.206
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 6.315713e-02 1.200
R-HSA-453276 Regulation of mitotic cell cycle 6.315713e-02 1.200
R-HSA-5218920 VEGFR2 mediated vascular permeability 6.318049e-02 1.199
R-HSA-162599 Late Phase of HIV Life Cycle 5.447918e-02 1.264
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 6.050736e-02 1.218
R-HSA-73933 Resolution of Abasic Sites (AP sites) 6.318049e-02 1.199
R-HSA-69541 Stabilization of p53 5.470666e-02 1.262
R-HSA-164944 Nef and signal transduction 6.050736e-02 1.218
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 6.220276e-02 1.206
R-HSA-6806003 Regulation of TP53 Expression and Degradation 5.470666e-02 1.262
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 5.988145e-02 1.223
R-HSA-2559583 Cellular Senescence 6.129477e-02 1.213
R-HSA-167287 HIV elongation arrest and recovery 6.506617e-02 1.187
R-HSA-167290 Pausing and recovery of HIV elongation 6.506617e-02 1.187
R-HSA-9842860 Regulation of endogenous retroelements 6.580761e-02 1.182
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 6.629458e-02 1.179
R-HSA-72702 Ribosomal scanning and start codon recognition 6.629458e-02 1.179
R-HSA-9675151 Disorders of Developmental Biology 6.685079e-02 1.175
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 6.767896e-02 1.170
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 6.933854e-02 1.159
R-HSA-5693538 Homology Directed Repair 7.076184e-02 1.150
R-HSA-114516 Disinhibition of SNARE formation 7.262062e-02 1.139
R-HSA-2470946 Cohesin Loading onto Chromatin 7.262062e-02 1.139
R-HSA-5336415 Uptake and function of diphtheria toxin 7.262062e-02 1.139
R-HSA-211728 Regulation of PAK-2p34 activity by PS-GAP/RHG10 8.429736e-02 1.074
R-HSA-5602566 TICAM1 deficiency - HSE 8.429736e-02 1.074
R-HSA-9828211 Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation 8.543398e-02 1.068
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 8.251482e-02 1.083
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 8.264868e-02 1.083
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 8.288546e-02 1.082
R-HSA-180786 Extension of Telomeres 7.853950e-02 1.105
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 7.853950e-02 1.105
R-HSA-399719 Trafficking of AMPA receptors 8.264868e-02 1.083
R-HSA-73854 RNA Polymerase I Promoter Clearance 8.114203e-02 1.091
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 7.655047e-02 1.116
R-HSA-8863795 Downregulation of ERBB2 signaling 7.655047e-02 1.116
R-HSA-73894 DNA Repair 8.159327e-02 1.088
R-HSA-442729 CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde 8.543398e-02 1.068
R-HSA-6804760 Regulation of TP53 Activity through Methylation 8.251482e-02 1.083
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 8.739086e-02 1.059
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 8.739086e-02 1.059
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 7.655047e-02 1.116
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 7.432531e-02 1.129
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 8.543398e-02 1.068
R-HSA-3928664 Ephrin signaling 8.251482e-02 1.083
R-HSA-9008059 Interleukin-37 signaling 7.655047e-02 1.116
R-HSA-162909 Host Interactions of HIV factors 8.835662e-02 1.054
R-HSA-9675126 Diseases of mitotic cell cycle 8.897802e-02 1.051
R-HSA-69190 DNA strand elongation 8.897802e-02 1.051
R-HSA-73864 RNA Polymerase I Transcription 8.908396e-02 1.050
R-HSA-844456 The NLRP3 inflammasome 9.088369e-02 1.042
R-HSA-163282 Mitochondrial transcription initiation 1.237462e-01 0.907
R-HSA-5619054 Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... 1.237462e-01 0.907
R-HSA-4085023 Defective GFPT1 causes CMSTA1 1.237462e-01 0.907
R-HSA-5602571 TRAF3 deficiency - HSE 1.237462e-01 0.907
R-HSA-211736 Stimulation of the cell death response by PAK-2p34 1.614978e-01 0.792
R-HSA-1299503 TWIK related potassium channel (TREK) 1.614978e-01 0.792
R-HSA-4755609 Defective DHDDS causes RP59 1.614978e-01 0.792
R-HSA-9673766 Signaling by cytosolic PDGFRA and PDGFRB fusion proteins 1.976252e-01 0.704
R-HSA-5679001 Defective ABCC2 causes DJS 1.976252e-01 0.704
R-HSA-9013957 TLR3-mediated TICAM1-dependent programmed cell death 2.321982e-01 0.634
R-HSA-9818035 NFE2L2 regulating ER-stress associated genes 2.321982e-01 0.634
R-HSA-69200 Phosphorylation of proteins involved in G1/S transition by active Cyclin E:Cdk2 ... 2.321982e-01 0.634
R-HSA-9014325 TICAM1,TRAF6-dependent induction of TAK1 complex 1.128364e-01 0.948
R-HSA-164843 2-LTR circle formation 1.128364e-01 0.948
R-HSA-9818026 NFE2L2 regulating inflammation associated genes 2.652834e-01 0.576
R-HSA-9673768 Signaling by membrane-tethered fusions of PDGFRA or PDGFRB 2.652834e-01 0.576
R-HSA-9706377 FLT3 signaling by CBL mutants 2.652834e-01 0.576
R-HSA-2514853 Condensation of Prometaphase Chromosomes 1.421215e-01 0.847
R-HSA-113501 Inhibition of replication initiation of damaged DNA by RB1/E2F1 1.421215e-01 0.847
R-HSA-9824878 Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 1.421215e-01 0.847
R-HSA-8951936 RUNX3 regulates p14-ARF 1.573073e-01 0.803
R-HSA-3000484 Scavenging by Class F Receptors 1.573073e-01 0.803
R-HSA-8985586 SLIT2:ROBO1 increases RHOA activity 2.969449e-01 0.527
R-HSA-5603029 IkBA variant leads to EDA-ID 2.969449e-01 0.527
R-HSA-5340588 Signaling by RNF43 mutants 2.969449e-01 0.527
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 9.958921e-02 1.002
R-HSA-174490 Membrane binding and targetting of GAG proteins 1.727781e-01 0.763
R-HSA-177539 Autointegration results in viral DNA circles 3.272438e-01 0.485
R-HSA-6802953 RAS signaling downstream of NF1 loss-of-function variants 3.272438e-01 0.485
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 2.043677e-01 0.690
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 2.043677e-01 0.690
R-HSA-5656121 Translesion synthesis by POLI 2.203931e-01 0.657
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 2.203931e-01 0.657
R-HSA-2892245 POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation 3.562388e-01 0.448
R-HSA-2562578 TRIF-mediated programmed cell death 3.562388e-01 0.448
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 3.562388e-01 0.448
R-HSA-8964616 G beta:gamma signalling through CDC42 2.365160e-01 0.626
R-HSA-5655862 Translesion synthesis by POLK 2.365160e-01 0.626
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 2.365160e-01 0.626
R-HSA-174414 Processive synthesis on the C-strand of the telomere 1.793022e-01 0.746
R-HSA-445095 Interaction between L1 and Ankyrins 1.793022e-01 0.746
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 1.793022e-01 0.746
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 1.793022e-01 0.746
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 2.526982e-01 0.597
R-HSA-1169092 Activation of RAS in B cells 3.839858e-01 0.416
R-HSA-9660537 Signaling by MRAS-complex mutants 3.839858e-01 0.416
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 3.839858e-01 0.416
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 1.039274e-01 0.983
R-HSA-5656169 Termination of translesion DNA synthesis 2.013903e-01 0.696
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 1.553515e-01 0.809
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 1.553515e-01 0.809
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 1.281789e-01 0.892
R-HSA-937041 IKK complex recruitment mediated by RIP1 2.851036e-01 0.545
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 2.851036e-01 0.545
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 4.105384e-01 0.387
R-HSA-9613354 Lipophagy 4.105384e-01 0.387
R-HSA-9700645 ALK mutants bind TKIs 4.105384e-01 0.387
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 1.346132e-01 0.871
R-HSA-418597 G alpha (z) signalling events 1.479009e-01 0.830
R-HSA-3214815 HDACs deacetylate histones 1.479009e-01 0.830
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 3.173632e-01 0.498
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 3.173632e-01 0.498
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 4.359481e-01 0.361
R-HSA-68952 DNA replication initiation 4.359481e-01 0.361
R-HSA-390450 Folding of actin by CCT/TriC 4.359481e-01 0.361
R-HSA-390522 Striated Muscle Contraction 2.589235e-01 0.587
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 2.163844e-01 0.665
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 3.333727e-01 0.477
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 3.333727e-01 0.477
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 2.255952e-01 0.647
R-HSA-5658442 Regulation of RAS by GAPs 2.537848e-01 0.596
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 2.215871e-01 0.654
R-HSA-180910 Vpr-mediated nuclear import of PICs 3.063291e-01 0.514
R-HSA-8854518 AURKA Activation by TPX2 2.295078e-01 0.639
R-HSA-73772 RNA Polymerase I Promoter Escape 2.729619e-01 0.564
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 3.301908e-01 0.481
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 3.421188e-01 0.466
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 3.421188e-01 0.466
R-HSA-9670095 Inhibition of DNA recombination at telomere 3.421188e-01 0.466
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 3.119574e-01 0.506
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 3.659135e-01 0.437
R-HSA-167161 HIV Transcription Initiation 3.659135e-01 0.437
R-HSA-75953 RNA Polymerase II Transcription Initiation 3.659135e-01 0.437
R-HSA-73776 RNA Polymerase II Promoter Escape 3.895589e-01 0.409
R-HSA-1989781 PPARA activates gene expression 2.362608e-01 0.627
R-HSA-5334118 DNA methylation 4.560020e-01 0.341
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 4.560020e-01 0.341
R-HSA-9615710 Late endosomal microautophagy 4.560020e-01 0.341
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 4.129805e-01 0.384
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 3.810492e-01 0.419
R-HSA-380259 Loss of Nlp from mitotic centrosomes 3.810492e-01 0.419
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 4.493482e-01 0.347
R-HSA-167172 Transcription of the HIV genome 1.222651e-01 0.913
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 1.548069e-01 0.810
R-HSA-1643713 Signaling by EGFR in Cancer 4.113863e-01 0.386
R-HSA-167169 HIV Transcription Elongation 3.421188e-01 0.466
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 3.540298e-01 0.451
R-HSA-73893 DNA Damage Bypass 2.443034e-01 0.612
R-HSA-6814122 Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding 2.707028e-01 0.568
R-HSA-6798695 Neutrophil degranulation 4.463472e-01 0.350
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 4.201451e-01 0.377
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 4.201451e-01 0.377
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 4.411299e-01 0.355
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 4.201451e-01 0.377
R-HSA-110320 Translesion Synthesis by POLH 2.851036e-01 0.545
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 2.707028e-01 0.568
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 3.421188e-01 0.466
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 2.311139e-01 0.636
R-HSA-9013973 TICAM1-dependent activation of IRF3/IRF7 1.421215e-01 0.847
R-HSA-936964 Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) 2.365160e-01 0.626
R-HSA-162592 Integration of provirus 1.421215e-01 0.847
R-HSA-9656223 Signaling by RAF1 mutants 1.720927e-01 0.764
R-HSA-5689901 Metalloprotease DUBs 1.685217e-01 0.773
R-HSA-5674135 MAP2K and MAPK activation 3.659135e-01 0.437
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 1.629619e-01 0.788
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 1.793022e-01 0.746
R-HSA-975163 IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation 1.884811e-01 0.725
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 1.884811e-01 0.725
R-HSA-110312 Translesion synthesis by REV1 2.043677e-01 0.690
R-HSA-169911 Regulation of Apoptosis 1.164954e-01 0.934
R-HSA-937042 IRAK2 mediated activation of TAK1 complex 4.105384e-01 0.387
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 3.301908e-01 0.481
R-HSA-5688426 Deubiquitination 1.616503e-01 0.791
R-HSA-1358803 Downregulation of ERBB2:ERBB3 signaling 1.573073e-01 0.803
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 1.727781e-01 0.763
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 2.043677e-01 0.690
R-HSA-164940 Nef mediated downregulation of MHC class I complex cell surface expression 3.839858e-01 0.416
R-HSA-113510 E2F mediated regulation of DNA replication 2.851036e-01 0.545
R-HSA-6802957 Oncogenic MAPK signaling 2.294206e-01 0.639
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 2.163844e-01 0.665
R-HSA-9649948 Signaling downstream of RAS mutants 2.163844e-01 0.665
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 2.163844e-01 0.665
R-HSA-180746 Nuclear import of Rev protein 2.707028e-01 0.568
R-HSA-9620244 Long-term potentiation 3.961127e-01 0.402
R-HSA-1169091 Activation of NF-kappaB in B cells 1.218896e-01 0.914
R-HSA-5696395 Formation of Incision Complex in GG-NER 3.421188e-01 0.466
R-HSA-75944 Transcription from mitochondrial promoters 1.614978e-01 0.792
R-HSA-110381 Resolution of AP sites via the single-nucleotide replacement pathway 2.652834e-01 0.576
R-HSA-174411 Polymerase switching on the C-strand of the telomere 1.579396e-01 0.802
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 2.365160e-01 0.626
R-HSA-416993 Trafficking of GluR2-containing AMPA receptors 2.689047e-01 0.570
R-HSA-5693606 DNA Double Strand Break Response 1.169078e-01 0.932
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 2.072802e-01 0.683
R-HSA-5696400 Dual Incision in GG-NER 2.707028e-01 0.568
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 2.825391e-01 0.549
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 2.825391e-01 0.549
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 3.063291e-01 0.514
R-HSA-9932298 Degradation of CRY and PER proteins 3.659135e-01 0.437
R-HSA-9710421 Defective pyroptosis 3.895589e-01 0.409
R-HSA-6783310 Fanconi Anemia Pathway 4.129805e-01 0.384
R-HSA-5689896 Ovarian tumor domain proteases 1.314857e-01 0.881
R-HSA-1236974 ER-Phagosome pathway 1.453668e-01 0.838
R-HSA-5689603 UCH proteinases 3.123268e-01 0.505
R-HSA-199992 trans-Golgi Network Vesicle Budding 1.448595e-01 0.839
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 3.947854e-01 0.404
R-HSA-9703465 Signaling by FLT3 fusion proteins 4.113863e-01 0.386
R-HSA-195253 Degradation of beta-catenin by the destruction complex 4.493482e-01 0.347
R-HSA-8937144 Aryl hydrocarbon receptor signalling 2.969449e-01 0.527
R-HSA-139853 Elevation of cytosolic Ca2+ levels 2.526982e-01 0.597
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 1.472222e-01 0.832
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 1.333337e-01 0.875
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 4.264667e-01 0.370
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 1.957214e-01 0.708
R-HSA-69239 Synthesis of DNA 1.588027e-01 0.799
R-HSA-5693607 Processing of DNA double-strand break ends 2.018188e-01 0.695
R-HSA-5685942 HDR through Homologous Recombination (HRR) 4.202989e-01 0.376
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 1.685217e-01 0.773
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 1.472222e-01 0.832
R-HSA-4641258 Degradation of DVL 3.063291e-01 0.514
R-HSA-8856828 Clathrin-mediated endocytosis 2.819347e-01 0.550
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 1.636443e-01 0.786
R-HSA-5649702 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... 4.105384e-01 0.387
R-HSA-6802949 Signaling by RAS mutants 2.163844e-01 0.665
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 3.333727e-01 0.477
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 1.588027e-01 0.799
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 1.374400e-01 0.862
R-HSA-9754189 Germ layer formation at gastrulation 2.851036e-01 0.545
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 1.128364e-01 0.948
R-HSA-8984722 Interleukin-35 Signalling 1.573073e-01 0.803
R-HSA-9909396 Circadian clock 1.230278e-01 0.910
R-HSA-112040 G-protein mediated events 2.375093e-01 0.624
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 1.042853e-01 0.982
R-HSA-9700206 Signaling by ALK in cancer 1.588027e-01 0.799
R-HSA-9022538 Loss of MECP2 binding ability to 5mC-DNA 1.976252e-01 0.704
R-HSA-425381 Bicarbonate transporters 1.272774e-01 0.895
R-HSA-8866376 Reelin signalling pathway 2.652834e-01 0.576
R-HSA-68884 Mitotic Telophase/Cytokinesis 1.421215e-01 0.847
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 1.573073e-01 0.803
R-HSA-877312 Regulation of IFNG signaling 1.573073e-01 0.803
R-HSA-111459 Activation of caspases through apoptosome-mediated cleavage 2.969449e-01 0.527
R-HSA-8948747 Regulation of PTEN localization 3.562388e-01 0.448
R-HSA-203641 NOSTRIN mediated eNOS trafficking 3.562388e-01 0.448
R-HSA-8866904 Negative regulation of activity of TFAP2 (AP-2) family transcription factors 3.839858e-01 0.416
R-HSA-3785653 Myoclonic epilepsy of Lafora 3.839858e-01 0.416
R-HSA-5576892 Phase 0 - rapid depolarisation 1.902640e-01 0.721
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 2.689047e-01 0.570
R-HSA-418360 Platelet calcium homeostasis 2.013903e-01 0.696
R-HSA-9619229 Activation of RAC1 downstream of NMDARs 4.105384e-01 0.387
R-HSA-170984 ARMS-mediated activation 4.105384e-01 0.387
R-HSA-5689877 Josephin domain DUBs 4.359481e-01 0.361
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 3.333727e-01 0.477
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 1.983589e-01 0.703
R-HSA-180585 Vif-mediated degradation of APOBEC3G 2.944189e-01 0.531
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 2.944189e-01 0.531
R-HSA-4641257 Degradation of AXIN 3.063291e-01 0.514
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 3.063291e-01 0.514
R-HSA-3371571 HSF1-dependent transactivation 2.633402e-01 0.579
R-HSA-933542 TRAF6 mediated NF-kB activation 3.806589e-01 0.419
R-HSA-429947 Deadenylation of mRNA 3.806589e-01 0.419
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 2.224075e-01 0.653
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 2.923730e-01 0.534
R-HSA-5260271 Diseases of Immune System 3.421188e-01 0.466
R-HSA-5602358 Diseases associated with the TLR signaling cascade 3.421188e-01 0.466
R-HSA-176033 Interactions of Vpr with host cellular proteins 3.421188e-01 0.466
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 4.113863e-01 0.386
R-HSA-5610780 Degradation of GLI1 by the proteasome 3.659135e-01 0.437
R-HSA-69473 G2/M DNA damage checkpoint 2.953571e-01 0.530
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 3.777597e-01 0.423
R-HSA-9018519 Estrogen-dependent gene expression 2.364949e-01 0.626
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 4.397121e-01 0.357
R-HSA-379716 Cytosolic tRNA aminoacylation 3.777597e-01 0.423
R-HSA-9674555 Signaling by CSF3 (G-CSF) 4.560020e-01 0.341
R-HSA-203615 eNOS activation 2.707028e-01 0.568
R-HSA-5578775 Ion homeostasis 3.119574e-01 0.506
R-HSA-8985947 Interleukin-9 signaling 3.839858e-01 0.416
R-HSA-111885 Opioid Signalling 3.951915e-01 0.403
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 2.043677e-01 0.690
R-HSA-9843745 Adipogenesis 1.192642e-01 0.923
R-HSA-69242 S Phase 2.011829e-01 0.696
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 1.392644e-01 0.856
R-HSA-177243 Interactions of Rev with host cellular proteins 3.421188e-01 0.466
R-HSA-111933 Calmodulin induced events 1.238936e-01 0.907
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 9.886485e-02 1.005
R-HSA-9010642 ROBO receptors bind AKAP5 3.839858e-01 0.416
R-HSA-3295583 TRP channels 4.113863e-01 0.386
R-HSA-6784531 tRNA processing in the nucleus 3.711802e-01 0.430
R-HSA-6807004 Negative regulation of MET activity 9.958921e-02 1.002
R-HSA-418885 DCC mediated attractive signaling 2.043677e-01 0.690
R-HSA-111997 CaM pathway 1.238936e-01 0.907
R-HSA-5357905 Regulation of TNFR1 signaling 4.245863e-01 0.372
R-HSA-3371556 Cellular response to heat stress 2.477283e-01 0.606
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 4.361116e-01 0.360
R-HSA-76002 Platelet activation, signaling and aggregation 4.207994e-01 0.376
R-HSA-112043 PLC beta mediated events 1.908108e-01 0.719
R-HSA-983169 Class I MHC mediated antigen processing & presentation 4.176377e-01 0.379
R-HSA-9020956 Interleukin-27 signaling 1.128364e-01 0.948
R-HSA-139915 Activation of PUMA and translocation to mitochondria 3.562388e-01 0.448
R-HSA-1253288 Downregulation of ERBB4 signaling 3.839858e-01 0.416
R-HSA-9020958 Interleukin-21 signaling 4.105384e-01 0.387
R-HSA-180534 Vpu mediated degradation of CD4 2.589235e-01 0.587
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 2.707028e-01 0.568
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 2.707028e-01 0.568
R-HSA-3371568 Attenuation phase 3.421188e-01 0.466
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 3.659135e-01 0.437
R-HSA-5610783 Degradation of GLI2 by the proteasome 3.659135e-01 0.437
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 4.129805e-01 0.384
R-HSA-1234174 Cellular response to hypoxia 4.007305e-01 0.397
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 3.810899e-01 0.419
R-HSA-397014 Muscle contraction 9.356989e-02 1.029
R-HSA-4420097 VEGFA-VEGFR2 Pathway 2.125415e-01 0.673
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 1.097605e-01 0.960
R-HSA-901042 Calnexin/calreticulin cycle 1.092982e-01 0.961
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 1.524559e-01 0.817
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 2.043677e-01 0.690
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 2.707028e-01 0.568
R-HSA-69481 G2/M Checkpoints 1.014286e-01 0.994
R-HSA-445355 Smooth Muscle Contraction 2.826420e-01 0.549
R-HSA-5678895 Defective CFTR causes cystic fibrosis 4.129805e-01 0.384
R-HSA-111996 Ca-dependent events 1.806887e-01 0.743
R-HSA-381042 PERK regulates gene expression 1.164954e-01 0.934
R-HSA-69615 G1/S DNA Damage Checkpoints 9.670498e-02 1.015
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 3.492716e-01 0.457
R-HSA-114608 Platelet degranulation 1.789925e-01 0.747
R-HSA-194138 Signaling by VEGF 2.783834e-01 0.555
R-HSA-1489509 DAG and IP3 signaling 2.072802e-01 0.683
R-HSA-9909648 Regulation of PD-L1(CD274) expression 1.424406e-01 0.846
R-HSA-69306 DNA Replication 2.260103e-01 0.646
R-HSA-3928662 EPHB-mediated forward signaling 1.982907e-01 0.703
R-HSA-195721 Signaling by WNT 1.707482e-01 0.768
R-HSA-111464 SMAC(DIABLO)-mediated dissociation of IAP:caspase complexes 2.652834e-01 0.576
R-HSA-162594 Early Phase of HIV Life Cycle 1.086147e-01 0.964
R-HSA-175567 Integration of viral DNA into host genomic DNA 3.272438e-01 0.485
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 9.553325e-02 1.020
R-HSA-8964041 LDL remodeling 3.562388e-01 0.448
R-HSA-8941858 Regulation of RUNX3 expression and activity 1.553515e-01 0.809
R-HSA-2179392 EGFR Transactivation by Gastrin 4.359481e-01 0.361
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 2.707028e-01 0.568
R-HSA-5218921 VEGFR2 mediated cell proliferation 3.961127e-01 0.402
R-HSA-9604323 Negative regulation of NOTCH4 signaling 3.421188e-01 0.466
R-HSA-5362768 Hh mutants are degraded by ERAD 3.540298e-01 0.451
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 3.540298e-01 0.451
R-HSA-416482 G alpha (12/13) signalling events 3.294217e-01 0.482
R-HSA-5576891 Cardiac conduction 3.228369e-01 0.491
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 3.951915e-01 0.403
R-HSA-389948 Co-inhibition by PD-1 2.623432e-01 0.581
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 1.844294e-01 0.734
R-HSA-1236975 Antigen processing-Cross presentation 2.799193e-01 0.553
R-HSA-69563 p53-Dependent G1 DNA Damage Response 1.097605e-01 0.960
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 1.097605e-01 0.960
R-HSA-175474 Assembly Of The HIV Virion 3.333727e-01 0.477
R-HSA-1169408 ISG15 antiviral mechanism 3.038239e-01 0.517
R-HSA-69002 DNA Replication Pre-Initiation 2.867094e-01 0.543
R-HSA-8939902 Regulation of RUNX2 expression and activity 3.613002e-01 0.442
R-HSA-8876384 Listeria monocytogenes entry into host cells 3.333727e-01 0.477
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 3.806589e-01 0.419
R-HSA-1227986 Signaling by ERBB2 1.833680e-01 0.737
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 9.886485e-02 1.005
R-HSA-111469 SMAC, XIAP-regulated apoptotic response 2.969449e-01 0.527
R-HSA-1059683 Interleukin-6 signaling 1.727781e-01 0.763
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 1.727781e-01 0.763
R-HSA-9012852 Signaling by NOTCH3 1.479009e-01 0.830
R-HSA-3214842 HDMs demethylate histones 1.579396e-01 0.802
R-HSA-73884 Base Excision Repair 2.728371e-01 0.564
R-HSA-9818749 Regulation of NFE2L2 gene expression 3.272438e-01 0.485
R-HSA-399997 Acetylcholine regulates insulin secretion 2.365160e-01 0.626
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 3.333727e-01 0.477
R-HSA-5387390 Hh mutants abrogate ligand secretion 3.895589e-01 0.409
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 4.413420e-01 0.355
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 4.013021e-01 0.397
R-HSA-4608870 Asymmetric localization of PCP proteins 4.129805e-01 0.384
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 2.689047e-01 0.570
R-HSA-9824594 Regulation of MITF-M-dependent genes involved in apoptosis 1.086147e-01 0.964
R-HSA-9665348 Signaling by ERBB2 ECD mutants 2.689047e-01 0.570
R-HSA-5358346 Hedgehog ligand biogenesis 2.633402e-01 0.579
R-HSA-379724 tRNA Aminoacylation 3.514154e-01 0.454
R-HSA-69275 G2/M Transition 1.982792e-01 0.703
R-HSA-453274 Mitotic G2-G2/M phases 2.069742e-01 0.684
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 3.119574e-01 0.506
R-HSA-75108 Activation, myristolyation of BID and translocation to mitochondria 1.614978e-01 0.792
R-HSA-390651 Dopamine receptors 2.321982e-01 0.634
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 1.128364e-01 0.948
R-HSA-111463 SMAC (DIABLO) binds to IAPs 2.652834e-01 0.576
R-HSA-1475029 Reversible hydration of carbon dioxide 1.727781e-01 0.763
R-HSA-9671555 Signaling by PDGFR in disease 1.179433e-01 0.928
R-HSA-1433559 Regulation of KIT signaling 1.884811e-01 0.725
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 1.374400e-01 0.862
R-HSA-5576890 Phase 3 - rapid repolarisation 3.562388e-01 0.448
R-HSA-163680 AMPK inhibits chREBP transcriptional activation activity 4.105384e-01 0.387
R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription factors 4.105384e-01 0.387
R-HSA-9022702 MECP2 regulates transcription of neuronal ligands 4.359481e-01 0.361
R-HSA-4086400 PCP/CE pathway 1.819750e-01 0.740
R-HSA-163685 Integration of energy metabolism 2.364949e-01 0.626
R-HSA-69206 G1/S Transition 4.201451e-01 0.377
R-HSA-388841 Regulation of T cell activation by CD28 family 1.649421e-01 0.783
R-HSA-447115 Interleukin-12 family signaling 1.350024e-01 0.870
R-HSA-9664565 Signaling by ERBB2 KD Mutants 4.560020e-01 0.341
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 1.448595e-01 0.839
R-HSA-9682385 FLT3 signaling in disease 2.944189e-01 0.531
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 3.909012e-01 0.408
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 4.245863e-01 0.372
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 4.245863e-01 0.372
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 1.275575e-01 0.894
R-HSA-2682334 EPH-Ephrin signaling 2.952498e-01 0.530
R-HSA-6803205 TP53 regulates transcription of several additional cell death genes whose specif... 1.275575e-01 0.894
R-HSA-212436 Generic Transcription Pathway 2.505853e-01 0.601
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 3.063291e-01 0.514
R-HSA-453279 Mitotic G1 phase and G1/S transition 2.995748e-01 0.523
R-HSA-373752 Netrin-1 signaling 1.982907e-01 0.703
R-HSA-5621481 C-type lectin receptors (CLRs) 4.586357e-01 0.339
R-HSA-9834752 Respiratory syncytial virus genome replication 9.886485e-02 1.005
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 2.652834e-01 0.576
R-HSA-381183 ATF6 (ATF6-alpha) activates chaperone genes 1.421215e-01 0.847
R-HSA-9694493 Maturation of protein E 2.969449e-01 0.527
R-HSA-9683683 Maturation of protein E 2.969449e-01 0.527
R-HSA-8866423 VLDL assembly 3.272438e-01 0.485
R-HSA-3270619 IRF3-mediated induction of type I IFN 2.043677e-01 0.690
R-HSA-5099900 WNT5A-dependent internalization of FZD4 2.203931e-01 0.657
R-HSA-448706 Interleukin-1 processing 4.105384e-01 0.387
R-HSA-8875555 MET activates RAP1 and RAC1 4.359481e-01 0.361
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 1.983589e-01 0.703
R-HSA-912694 Regulation of IFNA/IFNB signaling 3.492716e-01 0.457
R-HSA-69202 Cyclin E associated events during G1/S transition 4.493482e-01 0.347
R-HSA-1266695 Interleukin-7 signaling 1.579396e-01 0.802
R-HSA-2672351 Stimuli-sensing channels 1.638629e-01 0.786
R-HSA-382556 ABC-family proteins mediated transport 1.211325e-01 0.917
R-HSA-9833110 RSV-host interactions 2.531962e-01 0.597
R-HSA-9616222 Transcriptional regulation of granulopoiesis 3.711802e-01 0.430
R-HSA-446652 Interleukin-1 family signaling 3.355885e-01 0.474
R-HSA-1433557 Signaling by SCF-KIT 1.894241e-01 0.723
R-HSA-622312 Inflammasomes 1.902640e-01 0.721
R-HSA-202433 Generation of second messenger molecules 1.553515e-01 0.809
R-HSA-6783589 Interleukin-6 family signaling 3.806589e-01 0.419
R-HSA-5687128 MAPK6/MAPK4 signaling 1.201708e-01 0.920
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 4.129805e-01 0.384
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 2.761199e-01 0.559
R-HSA-9840373 Cellular response to mitochondrial stress 9.886485e-02 1.005
R-HSA-9706369 Negative regulation of FLT3 2.203931e-01 0.657
R-HSA-9637628 Modulation by Mtb of host immune system 3.839858e-01 0.416
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 3.012653e-01 0.521
R-HSA-1296346 Tandem pore domain potassium channels 4.359481e-01 0.361
R-HSA-9692914 SARS-CoV-1-host interactions 4.184132e-01 0.378
R-HSA-9764265 Regulation of CDH1 Expression and Function 3.405791e-01 0.468
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 3.405791e-01 0.468
R-HSA-983712 Ion channel transport 4.335393e-01 0.363
R-HSA-2514859 Inactivation, recovery and regulation of the phototransduction cascade 2.163844e-01 0.665
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 3.552174e-01 0.450
R-HSA-163765 ChREBP activates metabolic gene expression 1.272774e-01 0.895
R-HSA-9664873 Pexophagy 4.359481e-01 0.361
R-HSA-9669938 Signaling by KIT in disease 3.492716e-01 0.457
R-HSA-9614085 FOXO-mediated transcription 3.564535e-01 0.448
R-HSA-9907900 Proteasome assembly 4.013021e-01 0.397
R-HSA-9705683 SARS-CoV-2-host interactions 1.384390e-01 0.859
R-HSA-373755 Semaphorin interactions 9.670498e-02 1.015
R-HSA-9694631 Maturation of nucleoprotein 2.851036e-01 0.545
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 4.359481e-01 0.361
R-HSA-9764560 Regulation of CDH1 Gene Transcription 2.619474e-01 0.582
R-HSA-9841251 Mitochondrial unfolded protein response (UPRmt) 4.264667e-01 0.370
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 3.514154e-01 0.454
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 3.477624e-01 0.459
R-HSA-3214858 RMTs methylate histone arginines 1.982907e-01 0.703
R-HSA-9707564 Cytoprotection by HMOX1 3.724644e-01 0.429
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 2.702213e-01 0.568
R-HSA-202403 TCR signaling 2.935380e-01 0.532
R-HSA-2028269 Signaling by Hippo 2.526982e-01 0.597
R-HSA-110357 Displacement of DNA glycosylase by APEX1 3.562388e-01 0.448
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 3.839858e-01 0.416
R-HSA-9683686 Maturation of spike protein 4.359481e-01 0.361
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 3.119574e-01 0.506
R-HSA-9833482 PKR-mediated signaling 3.466045e-01 0.460
R-HSA-8953750 Transcriptional Regulation by E2F6 1.472222e-01 0.832
R-HSA-9707616 Heme signaling 3.711802e-01 0.430
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 3.217963e-01 0.492
R-HSA-1251985 Nuclear signaling by ERBB4 1.553515e-01 0.809
R-HSA-1236394 Signaling by ERBB4 2.953571e-01 0.530
R-HSA-375280 Amine ligand-binding receptors 1.982907e-01 0.703
R-HSA-5223345 Miscellaneous transport and binding events 2.589235e-01 0.587
R-HSA-2514856 The phototransduction cascade 2.633402e-01 0.579
R-HSA-1500931 Cell-Cell communication 4.105672e-01 0.387
R-HSA-9827857 Specification of primordial germ cells 2.526982e-01 0.597
R-HSA-1834941 STING mediated induction of host immune responses 2.851036e-01 0.545
R-HSA-389356 Co-stimulation by CD28 2.349042e-01 0.629
R-HSA-381033 ATF6 (ATF6-alpha) activates chaperones 1.727781e-01 0.763
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 3.839858e-01 0.416
R-HSA-9682706 Replication of the SARS-CoV-1 genome 1.727781e-01 0.763
R-HSA-9694686 Replication of the SARS-CoV-2 genome 2.526982e-01 0.597
R-HSA-9020933 Interleukin-23 signaling 3.839858e-01 0.416
R-HSA-9678108 SARS-CoV-1 Infection 3.520759e-01 0.453
R-HSA-9683701 Translation of Structural Proteins 3.659135e-01 0.437
R-HSA-9679506 SARS-CoV Infections 3.235059e-01 0.490
R-HSA-9679514 SARS-CoV-1 Genome Replication and Transcription 1.884811e-01 0.725
R-HSA-9694516 SARS-CoV-2 Infection 2.030463e-01 0.692
R-HSA-9694682 SARS-CoV-2 Genome Replication and Transcription 2.851036e-01 0.545
R-HSA-9020591 Interleukin-12 signaling 3.123268e-01 0.505
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 2.420290e-01 0.616
R-HSA-381038 XBP1(S) activates chaperone genes 2.436517e-01 0.613
R-HSA-381070 IRE1alpha activates chaperones 2.877360e-01 0.541
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 4.007305e-01 0.397
R-HSA-168268 Virus Assembly and Release 2.203931e-01 0.657
R-HSA-9766229 Degradation of CDH1 4.588928e-01 0.338
R-HSA-5632684 Hedgehog 'on' state 4.589312e-01 0.338
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 4.598527e-01 0.337
R-HSA-4839744 Signaling by APC mutants 4.602639e-01 0.337
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 4.602639e-01 0.337
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 4.602639e-01 0.337
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 4.602639e-01 0.337
R-HSA-192905 vRNP Assembly 4.602639e-01 0.337
R-HSA-5658623 FGFRL1 modulation of FGFR1 signaling 4.602639e-01 0.337
R-HSA-9645460 Alpha-protein kinase 1 signaling pathway 4.602639e-01 0.337
R-HSA-8963888 Chylomicron assembly 4.602639e-01 0.337
R-HSA-9706019 RHOBTB3 ATPase cycle 4.602639e-01 0.337
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 4.602639e-01 0.337
R-HSA-9635465 Suppression of apoptosis 4.602639e-01 0.337
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 4.684567e-01 0.329
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 4.704376e-01 0.327
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 4.704376e-01 0.327
R-HSA-68962 Activation of the pre-replicative complex 4.704376e-01 0.327
R-HSA-1227990 Signaling by ERBB2 in Cancer 4.704376e-01 0.327
R-HSA-5689880 Ub-specific processing proteases 4.708779e-01 0.327
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 4.741899e-01 0.324
R-HSA-68867 Assembly of the pre-replicative complex 4.748497e-01 0.323
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 4.779204e-01 0.321
R-HSA-69052 Switching of origins to a post-replicative state 4.779204e-01 0.321
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 4.812721e-01 0.318
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 4.830633e-01 0.316
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 4.835329e-01 0.316
R-HSA-5339716 Signaling by GSK3beta mutants 4.835329e-01 0.316
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 4.835329e-01 0.316
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 4.835329e-01 0.316
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 4.835329e-01 0.316
R-HSA-4839735 Signaling by AXIN mutants 4.835329e-01 0.316
R-HSA-4839748 Signaling by AMER1 mutants 4.835329e-01 0.316
R-HSA-418359 Reduction of cytosolic Ca++ levels 4.835329e-01 0.316
R-HSA-180689 APOBEC3G mediated resistance to HIV-1 infection 4.835329e-01 0.316
R-HSA-209560 NF-kB is activated and signals survival 4.835329e-01 0.316
R-HSA-111461 Cytochrome c-mediated apoptotic response 4.835329e-01 0.316
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 4.846410e-01 0.315
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 4.846410e-01 0.315
R-HSA-162588 Budding and maturation of HIV virion 4.846410e-01 0.315
R-HSA-182971 EGFR downregulation 4.846410e-01 0.315
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 4.846410e-01 0.315
R-HSA-9833109 Evasion by RSV of host interferon responses 4.846410e-01 0.315
R-HSA-9013694 Signaling by NOTCH4 4.873185e-01 0.312
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 4.922965e-01 0.308
R-HSA-68949 Orc1 removal from chromatin 4.922965e-01 0.308
R-HSA-380287 Centrosome maturation 4.966471e-01 0.304
R-HSA-4791275 Signaling by WNT in cancer 4.986053e-01 0.302
R-HSA-350562 Regulation of ornithine decarboxylase (ODC) 4.986053e-01 0.302
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 4.986053e-01 0.302
R-HSA-1538133 G0 and Early G1 4.986053e-01 0.302
R-HSA-8948751 Regulation of PTEN stability and activity 5.032039e-01 0.298
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 5.058001e-01 0.296
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 5.058001e-01 0.296
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 5.058001e-01 0.296
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 5.058001e-01 0.296
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 5.058001e-01 0.296
R-HSA-8941856 RUNX3 regulates NOTCH signaling 5.058001e-01 0.296
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 5.058001e-01 0.296
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 5.058001e-01 0.296
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 5.058001e-01 0.296
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 5.058001e-01 0.296
R-HSA-1679131 Trafficking and processing of endosomal TLR 5.058001e-01 0.296
R-HSA-937039 IRAK1 recruits IKK complex 5.058001e-01 0.296
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 5.058001e-01 0.296
R-HSA-418890 Role of second messengers in netrin-1 signaling 5.058001e-01 0.296
R-HSA-8866427 VLDLR internalisation and degradation 5.058001e-01 0.296
R-HSA-2197563 NOTCH2 intracellular domain regulates transcription 5.058001e-01 0.296
R-HSA-9005895 Pervasive developmental disorders 5.058001e-01 0.296
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 5.058001e-01 0.296
R-HSA-9697154 Disorders of Nervous System Development 5.058001e-01 0.296
R-HSA-1247673 Erythrocytes take up oxygen and release carbon dioxide 5.058001e-01 0.296
R-HSA-209543 p75NTR recruits signalling complexes 5.058001e-01 0.296
R-HSA-3858494 Beta-catenin independent WNT signaling 5.108700e-01 0.292
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 5.120968e-01 0.291
R-HSA-1855170 IPs transport between nucleus and cytosol 5.123248e-01 0.290
R-HSA-159227 Transport of the SLBP independent Mature mRNA 5.123248e-01 0.290
R-HSA-397795 G-protein beta:gamma signalling 5.123248e-01 0.290
R-HSA-5675482 Regulation of necroptotic cell death 5.123248e-01 0.290
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 5.123248e-01 0.290
R-HSA-1839124 FGFR1 mutant receptor activation 5.123248e-01 0.290
R-HSA-176187 Activation of ATR in response to replication stress 5.123248e-01 0.290
R-HSA-9022692 Regulation of MECP2 expression and activity 5.123248e-01 0.290
R-HSA-5609975 Diseases associated with glycosylation precursor biosynthesis 5.123248e-01 0.290
R-HSA-9694635 Translation of Structural Proteins 5.150818e-01 0.288
R-HSA-8878159 Transcriptional regulation by RUNX3 5.160110e-01 0.287
R-HSA-1592230 Mitochondrial biogenesis 5.168643e-01 0.287
R-HSA-422356 Regulation of insulin secretion 5.240839e-01 0.281
R-HSA-5619084 ABC transporter disorders 5.241813e-01 0.281
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 5.257946e-01 0.279
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 5.257946e-01 0.279
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 5.257946e-01 0.279
R-HSA-163359 Glucagon signaling in metabolic regulation 5.257946e-01 0.279
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 5.257946e-01 0.279
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 5.257946e-01 0.279
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 5.257946e-01 0.279
R-HSA-170660 Adenylate cyclase activating pathway 5.271086e-01 0.278
R-HSA-9659787 Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects 5.271086e-01 0.278
R-HSA-9661069 Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) 5.271086e-01 0.278
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 5.271086e-01 0.278
R-HSA-170968 Frs2-mediated activation 5.271086e-01 0.278
R-HSA-6811555 PI5P Regulates TP53 Acetylation 5.271086e-01 0.278
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 5.271086e-01 0.278
R-HSA-9683610 Maturation of nucleoprotein 5.271086e-01 0.278
R-HSA-9659379 Sensory processing of sound 5.331980e-01 0.273
R-HSA-75893 TNF signaling 5.351790e-01 0.272
R-HSA-177929 Signaling by EGFR 5.351790e-01 0.272
R-HSA-109606 Intrinsic Pathway for Apoptosis 5.351790e-01 0.272
R-HSA-5663205 Infectious disease 5.362823e-01 0.271
R-HSA-9927426 Developmental Lineage of Mammary Gland Alveolar Cells 5.390107e-01 0.268
R-HSA-5673000 RAF activation 5.390107e-01 0.268
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 5.390107e-01 0.268
R-HSA-1980145 Signaling by NOTCH2 5.390107e-01 0.268
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 5.390107e-01 0.268
R-HSA-9768919 NPAS4 regulates expression of target genes 5.390107e-01 0.268
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 5.421292e-01 0.266
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 5.421292e-01 0.266
R-HSA-6806834 Signaling by MET 5.421292e-01 0.266
R-HSA-9764561 Regulation of CDH1 Function 5.455752e-01 0.263
R-HSA-804914 Transport of fatty acids 5.474995e-01 0.262
R-HSA-205043 NRIF signals cell death from the nucleus 5.474995e-01 0.262
R-HSA-6803211 TP53 Regulates Transcription of Death Receptors and Ligands 5.474995e-01 0.262
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 5.474995e-01 0.262
R-HSA-173599 Formation of the active cofactor, UDP-glucuronate 5.474995e-01 0.262
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 5.474995e-01 0.262
R-HSA-9856872 Malate-aspartate shuttle 5.474995e-01 0.262
R-HSA-391160 Signal regulatory protein family interactions 5.474995e-01 0.262
R-HSA-9020702 Interleukin-1 signaling 5.479406e-01 0.261
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 5.519700e-01 0.258
R-HSA-2559585 Oncogene Induced Senescence 5.519700e-01 0.258
R-HSA-6782135 Dual incision in TC-NER 5.558345e-01 0.255
R-HSA-9029569 NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... 5.558345e-01 0.255
R-HSA-449147 Signaling by Interleukins 5.603087e-01 0.252
R-HSA-212300 PRC2 methylates histones and DNA 5.646701e-01 0.248
R-HSA-432720 Lysosome Vesicle Biogenesis 5.646701e-01 0.248
R-HSA-3371511 HSF1 activation 5.646701e-01 0.248
R-HSA-69205 G1/S-Specific Transcription 5.646701e-01 0.248
R-HSA-429914 Deadenylation-dependent mRNA decay 5.659541e-01 0.247
R-HSA-170670 Adenylate cyclase inhibitory pathway 5.670124e-01 0.246
R-HSA-196299 Beta-catenin phosphorylation cascade 5.670124e-01 0.246
R-HSA-8964315 G beta:gamma signalling through BTK 5.670124e-01 0.246
R-HSA-174430 Telomere C-strand synthesis initiation 5.670124e-01 0.246
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 5.670124e-01 0.246
R-HSA-1295596 Spry regulation of FGF signaling 5.670124e-01 0.246
R-HSA-193639 p75NTR signals via NF-kB 5.670124e-01 0.246
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 5.670124e-01 0.246
R-HSA-9673770 Signaling by PDGFRA extracellular domain mutants 5.670124e-01 0.246
R-HSA-9673767 Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants 5.670124e-01 0.246
R-HSA-8876725 Protein methylation 5.670124e-01 0.246
R-HSA-446353 Cell-extracellular matrix interactions 5.670124e-01 0.246
R-HSA-9823739 Formation of the anterior neural plate 5.670124e-01 0.246
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 5.683834e-01 0.245
R-HSA-9860931 Response of endothelial cells to shear stress 5.712102e-01 0.243
R-HSA-9730414 MITF-M-regulated melanocyte development 5.751149e-01 0.240
R-HSA-8943724 Regulation of PTEN gene transcription 5.759312e-01 0.240
R-HSA-427359 SIRT1 negatively regulates rRNA expression 5.771092e-01 0.239
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 5.788275e-01 0.237
R-HSA-5619507 Activation of HOX genes during differentiation 5.788275e-01 0.237
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 5.856849e-01 0.232
R-HSA-176412 Phosphorylation of the APC/C 5.856849e-01 0.232
R-HSA-169893 Prolonged ERK activation events 5.856849e-01 0.232
R-HSA-5576886 Phase 4 - resting membrane potential 5.856849e-01 0.232
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 5.856849e-01 0.232
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 5.856849e-01 0.232
R-HSA-9942503 Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) 5.856849e-01 0.232
R-HSA-9945266 Differentiation of T cells 5.856849e-01 0.232
R-HSA-9758274 Regulation of NF-kappa B signaling 5.856849e-01 0.232
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 5.856849e-01 0.232
R-HSA-9708530 Regulation of BACH1 activity 5.856849e-01 0.232
R-HSA-140534 Caspase activation via Death Receptors in the presence of ligand 5.856849e-01 0.232
R-HSA-9754706 Atorvastatin ADME 5.856849e-01 0.232
R-HSA-168325 Viral Messenger RNA Synthesis 5.857636e-01 0.232
R-HSA-445717 Aquaporin-mediated transport 5.857636e-01 0.232
R-HSA-9793380 Formation of paraxial mesoderm 5.857636e-01 0.232
R-HSA-452723 Transcriptional regulation of pluripotent stem cells 5.892862e-01 0.230
R-HSA-5213460 RIPK1-mediated regulated necrosis 5.892862e-01 0.230
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 5.892862e-01 0.230
R-HSA-9958790 SLC-mediated transport of inorganic anions 5.892862e-01 0.230
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 5.937813e-01 0.226
R-HSA-168276 NS1 Mediated Effects on Host Pathways 6.012006e-01 0.221
R-HSA-1236978 Cross-presentation of soluble exogenous antigens (endosomes) 6.012006e-01 0.221
R-HSA-201556 Signaling by ALK 6.012006e-01 0.221
R-HSA-8964043 Plasma lipoprotein clearance 6.012006e-01 0.221
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 6.012006e-01 0.221
R-HSA-418990 Adherens junctions interactions 6.016836e-01 0.221
R-HSA-2892247 POU5F1 (OCT4), SOX2, NANOG activate genes related to proliferation 6.035533e-01 0.219
R-HSA-77595 Processing of Intronless Pre-mRNAs 6.035533e-01 0.219
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 6.035533e-01 0.219
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 6.035533e-01 0.219
R-HSA-5576893 Phase 2 - plateau phase 6.035533e-01 0.219
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 6.035533e-01 0.219
R-HSA-918233 TRAF3-dependent IRF activation pathway 6.035533e-01 0.219
R-HSA-975110 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 6.035533e-01 0.219
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 6.035533e-01 0.219
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 6.035533e-01 0.219
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 6.049861e-01 0.218
R-HSA-9679191 Potential therapeutics for SARS 6.086261e-01 0.216
R-HSA-390466 Chaperonin-mediated protein folding 6.102123e-01 0.215
R-HSA-9646399 Aggrephagy 6.128524e-01 0.213
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 6.128524e-01 0.213
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 6.128524e-01 0.213
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 6.152635e-01 0.211
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 6.182728e-01 0.209
R-HSA-9645723 Diseases of programmed cell death 6.182728e-01 0.209
R-HSA-5637810 Constitutive Signaling by EGFRvIII 6.206521e-01 0.207
R-HSA-5637812 Signaling by EGFRvIII in Cancer 6.206521e-01 0.207
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 6.206521e-01 0.207
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 6.206521e-01 0.207
R-HSA-164938 Nef-mediates down modulation of cell surface receptors by recruiting them to cla... 6.206521e-01 0.207
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 6.206521e-01 0.207
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 6.206521e-01 0.207
R-HSA-3229121 Glycogen storage diseases 6.206521e-01 0.207
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 6.242420e-01 0.205
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 6.242420e-01 0.205
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 6.242420e-01 0.205
R-HSA-9607240 FLT3 Signaling 6.242420e-01 0.205
R-HSA-3000480 Scavenging by Class A Receptors 6.353704e-01 0.197
R-HSA-5675221 Negative regulation of MAPK pathway 6.353704e-01 0.197
R-HSA-5655302 Signaling by FGFR1 in disease 6.353704e-01 0.197
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 6.353704e-01 0.197
R-HSA-418217 G beta:gamma signalling through PLC beta 6.370145e-01 0.196
R-HSA-181429 Serotonin Neurotransmitter Release Cycle 6.370145e-01 0.196
R-HSA-164378 PKA activation in glucagon signalling 6.370145e-01 0.196
R-HSA-500657 Presynaptic function of Kainate receptors 6.370145e-01 0.196
R-HSA-163615 PKA activation 6.370145e-01 0.196
R-HSA-111471 Apoptotic factor-mediated response 6.370145e-01 0.196
R-HSA-156711 Polo-like kinase mediated events 6.370145e-01 0.196
R-HSA-5358508 Mismatch Repair 6.370145e-01 0.196
R-HSA-991365 Activation of GABAB receptors 6.462390e-01 0.190
R-HSA-977444 GABA B receptor activation 6.462390e-01 0.190
R-HSA-110329 Cleavage of the damaged pyrimidine 6.462390e-01 0.190
R-HSA-73928 Depyrimidination 6.462390e-01 0.190
R-HSA-5683057 MAPK family signaling cascades 6.493553e-01 0.188
R-HSA-5218859 Regulated Necrosis 6.503969e-01 0.187
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 6.503969e-01 0.187
R-HSA-9855142 Cellular responses to mechanical stimuli 6.507953e-01 0.187
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 6.526720e-01 0.185
R-HSA-9709603 Impaired BRCA2 binding to PALB2 6.526720e-01 0.185
R-HSA-392851 Prostacyclin signalling through prostacyclin receptor 6.526720e-01 0.185
R-HSA-392517 Rap1 signalling 6.526720e-01 0.185
R-HSA-8851708 Signaling by FGFR2 IIIa TM 6.526720e-01 0.185
R-HSA-1237044 Erythrocytes take up carbon dioxide and release oxygen 6.526720e-01 0.185
R-HSA-881907 Gastrin-CREB signalling pathway via PKC and MAPK 6.526720e-01 0.185
R-HSA-1480926 O2/CO2 exchange in erythrocytes 6.526720e-01 0.185
R-HSA-449836 Other interleukin signaling 6.526720e-01 0.185
R-HSA-912631 Regulation of signaling by CBL 6.526720e-01 0.185
R-HSA-9637690 Response of Mtb to phagocytosis 6.568494e-01 0.183
R-HSA-391251 Protein folding 6.569790e-01 0.182
R-HSA-9772573 Late SARS-CoV-2 Infection Events 6.569790e-01 0.182
R-HSA-69231 Cyclin D associated events in G1 6.672037e-01 0.176
R-HSA-69236 G1 Phase 6.672037e-01 0.176
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 6.676551e-01 0.175
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 6.676551e-01 0.175
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 6.676551e-01 0.175
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 6.676551e-01 0.175
R-HSA-5620922 BBSome-mediated cargo-targeting to cilium 6.676551e-01 0.175
R-HSA-9629569 Protein hydroxylation 6.676551e-01 0.175
R-HSA-3322077 Glycogen synthesis 6.676551e-01 0.175
R-HSA-445144 Signal transduction by L1 6.676551e-01 0.175
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 6.709966e-01 0.173
R-HSA-9837999 Mitochondrial protein degradation 6.717008e-01 0.173
R-HSA-373760 L1CAM interactions 6.772932e-01 0.169
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 6.773042e-01 0.169
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 6.773042e-01 0.169
R-HSA-9824272 Somitogenesis 6.773042e-01 0.169
R-HSA-5358351 Signaling by Hedgehog 6.775024e-01 0.169
R-HSA-5602498 MyD88 deficiency (TLR2/4) 6.819927e-01 0.166
R-HSA-202040 G-protein activation 6.819927e-01 0.166
R-HSA-392170 ADP signalling through P2Y purinoceptor 12 6.819927e-01 0.166
R-HSA-264642 Acetylcholine Neurotransmitter Release Cycle 6.819927e-01 0.166
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 6.819927e-01 0.166
R-HSA-5357786 TNFR1-induced proapoptotic signaling 6.819927e-01 0.166
R-HSA-9636383 Prevention of phagosomal-lysosomal fusion 6.819927e-01 0.166
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 6.819927e-01 0.166
R-HSA-9931295 PD-L1(CD274) glycosylation and translocation to plasma membrane 6.819927e-01 0.166
R-HSA-111931 PKA-mediated phosphorylation of CREB 6.819927e-01 0.166
R-HSA-9819196 Zygotic genome activation (ZGA) 6.819927e-01 0.166
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 6.819927e-01 0.166
R-HSA-6807070 PTEN Regulation 6.833925e-01 0.165
R-HSA-5578749 Transcriptional regulation by small RNAs 6.839567e-01 0.165
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 6.871535e-01 0.163
R-HSA-9861718 Regulation of pyruvate metabolism 6.871535e-01 0.163
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 6.871535e-01 0.163
R-HSA-4086398 Ca2+ pathway 6.919610e-01 0.160
R-HSA-5607764 CLEC7A (Dectin-1) signaling 6.929555e-01 0.159
R-HSA-8939211 ESR-mediated signaling 6.946262e-01 0.158
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 6.957125e-01 0.158
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 6.957125e-01 0.158
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 6.957125e-01 0.158
R-HSA-8878166 Transcriptional regulation by RUNX2 6.962672e-01 0.157
R-HSA-1483191 Synthesis of PC 6.967546e-01 0.157
R-HSA-1226099 Signaling by FGFR in disease 6.998117e-01 0.155
R-HSA-170834 Signaling by TGF-beta Receptor Complex 6.998187e-01 0.155
R-HSA-9634597 GPER1 signaling 7.061105e-01 0.151
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 7.061105e-01 0.151
R-HSA-9031628 NGF-stimulated transcription 7.061105e-01 0.151
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 7.075095e-01 0.150
R-HSA-9759194 Nuclear events mediated by NFE2L2 7.084832e-01 0.150
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 7.088413e-01 0.149
R-HSA-6803529 FGFR2 alternative splicing 7.088413e-01 0.149
R-HSA-212676 Dopamine Neurotransmitter Release Cycle 7.088413e-01 0.149
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 7.088413e-01 0.149
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 7.088413e-01 0.149
R-HSA-8964038 LDL clearance 7.088413e-01 0.149
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 7.106246e-01 0.148
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 7.152244e-01 0.146
R-HSA-5610787 Hedgehog 'off' state 7.197429e-01 0.143
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 7.214044e-01 0.142
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 7.214044e-01 0.142
R-HSA-392451 G beta:gamma signalling through PI3Kgamma 7.214044e-01 0.142
R-HSA-389957 Prefoldin mediated transfer of substrate to CCT/TriC 7.214044e-01 0.142
R-HSA-8854691 Interleukin-20 family signaling 7.214044e-01 0.142
R-HSA-446210 Synthesis of UDP-N-acetyl-glucosamine 7.214044e-01 0.142
R-HSA-1855167 Synthesis of pyrophosphates in the cytosol 7.214044e-01 0.142
R-HSA-982772 Growth hormone receptor signaling 7.214044e-01 0.142
R-HSA-3000170 Syndecan interactions 7.214044e-01 0.142
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 7.214044e-01 0.142
R-HSA-9711123 Cellular response to chemical stress 7.220939e-01 0.141
R-HSA-9024446 NR1H2 and NR1H3-mediated signaling 7.224493e-01 0.141
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 7.324732e-01 0.135
R-HSA-2559580 Oxidative Stress Induced Senescence 7.324732e-01 0.135
R-HSA-912446 Meiotic recombination 7.327404e-01 0.135
R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC 7.334261e-01 0.135
R-HSA-428930 Thromboxane signalling through TP receptor 7.334261e-01 0.135
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 7.334261e-01 0.135
R-HSA-418592 ADP signalling through P2Y purinoceptor 1 7.334261e-01 0.135
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 7.334261e-01 0.135
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 7.334261e-01 0.135
R-HSA-8963898 Plasma lipoprotein assembly 7.334261e-01 0.135
R-HSA-446199 Synthesis of dolichyl-phosphate 7.334261e-01 0.135
R-HSA-9836573 Mitochondrial RNA degradation 7.334261e-01 0.135
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 7.334261e-01 0.135
R-HSA-8863678 Neurodegenerative Diseases 7.334261e-01 0.135
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 7.367877e-01 0.133
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 7.411498e-01 0.130
R-HSA-6794361 Neurexins and neuroligins 7.411498e-01 0.130
R-HSA-9634815 Transcriptional Regulation by NPAS4 7.411498e-01 0.130
R-HSA-5339562 Uptake and actions of bacterial toxins 7.411498e-01 0.130
R-HSA-1296059 G protein gated Potassium channels 7.449298e-01 0.128
R-HSA-997272 Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits 7.449298e-01 0.128
R-HSA-1296041 Activation of G protein gated Potassium channels 7.449298e-01 0.128
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 7.449298e-01 0.128
R-HSA-9839394 TGFBR3 expression 7.449298e-01 0.128
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 7.449298e-01 0.128
R-HSA-9856651 MITF-M-dependent gene expression 7.485127e-01 0.126
R-HSA-1221632 Meiotic synapsis 7.493319e-01 0.125
R-HSA-421270 Cell-cell junction organization 7.538165e-01 0.123
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 7.559377e-01 0.122
R-HSA-400042 Adrenaline,noradrenaline inhibits insulin secretion 7.559377e-01 0.122
R-HSA-525793 Myogenesis 7.559377e-01 0.122
R-HSA-210500 Glutamate Neurotransmitter Release Cycle 7.559377e-01 0.122
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 7.559377e-01 0.122
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 7.559377e-01 0.122
R-HSA-9637687 Suppression of phagosomal maturation 7.559377e-01 0.122
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 7.559377e-01 0.122
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 7.566215e-01 0.121
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 7.571883e-01 0.121
R-HSA-73929 Base-Excision Repair, AP Site Formation 7.572906e-01 0.121
R-HSA-446728 Cell junction organization 7.609679e-01 0.119
R-HSA-418346 Platelet homeostasis 7.623883e-01 0.118
R-HSA-9753281 Paracetamol ADME 7.650301e-01 0.116
R-HSA-171306 Packaging Of Telomere Ends 7.664712e-01 0.116
R-HSA-73728 RNA Polymerase I Promoter Opening 7.664712e-01 0.116
R-HSA-8949613 Cristae formation 7.664712e-01 0.116
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 7.664712e-01 0.116
R-HSA-901032 ER Quality Control Compartment (ERQC) 7.664712e-01 0.116
R-HSA-193807 Synthesis of bile acids and bile salts via 27-hydroxycholesterol 7.664712e-01 0.116
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 7.664712e-01 0.116
R-HSA-75109 Triglyceride biosynthesis 7.664712e-01 0.116
R-HSA-264876 Insulin processing 7.664712e-01 0.116
R-HSA-389357 CD28 dependent PI3K/Akt signaling 7.664712e-01 0.116
R-HSA-1483213 Synthesis of PE 7.664712e-01 0.116
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 7.664712e-01 0.116
R-HSA-211000 Gene Silencing by RNA 7.680485e-01 0.115
R-HSA-1474165 Reproduction 7.694633e-01 0.114
R-HSA-162582 Signal Transduction 7.697167e-01 0.114
R-HSA-5654736 Signaling by FGFR1 7.725543e-01 0.112
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 7.736027e-01 0.111
R-HSA-1500620 Meiosis 7.762940e-01 0.110
R-HSA-6794362 Protein-protein interactions at synapses 7.762940e-01 0.110
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 7.765507e-01 0.110
R-HSA-113418 Formation of the Early Elongation Complex 7.765507e-01 0.110
R-HSA-171319 Telomere Extension By Telomerase 7.765507e-01 0.110
R-HSA-5654732 Negative regulation of FGFR3 signaling 7.765507e-01 0.110
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 7.765507e-01 0.110
R-HSA-451326 Activation of kainate receptors upon glutamate binding 7.765507e-01 0.110
R-HSA-5205685 PINK1-PRKN Mediated Mitophagy 7.765507e-01 0.110
R-HSA-5620971 Pyroptosis 7.765507e-01 0.110
R-HSA-975155 MyD88 dependent cascade initiated on endosome 7.790518e-01 0.108
R-HSA-166166 MyD88-independent TLR4 cascade 7.843966e-01 0.105
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 7.843966e-01 0.105
R-HSA-9709570 Impaired BRCA2 binding to RAD51 7.861957e-01 0.104
R-HSA-72086 mRNA Capping 7.861957e-01 0.104
R-HSA-5654733 Negative regulation of FGFR4 signaling 7.861957e-01 0.104
R-HSA-420092 Glucagon-type ligand receptors 7.861957e-01 0.104
R-HSA-9772572 Early SARS-CoV-2 Infection Events 7.869737e-01 0.104
R-HSA-9033241 Peroxisomal protein import 7.938773e-01 0.100
R-HSA-8979227 Triglyceride metabolism 7.938773e-01 0.100
R-HSA-438064 Post NMDA receptor activation events 7.941481e-01 0.100
R-HSA-1483249 Inositol phosphate metabolism 7.947772e-01 0.100
R-HSA-456926 Thrombin signalling through proteinase activated receptors (PARs) 7.954250e-01 0.099
R-HSA-76046 RNA Polymerase III Transcription Initiation 7.954250e-01 0.099
R-HSA-380972 Energy dependent regulation of mTOR by LKB1-AMPK 7.954250e-01 0.099
R-HSA-1250196 SHC1 events in ERBB2 signaling 7.954250e-01 0.099
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 7.954250e-01 0.099
R-HSA-114452 Activation of BH3-only proteins 7.954250e-01 0.099
R-HSA-5673001 RAF/MAP kinase cascade 7.992184e-01 0.097
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 7.998149e-01 0.097
R-HSA-9663891 Selective autophagy 7.998295e-01 0.097
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 8.004686e-01 0.097
R-HSA-977443 GABA receptor activation 8.005825e-01 0.097
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 8.005825e-01 0.097
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 8.005825e-01 0.097
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 8.005825e-01 0.097
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 8.005825e-01 0.097
R-HSA-2644603 Signaling by NOTCH1 in Cancer 8.005825e-01 0.097
R-HSA-983189 Kinesins 8.005825e-01 0.097
R-HSA-351202 Metabolism of polyamines 8.005825e-01 0.097
R-HSA-416476 G alpha (q) signalling events 8.012746e-01 0.096
R-HSA-389958 Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding 8.042564e-01 0.095
R-HSA-186763 Downstream signal transduction 8.042564e-01 0.095
R-HSA-202424 Downstream TCR signaling 8.107986e-01 0.091
R-HSA-373080 Class B/2 (Secretin family receptors) 8.107986e-01 0.091
R-HSA-1296065 Inwardly rectifying K+ channels 8.127071e-01 0.090
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 8.127071e-01 0.090
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 8.134146e-01 0.090
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 8.143301e-01 0.089
R-HSA-1852241 Organelle biogenesis and maintenance 8.160701e-01 0.088
R-HSA-909733 Interferon alpha/beta signaling 8.189729e-01 0.087
R-HSA-8848021 Signaling by PTK6 8.195501e-01 0.086
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 8.195501e-01 0.086
R-HSA-354192 Integrin signaling 8.207934e-01 0.086
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 8.207934e-01 0.086
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 8.207934e-01 0.086
R-HSA-5654726 Negative regulation of FGFR1 signaling 8.207934e-01 0.086
R-HSA-68616 Assembly of the ORC complex at the origin of replication 8.207934e-01 0.086
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 8.207934e-01 0.086
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 8.207934e-01 0.086
R-HSA-5684996 MAPK1/MAPK3 signaling 8.211229e-01 0.086
R-HSA-936837 Ion transport by P-type ATPases 8.255041e-01 0.083
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 8.262967e-01 0.083
R-HSA-5693537 Resolution of D-Loop Structures 8.285311e-01 0.082
R-HSA-114508 Effects of PIP2 hydrolysis 8.285311e-01 0.082
R-HSA-189483 Heme degradation 8.285311e-01 0.082
R-HSA-8951664 Neddylation 8.318789e-01 0.080
R-HSA-392518 Signal amplification 8.359352e-01 0.078
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 8.359352e-01 0.078
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 8.359352e-01 0.078
R-HSA-5686938 Regulation of TLR by endogenous ligand 8.359352e-01 0.078
R-HSA-168638 NOD1/2 Signaling Pathway 8.359352e-01 0.078
R-HSA-5654727 Negative regulation of FGFR2 signaling 8.359352e-01 0.078
R-HSA-2142845 Hyaluronan metabolism 8.359352e-01 0.078
R-HSA-5205647 Mitophagy 8.359352e-01 0.078
R-HSA-187687 Signalling to ERKs 8.430199e-01 0.074
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 8.430199e-01 0.074
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 8.430199e-01 0.074
R-HSA-193775 Synthesis of bile acids and bile salts via 24-hydroxycholesterol 8.430199e-01 0.074
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 8.475901e-01 0.072
R-HSA-6807878 COPI-mediated anterograde transport 8.497129e-01 0.071
R-HSA-1296071 Potassium Channels 8.497129e-01 0.071
R-HSA-74158 RNA Polymerase III Transcription 8.497992e-01 0.071
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 8.497992e-01 0.071
R-HSA-8941326 RUNX2 regulates bone development 8.497992e-01 0.071
R-HSA-163560 Triglyceride catabolism 8.497992e-01 0.071
R-HSA-1839126 FGFR2 mutant receptor activation 8.497992e-01 0.071
R-HSA-8853659 RET signaling 8.497992e-01 0.071
R-HSA-199977 ER to Golgi Anterograde Transport 8.511865e-01 0.070
R-HSA-9816359 Maternal to zygotic transition (MZT) 8.527628e-01 0.069
R-HSA-1296072 Voltage gated Potassium channels 8.562860e-01 0.067
R-HSA-933541 TRAF6 mediated IRF7 activation 8.562860e-01 0.067
R-HSA-110331 Cleavage of the damaged purine 8.562860e-01 0.067
R-HSA-196757 Metabolism of folate and pterines 8.562860e-01 0.067
R-HSA-204005 COPII-mediated vesicle transport 8.576528e-01 0.067
R-HSA-9758941 Gastrulation 8.581957e-01 0.066
R-HSA-975871 MyD88 cascade initiated on plasma membrane 8.582821e-01 0.066
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 8.582821e-01 0.066
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 8.582821e-01 0.066
R-HSA-190236 Signaling by FGFR 8.582821e-01 0.066
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 8.624931e-01 0.064
R-HSA-73927 Depurination 8.624931e-01 0.064
R-HSA-8875878 MET promotes cell motility 8.624931e-01 0.064
R-HSA-9755511 KEAP1-NFE2L2 pathway 8.649272e-01 0.063
R-HSA-392499 Metabolism of proteins 8.651168e-01 0.063
R-HSA-70171 Glycolysis 8.664205e-01 0.062
R-HSA-9924644 Developmental Lineages of the Mammary Gland 8.671050e-01 0.062
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 8.671050e-01 0.062
R-HSA-9648002 RAS processing 8.684325e-01 0.061
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 8.716120e-01 0.060
R-HSA-1280218 Adaptive Immune System 8.721274e-01 0.059
R-HSA-451927 Interleukin-2 family signaling 8.741157e-01 0.058
R-HSA-8982491 Glycogen metabolism 8.741157e-01 0.058
R-HSA-379726 Mitochondrial tRNA aminoacylation 8.741157e-01 0.058
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 8.741446e-01 0.058
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 8.795537e-01 0.056
R-HSA-73817 Purine ribonucleoside monophosphate biosynthesis 8.795537e-01 0.056
R-HSA-9694548 Maturation of spike protein 8.795537e-01 0.056
R-HSA-8853884 Transcriptional Regulation by VENTX 8.795537e-01 0.056
R-HSA-1980143 Signaling by NOTCH1 8.843019e-01 0.053
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 8.847571e-01 0.053
R-HSA-157118 Signaling by NOTCH 8.854004e-01 0.053
R-HSA-165159 MTOR signalling 8.897360e-01 0.051
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 8.897360e-01 0.051
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 8.945001e-01 0.048
R-HSA-5654743 Signaling by FGFR4 8.945001e-01 0.048
R-HSA-5617833 Cilium Assembly 8.975571e-01 0.047
R-HSA-5683826 Surfactant metabolism 8.990587e-01 0.046
R-HSA-5654738 Signaling by FGFR2 8.994194e-01 0.046
R-HSA-977225 Amyloid fiber formation 9.029002e-01 0.044
R-HSA-76009 Platelet Aggregation (Plug Formation) 9.034205e-01 0.044
R-HSA-5654741 Signaling by FGFR3 9.034205e-01 0.044
R-HSA-9675135 Diseases of DNA repair 9.075941e-01 0.042
R-HSA-9839373 Signaling by TGFBR3 9.075941e-01 0.042
R-HSA-9609690 HCMV Early Events 9.112949e-01 0.040
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 9.115876e-01 0.040
R-HSA-9006931 Signaling by Nuclear Receptors 9.129591e-01 0.040
R-HSA-9658195 Leishmania infection 9.132915e-01 0.039
R-HSA-9824443 Parasitic Infection Pathways 9.132915e-01 0.039
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.146074e-01 0.039
R-HSA-9664407 Parasite infection 9.146074e-01 0.039
R-HSA-9664417 Leishmania phagocytosis 9.146074e-01 0.039
R-HSA-8963899 Plasma lipoprotein remodeling 9.154088e-01 0.038
R-HSA-72306 tRNA processing 9.185877e-01 0.037
R-HSA-9748787 Azathioprine ADME 9.225634e-01 0.035
R-HSA-5655253 Signaling by FGFR2 in disease 9.225634e-01 0.035
R-HSA-9006925 Intracellular signaling by second messengers 9.228200e-01 0.035
R-HSA-70268 Pyruvate metabolism 9.242869e-01 0.034
R-HSA-9864848 Complex IV assembly 9.259108e-01 0.033
R-HSA-70326 Glucose metabolism 9.276299e-01 0.033
R-HSA-2187338 Visual phototransduction 9.320135e-01 0.031
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 9.320644e-01 0.031
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 9.320644e-01 0.031
R-HSA-8956320 Nucleotide biosynthesis 9.321783e-01 0.031
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 9.339476e-01 0.030
R-HSA-1912408 Pre-NOTCH Transcription and Translation 9.344287e-01 0.029
R-HSA-8986944 Transcriptional Regulation by MECP2 9.344287e-01 0.029
R-HSA-156588 Glucuronidation 9.351106e-01 0.029
R-HSA-1266738 Developmental Biology 9.367377e-01 0.028
R-HSA-199991 Membrane Trafficking 9.382015e-01 0.028
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 9.382490e-01 0.028
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 9.382490e-01 0.028
R-HSA-597592 Post-translational protein modification 9.401600e-01 0.027
R-HSA-193648 NRAGE signals death through JNK 9.406008e-01 0.027
R-HSA-3299685 Detoxification of Reactive Oxygen Species 9.406008e-01 0.027
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 9.411762e-01 0.026
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 9.411954e-01 0.026
R-HSA-913531 Interferon Signaling 9.419571e-01 0.026
R-HSA-73887 Death Receptor Signaling 9.445408e-01 0.025
R-HSA-9612973 Autophagy 9.477117e-01 0.023
R-HSA-186712 Regulation of beta-cell development 9.479787e-01 0.023
R-HSA-5619115 Disorders of transmembrane transporters 9.489328e-01 0.023
R-HSA-1280215 Cytokine Signaling in Immune system 9.491025e-01 0.023
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 9.491520e-01 0.023
R-HSA-187037 Signaling by NTRK1 (TRKA) 9.507099e-01 0.022
R-HSA-450294 MAP kinase activation 9.523814e-01 0.021
R-HSA-8957275 Post-translational protein phosphorylation 9.527426e-01 0.021
R-HSA-9006936 Signaling by TGFB family members 9.535606e-01 0.021
R-HSA-168898 Toll-like Receptor Cascades 9.537973e-01 0.021
R-HSA-1268020 Mitochondrial protein import 9.544413e-01 0.020
R-HSA-375165 NCAM signaling for neurite out-growth 9.544413e-01 0.020
R-HSA-186797 Signaling by PDGF 9.544413e-01 0.020
R-HSA-193704 p75 NTR receptor-mediated signalling 9.544458e-01 0.020
R-HSA-9009391 Extra-nuclear estrogen signaling 9.576777e-01 0.019
R-HSA-1483255 PI Metabolism 9.592102e-01 0.018
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.618283e-01 0.017
R-HSA-193368 Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 9.634799e-01 0.016
R-HSA-196807 Nicotinate metabolism 9.634799e-01 0.016
R-HSA-1650814 Collagen biosynthesis and modifying enzymes 9.650602e-01 0.015
R-HSA-112315 Transmission across Chemical Synapses 9.658875e-01 0.015
R-HSA-948021 Transport to the Golgi and subsequent modification 9.660863e-01 0.015
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 9.670393e-01 0.015
R-HSA-418555 G alpha (s) signalling events 9.676826e-01 0.014
R-HSA-448424 Interleukin-17 signaling 9.680189e-01 0.014
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.680189e-01 0.014
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 9.685405e-01 0.014
R-HSA-8978934 Metabolism of cofactors 9.694031e-01 0.013
R-HSA-5620920 Cargo trafficking to the periciliary membrane 9.694031e-01 0.013
R-HSA-189445 Metabolism of porphyrins 9.694031e-01 0.013
R-HSA-1632852 Macroautophagy 9.699381e-01 0.013
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 9.719945e-01 0.012
R-HSA-9749641 Aspirin ADME 9.719945e-01 0.012
R-HSA-5663084 Diseases of carbohydrate metabolism 9.719945e-01 0.012
R-HSA-2871796 FCERI mediated MAPK activation 9.729110e-01 0.012
R-HSA-425397 Transport of vitamins, nucleosides, and related molecules 9.732068e-01 0.012
R-HSA-2871837 FCERI mediated NF-kB activation 9.737153e-01 0.012
R-HSA-71291 Metabolism of amino acids and derivatives 9.738865e-01 0.011
R-HSA-1912422 Pre-NOTCH Expression and Processing 9.739085e-01 0.011
R-HSA-446203 Asparagine N-linked glycosylation 9.742859e-01 0.011
R-HSA-71403 Citric acid cycle (TCA cycle) 9.743667e-01 0.011
R-HSA-3000171 Non-integrin membrane-ECM interactions 9.743667e-01 0.011
R-HSA-917937 Iron uptake and transport 9.743667e-01 0.011
R-HSA-109582 Hemostasis 9.752753e-01 0.011
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 9.757982e-01 0.011
R-HSA-166520 Signaling by NTRKs 9.770396e-01 0.010
R-HSA-383280 Nuclear Receptor transcription pathway 9.775541e-01 0.010
R-HSA-1643685 Disease 9.781261e-01 0.010
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.785479e-01 0.009
R-HSA-9609646 HCMV Infection 9.789636e-01 0.009
R-HSA-9609507 Protein localization 9.806346e-01 0.008
R-HSA-9635486 Infection with Mycobacterium tuberculosis 9.821169e-01 0.008
R-HSA-2132295 MHC class II antigen presentation 9.834271e-01 0.007
R-HSA-5653656 Vesicle-mediated transport 9.836546e-01 0.007
R-HSA-877300 Interferon gamma signaling 9.842416e-01 0.007
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.849315e-01 0.007
R-HSA-1257604 PIP3 activates AKT signaling 9.853058e-01 0.006
R-HSA-9734767 Developmental Cell Lineages 9.854271e-01 0.006
R-HSA-112310 Neurotransmitter release cycle 9.873782e-01 0.006
R-HSA-5619102 SLC transporter disorders 9.880622e-01 0.005
R-HSA-446219 Synthesis of substrates in N-glycan biosythesis 9.886988e-01 0.005
R-HSA-8856688 Golgi-to-ER retrograde transport 9.891256e-01 0.005
R-HSA-1474290 Collagen formation 9.898864e-01 0.004
R-HSA-112316 Neuronal System 9.910184e-01 0.004
R-HSA-418594 G alpha (i) signalling events 9.910329e-01 0.004
R-HSA-192105 Synthesis of bile acids and bile salts 9.922481e-01 0.003
R-HSA-382551 Transport of small molecules 9.948016e-01 0.002
R-HSA-194068 Bile acid and bile salt metabolism 9.954471e-01 0.002
R-HSA-9610379 HCMV Late Events 9.962035e-01 0.002
R-HSA-446193 Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, L... 9.962035e-01 0.002
R-HSA-168249 Innate Immune System 9.964352e-01 0.002
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 9.964462e-01 0.002
R-HSA-5628897 TP53 Regulates Metabolic Genes 9.965113e-01 0.002
R-HSA-1483206 Glycerophospholipid biosynthesis 9.968135e-01 0.001
R-HSA-2980736 Peptide hormone metabolism 9.969463e-01 0.001
R-HSA-2219528 PI3K/AKT Signaling in Cancer 9.970789e-01 0.001
R-HSA-168256 Immune System 9.974695e-01 0.001
R-HSA-9717207 Sensory perception of sweet, bitter, and umami (glutamate) taste 9.976604e-01 0.001
R-HSA-6809371 Formation of the cornified envelope 9.977621e-01 0.001
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 9.980412e-01 0.001
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.980642e-01 0.001
R-HSA-9664433 Leishmania parasite growth and survival 9.980642e-01 0.001
R-HSA-388396 GPCR downstream signalling 9.980989e-01 0.001
R-HSA-1483257 Phospholipid metabolism 9.981503e-01 0.001
R-HSA-611105 Respiratory electron transport 9.984144e-01 0.001
R-HSA-9717189 Sensory perception of taste 9.984996e-01 0.001
R-HSA-1474228 Degradation of the extracellular matrix 9.985648e-01 0.001
R-HSA-3781865 Diseases of glycosylation 9.987529e-01 0.001
R-HSA-372790 Signaling by GPCR 9.994393e-01 0.000
R-HSA-9748784 Drug ADME 9.996974e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.998147e-01 0.000
R-HSA-8957322 Metabolism of steroids 9.998315e-01 0.000
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.999100e-01 0.000
R-HSA-1630316 Glycosaminoglycan metabolism 9.999170e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.999325e-01 0.000
R-HSA-6805567 Keratinization 9.999555e-01 0.000
R-HSA-1474244 Extracellular matrix organization 9.999768e-01 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 9.999882e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.999884e-01 0.000
R-HSA-156580 Phase II - Conjugation of compounds 9.999898e-01 0.000
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.999937e-01 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 9.999938e-01 0.000
R-HSA-211945 Phase I - Functionalization of compounds 9.999982e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999984e-01 0.000
R-HSA-500792 GPCR ligand binding 9.999990e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999995e-01 0.000
R-HSA-8978868 Fatty acid metabolism 1.000000e+00 0.000
R-HSA-211859 Biological oxidations 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
CLK3CLK3 0.909 0.416 1 0.877
COTCOT 0.905 0.306 2 0.865
MOSMOS 0.898 0.366 1 0.917
CDC7CDC7 0.891 0.171 1 0.901
BMPR1BBMPR1B 0.891 0.389 1 0.849
GRK1GRK1 0.888 0.292 -2 0.840
PIM3PIM3 0.887 0.147 -3 0.872
PRPKPRPK 0.884 -0.049 -1 0.868
DSTYKDSTYK 0.884 0.126 2 0.894
CAMK2GCAMK2G 0.884 0.108 2 0.848
FAM20CFAM20C 0.882 0.295 2 0.726
KISKIS 0.881 0.227 1 0.748
GRK7GRK7 0.881 0.290 1 0.766
MTORMTOR 0.880 -0.008 1 0.773
NDR2NDR2 0.879 0.095 -3 0.874
GRK6GRK6 0.879 0.189 1 0.835
BMPR2BMPR2 0.879 -0.001 -2 0.912
CAMK1BCAMK1B 0.878 0.026 -3 0.895
TGFBR1TGFBR1 0.878 0.259 -2 0.886
PIM1PIM1 0.878 0.159 -3 0.822
CDKL1CDKL1 0.877 0.077 -3 0.837
IKKBIKKB 0.877 -0.026 -2 0.756
NLKNLK 0.877 0.058 1 0.844
RAF1RAF1 0.877 -0.073 1 0.803
SRPK1SRPK1 0.875 0.151 -3 0.790
BMPR1ABMPR1A 0.875 0.340 1 0.837
ALK2ALK2 0.875 0.308 -2 0.894
ERK5ERK5 0.875 0.062 1 0.835
ATRATR 0.875 -0.032 1 0.795
GRK5GRK5 0.874 0.008 -3 0.889
CLK2CLK2 0.874 0.281 -3 0.793
CDK1CDK1 0.873 0.219 1 0.701
CAMK2BCAMK2B 0.873 0.196 2 0.841
RSK2RSK2 0.873 0.103 -3 0.808
SKMLCKSKMLCK 0.873 0.066 -2 0.857
ACVR2BACVR2B 0.872 0.246 -2 0.875
IKKAIKKA 0.871 0.067 -2 0.751
GCN2GCN2 0.871 -0.156 2 0.776
PKN3PKN3 0.871 0.012 -3 0.860
ALK4ALK4 0.871 0.165 -2 0.903
LATS1LATS1 0.871 0.185 -3 0.885
PDHK4PDHK4 0.870 -0.307 1 0.824
ACVR2AACVR2A 0.870 0.208 -2 0.866
NIKNIK 0.870 -0.065 -3 0.909
TGFBR2TGFBR2 0.870 0.020 -2 0.878
NEK6NEK6 0.868 -0.031 -2 0.887
CAMK2ACAMK2A 0.868 0.163 2 0.856
MLK1MLK1 0.868 -0.066 2 0.796
CDKL5CDKL5 0.868 0.062 -3 0.826
ICKICK 0.868 0.069 -3 0.870
GRK4GRK4 0.868 0.042 -2 0.873
CAMLCKCAMLCK 0.868 -0.028 -2 0.848
CK2A2CK2A2 0.867 0.363 1 0.812
MST4MST4 0.867 0.020 2 0.838
TBK1TBK1 0.867 -0.176 1 0.679
NUAK2NUAK2 0.867 -0.000 -3 0.876
DAPK2DAPK2 0.866 -0.033 -3 0.895
NDR1NDR1 0.866 -0.006 -3 0.865
HIPK4HIPK4 0.866 0.063 1 0.802
SRPK2SRPK2 0.865 0.129 -3 0.713
PRKD1PRKD1 0.865 0.018 -3 0.846
CHAK2CHAK2 0.865 -0.054 -1 0.842
JNK2JNK2 0.865 0.185 1 0.680
ATMATM 0.864 0.027 1 0.734
JNK3JNK3 0.864 0.172 1 0.716
LATS2LATS2 0.864 0.032 -5 0.764
ULK2ULK2 0.864 -0.237 2 0.747
NEK7NEK7 0.864 -0.154 -3 0.857
IKKEIKKE 0.864 -0.177 1 0.672
PKCDPKCD 0.864 0.035 2 0.774
P90RSKP90RSK 0.864 0.030 -3 0.811
DLKDLK 0.863 -0.097 1 0.797
CLK4CLK4 0.863 0.138 -3 0.808
CAMK2DCAMK2D 0.863 0.001 -3 0.861
MAPKAPK2MAPKAPK2 0.863 0.089 -3 0.762
CDK8CDK8 0.862 0.090 1 0.722
SRPK3SRPK3 0.862 0.097 -3 0.764
PKN2PKN2 0.862 -0.022 -3 0.866
CDK5CDK5 0.862 0.156 1 0.751
DYRK2DYRK2 0.861 0.128 1 0.742
P70S6KBP70S6KB 0.861 0.012 -3 0.829
WNK1WNK1 0.861 -0.102 -2 0.864
PDHK1PDHK1 0.861 -0.357 1 0.797
PRKD2PRKD2 0.861 0.041 -3 0.803
MLK3MLK3 0.861 0.012 2 0.735
PLK1PLK1 0.861 0.022 -2 0.854
RSK4RSK4 0.861 0.112 -3 0.782
RIPK3RIPK3 0.860 -0.162 3 0.719
HUNKHUNK 0.860 -0.160 2 0.790
CDK3CDK3 0.859 0.214 1 0.646
MARK4MARK4 0.859 -0.081 4 0.826
AMPKA1AMPKA1 0.859 -0.060 -3 0.882
RSK3RSK3 0.858 -0.001 -3 0.801
ANKRD3ANKRD3 0.857 -0.176 1 0.808
PLK3PLK3 0.857 0.047 2 0.788
P38BP38B 0.857 0.150 1 0.699
PKRPKR 0.857 -0.050 1 0.804
CLK1CLK1 0.857 0.135 -3 0.784
CK2A1CK2A1 0.857 0.327 1 0.788
PASKPASK 0.857 0.166 -3 0.886
TSSK2TSSK2 0.856 -0.057 -5 0.831
PKACGPKACG 0.856 -0.010 -2 0.741
GRK2GRK2 0.856 0.032 -2 0.756
P38AP38A 0.855 0.111 1 0.755
CDK18CDK18 0.855 0.133 1 0.672
MEK1MEK1 0.855 -0.144 2 0.825
PRKXPRKX 0.855 0.147 -3 0.719
MAPKAPK3MAPKAPK3 0.855 -0.048 -3 0.801
AURCAURC 0.855 0.033 -2 0.655
MASTLMASTL 0.855 -0.350 -2 0.819
P38GP38G 0.855 0.143 1 0.618
CDK19CDK19 0.854 0.084 1 0.687
CDK2CDK2 0.854 0.120 1 0.762
ULK1ULK1 0.854 -0.242 -3 0.840
HIPK2HIPK2 0.854 0.156 1 0.668
MLK4MLK4 0.853 -0.037 2 0.702
YSK4YSK4 0.852 -0.127 1 0.723
MLK2MLK2 0.852 -0.227 2 0.790
PKACBPKACB 0.852 0.077 -2 0.672
DYRK4DYRK4 0.852 0.169 1 0.687
HIPK1HIPK1 0.852 0.123 1 0.757
BCKDKBCKDK 0.852 -0.244 -1 0.810
CDK7CDK7 0.851 0.051 1 0.737
DNAPKDNAPK 0.851 0.021 1 0.640
MSK2MSK2 0.851 -0.016 -3 0.774
MSK1MSK1 0.851 0.046 -3 0.777
ERK1ERK1 0.851 0.109 1 0.686
NEK9NEK9 0.851 -0.286 2 0.797
GSK3AGSK3A 0.851 0.147 4 0.513
CDK13CDK13 0.851 0.065 1 0.709
CDK17CDK17 0.851 0.118 1 0.625
AMPKA2AMPKA2 0.850 -0.062 -3 0.850
PRP4PRP4 0.850 0.081 -3 0.787
TTBK2TTBK2 0.850 -0.207 2 0.667
PKCBPKCB 0.850 -0.002 2 0.723
PAK1PAK1 0.849 -0.060 -2 0.771
BRAFBRAF 0.849 -0.040 -4 0.843
TSSK1TSSK1 0.849 -0.077 -3 0.899
DRAK1DRAK1 0.849 -0.019 1 0.760
TLK2TLK2 0.849 -0.066 1 0.735
VRK2VRK2 0.848 -0.357 1 0.845
GAKGAK 0.848 0.139 1 0.838
PKCGPKCG 0.848 -0.031 2 0.727
CAMK4CAMK4 0.848 -0.136 -3 0.851
ERK2ERK2 0.848 0.068 1 0.721
P38DP38D 0.848 0.156 1 0.634
WNK3WNK3 0.847 -0.392 1 0.762
MYLK4MYLK4 0.847 -0.016 -2 0.768
PIM2PIM2 0.847 0.051 -3 0.780
MEKK3MEKK3 0.847 -0.079 1 0.754
PKCAPKCA 0.847 -0.027 2 0.713
IRE1IRE1 0.847 -0.183 1 0.750
AURAAURA 0.847 0.013 -2 0.624
CK1ECK1E 0.846 0.066 -3 0.610
IRE2IRE2 0.846 -0.117 2 0.710
RIPK1RIPK1 0.846 -0.326 1 0.763
AKT2AKT2 0.845 0.041 -3 0.727
CDK16CDK16 0.845 0.148 1 0.641
GRK3GRK3 0.845 0.053 -2 0.722
PRKD3PRKD3 0.844 -0.035 -3 0.778
TAO3TAO3 0.844 -0.003 1 0.753
NIM1NIM1 0.844 -0.184 3 0.759
MST3MST3 0.843 -0.009 2 0.820
CK1DCK1D 0.843 0.085 -3 0.559
JNK1JNK1 0.843 0.133 1 0.677
PKCHPKCH 0.842 -0.072 2 0.702
AURBAURB 0.842 -0.027 -2 0.650
CDK14CDK14 0.842 0.101 1 0.705
DYRK1ADYRK1A 0.842 0.066 1 0.776
QSKQSK 0.842 -0.077 4 0.800
CDK12CDK12 0.842 0.057 1 0.682
CHK1CHK1 0.842 -0.082 -3 0.848
GSK3BGSK3B 0.841 0.054 4 0.503
DYRK1BDYRK1B 0.841 0.098 1 0.710
MEKK2MEKK2 0.841 -0.128 2 0.771
NUAK1NUAK1 0.841 -0.100 -3 0.825
SMG1SMG1 0.841 -0.142 1 0.736
PLK2PLK2 0.841 0.099 -3 0.833
PKCZPKCZ 0.841 -0.109 2 0.744
MNK1MNK1 0.841 -0.047 -2 0.791
PERKPERK 0.840 -0.172 -2 0.890
PAK3PAK3 0.840 -0.157 -2 0.767
MNK2MNK2 0.840 -0.086 -2 0.777
CDK10CDK10 0.840 0.128 1 0.695
TLK1TLK1 0.840 -0.085 -2 0.889
DCAMKL1DCAMKL1 0.840 -0.034 -3 0.821
ZAKZAK 0.839 -0.174 1 0.731
PINK1PINK1 0.839 -0.166 1 0.824
MEK5MEK5 0.839 -0.324 2 0.797
MARK3MARK3 0.839 -0.063 4 0.758
CHAK1CHAK1 0.839 -0.229 2 0.726
SGK3SGK3 0.839 -0.024 -3 0.789
SIKSIK 0.838 -0.075 -3 0.795
CAMK1GCAMK1G 0.838 -0.055 -3 0.797
PKG2PKG2 0.838 -0.026 -2 0.673
MELKMELK 0.838 -0.149 -3 0.831
MEKK1MEKK1 0.838 -0.239 1 0.756
QIKQIK 0.838 -0.211 -3 0.856
PAK2PAK2 0.838 -0.143 -2 0.757
BRSK1BRSK1 0.837 -0.090 -3 0.823
SMMLCKSMMLCK 0.837 -0.057 -3 0.847
CDK9CDK9 0.837 0.016 1 0.713
HRIHRI 0.837 -0.232 -2 0.889
MPSK1MPSK1 0.837 -0.011 1 0.769
MARK2MARK2 0.837 -0.096 4 0.717
PHKG1PHKG1 0.836 -0.145 -3 0.855
NEK2NEK2 0.836 -0.269 2 0.770
NEK5NEK5 0.836 -0.209 1 0.778
HIPK3HIPK3 0.836 0.038 1 0.741
DYRK3DYRK3 0.836 0.068 1 0.751
GCKGCK 0.835 -0.000 1 0.749
EEF2KEEF2K 0.835 0.019 3 0.845
DAPK3DAPK3 0.834 0.019 -3 0.837
CK1A2CK1A2 0.834 0.042 -3 0.559
PAK6PAK6 0.834 -0.050 -2 0.685
PKACAPKACA 0.833 0.033 -2 0.621
MST2MST2 0.832 -0.063 1 0.757
DCAMKL2DCAMKL2 0.832 -0.077 -3 0.844
PLK4PLK4 0.832 -0.199 2 0.593
MAKMAK 0.832 0.142 -2 0.737
NEK8NEK8 0.832 -0.193 2 0.784
MARK1MARK1 0.831 -0.121 4 0.779
TAK1TAK1 0.831 -0.052 1 0.775
TAO2TAO2 0.831 -0.129 2 0.827
ERK7ERK7 0.831 0.001 2 0.517
CAMKK1CAMKK1 0.831 -0.199 -2 0.762
AKT1AKT1 0.829 0.003 -3 0.742
DAPK1DAPK1 0.829 0.016 -3 0.820
TNIKTNIK 0.829 -0.023 3 0.864
CAMK1DCAMK1D 0.829 -0.015 -3 0.718
BRSK2BRSK2 0.828 -0.190 -3 0.840
NEK11NEK11 0.828 -0.248 1 0.744
LKB1LKB1 0.828 -0.167 -3 0.846
CDK6CDK6 0.827 0.083 1 0.686
IRAK4IRAK4 0.827 -0.254 1 0.748
WNK4WNK4 0.826 -0.287 -2 0.852
MAPKAPK5MAPKAPK5 0.826 -0.179 -3 0.740
PDK1PDK1 0.826 -0.170 1 0.762
CAMKK2CAMKK2 0.826 -0.211 -2 0.753
PKCTPKCT 0.826 -0.102 2 0.706
SSTKSSTK 0.826 -0.115 4 0.785
MINKMINK 0.826 -0.115 1 0.730
PKCEPKCE 0.825 -0.003 2 0.711
CK1G1CK1G1 0.825 -0.033 -3 0.610
HPK1HPK1 0.824 -0.077 1 0.728
P70S6KP70S6K 0.824 -0.073 -3 0.735
SNRKSNRK 0.824 -0.328 2 0.642
HGKHGK 0.823 -0.128 3 0.854
PDHK3_TYRPDHK3_TYR 0.822 0.341 4 0.914
MST1MST1 0.822 -0.113 1 0.731
ALPHAK3ALPHAK3 0.822 0.096 -1 0.804
LRRK2LRRK2 0.822 -0.236 2 0.814
SGK1SGK1 0.822 0.037 -3 0.644
CDK4CDK4 0.822 0.062 1 0.670
PKCIPKCI 0.821 -0.115 2 0.714
KHS2KHS2 0.820 -0.014 1 0.729
MOKMOK 0.820 0.073 1 0.763
TTKTTK 0.820 0.033 -2 0.880
MAP3K15MAP3K15 0.819 -0.230 1 0.713
ROCK2ROCK2 0.819 0.001 -3 0.817
TTBK1TTBK1 0.819 -0.258 2 0.594
MRCKAMRCKA 0.818 -0.003 -3 0.786
KHS1KHS1 0.818 -0.078 1 0.715
PHKG2PHKG2 0.818 -0.154 -3 0.832
DMPK1DMPK1 0.817 0.055 -3 0.798
AKT3AKT3 0.817 0.021 -3 0.662
PDHK4_TYRPDHK4_TYR 0.817 0.265 2 0.883
SLKSLK 0.817 -0.122 -2 0.714
NEK4NEK4 0.817 -0.307 1 0.725
VRK1VRK1 0.816 -0.302 2 0.803
MEKK6MEKK6 0.816 -0.279 1 0.743
MAP2K6_TYRMAP2K6_TYR 0.816 0.256 -1 0.904
MRCKBMRCKB 0.816 -0.017 -3 0.770
NEK1NEK1 0.816 -0.259 1 0.744
OSR1OSR1 0.815 -0.045 2 0.762
BUB1BUB1 0.815 -0.010 -5 0.792
SBKSBK 0.814 0.029 -3 0.607
IRAK1IRAK1 0.814 -0.415 -1 0.740
LOKLOK 0.814 -0.180 -2 0.762
CHK2CHK2 0.814 -0.048 -3 0.671
PBKPBK 0.814 -0.058 1 0.764
PDHK1_TYRPDHK1_TYR 0.813 0.200 -1 0.917
MAP2K4_TYRMAP2K4_TYR 0.812 0.132 -1 0.896
BMPR2_TYRBMPR2_TYR 0.812 0.161 -1 0.903
PAK5PAK5 0.811 -0.117 -2 0.624
CAMK1ACAMK1A 0.809 -0.050 -3 0.691
YSK1YSK1 0.809 -0.202 2 0.772
PKN1PKN1 0.809 -0.097 -3 0.753
TESK1_TYRTESK1_TYR 0.809 -0.011 3 0.872
MEK2MEK2 0.808 -0.384 2 0.773
PAK4PAK4 0.808 -0.102 -2 0.631
STK33STK33 0.808 -0.240 2 0.599
BIKEBIKE 0.807 0.001 1 0.726
HASPINHASPIN 0.804 -0.061 -1 0.667
MAP2K7_TYRMAP2K7_TYR 0.804 -0.175 2 0.849
EPHA6EPHA6 0.803 0.097 -1 0.888
TXKTXK 0.803 0.191 1 0.864
YANK3YANK3 0.802 -0.078 2 0.408
CRIKCRIK 0.802 -0.008 -3 0.738
ROCK1ROCK1 0.801 -0.038 -3 0.783
PKMYT1_TYRPKMYT1_TYR 0.801 -0.137 3 0.832
PINK1_TYRPINK1_TYR 0.801 -0.137 1 0.821
RIPK2RIPK2 0.801 -0.406 1 0.687
CK1ACK1A 0.800 0.034 -3 0.470
ASK1ASK1 0.800 -0.246 1 0.706
MYO3AMYO3A 0.800 -0.129 1 0.721
MYO3BMYO3B 0.799 -0.147 2 0.788
EPHB4EPHB4 0.799 0.044 -1 0.862
EPHA4EPHA4 0.797 0.093 2 0.802
LIMK2_TYRLIMK2_TYR 0.796 -0.111 -3 0.905
BLKBLK 0.793 0.134 -1 0.849
YES1YES1 0.792 -0.012 -1 0.842
TAO1TAO1 0.792 -0.205 1 0.666
FERFER 0.792 -0.049 1 0.870
INSRRINSRR 0.791 -0.014 3 0.713
FGRFGR 0.791 -0.044 1 0.830
LCKLCK 0.791 0.068 -1 0.842
SRMSSRMS 0.790 0.023 1 0.851
RETRET 0.790 -0.218 1 0.751
AAK1AAK1 0.790 0.044 1 0.630
NEK3NEK3 0.790 -0.384 1 0.702
ABL2ABL2 0.790 -0.031 -1 0.812
EPHB2EPHB2 0.789 0.046 -1 0.845
LIMK1_TYRLIMK1_TYR 0.788 -0.294 2 0.825
FYNFYN 0.788 0.116 -1 0.824
TYRO3TYRO3 0.787 -0.218 3 0.767
JAK3JAK3 0.787 -0.102 1 0.745
EPHB1EPHB1 0.787 -0.028 1 0.835
ITKITK 0.787 -0.020 -1 0.803
HCKHCK 0.787 -0.047 -1 0.836
CSF1RCSF1R 0.787 -0.155 3 0.756
PKG1PKG1 0.787 -0.112 -2 0.590
EPHB3EPHB3 0.786 -0.022 -1 0.843
MST1RMST1R 0.785 -0.272 3 0.778
STLK3STLK3 0.785 -0.292 1 0.690
DDR1DDR1 0.785 -0.226 4 0.816
ROS1ROS1 0.785 -0.236 3 0.735
TYK2TYK2 0.785 -0.333 1 0.746
PTK2PTK2 0.784 0.147 -1 0.843
ABL1ABL1 0.783 -0.089 -1 0.800
JAK2JAK2 0.783 -0.287 1 0.746
FGFR2FGFR2 0.783 -0.135 3 0.763
FLT1FLT1 0.782 -0.003 -1 0.882
KITKIT 0.782 -0.125 3 0.758
SYKSYK 0.782 0.171 -1 0.830
BMXBMX 0.781 -0.025 -1 0.722
CK1G3CK1G3 0.780 0.009 -3 0.424
KDRKDR 0.779 -0.138 3 0.720
EPHA7EPHA7 0.779 -0.027 2 0.787
TECTEC 0.779 -0.068 -1 0.727
TNK2TNK2 0.779 -0.159 3 0.718
METMET 0.779 -0.094 3 0.746
EPHA5EPHA5 0.778 0.047 2 0.789
EPHA3EPHA3 0.777 -0.088 2 0.764
MERTKMERTK 0.777 -0.127 3 0.736
FLT3FLT3 0.776 -0.213 3 0.760
PDGFRBPDGFRB 0.775 -0.276 3 0.769
FGFR3FGFR3 0.775 -0.106 3 0.735
LYNLYN 0.774 -0.055 3 0.679
TEKTEK 0.774 -0.223 3 0.698
FGFR1FGFR1 0.773 -0.239 3 0.727
EPHA8EPHA8 0.772 -0.023 -1 0.833
ERBB2ERBB2 0.772 -0.164 1 0.724
EGFREGFR 0.772 -0.036 1 0.640
NEK10_TYRNEK10_TYR 0.772 -0.242 1 0.630
TNNI3K_TYRTNNI3K_TYR 0.771 -0.171 1 0.773
BTKBTK 0.771 -0.239 -1 0.755
YANK2YANK2 0.771 -0.104 2 0.429
WEE1_TYRWEE1_TYR 0.771 -0.169 -1 0.746
SRCSRC 0.771 -0.040 -1 0.812
FRKFRK 0.770 -0.109 -1 0.849
PTK2BPTK2B 0.770 -0.068 -1 0.759
AXLAXL 0.770 -0.252 3 0.736
CK1G2CK1G2 0.770 0.033 -3 0.523
NTRK1NTRK1 0.770 -0.232 -1 0.834
JAK1JAK1 0.769 -0.226 1 0.682
LTKLTK 0.767 -0.225 3 0.699
MATKMATK 0.767 -0.135 -1 0.744
DDR2DDR2 0.766 -0.093 3 0.698
TNK1TNK1 0.766 -0.295 3 0.745
FLT4FLT4 0.766 -0.217 3 0.716
ALKALK 0.766 -0.259 3 0.675
INSRINSR 0.766 -0.204 3 0.690
PTK6PTK6 0.766 -0.295 -1 0.723
FGFR4FGFR4 0.766 -0.074 -1 0.797
EPHA2EPHA2 0.764 -0.014 -1 0.809
EPHA1EPHA1 0.763 -0.219 3 0.720
NTRK3NTRK3 0.763 -0.192 -1 0.787
PDGFRAPDGFRA 0.763 -0.408 3 0.768
NTRK2NTRK2 0.762 -0.296 3 0.718
ERBB4ERBB4 0.762 -0.012 1 0.676
CSKCSK 0.761 -0.179 2 0.783
IGF1RIGF1R 0.756 -0.148 3 0.629
ZAP70ZAP70 0.751 0.011 -1 0.734
MUSKMUSK 0.743 -0.259 1 0.623
FESFES 0.737 -0.204 -1 0.697