Motif 693 (n=1,560)

Position-wise Probabilities

Download
uniprot genes site source protein function
A0A0B4J203 None S89 ochoa receptor protein-tyrosine kinase (EC 2.7.10.1) None
A0JLT2 MED19 T192 ochoa Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
A0JLT2 MED19 S194 ochoa Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
A0JLT2 MED19 S226 ochoa Mediator of RNA polymerase II transcription subunit 19 (Lung cancer metastasis-related protein 1) (Mediator complex subunit 19) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.
A3KN83 SBNO1 S799 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
A3KN83 SBNO1 S807 ochoa Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}.
A5PLL1 ANKRD34B S407 ochoa Ankyrin repeat domain-containing protein 34B None
A6H8Y1 BDP1 S420 ochoa Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}.
A6NHR9 SMCHD1 S293 ochoa Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMC hinge domain-containing protein 1) (EC 3.6.1.-) Non-canonical member of the structural maintenance of chromosomes (SMC) protein family that plays a key role in epigenetic silencing by regulating chromatin architecture (By similarity). Promotes heterochromatin formation in both autosomes and chromosome X, probably by mediating the merge of chromatin compartments (By similarity). Plays a key role in chromosome X inactivation in females by promoting the spreading of heterochromatin (PubMed:23542155). Recruited to inactivated chromosome X by Xist RNA and acts by mediating the merge of chromatin compartments: promotes random chromatin interactions that span the boundaries of existing structures, leading to create a compartment-less architecture typical of inactivated chromosome X (By similarity). Required to facilitate Xist RNA spreading (By similarity). Also required for silencing of a subset of clustered autosomal loci in somatic cells, such as the DUX4 locus (PubMed:23143600). Has ATPase activity; may participate in structural manipulation of chromatin in an ATP-dependent manner as part of its role in gene expression regulation (PubMed:29748383). Also plays a role in DNA repair: localizes to sites of DNA double-strand breaks in response to DNA damage to promote the repair of DNA double-strand breaks (PubMed:24790221, PubMed:25294876). Acts by promoting non-homologous end joining (NHEJ) and inhibiting homologous recombination (HR) repair (PubMed:25294876). {ECO:0000250|UniProtKB:Q6P5D8, ECO:0000269|PubMed:23143600, ECO:0000269|PubMed:23542155, ECO:0000269|PubMed:24790221, ECO:0000269|PubMed:25294876, ECO:0000269|PubMed:29748383}.
A6NKT7 RGPD3 S1614 ochoa RanBP2-like and GRIP domain-containing protein 3 None
A8MW92 PHF20L1 Y583 ochoa PHD finger protein 20-like protein 1 Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}.
A8MW92 PHF20L1 S584 ochoa PHD finger protein 20-like protein 1 Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}.
A8MW92 PHF20L1 Y586 ochoa PHD finger protein 20-like protein 1 Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}.
A8MW92 PHF20L1 S589 ochoa PHD finger protein 20-like protein 1 Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}.
H0YHG0 None S500 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
H0YIS7 RNASEK-C17orf49 S187 ochoa BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) Component of chromatin complexes such as the MLL1/MLL and NURF complexes. {ECO:0000256|ARBA:ARBA00059556}.
I3L4J1 None S119 ochoa vesicle-fusing ATPase (EC 3.6.4.6) (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}.
I3L4J1 None S121 ochoa vesicle-fusing ATPase (EC 3.6.4.6) (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}.
I3L4J1 None S123 ochoa vesicle-fusing ATPase (EC 3.6.4.6) (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}.
J3KQ70 INO80B-WBP1 T60 ochoa HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) None
J3KQ70 INO80B-WBP1 S63 ochoa HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) None
J3KQ70 INO80B-WBP1 S84 ochoa HCG2039827, isoform CRA_e (INO80B-WBP1 readthrough (NMD candidate)) None
O00267 SUPT5H S158 ochoa Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}.
O00287 RFXAP S190 ochoa Regulatory factor X-associated protein (RFX-associated protein) (RFX DNA-binding complex 36 kDa subunit) Part of the RFX complex that binds to the X-box of MHC II promoters.
O00401 WASL S207 ochoa Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}.
O00515 LAD1 S201 ochoa Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}.
O00566 MPHOSPH10 S171 ochoa U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10) Component of the 60-80S U3 small nucleolar ribonucleoprotein (U3 snoRNP). Required for the early cleavages during pre-18S ribosomal RNA processing (PubMed:12655004). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12655004, ECO:0000269|PubMed:34516797}.
O00567 NOP56 S461 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S462 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S465 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S500 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S519 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S520 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S569 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O00567 NOP56 S570 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O14562 UBFD1 S108 ochoa Ubiquitin domain-containing protein UBFD1 (Ubiquitin-binding protein homolog) May play a role as NF-kappa-B regulator. {ECO:0000269|PubMed:19285159}.
O14598 VCY S27 ochoa Testis-specific basic protein Y 1 (Basic charge, Y-linked 1) (Variably charged protein Y) May mediate a process in spermatogenesis or may play a role in sex ratio distortion.
O14613 CDC42EP2 S31 ochoa Cdc42 effector protein 2 (Binder of Rho GTPases 1) Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts in a CDC42-dependent manner. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}.
O14617 AP3D1 S764 ochoa AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}.
O14646 CHD1 S367 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14647 CHD2 S207 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14647 CHD2 S208 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14647 CHD2 S1365 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14647 CHD2 S1441 ochoa Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}.
O14654 IRS4 S917 ochoa Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}.
O14654 IRS4 S918 ochoa Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}.
O14715 RGPD8 S1613 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14776 TCERG1 S832 ochoa Transcription elongation regulator 1 (TATA box-binding protein-associated factor 2S) (Transcription factor CA150) Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter. {ECO:0000269|PubMed:11604498, ECO:0000269|PubMed:9315662}.
O14776 TCERG1 S834 ochoa Transcription elongation regulator 1 (TATA box-binding protein-associated factor 2S) (Transcription factor CA150) Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter. {ECO:0000269|PubMed:11604498, ECO:0000269|PubMed:9315662}.
O14979 HNRNPDL S241 ochoa Heterogeneous nuclear ribonucleoprotein D-like (hnRNP D-like) (hnRNP DL) (AU-rich element RNA-binding factor) (JKT41-binding protein) (Protein laAUF1) Acts as a transcriptional regulator. Promotes transcription repression. Promotes transcription activation in differentiated myotubes (By similarity). Binds to double- and single-stranded DNA sequences. Binds to the transcription suppressor CATR sequence of the COX5B promoter (By similarity). Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Binds both to nuclear and cytoplasmic poly(A) mRNAs. Binds to poly(G) and poly(A), but not to poly(U) or poly(C) RNA homopolymers. Binds to the 5'-ACUAGC-3' RNA consensus sequence. {ECO:0000250, ECO:0000269|PubMed:9538234}.
O15014 ZNF609 S453 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15014 ZNF609 S605 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15014 ZNF609 S743 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15014 ZNF609 T746 ochoa Zinc finger protein 609 Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}.
O15117 FYB1 S306 ochoa FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}.
O43159 RRP8 S104 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O43159 RRP8 S106 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O43290 SART1 S762 ochoa U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}.
O43491 EPB41L2 S38 ochoa Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
O43719 HTATSF1 S521 ochoa 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}.
O60245 PCDH7 Y948 ochoa Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) None
O60245 PCDH7 S949 ochoa Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) None
O60245 PCDH7 S950 ochoa Protocadherin-7 (Brain-heart protocadherin) (BH-Pcdh) None
O60293 ZFC3H1 S1301 ochoa Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}.
O60293 ZFC3H1 S1303 ochoa Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}.
O60315 ZEB2 S848 ochoa Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}.
O60524 NEMF S936 ochoa Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}.
O60551 NMT2 S61 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60551 NMT2 T64 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60551 NMT2 S66 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60551 NMT2 S68 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60551 NMT2 S70 ochoa Glycylpeptide N-tetradecanoyltransferase 2 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 2) (NMT 2) (Peptide N-myristoyltransferase 2) (Protein-lysine myristoyltransferase NMT2) (EC 2.3.1.-) (Type II N-myristoyltransferase) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:25255805, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:9506952}.
O60563 CCNT1 S495 ochoa Cyclin-T1 (CycT1) (Cyclin-T) Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin-T1) complex, also called positive transcription elongation factor B (P-TEFb), which facilitates the transition from abortive to productive elongation by phosphorylating the CTD (C-terminal domain) of the large subunit of RNA polymerase II (RNA Pol II) (PubMed:16109376, PubMed:16109377, PubMed:30134174, PubMed:35393539). Required to activate the protein kinase activity of CDK9: acts by mediating formation of liquid-liquid phase separation (LLPS) that enhances binding of P-TEFb to the CTD of RNA Pol II (PubMed:29849146, PubMed:35393539). {ECO:0000269|PubMed:16109376, ECO:0000269|PubMed:16109377, ECO:0000269|PubMed:29849146, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:35393539}.; FUNCTION: (Microbial infection) In case of HIV or SIV infections, binds to the transactivation domain of the viral nuclear transcriptional activator, Tat, thereby increasing Tat's affinity for the transactivating response RNA element (TAR RNA). Serves as an essential cofactor for Tat, by promoting RNA Pol II activation, allowing transcription of viral genes. {ECO:0000269|PubMed:10329125, ECO:0000269|PubMed:10329126}.
O60673 REV3L S1075 psp DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}.
O60814 H2BC12 S37 ochoa Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
O60814 H2BC12 S39 ochoa Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
O60814 H2BC12 Y43 ochoa Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
O60832 DKC1 S485 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
O60832 DKC1 S494 ochoa H/ACA ribonucleoprotein complex subunit DKC1 (EC 5.4.99.-) (CBF5 homolog) (Dyskerin) (Nopp140-associated protein of 57 kDa) (Nucleolar protein NAP57) (Nucleolar protein family A member 4) (snoRNP protein DKC1) [Isoform 1]: Catalytic subunit of H/ACA small nucleolar ribonucleoprotein (H/ACA snoRNP) complex, which catalyzes pseudouridylation of rRNA (PubMed:25219674, PubMed:32554502). This involves the isomerization of uridine such that the ribose is subsequently attached to C5, instead of the normal N1 (PubMed:25219674). Each rRNA can contain up to 100 pseudouridine ('psi') residues, which may serve to stabilize the conformation of rRNAs. Required for ribosome biogenesis and telomere maintenance (PubMed:19179534, PubMed:25219674). Also required for correct processing or intranuclear trafficking of TERC, the RNA component of the telomerase reverse transcriptase (TERT) holoenzyme (PubMed:19179534). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:25219674, ECO:0000269|PubMed:32554502}.; FUNCTION: [Isoform 3]: Promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. {ECO:0000269|PubMed:21820037}.
O60841 EIF5B S113 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S137 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S164 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S186 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S591 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S595 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60927 PPP1R11 S45 ochoa E3 ubiquitin-protein ligase PPP1R11 (EC 2.3.2.27) (Hemochromatosis candidate gene V protein) (HCG V) (Protein phosphatase 1 regulatory subunit 11) (Protein phosphatase inhibitor 3) Atypical E3 ubiquitin-protein ligase which ubiquitinates TLR2 at 'Lys-754' leading to its degradation by the proteasome. Plays a role in regulating inflammatory cytokine release and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2 (PubMed:27805901). Inhibitor of protein phosphatase 1 (PubMed:9843442). {ECO:0000269|PubMed:27805901, ECO:0000269|PubMed:9843442}.
O75038 PLCH2 S605 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}.
O75071 EFCAB14 S17 ochoa EF-hand calcium-binding domain-containing protein 14 None
O75151 PHF2 S539 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75351 VPS4B S93 ochoa Vacuolar protein sorting-associated protein 4B (EC 3.6.4.6) (Cell migration-inducing gene 1 protein) (Suppressor of K(+) transport growth defect 1) (Protein SKD1) Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their ATP-dependent disassembly, possibly in combination with membrane fission (PubMed:18687924). Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:18687924, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:16193069, ECO:0000269|PubMed:18606141}.
O75400 PRPF40A S832 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S834 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S883 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S885 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S888 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S933 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75400 PRPF40A S935 ochoa Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}.
O75475 PSIP1 S206 ochoa|psp PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75475 PSIP1 S347 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75554 WBP4 S262 ochoa WW domain-binding protein 4 (WBP-4) (Formin-binding protein 21) (WW domain-containing-binding protein 4) Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:19592703, PubMed:28781166, PubMed:9724750). May play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex (PubMed:9724750). {ECO:0000269|PubMed:19592703, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:9724750}.
O75665 OFD1 S943 ochoa Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}.
O75764 TCEA3 S115 ochoa Transcription elongation factor A protein 3 (Transcription elongation factor S-II protein 3) (Transcription elongation factor TFIIS.h) Necessary for efficient RNA polymerase II transcription elongation past template-encoded arresting sites. The arresting sites in DNA have the property of trapping a certain fraction of elongating RNA polymerases that pass through, resulting in locked ternary complexes. Cleavage of the nascent transcript by S-II allows the resumption of elongation from the new 3'-terminus.
O75914 PAK3 S272 ochoa Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}.
O75962 TRIO S1814 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
O75962 TRIO S1818 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
O76021 RSL1D1 S317 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76021 RSL1D1 S361 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76021 RSL1D1 S421 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76021 RSL1D1 S443 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76021 RSL1D1 S469 ochoa Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
O76094 SRP72 T571 ochoa Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}.
O94826 TOMM70 S253 ochoa Mitochondrial import receptor subunit TOM70 (Mitochondrial precursor proteins import receptor) (Translocase of outer membrane 70 kDa subunit) (Translocase of outer mitochondrial membrane protein 70) Acts as a receptor of the preprotein translocase complex of the outer mitochondrial membrane (TOM complex) (PubMed:12526792). Recognizes and mediates the translocation of mitochondrial preproteins from the cytosol into the mitochondria in a chaperone dependent manner (PubMed:12526792, PubMed:35025629). Mediates TBK1 and IRF3 activation induced by MAVS in response to Sendai virus infection and promotes host antiviral responses during virus infection (PubMed:20628368, PubMed:25609812, PubMed:32728199). Upon Sendai virus infection, recruits HSP90AA1:IRF3:BAX in mitochondrion and the complex induces apoptosis (PubMed:25609812). {ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:32728199, ECO:0000269|PubMed:35025629}.
O94874 UFL1 S429 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94874 UFL1 S431 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94874 UFL1 S458 ochoa E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O94874 UFL1 S462 ochoa|psp E3 UFM1-protein ligase 1 (EC 2.3.2.-) (E3 UFM1-protein transferase 1) (Multiple alpha-helix protein located at ER) (Novel LZAP-binding protein) (Regulator of C53/LZAP and DDRGK1) E3 protein ligase that mediates ufmylation, the covalent attachment of the ubiquitin-like modifier UFM1 to lysine residues on target proteins, and which plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:20018847, PubMed:20164180, PubMed:20228063, PubMed:25219498, PubMed:27351204, PubMed:30626644, PubMed:30783677, PubMed:32160526, PubMed:32807901, PubMed:35394863, PubMed:36121123, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37311461, PubMed:37595036, PubMed:37795761, PubMed:38377992, PubMed:38383785, PubMed:38383789). Catalyzes ufmylation of many protein, such as CD274/PD-L1, CDK5RAP3, CYB5R3, DDRGK1, EIF6, histone H4, MRE11, P4HB, PDCD1/PD-1, TRIP4, RPN1, RPS20/uS10, RPL10/uL16, RPL26/uL24, SYVN1/HRD1 and TP53/p53 (PubMed:20018847, PubMed:20531390, PubMed:25219498, PubMed:30783677, PubMed:30886146, PubMed:32160526, PubMed:35753586, PubMed:36543799, PubMed:36893266, PubMed:37036982, PubMed:37595036, PubMed:37795761, PubMed:38383785, PubMed:38383789). As part of the UREL complex, plays a key role in ribosome recycling by catalyzing mono-ufmylation of RPL26/uL24 subunit of the 60S ribosome (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 occurs on free 60S ribosomes following ribosome dissociation: it weakens the junction between post-termination 60S subunits and SEC61 translocons, promoting release and recycling of the large ribosomal subunit from the endoplasmic reticulum membrane (PubMed:38383785, PubMed:38383789). Ufmylation of RPL26/uL24 and subsequent 60S ribosome recycling either take place after normal termination of translation or after ribosome stalling during cotranslational translocation at the endoplasmic reticulum (PubMed:37036982, PubMed:37595036, PubMed:38383785, PubMed:38383789). Involved in reticulophagy in response to endoplasmic reticulum stress by mediating ufmylation of proteins such as CYB5R3 and RPN1, thereby promoting lysosomal degradation of ufmylated proteins (PubMed:23152784, PubMed:32160526, PubMed:36543799). Ufmylation in response to endoplasmic reticulum stress is essential for processes such as hematopoiesis, blood vessel morphogenesis or inflammatory response (PubMed:32050156). Mediates ufmylation of DDRGK1 and CDK5RAP3; the role of these modifications is however unclear: as both DDRGK1 and CDK5RAP3 act as substrate adapters for ufmylation, it is uncertain whether ufmylation of these proteins is, a collateral effect or is required for ufmylation (PubMed:20018847, PubMed:20531390). Acts as a negative regulator of T-cell activation by mediating ufmylation and stabilization of PDCD1/PD-1 (PubMed:38377992). Also involved in the response to DNA damage: recruited to double-strand break sites following DNA damage and mediates monoufmylation of histone H4 and ufmylation of MRE11 (PubMed:30783677, PubMed:30886146). Mediates ufmylation of TP53/p53, promoting its stability (PubMed:32807901). Catalyzes ufmylation of TRIP4, thereby playing a role in nuclear receptor-mediated transcription (PubMed:25219498). Required for hematopoietic stem cell function and hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CCJ3, ECO:0000269|PubMed:20018847, ECO:0000269|PubMed:20164180, ECO:0000269|PubMed:20228063, ECO:0000269|PubMed:20531390, ECO:0000269|PubMed:23152784, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:27351204, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:30783677, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:32050156, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:32807901, ECO:0000269|PubMed:35394863, ECO:0000269|PubMed:35753586, ECO:0000269|PubMed:36121123, ECO:0000269|PubMed:36543799, ECO:0000269|PubMed:36893266, ECO:0000269|PubMed:37036982, ECO:0000269|PubMed:37311461, ECO:0000269|PubMed:37595036, ECO:0000269|PubMed:37795761, ECO:0000269|PubMed:38377992, ECO:0000269|PubMed:38383785, ECO:0000269|PubMed:38383789}.
O95202 LETM1 S142 ochoa Mitochondrial proton/calcium exchanger protein (Electroneutral mitochondrial K(+)/H(+)exchanger) (KHE) (Leucine zipper-EF-hand-containing transmembrane protein 1) Plays an important role in maintenance of mitochondrial morphology and in mediating either calcium or potassium/proton antiport (PubMed:18628306, PubMed:19797662, PubMed:24344246, PubMed:24898248, PubMed:29123128, PubMed:32139798, PubMed:36055214, PubMed:36321428). Mediates proton-dependent calcium efflux from mitochondrion (PubMed:19797662, PubMed:24344246, PubMed:29123128). Also functions as an electroneutral mitochondrial proton/potassium exchanger (PubMed:24898248, PubMed:36055214, PubMed:36321428). Crucial for the maintenance of mitochondrial tubular networks and for the assembly of the supercomplexes of the respiratory chain (PubMed:18628306, PubMed:36055214). Required for the maintenance of the tubular shape and cristae organization (PubMed:18628306, PubMed:32139798). {ECO:0000269|PubMed:18628306, ECO:0000269|PubMed:19797662, ECO:0000269|PubMed:24344246, ECO:0000269|PubMed:24898248, ECO:0000269|PubMed:29123128, ECO:0000269|PubMed:32139798, ECO:0000269|PubMed:36055214, ECO:0000269|PubMed:36321428}.
O95218 ZRANB2 S143 ochoa Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}.
O95232 LUC7L3 S395 ochoa Luc7-like protein 3 (Cisplatin resistance-associated-overexpressed protein) (Luc7A) (Okadaic acid-inducible phosphoprotein OA48-18) (cAMP regulatory element-associated protein 1) (CRE-associated protein 1) (CREAP-1) Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing. {ECO:0000269|PubMed:16462885}.
O95243 MBD4 S262 psp Methyl-CpG-binding domain protein 4 (EC 3.2.2.-) (Methyl-CpG-binding endonuclease 1) (Methyl-CpG-binding protein MBD4) (Mismatch-specific DNA N-glycosylase) Mismatch-specific DNA N-glycosylase involved in DNA repair. Has thymine glycosylase activity and is specific for G:T mismatches within methylated and unmethylated CpG sites. Can also remove uracil or 5-fluorouracil in G:U mismatches. Has no lyase activity. Was first identified as methyl-CpG-binding protein. {ECO:0000269|PubMed:10097147, ECO:0000269|PubMed:10930409}.
O95260 ATE1 S110 ochoa Arginyl-tRNA--protein transferase 1 (Arginyltransferase 1) (R-transferase 1) (EC 2.3.2.8) (Arginine-tRNA--protein transferase 1) Involved in the post-translational conjugation of arginine to the N-terminal aspartate or glutamate of a protein (PubMed:34893540). This arginylation is required for degradation of the protein via the ubiquitin pathway (PubMed:34893540). Does not arginylate cysteine residues (By similarity). {ECO:0000250|UniProtKB:Q9Z2A5, ECO:0000269|PubMed:34893540}.
O95613 PCNT S54 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95684 CEP43 S202 ochoa Centrosomal protein 43 (FGFR1 oncogene partner) Required for anchoring microtubules to the centrosomes (PubMed:16314388, PubMed:28659385). Required for ciliation (PubMed:28625565, PubMed:28659385). {ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:28625565, ECO:0000269|PubMed:28659385}.
O95793 STAU1 S390 ochoa Double-stranded RNA-binding protein Staufen homolog 1 Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}.
O95983 MBD3 S56 ochoa Methyl-CpG-binding domain protein 3 (Methyl-CpG-binding protein MBD3) Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:12124384, PubMed:16428440, PubMed:28977666). Acts as transcriptional repressor and plays a role in gene silencing (PubMed:10947852, PubMed:18644863). Does not bind to methylated DNA by itself (PubMed:12124384, PubMed:16428440). Binds to a lesser degree DNA containing unmethylated CpG dinucleotides (PubMed:24307175). Recruits histone deacetylases and DNA methyltransferases. {ECO:0000269|PubMed:10947852, ECO:0000269|PubMed:12124384, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:18644863, ECO:0000269|PubMed:23361464, ECO:0000269|PubMed:24307175, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:9774669}.
O95997 PTTG1 S87 psp Securin (Esp1-associated protein) (Pituitary tumor-transforming gene 1 protein) (Tumor-transforming protein 1) (hPTTG) Regulatory protein, which plays a central role in chromosome stability, in the p53/TP53 pathway, and DNA repair. Probably acts by blocking the action of key proteins. During the mitosis, it blocks Separase/ESPL1 function, preventing the proteolysis of the cohesin complex and the subsequent segregation of the chromosomes. At the onset of anaphase, it is ubiquitinated, conducting to its destruction and to the liberation of ESPL1. Its function is however not limited to a blocking activity, since it is required to activate ESPL1. Negatively regulates the transcriptional activity and related apoptosis activity of TP53. The negative regulation of TP53 may explain the strong transforming capability of the protein when it is overexpressed. May also play a role in DNA repair via its interaction with Ku, possibly by connecting DNA damage-response pathways with sister chromatid separation. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11238996, ECO:0000269|PubMed:11371342, ECO:0000269|PubMed:12355087}.
O96028 NSD2 S1238 ochoa Histone-lysine N-methyltransferase NSD2 (EC 2.1.1.357) (Multiple myeloma SET domain-containing protein) (MMSET) (Nuclear SET domain-containing protein 2) (Protein trithorax-5) (Wolf-Hirschhorn syndrome candidate 1 protein) Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:19808676, PubMed:22099308, PubMed:27571355, PubMed:29728617, PubMed:33941880). Also monomethylates nucleosomal histone H3 at 'Lys-36' (H3K36me) in vitro (PubMed:22099308). Does not trimethylate nucleosomal histone H3 at 'Lys-36' (H3K36me3) (PubMed:22099308). However, specifically trimethylates histone H3 at 'Lys-36' (H3K36me3) at euchromatic regions in embryonic stem (ES) cells (By similarity). By methylating histone H3 at 'Lys-36', involved in the regulation of gene transcription during various biological processes (PubMed:16115125, PubMed:22099308, PubMed:29728617). In ES cells, associates with developmental transcription factors such as SALL1 and represses inappropriate gene transcription mediated by histone deacetylation (By similarity). During heart development, associates with transcription factor NKX2-5 to repress transcription of NKX2-5 target genes (By similarity). Plays an essential role in adipogenesis, by regulating expression of genes involved in pre-adipocyte differentiation (PubMed:29728617). During T-cell receptor (TCR) and CD28-mediated T-cell activation, promotes the transcription of transcription factor BCL6 which is required for follicular helper T (Tfh) cell differentiation (By similarity). During B-cell development, required for the generation of the B1 lineage (By similarity). During B2 cell activation, may contribute to the control of isotype class switch recombination (CRS), splenic germinal center formation, and the humoral immune response (By similarity). Plays a role in class switch recombination of the immunoglobulin heavy chain (IgH) locus during B-cell activation (By similarity). By regulating the methylation of histone H3 at 'Lys-36' and histone H4 at 'Lys-20' at the IgH locus, involved in TP53BP1 recruitment to the IgH switch region and promotes the transcription of IgA (By similarity). {ECO:0000250|UniProtKB:Q8BVE8, ECO:0000269|PubMed:16115125, ECO:0000269|PubMed:19808676, ECO:0000269|PubMed:22099308, ECO:0000269|PubMed:27571355, ECO:0000269|PubMed:29728617, ECO:0000269|PubMed:33941880}.; FUNCTION: [Isoform 1]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2). {ECO:0000269|PubMed:22099308}.; FUNCTION: [Isoform 4]: Histone methyltransferase which specifically dimethylates nucleosomal histone H3 at 'Lys-36' (H3K36me2) (PubMed:22099308). Methylation of histone H3 at 'Lys-27' is controversial (PubMed:18172012, PubMed:22099308). Mono-, di- or tri-methylates histone H3 at 'Lys-27' (H3K27me, H3K27me2 and H3K27me3) (PubMed:18172012). Does not methylate histone H3 at 'Lys-27' (PubMed:22099308). May act as a transcription regulator that binds DNA and suppresses IL5 transcription through HDAC recruitment (PubMed:11152655, PubMed:18172012). {ECO:0000269|PubMed:11152655, ECO:0000269|PubMed:18172012, ECO:0000269|PubMed:22099308}.
P00325 ADH1B S23 ochoa All-trans-retinol dehydrogenase [NAD(+)] ADH1B (EC 1.1.1.105) (Alcohol dehydrogenase 1B) (Alcohol dehydrogenase subunit beta) Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate in retinoid metabolism (PubMed:15369820, PubMed:16787387). In vitro can also catalyze the NADH-dependent reduction of all-trans-retinal and its derivatives such as all-trans-4-oxoretinal (PubMed:15369820, PubMed:16787387). Catalyzes in the oxidative direction with higher efficiency (PubMed:16787387). Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal (PubMed:15369820). {ECO:0000269|PubMed:15369820, ECO:0000269|PubMed:16787387}.
P00326 ADH1C S23 ochoa Alcohol dehydrogenase 1C (EC 1.1.1.1) (Alcohol dehydrogenase subunit gamma) Alcohol dehydrogenase. Exhibits high activity for ethanol oxidation and plays a major role in ethanol catabolism. {ECO:0000269|PubMed:6391957}.
P00519 ABL1 S619 ochoa|psp Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P00519 ABL1 S620 ochoa Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}.
P02144 MB S93 ochoa Myoglobin (Nitrite reductase MB) (EC 1.7.-.-) (Pseudoperoxidase MB) (EC 1.11.1.-) Monomeric heme protein which primary function is to store oxygen and facilitate its diffusion within muscle tissues. Reversibly binds oxygen through a pentacoordinated heme iron and enables its timely and efficient release as needed during periods of heightened demand (PubMed:30918256, PubMed:34679218). Depending on the oxidative conditions of tissues and cells, and in addition to its ability to bind oxygen, it also has a nitrite reductase activity whereby it regulates the production of bioactive nitric oxide (PubMed:32891753). Under stress conditions, like hypoxia and anoxia, it also protects cells against reactive oxygen species thanks to its pseudoperoxidase activity (PubMed:34679218). {ECO:0000269|PubMed:30918256, ECO:0000269|PubMed:32891753, ECO:0000269|PubMed:34679218}.
P02795 MT2A S35 ochoa Metallothionein-2 (MT-2) (Metallothionein-2A) (Metallothionein-II) (MT-II) Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids.
P04150 NR3C1 S508 ochoa Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.
P04732 MT1E S35 ochoa Metallothionein-1E (MT-1E) (Metallothionein-IE) (MT-IE) Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids.
P05023 ATP1A1 S40 ochoa Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}.
P05181 CYP2E1 S424 psp Cytochrome P450 2E1 (EC 1.14.14.1) (4-nitrophenol 2-hydroxylase) (EC 1.14.13.n7) (CYPIIE1) (Cytochrome P450-J) A cytochrome P450 monooxygenase involved in the metabolism of fatty acids (PubMed:10553002, PubMed:18577768). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10553002, PubMed:18577768). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates fatty acids specifically at the omega-1 position displaying the highest catalytic activity for saturated fatty acids (PubMed:10553002, PubMed:18577768). May be involved in the oxidative metabolism of xenobiotics (Probable). {ECO:0000269|PubMed:10553002, ECO:0000269|PubMed:18577768, ECO:0000305|PubMed:9348445}.
P06748 NPM1 S243 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
P07197 NEFM S672 ochoa Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}.
P07197 NEFM S736 ochoa Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}.
P07327 ADH1A S23 ochoa Alcohol dehydrogenase 1A (EC 1.1.1.1) (Alcohol dehydrogenase subunit alpha) Alcohol dehydrogenase (PubMed:2738060). Oxidizes primary as well as secondary alcohols. Ethanol is a very poor substrate (PubMed:2738060). {ECO:0000269|PubMed:2738060}.
P07814 EPRS1 S990 psp Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}.
P07900 HSP90AA1 T293 ochoa Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P07948 LYN S495 ochoa Tyrosine-protein kinase Lyn (EC 2.7.10.2) (Lck/Yes-related novel protein tyrosine kinase) (V-yes-1 Yamaguchi sarcoma viral related oncogene homolog) (p53Lyn) (p56Lyn) Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. Functions primarily as negative regulator, but can also function as activator, depending on the context. Required for the initiation of the B-cell response, but also for its down-regulation and termination. Plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self-tolerance. Acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. Plays a role in the inflammatory response to bacterial lipopolysaccharide. Mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. Acts downstream of EPOR, KIT, MPL, the chemokine receptor CXCR4, as well as the receptors for IL3, IL5 and CSF2. Plays an important role in integrin signaling. Regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. Involved in the regulation of endothelial activation, neutrophil adhesion and transendothelial migration (PubMed:36932076). Down-regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. Phosphorylates LIME1 in response to CD22 activation. Phosphorylates BTK, CBL, CD5, CD19, CD72, CD79A, CD79B, CSF2RB, DOK1, HCLS1, LILRB3/PIR-B, MS4A2/FCER1B, SYK and TEC. Promotes phosphorylation of SIRPA, PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1. Mediates phosphorylation of the BCR-ABL fusion protein. Required for rapid phosphorylation of FER in response to FCER1 activation. Mediates KIT phosphorylation. Acts as an effector of EPOR (erythropoietin receptor) in controlling KIT expression and may play a role in erythroid differentiation during the switch between proliferation and maturation. Depending on the context, activates or inhibits several signaling cascades. Regulates phosphatidylinositol 3-kinase activity and AKT1 activation. Regulates activation of the MAP kinase signaling cascade, including activation of MAP2K1/MEK1, MAPK1/ERK2, MAPK3/ERK1, MAPK8/JNK1 and MAPK9/JNK2. Mediates activation of STAT5A and/or STAT5B. Phosphorylates LPXN on 'Tyr-72'. Kinase activity facilitates TLR4-TLR6 heterodimerization and signal initiation. Phosphorylates SCIMP on 'Tyr-107'; this enhances binding of SCIMP to TLR4, promoting the phosphorylation of TLR4, and a selective cytokine response to lipopolysaccharide in macrophages (By similarity). Phosphorylates CLNK (By similarity). Phosphorylates BCAR1/CAS and NEDD9/HEF1 (PubMed:9020138). {ECO:0000250|UniProtKB:P25911, ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:10748115, ECO:0000269|PubMed:10891478, ECO:0000269|PubMed:11435302, ECO:0000269|PubMed:11517336, ECO:0000269|PubMed:11825908, ECO:0000269|PubMed:14726379, ECO:0000269|PubMed:15795233, ECO:0000269|PubMed:16467205, ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:17977829, ECO:0000269|PubMed:18056483, ECO:0000269|PubMed:18070987, ECO:0000269|PubMed:18235045, ECO:0000269|PubMed:18577747, ECO:0000269|PubMed:18802065, ECO:0000269|PubMed:19290919, ECO:0000269|PubMed:20037584, ECO:0000269|PubMed:36122175, ECO:0000269|PubMed:36932076, ECO:0000269|PubMed:7687428, ECO:0000269|PubMed:9020138}.
P07951 TPM2 S63 ochoa Tropomyosin beta chain (Beta-tropomyosin) (Tropomyosin-2) Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. The non-muscle isoform may have a role in agonist-mediated receptor internalization. {ECO:0000250|UniProtKB:P58774, ECO:0000250|UniProtKB:P58775}.
P08172 CHRM2 S232 ochoa|psp Muscarinic acetylcholine receptor M2 The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}.
P08238 HSP90AB1 S261 ochoa Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P08238 HSP90AB1 T285 ochoa Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P08240 SRPRA S177 ochoa Signal recognition particle receptor subunit alpha (SR-alpha) (Docking protein alpha) (DP-alpha) Component of the signal recognition particle (SRP) complex receptor (SR) (PubMed:16439358). Ensures, in conjunction with the SRP complex, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system (PubMed:16675701, PubMed:34020957). Forms a guanosine 5'-triphosphate (GTP)-dependent complex with the SRP subunit SRP54 (PubMed:34020957). SRP receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER (PubMed:34020957). {ECO:0000269|PubMed:16439358, ECO:0000269|PubMed:16675701, ECO:0000269|PubMed:34020957}.
P09429 HMGB1 S42 ochoa|psp High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P09429 HMGB1 S100 ochoa High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P09622 DLD S297 ochoa Dihydrolipoyl dehydrogenase, mitochondrial (EC 1.8.1.4) (Dihydrolipoamide dehydrogenase) (Glycine cleavage system L protein) Lipoamide dehydrogenase is a component of the glycine cleavage system as well as an E3 component of three alpha-ketoacid dehydrogenase complexes (pyruvate-, alpha-ketoglutarate-, and branched-chain amino acid-dehydrogenase complex) (PubMed:15712224, PubMed:16442803, PubMed:16770810, PubMed:17404228, PubMed:20160912, PubMed:20385101). The 2-oxoglutarate dehydrogenase complex is mainly active in the mitochondrion (PubMed:29211711). A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl-CoA to histone succinyltransferase KAT2A (PubMed:29211711). In monomeric form may have additional moonlighting function as serine protease (PubMed:17404228). Involved in the hyperactivation of spermatazoa during capacitation and in the spermatazoal acrosome reaction (By similarity). {ECO:0000250|UniProtKB:Q811C4, ECO:0000269|PubMed:15712224, ECO:0000269|PubMed:16442803, ECO:0000269|PubMed:16770810, ECO:0000269|PubMed:17404228, ECO:0000269|PubMed:20160912, ECO:0000269|PubMed:20385101, ECO:0000269|PubMed:29211711}.
P09874 PARP1 S364 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P0CG47 UBB S20 ochoa Polyubiquitin-B [Cleaved into: Ubiquitin] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.
P0CG48 UBC S20 ochoa Polyubiquitin-C [Cleaved into: Ubiquitin] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. During ubiquitination, the acceptor ubiquitin is positioned in the active site via direct interaction with the E2 ubiquitin-conjugating enzymes such as UBE2R2 (PubMed:38326650). As a monoubiquitin, its C-terminal glycine is recognized as a C-degron by Cul2-RING (CRL2) E3 ubiquitin-protein ligase complexes (PubMed:39548056). {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000269|PubMed:38326650, ECO:0000269|PubMed:39548056, ECO:0000303|PubMed:19754430}.
P0DJD0 RGPD1 S1598 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 S1606 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P10412 H1-4 S36 ochoa|psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10412 H1-4 S172 psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10412 H1-4 S187 ochoa|psp Histone H1.4 (Histone H1b) (Histone H1s-4) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P10586 PTPRF S1299 ochoa Receptor-type tyrosine-protein phosphatase F (EC 3.1.3.48) (Leukocyte common antigen related) (LAR) Possible cell adhesion receptor. It possesses an intrinsic protein tyrosine phosphatase activity (PTPase) and dephosphorylates EPHA2 regulating its activity.; FUNCTION: The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one.
P10916 MYL2 S19 ochoa|psp Myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC-2) (MLC-2v) (Cardiac myosin light chain 2) (Myosin light chain 2, slow skeletal/ventricular muscle isoform) (MLC-2s/v) (Ventricular myosin light chain 2) Contractile protein that plays a role in heart development and function (PubMed:23365102, PubMed:32453731). Following phosphorylation, plays a role in cross-bridge cycling kinetics and cardiac muscle contraction by increasing myosin lever arm stiffness and promoting myosin head diffusion; as a consequence of the increase in maximum contraction force and calcium sensitivity of contraction force. These events altogether slow down myosin kinetics and prolong duty cycle resulting in accumulated myosins being cooperatively recruited to actin binding sites to sustain thin filament activation as a means to fine-tune myofilament calcium sensitivity to force (By similarity). During cardiogenesis plays an early role in cardiac contractility by promoting cardiac myofibril assembly (By similarity). {ECO:0000250|UniProtKB:P08733, ECO:0000269|PubMed:23365102, ECO:0000269|PubMed:32453731}.
P11137 MAP2 S1480 ochoa Microtubule-associated protein 2 (MAP-2) The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules.
P11171 EPB41 S664 ochoa Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}.
P11388 TOP2A S1213 ochoa|psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1247 ochoa|psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1302 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1303 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1337 ochoa|psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1377 ochoa|psp DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P11388 TOP2A S1504 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P12270 TPR S1843 ochoa Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}.
P12883 MYH7 S851 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P13640 MT1G S36 ochoa Metallothionein-1G (MT-1G) (Metallothionein-1K) (MT-1K) (Metallothionein-IG) (MT-IG) Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids.
P13796 LCP1 S111 ochoa Plastin-2 (L-plastin) (LC64P) (Lymphocyte cytosolic protein 1) (LCP-1) Actin-binding protein (PubMed:16636079, PubMed:17294403, PubMed:28493397). Plays a role in the activation of T-cells in response to costimulation through TCR/CD3 and CD2 or CD28 (PubMed:17294403). Modulates the cell surface expression of IL2RA/CD25 and CD69 (PubMed:17294403). {ECO:0000269|PubMed:16636079, ECO:0000269|PubMed:17294403, ECO:0000269|PubMed:28493397}.
P13805 TNNT1 S155 ochoa Troponin T, slow skeletal muscle (TnTs) (Slow skeletal muscle troponin T) (sTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P14316 IRF2 S148 ochoa Interferon regulatory factor 2 (IRF-2) Specifically binds to the upstream regulatory region of type I IFN and IFN-inducible MHC class I genes (the interferon consensus sequence (ICS)) and represses those genes. Also acts as an activator for several genes including H4 and IL7. Constitutively binds to the ISRE promoter to activate IL7. Involved in cell cycle regulation through binding the site II (HiNF-M) promoter region of H4 and activating transcription during cell growth. Antagonizes IRF1 transcriptional activation. {ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:18514056, ECO:0000269|PubMed:9540062}.
P15336 ATF2 S438 ochoa Cyclic AMP-dependent transcription factor ATF-2 (cAMP-dependent transcription factor ATF-2) (Activating transcription factor 2) (Cyclic AMP-responsive element-binding protein 2) (CREB-2) (cAMP-responsive element-binding protein 2) (HB16) (cAMP response element-binding protein CRE-BP1) Transcriptional activator which regulates the transcription of various genes, including those involved in anti-apoptosis, cell growth, and DNA damage response. Dependent on its binding partner, binds to CRE (cAMP response element) consensus sequences (5'-TGACGTCA-3') or to AP-1 (activator protein 1) consensus sequences (5'-TGACTCA-3'). In the nucleus, contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. In the cytoplasm, interacts with and perturbs HK1- and VDAC1-containing complexes at the mitochondrial outer membrane, thereby impairing mitochondrial membrane potential, inducing mitochondrial leakage and promoting cell death. The phosphorylated form (mediated by ATM) plays a role in the DNA damage response and is involved in the ionizing radiation (IR)-induced S phase checkpoint control and in the recruitment of the MRN complex into the IR-induced foci (IRIF). Exhibits histone acetyltransferase (HAT) activity which specifically acetylates histones H2B and H4 in vitro (PubMed:10821277). In concert with CUL3 and RBX1, promotes the degradation of KAT5 thereby attenuating its ability to acetylate and activate ATM. Can elicit oncogenic or tumor suppressor activities depending on the tissue or cell type. {ECO:0000269|PubMed:10821277, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:18397884, ECO:0000269|PubMed:22304920}.
P15884 TCF4 S546 ochoa Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}.
P15924 DSP S2792 ochoa Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}.
P16401 H1-5 S173 psp Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16401 H1-5 S189 ochoa|psp Histone H1.5 (Histone H1a) (Histone H1b) (Histone H1s-3) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16402 H1-3 S37 ochoa Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16402 H1-3 S189 psp Histone H1.3 (Histone H1c) (Histone H1s-2) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16403 H1-2 S36 ochoa Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16403 H1-2 S41 ochoa Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16403 H1-2 T165 ochoa|psp Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16403 H1-2 S173 psp Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
P16435 POR S62 ochoa NADPH--cytochrome P450 reductase (CPR) (P450R) (EC 1.6.2.4) This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5. {ECO:0000255|HAMAP-Rule:MF_03212}.
P17480 UBTF S364 ochoa Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}.
P18583 SON T140 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P18583 SON S142 ochoa Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}.
P18859 ATP5PF S65 ochoa ATP synthase peripheral stalk subunit F6, mitochondrial (ATPase subunit F6) (ATP synthase peripheral stalk subunit F6) Subunit F6, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). Part of the complex F(0) domain (PubMed:37244256). Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements (By similarity). {ECO:0000250|UniProtKB:P02721, ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}.
P18887 XRCC1 S259 ochoa DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}.
P19338 NCL S67 ochoa Nucleolin (Protein C23) Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}.
P20042 EIF2S2 T31 ochoa Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P20042 EIF2S2 T33 ochoa Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}.
P20810 CAST S41 ochoa Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P20810 CAST S655 ochoa|psp Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P20929 NEB S1104 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P23760 PAX3 S197 ochoa Paired box protein Pax-3 (HuP2) Transcription factor that may regulate cell proliferation, migration and apoptosis. Involved in neural development and myogenesis. Transcriptional activator of MITF, acting synergistically with SOX10 (PubMed:21965087). {ECO:0000269|PubMed:16951170, ECO:0000269|PubMed:21965087}.
P25054 APC S2064 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P25205 MCM3 T674 ochoa|psp DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
P25205 MCM3 S681 ochoa DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
P25205 MCM3 S704 ochoa DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}.
P25705 ATP5F1A S254 ochoa ATP synthase F(1) complex subunit alpha, mitochondrial (ATP synthase F1 subunit alpha) Subunit alpha, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (Probable). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). With the catalytic subunit beta (ATP5F1B), forms the catalytic core in the F(1) domain (PubMed:37244256). Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (Probable). Binds the bacterial siderophore enterobactin and can promote mitochondrial accumulation of enterobactin-derived iron ions (PubMed:30146159). {ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:30146159, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}.
P27816 MAP4 S1058 ochoa Microtubule-associated protein 4 (MAP-4) Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}.
P28290 ITPRID2 S364 ochoa Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) None
P28715 ERCC5 S1069 ochoa DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}.
P29350 PTPN6 S534 ochoa Tyrosine-protein phosphatase non-receptor type 6 (EC 3.1.3.48) (Hematopoietic cell protein-tyrosine phosphatase) (Protein-tyrosine phosphatase 1C) (PTP-1C) (Protein-tyrosine phosphatase SHP-1) (SH-PTP1) Tyrosine phosphatase enzyme that plays important roles in controlling immune signaling pathways and fundamental physiological processes such as hematopoiesis (PubMed:14739280, PubMed:29925997). Dephosphorylates and negatively regulate several receptor tyrosine kinases (RTKs) such as EGFR, PDGFR and FGFR, thereby modulating their signaling activities (PubMed:21258366, PubMed:9733788). When recruited to immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptors such as immunoglobulin-like transcript 2/LILRB1, programmed cell death protein 1/PDCD1, CD3D, CD22, CLEC12A and other receptors involved in immune regulation, initiates their dephosphorylation and subsequently inhibits downstream signaling events (PubMed:11907092, PubMed:14739280, PubMed:37932456, PubMed:38166031). Modulates the signaling of several cytokine receptors including IL-4 receptor (PubMed:9065461). Additionally, targets multiple cytoplasmic signaling molecules including STING1, LCK or STAT1 among others involved in diverse cellular processes including modulation of T-cell activation or cGAS-STING signaling (PubMed:34811497, PubMed:38532423). Within the nucleus, negatively regulates the activity of some transcription factors such as NFAT5 via direct dephosphorylation. Also acts as a key transcriptional regulator of hepatic gluconeogenesis by controlling recruitment of RNA polymerase II to the PCK1 promoter together with STAT5A (PubMed:37595871). {ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:11266449, ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:14739280, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:29925997, ECO:0000269|PubMed:34811497, ECO:0000269|PubMed:37595871, ECO:0000269|PubMed:37932456, ECO:0000269|PubMed:38166031, ECO:0000269|PubMed:38532423, ECO:0000269|PubMed:9065461, ECO:0000269|PubMed:9733788}.
P29374 ARID4A S542 ochoa AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P29375 KDM5A S1579 ochoa Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}.
P29401 TKT S295 ochoa Transketolase (TK) (EC 2.2.1.1) Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. {ECO:0000269|PubMed:27259054}.
P29966 MARCKS S167 ochoa|psp Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P29966 MARCKS S170 ochoa|psp Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P30101 PDIA3 S478 ochoa Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}.
P30260 CDC27 S426 ochoa|psp Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}.
P30419 NMT1 S69 ochoa Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}.
P30419 NMT1 T71 ochoa Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}.
P30419 NMT1 S73 ochoa Glycylpeptide N-tetradecanoyltransferase 1 (EC 2.3.1.97) (Myristoyl-CoA:protein N-myristoyltransferase 1) (HsNMT1) (NMT 1) (Type I N-myristoyltransferase) (Peptide N-myristoyltransferase 1) (Protein-lysine myristoyltransferase NMT1) (EC 2.3.1.-) Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (PubMed:22865860, PubMed:25255805, PubMed:32686708, PubMed:34999170, PubMed:9353336, PubMed:9506952). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' (PubMed:32103017, PubMed:32111831). Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle (PubMed:32103017). {ECO:0000269|PubMed:22865860, ECO:0000269|PubMed:25255805, ECO:0000269|PubMed:32103017, ECO:0000269|PubMed:32111831, ECO:0000269|PubMed:32686708, ECO:0000269|PubMed:34999170, ECO:0000269|PubMed:9353336, ECO:0000269|PubMed:9506952}.
P31946 YWHAB S136 ochoa 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}.
P32249 GPR183 S330 ochoa G-protein coupled receptor 183 (Epstein-Barr virus-induced G-protein coupled receptor 2) (EBI2) (EBV-induced G-protein coupled receptor 2) (hEBI2) G-protein coupled receptor expressed in lymphocytes that acts as a chemotactic receptor for B-cells, T-cells, splenic dendritic cells, monocytes/macrophages and astrocytes (By similarity). Receptor for oxysterol 7-alpha,25-dihydroxycholesterol (7-alpha,25-OHC) and other related oxysterols (PubMed:21796212, PubMed:22875855, PubMed:22930711). Mediates cell positioning and movement of a number of cells by binding the 7-alpha,25-OHC ligand that forms a chemotactic gradient (By similarity). Binding of 7-alpha,25-OHC mediates the correct localization of B-cells during humoral immune responses (By similarity). Guides B-cell movement along the B-cell zone-T-cell zone boundary and later to interfollicular and outer follicular regions (By similarity). Its specific expression during B-cell maturation helps position B-cells appropriately for mounting T-dependent antibody responses (By similarity). Collaborates with CXCR5 to mediate B-cell migration; probably by forming a heterodimer with CXCR5 that affects the interaction between of CXCL13 and CXCR5 (PubMed:22913878). Also acts as a chemotactic receptor for some T-cells upon binding to 7-alpha,25-OHC ligand (By similarity). Promotes follicular helper T (Tfh) cells differentiation by positioning activated T-cells at the follicle-T-zone interface, promoting contact of newly activated CD4 T-cells with activated dendritic cells and exposing them to Tfh-cell-promoting inducible costimulator (ICOS) ligand (By similarity). Expression in splenic dendritic cells is required for their homeostasis, localization and ability to induce B- and T-cell responses: GPR183 acts as a chemotactic receptor in dendritic cells that mediates the accumulation of CD4(+) dendritic cells in bridging channels (By similarity). Regulates migration of astrocytes and is involved in communication between astrocytes and macrophages (PubMed:25297897). Promotes osteoclast precursor migration to bone surfaces (By similarity). Signals constitutively through G(i)-alpha, but not G(s)-alpha or G(q)-alpha (PubMed:21673108, PubMed:25297897). Signals constitutively also via MAPK1/3 (ERK1/2) (By similarity). {ECO:0000250|UniProtKB:Q3U6B2, ECO:0000269|PubMed:16540462, ECO:0000269|PubMed:21673108, ECO:0000269|PubMed:21796212, ECO:0000269|PubMed:22875855, ECO:0000269|PubMed:22913878, ECO:0000269|PubMed:22930711, ECO:0000269|PubMed:25297897}.
P32519 ELF1 S187 ochoa ETS-related transcription factor Elf-1 (E74-like factor 1) Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}.
P32519 ELF1 S195 ochoa ETS-related transcription factor Elf-1 (E74-like factor 1) Transcription factor that activates the LYN and BLK promoters. Appears to be required for the T-cell-receptor-mediated trans activation of HIV-2 gene expression. Binds specifically to two purine-rich motifs in the HIV-2 enhancer. {ECO:0000269|PubMed:8756667}.
P33981 TTK S42 ochoa Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P35251 RFC1 S69 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S71 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S73 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S139 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S360 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S366 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S368 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35251 RFC1 S372 ochoa Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P35367 HRH1 S275 ochoa Histamine H1 receptor (H1-R) (H1R) (HH1R) G-protein-coupled receptor for histamine, a biogenic amine that functions as an immune modulator and a neurotransmitter (PubMed:33828102, PubMed:8280179). Through the H1 receptor, histamine mediates the contraction of smooth muscles and increases capillary permeability due to contraction of terminal venules. Also mediates neurotransmission in the central nervous system and thereby regulates circadian rhythms, emotional and locomotor activities as well as cognitive functions (By similarity). {ECO:0000250|UniProtKB:P70174, ECO:0000269|PubMed:33828102, ECO:0000269|PubMed:8280179}.
P35580 MYH10 S1013 ochoa Myosin-10 (Cellular myosin heavy chain, type B) (Myosin heavy chain 10) (Myosin heavy chain, non-muscle IIb) (Non-muscle myosin heavy chain B) (NMMHC-B) (Non-muscle myosin heavy chain IIb) (NMMHC II-b) (NMMHC-IIB) Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. During cell spreading, plays an important role in cytoskeleton reorganization, focal contacts formation (in the central part but not the margins of spreading cells), and lamellipodial extension; this function is mechanically antagonized by MYH9. {ECO:0000269|PubMed:20052411, ECO:0000269|PubMed:20603131}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000305|PubMed:25428876, ECO:0000305|PubMed:39048823}.
P35611 ADD1 S483 ochoa Alpha-adducin (Erythrocyte adducin subunit alpha) Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Binds to calmodulin.
P35659 DEK S210 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35659 DEK S230 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35659 DEK S232 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35659 DEK S303 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P35659 DEK S306 ochoa Protein DEK Involved in chromatin organization. {ECO:0000269|PubMed:17524367}.
P38398 BRCA1 S694 ochoa|psp Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}.
P38398 BRCA1 S1007 ochoa Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}.
P38432 COIL S202 psp Coilin (p80-coilin) Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs. {ECO:0000269|PubMed:7679389}.
P41220 RGS2 S46 psp Regulator of G-protein signaling 2 (RGS2) (Cell growth-inhibiting gene 31 protein) (G0/G1 switch regulatory protein 8) Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form (PubMed:11063746, PubMed:19478087). It is involved in the negative regulation of the angiotensin-activated signaling pathway (PubMed:28784619). Plays a role in the regulation of blood pressure in response to signaling via G protein-coupled receptors and GNAQ. Plays a role in regulating the constriction and relaxation of vascular smooth muscle (By similarity). Binds EIF2B5 and blocks its activity, thereby inhibiting the translation of mRNA into protein (PubMed:19736320). {ECO:0000250|UniProtKB:O08849, ECO:0000269|PubMed:11063746, ECO:0000269|PubMed:11278586, ECO:0000269|PubMed:17901199, ECO:0000269|PubMed:19736320, ECO:0000269|PubMed:28784619, ECO:0000305|PubMed:7643615}.
P42568 MLLT3 S311 ochoa Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}.
P42677 RPS27 S30 ochoa Small ribosomal subunit protein eS27 (40S ribosomal protein S27) (Metallopan-stimulin 1) (MPS-1) Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for proper rRNA processing and maturation of 18S rRNAs (PubMed:25424902). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}.
P45378 TNNT3 S166 ochoa Troponin T, fast skeletal muscle (TnTf) (Beta-TnTF) (Fast skeletal muscle troponin T) (fTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P45378 TNNT3 S167 ochoa Troponin T, fast skeletal muscle (TnTf) (Beta-TnTF) (Fast skeletal muscle troponin T) (fTnT) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
P46063 RECQL S53 ochoa ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}.
P46063 RECQL S58 ochoa ATP-dependent DNA helicase Q1 (EC 5.6.2.4) (DNA 3'-5' helicase Q1) (DNA helicase, RecQ-like type 1) (RecQ1) (DNA-dependent ATPase Q1) (RecQ protein-like 1) DNA helicase that plays a role in DNA damage repair and genome stability (PubMed:15886194, PubMed:35025765, PubMed:7527136, PubMed:7961977, PubMed:8056767). Exhibits a Mg(2+)- and ATP-dependent DNA-helicase activity that unwinds single- and double-stranded DNA in a 3'-5' direction (PubMed:19151156, PubMed:35025765, PubMed:7527136, PubMed:8056767). Full-length protein unwinds forked DNA substrates, resolves Holliday junctions, and has DNA strand annealing activity (PubMed:19151156, PubMed:25831490). Plays a role in restoring regressed replication forks (PubMed:35025765). Required to restart stalled replication forks induced by abortive topoisomerase 1 and 2 lesions (PubMed:35025765). Does not unwind G-quadruplex DNA (PubMed:18426915). May play a role in the repair of DNA that is damaged by ultraviolet light or other mutagens (PubMed:15886194, PubMed:7961977). {ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:19151156, ECO:0000269|PubMed:25831490, ECO:0000269|PubMed:35025765, ECO:0000269|PubMed:7527136, ECO:0000269|PubMed:7961977, ECO:0000269|PubMed:8056767}.
P46100 ATRX S313 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S704 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S729 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S788 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S819 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S962 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1011 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1012 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1013 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1061 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1942 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1943 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1944 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1946 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S1948 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S601 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B T704 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46821 MAP1B S743 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P46940 IQGAP1 S1448 ochoa Ras GTPase-activating-like protein IQGAP1 (p195) Plays a crucial role in regulating the dynamics and assembly of the actin cytoskeleton. Recruited to the cell cortex by interaction with ILK which allows it to cooperate with its effector DIAPH1 to locally stabilize microtubules and allow stable insertion of caveolae into the plasma membrane (By similarity). Binds to activated CDC42 but does not stimulate its GTPase activity. Associates with calmodulin. May promote neurite outgrowth (PubMed:15695813). May play a possible role in cell cycle regulation by contributing to cell cycle progression after DNA replication arrest (PubMed:20883816). {ECO:0000250|UniProtKB:Q9JKF1, ECO:0000269|PubMed:15695813, ECO:0000269|PubMed:20883816}.
P47914 RPL29 S66 ochoa Large ribosomal subunit protein eL29 (60S ribosomal protein L29) (Cell surface heparin-binding protein HIP) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
P48048 KCNJ1 S201 psp ATP-sensitive inward rectifier potassium channel 1 (ATP-regulated potassium channel ROM-K) (Inward rectifier K(+) channel Kir1.1) (Potassium channel, inwardly rectifying subfamily J member 1) Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This channel is activated by internal ATP and can be blocked by external barium. In the kidney, probably plays a major role in potassium homeostasis. {ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:7929082}.
P48551 IFNAR2 S322 psp Interferon alpha/beta receptor 2 (IFN-R-2) (IFN-alpha binding protein) (IFN-alpha/beta receptor 2) (Interferon alpha binding protein) (Type I interferon receptor 2) Together with IFNAR1, forms the heterodimeric receptor for type I interferons (including interferons alpha, beta, epsilon, omega and kappa) (PubMed:10049744, PubMed:10556041, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Type I interferon binding activates the JAK-STAT signaling cascade, resulting in transcriptional activation or repression of interferon-regulated genes that encode the effectors of the interferon response (PubMed:10049744, PubMed:17517919, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Mechanistically, type I interferon-binding brings the IFNAR1 and IFNAR2 subunits into close proximity with one another, driving their associated Janus kinases (JAKs) (TYK2 bound to IFNAR1 and JAK1 bound to IFNAR2) to cross-phosphorylate one another (PubMed:10556041, PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). The activated kinases phosphorylate specific tyrosine residues on the intracellular domains of IFNAR1 and IFNAR2, forming docking sites for the STAT transcription factors (STAT1, STAT2 and STAT) (PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). STAT proteins are then phosphorylated by the JAKs, promoting their translocation into the nucleus to regulate expression of interferon-regulated genes (PubMed:12105218, PubMed:28165510, PubMed:9121453). {ECO:0000269|PubMed:10049744, ECO:0000269|PubMed:10556041, ECO:0000269|PubMed:11682488, ECO:0000269|PubMed:12105218, ECO:0000269|PubMed:17517919, ECO:0000269|PubMed:21854986, ECO:0000269|PubMed:26424569, ECO:0000269|PubMed:28165510, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:7665574, ECO:0000269|PubMed:7759950, ECO:0000269|PubMed:8181059, ECO:0000269|PubMed:8798579, ECO:0000269|PubMed:8969169, ECO:0000269|PubMed:9121453}.; FUNCTION: [Isoform 3]: Potent inhibitor of type I IFN receptor activity. {ECO:0000269|PubMed:7759950}.
P49006 MARCKSL1 S101 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P49006 MARCKSL1 S104 ochoa MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}.
P49711 CTCF S224 ochoa Transcriptional repressor CTCF (11-zinc finger protein) (CCCTC-binding factor) (CTCFL paralog) Chromatin binding factor that binds to DNA sequence specific sites and regulates the 3D structure of chromatin (PubMed:18347100, PubMed:18654629, PubMed:19322193). Binds together strands of DNA, thus forming chromatin loops, and anchors DNA to cellular structures, such as the nuclear lamina (PubMed:18347100, PubMed:18654629, PubMed:19322193). Defines the boundaries between active and heterochromatic DNA via binding to chromatin insulators, thereby preventing interaction between promoter and nearby enhancers and silencers (PubMed:18347100, PubMed:18654629, PubMed:19322193). Plays a critical role in the epigenetic regulation (PubMed:16949368). Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus (PubMed:16107875, PubMed:16815976, PubMed:17827499). On the maternal allele, binding within the H19 imprinting control region (ICR) mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to IGF2 (By similarity). Mediates interchromosomal association between IGF2/H19 and WSB1/NF1 and may direct distant DNA segments to a common transcription factory (By similarity). Regulates asynchronous replication of IGF2/H19 (By similarity). Plays a critical role in gene silencing over considerable distances in the genome (By similarity). Preferentially interacts with unmethylated DNA, preventing spreading of CpG methylation and maintaining methylation-free zones (PubMed:18413740). Inversely, binding to target sites is prevented by CpG methylation (PubMed:18413740). Plays an important role in chromatin remodeling (PubMed:18413740). Can dimerize when it is bound to different DNA sequences, mediating long-range chromatin looping (PubMed:12191639). Causes local loss of histone acetylation and gain of histone methylation in the beta-globin locus, without affecting transcription (PubMed:12191639). When bound to chromatin, it provides an anchor point for nucleosomes positioning (PubMed:12191639). Seems to be essential for homologous X-chromosome pairing (By similarity). May participate with Tsix in establishing a regulatable epigenetic switch for X chromosome inactivation (PubMed:11743158). May play a role in preventing the propagation of stable methylation at the escape genes from X-inactivation (PubMed:11743158). Involved in sister chromatid cohesion (PubMed:12191639). Associates with both centromeres and chromosomal arms during metaphase and required for cohesin localization to CTCF sites (PubMed:18550811). Plays a role in the recruitment of CENPE to the pericentromeric/centromeric regions of the chromosome during mitosis (PubMed:26321640). Acts as a transcriptional repressor binding to promoters of vertebrate MYC gene and BAG1 gene (PubMed:18413740, PubMed:8649389, PubMed:9591631). Also binds to the PLK and PIM1 promoters (PubMed:12191639). Acts as a transcriptional activator of APP (PubMed:9407128). Regulates APOA1/C3/A4/A5 gene cluster and controls MHC class II gene expression (PubMed:18347100, PubMed:19322193). Plays an essential role in oocyte and preimplantation embryo development by activating or repressing transcription (By similarity). Seems to act as tumor suppressor (PubMed:12191639). {ECO:0000250|UniProtKB:Q61164, ECO:0000269|PubMed:11743158, ECO:0000269|PubMed:16107875, ECO:0000269|PubMed:16815976, ECO:0000269|PubMed:16949368, ECO:0000269|PubMed:17827499, ECO:0000269|PubMed:18347100, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18550811, ECO:0000269|PubMed:18654629, ECO:0000269|PubMed:19322193, ECO:0000269|PubMed:26321640, ECO:0000269|PubMed:8649389, ECO:0000269|PubMed:9407128, ECO:0000269|PubMed:9591631, ECO:0000303|PubMed:12191639}.
P49756 RBM25 S703 ochoa RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) RNA-binding protein that acts as a regulator of alternative pre-mRNA splicing. Involved in apoptotic cell death through the regulation of the apoptotic factor BCL2L1 isoform expression. Modulates the ratio of proapoptotic BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA expression. When overexpressed, stimulates proapoptotic BCL2L1 isoform S 5'-splice site (5'-ss) selection, whereas its depletion caused the accumulation of antiapoptotic BCL2L1 isoform L. Promotes BCL2L1 isoform S 5'-ss usage through the 5'-CGGGCA-3' RNA sequence. Its association with LUC7L3 promotes U1 snRNP binding to a weak 5' ss in a 5'-CGGGCA-3'-dependent manner. Binds to the exonic splicing enhancer 5'-CGGGCA-3' RNA sequence located within exon 2 of the BCL2L1 pre-mRNA. Also involved in the generation of an abnormal and truncated splice form of SCN5A in heart failure. {ECO:0000269|PubMed:18663000, ECO:0000269|PubMed:21859973}.
P49792 RANBP2 S2589 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S2606 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S2626 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P50579 METAP2 S49 ochoa Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis.
P50579 METAP2 S60 ochoa Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18) (Initiation factor 2-associated 67 kDa glycoprotein) (p67) (p67eIF2) (Peptidase M) Cotranslationally removes the N-terminal methionine from nascent proteins. The N-terminal methionine is often cleaved when the second residue in the primary sequence is small and uncharged (Met-Ala-, Cys, Gly, Pro, Ser, Thr, or Val). The catalytic activity of human METAP2 toward Met-Val peptides is consistently two orders of magnitude higher than that of METAP1, suggesting that it is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo.; FUNCTION: Protects eukaryotic initiation factor EIF2S1 from translation-inhibiting phosphorylation by inhibitory kinases such as EIF2AK2/PKR and EIF2AK1/HCR. Plays a critical role in the regulation of protein synthesis.
P51451 BLK S24 ochoa Tyrosine-protein kinase Blk (EC 2.7.10.2) (B lymphocyte kinase) (p55-Blk) Non-receptor tyrosine kinase involved in B-lymphocyte development, differentiation and signaling (By similarity). B-cell receptor (BCR) signaling requires a tight regulation of several protein tyrosine kinases and phosphatases, and associated coreceptors (By similarity). Binding of antigen to the B-cell antigen receptor (BCR) triggers signaling that ultimately leads to B-cell activation (By similarity). Signaling through BLK plays an important role in transmitting signals through surface immunoglobulins and supports the pro-B to pre-B transition, as well as the signaling for growth arrest and apoptosis downstream of B-cell receptor (By similarity). Specifically binds and phosphorylates CD79A at 'Tyr-188'and 'Tyr-199', as well as CD79B at 'Tyr-196' and 'Tyr-207' (By similarity). Also phosphorylates the immunoglobulin G receptors FCGR2A, FCGR2B and FCGR2C (PubMed:8756631). With FYN and LYN, plays an essential role in pre-B-cell receptor (pre-BCR)-mediated NF-kappa-B activation (By similarity). Also contributes to BTK activation by indirectly stimulating BTK intramolecular autophosphorylation (By similarity). In pancreatic islets, acts as a modulator of beta-cells function through the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in response to glucose (PubMed:19667185). Phosphorylates CGAS, promoting retention of CGAS in the cytosol (PubMed:30356214). {ECO:0000250|UniProtKB:P16277, ECO:0000269|PubMed:19667185, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:8756631}.
P51531 SMARCA2 S1377 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2 (SAMRCA2) (EC 3.6.4.-) (BRG1-associated factor 190B) (BAF190B) (Probable global transcription activator SNF2L2) (Protein brahma homolog) (hBRM) (SNF2-alpha) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically (PubMed:15075294, PubMed:22952240, PubMed:26601204). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:Q6DIC0, ECO:0000269|PubMed:15075294, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51531 SMARCA2 S1568 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 2 (SAMRCA2) (EC 3.6.4.-) (BRG1-associated factor 190B) (BAF190B) (Probable global transcription activator SNF2L2) (Protein brahma homolog) (hBRM) (SNF2-alpha) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically (PubMed:15075294, PubMed:22952240, PubMed:26601204). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:Q6DIC0, ECO:0000269|PubMed:15075294, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51532 SMARCA4 S1422 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51532 SMARCA4 S1452 ochoa|psp SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P51825 AFF1 S684 ochoa AF4/FMR2 family member 1 (ALL1-fused gene from chromosome 4 protein) (Protein AF-4) (Protein FEL) (Proto-oncogene AF4) None
P51948 MNAT1 S190 ochoa CDK-activating kinase assembly factor MAT1 (CDK7/cyclin-H assembly factor) (Cyclin-G1-interacting protein) (Menage a trois) (RING finger protein 66) (RING finger protein MAT1) (p35) (p36) Stabilizes the cyclin H-CDK7 complex to form a functional CDK-activating kinase (CAK) enzymatic complex. CAK activates the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation. CAK complexed to the core-TFIIH basal transcription factor activates RNA polymerase II by serine phosphorylation of the repetitive C-terminal domain (CTD) of its large subunit (POLR2A), allowing its escape from the promoter and elongation of the transcripts. Involved in cell cycle control and in RNA transcription by RNA polymerase II. {ECO:0000269|PubMed:10024882}.
P51955 NEK2 S397 ochoa Serine/threonine-protein kinase Nek2 (EC 2.7.11.1) (HSPK 21) (Never in mitosis A-related kinase 2) (NimA-related protein kinase 2) (NimA-like protein kinase 1) Protein kinase which is involved in the control of centrosome separation and bipolar spindle formation in mitotic cells and chromatin condensation in meiotic cells. Regulates centrosome separation (essential for the formation of bipolar spindles and high-fidelity chromosome separation) by phosphorylating centrosomal proteins such as CROCC, CEP250 and NINL, resulting in their displacement from the centrosomes. Regulates kinetochore microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in regulation of mitotic checkpoint protein complex via phosphorylation of CDC20 and MAD2L1. Plays an active role in chromatin condensation during the first meiotic division through phosphorylation of HMGA2. Phosphorylates: PPP1CC; SGO1; NECAB3 and NPM1. Essential for localization of MAD2L1 to kinetochore and MAPK1 and NPM1 to the centrosome. Phosphorylates CEP68 and CNTLN directly or indirectly (PubMed:24554434). NEK2-mediated phosphorylation of CEP68 promotes CEP68 dissociation from the centrosome and its degradation at the onset of mitosis (PubMed:25704143). Involved in the regulation of centrosome disjunction (PubMed:26220856). Phosphorylates CCDC102B either directly or indirectly which causes CCDC102B to dissociate from the centrosome and allows for centrosome separation (PubMed:30404835). {ECO:0000269|PubMed:11742531, ECO:0000269|PubMed:12857871, ECO:0000269|PubMed:14978040, ECO:0000269|PubMed:15358203, ECO:0000269|PubMed:15388344, ECO:0000269|PubMed:17283141, ECO:0000269|PubMed:17621308, ECO:0000269|PubMed:17626005, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18297113, ECO:0000269|PubMed:20034488, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:26220856, ECO:0000269|PubMed:30404835}.; FUNCTION: [Isoform 1]: Phosphorylates and activates NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.; FUNCTION: [Isoform 2]: Not present in the nucleolus and, in contrast to isoform 1, does not phosphorylate and activate NEK11 in G1/S-arrested cells. {ECO:0000269|PubMed:15161910}.
P52179 MYOM1 S1399 ochoa Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent.
P52292 KPNA2 S55 ochoa Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha) Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:7604027, PubMed:7754385). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA1 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:28991411, ECO:0000269|PubMed:32130408, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7604027, ECO:0000269|PubMed:7754385}.
P52566 ARHGDIB S44 ochoa Rho GDP-dissociation inhibitor 2 (Rho GDI 2) (Ly-GDI) (Rho-GDI beta) Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them (PubMed:7512369, PubMed:8356058). Regulates reorganization of the actin cytoskeleton mediated by Rho family members (PubMed:8262133). {ECO:0000269|PubMed:7512369, ECO:0000269|PubMed:8262133, ECO:0000269|PubMed:8356058}.
P54132 BLM S53 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P55196 AFDN S181 ochoa Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}.
P55197 MLLT10 S215 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55197 MLLT10 S217 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55197 MLLT10 S219 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P55197 MLLT10 S252 ochoa Protein AF-10 (ALL1-fused gene from chromosome 10 protein) Probably involved in transcriptional regulation. In vitro or as fusion protein with KMT2A/MLL1 has transactivation activity. Binds to cruciform DNA. In cells, binding to unmodified histone H3 regulates DOT1L functions including histone H3 'Lys-79' dimethylation (H3K79me2) and gene activation (PubMed:26439302). {ECO:0000269|PubMed:17868029, ECO:0000269|PubMed:26439302}.
P56524 HDAC4 S196 ochoa Histone deacetylase 4 (HD4) (EC 3.5.1.98) Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Deacetylates HSPA1A and HSPA1B at 'Lys-77' leading to their preferential binding to co-chaperone STUB1 (PubMed:27708256). {ECO:0000269|PubMed:10523670, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:27708256}.
P57053 H2BC12L S37 ochoa Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P57053 H2BC12L S39 ochoa Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P57053 H2BC12L Y43 ochoa Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P57721 PCBP3 S82 ochoa Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}.
P58876 H2BC5 S37 ochoa Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P58876 H2BC5 S39 ochoa Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P58876 H2BC5 Y43 ochoa Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P62241 RPS8 S159 ochoa Small ribosomal subunit protein eS8 (40S ribosomal protein S8) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P62807 H2BC4 S37 ochoa Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P62807 H2BC4 S39 ochoa Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P62807 H2BC4 Y43 ochoa Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P62851 RPS25 S26 ochoa Small ribosomal subunit protein eS25 (40S ribosomal protein S25) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}.
P62906 RPL10A S115 ochoa Large ribosomal subunit protein uL1 (60S ribosomal protein L10a) (CSA-19) (Neural precursor cell expressed developmentally down-regulated protein 6) (NEDD-6) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
P62979 RPS27A S20 ochoa Ubiquitin-ribosomal protein eS31 fusion protein (Ubiquitin carboxyl extension protein 80) [Cleaved into: Ubiquitin; Small ribosomal subunit protein eS31 (40S ribosomal protein S27a)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Small ribosomal subunit protein eS31]: Component of the 40S subunit of the ribosome (PubMed:23636399, PubMed:9582194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:23636399, PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797, ECO:0000305|PubMed:9582194}.
P62987 UBA52 S20 ochoa Ubiquitin-ribosomal protein eL40 fusion protein (CEP52) (Ubiquitin A-52 residue ribosomal protein fusion product 1) [Cleaved into: Ubiquitin; Large ribosomal subunit protein eL40 (60S ribosomal protein L40) (rpL40)] [Ubiquitin]: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in proteotoxic stress response and cell cycle; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. {ECO:0000269|PubMed:16543144, ECO:0000269|PubMed:34239127, ECO:0000303|PubMed:19754430}.; FUNCTION: [Large ribosomal subunit protein eL40]: Component of the 60S subunit of the ribosome (PubMed:23169626, PubMed:23636399, PubMed:32669547, PubMed:39048817, PubMed:39103523). Ribosomal protein L40 is essential for translation of a subset of cellular transcripts, and especially for cap-dependent translation of vesicular stomatitis virus mRNAs (PubMed:23169626, PubMed:23636399, PubMed:32669547, PubMed:39048817, PubMed:39103523). {ECO:0000269|PubMed:23169626, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000269|PubMed:39048817, ECO:0000269|PubMed:39103523}.
P78347 GTF2I S820 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
P78348 ASIC1 S487 ochoa Acid-sensing ion channel 1 (ASIC1) (Amiloride-sensitive cation channel 2, neuronal) (Brain sodium channel 2) Forms voltage-independent, pH-gated trimeric sodium channels that act as postsynaptic excitatory receptors in the nervous system, playing a crucial role in regulating synaptic plasticity, learning, and memory (PubMed:21036899, PubMed:32915133, PubMed:34319232). Upon extracellular pH drop this channel elicits transient, fast activating, and completely desensitizing inward currents (PubMed:21036899). Displays high selectivity for sodium ions but can also permit the permeation of other cations (PubMed:21036899). Regulates more or less directly intracellular calcium concentration and CaMKII phosphorylation, and thereby the density of dendritic spines. Modulates neuronal activity in the circuits underlying innate fear (By similarity). {ECO:0000250|UniProtKB:Q6NXK8, ECO:0000269|PubMed:21036899, ECO:0000269|PubMed:32915133, ECO:0000269|PubMed:34319232}.; FUNCTION: [Isoform Asic1a]: Has high selectivity for sodium ions, but can also be permeable to other cations including calcium, lithium and potassium. {ECO:0000269|PubMed:21036899}.; FUNCTION: [Isoform Asic1b]: Produces acid activated currents with a reduced amplitude and inactivates faster (PubMed:21036899). Has high selectivity for sodium ions but also supports a calcium-mediated current which is sustained and maintained as long as acidic conditions are present (PubMed:21036899). Also potentially permeable to lithium and potassium (PubMed:21036899). {ECO:0000269|PubMed:21036899}.; FUNCTION: [Isoform 1]: Has no measurable proton-gated sodium channel activity in vitro. {ECO:0000269|PubMed:21036899}.
P80192 MAP3K9 S519 ochoa Mitogen-activated protein kinase kinase kinase 9 (EC 2.7.11.25) (Mixed lineage kinase 1) Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade through the phosphorylation of MAP2K4/MKK4 and MAP2K7/MKK7 which in turn activate the JNKs. The MKK/JNK signaling pathway regulates stress response via activator protein-1 (JUN) and GATA4 transcription factors. Also plays a role in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. {ECO:0000269|PubMed:11416147, ECO:0000269|PubMed:15610029}.
P80297 MT1X S35 ochoa Metallothionein-1X (MT-1X) (Metallothionein-IX) (MT-IX) Metallothioneins have a high content of cysteine residues that bind various heavy metals; these proteins are transcriptionally regulated by both heavy metals and glucocorticoids. May be involved in FAM168A anti-apoptotic signaling (PubMed:23251525). {ECO:0000269|PubMed:23251525}.
P80723 BASP1 S40 ochoa Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) None
P82979 SARNP S187 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
P98082 DAB2 S193 ochoa Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
Q00013 MPP1 S261 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q00059 TFAM S160 psp Transcription factor A, mitochondrial (mtTFA) (Mitochondrial transcription factor 1) (MtTF1) (Transcription factor 6) (TCF-6) (Transcription factor 6-like 2) Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation (PubMed:29445193, PubMed:32183942). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:20410300). Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase (PubMed:22037172). Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites (PubMed:22037172). Is able to unwind DNA (PubMed:22037172). Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes (PubMed:1737790). Required for maintenance of normal levels of mitochondrial DNA (PubMed:19304746, PubMed:22841477). May play a role in organizing and compacting mitochondrial DNA (PubMed:22037171). {ECO:0000269|PubMed:1737790, ECO:0000269|PubMed:19304746, ECO:0000269|PubMed:20410300, ECO:0000269|PubMed:22037171, ECO:0000269|PubMed:22037172, ECO:0000269|PubMed:22841477, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:29445193, ECO:0000269|PubMed:32183942}.
Q00688 FKBP3 S100 ochoa Peptidyl-prolyl cis-trans isomerase FKBP3 (PPIase FKBP3) (EC 5.2.1.8) (25 kDa FK506-binding protein) (25 kDa FKBP) (FKBP-25) (FK506-binding protein 3) (FKBP-3) (Immunophilin FKBP25) (Rapamycin-selective 25 kDa immunophilin) (Rotamase) FK506- and rapamycin-binding proteins (FKBPs) constitute a family of receptors for the two immunosuppressants which inhibit T-cell proliferation by arresting two distinct cytoplasmic signal transmission pathways. PPIases accelerate the folding of proteins.
Q00987 MDM2 S350 ochoa E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}.
Q01484 ANK2 S3910 ochoa Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}.
Q01804 OTUD4 S341 ochoa OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}.
Q01831 XPC S346 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q01831 XPC S347 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q01831 XPC S399 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02539 H1-1 S183 psp Histone H1.1 (Histone H1a) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
Q02878 RPL6 T91 ochoa Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
Q02880 TOP2B S1236 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1279 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1342 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1522 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1524 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1526 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1550 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1552 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02952 AKAP12 S544 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02952 AKAP12 S629 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q02952 AKAP12 S787 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A S1240 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03169 TNFAIP2 S68 ochoa Tumor necrosis factor alpha-induced protein 2 (TNF alpha-induced protein 2) (Primary response gene B94 protein) May play a role as a mediator of inflammation and angiogenesis.
Q03188 CENPC S515 ochoa Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}.
Q03468 ERCC6 S1346 ochoa DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}.
Q03701 CEBPZ S154 ochoa CCAAT/enhancer-binding protein zeta (CCAAT-box-binding transcription factor) (CBF) (CCAAT-binding factor) Stimulates transcription from the HSP70 promoter.
Q03701 CEBPZ S959 ochoa CCAAT/enhancer-binding protein zeta (CCAAT-box-binding transcription factor) (CBF) (CCAAT-binding factor) Stimulates transcription from the HSP70 promoter.
Q04721 NOTCH2 S2115 ochoa Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}.
Q04724 TLE1 S244 ochoa Transducin-like enhancer protein 1 (E(Sp1) homolog) (Enhancer of split groucho-like protein 1) (ESG1) Transcriptional corepressor that binds to a number of transcription factors. Inhibits NF-kappa-B-regulated gene expression. Inhibits the transcriptional activation mediated by FOXA2, and by CTNNB1 and TCF family members in Wnt signaling. Enhances FOXG1/BF-1- and HES1-mediated transcriptional repression (By similarity). The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Unusual function as coactivator for ESRRG. {ECO:0000250|UniProtKB:Q62440, ECO:0000269|PubMed:10660609}.
Q04726 TLE3 S240 ochoa Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}.
Q04727 TLE4 S245 ochoa Transducin-like enhancer protein 4 (Grg-4) (Groucho-related protein 4) Transcriptional corepressor that binds to a number of transcription factors. Inhibits the transcriptional activation mediated by PAX5, and by CTNNB1 and TCF family members in Wnt signaling. The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Essential for the transcriptional repressor activity of SIX3 during retina and lens development and for SIX3 transcriptional auto-repression (By similarity). Involved in transcriptional repression of GNRHR and enhances MSX1-mediated transcriptional repression of CGA/alpha-GSU (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q62441}.
Q05519 SRSF11 S414 ochoa Serine/arginine-rich splicing factor 11 (Arginine-rich 54 kDa nuclear protein) (p54) (Splicing factor, arginine/serine-rich 11) May function in pre-mRNA splicing.
Q05586 GRIN1 S890 psp Glutamate receptor ionotropic, NMDA 1 (GluN1) (Glutamate [NMDA] receptor subunit zeta-1) (N-methyl-D-aspartate receptor subunit NR1) (NMD-R1) (hNR1) Component of N-methyl-D-aspartate (NMDA) receptors (NMDARs) that function as heterotetrameric, ligand-gated cation channels with high calcium permeability and voltage-dependent block by Mg(2+) (PubMed:21376300, PubMed:26875626, PubMed:26919761, PubMed:28126851, PubMed:28228639, PubMed:36959261, PubMed:7679115, PubMed:7681588, PubMed:7685113). NMDARs participate in synaptic plasticity for learning and memory formation by contributing to the long-term potentiation (LTP) (PubMed:26875626). Channel activation requires binding of the neurotransmitter L-glutamate to the GluN2 subunit, glycine or D-serine binding to the GluN1 subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+) (PubMed:21376300, PubMed:26875626, PubMed:26919761, PubMed:27164704, PubMed:28095420, PubMed:28105280, PubMed:28126851, PubMed:28228639, PubMed:36959261, PubMed:38538865, PubMed:7679115, PubMed:7681588, PubMed:7685113). NMDARs mediate simultaneously the potasium efflux and the influx of calcium and sodium (By similarity). Each GluN2 or GluN3 subunit confers differential attributes to channel properties, including activation, deactivation and desensitization kinetics, pH sensitivity, Ca2(+) permeability, and binding to allosteric modulators (PubMed:26875626, PubMed:26919761, PubMed:36309015, PubMed:38598639). {ECO:0000250|UniProtKB:P35438, ECO:0000269|PubMed:21376300, ECO:0000269|PubMed:26875626, ECO:0000269|PubMed:26919761, ECO:0000269|PubMed:27164704, ECO:0000269|PubMed:28095420, ECO:0000269|PubMed:28105280, ECO:0000269|PubMed:28126851, ECO:0000269|PubMed:28228639, ECO:0000269|PubMed:36309015, ECO:0000269|PubMed:36959261, ECO:0000269|PubMed:38538865, ECO:0000269|PubMed:38598639, ECO:0000269|PubMed:7679115, ECO:0000269|PubMed:7681588, ECO:0000269|PubMed:7685113}.
Q08174 PCDH1 S902 ochoa Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) May be involved in cell-cell interaction processes and in cell adhesion.
Q08174 PCDH1 S918 ochoa Protocadherin-1 (Cadherin-like protein 1) (Protocadherin-42) (PC42) May be involved in cell-cell interaction processes and in cell adhesion.
Q08211 DHX9 S279 ochoa ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) Multifunctional ATP-dependent nucleic acid helicase that unwinds DNA and RNA in a 3' to 5' direction and that plays important roles in many processes, such as DNA replication, transcriptional activation, post-transcriptional RNA regulation, mRNA translation and RNA-mediated gene silencing (PubMed:11416126, PubMed:12711669, PubMed:15355351, PubMed:16680162, PubMed:17531811, PubMed:20669935, PubMed:21561811, PubMed:24049074, PubMed:24990949, PubMed:25062910, PubMed:28221134, PubMed:9111062, PubMed:37467750). Requires a 3'-single-stranded tail as entry site for acid nuclei unwinding activities as well as the binding and hydrolyzing of any of the four ribo- or deoxyribo-nucleotide triphosphates (NTPs) (PubMed:1537828). Unwinds numerous nucleic acid substrates such as double-stranded (ds) DNA and RNA, DNA:RNA hybrids, DNA and RNA forks composed of either partially complementary DNA duplexes or DNA:RNA hybrids, respectively, and also DNA and RNA displacement loops (D- and R-loops), triplex-helical DNA (H-DNA) structure and DNA and RNA-based G-quadruplexes (PubMed:20669935, PubMed:21561811, PubMed:24049074). Binds dsDNA, single-stranded DNA (ssDNA), dsRNA, ssRNA and poly(A)-containing RNA (PubMed:10198287, PubMed:9111062). Also binds to circular dsDNA or dsRNA of either linear and/or circular forms and stimulates the relaxation of supercoiled DNAs catalyzed by topoisomerase TOP2A (PubMed:12711669). Plays a role in DNA replication at origins of replication and cell cycle progression (PubMed:24990949). Plays a role as a transcriptional coactivator acting as a bridging factor between polymerase II holoenzyme and transcription factors or cofactors, such as BRCA1, CREBBP, RELA and SMN1 (PubMed:11038348, PubMed:11149922, PubMed:11416126, PubMed:15355351, PubMed:28221134, PubMed:9323138, PubMed:9662397). Binds to the CDKN2A promoter (PubMed:11038348). Plays several roles in post-transcriptional regulation of gene expression (PubMed:28221134, PubMed:28355180). In cooperation with NUP98, promotes pre-mRNA alternative splicing activities of a subset of genes (PubMed:11402034, PubMed:16680162, PubMed:28221134, PubMed:28355180). As component of a large PER complex, is involved in the negative regulation of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms (By similarity). Also acts as a nuclear resolvase that is able to bind and neutralize harmful massive secondary double-stranded RNA structures formed by inverted-repeat Alu retrotransposon elements that are inserted and transcribed as parts of genes during the process of gene transposition (PubMed:28355180). Involved in the positive regulation of nuclear export of constitutive transport element (CTE)-containing unspliced mRNA (PubMed:10924507, PubMed:11402034, PubMed:9162007). Component of the coding region determinant (CRD)-mediated complex that promotes cytoplasmic MYC mRNA stability (PubMed:19029303). Plays a role in mRNA translation (PubMed:28355180). Positively regulates translation of selected mRNAs through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Involved with LARP6 in the translation stimulation of type I collagen mRNAs for CO1A1 and CO1A2 through binding of a specific stem-loop structure in their 5'-UTRs (PubMed:22190748). Stimulates LIN28A-dependent mRNA translation probably by facilitating ribonucleoprotein remodeling during the process of translation (PubMed:21247876). Plays also a role as a small interfering (siRNA)-loading factor involved in the RNA-induced silencing complex (RISC) loading complex (RLC) assembly, and hence functions in the RISC-mediated gene silencing process (PubMed:17531811). Binds preferentially to short double-stranded RNA, such as those produced during rotavirus intestinal infection (PubMed:28636595). This interaction may mediate NLRP9 inflammasome activation and trigger inflammatory response, including IL18 release and pyroptosis (PubMed:28636595). Finally, mediates the attachment of heterogeneous nuclear ribonucleoproteins (hnRNPs) to actin filaments in the nucleus (PubMed:11687588). {ECO:0000250|UniProtKB:O70133, ECO:0000269|PubMed:10198287, ECO:0000269|PubMed:10924507, ECO:0000269|PubMed:11038348, ECO:0000269|PubMed:11149922, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11416126, ECO:0000269|PubMed:11687588, ECO:0000269|PubMed:12711669, ECO:0000269|PubMed:15355351, ECO:0000269|PubMed:1537828, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:17531811, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:20669935, ECO:0000269|PubMed:21247876, ECO:0000269|PubMed:21561811, ECO:0000269|PubMed:22190748, ECO:0000269|PubMed:24049074, ECO:0000269|PubMed:24990949, ECO:0000269|PubMed:25062910, ECO:0000269|PubMed:28221134, ECO:0000269|PubMed:28355180, ECO:0000269|PubMed:28636595, ECO:0000269|PubMed:37467750, ECO:0000269|PubMed:9111062, ECO:0000269|PubMed:9162007, ECO:0000269|PubMed:9323138, ECO:0000269|PubMed:9662397}.; FUNCTION: (Microbial infection) Plays a role in HIV-1 replication and virion infectivity (PubMed:11096080, PubMed:19229320, PubMed:25149208, PubMed:27107641). Enhances HIV-1 transcription by facilitating the binding of RNA polymerase II holoenzyme to the proviral DNA (PubMed:11096080, PubMed:25149208). Binds (via DRBM domain 2) to the HIV-1 TAR RNA and stimulates HIV-1 transcription of transactivation response element (TAR)-containing mRNAs (PubMed:11096080, PubMed:9892698). Involved also in HIV-1 mRNA splicing and transport (PubMed:25149208). Positively regulates HIV-1 gag mRNA translation, through its binding to post-transcriptional control element (PCE) in the 5'-untranslated region (UTR) (PubMed:16680162). Binds (via DRBM domains) to a HIV-1 double-stranded RNA region of the primer binding site (PBS)-segment of the 5'-UTR, and hence stimulates DHX9 incorporation into virions and virion infectivity (PubMed:27107641). Also plays a role as a cytosolic viral MyD88-dependent DNA and RNA sensors in plasmacytoid dendritic cells (pDCs), and hence induce antiviral innate immune responses (PubMed:20696886, PubMed:21957149). Binds (via the OB-fold region) to viral single-stranded DNA unmethylated C-phosphate-G (CpG) oligonucleotide (PubMed:20696886). {ECO:0000269|PubMed:11096080, ECO:0000269|PubMed:16680162, ECO:0000269|PubMed:19229320, ECO:0000269|PubMed:20696886, ECO:0000269|PubMed:21957149, ECO:0000269|PubMed:25149208, ECO:0000269|PubMed:27107641, ECO:0000269|PubMed:9892698}.
Q08945 SSRP1 S578 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q08945 SSRP1 S647 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q08AD1 CAMSAP2 S443 ochoa Calmodulin-regulated spectrin-associated protein 2 (Calmodulin-regulated spectrin-associated protein 1-like protein 1) Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:23169647, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153, PubMed:24706919). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:27666745). Essential for the tethering, but not for nucleation of non-centrosomal microtubules at the Golgi: together with Golgi-associated proteins AKAP9 and PDE4DIP, required to tether non-centrosomal minus-end microtubules to the Golgi, an important step for polarized cell movement (PubMed:27666745). Also acts as a regulator of neuronal polarity and development: localizes to non-centrosomal microtubule minus-ends in neurons and stabilizes non-centrosomal microtubules, which is required for neuronal polarity, axon specification and dendritic branch formation (PubMed:24908486). Through the microtubule cytoskeleton, regulates the autophagosome transport (PubMed:28726242). {ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919, ECO:0000269|PubMed:24908486, ECO:0000269|PubMed:27666745, ECO:0000269|PubMed:28726242}.
Q09666 AHNAK S501 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S698 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S819 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S1068 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S1196 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S1324 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S1452 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S1580 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S1782 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S2185 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S2313 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S2387 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S2454 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S2580 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S2836 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S3294 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S3360 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S3362 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S3672 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4130 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4386 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4486 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4520 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4522 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4850 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S4993 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5031 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5195 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5720 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12802 AKAP13 S391 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12802 AKAP13 S1856 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12816 TRO S155 ochoa Trophinin (MAGE-D3 antigen) Could be involved with bystin and tastin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. Directly responsible for homophilic cell adhesion.
Q12830 BPTF S1827 ochoa Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}.
Q12873 CHD3 S73 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12873 CHD3 S713 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12904 AIMP1 S140 ochoa|psp Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}.
Q12923 PTPN13 S1215 ochoa Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}.
Q12929 EPS8 T317 ochoa Epidermal growth factor receptor kinase substrate 8 Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}.
Q12929 EPS8 S548 psp Epidermal growth factor receptor kinase substrate 8 Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}.
Q12955 ANK3 S39 ochoa Ankyrin-3 (ANK-3) (Ankyrin-G) Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}.
Q13061 TRDN S415 ochoa Triadin Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}.
Q13114 TRAF3 S349 psp TNF receptor-associated factor 3 (EC 2.3.2.27) (CD40 receptor-associated factor 1) (CRAF1) (CD40-binding protein) (CD40BP) (LMP1-associated protein 1) (LAP1) (RING-type E3 ubiquitin transferase TRAF3) Cytoplasmic E3 ubiquitin ligase that regulates various signaling pathways, such as the NF-kappa-B, mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) pathways, and thus controls a lot of biological processes in both immune and non-immune cell types (PubMed:33148796, PubMed:33608556). In TLR and RLR signaling pathways, acts as an E3 ubiquitin ligase promoting the synthesis of 'Lys-63'-linked polyubiquitin chains on several substrates such as ASC that lead to the activation of the type I interferon response or the inflammasome (PubMed:25847972, PubMed:27980081). Following the activation of certain TLRs such as TLR4, acts as a negative NF-kappa-B regulator, possibly to avoid unregulated inflammatory response, and its degradation via 'Lys-48'-linked polyubiquitination is required for MAPK activation and production of inflammatory cytokines. Alternatively, when TLR4 orchestrates bacterial expulsion, TRAF3 undergoes 'Lys-33'-linked polyubiquitination and subsequently binds to RALGDS, mobilizing the exocyst complex to rapidly expel intracellular bacteria back for clearance (PubMed:27438768). Also acts as a constitutive negative regulator of the alternative NF-kappa-B pathway, which controls B-cell survival and lymphoid organ development. Required for normal antibody isotype switching from IgM to IgG. Plays a role T-cell dependent immune responses. Down-regulates proteolytic processing of NFKB2, and thereby inhibits non-canonical activation of NF-kappa-B. Promotes ubiquitination and proteasomal degradation of MAP3K14. {ECO:0000269|PubMed:15084608, ECO:0000269|PubMed:15383523, ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:19937093, ECO:0000269|PubMed:20097753, ECO:0000269|PubMed:20185819, ECO:0000269|PubMed:25847972, ECO:0000269|PubMed:27980081, ECO:0000269|PubMed:32562145, ECO:0000269|PubMed:33148796, ECO:0000269|PubMed:33608556, ECO:0000269|PubMed:34011520}.
Q13153 PAK1 S259 ochoa Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}.
Q13177 PAK2 S132 ochoa Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}.
Q13206 DDX10 S52 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13206 DDX10 S780 ochoa Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}.
Q13393 PLD1 S540 ochoa Phospholipase D1 (PLD 1) (hPLD1) (EC 3.1.4.4) (Choline phosphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D1) Function as phospholipase selective for phosphatidylcholine (PubMed:25936805, PubMed:8530346, PubMed:9582313). Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity). {ECO:0000250|UniProtKB:Q9Z280, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:8530346, ECO:0000269|PubMed:9582313}.
Q13422 IKZF1 S289 ochoa DNA-binding protein Ikaros (Ikaros family zinc finger protein 1) (Lymphoid transcription factor LyF-1) Transcription regulator of hematopoietic cell differentiation (PubMed:17934067). Binds gamma-satellite DNA (PubMed:17135265, PubMed:19141594). Plays a role in the development of lymphocytes, B- and T-cells. Binds and activates the enhancer (delta-A element) of the CD3-delta gene. Repressor of the TDT (fikzfterminal deoxynucleotidyltransferase) gene during thymocyte differentiation. Regulates transcription through association with both HDAC-dependent and HDAC-independent complexes. Targets the 2 chromatin-remodeling complexes, NuRD and BAF (SWI/SNF), in a single complex (PYR complex), to the beta-globin locus in adult erythrocytes. Increases normal apoptosis in adult erythroid cells. Confers early temporal competence to retinal progenitor cells (RPCs) (By similarity). Function is isoform-specific and is modulated by dominant-negative inactive isoforms (PubMed:17135265, PubMed:17934067). {ECO:0000250|UniProtKB:Q03267, ECO:0000269|PubMed:10204490, ECO:0000269|PubMed:17135265, ECO:0000269|PubMed:17934067, ECO:0000269|PubMed:19141594}.
Q13427 PPIG S254 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13427 PPIG S256 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13427 PPIG S257 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13427 PPIG S259 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13427 PPIG S533 ochoa Peptidyl-prolyl cis-trans isomerase G (PPIase G) (Peptidyl-prolyl isomerase G) (EC 5.2.1.8) (CASP10) (Clk-associating RS-cyclophilin) (CARS-Cyp) (CARS-cyclophilin) (SR-cyclophilin) (SR-cyp) (SRcyp) (Cyclophilin G) (Rotamase G) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). May be implicated in the folding, transport, and assembly of proteins. May play an important role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:20676357}.
Q13428 TCOF1 S1376 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13428 TCOF1 S1378 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13428 TCOF1 S1471 ochoa Treacle protein (Treacher Collins syndrome protein) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}.
Q13435 SF3B2 S343 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S344 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S346 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S347 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S435 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13435 SF3B2 S436 ochoa Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}.
Q13480 GAB1 S634 ochoa GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}.
Q13492 PICALM S303 ochoa Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}.
Q13523 PRP4K S87 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S93 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S232 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S283 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13523 PRP4K S519 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13546 RIPK1 S25 psp Receptor-interacting serine/threonine-protein kinase 1 (EC 2.7.11.1) (Cell death protein RIP) (Receptor-interacting protein 1) (RIP-1) Serine-threonine kinase which is a key regulator of TNF-mediated apoptosis, necroptosis and inflammatory pathways (PubMed:17703191, PubMed:24144979, PubMed:31827280, PubMed:31827281, PubMed:32657447, PubMed:35831301). Exhibits kinase activity-dependent functions that regulate cell death and kinase-independent scaffold functions regulating inflammatory signaling and cell survival (PubMed:11101870, PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Has kinase-independent scaffold functions: upon binding of TNF to TNFR1, RIPK1 is recruited to the TNF-R1 signaling complex (TNF-RSC also known as complex I) where it acts as a scaffold protein promoting cell survival, in part, by activating the canonical NF-kappa-B pathway (By similarity). Kinase activity is essential to regulate necroptosis and apoptosis, two parallel forms of cell death: upon activation of its protein kinase activity, regulates assembly of two death-inducing complexes, namely complex IIa (RIPK1-FADD-CASP8), which drives apoptosis, and the complex IIb (RIPK1-RIPK3-MLKL), which drives necroptosis (By similarity). RIPK1 is required to limit CASP8-dependent TNFR1-induced apoptosis (By similarity). In normal conditions, RIPK1 acts as an inhibitor of RIPK3-dependent necroptosis, a process mediated by RIPK3 component of complex IIb, which catalyzes phosphorylation of MLKL upon induction by ZBP1 (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Inhibits RIPK3-mediated necroptosis via FADD-mediated recruitment of CASP8, which cleaves RIPK1 and limits TNF-induced necroptosis (PubMed:19524512, PubMed:19524513, PubMed:29440439, PubMed:30988283). Required to inhibit apoptosis and necroptosis during embryonic development: acts by preventing the interaction of TRADD with FADD thereby limiting aberrant activation of CASP8 (By similarity). In addition to apoptosis and necroptosis, also involved in inflammatory response by promoting transcriptional production of pro-inflammatory cytokines, such as interleukin-6 (IL6) (PubMed:31827280, PubMed:31827281). Phosphorylates RIPK3: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation (PubMed:19524513). Phosphorylates DAB2IP at 'Ser-728' in a TNF-alpha-dependent manner, and thereby activates the MAP3K5-JNK apoptotic cascade (PubMed:15310755, PubMed:17389591). Required for ZBP1-induced NF-kappa-B activation in response to DNA damage (By similarity). {ECO:0000250|UniProtKB:Q60855, ECO:0000269|PubMed:11101870, ECO:0000269|PubMed:15310755, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:19524512, ECO:0000269|PubMed:19524513, ECO:0000269|PubMed:24144979, ECO:0000269|PubMed:29440439, ECO:0000269|PubMed:30988283, ECO:0000269|PubMed:31827280, ECO:0000269|PubMed:31827281, ECO:0000269|PubMed:32657447, ECO:0000269|PubMed:35831301}.
Q13561 DCTN2 S70 ochoa Dynactin subunit 2 (50 kDa dynein-associated polypeptide) (Dynactin complex 50 kDa subunit) (DCTN-50) (p50 dynamitin) Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In the dynactin soulder domain, binds the ACTR1A filament and acts as a molecular ruler to determine the length (By similarity). Modulates cytoplasmic dynein binding to an organelle, and plays a role in prometaphase chromosome alignment and spindle organization during mitosis. Involved in anchoring microtubules to centrosomes. May play a role in synapse formation during brain development (By similarity). {ECO:0000250|UniProtKB:A0A5G2QD80, ECO:0000250|UniProtKB:Q99KJ8}.
Q13586 STIM1 S257 ochoa|psp Stromal interaction molecule 1 Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}.
Q13586 STIM1 S400 ochoa Stromal interaction molecule 1 Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}.
Q13586 STIM1 S401 ochoa Stromal interaction molecule 1 Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}.
Q13601 KRR1 S345 ochoa KRR1 small subunit processome component homolog (HIV-1 Rev-binding protein 2) (KRR-R motif-containing protein 1) (Rev-interacting protein 1) (Rip-1) Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}.
Q13698 CACNA1S S694 ochoa Voltage-dependent L-type calcium channel subunit alpha-1S (Calcium channel, L type, alpha-1 polypeptide, isoform 3, skeletal muscle) (Voltage-gated calcium channel subunit alpha Cav1.1) Pore-forming, alpha-1S subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents in skeletal muscle. Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle via their interaction with RYR1, which triggers Ca(2+) release from the sarcoplasmic reticulum and ultimately results in muscle contraction. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. {ECO:0000269|PubMed:28012042}.
Q14008 CKAP5 S1861 ochoa Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}.
Q14103 HNRNPD S190 ochoa Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}.
Q14155 ARHGEF7 S694 ochoa Rho guanine nucleotide exchange factor 7 (Beta-Pix) (COOL-1) (PAK-interacting exchange factor beta) (p85) Acts as a RAC1 guanine nucleotide exchange factor (GEF) and can induce membrane ruffling. Functions in cell migration, attachment and cell spreading. Promotes targeting of RAC1 to focal adhesions (By similarity). May function as a positive regulator of apoptosis. Downstream of NMDA receptors and CaMKK-CaMK1 signaling cascade, promotes the formation of spines and synapses in hippocampal neurons. {ECO:0000250, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750}.
Q14677 CLINT1 S164 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14677 CLINT1 S166 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14677 CLINT1 S232 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14684 RRP1B S278 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14684 RRP1B S392 ochoa Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}.
Q14686 NCOA6 S926 ochoa Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins.
Q14839 CHD4 S277 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14839 CHD4 Y365 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q14966 ZNF638 S1825 ochoa Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}.
Q14966 ZNF638 S1913 ochoa Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}.
Q14978 NOLC1 S91 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q14978 NOLC1 S265 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q14CW9 ATXN7L3 S326 ochoa Ataxin-7-like protein 3 (SAGA-associated factor 11 homolog) Component of the transcription regulatory histone acetylation (HAT) complex SAGA, a multiprotein complex that activates transcription by remodeling chromatin and mediating histone acetylation and deubiquitination. Within the SAGA complex, participates in a subcomplex that specifically deubiquitinates both histones H2A and H2B (PubMed:18206972, PubMed:21746879). The SAGA complex is recruited to specific gene promoters by activators such as MYC, where it is required for transcription. Required for nuclear receptor-mediated transactivation. Within the complex, it is required to recruit USP22 and ENY2 into the SAGA complex (PubMed:18206972). Regulates H2B monoubiquitination (H2Bub1) levels. Affects subcellular distribution of ENY2, USP22 and ATXN7L3B (PubMed:27601583). {ECO:0000255|HAMAP-Rule:MF_03047, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:21746879, ECO:0000269|PubMed:27601583}.
Q15052 ARHGEF6 S640 ochoa Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) Acts as a RAC1 guanine nucleotide exchange factor (GEF).
Q15059 BRD3 S680 ochoa Bromodomain-containing protein 3 (RING3-like protein) Chromatin reader that recognizes and binds acetylated histones, thereby controlling gene expression and remodeling chromatin structures (PubMed:18406326, PubMed:22464331, PubMed:27105114, PubMed:32895492). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:29567837, PubMed:32895492). In vitro, binds acetylated lysine residues on the N-terminus of histone H2A, H2B, H3 and H4 (PubMed:18406326). Involved in endoderm differentiation via its association with long non-coding RNA (lncRNA) DIGIT: BRD3 undergoes liquid-liquid phase separation upon binding to lncRNA DIGIT, promoting binding to histone H3 acetylated at 'Lys-18' (H3K18ac) to induce endoderm gene expression (PubMed:32895492). Also binds non-histones acetylated proteins, such as GATA1 and GATA2: regulates transcription by promoting the binding of the transcription factor GATA1 to its targets (By similarity). {ECO:0000250|UniProtKB:Q8K2F0, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:29567837, ECO:0000269|PubMed:32895492}.
Q15147 PLCB4 S889 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}.
Q15149 PLEC S201 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15149 PLEC S4590 ochoa Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}.
Q15291 RBBP5 S497 ochoa Retinoblastoma-binding protein 5 (RBBP-5) (Retinoblastoma-binding protein RBQ-3) In embryonic stem (ES) cells, plays a crucial role in the differentiation potential, particularly along the neural lineage, regulating gene induction and H3 'Lys-4' methylation at key developmental loci, including that mediated by retinoic acid (By similarity). Does not affect ES cell self-renewal (By similarity). Component or associated component of some histone methyltransferase complexes which regulates transcription through recruitment of those complexes to gene promoters (PubMed:19131338). As part of the MLL1/MLL complex, involved in mono-, di- and trimethylation at 'Lys-4' of histone H3 (PubMed:19556245). Histone H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation (PubMed:19556245). In association with ASH2L and WDR5, stimulates the histone methyltransferase activities of KMT2A, KMT2B, KMT2C, KMT2D, SETD1A and SETD1B (PubMed:21220120, PubMed:22266653). {ECO:0000250|UniProtKB:Q8BX09, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:22266653}.
Q15311 RALBP1 S92 ochoa RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15311 RALBP1 S93 ochoa RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15311 RALBP1 S116 ochoa RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15311 RALBP1 S118 ochoa|psp RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}.
Q15361 TTF1 S403 ochoa Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}.
Q15648 MED1 S1025 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1368 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1374 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1375 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15648 MED1 S1536 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q15652 JMJD1C S373 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15652 JMJD1C S1631 ochoa Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}.
Q15723 ELF2 S185 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q15723 ELF2 S188 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q15723 ELF2 S191 ochoa ETS-related transcription factor Elf-2 (E74-like factor 2) (New ETS-related factor) Isoform 1 transcriptionally activates the LYN and BLK promoters and acts synergistically with RUNX1 to transactivate the BLK promoter.; FUNCTION: Isoform 2 may function in repression of RUNX1-mediated transactivation.
Q15772 SPEG S371 ochoa Striated muscle preferentially expressed protein kinase (EC 2.7.11.1) (Aortic preferentially expressed protein 1) (APEG-1) Isoform 3 may have a role in regulating the growth and differentiation of arterial smooth muscle cells.
Q16543 CDC37 S140 ochoa Hsp90 co-chaperone Cdc37 (Hsp90 chaperone protein kinase-targeting subunit) (p50Cdc37) [Cleaved into: Hsp90 co-chaperone Cdc37, N-terminally processed] Co-chaperone that binds to numerous kinases and promotes their interaction with the Hsp90 complex, resulting in stabilization and promotion of their activity (PubMed:8666233). Inhibits HSP90AA1 ATPase activity (PubMed:23569206). {ECO:0000269|PubMed:23569206, ECO:0000269|PubMed:8666233}.
Q16637 SMN1 S63 ochoa|psp Survival motor neuron protein (Component of gems 1) (Gemin-1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}.
Q16637 SMN1 T85 ochoa|psp Survival motor neuron protein (Component of gems 1) (Gemin-1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}.
Q16637 SMN1 S88 ochoa|psp Survival motor neuron protein (Component of gems 1) (Gemin-1) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:18984161, PubMed:9845364). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core) (PubMed:18984161). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Within the SMN complex, SMN1 acts as a structural backbone and together with GEMIN2 it gathers the Sm complex subunits (PubMed:17178713, PubMed:21816274, PubMed:22101937). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP (PubMed:31799625). Ensures the correct splicing of U12 intron-containing genes that may be important for normal motor and proprioceptive neurons development (PubMed:23063131). Also required for resolving RNA-DNA hybrids created by RNA polymerase II, that form R-loop in transcription terminal regions, an important step in proper transcription termination (PubMed:26700805). May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:17178713, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:21816274, ECO:0000269|PubMed:22101937, ECO:0000269|PubMed:23063131, ECO:0000269|PubMed:26700805, ECO:0000269|PubMed:31799625, ECO:0000269|PubMed:9845364}.
Q16666 IFI16 S142 ochoa Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16666 IFI16 S145 ochoa Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16760 DGKD S70 psp Diacylglycerol kinase delta (DAG kinase delta) (EC 2.7.1.107) (130 kDa diacylglycerol kinase) (Diglyceride kinase delta) (DGK-delta) Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12200442, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable). By controlling the levels of diacylglycerol, regulates for instance the PKC and EGF receptor signaling pathways and plays a crucial role during development (By similarity). May also regulate clathrin-dependent endocytosis (PubMed:17880279). {ECO:0000250|UniProtKB:E9PUQ8, ECO:0000269|PubMed:12200442, ECO:0000269|PubMed:17880279, ECO:0000269|PubMed:23949095, ECO:0000305}.
Q16778 H2BC21 S37 ochoa Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Q16778 H2BC21 S39 ochoa Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Q16778 H2BC21 Y43 ochoa Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Q1ED39 KNOP1 S132 ochoa Lysine-rich nucleolar protein 1 (Protein FAM191A) (Testis-specific gene 118 protein) None
Q2LD37 BLTP1 S1432 ochoa Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}.
Q2NKX8 ERCC6L S755 ochoa DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}.
Q2WGJ9 FER1L6 S27 ochoa Fer-1-like protein 6 None
Q32MZ4 LRRFIP1 S581 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q3B726 POLR1F S242 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F T244 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F T245 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F S297 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F T322 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q4G0J3 LARP7 S286 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q4LE39 ARID4B S1159 ochoa AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}.
Q52LW3 ARHGAP29 S21 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q52LW3 ARHGAP29 T22 ochoa Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}.
Q53EP0 FNDC3B S208 ochoa Fibronectin type III domain-containing protein 3B (Factor for adipocyte differentiation 104) (HCV NS5A-binding protein 37) May be a positive regulator of adipogenesis. {ECO:0000269|PubMed:15564382}.
Q53F19 NCBP3 S431 ochoa Nuclear cap-binding protein subunit 3 (Protein ELG) Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}.
Q53F19 NCBP3 S575 ochoa Nuclear cap-binding protein subunit 3 (Protein ELG) Associates with NCBP1/CBP80 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export. NCBP3 serves as adapter protein linking the capped RNAs (m7GpppG-capped RNA) to NCBP1/CBP80. Unlike the conventional CBC with NCBP2 which binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus, the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role in only mRNA export. The alternative CBC is particularly important in cellular stress situations such as virus infections and the NCBP3 activity is critical to inhibit virus growth (PubMed:26382858). {ECO:0000269|PubMed:26382858}.
Q58FF8 HSP90AB2P S183 ochoa Putative heat shock protein HSP 90-beta 2 (Heat shock protein 90-beta b) (Heat shock protein 90Bb) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q58FG0 HSP90AA5P S89 ochoa Putative heat shock protein HSP 90-alpha A5 (Heat shock protein 90-alpha E) (Heat shock protein 90Ae) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q5BKY9 FAM133B S148 ochoa Protein FAM133B None
Q5BKY9 FAM133B S192 ochoa Protein FAM133B None
Q5BKY9 FAM133B S194 ochoa Protein FAM133B None
Q5BKZ1 ZNF326 S268 ochoa DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}.
Q5BKZ1 ZNF326 S270 ochoa DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}.
Q5F1R6 DNAJC21 Y397 ochoa DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}.
Q5H9L2 TCEAL5 S131 ochoa Transcription elongation factor A protein-like 5 (TCEA-like protein 5) (Transcription elongation factor S-II protein-like 5) May be involved in transcriptional regulation.
Q5HYJ3 FAM76B S231 ochoa Protein FAM76B Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}.
Q5HYJ3 FAM76B S233 ochoa Protein FAM76B Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}.
Q5JSP0 FGD3 S547 ochoa FYVE, RhoGEF and PH domain-containing protein 3 (Zinc finger FYVE domain-containing protein 5) Promotes the formation of filopodia. May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}.
Q5QJE6 DNTTIP2 S82 ochoa Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}.
Q5QNW6 H2BC18 S39 ochoa Histone H2B type 2-F (H2B-clustered histone 18) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q5QNW6 H2BC18 Y43 ochoa Histone H2B type 2-F (H2B-clustered histone 18) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q5SSJ5 HP1BP3 S140 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5SSJ5 HP1BP3 S142 ochoa Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}.
Q5T1V6 DDX59 S37 ochoa Probable ATP-dependent RNA helicase DDX59 (EC 3.6.4.13) (DEAD box protein 59) (Zinc finger HIT domain-containing protein 5) None
Q5T200 ZC3H13 T984 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 T985 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S986 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S1010 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S1014 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T200 ZC3H13 S1017 ochoa Zinc finger CCCH domain-containing protein 13 Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}.
Q5T3I0 GPATCH4 T218 ochoa G patch domain-containing protein 4 None
Q5T3I0 GPATCH4 S220 ochoa G patch domain-containing protein 4 None
Q5T3I0 GPATCH4 S253 ochoa G patch domain-containing protein 4 None
Q5T4S7 UBR4 T3383 ochoa E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}.
Q5T5C0 STXBP5 S904 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q5T5C0 STXBP5 S906 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q5T5Y3 CAMSAP1 S1378 ochoa Calmodulin-regulated spectrin-associated protein 1 Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}.
Q5UIP0 RIF1 S1579 ochoa Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}.
Q5VV41 ARHGEF16 S208 ochoa Rho guanine nucleotide exchange factor 16 (Ephexin-4) Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}.
Q5VWG9 TAF3 S755 ochoa Transcription initiation factor TFIID subunit 3 (140 kDa TATA box-binding protein-associated factor) (TBP-associated factor 3) (Transcription initiation factor TFIID 140 kDa subunit) (TAF(II)140) (TAF140) (TAFII-140) (TAFII140) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C (PubMed:33795473). TAF3 forms the TFIID-A module together with TAF5 and TBP (PubMed:33795473). Required in complex with TBPL2 for the differentiation of myoblasts into myocytes (PubMed:11438666). The TAF3-TBPL2 complex replaces TFIID at specific promoters at an early stage in the differentiation process (PubMed:11438666). {ECO:0000269|PubMed:11438666, ECO:0000269|PubMed:33795473}.
Q5W0Q7 USPL1 S909 ochoa SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}.
Q641Q2 WASHC2A S529 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q659A1 ICE2 S496 ochoa Little elongation complex subunit 2 (Interactor of little elongator complex ELL subunit 2) (NMDA receptor-regulated protein 2) Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. {ECO:0000269|PubMed:23932780}.
Q69YN4 VIRMA S1603 ochoa Protein virilizer homolog Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}.
Q6AI08 HEATR6 S336 ochoa HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) Amplification-dependent oncogene.
Q6AZW8 ZNF660 S23 ochoa Zinc finger protein 660 May be involved in transcriptional regulation.
Q6AZW8 ZNF660 S27 ochoa Zinc finger protein 660 May be involved in transcriptional regulation.
Q6DN03 H2BC20P S37 ochoa Putative histone H2B type 2-C (H2B-clustered histone 20 pseudogene) (Histone H2B.t) (H2B/t) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DN03 H2BC20P S39 ochoa Putative histone H2B type 2-C (H2B-clustered histone 20 pseudogene) (Histone H2B.t) (H2B/t) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DN03 H2BC20P Y43 ochoa Putative histone H2B type 2-C (H2B-clustered histone 20 pseudogene) (Histone H2B.t) (H2B/t) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DRA6 H2BC19P S37 ochoa Putative histone H2B type 2-D (H2B-clustered histone 19 pseudogene) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DRA6 H2BC19P S39 ochoa Putative histone H2B type 2-D (H2B-clustered histone 19 pseudogene) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DRA6 H2BC19P Y43 ochoa Putative histone H2B type 2-D (H2B-clustered histone 19 pseudogene) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6F5E8 CARMIL2 S1246 ochoa Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}.
Q6FI81 CIAPIN1 S177 ochoa Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog) Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex NUBP1-NUBP2. Electrons are transferred to CIAPIN1 from NADPH via the FAD- and FMN-containing protein NDOR1 (PubMed:23596212). NDOR1-CIAPIN1 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit (By similarity). Has anti-apoptotic effects in the cell. Involved in negative control of cell death upon cytokine withdrawal. Promotes development of hematopoietic cells (By similarity). {ECO:0000250|UniProtKB:P36152, ECO:0000250|UniProtKB:Q8WTY4, ECO:0000255|HAMAP-Rule:MF_03115, ECO:0000269|PubMed:23596212}.
Q6GQQ9 OTUD7B S508 ochoa OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}.
Q6GYQ0 RALGAPA1 S711 ochoa Ral GTPase-activating protein subunit alpha-1 (GAP-related-interacting partner to E12) (GRIPE) (GTPase-activating Rap/Ran-GAP domain-like 1) (Tuberin-like protein 1) (p240) Catalytic subunit of the heterodimeric RalGAP1 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}.
Q6IPX3 TCEAL6 S125 ochoa Transcription elongation factor A protein-like 6 (TCEA-like protein 6) (Transcription elongation factor S-II protein-like 6) May be involved in transcriptional regulation.
Q6KC79 NIPBL S1096 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL S2490 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6P1X5 TAF2 T1182 ochoa Transcription initiation factor TFIID subunit 2 (150 kDa cofactor of initiator function) (RNA polymerase II TBP-associated factor subunit B) (TBP-associated factor 150 kDa) (Transcription initiation factor TFIID 150 kDa subunit) (TAF(II)150) (TAFII-150) (TAFII150) The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473, PubMed:9418870, PubMed:9774672). TAF2 forms a promoter DNA binding subcomplex of TFIID, together with TAF7 and TAF1 (PubMed:33795473, PubMed:9774672). {ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:9418870, ECO:0000269|PubMed:9774672}.
Q6P4R8 NFRKB S328 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6P4R8 NFRKB S338 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6P4R8 NFRKB S339 ochoa Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}.
Q6P5Q4 LMOD2 S491 ochoa Leiomodin-2 (Cardiac leiomodin) (C-LMOD) (Leiomodin) Mediates nucleation of actin filaments and thereby promotes actin polymerization (PubMed:18403713, PubMed:25250574, PubMed:26370058, PubMed:26417072). Plays a role in the regulation of actin filament length (By similarity). Required for normal sarcomere organization in the heart, and for normal heart function (PubMed:18403713). {ECO:0000250|UniProtKB:Q3UHZ5, ECO:0000269|PubMed:18403713, ECO:0000269|PubMed:25250574, ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:26417072}.
Q6PCB8 EMB S306 ochoa Embigin Plays a role in the outgrowth of motoneurons and in the formation of neuromuscular junctions. Following muscle denervation, promotes nerve terminal sprouting and the formation of additional acetylcholine receptor clusters at synaptic sites without affecting terminal Schwann cell number or morphology. Delays the retraction of terminal sprouts following re-innervation of denervated endplates. May play a role in targeting the monocarboxylate transporters SLC16A1, SLC16A6 and SLC16A7 to the cell membrane (By similarity). {ECO:0000250|UniProtKB:O88775}.
Q6PD62 CTR9 S970 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PD62 CTR9 S1021 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PIJ6 FBXO38 S710 ochoa F-box only protein 38 Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of PDCD1/PD-1, thereby regulating T-cells-mediated immunity (PubMed:30487606). Required for anti-tumor activity of T-cells by promoting the degradation of PDCD1/PD-1; the PDCD1-mediated inhibitory pathway being exploited by tumors to attenuate anti-tumor immunity and facilitate tumor survival (PubMed:30487606). May indirectly stimulate the activity of transcription factor KLF7, a regulator of neuronal differentiation, without promoting KLF7 ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q8BMI0, ECO:0000269|PubMed:30487606}.
Q6UB98 ANKRD12 S132 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB98 ANKRD12 S428 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB98 ANKRD12 S429 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB99 ANKRD11 S649 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q6UN15 FIP1L1 S89 ochoa Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}.
Q6VAB6 KSR2 S347 ochoa Kinase suppressor of Ras 2 (hKSR2) (EC 2.7.11.1) Location-regulated scaffold connecting MEK to RAF. Has very low protein kinase activity and can phosphorylate MAP2K1 at several Ser and Thr residues with very low efficiency (in vitro). Acts as MAP2K1/MEK1-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 (PubMed:29433126). Interaction with BRAF enhances KSR2-mediated phosphorylation of MAP2K1 (in vitro). Blocks MAP3K8 kinase activity and MAP3K8-mediated signaling. Acts as a negative regulator of MAP3K3-mediated activation of ERK, JNK and NF-kappa-B pathways, inhibiting MAP3K3-mediated interleukin-8 production. {ECO:0000269|PubMed:12975377, ECO:0000269|PubMed:16039990, ECO:0000269|PubMed:21441910, ECO:0000269|PubMed:29433126}.
Q6WKZ4 RAB11FIP1 S184 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S186 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S190 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S195 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S222 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6WKZ4 RAB11FIP1 S232 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6Y7W6 GIGYF2 S1280 ochoa GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}.
Q6ZUT1 NKAPD1 S183 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZUT1 NKAPD1 S184 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZUT1 NKAPD1 S185 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZUT1 NKAPD1 S261 ochoa Uncharacterized protein NKAPD1 (NKAP domain containing protein 1) None
Q6ZW13 C16orf86 S172 ochoa Uncharacterized protein C16orf86 None
Q70Z53 FRA10AC1 S251 ochoa Protein FRA10AC1 May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:34694367}.
Q70Z53 FRA10AC1 S252 ochoa Protein FRA10AC1 May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:34694367}.
Q71F23 CENPU S141 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q71F23 CENPU S229 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q71F23 CENPU S232 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q71UM5 RPS27L S30 ochoa Ribosomal protein eS27-like (40S ribosomal protein S27-like) (Small ribosomal subunit protein eS27-like) None
Q71UM5 RPS27L Y31 ochoa Ribosomal protein eS27-like (40S ribosomal protein S27-like) (Small ribosomal subunit protein eS27-like) None
Q76M96 CCDC80 S503 ochoa Coiled-coil domain-containing protein 80 (Down-regulated by oncogenes protein 1) (Up-regulated in BRS-3 deficient mouse homolog) Promotes cell adhesion and matrix assembly. {ECO:0000250}.
Q7L4I2 RSRC2 S348 ochoa Arginine/serine-rich coiled-coil protein 2 None
Q7L804 RAB11FIP2 S184 ochoa Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}.
Q7L804 RAB11FIP2 S185 ochoa Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}.
Q7LBC6 KDM3B S289 ochoa Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}.
Q7RTP6 MICAL3 S685 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7RTP6 MICAL3 S1726 ochoa [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}.
Q7Z2W7 TRPM8 S1040 psp Transient receptor potential cation channel subfamily M member 8 (Long transient receptor potential channel 6) (LTrpC-6) (LTrpC6) (Transient receptor potential p8) (Trp-p8) Non-selective ion channel permeable to monovalent and divalent cations, including Na(+), K(+), and Ca(2+), with higher permeability for Ca(2+). Activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. Activated by cool temperatures (<23-28 degrees Celsius) and by chemical ligands evoking a sensation of coolness, such as menthol and icilin therefore plays a central role in the detection of environmental cold temperatures (PubMed:15306801, PubMed:15852009, PubMed:16174775, PubMed:25559186, PubMed:37857704). TRPM8 is a voltage-dependent channel; its activation by cold or chemical ligands shifts its voltage thresholds towards physiological membrane potentials, leading to the opening of the channel (PubMed:15306801). In addition to its critical role in temperature sensing, regulates basal tear secretion by sensing evaporation-induced cooling and changes in osmolality (By similarity). May plays a role in prostate cancer cell migration (PubMed:16174775, PubMed:25559186). {ECO:0000250|UniProtKB:Q8R4D5, ECO:0000269|PubMed:15306801, ECO:0000269|PubMed:15852009, ECO:0000269|PubMed:16174775, ECO:0000269|PubMed:25559186, ECO:0000269|PubMed:37857704}.; FUNCTION: [Isoform 2]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.; FUNCTION: [Isoform 3]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.
Q7Z2Z1 TICRR S1303 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q7Z3J3 RGPD4 S1614 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z4H7 HAUS6 S856 ochoa HAUS augmin-like complex subunit 6 Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q7Z4V5 HDGFL2 S395 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q7Z4V5 HDGFL2 S458 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q7Z5J4 RAI1 S1550 ochoa Retinoic acid-induced protein 1 Transcriptional regulator of the circadian clock components: CLOCK, BMAL1, BMAL2, PER1/3, CRY1/2, NR1D1/2 and RORA/C. Positively regulates the transcriptional activity of CLOCK a core component of the circadian clock. Regulates transcription through chromatin remodeling by interacting with other proteins in chromatin as well as proteins in the basic transcriptional machinery. May be important for embryonic and postnatal development. May be involved in neuronal differentiation. {ECO:0000269|PubMed:22578325}.
Q7Z6E9 RBBP6 S1226 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6E9 RBBP6 S1262 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6J0 SH3RF1 S315 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q7Z6J0 SH3RF1 S727 ochoa E3 ubiquitin-protein ligase SH3RF1 (EC 2.3.2.27) (Plenty of SH3s) (Protein POSH) (RING finger protein 142) (RING-type E3 ubiquitin transferase SH3RF1) (SH3 domain-containing RING finger protein 1) (SH3 multiple domains protein 2) Has E3 ubiquitin-protein ligase activity. In the absence of an external substrate, it can catalyze self-ubiquitination (PubMed:15659549, PubMed:20696164). Stimulates ubiquitination of potassium channel KCNJ1, enhancing it's dynamin-dependent and clathrin-independent endocytosis (PubMed:19710010). Acts as a scaffold protein that coordinates with MAPK8IP1/JIP1 in organizing different components of the JNK pathway, including RAC1 or RAC2, MAP3K11/MLK3 or MAP3K7/TAK1, MAP2K7/MKK7, MAPK8/JNK1 and/or MAPK9/JNK2 into a functional multiprotein complex to ensure the effective activation of the JNK signaling pathway. Regulates the differentiation of CD4(+) and CD8(+) T-cells and promotes T-helper 1 (Th1) cell differentiation. Regulates the activation of MAPK8/JNK1 and MAPK9/JNK2 in CD4(+) T-cells and the activation of MAPK8/JNK1 in CD8(+) T-cells. Plays a crucial role in the migration of neocortical neurons in the developing brain. Controls proper cortical neuronal migration and the formation of proximal cytoplasmic dilation in the leading process (PCDLP) in migratory neocortical neurons by regulating the proper localization of activated RAC1 and F-actin assembly (By similarity). {ECO:0000250|UniProtKB:Q69ZI1, ECO:0000269|PubMed:15659549, ECO:0000269|PubMed:19710010, ECO:0000269|PubMed:20696164}.; FUNCTION: (Microbial infection) Plays an essential role in the targeting of HIV-1 Gag to the plasma membrane, this function is dependent on it's RING domain, and hence it's E3 ligase activity. {ECO:0000269|PubMed:15659549}.
Q7Z739 YTHDF3 S558 ochoa YTH domain-containing family protein 3 (DF3) Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:28106072, PubMed:28106076, PubMed:28281539, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:28106072, PubMed:28281539, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT complex or PAN3 (PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:28106076, PubMed:32492408). Acts as a negative regulator of type I interferon response by down-regulating interferon-stimulated genes (ISGs) expression: acts by binding to FOXO3 mRNAs (By similarity). Binds to FOXO3 mRNAs independently of METTL3-mediated m6A modification (By similarity). Can also act as a regulator of mRNA stability in cooperation with YTHDF2 by binding to m6A-containing mRNA and promoting their degradation (PubMed:28106072). Recognizes and binds m6A-containing circular RNAs (circRNAs); circRNAs are generated through back-splicing of pre-mRNAs, a non-canonical splicing process promoted by dsRNA structures across circularizing exons (PubMed:28281539). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind N1-methyladenosine (m1A)-containing mRNAs: inhibits trophoblast invasion by binding to m1A-methylated transcripts of IGF1R, promoting their degradation (PubMed:32194978). {ECO:0000250|UniProtKB:Q8BYK6, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:28106076, ECO:0000269|PubMed:28281539, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:32194978, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: Has some antiviral activity against HIV-1 virus: incorporated into HIV-1 particles in a nucleocapsid-dependent manner and reduces viral infectivity in the next cycle of infection (PubMed:32053707). May interfere with this early step of the viral life cycle by binding to N6-methyladenosine (m6A) modified sites on the HIV-1 RNA genome (PubMed:32053707). {ECO:0000269|PubMed:32053707}.
Q86SJ2 AMIGO2 S443 ochoa Amphoterin-induced protein 2 (AMIGO-2) (Alivin-1) (Differentially expressed in gastric adenocarcinomas) (DEGA) Required for depolarization-dependent survival of cultured cerebellar granule neurons. May mediate homophilic as well as heterophilic cell-cell interaction with AMIGO1 or AMIGO3. May contribute to signal transduction through its intracellular domain. May be required for tumorigenesis of a subset of gastric adenocarcinomas.
Q86TC9 MYPN S198 ochoa Myopalladin (145 kDa sarcomeric protein) Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}.
Q86U86 PBRM1 S498 ochoa Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q86UE4 MTDH S179 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH S180 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH S457 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH T458 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UE4 MTDH T462 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86UP2 KTN1 S75 ochoa Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
Q86UP2 KTN1 S77 ochoa Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
Q86UP2 KTN1 S79 ochoa Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
Q8IUC4 RHPN2 S642 ochoa Rhophilin-2 (76 kDa RhoB effector protein) (GTP-Rho-binding protein 2) (p76RBE) Binds specifically to GTP-Rho. May function in a Rho pathway to limit stress fiber formation and/or increase the turnover of F-actin structures in the absence of high levels of RhoA activity. {ECO:0000269|PubMed:12221077}.
Q8IUI4 SNX29P2 S115 ochoa Putative protein SNX29P2 (RUN domain-containing protein 2C) (Sorting nexin 29 protein pseudogene 2) None
Q8IVF2 AHNAK2 S693 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S851 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S1181 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S1676 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S2006 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S2336 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S2661 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S2666 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S2996 ochoa Protein AHNAK2 None
Q8IVF2 AHNAK2 S3986 ochoa Protein AHNAK2 None
Q8IVM0 CCDC50 S143 ochoa Coiled-coil domain-containing protein 50 (Protein Ymer) Involved in EGFR signaling. {ECO:0000269|PubMed:15314609}.
Q8IWE5 PLEKHM2 S334 ochoa Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}.
Q8IXM2 BACC1 S146 ochoa BPTF-associated chromatin complex component 1 (BPTF-associated protein of 18 kDa) (Chromatin complexes subunit BAP18) Component of chromatin complexes such as the MLL1/MLL and NURF complexes.
Q8IYB3 SRRM1 S802 ochoa Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q8IZ21 PHACTR4 S557 ochoa Phosphatase and actin regulator 4 Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}.
Q8IZA0 KIAA0319L S978 ochoa Dyslexia-associated protein KIAA0319-like protein (Adeno-associated virus receptor) (AAVR) Possible role in axon guidance through interaction with RTN4R. {ECO:0000269|PubMed:20697954}.; FUNCTION: (Microbial infection) Acts as a receptor for adeno-associated virus and is involved in adeno-associated virus infection through endocytosis system. {ECO:0000269|PubMed:26814968}.
Q8IZD4 DCP1B S186 ochoa mRNA-decapping enzyme 1B (EC 3.6.1.62) May play a role in the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay. May remove the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (By similarity). {ECO:0000250|UniProtKB:Q9NPI6}.
Q8IZT6 ASPM S170 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8IZT6 ASPM S1090 ochoa Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}.
Q8N157 AHI1 S45 ochoa Jouberin (Abelson helper integration site 1 protein homolog) (AHI-1) Involved in vesicle trafficking and required for ciliogenesis, formation of primary non-motile cilium, and recruitment of RAB8A to the basal body of primary cilium. Component of the tectonic-like complex, a complex localized at the transition zone of primary cilia and acting as a barrier that prevents diffusion of transmembrane proteins between the cilia and plasma membranes. Involved in neuronal differentiation. As a positive modulator of classical Wnt signaling, may play a crucial role in ciliary signaling during cerebellum embryonic development (PubMed:21623382). {ECO:0000250|UniProtKB:Q8K3E5, ECO:0000269|PubMed:21623382}.
Q8N1G2 CMTR1 S29 ochoa Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}.
Q8N257 H2BC26 S37 ochoa Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8N257 H2BC26 S39 ochoa Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8N257 H2BC26 Y43 ochoa Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8N392 ARHGAP18 S263 ochoa Rho GTPase-activating protein 18 (MacGAP) (Rho-type GTPase-activating protein 18) Rho GTPase activating protein that suppresses F-actin polymerization by inhibiting Rho. Rho GTPase activating proteins act by converting Rho-type GTPases to an inactive GDP-bound state (PubMed:21865595). Plays a key role in tissue tension and 3D tissue shape by regulating cortical actomyosin network formation. Acts downstream of YAP1 and inhibits actin polymerization, which in turn reduces nuclear localization of YAP1 (PubMed:25778702). Regulates cell shape, spreading, and migration (PubMed:21865595). {ECO:0000269|PubMed:21865595, ECO:0000269|PubMed:25778702}.
Q8N488 RYBP S99 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N488 RYBP S101 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N488 RYBP S123 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N488 RYBP S127 ochoa RING1 and YY1-binding protein (Apoptin-associating protein 1) (APAP-1) (Death effector domain-associated factor) (DED-associated factor) (YY1 and E4TF1-associated factor 1) Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1-like complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). Component of a PRC1-like complex that mediates monoubiquitination of histone H2A 'Lys-119' on the X chromosome and is required for normal silencing of one copy of the X chromosome in XX females. May stimulate ubiquitination of histone H2A 'Lys-119' by recruiting the complex to target sites (By similarity). Inhibits ubiquitination and subsequent degradation of TP53, and thereby plays a role in regulating transcription of TP53 target genes (PubMed:19098711). May also regulate the ubiquitin-mediated proteasomal degradation of other proteins like FANK1 to regulate apoptosis (PubMed:14765135, PubMed:27060496). May be implicated in the regulation of the transcription as a repressor of the transcriptional activity of E4TF1 (PubMed:11953439). May bind to DNA (By similarity). May play a role in the repression of tumor growth and metastasis in breast cancer by down-regulating SRRM3 (PubMed:27748911). {ECO:0000250|UniProtKB:Q8CCI5, ECO:0000269|PubMed:11953439, ECO:0000269|PubMed:14765135, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:27060496, ECO:0000269|PubMed:27748911}.
Q8N556 AFAP1 S336 ochoa Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}.
Q8N5F7 NKAP S269 ochoa NF-kappa-B-activating protein Acts as a transcriptional repressor (PubMed:14550261, PubMed:19409814, PubMed:31587868). Plays a role as a transcriptional corepressor of the Notch-mediated signaling required for T-cell development (PubMed:19409814). Also involved in the TNF and IL-1 induced NF-kappa-B activation. Associates with chromatin at the Notch-regulated SKP2 promoter. {ECO:0000269|PubMed:14550261, ECO:0000269|PubMed:19409814, ECO:0000269|PubMed:31587868}.
Q8N884 CGAS S64 ochoa Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}.
Q8N9E0 FAM133A S149 ochoa Protein FAM133A None
Q8N9Q2 SREK1IP1 T100 ochoa Protein SREK1IP1 (SFRS12-interacting protein 1) (SREK1-interacting protein 1) (Splicing regulatory protein of 18 kDa) (p18SRP) Possible splicing regulator involved in the control of cellular survival.
Q8NB12 SMYD1 S298 ochoa Histone-lysine N-methyltransferase SMYD1 (EC 2.1.1.354) (SET and MYND domain-containing protein 1) Methylates histone H3 at 'Lys-4' (H3K4me), seems able to perform both mono-, di-, and trimethylation. Acts as a transcriptional repressor. Essential for cardiomyocyte differentiation and cardiac morphogenesis. {ECO:0000250|UniProtKB:P97443}.
Q8NCF5 NFATC2IP S198 ochoa NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}.
Q8NCF5 NFATC2IP S201 ochoa NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}.
Q8NE71 ABCF1 S20 ochoa ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}.
Q8NEC7 GSTCD S232 ochoa Glutathione S-transferase C-terminal domain-containing protein None
Q8NEY1 NAV1 S754 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8NEZ4 KMT2C S2828 ochoa Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}.
Q8NFC6 BOD1L1 S537 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFC6 BOD1L1 S538 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFC6 BOD1L1 S544 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NFC6 BOD1L1 S545 ochoa Biorientation of chromosomes in cell division protein 1-like 1 Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}.
Q8NG31 KNL1 S405 ochoa Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}.
Q8NHM5 KDM2B S474 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8NHM5 KDM2B S746 ochoa Lysine-specific demethylase 2B (EC 1.14.11.27) (CXXC-type zinc finger protein 2) (F-box and leucine-rich repeat protein 10) (F-box protein FBL10) (F-box/LRR-repeat protein 10) (JmjC domain-containing histone demethylation protein 1B) (Jumonji domain-containing EMSY-interactor methyltransferase motif protein) (Protein JEMMA) (Protein-containing CXXC domain 2) ([Histone-H3]-lysine-36 demethylase 1B) Histone demethylase that demethylates 'Lys-4' and 'Lys-36' of histone H3, thereby playing a central role in histone code (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially demethylates trimethylated H3 'Lys-4' and dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36' (PubMed:16362057, PubMed:17994099, PubMed:26237645). Preferentially binds the transcribed region of ribosomal RNA and represses the transcription of ribosomal RNA genes which inhibits cell growth and proliferation (PubMed:16362057, PubMed:17994099). May also serve as a substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex (Probable). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:17994099, ECO:0000269|PubMed:26237645, ECO:0000305}.
Q8NHQ9 DDX55 S544 ochoa ATP-dependent RNA helicase DDX55 (EC 3.6.4.13) (DEAD box protein 55) Probable ATP-binding RNA helicase. Has ATPase activity and is involved in the maturation of precursor large subunit rRNAs (PubMed:33048000). {ECO:0000269|PubMed:33048000}.
Q8NI27 THOC2 T1285 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8NI27 THOC2 S1390 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8NI27 THOC2 S1486 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TAQ2 SMARCC2 S283 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TAQ2 SMARCC2 S810 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TAV0 FAM76A S202 ochoa Protein FAM76A None
Q8TBF4 ZCRB1 S155 ochoa Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (U11/U12 small nuclear ribonucleoprotein 31 kDa protein) (U11/U12 snRNP 31 kDa protein) (U11/U12-31K) None
Q8TD26 CHD6 S21 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TD26 CHD6 S24 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TD26 CHD6 S2674 ochoa Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}.
Q8TDD1 DDX54 S788 ochoa ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}.
Q8TED9 AFAP1L1 S387 ochoa Actin filament-associated protein 1-like 1 (AFAP1-like protein 1) May be involved in podosome and invadosome formation. {ECO:0000269|PubMed:21333378}.
Q8TEQ0 SNX29 S268 ochoa Sorting nexin-29 (RUN domain-containing protein 2A) None
Q8TEQ6 GEMIN5 S757 ochoa Gem-associated protein 5 (Gemin5) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}.
Q8TEQ6 GEMIN5 S847 ochoa Gem-associated protein 5 (Gemin5) The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}.
Q8TF01 PNISR S672 ochoa Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) None
Q8TF01 PNISR S706 ochoa Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) None
Q8WVK2 SNRNP27 S132 ochoa U4/U6.U5 small nuclear ribonucleoprotein 27 kDa protein (U4/U6.U5 snRNP 27 kDa protein) (U4/U6.U5-27K) (Nucleic acid-binding protein RY-1) (U4/U6.U5 tri-snRNP-associated 27 kDa protein) (27K) (U4/U6.U5 tri-snRNP-associated protein 3) May play a role in mRNA splicing.
Q8WW12 PCNP S46 ochoa PEST proteolytic signal-containing nuclear protein (PCNP) (PEST-containing nuclear protein) May be involved in cell cycle regulation.
Q8WWQ0 PHIP S911 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q8WY36 BBX S485 ochoa HMG box transcription factor BBX (Bobby sox homolog) (HMG box-containing protein 2) Transcription factor that is necessary for cell cycle progression from G1 to S phase. {ECO:0000269|PubMed:11680820}.
Q8WYP5 AHCTF1 S2060 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q92541 RTF1 S58 ochoa RNA polymerase-associated protein RTF1 homolog Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}.
Q92541 RTF1 S652 ochoa RNA polymerase-associated protein RTF1 homolog Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}.
Q92545 TMEM131 S1649 ochoa Transmembrane protein 131 (Protein RW1) Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}.
Q92576 PHF3 S678 ochoa PHD finger protein 3 None
Q92599 SEPTIN8 S192 psp Septin-8 Filament-forming cytoskeletal GTPase (By similarity). May play a role in platelet secretion (PubMed:15116257). Seems to participate in the process of SNARE complex formation in synaptic vesicles (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:B0BNF1, ECO:0000269|PubMed:15116257}.; FUNCTION: [Isoform 4]: Stabilizes BACE1 protein levels and promotes the sorting and accumulation of BACE1 to the recycling or endosomal compartments, modulating the beta-amyloidogenic processing of APP. {ECO:0000269|PubMed:27084579}.
Q92614 MYO18A S35 ochoa Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}.
Q92785 DPF2 S200 ochoa Zinc finger protein ubi-d4 (Apoptosis response zinc finger protein) (BRG1-associated factor 45D) (BAF45D) (D4, zinc and double PHD fingers family 2) (Protein requiem) Plays an active role in transcriptional regulation by binding modified histones H3 and H4 (PubMed:27775714, PubMed:28533407). Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (PubMed:28533407). Might also have a role in the development and maturation of lymphoid cells (By similarity). Involved in the regulation of non-canonical NF-kappa-B pathway (PubMed:20460684). {ECO:0000250|UniProtKB:Q61103, ECO:0000269|PubMed:20460684, ECO:0000269|PubMed:27775714, ECO:0000269|PubMed:28533407}.
Q92793 CREBBP S1386 psp CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}.
Q92804 TAF15 S295 ochoa TATA-binding protein-associated factor 2N (68 kDa TATA-binding protein-associated factor) (TAF(II)68) (TAFII68) (RNA-binding protein 56) RNA and ssDNA-binding protein that may play specific roles during transcription initiation at distinct promoters. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Can enter the preinitiation complex together with the RNA polymerase II (Pol II). {ECO:0000269|PubMed:19124016, ECO:0000269|PubMed:21256132}.
Q92834 RPGR S961 ochoa X-linked retinitis pigmentosa GTPase regulator Acts as a guanine-nucleotide releasing factor (GEF) for RAB8A and RAB37 by promoting the conversion of inactive RAB-GDP to the active form RAB-GTP (PubMed:20631154). GEF activity towards RAB8A may facilitate ciliary trafficking by modulating ciliary intracellular localization of RAB8A (PubMed:20631154). GEF activity towards RAB37 maintains autophagic homeostasis and retinal function (By similarity). Involved in photoreceptor integrity (By similarity). May control cilia formation by regulating actin stress filaments and cell contractility. May be involved in microtubule organization and regulation of transport in primary cilia (PubMed:21933838). May play a critical role in spermatogenesis and in intraflagellar transport processes (By similarity). {ECO:0000250|UniProtKB:Q9R0X5, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:21933838}.
Q92997 DVL3 S61 psp Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}.
Q93079 H2BC9 S37 ochoa Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q93079 H2BC9 S39 ochoa Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q93079 H2BC9 Y43 ochoa Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q969E4 TCEAL3 S125 ochoa Transcription elongation factor A protein-like 3 (TCEA-like protein 3) (Transcription elongation factor S-II protein-like 3) May be involved in transcriptional regulation.
Q96AT1 KIAA1143 S116 ochoa Uncharacterized protein KIAA1143 None
Q96C24 SYTL4 S274 ochoa Synaptotagmin-like protein 4 (Exophilin-2) (Granuphilin) Modulates exocytosis of dense-core granules and secretion of hormones in the pancreas and the pituitary. Interacts with vesicles containing negatively charged phospholipids in a Ca(2+)-independent manner (By similarity). {ECO:0000250}.
Q96C57 CUSTOS S202 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96C57 CUSTOS T210 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96C57 CUSTOS S214 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96EB1 ELP4 S154 ochoa Elongator complex protein 4 (hELP4) (PAX6 neighbor gene protein) Component of the elongator complex which is required for multiple tRNA modifications, including mcm5U (5-methoxycarbonylmethyl uridine), mcm5s2U (5-methoxycarbonylmethyl-2-thiouridine), and ncm5U (5-carbamoylmethyl uridine) (PubMed:29332244). The elongator complex catalyzes the formation of carboxymethyluridine in the wobble base at position 34 in tRNAs (PubMed:29332244). {ECO:0000303|PubMed:29332244}.
Q96GQ7 DDX27 S651 ochoa Probable ATP-dependent RNA helicase DDX27 (EC 3.6.4.13) (DEAD box protein 27) Probable ATP-dependent RNA helicase. Component of the nucleolar ribosomal RNA (rRNA) processing machinery that regulates 3' end formation of ribosomal 47S rRNA (PubMed:25825154). {ECO:0000269|PubMed:25825154}.
Q96HH4 TMEM169 S57 ochoa Transmembrane protein 169 None
Q96JM3 CHAMP1 S632 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JM3 CHAMP1 S633 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JM3 CHAMP1 S634 ochoa Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}.
Q96JS3 PGBD1 S358 ochoa PiggyBac transposable element-derived protein 1 (Cerebral protein 4) None
Q96JS3 PGBD1 S360 ochoa PiggyBac transposable element-derived protein 1 (Cerebral protein 4) None
Q96K76 USP47 S1017 ochoa Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}.
Q96NA2 RILP S314 ochoa Rab-interacting lysosomal protein Rab effector playing a role in late endocytic transport to degradative compartments (PubMed:11179213, PubMed:11696325, PubMed:12944476, PubMed:14668488, PubMed:27113757). Involved in the regulation of lysosomal morphology and distribution (PubMed:14668488, PubMed:27113757). Induces recruitment of dynein-dynactin motor complexes to Rab7A-containing late endosome and lysosome compartments (PubMed:11179213, PubMed:11696325). Promotes centripetal migration of phagosomes and the fusion of phagosomes with the late endosomes and lysosomes (PubMed:12944476). {ECO:0000269|PubMed:11179213, ECO:0000269|PubMed:11696325, ECO:0000269|PubMed:12944476, ECO:0000269|PubMed:14668488, ECO:0000269|PubMed:27113757}.
Q96NL8 CFAP418 S96 ochoa Cilia- and flagella-associated protein 418 May be involved in photoreceptor outer segment disk morphogenesis (By similarity). {ECO:0000250|UniProtKB:Q3UJP5}.
Q96PU4 UHRF2 S667 ochoa E3 ubiquitin-protein ligase UHRF2 (EC 2.3.2.27) (Np95/ICBP90-like RING finger protein) (Np95-like RING finger protein) (Nuclear protein 97) (Nuclear zinc finger protein Np97) (RING finger protein 107) (RING-type E3 ubiquitin transferase UHRF2) (Ubiquitin-like PHD and RING finger domain-containing protein 2) (Ubiquitin-like-containing PHD and RING finger domains protein 2) E3 ubiquitin ligase that plays important roles in DNA methylation, histone modifications, cell cycle and DNA repair (PubMed:15178429, PubMed:23404503, PubMed:27743347, PubMed:29506131). Acts as a specific reader for 5-hydroxymethylcytosine (5hmC) and thereby recruits various substrates to these sites to ubiquitinate them (PubMed:24813944, PubMed:27129234). This activity also allows the maintenance of 5mC levels at specific genomic loci and regulates neuron-related gene expression (By similarity). Participates in cell cycle regulation by ubiquitinating cyclins CCND1 and CCNE1 and thereby inducing G1 arrest (PubMed:15178429, PubMed:15361834, PubMed:21952639). Also ubiquitinates PCNP leading to its degradation by the proteasome (PubMed:12176013, PubMed:14741369). Plays an active role in DNA damage repair by ubiquitinating p21/CDKN1A leading to its proteasomal degradation (PubMed:29923055). Also promotes DNA repair by acting as an interstrand cross-links (ICLs) sensor. Mechanistically, cooperates with UHRF1 to ensure recruitment of FANCD2 to ICLs, leading to FANCD2 monoubiquitination and subsequent activation (PubMed:30335751). Contributes to UV-induced DNA damage response by physically interacting with ATR in response to irradiation, thereby promoting ATR activation (PubMed:33848395). {ECO:0000250|UniProtKB:Q7TMI3, ECO:0000269|PubMed:12176013, ECO:0000269|PubMed:14741369, ECO:0000269|PubMed:15178429, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:21952639, ECO:0000269|PubMed:23404503, ECO:0000269|PubMed:24813944, ECO:0000269|PubMed:27129234, ECO:0000269|PubMed:27743347, ECO:0000269|PubMed:29506131, ECO:0000269|PubMed:29923055, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:33848395}.
Q96Q45 TMEM237 S49 ochoa Transmembrane protein 237 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 4 protein) Component of the transition zone in primary cilia. Required for ciliogenesis. {ECO:0000269|PubMed:22152675}.
Q96Q89 KIF20B S1740 ochoa Kinesin-like protein KIF20B (Cancer/testis antigen 90) (CT90) (Kinesin family member 20B) (Kinesin-related motor interacting with PIN1) (M-phase phosphoprotein 1) (MPP1) Plus-end-directed motor enzyme that is required for completion of cytokinesis (PubMed:11470801, PubMed:12740395). Required for proper midbody organization and abscission in polarized cortical stem cells. Plays a role in the regulation of neuronal polarization by mediating the transport of specific cargos. Participates in the mobilization of SHTN1 and in the accumulation of PIP3 in the growth cone of primary hippocampal neurons in a tubulin and actin-dependent manner. In the developing telencephalon, cooperates with SHTN1 to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in cerebral cortex growth (By similarity). Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000250|UniProtKB:Q80WE4, ECO:0000269|PubMed:11470801, ECO:0000269|PubMed:12740395, ECO:0000269|PubMed:17409436}.
Q96QC0 PPP1R10 S320 ochoa Serine/threonine-protein phosphatase 1 regulatory subunit 10 (MHC class I region proline-rich protein CAT53) (PP1-binding protein of 114 kDa) (Phosphatase 1 nuclear targeting subunit) (p99) Substrate-recognition component of the PNUTS-PP1 protein phosphatase complex, a protein phosphatase 1 (PP1) complex that promotes RNA polymerase II transcription pause-release, allowing transcription elongation (PubMed:39603239, PubMed:39603240). Promoter-proximal pausing by RNA polymerase II is a transcription halt following transcription initiation but prior to elongation, which acts as a checkpoint to control that transcripts are favorably configured for transcriptional elongation (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex mediates the release of RNA polymerase II from promoter-proximal region of genes by catalyzing dephosphorylation of proteins involved in transcription, such as AFF4, CDK9, MEPCE, INTS12, NCBP1, POLR2M/GDOWN1 and SUPT6H (PubMed:39603239, PubMed:39603240). The PNUTS-PP1 complex also regulates RNA polymerase II transcription termination by mediating dephosphorylation of SUPT5H in termination zones downstream of poly(A) sites, thereby promoting deceleration of RNA polymerase II transcription (PubMed:31677974). PNUTS-PP1 complex is also involved in the response to replication stress by mediating dephosphorylation of POLR2A at 'Ser-5' of the CTD, promoting RNA polymerase II degradation (PubMed:33264625). The PNUTS-PP1 complex also plays a role in the control of chromatin structure and cell cycle progression during the transition from mitosis into interphase (By similarity). PNUTS-PP1 complex mediates dephosphorylation of MYC, promoting MYC stability by preventing MYC ubiquitination by the SCF(FBXW7) complex (PubMed:30158517). In addition to acts as a substrate-recognition component, PPP1R10/PNUTS also acts as a nuclear targeting subunit for the PNUTS-PP1 complex (PubMed:9450550). In some context, PPP1R10/PNUTS also acts as an inhibitor of protein phosphatase 1 (PP1) activity by preventing access to substrates, such as RB (PubMed:18360108). {ECO:0000250|UniProtKB:Q80W00, ECO:0000269|PubMed:18360108, ECO:0000269|PubMed:30158517, ECO:0000269|PubMed:31677974, ECO:0000269|PubMed:33264625, ECO:0000269|PubMed:39603239, ECO:0000269|PubMed:39603240, ECO:0000269|PubMed:9450550}.
Q96QE3 ATAD5 S217 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96QE3 ATAD5 S219 ochoa ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}.
Q96SB4 SRPK1 S33 psp SRSF protein kinase 1 (EC 2.7.11.1) (SFRS protein kinase 1) (Serine/arginine-rich protein-specific kinase 1) (SR-protein-specific kinase 1) Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activities, such as chromatin reorganization in somatic and sperm cells and cell cycle progression. Isoform 2 phosphorylates SFRS2, ZRSR2, LBR and PRM1. Isoform 2 phosphorylates SRSF1 using a directional (C-terminal to N-terminal) and a dual-track mechanism incorporating both processive phosphorylation (in which the kinase stays attached to the substrate after each round of phosphorylation) and distributive phosphorylation steps (in which the kinase and substrate dissociate after each phosphorylation event). The RS domain of SRSF1 binds first to a docking groove in the large lobe of the kinase domain of SRPK1. This induces certain structural changes in SRPK1 and/or RRM2 domain of SRSF1, allowing RRM2 to bind the kinase and initiate phosphorylation. The cycles continue for several phosphorylation steps in a processive manner (steps 1-8) until the last few phosphorylation steps (approximately steps 9-12). During that time, a mechanical stress induces the unfolding of the beta-4 motif in RRM2, which then docks at the docking groove of SRPK1. This also signals RRM2 to begin to dissociate, which facilitates SRSF1 dissociation after phosphorylation is completed. Isoform 2 can mediate hepatitis B virus (HBV) core protein phosphorylation. It plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles. Isoform 1 and isoform 2 can induce splicing of exon 10 in MAPT/TAU. The ratio of isoform 1/isoform 2 plays a decisive role in determining cell fate in K-562 leukaemic cell line: isoform 2 favors proliferation where as isoform 1 favors differentiation. {ECO:0000269|PubMed:10049757, ECO:0000269|PubMed:10390541, ECO:0000269|PubMed:11509566, ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:14555757, ECO:0000269|PubMed:15034300, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:16209947, ECO:0000269|PubMed:18155240, ECO:0000269|PubMed:18687337, ECO:0000269|PubMed:19240134, ECO:0000269|PubMed:19477182, ECO:0000269|PubMed:19886675, ECO:0000269|PubMed:20708644, ECO:0000269|PubMed:8208298, ECO:0000269|PubMed:9237760}.
Q96SN8 CDK5RAP2 S841 ochoa CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}.
Q96ST2 IWS1 S407 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96ST2 IWS1 S422 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96T23 RSF1 S604 ochoa Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}.
Q96T58 SPEN S836 ochoa Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}.
Q99442 SEC62 S117 ochoa Translocation protein SEC62 (Translocation protein 1) (TP-1) (hTP-1) Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. {ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q99442 SEC62 T155 ochoa Translocation protein SEC62 (Translocation protein 1) (TP-1) (hTP-1) Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. {ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q99543 DNAJC2 S541 ochoa DnaJ homolog subfamily C member 2 (M-phase phosphoprotein 11) (Zuotin-related factor 1) [Cleaved into: DnaJ homolog subfamily C member 2, N-terminally processed] Acts both as a chaperone in the cytosol and as a chromatin regulator in the nucleus. When cytosolic, acts as a molecular chaperone: component of the ribosome-associated complex (RAC), a complex involved in folding or maintaining nascent polypeptides in a folding-competent state. In the RAC complex, stimulates the ATPase activity of the ribosome-associated pool of Hsp70-type chaperones HSPA14 that bind to the nascent polypeptide chain. When nuclear, mediates the switching from polycomb-repressed genes to an active state: specifically recruited at histone H2A ubiquitinated at 'Lys-119' (H2AK119ub), and promotes the displacement of the polycomb PRC1 complex from chromatin, thereby facilitating transcription activation. {ECO:0000269|PubMed:15802566, ECO:0000269|PubMed:16002468, ECO:0000269|PubMed:21179169}.
Q99549 MPHOSPH8 S164 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S182 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S188 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S189 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99549 MPHOSPH8 S266 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99570 PIK3R4 S861 ochoa Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}.
Q99575 POP1 S24 ochoa Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q99590 SCAF11 S401 ochoa Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}.
Q99590 SCAF11 S1012 ochoa Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}.
Q99607 ELF4 S186 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q99607 ELF4 T187 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q99607 ELF4 S188 ochoa ETS-related transcription factor Elf-4 (E74-like factor 4) (Myeloid Elf-1-like factor) Transcriptional activator that binds to DNA sequences containing the consensus 5'-WGGA-3'. Transactivates promoters of the hematopoietic growth factor genes CSF2, IL3, IL8, and of the bovine lysozyme gene. Acts synergistically with RUNX1 to transactivate the IL3 promoter (By similarity). Transactivates the PRF1 promoter in natural killer (NK) cells and CD8+ T cells (PubMed:34326534). Plays a role in the development and function of NK and NK T-cells and in innate immunity. Controls the proliferation and homing of CD8+ T-cells via the Kruppel-like factors KLF4 and KLF2 (By similarity). Controls cell senescence in a p53-dependent manner. Can also promote cellular transformation through inhibition of the p16 pathway. Is a transcriptional regulator of inflammation, controlling T-helper 17 (Th17) cells and macrophage inflammatory responses. Required for sustained transcription of anti-inflammatory genes, including IL1RN (PubMed:34326534, PubMed:35266071). Is a negative regulator of pro-inflammatory cytokines expression including IL17A, IL1B, IL6, TNFA and CXCL1 (PubMed:34326534, PubMed:35266071). Down-regulates expression of TREM1, a cell surface receptor involved in the amplification of inflammatory responses (By similarity) (PubMed:34326534, PubMed:35266071). {ECO:0000250, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:14625302, ECO:0000269|PubMed:14976184, ECO:0000269|PubMed:19380490, ECO:0000269|PubMed:34326534, ECO:0000269|PubMed:35266071, ECO:0000269|PubMed:8895518, ECO:0000269|PubMed:9524226}.
Q99666 RGPD5 S1613 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99683 MAP3K5 S958 ochoa Mitogen-activated protein kinase kinase kinase 5 (EC 2.7.11.25) (Apoptosis signal-regulating kinase 1) (ASK-1) (MAPK/ERK kinase kinase 5) (MEK kinase 5) (MEKK 5) Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. Plays an important role in the cascades of cellular responses evoked by changes in the environment. Mediates signaling for determination of cell fate such as differentiation and survival. Plays a crucial role in the apoptosis signal transduction pathway through mitochondria-dependent caspase activation. MAP3K5/ASK1 is required for the innate immune response, which is essential for host defense against a wide range of pathogens. Mediates signal transduction of various stressors like oxidative stress as well as by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF) or lipopolysaccharide (LPS). Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade and the p38 MAPK signal transduction cascade through the phosphorylation and activation of several MAP kinase kinases like MAP2K4/SEK1, MAP2K3/MKK3, MAP2K6/MKK6 and MAP2K7/MKK7. These MAP2Ks in turn activate p38 MAPKs and c-jun N-terminal kinases (JNKs). Both p38 MAPK and JNKs control the transcription factors activator protein-1 (AP-1). {ECO:0000269|PubMed:10411906, ECO:0000269|PubMed:10688666, ECO:0000269|PubMed:10849426, ECO:0000269|PubMed:11029458, ECO:0000269|PubMed:11154276, ECO:0000269|PubMed:11689443, ECO:0000269|PubMed:11920685, ECO:0000269|PubMed:14688258, ECO:0000269|PubMed:14749717, ECO:0000269|PubMed:15023544, ECO:0000269|PubMed:16129676, ECO:0000269|PubMed:17220297, ECO:0000269|PubMed:23102700, ECO:0000269|PubMed:26095851, ECO:0000269|PubMed:8940179, ECO:0000269|PubMed:8974401, ECO:0000269|PubMed:9564042, ECO:0000269|PubMed:9774977}.
Q99698 LYST S1509 ochoa Lysosomal-trafficking regulator (Beige homolog) Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}.
Q99698 LYST S1510 ochoa Lysosomal-trafficking regulator (Beige homolog) Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}.
Q99708 RBBP8 S723 psp DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}.
Q99714 HSD17B10 S67 ochoa 3-hydroxyacyl-CoA dehydrogenase type-2 (EC 1.1.1.35) (17-beta-estradiol 17-dehydrogenase) (EC 1.1.1.62) (2-methyl-3-hydroxybutyryl-CoA dehydrogenase) (MHBD) (3-alpha-(17-beta)-hydroxysteroid dehydrogenase (NAD(+))) (EC 1.1.1.239) (3-hydroxy-2-methylbutyryl-CoA dehydrogenase) (EC 1.1.1.178) (3-hydroxyacyl-CoA dehydrogenase type II) (3alpha(or 20beta)-hydroxysteroid dehydrogenase) (EC 1.1.1.53) (7-alpha-hydroxysteroid dehydrogenase) (EC 1.1.1.159) (Endoplasmic reticulum-associated amyloid beta-peptide-binding protein) (Mitochondrial ribonuclease P protein 2) (Mitochondrial RNase P protein 2) (Short chain dehydrogenase/reductase family 5C member 1) (Short-chain type dehydrogenase/reductase XH98G2) (Type II HADH) Mitochondrial dehydrogenase involved in pathways of fatty acid, branched-chain amino acid and steroid metabolism (PubMed:10600649, PubMed:12917011, PubMed:18996107, PubMed:19706438, PubMed:20077426, PubMed:25925575, PubMed:26950678, PubMed:28888424, PubMed:9553139). Acts as (S)-3-hydroxyacyl-CoA dehydrogenase in mitochondrial fatty acid beta-oxidation, a major degradation pathway of fatty acids. Catalyzes the third step in the beta-oxidation cycle, namely the reversible conversion of (S)-3-hydroxyacyl-CoA to 3-ketoacyl-CoA. Preferentially accepts straight medium- and short-chain acyl-CoA substrates with highest efficiency for (3S)-hydroxybutanoyl-CoA (PubMed:10600649, PubMed:12917011, PubMed:25925575, PubMed:26950678, PubMed:9553139). Acts as 3-hydroxy-2-methylbutyryl-CoA dehydrogenase in branched-chain amino acid catabolic pathway. Catalyzes the oxidation of 3-hydroxy-2-methylbutanoyl-CoA into 2-methyl-3-oxobutanoyl-CoA, a step in isoleucine degradation pathway (PubMed:18996107, PubMed:19706438, PubMed:20077426). Has hydroxysteroid dehydrogenase activity toward steroid hormones and bile acids. Catalyzes the oxidation of 3alpha-, 17beta-, 20beta- and 21-hydroxysteroids and 7alpha- and 7beta-hydroxy bile acids (PubMed:10600649, PubMed:12917011). Oxidizes allopregnanolone/brexanolone at the 3alpha-hydroxyl group, which is known to be critical for the activation of gamma-aminobutyric acid receptors (GABAARs) chloride channel (PubMed:19706438, PubMed:28888424). Has phospholipase C-like activity toward cardiolipin and its oxidized species. Likely oxidizes the 2'-hydroxyl in the head group of cardiolipin to form a ketone intermediate that undergoes nucleophilic attack by water and fragments into diacylglycerol, dihydroxyacetone and orthophosphate. Has higher affinity for cardiolipin with oxidized fatty acids and may degrade these species during the oxidative stress response to protect cells from apoptosis (PubMed:26338420). By interacting with intracellular amyloid-beta, it may contribute to the neuronal dysfunction associated with Alzheimer disease (AD) (PubMed:9338779). Essential for structural and functional integrity of mitochondria (PubMed:20077426). {ECO:0000269|PubMed:10600649, ECO:0000269|PubMed:12917011, ECO:0000269|PubMed:18996107, ECO:0000269|PubMed:19706438, ECO:0000269|PubMed:20077426, ECO:0000269|PubMed:25925575, ECO:0000269|PubMed:26338420, ECO:0000269|PubMed:26950678, ECO:0000269|PubMed:28888424, ECO:0000269|PubMed:9553139}.; FUNCTION: In addition to mitochondrial dehydrogenase activity, moonlights as a component of mitochondrial ribonuclease P, a complex that cleaves tRNA molecules in their 5'-ends (PubMed:18984158, PubMed:24549042, PubMed:25925575, PubMed:26950678, PubMed:28888424). Together with TRMT10C/MRPP1, forms a subcomplex of the mitochondrial ribonuclease P, named MRPP1-MRPP2 subcomplex, which displays functions that are independent of the ribonuclease P activity (PubMed:23042678, PubMed:29040705). The MRPP1-MRPP2 subcomplex catalyzes the formation of N(1)-methylguanine and N(1)-methyladenine at position 9 (m1G9 and m1A9, respectively) in tRNAs; HSD17B10/MRPP2 acting as a non-catalytic subunit (PubMed:23042678, PubMed:25925575, PubMed:28888424). The MRPP1-MRPP2 subcomplex also acts as a tRNA maturation platform: following 5'-end cleavage by the mitochondrial ribonuclease P complex, the MRPP1-MRPP2 subcomplex enhances the efficiency of 3'-processing catalyzed by ELAC2, retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA tRNA nucleotidyltransferase TRNT1 enzyme (PubMed:29040705). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly. {ECO:0000269|PubMed:18984158, ECO:0000269|PubMed:23042678, ECO:0000269|PubMed:24549042, ECO:0000269|PubMed:24703694, ECO:0000269|PubMed:25925575, ECO:0000269|PubMed:26950678, ECO:0000269|PubMed:28888424, ECO:0000269|PubMed:29040705}.
Q99717 SMAD5 S58 ochoa Mothers against decapentaplegic homolog 5 (MAD homolog 5) (Mothers against DPP homolog 5) (JV5-1) (SMAD family member 5) (SMAD 5) (Smad5) (hSmad5) Transcriptional regulator that plays a role in various cellular processes including embryonic development, cell differentiation, angiogenesis and tissue homeostasis (PubMed:12064918, PubMed:16516194). Upon BMP ligand binding to their receptors at the cell surface, is phosphorylated by activated type I BMP receptors (BMPRIs) and associates with SMAD4 to form a heteromeric complex which translocates into the nucleus acting as transcription factor (PubMed:9442019). In turn, the hetero-trimeric complex recognizes cis-regulatory elements containing Smad Binding Elements (SBEs) to modulate the outcome of the signaling network (PubMed:33510867). Non-phosphorylated SMAD5 has a cytoplasmic role in energy metabolism regulation by promoting mitochondrial respiration and glycolysis in response to cytoplasmic pH changes (PubMed:28675158). Mechanistically, interacts with hexokinase 1/HK1 and thereby accelerates glycolysis (PubMed:28675158). {ECO:0000269|PubMed:12064918, ECO:0000269|PubMed:16516194, ECO:0000269|PubMed:28675158, ECO:0000269|PubMed:33510867, ECO:0000269|PubMed:9442019}.
Q99848 EBNA1BP2 S269 ochoa Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) Required for the processing of the 27S pre-rRNA. {ECO:0000250}.
Q99848 EBNA1BP2 S270 ochoa Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) Required for the processing of the 27S pre-rRNA. {ECO:0000250}.
Q99877 H2BC15 S37 ochoa Histone H2B type 1-N (Histone H2B.d) (H2B/d) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99877 H2BC15 S39 ochoa Histone H2B type 1-N (Histone H2B.d) (H2B/d) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99877 H2BC15 Y43 ochoa Histone H2B type 1-N (Histone H2B.d) (H2B/d) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99879 H2BC14 S37 ochoa Histone H2B type 1-M (Histone H2B.e) (H2B/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99879 H2BC14 S39 ochoa Histone H2B type 1-M (Histone H2B.e) (H2B/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99879 H2BC14 Y43 ochoa Histone H2B type 1-M (Histone H2B.e) (H2B/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99880 H2BC13 S37 ochoa Histone H2B type 1-L (Histone H2B.c) (H2B/c) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99880 H2BC13 S39 ochoa Histone H2B type 1-L (Histone H2B.c) (H2B/c) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99880 H2BC13 Y43 ochoa Histone H2B type 1-L (Histone H2B.c) (H2B/c) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q9BQ39 DDX50 S82 ochoa ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}.
Q9BQ70 TCF25 S143 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BQG0 MYBBP1A S1163 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BQG0 MYBBP1A S1166 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BQG0 MYBBP1A S1186 ochoa Myb-binding protein 1A May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}.
Q9BRD0 BUD13 S567 ochoa BUD13 homolog Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9BRU9 UTP23 S206 ochoa rRNA-processing protein UTP23 homolog Involved in rRNA-processing and ribosome biogenesis. {ECO:0000250}.
Q9BRZ2 TRIM56 S475 ochoa E3 ubiquitin-protein ligase TRIM56 (EC 2.3.2.27) (RING finger protein 109) (Tripartite motif-containing protein 56) E3 ubiquitin-protein ligase that plays a key role in innate antiviral immunity by mediating ubiquitination of CGAS and STING1 (PubMed:21289118, PubMed:29426904). In response to pathogen- and host-derived double-stranded DNA (dsDNA), targets STING1 to 'Lys-63'-linked ubiquitination, thereby promoting its homodimerization, a step required for the production of type I interferon IFN-beta (By similarity). Also mediate monoubiquitination of CGAS, thereby promoting CGAS oligomerization and subsequent activation (PubMed:29426904). Promotes also TNFalpha-induced NF-kappa-B signaling by mediating 'Lys-63'-linked ubiquitination TAK1, leading to enhanced interaction between TAK1 and CHUK/IKKalpha (PubMed:35952808). Independently of its E3 ubiquitin ligase activity, positive regulator of TLR3 signaling. Potentiates extracellular double stranded RNA (dsRNA)-induced expression of IFNB1 and interferon-stimulated genes ISG15, IFIT1/ISG56, CXCL10, OASL and CCL5/RANTES (PubMed:22948160). Promotes establishment of an antiviral state by TLR3 ligand and TLR3-mediated chemokine induction following infection by hepatitis C virus (PubMed:22948160). Acts as a restriction factor of Zika virus through direct interaction with the viral RNA via its C-terminal region (PubMed:31251739). {ECO:0000250|UniProtKB:Q80VI1, ECO:0000269|PubMed:21289118, ECO:0000269|PubMed:22948160, ECO:0000269|PubMed:29426904, ECO:0000269|PubMed:31251739, ECO:0000269|PubMed:35952808}.
Q9BT25 HAUS8 S129 psp HAUS augmin-like complex subunit 8 (HEC1/NDC80-interacting centrosome-associated protein 1) (Sarcoma antigen NY-SAR-48) Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. {ECO:0000269|PubMed:18362163, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}.
Q9BTC0 DIDO1 S885 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTC0 DIDO1 S890 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BTC0 DIDO1 S898 ochoa Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}.
Q9BU76 MMTAG2 T215 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BU76 MMTAG2 S216 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BU76 MMTAG2 S217 ochoa Multiple myeloma tumor-associated protein 2 (hMMTAG2) None
Q9BV44 THUMPD3 S154 ochoa tRNA (guanine(6)-N(2))-methyltransferase THUMP3 (EC 2.1.1.256) (THUMP domain-containing protein 3) (tRNA(Trp) (guanine(7)-N(2))-methyltransferase THUMP3) (EC 2.1.1.-) Catalytic subunit of the THUMPD3-TRM112 methyltransferase complex, that specifically mediates the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 6 (m2G6) in tRNAs (PubMed:34669960, PubMed:37283053). This is one of the major tRNA (guanine-N(2))-methyltransferases (PubMed:37283053). Also catalyzes the S-adenosyl-L-methionine-dependent N(2)-methylation of guanosine nucleotide at position 7 of tRNA(Trp) (PubMed:34669960). {ECO:0000269|PubMed:34669960, ECO:0000269|PubMed:37283053}.
Q9BVI0 PHF20 S225 ochoa PHD finger protein 20 (Glioma-expressed antigen 2) (Hepatocellular carcinoma-associated antigen 58) (Novel zinc finger protein) (Transcription factor TZP) Methyllysine-binding protein, component of the MOF histone acetyltransferase protein complex. Not required for maintaining the global histone H4 'Lys-16' acetylation (H4K16ac) levels or locus specific histone acetylation, but instead works downstream in transcriptional regulation of MOF target genes (By similarity). As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. Contributes to methyllysine-dependent p53/TP53 stabilization and up-regulation after DNA damage. {ECO:0000250, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22864287}.
Q9BVJ6 UTP14A T567 ochoa U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) May be required for ribosome biogenesis. {ECO:0000250}.
Q9BW30 TPPP3 S158 ochoa Tubulin polymerization-promoting protein family member 3 (TPPP/p20) Regulator of microtubule dynamic that has microtubule bundling activity (PubMed:17105200, PubMed:19633818). Required for embryo implantation; possibly by regulating beta-catenin (By similarity). Also required for decidualization via regulation of beta-catenin (PubMed:30667362). {ECO:0000250|UniProtKB:Q9CRB6, ECO:0000269|PubMed:17105200, ECO:0000269|PubMed:19633818, ECO:0000269|PubMed:30667362}.
Q9BWH2 FUNDC2 S151 ochoa FUN14 domain-containing protein 2 (Cervical cancer proto-oncogene 3 protein) (HCC-3) (Hepatitis C virus core-binding protein 6) Binds directly and specifically 1,2-Diacyl-sn-glycero-3-phospho-(1'-myo-inositol-3',4',5'-bisphosphate) (PIP3) leading to the recruitment of PIP3 to mitochondria and may play a role in the regulation of the platelet activation via AKT/GSK3B/cGMP signaling pathways (PubMed:29786068). May act as transcription factor that regulates SREBP1 (isoform SREBP-1C) expression in order to modulate triglyceride (TG) homeostasis in hepatocytes (PubMed:25855506, PubMed:29187281). {ECO:0000269|PubMed:25855506, ECO:0000269|PubMed:29187281, ECO:0000269|PubMed:29786068}.
Q9BWU0 SLC4A1AP S709 ochoa Kanadaptin (Human lung cancer oncogene 3 protein) (HLC-3) (Kidney anion exchanger adapter protein) (Solute carrier family 4 anion exchanger member 1 adapter protein) None
Q9BXI3 NT5C1A S57 ochoa Cytosolic 5'-nucleotidase 1A (cN1A) (EC 3.1.3.5) (EC 3.1.3.89) (EC 3.1.3.99) (5'-deoxynucleotidase) (Cytosolic 5'-nucleotidase IA) (cN-I) (cN-IA) Catalyzes the hydrolysis of ribonucleotide and deoxyribonucleotide monophosphates, releasing inorganic phosphate and the corresponding nucleoside (PubMed:11133996, PubMed:34814800, PubMed:7599155, PubMed:8967393). AMP is the major substrate but can also hydrolyze dCMP and IMP (PubMed:11133996, PubMed:34814800, PubMed:7599155, PubMed:8967393). {ECO:0000269|PubMed:11133996, ECO:0000269|PubMed:34814800, ECO:0000269|PubMed:7599155, ECO:0000269|PubMed:8967393}.
Q9BXW9 FANCD2 S881 ochoa Fanconi anemia group D2 protein (Protein FACD2) Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}.
Q9BXW9 FANCD2 S882 psp Fanconi anemia group D2 protein (Protein FACD2) Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}.
Q9BY42 RTF2 S214 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BY89 KIAA1671 S1387 ochoa Uncharacterized protein KIAA1671 None
Q9BYF1 ACE2 S783 psp Angiotensin-converting enzyme 2 (EC 3.4.17.23) (Angiotensin-converting enzyme homolog) (ACEH) (Angiotensin-converting enzyme-related carboxypeptidase) (ACE-related carboxypeptidase) (EC 3.4.17.-) (Metalloprotease MPROT15) [Cleaved into: Processed angiotensin-converting enzyme 2] Essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis (PubMed:27217402). Converts angiotensin I to angiotensin 1-9, a nine-amino acid peptide with anti-hypertrophic effects in cardiomyocytes, and angiotensin II to angiotensin 1-7, which then acts as a beneficial vasodilator and anti-proliferation agent, counterbalancing the actions of the vasoconstrictor angiotensin II (PubMed:10924499, PubMed:10969042, PubMed:11815627, PubMed:14504186, PubMed:19021774). Also removes the C-terminal residue from three other vasoactive peptides, neurotensin, kinetensin, and des-Arg bradykinin, but is not active on bradykinin (PubMed:10969042, PubMed:11815627). Also cleaves other biological peptides, such as apelins (apelin-13, [Pyr1]apelin-13, apelin-17, apelin-36), casomorphins (beta-casomorphin-7, neocasomorphin) and dynorphin A with high efficiency (PubMed:11815627, PubMed:27217402, PubMed:28293165). In addition, ACE2 C-terminus is homologous to collectrin and is responsible for the trafficking of the neutral amino acid transporter SL6A19 to the plasma membrane of gut epithelial cells via direct interaction, regulating its expression on the cell surface and its catalytic activity (PubMed:18424768, PubMed:19185582). {ECO:0000269|PubMed:10924499, ECO:0000269|PubMed:10969042, ECO:0000269|PubMed:11815627, ECO:0000269|PubMed:14504186, ECO:0000269|PubMed:18424768, ECO:0000269|PubMed:19021774, ECO:0000269|PubMed:19185582, ECO:0000269|PubMed:27217402}.; FUNCTION: (Microbial infection) Acts as a receptor for human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63. {ECO:0000269|PubMed:14647384, ECO:0000269|PubMed:15452268, ECO:0000269|PubMed:15791205, ECO:0000269|PubMed:15897467, ECO:0000269|PubMed:19901337, ECO:0000269|PubMed:24227843, ECO:0000269|PubMed:32142651, ECO:0000269|PubMed:32221306, ECO:0000269|PubMed:32225175, ECO:0000269|PubMed:33000221, ECO:0000269|PubMed:33082294, ECO:0000269|PubMed:33432067}.; FUNCTION: [Isoform 2]: Non-functional as a carboxypeptidase. {ECO:0000269|PubMed:33077916}.; FUNCTION: [Isoform 2]: (Microbial infection) Non-functional as a receptor for human coronavirus SARS-CoV-2. {ECO:0000269|PubMed:33077916, ECO:0000269|PubMed:33432184}.
Q9BYG3 NIFK T227 ochoa MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) None
Q9BYG3 NIFK S230 ochoa|psp MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) None
Q9BYJ9 YTHDF1 S531 ochoa YTH domain-containing family protein 1 (DF1) (Dermatomyositis associated with cancer putative autoantigen 1) (DACA-1) Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, and regulates their stability (PubMed:24284625, PubMed:26318451, PubMed:32492408, PubMed:39900921). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:24284625, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT complex (PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) shares m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:32492408). Required to facilitate learning and memory formation in the hippocampus by binding to m6A-containing neuronal mRNAs (By similarity). Acts as a regulator of axon guidance by binding to m6A-containing ROBO3 transcripts (By similarity). Acts as a negative regulator of antigen cross-presentation in myeloid dendritic cells (By similarity). In the context of tumorigenesis, negative regulation of antigen cross-presentation limits the anti-tumor response by reducing efficiency of tumor-antigen cross-presentation (By similarity). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). {ECO:0000250|UniProtKB:P59326, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408, ECO:0000269|PubMed:39900921}.
Q9BYW2 SETD2 S321 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BYW2 SETD2 S323 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BYW2 SETD2 S2086 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BZI7 UPF3B S409 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9C086 INO80B T60 ochoa INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}.
Q9C086 INO80B S63 ochoa INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}.
Q9C086 INO80B S84 ochoa INO80 complex subunit B (High mobility group AT-hook 1-like 4) (IES2 homolog) (hIes2) (PAP-1-associated protein 1) (PAPA-1) (Zinc finger HIT domain-containing protein 4) Induces growth and cell cycle arrests at the G1 phase of the cell cycle. {ECO:0000269|PubMed:15556297}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. {ECO:0000269|PubMed:15556297}.
Q9C0C9 UBE2O S399 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9C0C9 UBE2O S401 ochoa (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}.
Q9C0D5 TANC1 S22 ochoa Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) May be a scaffold component in the postsynaptic density. {ECO:0000250}.
Q9GZR2 REXO4 S111 ochoa RNA exonuclease 4 (EC 3.1.-.-) (Exonuclease XPMC2) (Prevents mitotic catastrophe 2 protein homolog) (hPMC2) None
Q9GZR7 DDX24 T114 ochoa ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
Q9H0D6 XRN2 S435 ochoa 5'-3' exoribonuclease 2 (EC 3.1.13.-) (DHM1-like protein) (DHP protein) Possesses 5'->3' exoribonuclease activity (By similarity). May promote the termination of transcription by RNA polymerase II. During transcription termination, cleavage at the polyadenylation site liberates a 5' fragment which is subsequently processed to form the mature mRNA and a 3' fragment which remains attached to the elongating polymerase. The processive degradation of this 3' fragment by this protein may promote termination of transcription. Binds to RNA polymerase II (RNAp II) transcription termination R-loops formed by G-rich pause sites (PubMed:21700224). {ECO:0000250, ECO:0000269|PubMed:15565158, ECO:0000269|PubMed:16648491, ECO:0000269|PubMed:21700224}.
Q9H1E3 NUCKS1 T177 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H1E3 NUCKS1 S181 ochoa|psp Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H1E3 NUCKS1 S198 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9H2K8 TAOK3 S572 ochoa Serine/threonine-protein kinase TAO3 (EC 2.7.11.1) (Cutaneous T-cell lymphoma-associated antigen HD-CL-09) (CTCL-associated antigen HD-CL-09) (Dendritic cell-derived protein kinase) (JNK/SAPK-inhibitory kinase) (Jun kinase-inhibitory kinase) (Kinase from chicken homolog A) (hKFC-A) (Thousand and one amino acid protein 3) Serine/threonine-protein kinase that acts as a regulator of the p38/MAPK14 stress-activated MAPK cascade and of the MAPK8/JNK cascade. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Inhibits basal activity of the MAPK8/JNK cascade and diminishes its activation in response to epidermal growth factor (EGF). Positively regulates canonical T cell receptor (TCR) signaling by preventing early PTPN6/SHP1-mediated inactivation of LCK, ensuring sustained TCR signaling that is required for optimal activation and differentiation of T cells (PubMed:30373850). Phosphorylates PTPN6/SHP1 on 'Thr-394', leading to its polyubiquitination and subsequent proteasomal degradation (PubMed:38166031). Required for cell surface expression of metalloprotease ADAM10 on type 1 transitional B cells which is necessary for their NOTCH-mediated development into marginal zone B cells (By similarity). Also required for the NOTCH-mediated terminal differentiation of splenic conventional type 2 dendritic cells (By similarity). Positively regulates osteoblast differentiation by acting as an upstream activator of the JNK pathway (PubMed:32807497). Promotes JNK signaling in hepatocytes and positively regulates hepatocyte lipid storage by inhibiting beta-oxidation and triacylglycerol secretion while enhancing lipid synthesis (PubMed:34634521). Restricts age-associated inflammation by negatively regulating differentiation of macrophages and their production of pro-inflammatory cytokines (By similarity). Plays a role in negatively regulating the abundance of regulatory T cells in white adipose tissue (By similarity). {ECO:0000250|UniProtKB:Q8BYC6, ECO:0000269|PubMed:10559204, ECO:0000269|PubMed:10924369, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:30373850, ECO:0000269|PubMed:32807497, ECO:0000269|PubMed:34634521, ECO:0000269|PubMed:38166031}.
Q9H2P0 ADNP S878 ochoa Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}.
Q9H2Y7 ZNF106 S1370 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H2Y7 ZNF106 T1372 ochoa Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}.
Q9H501 ESF1 S153 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S179 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S180 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S657 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H501 ESF1 S823 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9H582 ZNF644 S828 ochoa Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) May be involved in transcriptional regulation.
Q9H5V8 CDCP1 Y707 ochoa|psp CUB domain-containing protein 1 (Membrane glycoprotein gp140) (Subtractive immunization M plus HEp3-associated 135 kDa protein) (SIMA135) (Transmembrane and associated with src kinases) (CD antigen CD318) May be involved in cell adhesion and cell matrix association. May play a role in the regulation of anchorage versus migration or proliferation versus differentiation via its phosphorylation. May be a novel marker for leukemia diagnosis and for immature hematopoietic stem cell subsets. Belongs to the tetraspanin web involved in tumor progression and metastasis. {ECO:0000269|PubMed:11466621, ECO:0000269|PubMed:12799299, ECO:0000269|PubMed:15153610, ECO:0000269|PubMed:16007225, ECO:0000269|PubMed:16404722, ECO:0000269|PubMed:8647901}.
Q9H6F5 CCDC86 S255 ochoa Coiled-coil domain-containing protein 86 (Cytokine-induced protein with coiled-coil domain) Required for proper chromosome segregation during mitosis and error-free mitotic progression. {ECO:0000269|PubMed:36695333}.
Q9H6T3 RPAP3 S87 ochoa RNA polymerase II-associated protein 3 Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. {ECO:0000269|PubMed:17643375}.
Q9H7B2 RPF2 S255 ochoa Ribosome production factor 2 homolog (Brix domain-containing protein 1) (Ribosome biogenesis protein RPF2 homolog) Involved in ribosomal large subunit assembly. May regulate the localization of the 5S RNP/5S ribonucleoprotein particle to the nucleolus. {ECO:0000269|PubMed:24120868}.
Q9H7B2 RPF2 Y263 ochoa Ribosome production factor 2 homolog (Brix domain-containing protein 1) (Ribosome biogenesis protein RPF2 homolog) Involved in ribosomal large subunit assembly. May regulate the localization of the 5S RNP/5S ribonucleoprotein particle to the nucleolus. {ECO:0000269|PubMed:24120868}.
Q9H7N4 SCAF1 S655 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9H7N4 SCAF1 S659 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9H7N4 SCAF1 S929 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9H7N4 SCAF1 S933 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9H7N4 SCAF1 S936 ochoa Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) May function in pre-mRNA splicing. {ECO:0000250}.
Q9H8M2 BRD9 T103 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9H9J4 USP42 S612 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9J4 USP42 S1219 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9J4 USP42 S1222 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9H9J4 USP42 S1247 ochoa Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}.
Q9HAW4 CLSPN S260 ochoa Claspin (hClaspin) Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}.
Q9HAW4 CLSPN S945 ochoa|psp Claspin (hClaspin) Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}.
Q9HB71 CACYBP S188 ochoa Calcyclin-binding protein (CacyBP) (hCacyBP) (S100A6-binding protein) (Siah-interacting protein) May be involved in calcium-dependent ubiquitination and subsequent proteasomal degradation of target proteins. Probably serves as a molecular bridge in ubiquitin E3 complexes. Participates in the ubiquitin-mediated degradation of beta-catenin (CTNNB1). {ECO:0000269|PubMed:16085652}.
Q9HBH9 MKNK2 S76 ochoa MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}.
Q9HC35 EML4 S132 ochoa Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}.
Q9HC77 CPAP S892 ochoa Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}.
Q9HCE3 ZNF532 S1067 ochoa Zinc finger protein 532 May be involved in transcriptional regulation.
Q9HCH5 SYTL2 S571 ochoa Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}.
Q9HCK1 ZDBF2 S631 ochoa DBF4-type zinc finger-containing protein 2 None
Q9NPG3 UBN1 S231 ochoa Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}.
Q9NQ66 PLCB1 S987 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}.
Q9NQS7 INCENP S235 ochoa Inner centromere protein Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}.
Q9NQW6 ANLN S553 ochoa Anillin Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}.
Q9NQZ2 UTP3 S365 ochoa Something about silencing protein 10 (Charged amino acid-rich leucine zipper 1) (CRL1) (Disrupter of silencing SAS10) (UTP3 homolog) Essential for gene silencing: has a role in the structure of silenced chromatin. Plays a role in the developing brain (By similarity). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:Q12136, ECO:0000250|UniProtKB:Q9JI13, ECO:0000269|PubMed:34516797}.
Q9NR30 DDX21 S71 ochoa|psp Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}.
Q9NR30 DDX21 S89 ochoa|psp Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}.
Q9NRF9 POLE3 S122 ochoa DNA polymerase epsilon subunit 3 (Arsenic-transactivated protein) (AsTP) (Chromatin accessibility complex 17 kDa protein) (CHRAC-17) (HuCHRAC17) (DNA polymerase II subunit 3) (DNA polymerase epsilon subunit p17) Accessory component of the DNA polymerase epsilon complex (PubMed:10801849). Participates in DNA repair and in chromosomal DNA replication (By similarity). Forms a complex with CHRAC1 and binds naked DNA, which is then incorporated into chromatin, aided by the nucleosome-remodeling activity of ISWI/SNF2H and ACF1 (PubMed:10801849). Does not enhance nucleosome sliding activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:14759371). {ECO:0000250|UniProtKB:Q04603, ECO:0000269|PubMed:10801849, ECO:0000269|PubMed:14759371}.
Q9NRM7 LATS2 S576 ochoa Serine/threonine-protein kinase LATS2 (EC 2.7.11.1) (Kinase phosphorylated during mitosis protein) (Large tumor suppressor homolog 2) (Serine/threonine-protein kinase kpm) (Warts-like kinase) Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:18158288, PubMed:26437443, PubMed:26598551, PubMed:34404733). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:26437443, PubMed:26598551, PubMed:34404733). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:26598551, PubMed:34404733). Also phosphorylates YAP1 in response to cell contact inhibition-driven WWP1 ubiquitination of AMOTL2, which results in LATS2 activation (PubMed:34404733). Acts as a tumor suppressor which plays a critical role in centrosome duplication, maintenance of mitotic fidelity and genomic stability (PubMed:10871863). Negatively regulates G1/S transition by down-regulating cyclin E/CDK2 kinase activity (PubMed:12853976). Negative regulator of the androgen receptor (PubMed:15131260). Phosphorylates SNAI1 in the nucleus leading to its nuclear retention and stabilization, which enhances its epithelial-mesenchymal transition and tumor cell invasion/migration activities (PubMed:21952048). This tumor-promoting activity is independent of its effects upon YAP1 or WWTR1/TAZ (PubMed:21952048). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10871863, ECO:0000269|PubMed:12853976, ECO:0000269|PubMed:15131260, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:21952048, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:34404733, ECO:0000269|PubMed:39173637}.
Q9NRZ9 HELLS S115 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NRZ9 HELLS S119 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NRZ9 HELLS S165 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NS87 KIF15 S378 ochoa Kinesin-like protein KIF15 (Kinesin-like protein 2) (hKLP2) (Kinesin-like protein 7) (Serologically defined breast cancer antigen NY-BR-62) Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly. {ECO:0000250}.
Q9NTJ3 SMC4 S355 ochoa Structural maintenance of chromosomes protein 4 (SMC protein 4) (SMC-4) (Chromosome-associated polypeptide C) (hCAP-C) (XCAP-C homolog) Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}.
Q9NVN8 GNL3L S22 ochoa Guanine nucleotide-binding protein-like 3-like protein Stabilizes TERF1 telomeric association by preventing TERF1 recruitment by PML. Stabilizes TERF1 protein by preventing its ubiquitination and hence proteasomal degradation. Does so by interfering with TERF1-binding to FBXO4 E3 ubiquitin-protein ligase. Required for cell proliferation. By stabilizing TRF1 protein during mitosis, promotes metaphase-to-anaphase transition. Stabilizes MDM2 protein by preventing its ubiquitination, and hence proteasomal degradation. By acting on MDM2, may affect TP53 activity. Required for normal processing of ribosomal pre-rRNA. Binds GTP. {ECO:0000269|PubMed:16251348, ECO:0000269|PubMed:17034816, ECO:0000269|PubMed:19487455, ECO:0000269|PubMed:21132010}.
Q9NVR2 INTS10 S381 ochoa Integrator complex subunit 10 (Int10) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:32647223). Within the integrator complex, INTS10 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386}.
Q9NVR2 INTS10 S382 ochoa Integrator complex subunit 10 (Int10) Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683, PubMed:38823386). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:32647223). Within the integrator complex, INTS10 is part of the integrator tail module that acts as a platform for the recruitment of transcription factors at promoters (PubMed:38823386). May be not involved in the recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:32647223, ECO:0000269|PubMed:38570683, ECO:0000269|PubMed:38823386}.
Q9NW13 RBM28 S122 ochoa|psp RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9NW13 RBM28 S712 ochoa RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9NWH9 SLTM S93 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NWH9 SLTM S97 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NWH9 SLTM S294 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NWH9 SLTM S533 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NWH9 SLTM S539 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NX40 OCIAD1 S116 ochoa OCIA domain-containing protein 1 (Ovarian cancer immunoreactive antigen domain containing 1) (Ovarian carcinoma immunoreactive antigen) Maintains stem cell potency (By similarity). Increases STAT3 phosphorylation and controls ERK phosphorylation (By similarity). May act as a scaffold, increasing STAT3 recruitment onto endosomes (By similarity). Involved in integrin-mediated cancer cell adhesion and colony formation in ovarian cancer (PubMed:20515946). {ECO:0000250|UniProtKB:Q9CRD0, ECO:0000269|PubMed:20515946}.
Q9NX95 SYBU S129 ochoa Syntabulin (Golgi-localized syntaphilin-related protein) (Syntaxin-1-binding protein) Part of a kinesin motor-adapter complex that is critical for the anterograde axonal transport of active zone components and contributes to activity-dependent presynaptic assembly during neuronal development. {ECO:0000250, ECO:0000269|PubMed:15459722}.
Q9NZ63 C9orf78 S101 ochoa Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}.
Q9NZI8 IGF2BP1 S438 ochoa Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2 mRNA-binding protein 1) (IMP-1) (IMP1) (Coding region determinant-binding protein) (CRD-BP) (IGF-II mRNA-binding protein 1) (VICKZ family member 1) (Zipcode-binding protein 1) (ZBP-1) RNA-binding factor that recruits target transcripts to cytoplasmic protein-RNA complexes (mRNPs). This transcript 'caging' into mRNPs allows mRNA transport and transient storage. It also modulates the rate and location at which target transcripts encounter the translational apparatus and shields them from endonuclease attacks or microRNA-mediated degradation. Preferentially binds to N6-methyladenosine (m6A)-containing mRNAs and increases their stability (PubMed:29476152, PubMed:32245947). Plays a direct role in the transport and translation of transcripts required for axonal regeneration in adult sensory neurons (By similarity). Regulates localized beta-actin/ACTB mRNA translation, a crucial process for cell polarity, cell migration and neurite outgrowth. Co-transcriptionally associates with the ACTB mRNA in the nucleus. This binding involves a conserved 54-nucleotide element in the ACTB mRNA 3'-UTR, known as the 'zipcode'. The RNP thus formed is exported to the cytoplasm, binds to a motor protein and is transported along the cytoskeleton to the cell periphery. During transport, prevents ACTB mRNA from being translated into protein. When the RNP complex reaches its destination near the plasma membrane, IGF2BP1 is phosphorylated. This releases the mRNA, allowing ribosomal 40S and 60S subunits to assemble and initiate ACTB protein synthesis. Monomeric ACTB then assembles into the subcortical actin cytoskeleton (By similarity). During neuronal development, key regulator of neurite outgrowth, growth cone guidance and neuronal cell migration, presumably through the spatiotemporal fine tuning of protein synthesis, such as that of ACTB (By similarity). May regulate mRNA transport to activated synapses (By similarity). Binds to and stabilizes ABCB1/MDR-1 mRNA (By similarity). During interstinal wound repair, interacts with and stabilizes PTGS2 transcript. PTGS2 mRNA stabilization may be crucial for colonic mucosal wound healing (By similarity). Binds to the 3'-UTR of IGF2 mRNA by a mechanism of cooperative and sequential dimerization and regulates IGF2 mRNA subcellular localization and translation. Binds to MYC mRNA, in the coding region instability determinant (CRD) of the open reading frame (ORF), hence preventing MYC cleavage by endonucleases and possibly microRNA targeting to MYC-CRD (PubMed:29476152). Binding to MYC mRNA is enhanced by m6A-modification of the CRD (PubMed:29476152). Binds to the 3'-UTR of CD44 mRNA and stabilizes it, hence promotes cell adhesion and invadopodia formation in cancer cells. Binds to the oncofetal H19 transcript and to the neuron-specific TAU mRNA and regulates their localizations. Binds to and stabilizes BTRC/FBW1A mRNA. Binds to the adenine-rich autoregulatory sequence (ARS) located in PABPC1 mRNA and represses its translation. PABPC1 mRNA-binding is stimulated by PABPC1 protein. Prevents BTRC/FBW1A mRNA degradation by disrupting microRNA-dependent interaction with AGO2. Promotes the directed movement of tumor-derived cells by fine-tuning intracellular signaling networks. Binds to MAPK4 3'-UTR and inhibits its translation. Interacts with PTEN transcript open reading frame (ORF) and prevents mRNA decay. This combined action on MAPK4 (down-regulation) and PTEN (up-regulation) antagonizes HSPB1 phosphorylation, consequently it prevents G-actin sequestration by phosphorylated HSPB1, allowing F-actin polymerization. Hence enhances the velocity of cell migration and stimulates directed cell migration by PTEN-modulated polarization. Interacts with Hepatitis C virus (HCV) 5'-UTR and 3'-UTR and specifically enhances translation at the HCV IRES, but not 5'-cap-dependent translation, possibly by recruiting eIF3. Interacts with HIV-1 GAG protein and blocks the formation of infectious HIV-1 particles. Reduces HIV-1 assembly by inhibiting viral RNA packaging, as well as assembly and processing of GAG protein on cellular membranes. During cellular stress, such as oxidative stress or heat shock, stabilizes target mRNAs that are recruited to stress granules, including CD44, IGF2, MAPK4, MYC, PTEN, RAPGEF2 and RPS6KA5 transcripts. {ECO:0000250, ECO:0000269|PubMed:10875929, ECO:0000269|PubMed:16356927, ECO:0000269|PubMed:16541107, ECO:0000269|PubMed:16778892, ECO:0000269|PubMed:17101699, ECO:0000269|PubMed:17255263, ECO:0000269|PubMed:17893325, ECO:0000269|PubMed:18385235, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19541769, ECO:0000269|PubMed:19647520, ECO:0000269|PubMed:20080952, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:29476152, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8132663, ECO:0000269|PubMed:9891060}.
Q9NZJ0 DTL S426 ochoa Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}.
Q9NZM5 NOP53 S233 psp Ribosome biogenesis protein NOP53 (Glioma tumor suppressor candidate region gene 2 protein) (Protein interacting with carboxyl terminus 1) (PICT-1) (p60) Nucleolar protein which is involved in the integration of the 5S RNP into the ribosomal large subunit during ribosome biogenesis (PubMed:24120868). In ribosome biogenesis, may also play a role in rRNA transcription (PubMed:27729611). Also functions as a nucleolar sensor that regulates the activation of p53/TP53 in response to ribosome biogenesis perturbation, DNA damage and other stress conditions (PubMed:21741933, PubMed:24120868, PubMed:27829214). DNA damage or perturbation of ribosome biogenesis disrupt the interaction between NOP53 and RPL11 allowing RPL11 transport to the nucleoplasm where it can inhibit MDM2 and allow p53/TP53 activation (PubMed:24120868, PubMed:27829214). It may also positively regulate the function of p53/TP53 in cell cycle arrest and apoptosis through direct interaction, preventing its MDM2-dependent ubiquitin-mediated proteasomal degradation (PubMed:22522597). Originally identified as a tumor suppressor, it may also play a role in cell proliferation and apoptosis by positively regulating the stability of PTEN, thereby antagonizing the PI3K-AKT/PKB signaling pathway (PubMed:15355975, PubMed:16971513, PubMed:27729611). May also inhibit cell proliferation and increase apoptosis through its interaction with NF2 (PubMed:21167305). May negatively regulate NPM1 by regulating its nucleoplasmic localization, oligomerization and ubiquitin-mediated proteasomal degradation (PubMed:25818168). Thereby, may prevent NPM1 interaction with MYC and negatively regulate transcription mediated by the MYC-NPM1 complex (PubMed:25956029). May also regulate cellular aerobic respiration (PubMed:24556985). In the cellular response to viral infection, may play a role in the attenuation of interferon-beta through the inhibition of RIGI (PubMed:27824081). {ECO:0000269|PubMed:15355975, ECO:0000269|PubMed:16971513, ECO:0000269|PubMed:21167305, ECO:0000269|PubMed:21741933, ECO:0000269|PubMed:22522597, ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:24556985, ECO:0000269|PubMed:25818168, ECO:0000269|PubMed:25956029, ECO:0000269|PubMed:27729611, ECO:0000269|PubMed:27824081, ECO:0000269|PubMed:27829214}.
Q9P0M6 MACROH2A2 S171 ochoa Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}.
Q9P0M6 MACROH2A2 S173 ochoa Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}.
Q9P0M6 MACROH2A2 S175 ochoa Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}.
Q9P0P8 MTRES1 S110 ochoa Mitochondrial transcription rescue factor 1 Mitochondrial RNA-binding protein involved in mitochondrial transcription regulation. Functions as a protective factor to maintain proper mitochondrial RNA level during stress. Acts at the transcription level and its protective function depends on its RNA binding ability (PubMed:31226201). Part of a mitoribosome-associated quality control pathway that prevents aberrant translation by responding to interruptions during elongation (PubMed:31396629, PubMed:33243891). As heterodimer with MTRF, ejects the unfinished nascent chain and peptidyl transfer RNA (tRNA), respectively, from stalled ribosomes. Recruitment of mitoribosome biogenesis factors to these quality control intermediates suggests additional roles for MTRES1 and MTRF during mitoribosome rescue (PubMed:33243891). {ECO:0000269|PubMed:31226201, ECO:0000269|PubMed:31396629, ECO:0000269|PubMed:33243891}.
Q9P212 PLCE1 T1100 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 (EC 3.1.4.11) (Pancreas-enriched phospholipase C) (Phosphoinositide phospholipase C-epsilon-1) (Phospholipase C-epsilon-1) (PLC-epsilon-1) The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. PLCE1 is a bifunctional enzyme which also regulates small GTPases of the Ras superfamily through its Ras guanine-exchange factor (RasGEF) activity. As an effector of heterotrimeric and small G-protein, it may play a role in cell survival, cell growth, actin organization and T-cell activation. In podocytes, is involved in the regulation of lamellipodia formation. Acts downstream of AVIL to allow ARP2/3 complex assembly (PubMed:29058690). {ECO:0000269|PubMed:11022047, ECO:0000269|PubMed:11395506, ECO:0000269|PubMed:11715024, ECO:0000269|PubMed:11877431, ECO:0000269|PubMed:12721365, ECO:0000269|PubMed:16537651, ECO:0000269|PubMed:17086182, ECO:0000269|PubMed:29058690}.
Q9P219 CCDC88C S1432 ochoa Protein Daple (Coiled-coil domain-containing protein 88C) (Dvl-associating protein with a high frequency of leucine residues) (hDaple) (Hook-related protein 2) (HkRP2) Required for activation of guanine nucleotide-binding proteins (G-proteins) during non-canonical Wnt signaling (PubMed:26126266). Binds to ligand-activated Wnt receptor FZD7, displacing DVL1 from the FZD7 receptor and leading to inhibition of canonical Wnt signaling (PubMed:26126266). Acts as a non-receptor guanine nucleotide exchange factor by also binding to guanine nucleotide-binding protein G(i) alpha (Gi-alpha) subunits, leading to their activation (PubMed:26126266). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex, triggering non-canonical Wnt responses such as activation of RAC1 and PI3K-AKT signaling (PubMed:26126266). Promotes apical constriction of cells via ARHGEF18 (PubMed:30948426). {ECO:0000269|PubMed:26126266, ECO:0000269|PubMed:30948426}.
Q9P242 NYAP2 S206 ochoa Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2 Activates PI3K and concomitantly recruits the WAVE1 complex to the close vicinity of PI3K and regulates neuronal morphogenesis. {ECO:0000250}.
Q9P2D0 IBTK S992 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2D0 IBTK S993 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2D0 IBTK Y996 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2D0 IBTK S999 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2D1 CHD7 S708 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2D1 CHD7 S725 ochoa Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}.
Q9P2D6 FAM135A S517 ochoa Protein FAM135A None
Q9P2E9 RRBP1 S154 ochoa Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
Q9P2E9 RRBP1 S155 ochoa Ribosome-binding protein 1 (180 kDa ribosome receptor homolog) (RRp) (ES/130-related protein) (Ribosome receptor protein) Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane. {ECO:0000250}.
Q9P2I0 CPSF2 S420 ochoa Cleavage and polyadenylation specificity factor subunit 2 (Cleavage and polyadenylation specificity factor 100 kDa subunit) (CPSF 100 kDa subunit) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3' end pre-mRNA processing. {ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:18688255}.
Q9P2K8 EIF2AK4 S207 ochoa eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}.
Q9UBU7 DBF4 S359 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBU7 DBF4 S362 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UBW7 ZMYM2 S1056 ochoa|psp Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UBW7 ZMYM2 S1060 ochoa Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UBW7 ZMYM2 S1061 ochoa Zinc finger MYM-type protein 2 (Fused in myeloproliferative disorders protein) (Rearranged in atypical myeloproliferative disorder protein) (Zinc finger protein 198) Involved in the negative regulation of transcription. {ECO:0000269|PubMed:32891193}.
Q9UBZ9 REV1 S1088 ochoa DNA repair protein REV1 (EC 2.7.7.-) (Alpha integrin-binding protein 80) (AIBP80) (Rev1-like terminal deoxycytidyl transferase) Deoxycytidyl transferase involved in DNA repair. Transfers a dCMP residue from dCTP to the 3'-end of a DNA primer in a template-dependent reaction. May assist in the first step in the bypass of abasic lesions by the insertion of a nucleotide opposite the lesion. Required for normal induction of mutations by physical and chemical agents. {ECO:0000269|PubMed:10536157, ECO:0000269|PubMed:10760286, ECO:0000269|PubMed:11278384, ECO:0000269|PubMed:11485998, ECO:0000269|PubMed:22266823}.
Q9UGP8 SEC63 S544 ochoa Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q9UGU5 HMGXB4 S345 ochoa HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}.
Q9UHF7 TRPS1 S391 ochoa Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}.
Q9UHK0 NUFIP1 S312 ochoa FMR1-interacting protein NUFIP1 (Nuclear FMR1-interacting protein 1) (Nuclear FMRP-interacting protein 1) Binds RNA. {ECO:0000269|PubMed:10556305}.
Q9UIF8 BAZ2B S2019 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UKA4 AKAP11 S1139 ochoa A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) Binds to type II regulatory subunits of protein kinase A and anchors/targets them.
Q9UKI2 CDC42EP3 S32 ochoa Cdc42 effector protein 3 (Binder of Rho GTPases 2) (MSE55-related Cdc42-binding protein) Probably involved in the organization of the actin cytoskeleton. May act downstream of CDC42 to induce actin filament assembly leading to cell shape changes. Induces pseudopodia formation in fibroblasts. {ECO:0000269|PubMed:10490598, ECO:0000269|PubMed:11035016}.
Q9UKJ3 GPATCH8 S721 ochoa G patch domain-containing protein 8 None
Q9UKJ3 GPATCH8 S722 ochoa G patch domain-containing protein 8 None
Q9UKJ3 GPATCH8 S727 ochoa G patch domain-containing protein 8 None
Q9UKL3 CASP8AP2 S1161 ochoa CASP8-associated protein 2 (FLICE-associated huge protein) Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}.
Q9UKX2 MYH2 S1239 ochoa Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}.
Q9UKY1 ZHX1 S202 ochoa Zinc fingers and homeoboxes protein 1 Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}.
Q9UKY1 ZHX1 S635 ochoa Zinc fingers and homeoboxes protein 1 Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}.
Q9ULG1 INO80 S236 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULG1 INO80 S237 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULG1 INO80 S240 ochoa Chromatin-remodeling ATPase INO80 (hINO80) (EC 3.6.4.-) (DNA helicase-related INO80 complex homolog 1) (DNA helicase-related protein INO80) (INO80 complex subunit A) ATPase component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and DNA repair (PubMed:16230350, PubMed:16298340, PubMed:17721549, PubMed:20237820, PubMed:20855601). Binds DNA (PubMed:16298340, PubMed:21303910). As part of the INO80 complex, remodels chromatin by shifting nucleosomes (PubMed:16230350, PubMed:21303910). Regulates transcription upon recruitment by YY1 to YY1-activated genes, where it acts as an essential coactivator (PubMed:17721549). Involved in UV-damage excision DNA repair (PubMed:20855601). The contribution to DNA double-strand break repair appears to be largely indirect through transcriptional regulation (PubMed:20687897). Involved in DNA replication (PubMed:20237820). Required for microtubule assembly during mitosis thereby regulating chromosome segregation cycle (PubMed:20237820). {ECO:0000269|PubMed:16230350, ECO:0000269|PubMed:16298340, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:20237820, ECO:0000269|PubMed:20687897, ECO:0000269|PubMed:20855601, ECO:0000269|PubMed:21303910}.
Q9ULI0 ATAD2B S1379 ochoa ATPase family AAA domain-containing protein 2B None
Q9ULR3 PPM1H S119 ochoa Protein phosphatase 1H (EC 3.1.3.16) Dephosphorylates CDKN1B at 'Thr-187', thus removing a signal for proteasomal degradation. {ECO:0000269|PubMed:22586611}.
Q9ULX6 AKAP8L S289 ochoa A-kinase anchor protein 8-like (AKAP8-like protein) (Helicase A-binding protein 95) (HAP95) (Homologous to AKAP95 protein) (HA95) (Neighbor of A-kinase-anchoring protein 95) (Neighbor of AKAP95) Could play a role in constitutive transport element (CTE)-mediated gene expression by association with DHX9. Increases CTE-dependent nuclear unspliced mRNA export (PubMed:10748171, PubMed:11402034). Proposed to target PRKACA to the nucleus but does not seem to be implicated in the binding of regulatory subunit II of PKA (PubMed:10761695, PubMed:11884601). May be involved in nuclear envelope breakdown and chromatin condensation. May be involved in anchoring nuclear membranes to chromatin in interphase and in releasing membranes from chromating at mitosis (PubMed:11034899). May regulate the initiation phase of DNA replication when associated with TMPO isoform Beta (PubMed:12538639). Required for cell cycle G2/M transition and histone deacetylation during mitosis. In mitotic cells recruits HDAC3 to the vicinity of chromatin leading to deacetylation and subsequent phosphorylation at 'Ser-10' of histone H3; in this function seems to act redundantly with AKAP8 (PubMed:16980585). May be involved in regulation of pre-mRNA splicing (PubMed:17594903). {ECO:0000269|PubMed:10748171, ECO:0000269|PubMed:11034899, ECO:0000269|PubMed:11402034, ECO:0000269|PubMed:11884601, ECO:0000269|PubMed:12538639, ECO:0000269|PubMed:16980585, ECO:0000305|PubMed:10761695}.; FUNCTION: (Microbial infection) In case of EBV infection, may target PRKACA to EBNA-LP-containing nuclear sites to modulate transcription from specific promoters. {ECO:0000269|PubMed:11884601}.; FUNCTION: (Microbial infection) Can synergize with DHX9 to activate the CTE-mediated gene expression of type D retroviruses. {ECO:0000269|PubMed:11402034}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, involved in the DHX9-promoted annealing of host tRNA(Lys3) to viral genomic RNA as a primer in reverse transcription; in vitro negatively regulates DHX9 annealing activity. {ECO:0000269|PubMed:25034436}.
Q9UM54 MYO6 S1142 ochoa Unconventional myosin-VI (Unconventional myosin-6) Myosins are actin-based motor molecules with ATPase activity (By similarity). Unconventional myosins serve in intracellular movements (By similarity). Myosin 6 is a reverse-direction motor protein that moves towards the minus-end of actin filaments (PubMed:10519557). Has slow rate of actin-activated ADP release due to weak ATP binding (By similarity). Functions in a variety of intracellular processes such as vesicular membrane trafficking and cell migration (By similarity). Required for the structural integrity of the Golgi apparatus via the p53-dependent pro-survival pathway (PubMed:16507995). Appears to be involved in a very early step of clathrin-mediated endocytosis in polarized epithelial cells (PubMed:11447109). Together with TOM1, mediates delivery of endocytic cargo to autophagosomes thereby promoting autophagosome maturation and driving fusion with lysosomes (PubMed:23023224). Links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). May act as a regulator of F-actin dynamics (By similarity). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). May play a role in transporting DAB2 from the plasma membrane to specific cellular targets (By similarity). May play a role in the extension and network organization of neurites (By similarity). Required for structural integrity of inner ear hair cells (By similarity). Required for the correct localization of CLIC5 and RDX at the stereocilium base (By similarity). Modulates RNA polymerase II-dependent transcription (PubMed:16949370). {ECO:0000250|UniProtKB:Q29122, ECO:0000250|UniProtKB:Q64331, ECO:0000269|PubMed:10519557, ECO:0000269|PubMed:11447109, ECO:0000269|PubMed:16507995, ECO:0000269|PubMed:16949370, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:29467281, ECO:0000269|PubMed:31371777}.
Q9UMY1 NOL7 S126 ochoa U3 small nucleolar RNA-associated protein NOL7 (U3 snoRNA-associated protein NOL7) (Nucleolar protein 7) (Nucleolar protein of 27 kDa) Functions as part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit that coordinates the first two steps of ribosome biogenesis in transcription of the primary transcript pre-RNA and pre-18S processing (PubMed:34516797, PubMed:37246770). During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). This subunit is required for processing of the 5'-external transcribed spacer sequence (5'ETS) of the primary transcript pre-rRNA to yield the 18S rRNA (PubMed:37246770). Also plays a role in maintaining early pre-rRNA levels, either by assisting in its transcription or stability (PubMed:37246770). {ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:37246770}.
Q9UN37 VPS4A S95 ochoa Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}.
Q9UN37 VPS4A S97 ochoa Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}.
Q9UN37 VPS4A S99 ochoa Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}.
Q9UNF1 MAGED2 S190 ochoa Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}.
Q9UNF1 MAGED2 S191 ochoa Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}.
Q9UNH7 SNX6 S194 ochoa Sorting nexin-6 (TRAF4-associated factor 2) [Cleaved into: Sorting nexin-6, N-terminally processed] Involved in several stages of intracellular trafficking. Interacts with membranes phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 4,5-bisphosphate (Probable). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex (PubMed:19935774). The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Does not have in vitro vesicle-to-membrane remodeling activity (PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptor IGF2R (PubMed:17148574). May function as link between transport vesicles and dynactin (Probable). Negatively regulates retrograde transport of BACE1 from the cell surface to the trans-Golgi network (PubMed:20354142). Involved in E-cadherin sorting and degradation; inhibits PIP5K1C isoform 3-mediated E-cadherin degradation (PubMed:24610942). In association with GIT1 involved in EGFR degradation. Promotes lysosomal degradation of CDKN1B (By similarity). May contribute to transcription regulation (Probable). {ECO:0000250|UniProtKB:Q6P8X1, ECO:0000269|PubMed:17148574, ECO:0000269|PubMed:19935774, ECO:0000269|PubMed:20354142, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:24610942, ECO:0000303|PubMed:19935774, ECO:0000303|PubMed:20830743, ECO:0000305}.
Q9UNL4 ING4 S150 ochoa Inhibitor of growth protein 4 (p29ING4) Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653). Through chromatin acetylation it may function in DNA replication (PubMed:16387653). May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation (PubMed:15251430, PubMed:15528276). Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA (PubMed:15029197). May also specifically suppress loss of contact inhibition elicited by activated oncogenes such as MYC (PubMed:15029197). Represses hypoxia inducible factor's (HIF) activity by interacting with HIF prolyl hydroxylase 2 (EGLN1) (PubMed:15897452). Can enhance apoptosis induced by serum starvation in mammary epithelial cell line HC11 (By similarity). {ECO:0000250|UniProtKB:Q8C0D7, ECO:0000269|PubMed:15029197, ECO:0000269|PubMed:15251430, ECO:0000269|PubMed:15528276, ECO:0000269|PubMed:15897452, ECO:0000269|PubMed:16387653}.
Q9UPQ0 LIMCH1 S710 ochoa LIM and calponin homology domains-containing protein 1 Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}.
Q9UPR0 PLCL2 S125 ochoa Inactive phospholipase C-like protein 2 (PLC-L(2)) (PLC-L2) (Phospholipase C-L2) (Phospholipase C-epsilon-2) (PLC-epsilon-2) May play an role in the regulation of Ins(1,4,5)P3 around the endoplasmic reticulum. {ECO:0000250}.
Q9UPV0 CEP164 S380 ochoa Centrosomal protein of 164 kDa (Cep164) Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}.
Q9UPV0 CEP164 S383 ochoa Centrosomal protein of 164 kDa (Cep164) Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}.
Q9UQ84 EXO1 S454 psp Exonuclease 1 (hExo1) (EC 3.1.-.-) (Exonuclease I) (hExoI) 5'->3' double-stranded DNA exonuclease which may also possess a cryptic 3'->5' double-stranded DNA exonuclease activity. Functions in DNA mismatch repair (MMR) to excise mismatch-containing DNA tracts directed by strand breaks located either 5' or 3' to the mismatch. Also exhibits endonuclease activity against 5'-overhanging flap structures similar to those generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Required for somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin genes. Essential for male and female meiosis. {ECO:0000269|PubMed:10364235, ECO:0000269|PubMed:10608837, ECO:0000269|PubMed:11809771, ECO:0000269|PubMed:11842105, ECO:0000269|PubMed:12414623, ECO:0000269|PubMed:12704184, ECO:0000269|PubMed:14636568, ECO:0000269|PubMed:14676842, ECO:0000269|PubMed:15225546, ECO:0000269|PubMed:15886194, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:9685493}.
Q9UQR1 ZNF148 S336 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9UQR1 ZNF148 S412 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9Y232 CDYL S88 ochoa Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}.
Q9Y266 NUDC S281 ochoa Nuclear migration protein nudC (Nuclear distribution protein C homolog) Plays a role in neurogenesis and neuronal migration (By similarity). Necessary for correct formation of mitotic spindles and chromosome separation during mitosis (PubMed:12679384, PubMed:12852857, PubMed:25789526). Necessary for cytokinesis and cell proliferation (PubMed:12679384, PubMed:12852857). {ECO:0000250|UniProtKB:O35685, ECO:0000269|PubMed:12679384, ECO:0000269|PubMed:12852857, ECO:0000269|PubMed:25789526}.
Q9Y2H5 PLEKHA6 S961 ochoa Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) None
Q9Y2K1 ZBTB1 S289 ochoa Zinc finger and BTB domain-containing protein 1 Acts as a transcriptional repressor (PubMed:20797634). Represses cAMP-responsive element (CRE)-mediated transcriptional activation (PubMed:21706167). In addition, has a role in translesion DNA synthesis. Requires for UV-inducible RAD18 loading, PCNA monoubiquitination, POLH recruitment to replication factories and efficient translesion DNA synthesis (PubMed:24657165). Plays a key role in the transcriptional regulation of T lymphocyte development (By similarity). {ECO:0000250|UniProtKB:Q91VL9, ECO:0000269|PubMed:20797634, ECO:0000269|PubMed:21706167, ECO:0000269|PubMed:24657165}.
Q9Y2K5 R3HDM2 S142 ochoa R3H domain-containing protein 2 None
Q9Y2U8 LEMD3 S728 ochoa Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}.
Q9Y2W1 THRAP3 S377 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2W1 THRAP3 S379 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2W1 THRAP3 S747 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2X3 NOP58 S434 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y2X3 NOP58 S440 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y2X3 NOP58 S502 ochoa|psp Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y2X3 NOP58 T508 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y388 RBMX2 S185 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9Y388 RBMX2 S186 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9Y388 RBMX2 S188 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9Y3B9 RRP15 S220 ochoa RRP15-like protein (Ribosomal RNA-processing protein 15) None
Q9Y3E1 HDGFL3 S162 ochoa Hepatoma-derived growth factor-related protein 3 (HRP-3) (Hepatoma-derived growth factor 2) (HDGF-2) Enhances DNA synthesis and may play a role in cell proliferation. {ECO:0000269|PubMed:10581169}.
Q9Y490 TLN1 S417 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y490 TLN1 T418 ochoa Talin-1 High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}.
Q9Y5S9 RBM8A S46 ochoa RNA-binding protein 8A (Binder of OVCA1-1) (BOV-1) (RNA-binding motif protein 8A) (RNA-binding protein Y14) (Ribonucleoprotein RBM8A) Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator PYM1 leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. {ECO:0000269|PubMed:12121612, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:12730685, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}.
Q9Y5T5 USP16 S17 ochoa Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}.
Q9Y6J0 CABIN1 S386 ochoa Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}.
Q9Y6R1 SLC4A4 S65 ochoa|psp Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R1 SLC4A4 S68 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R1 SLC4A4 S1026 ochoa|psp Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R1 SLC4A4 S1029 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6R1 SLC4A4 S1034 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
Q9Y6X9 MORC2 S785 ochoa ATPase MORC2 (EC 3.6.1.-) (MORC family CW-type zinc finger protein 2) (Zinc finger CW-type coiled-coil domain protein 1) Essential for epigenetic silencing by the HUSH (human silencing hub) complex. Recruited by HUSH to target site in heterochromatin, the ATPase activity and homodimerization are critical for HUSH-mediated silencing (PubMed:28581500, PubMed:29440755, PubMed:32693025). Represses germ cell-related genes and L1 retrotransposons in collaboration with SETDB1 and the HUSH complex, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). During DNA damage response, regulates chromatin remodeling through ATP hydrolysis. Upon DNA damage, is phosphorylated by PAK1, both colocalize to chromatin and induce H2AX expression. ATPase activity is required and dependent of phosphorylation by PAK1 and presence of DNA (PubMed:23260667). Recruits histone deacetylases, such as HDAC4, to promoter regions, causing local histone H3 deacetylation and transcriptional repression of genes such as CA9 (PubMed:20110259, PubMed:20225202). Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation (PubMed:24286864). {ECO:0000269|PubMed:20110259, ECO:0000269|PubMed:20225202, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:24286864, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:29440755, ECO:0000269|PubMed:32693025}.
Q9Y6Y8 SEC23IP S728 ochoa SEC23-interacting protein (p125) Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}.
R4GMW8 BIVM-ERCC5 S1523 ochoa DNA excision repair protein ERCC-5 None
Q5QNW6 H2BC18 S37 Sugiyama Histone H2B type 2-F (H2B-clustered histone 18) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P61513 RPL37A S21 Sugiyama Large ribosomal subunit protein eL43 (60S ribosomal protein L37a) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P62906 RPL10A S113 Sugiyama Large ribosomal subunit protein uL1 (60S ribosomal protein L10a) (CSA-19) (Neural precursor cell expressed developmentally down-regulated protein 6) (NEDD-6) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.
Q9UGY1 NOL12 S21 Sugiyama Nucleolar protein 12 Multifunctional RNA binding protein that plays a role in RNA metabolism and DNA maintenance. Participates in the resolution of DNA stress and the maintenance of genome integrity by localizing to sites of DNA insults (PubMed:29069457). Also plays a role in proper nucleolar organization by limiting nucleolar size and regulating nucleolar number. Mechanistically, regulates the nucleolar levels of fibrillarin and nucleolin, two key players in pre-rRNA processing and ribosome assembly (PubMed:30988155). {ECO:0000269|PubMed:29069457, ECO:0000269|PubMed:30988155}.
Q8WVM8 SCFD1 S340 Sugiyama Sec1 family domain-containing protein 1 (SLY1 homolog) (Sly1p) (Syntaxin-binding protein 1-like 2) Plays a role in SNARE-pin assembly and Golgi-to-ER retrograde transport via its interaction with COG4. Involved in vesicular transport between the endoplasmic reticulum and the Golgi (By similarity). {ECO:0000250}.
O15075 DCLK1 S438 Sugiyama Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system.
O15111 CHUK S249 Sugiyama Inhibitor of nuclear factor kappa-B kinase subunit alpha (I-kappa-B kinase alpha) (IKK-A) (IKK-alpha) (IkBKA) (IkappaB kinase) (EC 2.7.11.10) (Conserved helix-loop-helix ubiquitous kinase) (I-kappa-B kinase 1) (IKK-1) (IKK1) (Nuclear factor NF-kappa-B inhibitor kinase alpha) (NFKBIKA) (Transcription factor 16) (TCF-16) Serine kinase that plays an essential role in the NF-kappa-B signaling pathway which is activated by multiple stimuli such as inflammatory cytokines, bacterial or viral products, DNA damages or other cellular stresses (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Acts as a part of the canonical IKK complex in the conventional pathway of NF-kappa-B activation and phosphorylates inhibitors of NF-kappa-B on serine residues (PubMed:18626576, PubMed:35952808, PubMed:9244310, PubMed:9252186, PubMed:9346484). These modifications allow polyubiquitination of the inhibitors and subsequent degradation by the proteasome (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). In turn, free NF-kappa-B is translocated into the nucleus and activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18626576, PubMed:9244310, PubMed:9252186, PubMed:9346484). Negatively regulates the pathway by phosphorylating the scaffold protein TAXBP1 and thus promoting the assembly of the A20/TNFAIP3 ubiquitin-editing complex (composed of A20/TNFAIP3, TAX1BP1, and the E3 ligases ITCH and RNF11) (PubMed:21765415). Therefore, CHUK plays a key role in the negative feedback of NF-kappa-B canonical signaling to limit inflammatory gene activation. As part of the non-canonical pathway of NF-kappa-B activation, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes (PubMed:20501937). In turn, these complexes regulate genes encoding molecules involved in B-cell survival and lymphoid organogenesis. Also participates in the negative feedback of the non-canonical NF-kappa-B signaling pathway by phosphorylating and destabilizing MAP3K14/NIK. Within the nucleus, phosphorylates CREBBP and consequently increases both its transcriptional and histone acetyltransferase activities (PubMed:17434128). Modulates chromatin accessibility at NF-kappa-B-responsive promoters by phosphorylating histones H3 at 'Ser-10' that are subsequently acetylated at 'Lys-14' by CREBBP (PubMed:12789342). Additionally, phosphorylates the CREBBP-interacting protein NCOA3. Also phosphorylates FOXO3 and may regulate this pro-apoptotic transcription factor (PubMed:15084260). Phosphorylates RIPK1 at 'Ser-25' which represses its kinase activity and consequently prevents TNF-mediated RIPK1-dependent cell death (By similarity). Phosphorylates AMBRA1 following mitophagy induction, promoting AMBRA1 interaction with ATG8 family proteins and its mitophagic activity (PubMed:30217973). {ECO:0000250|UniProtKB:Q60680, ECO:0000269|PubMed:12789342, ECO:0000269|PubMed:15084260, ECO:0000269|PubMed:17434128, ECO:0000269|PubMed:20434986, ECO:0000269|PubMed:20501937, ECO:0000269|PubMed:21765415, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35952808, ECO:0000269|PubMed:9244310, ECO:0000269|PubMed:9252186, ECO:0000269|PubMed:9346484, ECO:0000303|PubMed:18626576}.
P29084 GTF2E2 S211 Sugiyama Transcription initiation factor IIE subunit beta (TFIIE-beta) (General transcription factor IIE subunit 2) Recruits TFIIH to the initiation complex and stimulates the RNA polymerase II C-terminal domain kinase and DNA-dependent ATPase activities of TFIIH. Both TFIIH and TFIIE are required for promoter clearance by RNA polymerase. {ECO:0000269|PubMed:1956398, ECO:0000269|PubMed:1956404}.
P35251 RFC1 S253 Sugiyama Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}.
P06899 H2BC11 Y43 Sugiyama Histone H2B type 1-J (Histone H2B.1) (Histone H2B.r) (H2B/r) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P23527 H2BC17 Y43 Sugiyama Histone H2B type 1-O (H2B-clustered histone 17) (Histone H2B.2) (Histone H2B.n) (H2B/n) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P33778 H2BC3 Y43 Sugiyama Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P63173 RPL38 Y41 Sugiyama Large ribosomal subunit protein eL38 (60S ribosomal protein L38) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
Q5JTH9 RRP12 Y1251 Sugiyama RRP12-like protein None
Q5JTH9 RRP12 Y1253 Sugiyama RRP12-like protein None
O76021 RSL1D1 S314 Sugiyama Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}.
Q8NBS9 TXNDC5 S292 Sugiyama Thioredoxin domain-containing protein 5 (EC 1.8.4.-) (EC 5.3.4.1) (Endoplasmic reticulum resident protein 46) (ER protein 46) (ERp46) (Thioredoxin-like protein p46) Protein disulfide isomerase of the endoplasmic reticulum lumen involved in the formation of disulfide bonds in proteins. Can reduce insulin disulfide bonds. {ECO:0000250|UniProtKB:Q91W90}.
P06899 H2BC11 S37 Sugiyama Histone H2B type 1-J (Histone H2B.1) (Histone H2B.r) (H2B/r) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P06899 H2BC11 S39 Sugiyama Histone H2B type 1-J (Histone H2B.1) (Histone H2B.r) (H2B/r) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P23527 H2BC17 S37 Sugiyama Histone H2B type 1-O (H2B-clustered histone 17) (Histone H2B.2) (Histone H2B.n) (H2B/n) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P23527 H2BC17 S39 Sugiyama Histone H2B type 1-O (H2B-clustered histone 17) (Histone H2B.2) (Histone H2B.n) (H2B/n) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P33778 H2BC3 S37 Sugiyama Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P33778 H2BC3 S39 Sugiyama Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
O75914 PAK3 S143 Sugiyama Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}.
Q14204 DYNC1H1 S3257 Sugiyama Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}.
O94804 STK10 S541 Sugiyama Serine/threonine-protein kinase 10 (EC 2.7.11.1) (Lymphocyte-oriented kinase) Serine/threonine-protein kinase involved in regulation of lymphocyte migration. Phosphorylates MSN, and possibly PLK1. Involved in regulation of lymphocyte migration by mediating phosphorylation of ERM proteins such as MSN. Acts as a negative regulator of MAP3K1/MEKK1. May also act as a cell cycle regulator by acting as a polo kinase kinase: mediates phosphorylation of PLK1 in vitro; however such data require additional evidences in vivo. {ECO:0000269|PubMed:11903060, ECO:0000269|PubMed:12639966, ECO:0000269|PubMed:19255442}.
P16403 H1-2 T167 EPSD|PSP Histone H1.2 (Histone H1c) (Histone H1d) (Histone H1s-1) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
Q9H4F8 SMOC1 Y407 Sugiyama SPARC-related modular calcium-binding protein 1 (Secreted modular calcium-binding protein 1) (SMOC-1) Plays essential roles in both eye and limb development. Probable regulator of osteoblast differentiation. {ECO:0000269|PubMed:20359165, ECO:0000269|PubMed:21194678, ECO:0000269|PubMed:21194680}.
P07333 CSF1R S555 Sugiyama Macrophage colony-stimulating factor 1 receptor (CSF-1 receptor) (CSF-1-R) (CSF-1R) (M-CSF-R) (EC 2.7.10.1) (Proto-oncogene c-Fms) (CD antigen CD115) Tyrosine-protein kinase that acts as a cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of pro-inflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding, including the ERK1/2 and the JNK pathway (PubMed:20504948, PubMed:30982609). Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor. In the central nervous system, may play a role in the development of microglia macrophages (PubMed:30982608). {ECO:0000269|PubMed:12882960, ECO:0000269|PubMed:15117969, ECO:0000269|PubMed:16170366, ECO:0000269|PubMed:16337366, ECO:0000269|PubMed:16648572, ECO:0000269|PubMed:17121910, ECO:0000269|PubMed:18467591, ECO:0000269|PubMed:18814279, ECO:0000269|PubMed:19193011, ECO:0000269|PubMed:19934330, ECO:0000269|PubMed:20489731, ECO:0000269|PubMed:20504948, ECO:0000269|PubMed:20829061, ECO:0000269|PubMed:30982608, ECO:0000269|PubMed:30982609, ECO:0000269|PubMed:7683918}.
Q86UP2 KTN1 S156 Sugiyama Kinectin (CG-1 antigen) (Kinesin receptor) Receptor for kinesin thus involved in kinesin-driven vesicle motility. Accumulates in integrin-based adhesion complexes (IAC) upon integrin aggregation by fibronectin.
P28838 LAP3 S180 Sugiyama Cytosol aminopeptidase (EC 3.4.11.1) (Cysteinylglycine-S-conjugate dipeptidase) (EC 3.4.13.23) (Leucine aminopeptidase 3) (LAP-3) (Leucyl aminopeptidase) (Peptidase S) (Proline aminopeptidase) (EC 3.4.11.5) (Prolyl aminopeptidase) Cytosolic metallopeptidase that catalyzes the removal of unsubstituted N-terminal hydrophobic amino acids from various peptides. The presence of Zn(2+) ions is essential for the peptidase activity, and the association with other cofactors can modulate the substrate spectificity of the enzyme. For instance, in the presence of Mn(2+), it displays a specific Cys-Gly hydrolyzing activity of Cys-Gly-S-conjugates. Involved in the metabolism of glutathione and in the degradation of glutathione S-conjugates, which may play a role in the control of the cell redox status. {ECO:0000250|UniProtKB:P00727}.
P29597 TYK2 S912 Sugiyama Non-receptor tyrosine-protein kinase TYK2 (EC 2.7.10.2) Tyrosine kinase of the non-receptor type involved in numerous cytokines and interferons signaling, which regulates cell growth, development, cell migration, innate and adaptive immunity (PubMed:10542297, PubMed:10995743, PubMed:7657660, PubMed:7813427, PubMed:8232552). Plays both structural and catalytic roles in numerous interleukins and interferons (IFN-alpha/beta) signaling (PubMed:10542297). Associates with heterodimeric cytokine receptor complexes and activates STAT family members including STAT1, STAT3, STAT4 or STAT6 (PubMed:10542297, PubMed:7638186). The heterodimeric cytokine receptor complexes are composed of (1) a TYK2-associated receptor chain (IFNAR1, IL12RB1, IL10RB or IL13RA1), and (2) a second receptor chain associated either with JAK1 or JAK2 (PubMed:10542297, PubMed:25762719, PubMed:7526154, PubMed:7813427). In response to cytokine-binding to receptors, phosphorylates and activates receptors (IFNAR1, IL12RB1, IL10RB or IL13RA1), creating docking sites for STAT members (PubMed:7526154, PubMed:7657660). In turn, recruited STATs are phosphorylated by TYK2 (or JAK1/JAK2 on the second receptor chain), form homo- and heterodimers, translocate to the nucleus, and regulate cytokine/growth factor responsive genes (PubMed:10542297, PubMed:25762719, PubMed:7657660). Negatively regulates STAT3 activity by promototing phosphorylation at a specific tyrosine that differs from the site used for signaling (PubMed:29162862). {ECO:0000269|PubMed:10542297, ECO:0000269|PubMed:10995743, ECO:0000269|PubMed:25762719, ECO:0000269|PubMed:29162862, ECO:0000269|PubMed:7526154, ECO:0000269|PubMed:7638186, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:7813427, ECO:0000269|PubMed:8232552}.
Q8N6T3 ARFGAP1 S277 Sugiyama ADP-ribosylation factor GTPase-activating protein 1 (ARF GAP 1) (ADP-ribosylation factor 1 GTPase-activating protein) (ARF1 GAP) (ARF1-directed GTPase-activating protein) GTPase-activating protein (GAP) for the ADP ribosylation factor 1 (ARF1). Involved in membrane trafficking and /or vesicle transport. Promotes hydrolysis of the ARF1-bound GTP and thus, is required for the dissociation of coat proteins from Golgi-derived membranes and vesicles, a prerequisite for vesicle's fusion with target compartment. Probably regulates ARF1-mediated transport via its interaction with the KDELR proteins and TMED2. Overexpression induces the redistribution of the entire Golgi complex to the endoplasmic reticulum, as when ARF1 is deactivated. Its activity is stimulated by phosphoinosides and inhibited by phosphatidylcholine (By similarity). {ECO:0000250}.
Q9UPT8 ZC3H4 S137 Sugiyama Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
P49760 CLK2 S426 Sugiyama Dual specificity protein kinase CLK2 (EC 2.7.12.1) (CDC-like kinase 2) Dual specificity kinase acting on both serine/threonine and tyrosine-containing substrates. Phosphorylates serine- and arginine-rich (SR) proteins of the spliceosomal complex. May be a constituent of a network of regulatory mechanisms that enable SR proteins to control RNA splicing and can cause redistribution of SR proteins from speckles to a diffuse nucleoplasmic distribution. Acts as a suppressor of hepatic gluconeogenesis and glucose output by repressing PPARGC1A transcriptional activity on gluconeogenic genes via its phosphorylation. Phosphorylates PPP2R5B thereby stimulating the assembly of PP2A phosphatase with the PPP2R5B-AKT1 complex leading to dephosphorylation of AKT1. Phosphorylates: PTPN1, SRSF1 and SRSF3. Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells. Phosphorylates PAGE4 at several serine and threonine residues and this phosphorylation attenuates the ability of PAGE4 to potentiate the transcriptional activator activity of JUN (PubMed:28289210). {ECO:0000269|PubMed:10480872, ECO:0000269|PubMed:19168442, ECO:0000269|PubMed:28289210, ECO:0000269|PubMed:8910305, ECO:0000269|PubMed:9637771}.
O43930 PRKY S81 Sugiyama Putative serine/threonine-protein kinase PRKY (EC 2.7.11.1) None
P51817 PRKX S81 Sugiyama cAMP-dependent protein kinase catalytic subunit PRKX (PrKX) (Protein kinase X) (Protein kinase X-linked) (Serine/threonine-protein kinase PRKX) (EC 2.7.11.1) (Protein kinase PKX1) Serine/threonine protein kinase regulated by and mediating cAMP signaling in cells. Acts through phosphorylation of downstream targets that may include CREB, SMAD6 and PKD1 and has multiple functions in cellular differentiation and epithelial morphogenesis. Regulates myeloid cell differentiation through SMAD6 phosphorylation. Involved in nephrogenesis by stimulating renal epithelial cell migration and tubulogenesis. Also involved in angiogenesis through stimulation of endothelial cell proliferation, migration and vascular-like structure formation. {ECO:0000269|PubMed:12082174, ECO:0000269|PubMed:16236808, ECO:0000269|PubMed:16491121, ECO:0000269|PubMed:17980165, ECO:0000269|PubMed:19367327, ECO:0000269|PubMed:21684272, ECO:0000269|PubMed:9860982}.
P13797 PLS3 S114 Sugiyama Plastin-3 (T-fimbrin) (T-plastin) Actin-bundling protein.
O15347 HMGB3 T22 Sugiyama High mobility group protein B3 (High mobility group protein 2a) (HMG-2a) (High mobility group protein 4) (HMG-4) Multifunctional protein with various roles in different cellular compartments. May act in a redox sensitive manner. Associates with chromatin and binds DNA with a preference for non-canonical DNA structures such as single-stranded DNA. Can bend DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters (By similarity). Proposed to be involved in the innate immune response to nucleic acids by acting as a cytoplasmic promiscuous immunogenic DNA/RNA sensor (By similarity). Negatively regulates B-cell and myeloid cell differentiation. In hematopoietic stem cells may regulate the balance between self-renewal and differentiation. Involved in negative regulation of canonical Wnt signaling (By similarity). {ECO:0000250|UniProtKB:O54879, ECO:0000250|UniProtKB:P09429, ECO:0000250|UniProtKB:P40618}.
Q01538 MYT1 S429 EPSD Myelin transcription factor 1 (MyT1) (Myelin transcription factor I) (MyTI) (PLPB1) (Proteolipid protein-binding protein) Binds to the promoter region of genes encoding proteolipid proteins of the central nervous system. May play a role in the development of neurons and oligodendroglia in the CNS. May regulate a critical transition point in oligodendrocyte lineage development by modulating oligodendrocyte progenitor proliferation relative to terminal differentiation and up-regulation of myelin gene transcription. {ECO:0000269|PubMed:14962745}.
Q9GZR7 DDX24 S166 Sugiyama ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}.
P55010 EIF5 S174 SIGNOR|iPTMNet Eukaryotic translation initiation factor 5 (eIF-5) Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon (PubMed:11166181, PubMed:22813744, PubMed:24319994). In this complex, acts as a GTPase-activating protein, by promoting GTP hydrolysis by eIF2G (EIF2S3) (PubMed:11166181). During scanning, interacts with both EIF1 (via its C-terminal domain (CTD)) and EIF1A (via its NTD) (PubMed:22813744). This interaction with EIF1A contributes to the maintenance of EIF1 within the open 43S PIC (PubMed:24319994). When start codon is recognized, EIF5, via its NTD, induces eIF2G (EIF2S3) to hydrolyze the GTP (PubMed:11166181). Start codon recognition also induces a conformational change of the PIC to a closed state (PubMed:22813744). This change increases the affinity of EIF5-CTD for EIF2-beta (EIF2S2), which allows the release, by an indirect mechanism, of EIF1 from the PIC (PubMed:22813744). Finally, EIF5 stabilizes the PIC in its closed conformation (PubMed:22813744). {ECO:0000269|PubMed:11166181, ECO:0000269|PubMed:22813744, ECO:0000269|PubMed:24319994}.
P61927 RPL37 S50 Sugiyama Large ribosomal subunit protein eL37 (60S ribosomal protein L37) (G1.16) Component of the large ribosomal subunit (PubMed:23636399, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
Q12778 FOXO1 S212 GPS6|SIGNOR|EPSD|PSP Forkhead box protein O1 (Forkhead box protein O1A) (Forkhead in rhabdomyosarcoma) Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress (PubMed:10358076, PubMed:12228231, PubMed:15220471, PubMed:15890677, PubMed:18356527, PubMed:19221179, PubMed:20543840, PubMed:21245099). Binds to the insulin response element (IRE) with consensus sequence 5'-TT[G/A]TTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TT[G/A]TTTAC-3' (PubMed:10358076). Activity suppressed by insulin (PubMed:10358076). Main regulator of redox balance and osteoblast numbers and controls bone mass (By similarity). Orchestrates the endocrine function of the skeleton in regulating glucose metabolism (By similarity). Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity (By similarity). Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP (By similarity). Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1 (By similarity). In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1 (By similarity). Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1 (PubMed:17024043). Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1 (PubMed:18356527, PubMed:19221179). Promotes neural cell death (PubMed:18356527). Mediates insulin action on adipose tissue (By similarity). Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake (By similarity). Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells (By similarity). Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner (PubMed:20543840). Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling (By similarity). Positive regulator of apoptosis in cardiac smooth muscle cells as a result of its transcriptional activation of pro-apoptotic genes (PubMed:19483080). Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis (PubMed:31063815). {ECO:0000250|UniProtKB:A4L7N3, ECO:0000250|UniProtKB:G3V7R4, ECO:0000250|UniProtKB:Q9R1E0, ECO:0000269|PubMed:10358076, ECO:0000269|PubMed:12228231, ECO:0000269|PubMed:15220471, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:17024043, ECO:0000269|PubMed:18356527, ECO:0000269|PubMed:19221179, ECO:0000269|PubMed:19483080, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:31063815}.
Q9BXS6 NUSAP1 S198 Sugiyama Nucleolar and spindle-associated protein 1 (NuSAP) Microtubule-associated protein with the capacity to bundle and stabilize microtubules (By similarity). May associate with chromosomes and promote the organization of mitotic spindle microtubules around them. {ECO:0000250, ECO:0000269|PubMed:12963707}.
Q9UPT8 ZC3H4 S131 Sugiyama Zinc finger CCCH domain-containing protein 4 RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}.
Q8IWZ3 ANKHD1 S1429 Sugiyama Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}.
Q12904 AIMP1 S144 Sugiyama Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}.
O94763 URI1 S188 Sugiyama Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination.
Q9H093 NUAK2 S389 Sugiyama NUAK family SNF1-like kinase 2 (EC 2.7.11.1) (Omphalocele kinase 2) (SNF1/AMP kinase-related kinase) (SNARK) Stress-activated kinase involved in tolerance to glucose starvation. Induces cell-cell detachment by increasing F-actin conversion to G-actin. Expression is induced by CD95 or TNF-alpha, via NF-kappa-B. Protects cells from CD95-mediated apoptosis and is required for the increased motility and invasiveness of CD95-activated tumor cells. Phosphorylates LATS1 and LATS2. Plays a key role in neural tube closure during embryonic development through LATS2 phosphorylation and regulation of the nuclear localization of YAP1 a critical downstream regulatory target in the Hippo signaling pathway (PubMed:32845958). {ECO:0000269|PubMed:14575707, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15345718, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:32845958}.
Q8N5F7 NKAP S266 Sugiyama NF-kappa-B-activating protein Acts as a transcriptional repressor (PubMed:14550261, PubMed:19409814, PubMed:31587868). Plays a role as a transcriptional corepressor of the Notch-mediated signaling required for T-cell development (PubMed:19409814). Also involved in the TNF and IL-1 induced NF-kappa-B activation. Associates with chromatin at the Notch-regulated SKP2 promoter. {ECO:0000269|PubMed:14550261, ECO:0000269|PubMed:19409814, ECO:0000269|PubMed:31587868}.
Q13438 OS9 S529 Sugiyama Protein OS-9 (Amplified in osteosarcoma 9) Lectin component of the HRD1 complex, which functions in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Specifically recognizes and binds improperly folded glycoproteins as well as hyperglycosylated proteins, retain them in the ER, and transfers them to the ubiquitination machinery and promote their degradation (PubMed:18264092, PubMed:18417469, PubMed:19084021, PubMed:19346256, PubMed:21172656, PubMed:24899641). Possible targets include TRPV4 as well as hyperglycosylated HSP90B1 (PubMed:17932042). {ECO:0000269|PubMed:17932042, ECO:0000269|PubMed:18264092, ECO:0000269|PubMed:18417469, ECO:0000269|PubMed:19084021, ECO:0000269|PubMed:19346256, ECO:0000269|PubMed:21172656, ECO:0000269|PubMed:24899641}.
P83881 RPL36A S32 Sugiyama Large ribosomal subunit protein eL42 (60S ribosomal protein L36a) (60S ribosomal protein L44) (Cell growth-inhibiting gene 15 protein) (Cell migration-inducing gene 6 protein) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
Q9P2K8 EIF2AK4 S205 Sugiyama eIF-2-alpha kinase GCN2 (EC 2.7.11.1) (Eukaryotic translation initiation factor 2-alpha kinase 4) (GCN2-like protein) Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability (PubMed:25329545, PubMed:32610081). Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation (By similarity). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion (PubMed:32610081). Binds uncharged tRNAs (By similarity). Required for the translational induction of protein kinase PRKCH following amino acid starvation (By similarity). Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation (PubMed:26102367). Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory (By similarity). Plays a role in neurite outgrowth inhibition (By similarity). Plays a proapoptotic role in response to glucose deprivation (By similarity). Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways (By similarity). Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication (By similarity). {ECO:0000250|UniProtKB:P15442, ECO:0000250|UniProtKB:Q9QZ05, ECO:0000269|PubMed:25329545, ECO:0000269|PubMed:26102367, ECO:0000269|PubMed:32610081}.; FUNCTION: (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation (PubMed:24310610). {ECO:0000269|PubMed:24310610}.
P46777 RPL5 S272 Sugiyama Large ribosomal subunit protein uL18 (60S ribosomal protein L5) Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel. As part of the 5S RNP/5S ribonucleoprotein particle it is an essential component of the LSU, required for its formation and the maturation of rRNAs (PubMed:12962325, PubMed:19061985, PubMed:23636399, PubMed:24120868). It also couples ribosome biogenesis to p53/TP53 activation. As part of the 5S RNP it accumulates in the nucleoplasm and inhibits MDM2, when ribosome biogenesis is perturbed, mediating the stabilization and the activation of TP53 (PubMed:24120868). {ECO:0000269|PubMed:12962325, ECO:0000269|PubMed:19061985, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:24120868}.
A8MYZ6 FOXO6 S214 ochoa Forkhead box protein O6 Transcriptional activator. {ECO:0000250}.
O00567 NOP56 S502 ochoa Nucleolar protein 56 (Nucleolar protein 5A) Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (PubMed:12777385, PubMed:15574333). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:12777385, PubMed:39570315). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
O14646 CHD1 S1355 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O60841 EIF5B S121 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O95149 SNUPN S329 ochoa Snurportin-1 (RNA U transporter 1) Functions as an U snRNP-specific nuclear import adapter. Involved in the trimethylguanosine (m3G)-cap-dependent nuclear import of U snRNPs. Binds specifically to the terminal m3G-cap U snRNAs. {ECO:0000269|PubMed:10209022, ECO:0000269|PubMed:15920472, ECO:0000269|PubMed:16030253, ECO:0000269|PubMed:38413582, ECO:0000269|PubMed:9670026}.
P25054 APC S2205 ochoa Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}.
P29375 KDM5A S1111 ochoa Lysine-specific demethylase 5A (EC 1.14.11.67) (Histone demethylase JARID1A) (Jumonji/ARID domain-containing protein 1A) (Retinoblastoma-binding protein 2) (RBBP-2) ([histone H3]-trimethyl-L-lysine(4) demethylase 5A) Histone demethylase that specifically demethylates 'Lys-4' of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-9', H3 'Lys-27', H3 'Lys-36', H3 'Lys-79' or H4 'Lys-20'. Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-4'. Regulates specific gene transcription through DNA-binding on 5'-CCGCCC-3' motif (PubMed:18270511). May stimulate transcription mediated by nuclear receptors. Involved in transcriptional regulation of Hox proteins during cell differentiation (PubMed:19430464). May participate in transcriptional repression of cytokines such as CXCL12. Plays a role in the regulation of the circadian rhythm and in maintaining the normal periodicity of the circadian clock. In a histone demethylase-independent manner, acts as a coactivator of the CLOCK-BMAL1-mediated transcriptional activation of PER1/2 and other clock-controlled genes and increases histone acetylation at PER1/2 promoters by inhibiting the activity of HDAC1 (By similarity). Seems to act as a transcriptional corepressor for some genes such as MT1F and to favor the proliferation of cancer cells (PubMed:27427228). {ECO:0000250|UniProtKB:Q3UXZ9, ECO:0000269|PubMed:11358960, ECO:0000269|PubMed:15949438, ECO:0000269|PubMed:17320160, ECO:0000269|PubMed:17320161, ECO:0000269|PubMed:17320163, ECO:0000269|PubMed:18270511, ECO:0000269|PubMed:19430464, ECO:0000269|PubMed:27427228}.
P46100 ATRX S316 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P48729 CSNK1A1 S242 psp Casein kinase I isoform alpha (CKI-alpha) (EC 2.7.11.1) (CK1) Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (PubMed:11955436, PubMed:1409656, PubMed:18305108, PubMed:23902688). It can phosphorylate a large number of proteins (PubMed:11955436, PubMed:1409656, PubMed:18305108, PubMed:23902688). Participates in Wnt signaling (PubMed:11955436). Phosphorylates CTNNB1 at 'Ser-45' (PubMed:11955436). May phosphorylate PER1 and PER2 (By similarity). May play a role in segregating chromosomes during mitosis (PubMed:1409656). May play a role in keratin cytoskeleton disassembly and thereby, it may regulate epithelial cell migration (PubMed:23902688). Acts as a positive regulator of mTORC1 and mTORC2 signaling in response to nutrients by mediating phosphorylation of DEPTOR inhibitor (PubMed:22017875, PubMed:22017877). Acts as an inhibitor of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). {ECO:0000250|UniProtKB:Q8BK63, ECO:0000269|PubMed:11955436, ECO:0000269|PubMed:1409656, ECO:0000269|PubMed:18305108, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:23902688}.
P54132 BLM S48 ochoa RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}.
P61247 RPS3A S236 ochoa Small ribosomal subunit protein eS1 (40S ribosomal protein S3a) (v-fos transformation effector protein) (Fte-1) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity). {ECO:0000255|HAMAP-Rule:MF_03122, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P62241 RPS8 S160 ochoa Small ribosomal subunit protein eS8 (40S ribosomal protein S8) Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P78347 GTF2I S818 ochoa General transcription factor II-I (GTFII-I) (TFII-I) (Bruton tyrosine kinase-associated protein 135) (BAP-135) (BTK-associated protein 135) (SRF-Phox1-interacting protein) (SPIN) (Williams-Beuren syndrome chromosomal region 6 protein) Interacts with the basal transcription machinery by coordinating the formation of a multiprotein complex at the C-FOS promoter, and linking specific signal responsive activator complexes. Promotes the formation of stable high-order complexes of SRF and PHOX1 and interacts cooperatively with PHOX1 to promote serum-inducible transcription of a reporter gene deriven by the C-FOS serum response element (SRE). Acts as a coregulator for USF1 by binding independently two promoter elements, a pyrimidine-rich initiator (Inr) and an upstream E-box. Required for the formation of functional ARID3A DNA-binding complexes and for activation of immunoglobulin heavy-chain transcription upon B-lymphocyte activation. {ECO:0000269|PubMed:10373551, ECO:0000269|PubMed:11373296, ECO:0000269|PubMed:16738337}.
Q02539 H1-1 S42 ochoa Histone H1.1 (Histone H1a) Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Also acts as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). {ECO:0000250}.
Q02880 TOP2B S1340 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02952 AKAP12 S783 ochoa A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC).
Q03164 KMT2A S1058 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q08379 GOLGA2 S66 ochoa Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}.
Q08499 PDE4D S373 ochoa 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}.
Q08945 SSRP1 S652 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q12872 SFSWAP S273 ochoa Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}.
Q14686 NCOA6 T935 ochoa Nuclear receptor coactivator 6 (Activating signal cointegrator 2) (ASC-2) (Amplified in breast cancer protein 3) (Cancer-amplified transcriptional coactivator ASC-2) (Nuclear receptor coactivator RAP250) (NRC RAP250) (Nuclear receptor-activating protein, 250 kDa) (Peroxisome proliferator-activated receptor-interacting protein) (PPAR-interacting protein) (PRIP) (Thyroid hormone receptor-binding protein) Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Coactivates expression in an agonist- and AF2-dependent manner. Involved in the coactivation of different nuclear receptors, such as for steroids (GR and ERs), retinoids (RARs and RXRs), thyroid hormone (TRs), vitamin D3 (VDR) and prostanoids (PPARs). Probably functions as a general coactivator, rather than just a nuclear receptor coactivator. May also be involved in the coactivation of the NF-kappa-B pathway. May coactivate expression via a remodeling of chromatin and its interaction with histone acetyltransferase proteins.
Q14847 LASP1 S61 ochoa LIM and SH3 domain protein 1 (LASP-1) (Metastatic lymph node gene 50 protein) (MLN 50) Plays an important role in the regulation of dynamic actin-based, cytoskeletal activities. Agonist-dependent changes in LASP1 phosphorylation may also serve to regulate actin-associated ion transport activities, not only in the parietal cell but also in certain other F-actin-rich secretory epithelial cell types (By similarity). {ECO:0000250}.
Q15648 MED1 S1023 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q16543 CDC37 S120 ochoa Hsp90 co-chaperone Cdc37 (Hsp90 chaperone protein kinase-targeting subunit) (p50Cdc37) [Cleaved into: Hsp90 co-chaperone Cdc37, N-terminally processed] Co-chaperone that binds to numerous kinases and promotes their interaction with the Hsp90 complex, resulting in stabilization and promotion of their activity (PubMed:8666233). Inhibits HSP90AA1 ATPase activity (PubMed:23569206). {ECO:0000269|PubMed:23569206, ECO:0000269|PubMed:8666233}.
Q4LE39 ARID4B S666 ochoa AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}.
Q5TCX8 MAP3K21 S514 ochoa Mitogen-activated protein kinase kinase kinase 21 (EC 2.7.11.25) (Mitogen-activated protein kinase kinase kinase MLK4) (Mixed lineage kinase 4) Negative regulator of TLR4 signaling. Does not activate JNK1/MAPK8 pathway, p38/MAPK14, nor ERK2/MAPK1 pathways. {ECO:0000269|PubMed:21602844}.
Q6AI08 HEATR6 S337 ochoa HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) Amplification-dependent oncogene.
Q6ZU52 KIAA0408 S248 ochoa Uncharacterized protein KIAA0408 None
Q71F56 MED13L S762 ochoa Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway.
Q7Z2Z1 TICRR S1302 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q86YC2 PALB2 S454 ochoa Partner and localizer of BRCA2 Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}.
Q8IYA6 CKAP2L S109 ochoa Cytoskeleton-associated protein 2-like (Radial fiber and mitotic spindle protein) (Radmis) Microtubule-associated protein required for mitotic spindle formation and cell-cycle progression in neural progenitor cells. {ECO:0000269|PubMed:25439729}.
Q8NI08 NCOA7 S89 ochoa Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}.
Q8TEQ0 SNX29 S278 ochoa Sorting nexin-29 (RUN domain-containing protein 2A) None
Q8WYP5 AHCTF1 S2063 ochoa Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}.
Q96C57 CUSTOS T211 ochoa Protein CUSTOS Plays a role in the regulation of Wnt signaling pathway during early development. {ECO:0000250|UniProtKB:A9C3N6}.
Q96GQ7 DDX27 S756 ochoa Probable ATP-dependent RNA helicase DDX27 (EC 3.6.4.13) (DEAD box protein 27) Probable ATP-dependent RNA helicase. Component of the nucleolar ribosomal RNA (rRNA) processing machinery that regulates 3' end formation of ribosomal 47S rRNA (PubMed:25825154). {ECO:0000269|PubMed:25825154}.
Q9BQL6 FERMT1 S169 ochoa Fermitin family homolog 1 (Kindlerin) (Kindlin syndrome protein) (Kindlin-1) (Unc-112-related protein 1) Involved in cell adhesion. Contributes to integrin activation. When coexpressed with talin, potentiates activation of ITGA2B. Required for normal keratinocyte proliferation. Required for normal polarization of basal keratinocytes in skin, and for normal cell shape. Required for normal adhesion of keratinocytes to fibronectin and laminin, and for normal keratinocyte migration to wound sites. May mediate TGF-beta 1 signaling in tumor progression. {ECO:0000269|PubMed:14634021, ECO:0000269|PubMed:17012746, ECO:0000269|PubMed:19804783}.
Q9H501 ESF1 S134 ochoa ESF1 homolog (ABT1-associated protein) May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}.
Q9HCE3 ZNF532 S245 ochoa Zinc finger protein 532 May be involved in transcriptional regulation.
Q9NVP1 DDX18 S74 ochoa ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}.
Q9UKY1 ZHX1 S640 ochoa Zinc fingers and homeoboxes protein 1 Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}.
Q9ULF5 SLC39A10 S539 ochoa Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}.
Q9UQ35 SRRM2 S357 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y2H5 PLEKHA6 S962 ochoa Pleckstrin homology domain-containing family A member 6 (PH domain-containing family A member 6) (Phosphoinositol 3-phosphate-binding protein 3) (PEPP-3) None
Q9Y388 RBMX2 S187 ochoa RNA-binding motif protein, X-linked 2 Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}.
Q9Y426 C2CD2 S522 ochoa C2 domain-containing protein 2 (Transmembrane protein 24-like) None
Q9HAW4 CLSPN S265 EPSD|PSP Claspin (hClaspin) Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}.
Q86WR0 CCDC25 S187 Sugiyama Coiled-coil domain-containing protein 25 Transmembrane receptor that senses neutrophil extracellular traps (NETs) and triggers the ILK-PARVB pathway to enhance cell motility (PubMed:32528174). NETs are mainly composed of DNA fibers and are released by neutrophils to bind pathogens during inflammation (PubMed:32528174). Formation of NETs is also associated with cancer metastasis, NET-DNA acting as a chemotactic factor to attract cancer cells (PubMed:32528174). Specifically binds NETs on its extracellular region, in particular the 8-OHdG-enriched DNA present in NETs, and recruits ILK, initiating the ILK-PARVB cascade to induce cytoskeleton rearrangement and directional migration of cells (PubMed:32528174). In the context of cancer, promotes cancer metastasis by sensing NETs and promoting migration of tumor cells (PubMed:32528174). {ECO:0000269|PubMed:32528174}.
P33778 H2BC3 S33 EPSD Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P62807 H2BC4 S33 ELM Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P07305 H1-0 S71 Sugiyama Histone H1.0 (Histone H1') (Histone H1(0)) [Cleaved into: Histone H1.0, N-terminally processed] Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. The histones H1.0 are found in cells that are in terminal stages of differentiation or that have low rates of cell division.
P20810 CAST S45 SIGNOR Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
A6NKT7 RGPD3 S1472 ochoa RanBP2-like and GRIP domain-containing protein 3 None
O14715 RGPD8 S1471 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14950 MYL12B S20 ochoa|psp Myosin regulatory light chain 12B (MLC-2A) (MLC-2) (Myosin regulatory light chain 2-B, smooth muscle isoform) (Myosin regulatory light chain 20 kDa) (MLC20) (Myosin regulatory light chain MRLC2) (SHUJUN-1) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Phosphorylation triggers actin polymerization in vascular smooth muscle. Implicated in cytokinesis, receptor capping, and cell locomotion. {ECO:0000269|PubMed:10965042}.
O60285 NUAK1 S411 ochoa NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}.
O75264 SMIM24 S108 ochoa Small integral membrane protein 24 None
O75962 TRIO S1809 ochoa Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}.
P0DJD0 RGPD1 S1456 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 S1464 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P11388 TOP2A S1297 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P12883 MYH7 S648 ochoa Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}.
P13533 MYH6 S650 ochoa Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) Muscle contraction.
P19105 MYL12A S19 ochoa|psp Myosin regulatory light chain 12A (Epididymis secretory protein Li 24) (HEL-S-24) (MLC-2B) (Myosin RLC) (Myosin regulatory light chain 2, nonsarcomeric) (Myosin regulatory light chain MRLC3) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (By similarity). {ECO:0000250}.
P20929 NEB S1348 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P24844 MYL9 S20 ochoa|psp Myosin regulatory light polypeptide 9 (20 kDa myosin light chain) (LC20) (MLC-2C) (Myosin RLC) (Myosin regulatory light chain 2, smooth muscle isoform) (Myosin regulatory light chain 9) (Myosin regulatory light chain MRLC1) Myosin regulatory subunit that plays an important role in regulation of both smooth muscle and nonmuscle cell contractile activity via its phosphorylation. Implicated in cytokinesis, receptor capping, and cell locomotion (PubMed:11942626, PubMed:2526655). In myoblasts, may regulate PIEZO1-dependent cortical actomyosin assembly involved in myotube formation (By similarity). {ECO:0000250|UniProtKB:Q9CQ19, ECO:0000269|PubMed:11942626, ECO:0000269|PubMed:2526655}.
P46100 ATRX S815 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P49792 RANBP2 S2447 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49792 RANBP2 S2628 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P78545 ELF3 S254 ochoa ETS-related transcription factor Elf-3 (E74-like factor 3) (Epithelial-restricted with serine box) (Epithelium-restricted Ets protein ESX) (Epithelium-specific Ets transcription factor 1) (ESE-1) Transcriptional activator that binds and transactivates ETS sequences containing the consensus nucleotide core sequence GGA[AT]. Acts synergistically with POU2F3 to transactivate the SPRR2A promoter and with RUNX1 to transactivate the ANGPT1 promoter. Also transactivates collagenase, CCL20, CLND7, FLG, KRT8, NOS2, PTGS2, SPRR2B, TGFBR2 and TGM3 promoters. Represses KRT4 promoter activity. Involved in mediating vascular inflammation. May play an important role in epithelial cell differentiation and tumorigenesis. May be a critical downstream effector of the ERBB2 signaling pathway. May be associated with mammary gland development and involution. Plays an important role in the regulation of transcription with TATA-less promoters in preimplantation embryos, which is essential in preimplantation development (By similarity). {ECO:0000250, ECO:0000269|PubMed:10391676, ECO:0000269|PubMed:10644990, ECO:0000269|PubMed:10773884, ECO:0000269|PubMed:11036073, ECO:0000269|PubMed:11313868, ECO:0000269|PubMed:12414801, ECO:0000269|PubMed:12624109, ECO:0000269|PubMed:12682075, ECO:0000269|PubMed:12713734, ECO:0000269|PubMed:14715662, ECO:0000269|PubMed:14767472, ECO:0000269|PubMed:15075319, ECO:0000269|PubMed:15169914, ECO:0000269|PubMed:15794755, ECO:0000269|PubMed:16307850, ECO:0000269|PubMed:17060315, ECO:0000269|PubMed:9129154, ECO:0000269|PubMed:9234700, ECO:0000269|PubMed:9336459, ECO:0000269|PubMed:9395241, ECO:0000269|PubMed:9417054}.
Q00013 MPP1 S260 ochoa 55 kDa erythrocyte membrane protein (p55) (Membrane protein, palmitoylated 1) Essential regulator of neutrophil polarity. Regulates neutrophil polarization by regulating AKT1 phosphorylation through a mechanism that is independent of PIK3CG activity (By similarity). {ECO:0000250}.
Q12802 AKAP13 S1857 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12873 CHD3 S79 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q13061 TRDN S418 ochoa Triadin Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}.
Q15648 MED1 S1021 ochoa Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q4G0J3 LARP7 S285 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q58EX2 SDK2 S1972 ochoa Protein sidekick-2 Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}.
Q5T5C0 STXBP5 S905 ochoa Syntaxin-binding protein 5 (Lethal(2) giant larvae protein homolog 3) (Tomosyn-1) Plays a regulatory role in calcium-dependent exocytosis and neurotransmitter release. Inhibits membrane fusion between transport vesicles and the plasma membrane. May modulate the assembly of trans-SNARE complexes between transport vesicles and the plasma membrane. Inhibits translocation of GLUT4 from intracellular vesicles to the plasma membrane. Competes with STXBP1 for STX1 binding (By similarity). {ECO:0000250}.
Q6UB99 ANKRD11 S812 ochoa Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}.
Q7L0J3 SV2A S42 psp Synaptic vesicle glycoprotein 2A Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}.
Q7Z3J3 RGPD4 S1472 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q86W34 AMZ2 S230 ochoa Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}.
Q99442 SEC62 S313 ochoa Translocation protein SEC62 (Translocation protein 1) (TP-1) (hTP-1) Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. {ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q99549 MPHOSPH8 S264 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99666 RGPD5 S1471 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q9H1J1 UPF3A S170 ochoa Regulator of nonsense transcripts 3A (Nonsense mRNA reducing factor 3A) (Up-frameshift suppressor 3 homolog A) (hUpf3) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. However, UPF3A is shown to be only marginally active in NMD as compared to UPF3B. Binds spliced mRNA upstream of exon-exon junctions. In vitro, weakly stimulates translation. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16601204}.
Q9HBH9 MKNK2 S74 ochoa|psp MAP kinase-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (MAP kinase signal-integrating kinase 2) (MAPK signal-integrating kinase 2) (Mnk2) Serine/threonine-protein kinase that phosphorylates SFPQ/PSF, HNRNPA1 and EIF4E. May play a role in the response to environmental stress and cytokines. Appears to regulate translation by phosphorylating EIF4E, thus increasing the affinity of this protein for the 7-methylguanosine-containing mRNA cap. Required for mediating PP2A-inhibition-induced EIF4E phosphorylation. Triggers EIF4E shuttling from cytoplasm to nucleus. Isoform 1 displays a high basal kinase activity, but isoform 2 exhibits a very low kinase activity. Acts as a mediator of the suppressive effects of IFNgamma on hematopoiesis. Negative regulator for signals that control generation of arsenic trioxide As(2)O(3)-dependent apoptosis and anti-leukemic responses. Involved in anti-apoptotic signaling in response to serum withdrawal. {ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11463832, ECO:0000269|PubMed:12897141, ECO:0000269|PubMed:16111636, ECO:0000269|PubMed:17965020, ECO:0000269|PubMed:18299328, ECO:0000269|PubMed:20823271, ECO:0000269|PubMed:20927323, ECO:0000269|PubMed:21149447}.
Q9UBU8 MORF4L1 S166 ochoa Mortality factor 4-like protein 1 (MORF-related gene 15 protein) (MRG15) (Protein MSL3-1) (Transcription factor-like protein MRG15) Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. As part of the SIN3B complex represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:12391155, PubMed:14966270, PubMed:37137925). SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Required for homologous recombination repair (HRR) and resistance to mitomycin C (MMC). Involved in the localization of PALB2, BRCA2 and RAD51, but not BRCA1, to DNA-damage foci. {ECO:0000269|PubMed:12391155, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:20332121, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:37137925}.
A6ND36 FAM83G S365 ochoa Protein FAM83G (Protein associated with SMAD1) Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}.
H0YHG0 None S478 ochoa DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}.
H7BZ11 RPL36A-HNRNPH2 S46 ochoa RPL36A-HNRNPH2 readthrough None
O00401 WASL T205 ochoa Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}.
O00757 FBP2 Y216 ochoa Fructose-1,6-bisphosphatase isozyme 2 (FBPase 2) (EC 3.1.3.11) (D-fructose-1,6-bisphosphate 1-phosphohydrolase 2) (Muscle FBPase) Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate in the presence of divalent cations and probably participates in glycogen synthesis from carbohydrate precursors, such as lactate. {ECO:0000269|PubMed:17350621, ECO:0000269|PubMed:18214967, ECO:0000269|PubMed:33977262}.
O00757 FBP2 Y219 ochoa Fructose-1,6-bisphosphatase isozyme 2 (FBPase 2) (EC 3.1.3.11) (D-fructose-1,6-bisphosphate 1-phosphohydrolase 2) (Muscle FBPase) Catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate in the presence of divalent cations and probably participates in glycogen synthesis from carbohydrate precursors, such as lactate. {ECO:0000269|PubMed:17350621, ECO:0000269|PubMed:18214967, ECO:0000269|PubMed:33977262}.
O14646 CHD1 S216 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14646 CHD1 S1511 ochoa Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}.
O14776 TCERG1 S638 ochoa Transcription elongation regulator 1 (TATA box-binding protein-associated factor 2S) (Transcription factor CA150) Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter. {ECO:0000269|PubMed:11604498, ECO:0000269|PubMed:9315662}.
O15381 NVL S211 ochoa Nuclear valosin-containing protein-like (NVLp) (Nuclear VCP-like protein) Participates in the assembly of the telomerase holoenzyme and effecting of telomerase activity via its interaction with TERT (PubMed:22226966). Involved in both early and late stages of the pre-rRNA processing pathways (PubMed:26166824). Spatiotemporally regulates 60S ribosomal subunit biogenesis in the nucleolus (PubMed:15469983, PubMed:16782053, PubMed:26456651, PubMed:29107693). Catalyzes the release of specific assembly factors, such as WDR74, from pre-60S ribosomal particles through the ATPase activity (PubMed:26456651, PubMed:28416111, PubMed:29107693). {ECO:0000269|PubMed:15469983, ECO:0000269|PubMed:16782053, ECO:0000269|PubMed:22226966, ECO:0000269|PubMed:26166824, ECO:0000269|PubMed:26456651, ECO:0000269|PubMed:28416111, ECO:0000269|PubMed:29107693}.
O43159 RRP8 S83 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O43159 RRP8 S85 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O43159 RRP8 S126 ochoa Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}.
O60216 RAD21 S545 ochoa Double-strand-break repair protein rad21 homolog (hHR21) (Nuclear matrix protein 1) (NXP-1) (SCC1 homolog) [Cleaved into: 64-kDa C-terminal product (64-kDa carboxy-terminal product) (65-kDa carboxy-terminal product)] [Double-strand-break repair protein rad21 homolog]: As a member of the cohesin complex, involved in sister chromatid cohesion from the time of DNA replication in S phase to their segregation in mitosis, a function that is essential for proper chromosome segregation, post-replicative DNA repair, and the prevention of inappropriate recombination between repetitive regions (PubMed:11509732). The cohesin complex may also play a role in spindle pole assembly during mitosis (PubMed:11590136). In interphase, cohesins may function in the control of gene expression by binding to numerous sites within the genome (By similarity). May control RUNX1 gene expression (Probable). Binds to and represses APOB gene promoter (PubMed:25575569). May play a role in embryonic gut development, possibly through the regulation of enteric neuron development (By similarity). {ECO:0000250|UniProtKB:Q61550, ECO:0000250|UniProtKB:Q6TEL1, ECO:0000269|PubMed:11509732, ECO:0000269|PubMed:11590136, ECO:0000269|PubMed:25575569, ECO:0000305|PubMed:25575569}.; FUNCTION: [64-kDa C-terminal product]: May promote apoptosis. {ECO:0000269|PubMed:11875078, ECO:0000269|PubMed:12417729}.
O60231 DHX16 S141 ochoa Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}.
O60674 JAK2 S518 psp Tyrosine-protein kinase JAK2 (EC 2.7.10.2) (Janus kinase 2) (JAK-2) Non-receptor tyrosine kinase involved in various processes such as cell growth, development, differentiation or histone modifications. Mediates essential signaling events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type I receptors such as growth hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin receptor (MPL/TPOR); or type II receptors including IFN-alpha, IFN-beta, IFN-gamma and multiple interleukins (PubMed:15690087, PubMed:7615558, PubMed:9657743, PubMed:15899890). Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs proteins (PubMed:15690087, PubMed:9618263). Subsequently, phosphorylates the STATs proteins once they are recruited to the receptor. Phosphorylated STATs then form homodimer or heterodimers and translocate to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation, activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain (PubMed:9657743). Then, STAT5 (STAT5A or STAT5B) is recruited, phosphorylated and activated by JAK2. Once activated, dimerized STAT5 translocates into the nucleus and promotes the transcription of several essential genes involved in the modulation of erythropoiesis. Part of a signaling cascade that is activated by increased cellular retinol and that leads to the activation of STAT5 (STAT5A or STAT5B) (PubMed:21368206). In addition, JAK2 mediates angiotensin-2-induced ARHGEF1 phosphorylation (PubMed:20098430). Plays a role in cell cycle by phosphorylating CDKN1B (PubMed:21423214). Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by specifically mediating phosphorylation of 'Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin (PubMed:19783980). Up-regulates the potassium voltage-gated channel activity of KCNA3 (PubMed:25644777). {ECO:0000269|PubMed:12023369, ECO:0000269|PubMed:15690087, ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20098430, ECO:0000269|PubMed:21368206, ECO:0000269|PubMed:21423214, ECO:0000269|PubMed:25644777, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:9618263, ECO:0000269|PubMed:9657743}.
O60814 H2BC12 Y41 ochoa Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
O60841 EIF5B S107 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S171 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S214 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75128 COBL S260 ochoa Protein cordon-bleu Plays an important role in the reorganization of the actin cytoskeleton. Regulates neuron morphogenesis and increases branching of axons and dendrites. Regulates dendrite branching in Purkinje cells (By similarity). Binds to and sequesters actin monomers (G actin). Nucleates actin polymerization by assembling three actin monomers in cross-filament orientation and thereby promotes growth of actin filaments at the barbed end. Can also mediate actin depolymerization at barbed ends and severing of actin filaments. Promotes formation of cell ruffles. {ECO:0000250, ECO:0000269|PubMed:21816349}.
O75151 PHF2 T541 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O75410 TACC1 S248 ochoa Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}.
O75475 PSIP1 S208 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75475 PSIP1 S482 ochoa PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}.
O75940 SMNDC1 S204 ochoa Survival of motor neuron-related-splicing factor 30 (30 kDa splicing factor SMNrp) (SMN-related protein) (Survival motor neuron domain-containing protein 1) Involved in spliceosome assembly. {ECO:0000269|PubMed:11331295, ECO:0000269|PubMed:11331595, ECO:0000269|PubMed:9817934}.
O76094 SRP72 T606 ochoa Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}.
O76094 SRP72 S610 ochoa Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}.
O76094 SRP72 S611 ochoa Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}.
O94763 URI1 S378 ochoa Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination.
O94880 PHF14 S147 ochoa PHD finger protein 14 Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}.
O94929 ABLIM3 S286 ochoa Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}.
O95453 PARN S619 ochoa Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}.
O95793 STAU1 S278 ochoa Double-stranded RNA-binding protein Staufen homolog 1 Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}.
O95997 PTTG1 S89 psp Securin (Esp1-associated protein) (Pituitary tumor-transforming gene 1 protein) (Tumor-transforming protein 1) (hPTTG) Regulatory protein, which plays a central role in chromosome stability, in the p53/TP53 pathway, and DNA repair. Probably acts by blocking the action of key proteins. During the mitosis, it blocks Separase/ESPL1 function, preventing the proteolysis of the cohesin complex and the subsequent segregation of the chromosomes. At the onset of anaphase, it is ubiquitinated, conducting to its destruction and to the liberation of ESPL1. Its function is however not limited to a blocking activity, since it is required to activate ESPL1. Negatively regulates the transcriptional activity and related apoptosis activity of TP53. The negative regulation of TP53 may explain the strong transforming capability of the protein when it is overexpressed. May also play a role in DNA repair via its interaction with Ku, possibly by connecting DNA damage-response pathways with sister chromatid separation. {ECO:0000269|PubMed:10411507, ECO:0000269|PubMed:11238996, ECO:0000269|PubMed:11371342, ECO:0000269|PubMed:12355087}.
P05455 SSB S350 ochoa Lupus La protein (La autoantigen) (La ribonucleoprotein) (Sjoegren syndrome type B antigen) (SS-B) Binds to the 3' poly(U) terminus of nascent RNA polymerase III transcripts, protecting them from exonuclease digestion and facilitating their folding and maturation (PubMed:2470590, PubMed:3192525). In case of Coxsackievirus B3 infection, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12384597). {ECO:0000269|PubMed:12384597, ECO:0000269|PubMed:2470590, ECO:0000269|PubMed:3192525}.
P07900 HSP90AA1 Y284 ochoa Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}.
P08047 SP1 S698 psp Transcription factor Sp1 Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}.
P09429 HMGB1 S46 psp High mobility group protein B1 (High mobility group protein 1) (HMG-1) Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability (PubMed:33147444). Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as a sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as a danger-associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury (PubMed:27362237). Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors (PubMed:34743181). In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfonyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23446148, PubMed:23519706, PubMed:23994764, PubMed:25048472). Has proangiogdenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidylserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P12682, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:23303669, ECO:0000269|PubMed:25549101, ECO:0000269|PubMed:27362237, ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:34743181, ECO:0000305|PubMed:23446148, ECO:0000305|PubMed:23519706, ECO:0000305|PubMed:23994764, ECO:0000305|PubMed:25048472}.; FUNCTION: Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19360789, PubMed:19446504). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:15014079, ECO:0000269|PubMed:16143102, ECO:0000269|PubMed:17803946, ECO:0000269|PubMed:19446504, ECO:0000269|PubMed:23063560, ECO:0000305|PubMed:19360789, ECO:0000305|PubMed:20123072}.; FUNCTION: In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages (By similarity). {ECO:0000250|UniProtKB:P63158, ECO:0000269|PubMed:20819940, ECO:0000269|PubMed:21395369}.; FUNCTION: In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes (By similarity). {ECO:0000250|UniProtKB:P10103, ECO:0000250|UniProtKB:P63158, ECO:0000250|UniProtKB:P63159, ECO:0000269|PubMed:12765338, ECO:0000269|PubMed:15607795, ECO:0000269|PubMed:15944249, ECO:0000269|PubMed:18250463, ECO:0000269|PubMed:18354232, ECO:0000269|PubMed:18631454, ECO:0000269|PubMed:19064698, ECO:0000269|PubMed:19264983, ECO:0000269|PubMed:20547845, ECO:0000269|PubMed:21660935, ECO:0000269|PubMed:22370717, ECO:0000269|PubMed:22473704, ECO:0000269|PubMed:24474694, ECO:0000269|PubMed:24971542, ECO:0000269|PubMed:25660311, ECO:0000269|Ref.8}.; FUNCTION: (Microbial infection) Critical for entry of human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63 (PubMed:33147444). Regulates the expression of the pro-viral genes ACE2 and CTSL through chromatin modulation (PubMed:33147444). Required for SARS-CoV-2 ORF3A-induced reticulophagy which induces endoplasmic reticulum stress and inflammatory responses and facilitates viral infection (PubMed:35239449). {ECO:0000269|PubMed:33147444, ECO:0000269|PubMed:35239449}.; FUNCTION: (Microbial infection) Associates with the influenza A viral protein NP in the nucleus of infected cells, promoting viral growth and enhancing the activity of the viral polymerase. {ECO:0000269|PubMed:22696656}.; FUNCTION: (Microbial infection) Promotes Epstein-Barr virus (EBV) latent-to-lytic switch by sustaining the expression of the viral transcription factor BZLF1 that acts as a molecular switch to induce the transition from the latent to the lytic or productive phase of the virus cycle. Mechanistically, participates in EBV reactivation through the NLRP3 inflammasome. {ECO:0000269|PubMed:34922257}.; FUNCTION: (Microbial infection) Facilitates dengue virus propagation via interaction with the untranslated regions of viral genome. In turn, this interaction with viral RNA may regulate secondary structure of dengue RNA thus facilitating its recognition by the replication complex. {ECO:0000269|PubMed:34971702}.
P09874 PARP1 S519 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P11388 TOP2A S1471 ochoa DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}.
P15311 EZR S249 ochoa Ezrin (Cytovillin) (Villin-2) (p81) Probably involved in connections of major cytoskeletal structures to the plasma membrane. In epithelial cells, required for the formation of microvilli and membrane ruffles on the apical pole. Along with PLEKHG6, required for normal macropinocytosis. {ECO:0000269|PubMed:17881735, ECO:0000269|PubMed:18270268, ECO:0000269|PubMed:19111582}.
P21397 MAOA S383 ochoa Amine oxidase [flavin-containing] A (EC 1.4.3.21) (EC 1.4.3.4) (Monoamine oxidase type A) (MAO-A) Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues (PubMed:18391214, PubMed:20493079, PubMed:24169519, PubMed:8316221). Preferentially oxidizes serotonin (PubMed:20493079, PubMed:24169519). Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline (By similarity). {ECO:0000250|UniProtKB:P21396, ECO:0000269|PubMed:18391214, ECO:0000269|PubMed:20493079, ECO:0000269|PubMed:24169519, ECO:0000269|PubMed:8316221}.
P24534 EEF1B2 S90 ochoa Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}.
P24588 AKAP5 S53 ochoa A-kinase anchor protein 5 (AKAP-5) (A-kinase anchor protein 79 kDa) (AKAP 79) (H21) (cAMP-dependent protein kinase regulatory subunit II high affinity-binding protein) Multivalent scaffold protein that anchors the cAMP-dependent protein kinase/PKA to cytoskeletal and/or organelle-associated proteins, targeting the signal carried by cAMP to specific intracellular effectors (PubMed:1512224). Association with the beta2-adrenergic receptor (beta2-AR) not only regulates beta2-AR signaling pathway, but also the activation by PKA by switching off the beta2-AR signaling cascade. Plays a role in long term synaptic potentiation by regulating protein trafficking from the dendritic recycling endosomes to the plasma membrane and controlling both structural and functional plasticity at excitatory synapses (PubMed:25589740). In hippocampal pyramidal neurons, recruits KCNK2/TREK-1 channel at postsynaptic dense bodies microdomains and converts it to a leak channel no longer sensitive to stimulation by arachidonic acid, acidic pH or mechanical stress, nor inhibited by Gq-coupled receptors but still under the negative control of Gs-coupled receptors (By similarity). Associates with ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where it recruits NFATC2/NFAT1 and couples store-operated Ca(2+) influx to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses (PubMed:33941685). {ECO:0000250|UniProtKB:D3YVF0, ECO:0000269|PubMed:1512224, ECO:0000269|PubMed:25589740, ECO:0000269|PubMed:33941685}.
P27348 YWHAQ S92 ochoa 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}.
P28715 ERCC5 S1067 ochoa DNA excision repair protein ERCC-5 (EC 3.1.-.-) (DNA repair protein complementing XP-G cells) (XPG) (Xeroderma pigmentosum group G-complementing protein) Single-stranded structure-specific DNA endonuclease involved in DNA excision repair (PubMed:32522879, PubMed:32821917, PubMed:7651464, PubMed:8078765, PubMed:8090225, PubMed:8206890). Makes the 3'incision in DNA nucleotide excision repair (NER) (PubMed:32522879, PubMed:32821917, PubMed:8078765, PubMed:8090225). Binds and bends DNA repair bubble substrate and breaks base stacking at the single-strand/double-strand DNA junction of the DNA bubble (PubMed:32522879). Plays a role in base excision repair (BER) by promoting the binding of DNA glycosylase NTHL1 to its substrate and increasing NTHL1 catalytic activity that removes oxidized pyrimidines from DNA (PubMed:9927729). Involved in transcription-coupled nucleotide excision repair (TCR) which allows RNA polymerase II-blocking lesions to be rapidly removed from the transcribed strand of active genes (PubMed:16246722). Functions during the initial step of TCR in cooperation with ERCC6/CSB to recognized stalled RNA polymerase II (PubMed:16246722). Also, stimulates ERCC6/CSB binding to the DNA repair bubble and ERCC6/CSB ATPase activity (PubMed:16246722). Required for DNA replication fork maintenance and preservation of genomic stability (PubMed:26833090, PubMed:32522879). Involved in homologous recombination repair (HRR) induced by DNA replication stress by recruiting RAD51, BRCA2, and PALB2 to the damaged DNA site (PubMed:26833090). In TFIIH stimulates the 5'-3' helicase activity of XPD/ERCC2 and the DNA translocase activity of XPB/ERCC3 (PubMed:31253769). During HRR, binds to the replication fork with high specificity and stabilizes it (PubMed:32522879). Also, acts upstream of HRR, to promote the release of BRCA1 from DNA (PubMed:26833090). {ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:26833090, ECO:0000269|PubMed:31253769, ECO:0000269|PubMed:32522879, ECO:0000269|PubMed:32821917, ECO:0000269|PubMed:7651464, ECO:0000269|PubMed:8078765, ECO:0000269|PubMed:8090225, ECO:0000269|PubMed:8206890, ECO:0000269|PubMed:9927729}.
P29374 ARID4A S538 ochoa AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}.
P29966 MARCKS S163 ochoa|psp Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}.
P30307 CDC25C S247 psp M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}.
P30414 NKTR S575 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P30414 NKTR S891 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
P35749 MYH11 S559 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P35749 MYH11 S1266 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P35749 MYH11 S1635 ochoa Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) Muscle contraction.
P40926 MDH2 S317 ochoa Malate dehydrogenase, mitochondrial (EC 1.1.1.37) None
P42285 MTREX S40 ochoa Exosome RNA helicase MTR4 (EC 3.6.4.13) (ATP-dependent RNA helicase DOB1) (ATP-dependent RNA helicase SKIV2L2) (Superkiller viralicidic activity 2-like 2) (TRAMP-like complex helicase) Catalyzes the ATP-dependent unwinding of RNA duplexes with a single-stranded 3' RNA extension (PubMed:27871484, PubMed:29844170, PubMed:29906447). Central subunit of many protein complexes, namely TRAMP-like, nuclear exosome targeting (NEXT) and poly(A) tail exosome targeting (PAXT) (PubMed:21855801, PubMed:27871484, PubMed:29844170). NEXT functions as an RNA exosome cofactor that directs a subset of non-coding short-lived RNAs for exosomal degradation. NEXT is involved in surveillance and turnover of aberrant transcripts and non-coding RNAs (PubMed:27871484, PubMed:29844170). PAXT directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor ZCCHC8, which links to RNA-binding protein adapters (PubMed:27871484). Associated with the RNA exosome complex and involved in the 3'-processing of the 7S pre-RNA to the mature 5.8S rRNA (PubMed:17412707, PubMed:29107693). May be involved in pre-mRNA splicing. In the context of NEXT complex can also in vitro unwind DNA:RNA heteroduplexes with a 3' poly (A) RNA tracking strand (PubMed:29844170). Can promote unwinding and degradation of structured RNA substrates when associated with the nuclear exosome and its cofactors. Can displace a DNA strand while translocating on RNA to ultimately degrade the RNA within a DNA/RNA heteroduplex (PubMed:29906447). Plays a role in DNA damage response (PubMed:29902117). {ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:21855801, ECO:0000269|PubMed:27871484, ECO:0000269|PubMed:29107693, ECO:0000269|PubMed:29844170, ECO:0000269|PubMed:29902117, ECO:0000269|PubMed:29906447}.
P42568 MLLT3 S294 ochoa Protein AF-9 (ALL1-fused gene from chromosome 9 protein) (Myeloid/lymphoid or mixed-lineage leukemia translocated to chromosome 3 protein) (YEATS domain-containing protein 3) Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948, PubMed:25417107, PubMed:27105114, PubMed:27545619). Specifically recognizes and binds acylated histone H3, with a preference for histone H3 that is crotonylated (PubMed:25417107, PubMed:27105114, PubMed:27545619, PubMed:30374167, PubMed:30385749). Crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25417107, PubMed:27105114, PubMed:27545619). Recognizes and binds histone H3 crotonylated at 'Lys-9' (H3K9cr), and with slightly lower affinity histone H3 crotonylated at 'Lys-18' (H3K18cr) (PubMed:27105114). Also recognizes and binds histone H3 acetylated and butyrylated at 'Lys-9' (H3K9ac and H3K9bu, respectively), but with lower affinity than crotonylated histone H3 (PubMed:25417107, PubMed:27105114, PubMed:30385749). In the SEC complex, MLLT3 is required to recruit the complex to crotonylated histones (PubMed:27105114, PubMed:27545619). Recruitment of the SEC complex to crotonylated histones promotes recruitment of DOT1L on active chromatin to deposit histone H3 'Lys-79' methylation (H3K79me) (PubMed:25417107). Plays a key role in hematopoietic stem cell (HSC) maintenance by preserving, rather than conferring, HSC stemness (PubMed:31776511). Acts by binding to the transcription start site of active genes in HSCs and sustaining level of H3K79me2, probably by recruiting DOT1L (PubMed:31776511). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:25417107, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:27545619, ECO:0000269|PubMed:30374167, ECO:0000269|PubMed:30385749, ECO:0000269|PubMed:31776511}.
P42696 RBM34 S90 ochoa RNA-binding protein 34 (RNA-binding motif protein 34) None
P42696 RBM34 S92 ochoa RNA-binding protein 34 (RNA-binding motif protein 34) None
P43243 MATR3 S604 ochoa Matrin-3 May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}.
P46013 MKI67 S1142 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 S1628 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46013 MKI67 S2355 ochoa Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
P46100 ATRX S706 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S784 ochoa|psp Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX S812 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46100 ATRX Y1009 ochoa Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}.
P46821 MAP1B S2280 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P48163 ME1 S336 psp NADP-dependent malic enzyme (NADP-ME) (EC 1.1.1.40) (Malic enzyme 1) Catalyzes the oxidative decarboxylation of (S)-malate in the presence of NADP(+) and divalent metal ions, and decarboxylation of oxaloacetate. {ECO:0000269|PubMed:7622060, ECO:0000269|PubMed:7757881, ECO:0000269|PubMed:8187880, ECO:0000269|PubMed:8804575}.
P49792 RANBP2 S1981 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P49796 RGS3 S1044 ochoa Regulator of G-protein signaling 3 (RGP3) (RGS3) Down-regulates signaling from heterotrimeric G-proteins by increasing the GTPase activity of the alpha subunits, thereby driving them into their inactive GDP-bound form. Down-regulates G-protein-mediated release of inositol phosphates and activation of MAP kinases. {ECO:0000269|PubMed:10749886, ECO:0000269|PubMed:11294858, ECO:0000269|PubMed:8602223, ECO:0000269|PubMed:9858594}.
P51608 MECP2 S357 ochoa Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}.
P53999 SUB1 S46 ochoa Activated RNA polymerase II transcriptional coactivator p15 (Positive cofactor 4) (PC4) (SUB1 homolog) (p14) General coactivator that functions cooperatively with TAFs and mediates functional interactions between upstream activators and the general transcriptional machinery. May be involved in stabilizing the multiprotein transcription complex. Binds single-stranded DNA. Also binds, in vitro, non-specifically to double-stranded DNA (ds DNA). {ECO:0000269|PubMed:16605275, ECO:0000269|PubMed:16689930, ECO:0000269|PubMed:7628453, ECO:0000269|PubMed:8062391, ECO:0000269|PubMed:8062392, ECO:0000269|PubMed:9360603, ECO:0000269|PubMed:9482861}.
P55198 MLLT6 S261 ochoa Protein AF-17 (ALL1-fused gene from chromosome 17 protein) None
P56211 ARPP19 S46 psp cAMP-regulated phosphoprotein 19 (ARPP-19) Protein phosphatase inhibitor that specifically inhibits protein phosphatase 2A (PP2A) during mitosis (PubMed:38123684). Inhibition of PP2A is enhanced when ARPP19 is phosphorylated (PubMed:38123684). When phosphorylated at Ser-62 during mitosis, specifically interacts with PPP2R2D (PR55-delta) and inhibits its activity, leading to inactivation of PP2A, an essential condition to keep cyclin-B1-CDK1 activity high during M phase (PubMed:21164014). May indirectly enhance GAP-43 expression (By similarity). {ECO:0000250|UniProtKB:Q712U5, ECO:0000269|PubMed:21164014, ECO:0000269|PubMed:38123684}.
P57053 H2BC12L Y41 ochoa Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P58876 H2BC5 Y41 ochoa Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P61006 RAB8A S185 ochoa Ras-related protein Rab-8A (EC 3.6.5.2) (Oncogene c-mel) The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. RAB8A is involved in polarized vesicular trafficking and neurotransmitter release. Together with RAB11A, RAB3IP, the exocyst complex, PARD3, PRKCI, ANXA2, CDC42 and DNMBP promotes transcytosis of PODXL to the apical membrane initiation sites (AMIS), apical surface formation and lumenogenesis (PubMed:20890297). Regulates the compacted morphology of the Golgi (PubMed:26209634). Together with MYO5B and RAB11A participates in epithelial cell polarization (PubMed:21282656). Also involved in membrane trafficking to the cilium and ciliogenesis (PubMed:21844891, PubMed:30398148, PubMed:20631154). Together with MICALL2, may also regulate adherens junction assembly (By similarity). May play a role in insulin-induced transport to the plasma membrane of the glucose transporter GLUT4 and therefore play a role in glucose homeostasis (By similarity). Involved in autophagy (PubMed:27103069). Participates in the export of a subset of neosynthesized proteins through a Rab8-Rab10-Rab11-dependent endososomal export route (PubMed:32344433). Targeted to and stabilized on stressed lysosomes through LRRK2 phosphorylation (PubMed:30209220). Suppresses stress-induced lysosomal enlargement through EHBP1 and EHNP1L1 effector proteins (PubMed:30209220). {ECO:0000250|UniProtKB:P35280, ECO:0000250|UniProtKB:P55258, ECO:0000269|PubMed:20631154, ECO:0000269|PubMed:20890297, ECO:0000269|PubMed:21282656, ECO:0000269|PubMed:21844891, ECO:0000269|PubMed:26209634, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:32344433}.
P62807 H2BC4 Y41 ochoa Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P82979 SARNP S165 ochoa SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}.
P83881 RPL36A S46 ochoa Large ribosomal subunit protein eL42 (60S ribosomal protein L36a) (60S ribosomal protein L44) (Cell growth-inhibiting gene 15 protein) (Cell migration-inducing gene 6 protein) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P83916 CBX1 S91 ochoa Chromobox protein homolog 1 (HP1Hsbeta) (Heterochromatin protein 1 homolog beta) (HP1 beta) (Heterochromatin protein p25) (M31) (Modifier 1 protein) (p25beta) Component of heterochromatin. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. Interaction with lamin B receptor (LBR) can contribute to the association of the heterochromatin with the inner nuclear membrane. {ECO:0000250|UniProtKB:P83917}.
Q01804 OTUD4 S1006 ochoa OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}.
Q01831 XPC S350 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02297 NRG1 S32 ochoa Pro-neuregulin-1, membrane-bound isoform (Pro-NRG1) [Cleaved into: Neuregulin-1 (Acetylcholine receptor-inducing activity) (ARIA) (Breast cancer cell differentiation factor p45) (Glial growth factor) (Heregulin) (HRG) (Neu differentiation factor) (Sensory and motor neuron-derived factor)] Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; stimulating lobuloalveolar budding and milk production in the mammary gland and inducing differentiation of mammary tumor cells; stimulating Schwann cell proliferation; implication in the development of the myocardium such as trabeculation of the developing heart. Isoform 10 may play a role in motor and sensory neuron development. Binds to ERBB4 (PubMed:10867024, PubMed:7902537). Binds to ERBB3 (PubMed:20682778). Acts as a ligand for integrins and binds (via EGF domain) to integrins ITGAV:ITGB3 or ITGA6:ITGB4. Its binding to integrins and subsequent ternary complex formation with integrins and ERRB3 are essential for NRG1-ERBB signaling. Induces the phosphorylation and activation of MAPK3/ERK1, MAPK1/ERK2 and AKT1 (PubMed:20682778). Ligand-dependent ERBB4 endocytosis is essential for the NRG1-mediated activation of these kinases in neurons (By similarity). {ECO:0000250|UniProtKB:P43322, ECO:0000269|PubMed:10867024, ECO:0000269|PubMed:1348215, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:7902537}.
Q02880 TOP2B Y1238 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B Y1558 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q02880 TOP2B S1581 ochoa DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}.
Q03111 MLLT1 S315 ochoa Protein ENL (YEATS domain-containing protein 1) Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}.
Q03164 KMT2A S1056 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A S1241 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03164 KMT2A S2319 ochoa Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}.
Q03468 ERCC6 S1340 ochoa DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}.
Q08379 GOLGA2 S37 ochoa|psp Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}.
Q08945 SSRP1 S621 ochoa FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}.
Q09666 AHNAK S5735 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q09666 AHNAK S5784 ochoa Neuroblast differentiation-associated protein AHNAK (Desmoyokin) May be required for neuronal cell differentiation.
Q12802 AKAP13 S1750 ochoa A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}.
Q12873 CHD3 T715 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q12913 PTPRJ S1011 ochoa Receptor-type tyrosine-protein phosphatase eta (Protein-tyrosine phosphatase eta) (R-PTP-eta) (EC 3.1.3.48) (Density-enhanced phosphatase 1) (DEP-1) (HPTP eta) (Protein-tyrosine phosphatase receptor type J) (R-PTP-J) (CD antigen CD148) Tyrosine phosphatase which dephosphorylates or contributes to the dephosphorylation of CTNND1, FLT3, PDGFRB, MET, KDR, LYN, SRC, MAPK1, MAPK3, EGFR, TJP1, OCLN, PIK3R1 and PIK3R2 (PubMed:10821867, PubMed:12062403, PubMed:12370829, PubMed:12475979, PubMed:18348712, PubMed:19494114, PubMed:19922411, PubMed:21262971). Plays a role in cell adhesion, migration, proliferation and differentiation (PubMed:12370829, PubMed:14709717, PubMed:16682945, PubMed:19836242). Has a role in megakaryocytes and platelet formation (PubMed:30591527). Involved in vascular development (By similarity). Regulator of macrophage adhesion and spreading (By similarity). Positively affects cell-matrix adhesion (By similarity). Positive regulator of platelet activation and thrombosis. Negative regulator of cell proliferation (PubMed:16682945). Negative regulator of PDGF-stimulated cell migration; through dephosphorylation of PDGFR (PubMed:21091576). Positive regulator of endothelial cell survival, as well as of VEGF-induced SRC and AKT activation; through KDR dephosphorylation (PubMed:18936167). Negative regulator of EGFR signaling pathway; through EGFR dephosphorylation (PubMed:19836242). Enhances the barrier function of epithelial junctions during reassembly (PubMed:19332538). Negatively regulates T-cell receptor (TCR) signaling (PubMed:11259588, PubMed:9531590, PubMed:9780142). Upon T-cell TCR activation, it is up-regulated and excluded from the immunological synapses, while upon T-cell-antigen presenting cells (APC) disengagement, it is no longer excluded and can dephosphorylate PLCG1 and LAT to down-regulate prolongation of signaling (PubMed:11259588, PubMed:12913111). {ECO:0000250|UniProtKB:Q64455, ECO:0000269|PubMed:10821867, ECO:0000269|PubMed:11259588, ECO:0000269|PubMed:12062403, ECO:0000269|PubMed:12370829, ECO:0000269|PubMed:12475979, ECO:0000269|PubMed:12913111, ECO:0000269|PubMed:14709717, ECO:0000269|PubMed:16682945, ECO:0000269|PubMed:18348712, ECO:0000269|PubMed:18936167, ECO:0000269|PubMed:19332538, ECO:0000269|PubMed:19494114, ECO:0000269|PubMed:19836242, ECO:0000269|PubMed:19922411, ECO:0000269|PubMed:21091576, ECO:0000269|PubMed:21262971, ECO:0000269|PubMed:30591527, ECO:0000269|PubMed:9531590, ECO:0000269|PubMed:9780142}.; FUNCTION: [Isoform 2]: Activates angiogenesis and cell migration (PubMed:28052032). Downregulates the expression of the endothelial adhesion molecules ICAM1 and VCAM1 (PubMed:28052032). {ECO:0000269|PubMed:28052032}.
Q13061 TRDN S605 ochoa Triadin Contributes to the regulation of lumenal Ca2+ release via the sarcoplasmic reticulum calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Required for normal organization of the triad junction, where T-tubules and the sarcoplasmic reticulum terminal cisternae are in close contact (By similarity). Required for normal skeletal muscle strength. Plays a role in excitation-contraction coupling in the heart and in regulating the rate of heart beats. {ECO:0000250|UniProtKB:E9Q9K5, ECO:0000269|PubMed:22422768}.
Q13177 PAK2 S64 ochoa|psp Serine/threonine-protein kinase PAK 2 (EC 2.7.11.1) (Gamma-PAK) (PAK65) (S6/H4 kinase) (p21-activated kinase 2) (PAK-2) (p58) [Cleaved into: PAK-2p27 (p27); PAK-2p34 (p34) (C-t-PAK2)] Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation (PubMed:12853446, PubMed:16617111, PubMed:19273597, PubMed:19923322, PubMed:33693784, PubMed:7744004, PubMed:9171063). Acts as a downstream effector of the small GTPases CDC42 and RAC1 (PubMed:7744004). Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues (PubMed:7744004). Full-length PAK2 stimulates cell survival and cell growth (PubMed:7744004). Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration (PubMed:21317288). Phosphorylates JUN and plays an important role in EGF-induced cell proliferation (PubMed:21177766). Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP (PubMed:21724829). Phosphorylates CASP7, thereby preventing its activity (PubMed:21555521, PubMed:27889207). Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis (PubMed:19273597, PubMed:19923322). On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway (PubMed:12853446, PubMed:16617111, PubMed:9171063). Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation (PubMed:15234964). {ECO:0000269|PubMed:12853446, ECO:0000269|PubMed:15234964, ECO:0000269|PubMed:16617111, ECO:0000269|PubMed:19273597, ECO:0000269|PubMed:19923322, ECO:0000269|PubMed:21177766, ECO:0000269|PubMed:21317288, ECO:0000269|PubMed:21555521, ECO:0000269|PubMed:21724829, ECO:0000269|PubMed:27889207, ECO:0000269|PubMed:33693784, ECO:0000269|PubMed:7744004, ECO:0000269|PubMed:9171063}.
Q13557 CAMK2D S334 ochoa|psp Calcium/calmodulin-dependent protein kinase type II subunit delta (CaM kinase II subunit delta) (CaMK-II subunit delta) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program (PubMed:17179159). Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis (PubMed:16690701). May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor. In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6PHZ2, ECO:0000269|PubMed:16690701, ECO:0000269|PubMed:17179159}.
Q13610 PWP1 S249 ochoa Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}.
Q13796 SHROOM2 S1425 ochoa Protein Shroom2 (Apical-like protein) (Protein APXL) May be involved in endothelial cell morphology changes during cell spreading. In the retinal pigment epithelium, may regulate the biogenesis of melanosomes and promote their association with the apical cell surface by inducing gamma-tubulin redistribution (By similarity). {ECO:0000250}.
Q14004 CDK13 S291 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14004 CDK13 S528 ochoa Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}.
Q14185 DOCK1 S1704 ochoa Dedicator of cytokinesis protein 1 (180 kDa protein downstream of CRK) (DOCK180) Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Along with DOCK1, mediates CRK/CRKL regulation of epithelial and endothelial cell spreading and migration on type IV collagen (PubMed:19004829). Functions as a guanine nucleotide exchange factor (GEF), which activates Rac Rho small GTPases by exchanging bound GDP for free GTP. Its GEF activity may be enhanced by ELMO1 (PubMed:8657152). {ECO:0000269|PubMed:19004829, ECO:0000269|PubMed:8657152}.
Q14690 PDCD11 S1454 ochoa Protein RRP5 homolog (NF-kappa-B-binding protein) (NFBP) (Programmed cell death protein 11) Essential for the generation of mature 18S rRNA, specifically necessary for cleavages at sites A0, 1 and 2 of the 47S precursor. Directly interacts with U3 snoRNA. {ECO:0000269|PubMed:17654514}.; FUNCTION: Involved in the biogenesis of rRNA. {ECO:0000250}.
Q14865 ARID5B S468 ochoa AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}.
Q15046 KARS1 S49 psp Lysine--tRNA ligase (EC 2.7.7.-) (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS) Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:18029264, PubMed:18272479, PubMed:9278442). When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages (PubMed:15851690). Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity (PubMed:14975237, PubMed:19524539, PubMed:23159739, PubMed:5338216). {ECO:0000269|PubMed:14975237, ECO:0000269|PubMed:15851690, ECO:0000269|PubMed:18029264, ECO:0000269|PubMed:19524539, ECO:0000269|PubMed:28887846, ECO:0000269|PubMed:5338216, ECO:0000269|PubMed:9278442}.; FUNCTION: (Microbial infection) Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation. {ECO:0000269|PubMed:15220430}.
Q15052 ARHGEF6 Y644 ochoa Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) Acts as a RAC1 guanine nucleotide exchange factor (GEF).
Q15059 BRD3 S254 ochoa Bromodomain-containing protein 3 (RING3-like protein) Chromatin reader that recognizes and binds acetylated histones, thereby controlling gene expression and remodeling chromatin structures (PubMed:18406326, PubMed:22464331, PubMed:27105114, PubMed:32895492). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:29567837, PubMed:32895492). In vitro, binds acetylated lysine residues on the N-terminus of histone H2A, H2B, H3 and H4 (PubMed:18406326). Involved in endoderm differentiation via its association with long non-coding RNA (lncRNA) DIGIT: BRD3 undergoes liquid-liquid phase separation upon binding to lncRNA DIGIT, promoting binding to histone H3 acetylated at 'Lys-18' (H3K18ac) to induce endoderm gene expression (PubMed:32895492). Also binds non-histones acetylated proteins, such as GATA1 and GATA2: regulates transcription by promoting the binding of the transcription factor GATA1 to its targets (By similarity). {ECO:0000250|UniProtKB:Q8K2F0, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:29567837, ECO:0000269|PubMed:32895492}.
Q15059 BRD3 S682 ochoa Bromodomain-containing protein 3 (RING3-like protein) Chromatin reader that recognizes and binds acetylated histones, thereby controlling gene expression and remodeling chromatin structures (PubMed:18406326, PubMed:22464331, PubMed:27105114, PubMed:32895492). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:29567837, PubMed:32895492). In vitro, binds acetylated lysine residues on the N-terminus of histone H2A, H2B, H3 and H4 (PubMed:18406326). Involved in endoderm differentiation via its association with long non-coding RNA (lncRNA) DIGIT: BRD3 undergoes liquid-liquid phase separation upon binding to lncRNA DIGIT, promoting binding to histone H3 acetylated at 'Lys-18' (H3K18ac) to induce endoderm gene expression (PubMed:32895492). Also binds non-histones acetylated proteins, such as GATA1 and GATA2: regulates transcription by promoting the binding of the transcription factor GATA1 to its targets (By similarity). {ECO:0000250|UniProtKB:Q8K2F0, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:27105114, ECO:0000269|PubMed:29567837, ECO:0000269|PubMed:32895492}.
Q15147 PLCB4 S890 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}.
Q15147 PLCB4 S891 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}.
Q15287 RNPS1 S27 ochoa RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Enhances the formation of the ATP-dependent A complex of the spliceosome. Involved in both constitutive splicing and, in association with SRP54 and TRA2B/SFRS10, in distinctive modulation of alternative splicing in a substrate-dependent manner. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Participates in mRNA 3'-end cleavage. Involved in UPF2-dependent nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Also mediates increase of mRNA abundance and translational efficiency. Binds spliced mRNA 20-25 nt upstream of exon-exon junctions. {ECO:0000269|PubMed:10449421, ECO:0000269|PubMed:11546874, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:14729963, ECO:0000269|PubMed:14752011, ECO:0000269|PubMed:15684395, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:17586820, ECO:0000269|PubMed:22203037}.
Q15397 PUM3 S103 ochoa Pumilio homolog 3 (HBV X-transactivated gene 5 protein) (HBV XAg-transactivated protein 5) (Minor histocompatibility antigen HA-8) (HLA-HA8) Inhibits the poly(ADP-ribosyl)ation activity of PARP1 and the degradation of PARP1 by CASP3 following genotoxic stress (PubMed:21266351). Binds to double-stranded RNA or DNA without sequence specificity (PubMed:25512524). Involved in development of the eye and of primordial germ cells (By similarity). {ECO:0000250|UniProtKB:X1WGX5, ECO:0000269|PubMed:21266351, ECO:0000269|PubMed:25512524}.
Q15424 SAFB S507 ochoa Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}.
Q15650 TRIP4 S276 ochoa Activating signal cointegrator 1 (ASC-1) (Thyroid receptor-interacting protein 4) (TR-interacting protein 4) (TRIP-4) Transcription coactivator which associates with nuclear receptors, transcriptional coactivators including EP300, CREBBP and NCOA1, and basal transcription factors like TBP and TFIIA to facilitate nuclear receptors-mediated transcription (PubMed:10454579, PubMed:25219498). May thereby play an important role in establishing distinct coactivator complexes under different cellular conditions (PubMed:10454579, PubMed:25219498). Plays a role in thyroid hormone receptor and estrogen receptor transactivation (PubMed:10454579, PubMed:25219498). Also involved in androgen receptor transactivation (By similarity). Plays a pivotal role in the transactivation of NF-kappa-B, SRF and AP1 (PubMed:12077347). Acts as a mediator of transrepression between nuclear receptor and either AP1 or NF-kappa-B (PubMed:12077347). May play a role in the development of neuromuscular junction (PubMed:26924529). May play a role in late myogenic differentiation (By similarity). Also functions as part of the RQC trigger (RQT) complex that activates the ribosome quality control (RQC) pathway, a pathway that degrades nascent peptide chains during problematic translation (PubMed:32099016, PubMed:32579943, PubMed:36302773). {ECO:0000250|UniProtKB:Q9QXN3, ECO:0000269|PubMed:10454579, ECO:0000269|PubMed:12077347, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26924529, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:36302773}.
Q15651 HMGN3 S78 ochoa High mobility group nucleosome-binding domain-containing protein 3 (Thyroid receptor-interacting protein 7) (TR-interacting protein 7) (TRIP-7) Binds to nucleosomes, regulating chromatin structure and consequently, chromatin-dependent processes such as transcription, DNA replication and DNA repair. Affects both insulin and glucagon levels and modulates the expression of pancreatic genes involved in insulin secretion. Regulates the expression of the glucose transporter SLC2A2 by binding specifically to its promoter region and recruiting PDX1 and additional transcription factors. Regulates the expression of SLC6A9, a glycine transporter which regulates the glycine concentration in synaptic junctions in the central nervous system, by binding to its transcription start site. May play a role in ocular development and astrocyte function (By similarity). {ECO:0000250}.
Q15911 ZFHX3 S3018 ochoa Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}.
Q16666 IFI16 S113 ochoa Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}.
Q16778 H2BC21 Y41 ochoa Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Q2NKX8 ERCC6L S759 ochoa DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}.
Q32MZ4 LRRFIP1 S565 ochoa Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}.
Q3B726 POLR1F S299 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q3B726 POLR1F S300 ochoa DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.
Q49A26 GLYR1 S152 ochoa Cytokine-like nuclear factor N-PAC (NPAC) (3-hydroxyisobutyrate dehydrogenase-like protein) (Glyoxylate reductase 1 homolog) (Nuclear protein NP60) (Nuclear protein of 60 kDa) (Nucleosome-destabilizing factor) (hNDF) (Putative oxidoreductase GLYR1) Cytokine-like nuclear factor with chromatin gene reader activity involved in chromatin modification and regulation of gene expression (PubMed:23260659, PubMed:30970244). Acts as a nucleosome-destabilizing factor that is recruited to genes during transcriptional activation (PubMed:29759984, PubMed:30970244). Recognizes and binds histone H3 without a preference for specific epigenetic markers and also binds DNA (PubMed:20850016, PubMed:30970244). Interacts with KDM1B and promotes its histone demethylase activity by facilitating the capture of H3 tails, they form a multifunctional enzyme complex that modifies transcribed chromatin and facilitates Pol II transcription through nucleosomes (PubMed:23260659, PubMed:29759984, PubMed:30970244). Stimulates the acetylation of 'Lys-56' of nucleosomal histone H3 (H3K56ac) by EP300 (PubMed:29759984). With GATA4, co-binds a defined set of heart development genes and coregulates their expression during cardiomyocyte differentiation (PubMed:35182466). Regulates p38 MAP kinase activity by mediating stress activation of MAPK14/p38alpha and specifically regulating MAPK14 signaling (PubMed:16352664). Indirectly promotes phosphorylation of MAPK14 and activation of ATF2 (PubMed:16352664). The phosphorylation of MAPK14 requires upstream activity of MAP2K4 and MAP2K6 (PubMed:16352664). {ECO:0000269|PubMed:16352664, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:23260659, ECO:0000269|PubMed:29759984, ECO:0000269|PubMed:30970244, ECO:0000269|PubMed:35182466}.
Q4G0J3 LARP7 S244 ochoa La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}.
Q58EX2 SDK2 S1978 ochoa Protein sidekick-2 Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}.
Q5BKY9 FAM133B S86 ochoa Protein FAM133B None
Q5BKY9 FAM133B S87 ochoa Protein FAM133B None
Q5BKY9 FAM133B S196 ochoa Protein FAM133B None
Q5BKY9 FAM133B S198 ochoa Protein FAM133B None
Q5FWF5 ESCO1 S24 ochoa N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}.
Q5FWF5 ESCO1 S384 ochoa N-acetyltransferase ESCO1 (EC 2.3.1.-) (CTF7 homolog 1) (Establishment factor-like protein 1) (EFO1) (EFO1p) (hEFO1) (Establishment of cohesion 1 homolog 1) (ECO1 homolog 1) (ESO1 homolog 1) Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15958495, PubMed:18614053). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3 (PubMed:18614053). {ECO:0000269|PubMed:14576321, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:18614053, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:27112597, ECO:0000269|PubMed:27803161}.
Q5QNW6 H2BC18 Y41 ochoa Histone H2B type 2-F (H2B-clustered histone 18) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q5T0W9 FAM83B S804 ochoa Protein FAM83B Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}.
Q5T5J6 SWT1 S22 ochoa Transcriptional protein SWT1 None
Q5T5Y3 CAMSAP1 S1382 ochoa Calmodulin-regulated spectrin-associated protein 1 Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}.
Q5VTL8 PRPF38B S473 ochoa Pre-mRNA-splicing factor 38B (Sarcoma antigen NY-SAR-27) May be required for pre-mRNA splicing. {ECO:0000305}.
Q5VTL8 PRPF38B S475 ochoa Pre-mRNA-splicing factor 38B (Sarcoma antigen NY-SAR-27) May be required for pre-mRNA splicing. {ECO:0000305}.
Q5VUA4 ZNF318 S1238 ochoa Zinc finger protein 318 (Endocrine regulatory protein) [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.
Q5VWN6 TASOR2 S343 ochoa Protein TASOR 2 None
Q5VZK9 CARMIL1 S1049 ochoa F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}.
Q641Q2 WASHC2A S504 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q674X7 KAZN S387 ochoa Kazrin Component of the cornified envelope of keratinocytes. May be involved in the interplay between adherens junctions and desmosomes. The function in the nucleus is not known. {ECO:0000269|PubMed:15337775}.
Q6DN03 H2BC20P Y41 ochoa Putative histone H2B type 2-C (H2B-clustered histone 20 pseudogene) (Histone H2B.t) (H2B/t) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DRA6 H2BC19P Y41 ochoa Putative histone H2B type 2-D (H2B-clustered histone 19 pseudogene) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6KC79 NIPBL Y345 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL S1196 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL S1197 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6KC79 NIPBL S2493 ochoa Nipped-B-like protein (Delangin) (SCC2 homolog) Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}.
Q6P0N0 MIS18BP1 S739 ochoa Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}.
Q6PKG0 LARP1 S215 ochoa La-related protein 1 (La ribonucleoprotein domain family member 1) RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}.
Q6SJ93 FAM111B T290 ochoa Serine protease FAM111B (EC 3.4.21.-) (Cancer-associated nucleoprotein) Serine protease. {ECO:0000250|UniProtKB:Q96PZ2}.
Q6UB98 ANKRD12 S425 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB98 ANKRD12 T426 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB98 ANKRD12 S1141 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UB98 ANKRD12 S1144 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q6UXV4 APOOL S204 ochoa MICOS complex subunit MIC27 (Apolipoprotein O-like) (Protein FAM121A) Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. Specifically binds to cardiolipin (in vitro) but not to the precursor lipid phosphatidylglycerol. Plays a crucial role in crista junction formation and mitochondrial function (PubMed:23704930), (PubMed:25764979). {ECO:0000269|PubMed:23704930, ECO:0000269|PubMed:25764979}.
Q6WKZ4 RAB11FIP1 T188 ochoa Rab11 family-interacting protein 1 (Rab11-FIP1) (Rab-coupling protein) A Rab11 effector protein involved in the endosomal recycling process. Also involved in controlling membrane trafficking along the phagocytic pathway and in phagocytosis. Interaction with RAB14 may function in the process of neurite formation (PubMed:26032412). {ECO:0000269|PubMed:11786538, ECO:0000269|PubMed:15181150, ECO:0000269|PubMed:15355514, ECO:0000269|PubMed:16920206, ECO:0000269|PubMed:26032412}.
Q6ZU52 KIAA0408 S246 ochoa Uncharacterized protein KIAA0408 None
Q71F23 CENPU S139 ochoa Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}.
Q76FK4 NOL8 S421 ochoa Nucleolar protein 8 (Nucleolar protein Nop132) Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}.
Q7L7X3 TAOK1 S575 ochoa Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}.
Q7LBC6 KDM3B S291 ochoa Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}.
Q7Z2W7 TRPM8 S1041 psp Transient receptor potential cation channel subfamily M member 8 (Long transient receptor potential channel 6) (LTrpC-6) (LTrpC6) (Transient receptor potential p8) (Trp-p8) Non-selective ion channel permeable to monovalent and divalent cations, including Na(+), K(+), and Ca(2+), with higher permeability for Ca(2+). Activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. Activated by cool temperatures (<23-28 degrees Celsius) and by chemical ligands evoking a sensation of coolness, such as menthol and icilin therefore plays a central role in the detection of environmental cold temperatures (PubMed:15306801, PubMed:15852009, PubMed:16174775, PubMed:25559186, PubMed:37857704). TRPM8 is a voltage-dependent channel; its activation by cold or chemical ligands shifts its voltage thresholds towards physiological membrane potentials, leading to the opening of the channel (PubMed:15306801). In addition to its critical role in temperature sensing, regulates basal tear secretion by sensing evaporation-induced cooling and changes in osmolality (By similarity). May plays a role in prostate cancer cell migration (PubMed:16174775, PubMed:25559186). {ECO:0000250|UniProtKB:Q8R4D5, ECO:0000269|PubMed:15306801, ECO:0000269|PubMed:15852009, ECO:0000269|PubMed:16174775, ECO:0000269|PubMed:25559186, ECO:0000269|PubMed:37857704}.; FUNCTION: [Isoform 2]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.; FUNCTION: [Isoform 3]: Negatively regulates menthol- and cold-induced channel activity by stabilizing the closed state of the channel. {ECO:0000269|PubMed:22128173}.
Q7Z2Z1 TICRR S1298 ochoa Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}.
Q7Z3B3 KANSL1 S718 ochoa KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}.
Q7Z3K3 POGZ S419 ochoa Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}.
Q7Z417 NUFIP2 S333 ochoa FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) Binds RNA. {ECO:0000269|PubMed:12837692}.
Q7Z4V5 HDGFL2 S236 ochoa Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}.
Q7Z6E9 RBBP6 S945 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q7Z6Z7 HUWE1 S3263 ochoa E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}.
Q86UE4 MTDH S562 ochoa Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}.
Q86W34 AMZ2 S227 ochoa Archaemetzincin-2 (EC 3.4.-.-) (Archeobacterial metalloproteinase-like protein 2) Probable zinc metalloprotease. {ECO:0000250|UniProtKB:Q8TXW1}.
Q86X95 CIR1 S353 ochoa Corepressor interacting with RBPJ 1 (CBF1-interacting corepressor) (Recepin) May modulate splice site selection during alternative splicing of pre-mRNAs (By similarity). Regulates transcription and acts as corepressor for RBPJ. Recruits RBPJ to the Sin3-histone deacetylase complex (HDAC). Required for RBPJ-mediated repression of transcription. {ECO:0000250, ECO:0000269|PubMed:19409814, ECO:0000269|PubMed:9874765}.
Q8IWZ8 SUGP1 S326 ochoa SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) Plays a role in pre-mRNA splicing.
Q8IY57 YAF2 S111 ochoa YY1-associated factor 2 Binds to MYC and inhibits MYC-mediated transactivation. Also binds to MYCN and enhances MYCN-dependent transcriptional activation. Increases calpain 2-mediated proteolysis of YY1 in vitro. Component of the E2F6.com-1 complex, a repressive complex that methylates 'Lys-9' of histone H3, suggesting that it is involved in chromatin-remodeling. {ECO:0000269|PubMed:11593398, ECO:0000269|PubMed:12706874, ECO:0000269|PubMed:9016636}.
Q8IZH2 XRN1 S1625 ochoa 5'-3' exoribonuclease 1 (EC 3.1.13.-) (Strand-exchange protein 1 homolog) Major 5'-3' exoribonuclease involved in mRNA decay. Required for the 5'-3'-processing of the G4 tetraplex-containing DNA and RNA substrates. The kinetic of hydrolysis is faster for G4 RNA tetraplex than for G4 DNA tetraplex and monomeric RNA tetraplex. Binds to RNA and DNA (By similarity). Plays a role in replication-dependent histone mRNA degradation. May act as a tumor suppressor protein in osteogenic sarcoma (OGS). {ECO:0000250|UniProtKB:P97789, ECO:0000269|PubMed:18172165}.
Q8N0T1 RBIS S19 ochoa Ribosomal biogenesis factor Trans-acting factor in ribosome biogenesis required for efficient 40S and 60S subunit production. {ECO:0000269|PubMed:26711351}.
Q8N0X7 SPART S400 ochoa Spartin (Spastic paraplegia 20 protein) (Trans-activated by hepatitis C virus core protein 1) Lipophagy receptor that plays an important role in lipid droplet (LD) turnover in motor neurons (PubMed:37443287). Localizes to LDs and interacts with components of the autophagy machinery, such as MAP1LC3A/C proteins to deliver LDs to autophagosomes for degradation via lipophagy (PubMed:37443287). Lipid transfer protein required for lipid droplet degradation, including by lipophagy (PubMed:38190532). Can bind and transfer all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters but the direction of lipid transfer by spartin and its cargos are unknown (PubMed:38190532). May be implicated in endosomal trafficking, or microtubule dynamics, or both. Participates in cytokinesis (PubMed:20719964). {ECO:0000269|PubMed:20719964, ECO:0000269|PubMed:37443287, ECO:0000269|PubMed:38190532}.
Q8N1W1 ARHGEF28 S720 ochoa Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}.
Q8N257 H2BC26 Y41 ochoa Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8N302 AGGF1 S338 ochoa Angiogenic factor with G patch and FHA domains 1 (Angiogenic factor VG5Q) (hVG5Q) (G patch domain-containing protein 7) (Vasculogenesis gene on 5q protein) Promotes angiogenesis and the proliferation of endothelial cells. Able to bind to endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. {ECO:0000269|PubMed:14961121}.
Q8N556 AFAP1 S342 ochoa Actin filament-associated protein 1 (110 kDa actin filament-associated protein) (AFAP-110) Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. {ECO:0000250, ECO:0000269|PubMed:15485829}.
Q8N587 ZNF561 S261 ochoa Zinc finger protein 561 May be involved in transcriptional regulation.
Q8N6H7 ARFGAP2 S242 ochoa ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}.
Q8N9E0 FAM133A S87 ochoa Protein FAM133A None
Q8N9E0 FAM133A S151 ochoa Protein FAM133A None
Q8NEC7 GSTCD S233 ochoa Glutathione S-transferase C-terminal domain-containing protein None
Q8NEY1 NAV1 S1167 ochoa Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) May be involved in neuronal migration. {ECO:0000250}.
Q8NHV4 NEDD1 S510 ochoa|psp Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}.
Q8NI27 THOC2 T1289 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8NI27 THOC2 S1388 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TAQ2 SMARCC2 S286 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q8TEA8 DTD1 S182 psp D-aminoacyl-tRNA deacylase 1 (DTD) (EC 3.1.1.96) (DNA-unwinding element-binding protein B) (DUE-B) (Gly-tRNA(Ala) deacylase) (Histidyl-tRNA synthase-related) Possible ATPase (PubMed:15653697) involved in DNA replication, may facilitate loading of CDC45 onto pre-replication complexes (PubMed:20065034). {ECO:0000269|PubMed:15653697, ECO:0000269|PubMed:20065034}.; FUNCTION: An aminoacyl-tRNA editing enzyme that deacylates mischarged D-aminoacyl-tRNAs. Also deacylates mischarged glycyl-tRNA(Ala), protecting cells against glycine mischarging by AlaRS. Acts via tRNA-based rather than protein-based catalysis; rejects L-amino acids rather than detecting D-amino acids in the active site. By recycling D-aminoacyl-tRNA to D-amino acids and free tRNA molecules, this enzyme counteracts the toxicity associated with the formation of D-aminoacyl-tRNA entities in vivo and helps enforce protein L-homochirality. {ECO:0000250|UniProtKB:Q8IIS0}.
Q8WU90 ZC3H15 S231 ochoa Zinc finger CCCH domain-containing protein 15 (DRG family-regulatory protein 1) (Likely ortholog of mouse immediate early response erythropoietin 4) Protects DRG1 from proteolytic degradation (PubMed:19819225). Stimulates DRG1 GTPase activity likely by increasing the affinity for the potassium ions (PubMed:23711155). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155}.
Q8WUA2 PPIL4 S374 ochoa Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}.
Q8WWQ0 PHIP S1452 ochoa PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}.
Q92793 CREBBP S1578 ochoa CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}.
Q92922 SMARCC1 S357 ochoa SWI/SNF complex subunit SMARCC1 (BRG1-associated factor 155) (BAF155) (SWI/SNF complex 155 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 1) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. May stimulate the ATPase activity of the catalytic subunit of the complex (PubMed:10078207, PubMed:29374058). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:P97496, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:29374058, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q93079 H2BC9 Y41 ochoa Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q96AC1 FERMT2 S159 ochoa|psp Fermitin family homolog 2 (Kindlin-2) (Mitogen-inducible gene 2 protein) (MIG-2) (Pleckstrin homology domain-containing family C member 1) (PH domain-containing family C member 1) Scaffolding protein that enhances integrin activation mediated by TLN1 and/or TLN2, but activates integrins only weakly by itself. Binds to membranes enriched in phosphoinositides. Enhances integrin-mediated cell adhesion onto the extracellular matrix and cell spreading; this requires both its ability to interact with integrins and with phospholipid membranes. Required for the assembly of focal adhesions. Participates in the connection between extracellular matrix adhesion sites and the actin cytoskeleton and also in the orchestration of actin assembly and cell shape modulation. Recruits FBLIM1 to focal adhesions. Plays a role in the TGFB1 and integrin signaling pathways. Stabilizes active CTNNB1 and plays a role in the regulation of transcription mediated by CTNNB1 and TCF7L2/TCF4 and in Wnt signaling. {ECO:0000269|PubMed:12679033, ECO:0000269|PubMed:18458155, ECO:0000269|PubMed:21325030, ECO:0000269|PubMed:22030399, ECO:0000269|PubMed:22078565, ECO:0000269|PubMed:22699938}.
Q96AT1 KIAA1143 S130 ochoa Uncharacterized protein KIAA1143 None
Q96BK5 PINX1 S226 psp PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q96EA4 SPDL1 S546 ochoa Protein Spindly (hSpindly) (Arsenite-related gene 1 protein) (Coiled-coil domain-containing protein 99) (Rhabdomyosarcoma antigen MU-RMS-40.4A) (Spindle apparatus coiled-coil domain-containing protein 1) Required for the localization of dynein and dynactin to the mitotic kintochore. Dynein is believed to control the initial lateral interaction between the kinetochore and spindle microtubules and to facilitate the subsequent formation of end-on kinetochore-microtubule attachments mediated by the NDC80 complex. Also required for correct spindle orientation. Does not appear to be required for the removal of spindle assembly checkpoint (SAC) proteins from the kinetochore upon bipolar spindle attachment (PubMed:17576797, PubMed:19468067). Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25035494). Plays a role in cell migration (PubMed:30258100). {ECO:0000255|HAMAP-Rule:MF_03041, ECO:0000269|PubMed:17576797, ECO:0000269|PubMed:19468067, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:30258100}.
Q96I25 RBM17 S288 psp Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) Splice factor that binds to the single-stranded 3'AG at the exon/intron border and promotes its utilization in the second catalytic step. Involved in the regulation of alternative splicing and the utilization of cryptic splice sites. Promotes the utilization of a cryptic splice site created by the beta-110 mutation in the HBB gene. The resulting frameshift leads to sickle cell anemia. {ECO:0000269|PubMed:12015979, ECO:0000269|PubMed:17589525}.
Q96Q89 KIF20B S1712 ochoa Kinesin-like protein KIF20B (Cancer/testis antigen 90) (CT90) (Kinesin family member 20B) (Kinesin-related motor interacting with PIN1) (M-phase phosphoprotein 1) (MPP1) Plus-end-directed motor enzyme that is required for completion of cytokinesis (PubMed:11470801, PubMed:12740395). Required for proper midbody organization and abscission in polarized cortical stem cells. Plays a role in the regulation of neuronal polarization by mediating the transport of specific cargos. Participates in the mobilization of SHTN1 and in the accumulation of PIP3 in the growth cone of primary hippocampal neurons in a tubulin and actin-dependent manner. In the developing telencephalon, cooperates with SHTN1 to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in cerebral cortex growth (By similarity). Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000250|UniProtKB:Q80WE4, ECO:0000269|PubMed:11470801, ECO:0000269|PubMed:12740395, ECO:0000269|PubMed:17409436}.
Q96ST2 IWS1 S554 ochoa Protein IWS1 homolog (IWS1-like protein) Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}.
Q96ST8 CEP89 S292 ochoa Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}.
Q96T88 UHRF1 S393 ochoa E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}.
Q99442 SEC62 T158 ochoa Translocation protein SEC62 (Translocation protein 1) (TP-1) (hTP-1) Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. {ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q99459 CDC5L S283 ochoa Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}.
Q99549 MPHOSPH8 S267 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99755 PIP5K1A S468 ochoa Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha (PIP5K1-alpha) (PtdIns(4)P-5-kinase 1 alpha) (EC 2.7.1.68) (68 kDa type I phosphatidylinositol 4-phosphate 5-kinase alpha) (Phosphatidylinositol 4-phosphate 5-kinase type I alpha) (PIP5KIalpha) Catalyzes the phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P/PI4P) to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2/PIP2), a lipid second messenger that regulates several cellular processes such as signal transduction, vesicle trafficking, actin cytoskeleton dynamics, cell adhesion, and cell motility (PubMed:21477596, PubMed:22942276, PubMed:8955136). PtdIns(4,5)P2 can directly act as a second messenger or can be utilized as a precursor to generate other second messengers: inositol 1,4,5-trisphosphate (IP3), diacylglycerol (DAG) or phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3/PIP3) (PubMed:19158393, PubMed:20660631). PIP5K1A-mediated phosphorylation of PtdIns(4)P is the predominant pathway for PtdIns(4,5)P2 synthesis (By similarity). Can also use phosphatidylinositol (PtdIns) as substrate in vitro (PubMed:22942276). Together with PIP5K1C, is required for phagocytosis, both enzymes regulating different types of actin remodeling at sequential steps (By similarity). Promotes particle ingestion by activating the WAS GTPase-binding protein that induces Arp2/3 dependent actin polymerization at the nascent phagocytic cup (By similarity). Together with PIP5K1B, is required, after stimulation by G-protein coupled receptors, for the synthesis of IP3 that will induce stable platelet adhesion (By similarity). Recruited to the plasma membrane by the E-cadherin/beta-catenin complex where it provides the substrate PtdIns(4,5)P2 for the production of PtdIns(3,4,5)P3, IP3 and DAG, that will mobilize internal calcium and drive keratinocyte differentiation (PubMed:19158393). Positively regulates insulin-induced translocation of SLC2A4 to the cell membrane in adipocytes (By similarity). Together with PIP5K1C has a role during embryogenesis (By similarity). Independently of its catalytic activity, is required for membrane ruffling formation, actin organization and focal adhesion formation during directional cell migration by controlling integrin-induced translocation of the small GTPase RAC1 to the plasma membrane (PubMed:20660631). Also functions in the nucleus where it acts as an activator of TUT1 adenylyltransferase activity in nuclear speckles, thereby regulating mRNA polyadenylation of a select set of mRNAs (PubMed:18288197). {ECO:0000250|UniProtKB:P70182, ECO:0000269|PubMed:18288197, ECO:0000269|PubMed:19158393, ECO:0000269|PubMed:20660631, ECO:0000269|PubMed:21477596, ECO:0000269|PubMed:22942276, ECO:0000269|PubMed:8955136}.
Q99848 EBNA1BP2 S264 ochoa Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) Required for the processing of the 27S pre-rRNA. {ECO:0000250}.
Q99877 H2BC15 Y41 ochoa Histone H2B type 1-N (Histone H2B.d) (H2B/d) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99879 H2BC14 Y41 ochoa Histone H2B type 1-M (Histone H2B.e) (H2B/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99880 H2BC13 Y41 ochoa Histone H2B type 1-L (Histone H2B.c) (H2B/c) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q9BQ39 DDX50 S41 ochoa ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}.
Q9BQ70 TCF25 S138 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BU68 PRR15L S73 ochoa Proline-rich protein 15-like protein (Protein ATAD4) None
Q9BXF6 RAB11FIP5 S209 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BXP5 SRRT S341 ochoa Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}.
Q9BXW9 FANCD2 S338 ochoa Fanconi anemia group D2 protein (Protein FACD2) Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}.
Q9BXY4 RSPO3 S241 ochoa R-spondin-3 (Protein with TSP type-1 repeat) (hPWTSR) (Roof plate-specific spondin-3) (hRspo3) (Thrombospondin type-1 domain-containing protein 2) Activator of the canonical Wnt signaling pathway by acting as a ligand for LGR4-6 receptors, which acts as a key regulator of angiogenesis. Upon binding to LGR4-6 (LGR4, LGR5 or LGR6), LGR4-6 associate with phosphorylated LRP6 and frizzled receptors that are activated by extracellular Wnt receptors, triggering the canonical Wnt signaling pathway to increase expression of target genes. Also regulates the canonical Wnt/beta-catenin-dependent pathway and non-canonical Wnt signaling by acting as an inhibitor of ZNRF3, an important regulator of the Wnt signaling pathway. Acts as a ligand for frizzled FZD8 and LRP6. May negatively regulate the TGF-beta pathway (PubMed:21727895, PubMed:21909076, PubMed:22615920). Acts as a key regulator of angiogenesis by controlling vascular stability and pruning: acts by activating the non-canonical Wnt signaling pathway in endothelial cells (By similarity) (PubMed:21727895, PubMed:21909076, PubMed:22615920). Can also amplify Wnt signaling pathway independently of LGR4-6 receptors, possibly by acting as a direct antagonistic ligand to RNF43 and ZNRF3 (PubMed:29769720). {ECO:0000250|UniProtKB:Q2TJ95, ECO:0000269|PubMed:21727895, ECO:0000269|PubMed:21909076, ECO:0000269|PubMed:22615920, ECO:0000269|PubMed:29769720}.
Q9BY42 RTF2 S207 ochoa Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}.
Q9BYG3 NIFK S218 ochoa MKI67 FHA domain-interacting nucleolar phosphoprotein (Nucleolar phosphoprotein Nopp34) (Nucleolar protein interacting with the FHA domain of pKI-67) (hNIFK) None
Q9BYW2 SETD2 S1415 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9BZ95 NSD3 S587 ochoa Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}.
Q9BZI7 UPF3B S415 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9BZI7 UPF3B S416 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9H582 ZNF644 S309 ochoa Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) May be involved in transcriptional regulation.
Q9H6S3 EPS8L2 T303 ochoa Epidermal growth factor receptor kinase substrate 8-like protein 2 (EPS8-like protein 2) (Epidermal growth factor receptor pathway substrate 8-related protein 2) (EPS8-related protein 2) Stimulates guanine exchange activity of SOS1. May play a role in membrane ruffling and remodeling of the actin cytoskeleton. In the cochlea, is required for stereocilia maintenance in adult hair cells (By similarity). {ECO:0000250|UniProtKB:Q99K30, ECO:0000269|PubMed:14565974}.
Q9H8M2 BRD9 S45 ochoa Bromodomain-containing protein 9 (Rhabdomyosarcoma antigen MU-RMS-40.8) Plays a role in chromatin remodeling and regulation of transcription (PubMed:22464331, PubMed:26365797). Acts as a chromatin reader that recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:26365797). Component of SWI/SNF chromatin remodeling subcomplex GBAF that carries out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:29374058). Also orchestrates the RAD51-RAD54 complex formation and thereby plays a role in homologous recombination (HR) (PubMed:32457312). {ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:32457312}.
Q9HCI7 MSL2 S447 ochoa E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}.
Q9NPF5 DMAP1 S42 ochoa DNA methyltransferase 1-associated protein 1 (DNMAP1) (DNMT1-associated protein 1) Involved in transcription repression and activation. Its interaction with HDAC2 may provide a mechanism for histone deacetylation in heterochromatin following replication of DNA at late firing origins. Can also repress transcription independently of histone deacetylase activity. May specifically potentiate DAXX-mediated repression of glucocorticoid receptor-dependent transcription. Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Participates in the nuclear localization of URI1 and increases its transcriptional corepressor activity. {ECO:0000269|PubMed:14665632, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:14978102, ECO:0000269|PubMed:15367675}.
Q9NPY3 CD93 S629 ochoa Complement component C1q receptor (C1q/MBL/SPA receptor) (C1qR) (C1qR(p)) (C1qRp) (CDw93) (Complement component 1 q subcomponent receptor 1) (Matrix-remodeling-associated protein 4) (CD antigen CD93) Cell surface receptor that plays a role in various physiological processes including inflammation, phagocytosis, and cell adhesion. Plays a role in phagocytosis and enhances the uptake of apoptotic cells and immune complexes by acting as a receptor for defense collagens including surfactant protein A/SFTPA1, C1q, and mannose-binding lectin (MBL2) (PubMed:7977768). Plays a role in the regulation of endothelial cell function and adhesion by activating angiogenesis (PubMed:24809468). Mechanistically, exerts its angiogenic function by associating with beta-dystroglycan, leading to SRC-dependent phosphorylation and subsequent recruitment of CBL. In turn, CBL provides a docking site for downstream signaling components, such as CRKL to enhance cell migration (PubMed:26848865). Participates in angiogenesis also by acting as a receptor for the ECM pan-endothelial glycoprotein multimerin-2/MMRN2 and IGFBP7 ligands (PubMed:28671670, PubMed:36265539, PubMed:38218180). Both ligands play a non-redundant role in CD93-mediated endothelial cell function (PubMed:38218180). Acts as a key regulator of endothelial barrier function through modulating VEGFR2 function (By similarity). {ECO:0000250|UniProtKB:O89103, ECO:0000269|PubMed:24809468, ECO:0000269|PubMed:26848865, ECO:0000269|PubMed:28671670, ECO:0000269|PubMed:36265539, ECO:0000269|PubMed:38218180, ECO:0000269|PubMed:7977768}.
Q9NQ66 PLCB1 S988 ochoa 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 (EC 3.1.4.11) (PLC-154) (Phosphoinositide phospholipase C-beta-1) (Phospholipase C-I) (PLC-I) (Phospholipase C-beta-1) (PLC-beta-1) Catalyzes the hydrolysis of 1-phosphatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) and mediates intracellular signaling downstream of G protein-coupled receptors (PubMed:9188725). Regulates the function of the endothelial barrier. {ECO:0000250|UniProtKB:Q9Z1B3, ECO:0000269|PubMed:9188725}.
Q9NR30 DDX21 S121 ochoa|psp Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}.
Q9NRR4 DROSHA S373 ochoa Ribonuclease 3 (EC 3.1.26.3) (Protein Drosha) (Ribonuclease III) (RNase III) (p241) Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies. Plays a role in growth homeostasis in response to autophagy in motor neurons (By similarity). {ECO:0000250|UniProtKB:Q5HZJ0, ECO:0000269|PubMed:10948199, ECO:0000269|PubMed:14508493, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15565168, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}.
Q9NRZ9 HELLS S163 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NRZ9 HELLS S164 ochoa Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}.
Q9NVU7 SDAD1 S640 ochoa Protein SDA1 homolog (Nucleolar protein 130) (SDA1 domain-containing protein 1) (hSDA) Required for 60S pre-ribosomal subunits export to the cytoplasm. {ECO:0000250}.
Q9NW13 RBM28 S713 ochoa RNA-binding protein 28 (RNA-binding motif protein 28) Nucleolar component of the spliceosomal ribonucleoprotein complexes. {ECO:0000269|PubMed:17081119}.
Q9NWH9 SLTM S537 ochoa SAFB-like transcription modulator (Modulator of estrogen-induced transcription) When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}.
Q9NXE8 CWC25 S170 ochoa Pre-mRNA-splicing factor CWC25 homolog (Coiled-coil domain-containing protein 49) (Spliceosome-associated protein homolog CWC25) Involved in pre-mRNA splicing as component of the spliceosome. {ECO:0000269|PubMed:29301961}.
Q9P0K1 ADAM22 S857 ochoa|psp Disintegrin and metalloproteinase domain-containing protein 22 (ADAM 22) (Metalloproteinase-disintegrin ADAM22-3) (Metalloproteinase-like, disintegrin-like, and cysteine-rich protein 2) Probable ligand for integrin in the brain. This is a non catalytic metalloprotease-like protein (PubMed:19692335). Involved in regulation of cell adhesion and spreading and in inhibition of cell proliferation. Neuronal receptor for LGI1. {ECO:0000269|PubMed:12589811, ECO:0000269|PubMed:15882968, ECO:0000269|PubMed:16385342, ECO:0000269|PubMed:19692335}.
Q9P0K7 RAI14 S260 ochoa Ankycorbin (Ankyrin repeat and coiled-coil structure-containing protein) (Novel retinal pigment epithelial cell protein) (Retinoic acid-induced protein 14) Plays a role in actin regulation at the ectoplasmic specialization, a type of cell junction specific to testis. Important for establishment of sperm polarity and normal spermatid adhesion. May also promote integrity of Sertoli cell tight junctions at the blood-testis barrier. {ECO:0000250|UniProtKB:Q5U312}.
Q9P0W2 HMG20B S161 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1-related (SMARCE1-related protein) (BRCA2-associated factor 35) (HMG box-containing protein 20B) (HMG domain-containing protein 2) (HMG domain-containing protein HMGX2) (Sox-like transcriptional factor) (Structural DNA-binding protein BRAF35) Required for correct progression through G2 phase of the cell cycle and entry into mitosis. Required for RCOR1/CoREST mediated repression of neuronal specific gene promoters.
Q9P2B4 CTTNBP2NL S280 ochoa CTTNBP2 N-terminal-like protein Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}.
Q9P2I0 CPSF2 S419 ochoa Cleavage and polyadenylation specificity factor subunit 2 (Cleavage and polyadenylation specificity factor 100 kDa subunit) (CPSF 100 kDa subunit) Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3' end pre-mRNA processing. {ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:18688255}.
Q9UER7 DAXX S647 ochoa Death domain-associated protein 6 (Daxx) (hDaxx) (ETS1-associated protein 1) (EAP1) (Fas death domain-associated protein) Transcription corepressor known to repress transcriptional potential of several sumoylated transcription factors. Down-regulates basal and activated transcription. Its transcription repressor activity is modulated by recruiting it to subnuclear compartments like the nucleolus or PML/POD/ND10 nuclear bodies through interactions with MCSR1 and PML, respectively. Seems to regulate transcription in PML/POD/ND10 nuclear bodies together with PML and may influence TNFRSF6-dependent apoptosis thereby. Inhibits transcriptional activation of PAX3 and ETS1 through direct protein-protein interactions. Modulates PAX5 activity; the function seems to involve CREBBP. Acts as an adapter protein in a MDM2-DAXX-USP7 complex by regulating the RING-finger E3 ligase MDM2 ubiquitination activity. Under non-stress condition, in association with the deubiquitinating USP7, prevents MDM2 self-ubiquitination and enhances the intrinsic E3 ligase activity of MDM2 towards TP53, thereby promoting TP53 ubiquitination and subsequent proteasomal degradation. Upon DNA damage, its association with MDM2 and USP7 is disrupted, resulting in increased MDM2 autoubiquitination and consequently, MDM2 degradation, which leads to TP53 stabilization. Acts as a histone chaperone that facilitates deposition of histone H3.3. Acts as a targeting component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Does not affect the ATPase activity of ATRX but alleviates its transcription repression activity. Upon neuronal activation associates with regulatory elements of selected immediate early genes where it promotes deposition of histone H3.3 which may be linked to transcriptional induction of these genes. Required for the recruitment of histone H3.3:H4 dimers to PML-nuclear bodies (PML-NBs); the process is independent of ATRX and facilitated by ASF1A; PML-NBs are suggested to function as regulatory sites for the incorporation of newly synthesized histone H3.3 into chromatin. In case of overexpression of centromeric histone variant CENPA (as found in various tumors) is involved in its mislocalization to chromosomes; the ectopic localization involves a heterotypic tetramer containing CENPA, and histones H3.3 and H4 and decreases binding of CTCF to chromatin. Proposed to mediate activation of the JNK pathway and apoptosis via MAP3K5 in response to signaling from TNFRSF6 and TGFBR2. Interaction with HSPB1/HSP27 may prevent interaction with TNFRSF6 and MAP3K5 and block DAXX-mediated apoptosis. In contrast, in lymphoid cells JNC activation and TNFRSF6-mediated apoptosis may not involve DAXX. Shows restriction activity towards human cytomegalovirus (HCMV). Plays a role as a positive regulator of the heat shock transcription factor HSF1 activity during the stress protein response (PubMed:15016915). {ECO:0000269|PubMed:12140263, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:15364927, ECO:0000269|PubMed:16845383, ECO:0000269|PubMed:17081986, ECO:0000269|PubMed:17942542, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:23222847, ECO:0000269|PubMed:24200965, ECO:0000269|PubMed:24530302}.
Q9UGP8 SEC63 T537 ochoa Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}.
Q9UID6 ZNF639 S19 ochoa Zinc finger protein 639 (Zinc finger protein ANC_2H01) (Zinc finger protein ZASC1) Binds DNA and may function as a transcriptional repressor. {ECO:0000269|PubMed:16182284}.
Q9UIF8 BAZ2B T2014 ochoa Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}.
Q9UKX7 NUP50 S52 ochoa Nuclear pore complex protein Nup50 (50 kDa nucleoporin) (Nuclear pore-associated protein 60 kDa-like) (Nucleoporin Nup50) Component of the nuclear pore complex that has a direct role in nuclear protein import (PubMed:20016008). Actively displaces NLSs from importin-alpha, and facilitates disassembly of the importin-alpha:beta-cargo complex and importin recycling (PubMed:20016008). Interacts with regulatory proteins of cell cycle progression including CDKN1B (By similarity). This interaction is required for correct intracellular transport and degradation of CDKN1B (By similarity). {ECO:0000250|UniProtKB:Q9JIH2, ECO:0000269|PubMed:20016008}.
Q9UKY1 ZHX1 S639 ochoa Zinc fingers and homeoboxes protein 1 Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}.
Q9UKY7 CDV3 S30 ochoa Protein CDV3 homolog None
Q9ULU4 ZMYND8 S676 ochoa MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}.
Q9UN76 SLC6A14 S22 ochoa Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) (Amino acid transporter ATB0+) (Solute carrier family 6 member 14) Amino acid transporter that plays an important role in the absorption of amino acids in the intestinal tract. Mediates the uptake of a broad range of neutral and cationic amino acids (with the exception of proline) in a Na(+)/Cl(-)-dependent manner (PubMed:10446133). Transports non-alpha-amino acids such as beta-alanine with low affinity, and has a higher affinity for dipolar and cationic amino acids such as leucine and lysine (PubMed:18599538). Can also transport carnitine, butirylcarnitine and propionylcarnitine coupled to the transmembrane gradients of Na(+) and Cl(-) (PubMed:17855766). {ECO:0000250|UniProtKB:Q9JMA9, ECO:0000269|PubMed:10446133, ECO:0000269|PubMed:17855766, ECO:0000269|PubMed:18599538}.
Q9UNL2 SSR3 S105 ochoa Translocon-associated protein subunit gamma (TRAP-gamma) (Signal sequence receptor subunit gamma) (SSR-gamma) TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins.
Q9UQM7 CAMK2A S333 ochoa Calcium/calmodulin-dependent protein kinase type II subunit alpha (CaM kinase II subunit alpha) (CaMK-II subunit alpha) (EC 2.7.11.17) Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in various processes, such as synaptic plasticity, neurotransmitter release and long-term potentiation (PubMed:14722083). Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development (PubMed:28130356). Also regulates the migration of developing neurons (PubMed:29100089). Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity (PubMed:23805378). Phosphorylates the transcription factor ETS1 in response to calcium signaling, thereby decreasing ETS1 affinity for DNA (By similarity). In response to interferon-gamma (IFN-gamma) stimulation, catalyzes phosphorylation of STAT1, stimulating the JAK-STAT signaling pathway (PubMed:11972023). In response to interferon-beta (IFN-beta) stimulation, stimulates the JAK-STAT signaling pathway (PubMed:35568036). Acts as a negative regulator of 2-arachidonoylglycerol (2-AG)-mediated synaptic signaling via modulation of DAGLA activity (By similarity). {ECO:0000250|UniProtKB:P11275, ECO:0000250|UniProtKB:P11798, ECO:0000269|PubMed:11972023, ECO:0000269|PubMed:23805378, ECO:0000269|PubMed:28130356, ECO:0000269|PubMed:29100089}.
Q9UQR1 ZNF148 S352 ochoa Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes.
Q9Y2W1 THRAP3 S190 ochoa Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}.
Q9Y2X3 NOP58 S509 ochoa Nucleolar protein 58 (Nucleolar protein 5) Required for the biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNAs (PubMed:15574333, PubMed:17636026, PubMed:19620283, PubMed:34516797). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) complexes that function in methylation of multiple sites on ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs) (PubMed:39570315). {ECO:0000269|PubMed:15574333, ECO:0000269|PubMed:17636026, ECO:0000269|PubMed:19620283, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:39570315}.
Q9Y5B6 PAXBP1 S155 ochoa PAX3- and PAX7-binding protein 1 (GC-rich sequence DNA-binding factor 1) Adapter protein linking the transcription factors PAX3 and PAX7 to the histone methylation machinery and involved in myogenesis. Associates with a histone methyltransferase complex that specifically mediates dimethylation and trimethylation of 'Lys-4' of histone H3. Mediates the recruitment of that complex to the transcription factors PAX3 and PAX7 on chromatin to regulate the expression of genes involved in muscle progenitor cells proliferation including ID3 and CDC20. {ECO:0000250|UniProtKB:P58501}.
Q9Y6R1 SLC4A4 S61 ochoa Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}.
R4GMW8 BIVM-ERCC5 S1521 ochoa DNA excision repair protein ERCC-5 None
Q14247 CTTN S209 Sugiyama Src substrate cortactin (Amplaxin) (Oncogene EMS1) Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}.
Q9NSB2 KRT84 S178 Sugiyama Keratin, type II cuticular Hb4 (Keratin-84) (K84) (Type II hair keratin Hb4) (Type-II keratin Kb24) None
O95625 ZBTB11 S537 EPSD|PSP Zinc finger and BTB domain-containing protein 11 May be involved in transcriptional regulation. {ECO:0000305}.
P20810 CAST S337 Sugiyama Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P06899 H2BC11 Y41 Sugiyama Histone H2B type 1-J (Histone H2B.1) (Histone H2B.r) (H2B/r) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P23527 H2BC17 Y41 Sugiyama Histone H2B type 1-O (H2B-clustered histone 17) (Histone H2B.2) (Histone H2B.n) (H2B/n) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P33778 H2BC3 Y41 Sugiyama Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P61247 RPS3A Y31 Sugiyama Small ribosomal subunit protein eS1 (40S ribosomal protein S3a) (v-fos transformation effector protein) (Fte-1) Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). May play a role during erythropoiesis through regulation of transcription factor DDIT3 (By similarity). {ECO:0000255|HAMAP-Rule:MF_03122, ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}.
P63173 RPL38 Y43 Sugiyama Large ribosomal subunit protein eL38 (60S ribosomal protein L38) Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}.
P98082 DAB2 Y38 Sugiyama Disabled homolog 2 (Adaptor molecule disabled-2) (Differentially expressed in ovarian carcinoma 2) (DOC-2) (Differentially-expressed protein 2) Adapter protein that functions as a clathrin-associated sorting protein (CLASP) required for clathrin-mediated endocytosis of selected cargo proteins. Can bind and assemble clathrin, and binds simultaneously to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and cargos containing non-phosphorylated NPXY internalization motifs, such as the LDL receptor, to recruit them to clathrin-coated pits. Can function in clathrin-mediated endocytosis independently of the AP-2 complex. Involved in endocytosis of integrin beta-1; this function seems to redundant with the AP-2 complex and seems to require DAB2 binding to endocytosis accessory EH domain-containing proteins such as EPS15, EPS15L1 and ITSN1. Involved in endocytosis of cystic fibrosis transmembrane conductance regulator/CFTR. Involved in endocytosis of megalin/LRP2 lipoprotein receptor during embryonal development. Required for recycling of the TGF-beta receptor. Involved in CFTR trafficking to the late endosome. Involved in several receptor-mediated signaling pathways. Involved in TGF-beta receptor signaling and facilitates phosphorylation of the signal transducer SMAD2. Mediates TFG-beta-stimulated JNK activation. May inhibit the canoniocal Wnt/beta-catenin signaling pathway by stabilizing the beta-catenin destruction complex through a competing association with axin preventing its dephosphorylation through protein phosphatase 1 (PP1). Sequesters LRP6 towards clathrin-mediated endocytosis, leading to inhibition of Wnt/beta-catenin signaling. May activate non-canonical Wnt signaling. In cell surface growth factor/Ras signaling pathways proposed to inhibit ERK activation by interrupting the binding of GRB2 to SOS1 and to inhibit SRC by preventing its activating phosphorylation at 'Tyr-419'. Proposed to be involved in modulation of androgen receptor (AR) signaling mediated by SRC activation; seems to compete with AR for interaction with SRC. Plays a role in the CSF-1 signal transduction pathway. Plays a role in cellular differentiation. Involved in cell positioning and formation of visceral endoderm (VE) during embryogenesis and proposed to be required in the VE to respond to Nodal signaling coming from the epiblast. Required for the epithelial to mesenchymal transition, a process necessary for proper embryonic development. May be involved in myeloid cell differentiation and can induce macrophage adhesion and spreading. May act as a tumor suppressor. {ECO:0000269|PubMed:11387212, ECO:0000269|PubMed:12805222, ECO:0000269|PubMed:16267015, ECO:0000269|PubMed:16984970, ECO:0000269|PubMed:19306879, ECO:0000269|PubMed:21995445, ECO:0000269|PubMed:22323290, ECO:0000269|PubMed:22491013}.
O43615 TIMM44 S94 Sugiyama Mitochondrial import inner membrane translocase subunit TIM44 Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner (By similarity). Recruits mitochondrial HSP70 to drive protein translocation into the matrix using ATP as an energy source (By similarity). {ECO:0000250|UniProtKB:O35857, ECO:0000250|UniProtKB:Q01852}.
Q9H4F8 SMOC1 T405 Sugiyama SPARC-related modular calcium-binding protein 1 (Secreted modular calcium-binding protein 1) (SMOC-1) Plays essential roles in both eye and limb development. Probable regulator of osteoblast differentiation. {ECO:0000269|PubMed:20359165, ECO:0000269|PubMed:21194678, ECO:0000269|PubMed:21194680}.
O60318 MCM3AP S508 SIGNOR Germinal-center associated nuclear protein (GANP) (EC 2.3.1.48) (80 kDa MCM3-associated protein) (MCM3 acetylating protein) (MCM3AP) (EC 2.3.1.-) (MCM3 acetyltransferase) [Isoform GANP]: As a component of the TREX-2 complex, involved in the export of mRNAs to the cytoplasm through the nuclear pores (PubMed:20005110, PubMed:20384790, PubMed:22307388, PubMed:23591820). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:20005110, ECO:0000269|PubMed:20384790, ECO:0000269|PubMed:22307388, ECO:0000269|PubMed:23591820, ECO:0000269|PubMed:23652018}.; FUNCTION: [Isoform MCM3AP]: Binds to and acetylates the replication protein MCM3. Plays a role in the initiation of DNA replication and participates in controls that ensure that DNA replication initiates only once per cell cycle (PubMed:11258703, PubMed:12226073). Through the acetylation of histones, affects the assembly of nucleosomes at immunoglobulin variable region genes and promotes the recruitment and positioning of transcription complex to favor DNA cytosine deaminase AICDA/AID targeting, hence promoting somatic hypermutations (PubMed:23652018). {ECO:0000269|PubMed:11258703, ECO:0000269|PubMed:12226073, ECO:0000269|PubMed:23652018}.
Q9NPI1 BRD7 Y18 Sugiyama Bromodomain-containing protein 7 (75 kDa bromodomain protein) (Protein CELTIX-1) Acts both as coactivator and as corepressor. May play a role in chromatin remodeling. Activator of the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity. Induces dephosphorylation of GSK3B at 'Tyr-216'. Down-regulates TRIM24-mediated activation of transcriptional activation by AR (By similarity). Transcriptional corepressor that down-regulates the expression of target genes. Binds to target promoters, leading to increased histone H3 acetylation at 'Lys-9' (H3K9ac). Binds to the ESR1 promoter. Recruits BRCA1 and POU2F1 to the ESR1 promoter. Coactivator for TP53-mediated activation of transcription of a set of target genes. Required for TP53-mediated cell-cycle arrest in response to oncogene activation. Promotes acetylation of TP53 at 'Lys-382', and thereby promotes efficient recruitment of TP53 to target promoters. Inhibits cell cycle progression from G1 to S phase. {ECO:0000250, ECO:0000269|PubMed:16265664, ECO:0000269|PubMed:16475162, ECO:0000269|PubMed:20215511, ECO:0000269|PubMed:20228809, ECO:0000269|PubMed:20660729}.
Q07666 KHDRBS1 S150 Sugiyama KH domain-containing, RNA-binding, signal transduction-associated protein 1 (GAP-associated tyrosine phosphoprotein p62) (Src-associated in mitosis 68 kDa protein) (Sam68) (p21 Ras GTPase-activating protein-associated p62) (p68) Recruited and tyrosine phosphorylated by several receptor systems, for example the T-cell, leptin and insulin receptors. Once phosphorylated, functions as an adapter protein in signal transduction cascades by binding to SH2 and SH3 domain-containing proteins. Role in G2-M progression in the cell cycle. Represses CBP-dependent transcriptional activation apparently by competing with other nuclear factors for binding to CBP. Also acts as a putative regulator of mRNA stability and/or translation rates and mediates mRNA nuclear export. Positively regulates the association of constitutive transport element (CTE)-containing mRNA with large polyribosomes and translation initiation. According to some authors, is not involved in the nucleocytoplasmic export of unspliced (CTE)-containing RNA species according to (PubMed:22253824). RNA-binding protein that plays a role in the regulation of alternative splicing and influences mRNA splice site selection and exon inclusion. Binds to RNA containing 5'-[AU]UAA-3' as a bipartite motif spaced by more than 15 nucleotides. Binds poly(A). Can regulate CD44 alternative splicing in a Ras pathway-dependent manner (PubMed:26080397). In cooperation with HNRNPA1 modulates alternative splicing of BCL2L1 by promoting splicing toward isoform Bcl-X(S), and of SMN1 (PubMed:17371836, PubMed:20186123). Can regulate alternative splicing of NRXN1 and NRXN3 in the laminin G-like domain 6 containing the evolutionary conserved neurexin alternative spliced segment 4 (AS4) involved in neurexin selective targeting to postsynaptic partners. In a neuronal activity-dependent manner cooperates synergistically with KHDRBS2/SLIM-1 in regulation of NRXN1 exon skipping at AS4. The cooperation with KHDRBS2/SLIM-1 is antagonistic for regulation of NXRN3 alternative splicing at AS4 (By similarity). {ECO:0000250|UniProtKB:Q60749, ECO:0000269|PubMed:15021911, ECO:0000269|PubMed:17371836, ECO:0000269|PubMed:20186123, ECO:0000269|PubMed:20610388, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:26080397, ECO:0000269|PubMed:26758068}.; FUNCTION: Isoform 3, which is expressed in growth-arrested cells only, inhibits S phase. {ECO:0000269|PubMed:9013542}.
Q9BTD8 RBM42 S433 Sugiyama RNA-binding protein 42 (RNA-binding motif protein 42) Binds (via the RRM domain) to the 3'-untranslated region (UTR) of CDKN1A mRNA. {ECO:0000250}.
Q14203 DCTN1 S967 Sugiyama Dynactin subunit 1 (150 kDa dynein-associated polypeptide) (DAP-150) (DP-150) (p135) (p150-glued) Part of the dynactin complex that activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Plays a key role in dynein-mediated retrograde transport of vesicles and organelles along microtubules by recruiting and tethering dynein to microtubules. Binds to both dynein and microtubules providing a link between specific cargos, microtubules and dynein. Essential for targeting dynein to microtubule plus ends, recruiting dynein to membranous cargos and enhancing dynein processivity (the ability to move along a microtubule for a long distance without falling off the track). Can also act as a brake to slow the dynein motor during motility along the microtubule (PubMed:25185702). Can regulate microtubule stability by promoting microtubule formation, nucleation and polymerization and by inhibiting microtubule catastrophe in neurons. Inhibits microtubule catastrophe by binding both to microtubules and to tubulin, leading to enhanced microtubule stability along the axon (PubMed:23874158). Plays a role in metaphase spindle orientation (PubMed:22327364). Plays a role in centriole cohesion and subdistal appendage organization and function. Its recruitment to the centriole in a KIF3A-dependent manner is essential for the maintenance of centriole cohesion and the formation of subdistal appendage. Also required for microtubule anchoring at the mother centriole (PubMed:23386061). Plays a role in primary cilia formation (PubMed:25774020). {ECO:0000250|UniProtKB:A0A287B8J2, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23386061, ECO:0000269|PubMed:23874158, ECO:0000269|PubMed:25185702, ECO:0000269|PubMed:25774020}.
P46013 MKI67 S2116 Sugiyama Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}.
O76070 SNCG S51 Sugiyama Gamma-synuclein (Breast cancer-specific gene 1 protein) (Persyn) (Synoretin) (SR) Plays a role in neurofilament network integrity. May be involved in modulating axonal architecture during development and in the adult. In vitro, increases the susceptibility of neurofilament-H to calcium-dependent proteases (By similarity). May also function in modulating the keratin network in skin. Activates the MAPK and Elk-1 signal transduction pathway (By similarity). {ECO:0000250}.
O75151 PHF2 S681 ochoa Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}.
O95279 KCNK5 S270 ochoa Potassium channel subfamily K member 5 (Acid-sensitive potassium channel protein TASK-2) (TWIK-related acid-sensitive K(+) channel 2) K(+) channel that conducts voltage-dependent outward rectifying currents upon membrane depolarization. Voltage sensing is coupled to K(+) electrochemical gradient in an 'ion flux gating' mode where outward but not inward ion flow opens the gate (PubMed:26919430, PubMed:36063992, PubMed:9812978). Homo- and heterodimerizes to form functional channels with distinct regulatory and gating properties (PubMed:36063992). {ECO:0000269|PubMed:26919430, ECO:0000269|PubMed:36063992, ECO:0000269|PubMed:9812978}.
P02144 MB S109 ochoa Myoglobin (Nitrite reductase MB) (EC 1.7.-.-) (Pseudoperoxidase MB) (EC 1.11.1.-) Monomeric heme protein which primary function is to store oxygen and facilitate its diffusion within muscle tissues. Reversibly binds oxygen through a pentacoordinated heme iron and enables its timely and efficient release as needed during periods of heightened demand (PubMed:30918256, PubMed:34679218). Depending on the oxidative conditions of tissues and cells, and in addition to its ability to bind oxygen, it also has a nitrite reductase activity whereby it regulates the production of bioactive nitric oxide (PubMed:32891753). Under stress conditions, like hypoxia and anoxia, it also protects cells against reactive oxygen species thanks to its pseudoperoxidase activity (PubMed:34679218). {ECO:0000269|PubMed:30918256, ECO:0000269|PubMed:32891753, ECO:0000269|PubMed:34679218}.
P10398 ARAF Y302 psp Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}.
P35637 FUS S346 ochoa RNA-binding protein FUS (75 kDa DNA-pairing protein) (Oncogene FUS) (Oncogene TLS) (POMp75) (Translocated in liposarcoma protein) DNA/RNA-binding protein that plays a role in various cellular processes such as transcription regulation, RNA splicing, RNA transport, DNA repair and damage response (PubMed:27731383). Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Binds to nascent pre-mRNAs and acts as a molecular mediator between RNA polymerase II and U1 small nuclear ribonucleoprotein thereby coupling transcription and splicing (PubMed:26124092). Also binds its own pre-mRNA and autoregulates its expression; this autoregulation mechanism is mediated by non-sense-mediated decay (PubMed:24204307). Plays a role in DNA repair mechanisms by promoting D-loop formation and homologous recombination during DNA double-strand break repair (PubMed:10567410). In neuronal cells, plays crucial roles in dendritic spine formation and stability, RNA transport, mRNA stability and synaptic homeostasis (By similarity). {ECO:0000250|UniProtKB:P56959, ECO:0000269|PubMed:10567410, ECO:0000269|PubMed:21256132, ECO:0000269|PubMed:24204307, ECO:0000269|PubMed:26124092, ECO:0000269|PubMed:27731383}.
Q06265 EXOSC9 S287 ochoa Exosome complex component RRP45 (Autoantigen PM/Scl 1) (Exosome component 9) (P75 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 1) (Polymyositis/scleroderma autoantigen 75 kDa) (PM/Scl-75) Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC9 binds to ARE-containing RNAs. {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:16912217, ECO:0000269|PubMed:17545563}.
Q2LD37 BLTP1 Y1434 ochoa Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}.
Q7Z6E9 RBBP6 T1258 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q86UX7 FERMT3 Y162 ochoa Fermitin family homolog 3 (Kindlin-3) (MIG2-like protein) (Unc-112-related protein 2) Plays a central role in cell adhesion in hematopoietic cells (PubMed:19234463, PubMed:26359933). Acts by activating the integrin beta-1-3 (ITGB1, ITGB2 and ITGB3) (By similarity). Required for integrin-mediated platelet adhesion and leukocyte adhesion to endothelial cells (PubMed:19234460). Required for activation of integrin beta-2 (ITGB2) in polymorphonuclear granulocytes (PMNs) (By similarity). {ECO:0000250|UniProtKB:Q8K1B8, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463, ECO:0000269|PubMed:26359933}.; FUNCTION: Isoform 2 may act as a repressor of NF-kappa-B and apoptosis. {ECO:0000269|PubMed:19064721, ECO:0000269|PubMed:19234460, ECO:0000269|PubMed:19234463}.
Q86YV0 RASAL3 S224 ochoa RAS protein activator like-3 Functions as a Ras GTPase-activating protein. Plays an important role in the expansion and functions of natural killer T (NKT) cells in the liver by negatively regulating RAS activity and the down-stream ERK signaling pathway. {ECO:0000250|UniProtKB:Q8C2K5}.
Q8IWS0 PHF6 S145 ochoa PHD finger protein 6 (PHD-like zinc finger protein) Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}.
Q8N1G2 CMTR1 S28 ochoa Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}.
Q8N6Q8 METTL25 S265 ochoa Probable methyltransferase-like protein 25 (EC 2.1.1.-) Probable methyltransferase. {ECO:0000305}.
Q9BQ70 TCF25 T139 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
P09874 PARP1 S362 ochoa Poly [ADP-ribose] polymerase 1 (PARP-1) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 1) (ARTD1) (DNA ADP-ribosyltransferase PARP1) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 1) (ADPRT 1) (Poly[ADP-ribose] synthase 1) (Protein poly-ADP-ribosyltransferase PARP1) (EC 2.4.2.-) [Cleaved into: Poly [ADP-ribose] polymerase 1, processed C-terminus (Poly [ADP-ribose] polymerase 1, 89-kDa form); Poly [ADP-ribose] polymerase 1, processed N-terminus (NT-PARP-1) (Poly [ADP-ribose] polymerase 1, 24-kDa form) (Poly [ADP-ribose] polymerase 1, 28-kDa form)] Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:17177976, PubMed:18055453, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:20388712, PubMed:21680843, PubMed:22582261, PubMed:23230272, PubMed:25043379, PubMed:26344098, PubMed:26626479, PubMed:26626480, PubMed:30104678, PubMed:31796734, PubMed:32028527, PubMed:32241924, PubMed:32358582, PubMed:33186521, PubMed:34465625, PubMed:34737271). Mediates glutamate, aspartate, serine, histidine or tyrosine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:19764761, PubMed:25043379, PubMed:28190768, PubMed:29954836, PubMed:35393539, PubMed:7852410, PubMed:9315851). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:33186521, PubMed:34874266). Specificity for the different amino acids is conferred by interacting factors, such as HPF1 and NMNAT1 (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 confers serine specificity by completing the PARP1 active site (PubMed:28190768, PubMed:29954836, PubMed:32028527, PubMed:33186521, PubMed:33589610, PubMed:34625544, PubMed:34874266). Also catalyzes tyrosine ADP-ribosylation of target proteins following interaction with HPF1 (PubMed:29954836, PubMed:30257210). Following interaction with NMNAT1, catalyzes glutamate and aspartate ADP-ribosylation of target proteins; NMNAT1 confers glutamate and aspartate specificity (By similarity). PARP1 initiates the repair of DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones (H2BS6ADPr and H3S10ADPr), thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:17177976, PubMed:18172500, PubMed:19344625, PubMed:19661379, PubMed:23230272, PubMed:27067600, PubMed:34465625, PubMed:34874266). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP1 in order to limit the length of poly-ADP-ribose chains (PubMed:33683197, PubMed:34732825, PubMed:34795260). In addition to base excision repair (BER) pathway, also involved in double-strand breaks (DSBs) repair: together with TIMELESS, accumulates at DNA damage sites and promotes homologous recombination repair by mediating poly-ADP-ribosylation (PubMed:26344098, PubMed:30356214). Mediates the poly-ADP-ribosylation of a number of proteins, including itself, APLF, CHFR, RPA1 and NFAT5 (PubMed:17396150, PubMed:19764761, PubMed:24906880, PubMed:34049076). In addition to proteins, also able to ADP-ribosylate DNA: catalyzes ADP-ribosylation of DNA strand break termini containing terminal phosphates and a 2'-OH group in single- and double-stranded DNA, respectively (PubMed:27471034). Required for PARP9 and DTX3L recruitment to DNA damage sites (PubMed:23230272). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). PARP1-mediated DNA repair in neurons plays a role in sleep: senses DNA damage in neurons and promotes sleep, facilitating efficient DNA repair (By similarity). In addition to DNA repair, also involved in other processes, such as transcription regulation, programmed cell death, membrane repair, adipogenesis and innate immunity (PubMed:15607977, PubMed:17177976, PubMed:19344625, PubMed:27256882, PubMed:32315358, PubMed:32844745, PubMed:35124853, PubMed:35393539, PubMed:35460603). Acts as a repressor of transcription: binds to nucleosomes and modulates chromatin structure in a manner similar to histone H1, thereby altering RNA polymerase II (PubMed:15607977, PubMed:22464733). Acts both as a positive and negative regulator of transcription elongation, depending on the context (PubMed:27256882, PubMed:35393539). Acts as a positive regulator of transcription elongation by mediating poly-ADP-ribosylation of NELFE, preventing RNA-binding activity of NELFE and relieving transcription pausing (PubMed:27256882). Acts as a negative regulator of transcription elongation in response to DNA damage by catalyzing poly-ADP-ribosylation of CCNT1, disrupting the phase separation activity of CCNT1 and subsequent activation of CDK9 (PubMed:35393539). Involved in replication fork progression following interaction with CARM1: mediates poly-ADP-ribosylation at replication forks, slowing fork progression (PubMed:33412112). Poly-ADP-ribose chains generated by PARP1 also play a role in poly-ADP-ribose-dependent cell death, a process named parthanatos (By similarity). Also acts as a negative regulator of the cGAS-STING pathway (PubMed:32315358, PubMed:32844745, PubMed:35460603). Acts by mediating poly-ADP-ribosylation of CGAS: PARP1 translocates into the cytosol following phosphorylation by PRKDC and catalyzes poly-ADP-ribosylation and inactivation of CGAS (PubMed:35460603). Acts as a negative regulator of adipogenesis: catalyzes poly-ADP-ribosylation of histone H2B on 'Glu-35' (H2BE35ADPr) following interaction with NMNAT1, inhibiting phosphorylation of H2B at 'Ser-36' (H2BS36ph), thereby blocking expression of pro-adipogenetic genes (By similarity). Involved in the synthesis of ATP in the nucleus, together with NMNAT1, PARG and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000250|UniProtKB:P11103, ECO:0000269|PubMed:15607977, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:17396150, ECO:0000269|PubMed:18055453, ECO:0000269|PubMed:18172500, ECO:0000269|PubMed:19344625, ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:19764761, ECO:0000269|PubMed:20388712, ECO:0000269|PubMed:21680843, ECO:0000269|PubMed:22464733, ECO:0000269|PubMed:22582261, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:26626479, ECO:0000269|PubMed:26626480, ECO:0000269|PubMed:27067600, ECO:0000269|PubMed:27256882, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29954836, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30257210, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31796734, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32241924, ECO:0000269|PubMed:32315358, ECO:0000269|PubMed:32358582, ECO:0000269|PubMed:32844745, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:33412112, ECO:0000269|PubMed:33589610, ECO:0000269|PubMed:33683197, ECO:0000269|PubMed:34049076, ECO:0000269|PubMed:34465625, ECO:0000269|PubMed:34625544, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34737271, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266, ECO:0000269|PubMed:35124853, ECO:0000269|PubMed:35393539, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:7852410, ECO:0000269|PubMed:9315851}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed C-terminus]: Promotes AIFM1-mediated apoptosis (PubMed:33168626). This form, which translocates into the cytoplasm following cleavage by caspase-3 (CASP3) and caspase-7 (CASP7) in response to apoptosis, is auto-poly-ADP-ribosylated and serves as a poly-ADP-ribose carrier to induce AIFM1-mediated apoptosis (PubMed:33168626). {ECO:0000269|PubMed:33168626}.; FUNCTION: [Poly [ADP-ribose] polymerase 1, processed N-terminus]: This cleavage form irreversibly binds to DNA breaks and interferes with DNA repair, promoting DNA damage-induced apoptosis. {ECO:0000269|PubMed:35104452}.
P30414 NKTR S889 ochoa NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}.
Q12873 CHD3 S712 ochoa Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}.
Q14839 CHD4 T367 ochoa Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}.
Q70Z53 FRA10AC1 S273 ochoa Protein FRA10AC1 May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:34694367}.
Q7Z6E9 RBBP6 S1261 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q8WXI2 CNKSR2 S505 ochoa Connector enhancer of kinase suppressor of ras 2 (Connector enhancer of KSR 2) (CNK homolog protein 2) (CNK2) May function as an adapter protein or regulator of Ras signaling pathways. {ECO:0000269|PubMed:14597674}.
Q9NPY3 CD93 S627 ochoa Complement component C1q receptor (C1q/MBL/SPA receptor) (C1qR) (C1qR(p)) (C1qRp) (CDw93) (Complement component 1 q subcomponent receptor 1) (Matrix-remodeling-associated protein 4) (CD antigen CD93) Cell surface receptor that plays a role in various physiological processes including inflammation, phagocytosis, and cell adhesion. Plays a role in phagocytosis and enhances the uptake of apoptotic cells and immune complexes by acting as a receptor for defense collagens including surfactant protein A/SFTPA1, C1q, and mannose-binding lectin (MBL2) (PubMed:7977768). Plays a role in the regulation of endothelial cell function and adhesion by activating angiogenesis (PubMed:24809468). Mechanistically, exerts its angiogenic function by associating with beta-dystroglycan, leading to SRC-dependent phosphorylation and subsequent recruitment of CBL. In turn, CBL provides a docking site for downstream signaling components, such as CRKL to enhance cell migration (PubMed:26848865). Participates in angiogenesis also by acting as a receptor for the ECM pan-endothelial glycoprotein multimerin-2/MMRN2 and IGFBP7 ligands (PubMed:28671670, PubMed:36265539, PubMed:38218180). Both ligands play a non-redundant role in CD93-mediated endothelial cell function (PubMed:38218180). Acts as a key regulator of endothelial barrier function through modulating VEGFR2 function (By similarity). {ECO:0000250|UniProtKB:O89103, ECO:0000269|PubMed:24809468, ECO:0000269|PubMed:26848865, ECO:0000269|PubMed:28671670, ECO:0000269|PubMed:36265539, ECO:0000269|PubMed:38218180, ECO:0000269|PubMed:7977768}.
Q9Y5S9 RBM8A S42 ochoa RNA-binding protein 8A (Binder of OVCA1-1) (BOV-1) (RNA-binding motif protein 8A) (RNA-binding protein Y14) (Ribonucleoprotein RBM8A) Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). The MAGOH-RBM8A heterodimer inhibits the ATPase activity of EIF4A3, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The MAGOH-RBM8A heterodimer interacts with the EJC key regulator PYM1 leading to EJC disassembly in the cytoplasm and translation enhancement of EJC-bearing spliced mRNAs by recruiting them to the ribosomal 48S preinitiation complex. Its removal from cytoplasmic mRNAs requires translation initiation from EJC-bearing spliced mRNAs. Associates preferentially with mRNAs produced by splicing. Does not interact with pre-mRNAs, introns, or mRNAs produced from intronless cDNAs. Associates with both nuclear mRNAs and newly exported cytoplasmic mRNAs. The MAGOH-RBM8A heterodimer is a component of the nonsense mediated decay (NMD) pathway. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. {ECO:0000269|PubMed:12121612, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:12730685, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:19409878, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}.
Q15648 MED1 T704 EPSD|PSP Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}.
Q02878 RPL6 T93 Sugiyama Large ribosomal subunit protein eL6 (60S ribosomal protein L6) (Neoplasm-related protein C140) (Tax-responsive enhancer element-binding protein 107) (TaxREB107) Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:25901680, PubMed:25957688, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}.; FUNCTION: (Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I (PubMed:8457378). {ECO:0000269|PubMed:8457378}.
A0A0B4J1V8 PPAN-P2RY11 S364 ochoa HCG2039996 (PPAN-P2RY11 readthrough) None
A6NKT7 RGPD3 S1613 ochoa RanBP2-like and GRIP domain-containing protein 3 None
I3L4J1 None S114 ochoa vesicle-fusing ATPase (EC 3.6.4.6) (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}.
O00203 AP3B1 S752 ochoa AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}.
O14715 RGPD8 S1612 ochoa RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) None
O14981 BTAF1 S224 ochoa TATA-binding protein-associated factor 172 (EC 3.6.4.-) (ATP-dependent helicase BTAF1) (B-TFIID transcription factor-associated 170 kDa subunit) (TAF(II)170) (TBP-associated factor 172) (TAF-172) Regulates transcription in association with TATA binding protein (TBP). Removes TBP from the TATA box in an ATP-dependent manner.
O15047 SETD1A S907 ochoa Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}.
O60293 ZFC3H1 S1298 ochoa Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}.
O60814 H2BC12 Y38 ochoa Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
O60841 EIF5B S135 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O60841 EIF5B S588 ochoa Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}.
O75152 ZC3H11A S338 ochoa Zinc finger CCCH domain-containing protein 11A Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.
O94763 URI1 S375 ochoa Unconventional prefoldin RPB5 interactor 1 (Protein NNX3) (Protein phosphatase 1 regulatory subunit 19) (RNA polymerase II subunit 5-mediating protein) (RPB5-mediating protein) Involved in gene transcription regulation. Acts as a transcriptional repressor in concert with the corepressor UXT to regulate androgen receptor (AR) transcription. May act as a tumor suppressor to repress AR-mediated gene transcription and to inhibit anchorage-independent growth in prostate cancer cells. Required for cell survival in ovarian cancer cells. Together with UXT, associates with chromatin to the NKX3-1 promoter region. Antagonizes transcriptional modulation via hepatitis B virus X protein.; FUNCTION: Plays a central role in maintaining S6K1 signaling and BAD phosphorylation under normal growth conditions thereby protecting cells from potential deleterious effects of sustained S6K1 signaling. The URI1-PPP1CC complex acts as a central component of a negative feedback mechanism that counteracts excessive S6K1 survival signaling to BAD in response to growth factors. Mediates inhibition of PPP1CC phosphatase activity in mitochondria. Coordinates the regulation of nutrient-sensitive gene expression availability in a mTOR-dependent manner. Seems to be a scaffolding protein able to assemble a prefoldin-like complex that contains PFDs and proteins with roles in transcription and ubiquitination.
O94955 RHOBTB3 S215 ochoa Rho-related BTB domain-containing protein 3 (EC 3.6.1.-) Rab9-regulated ATPase required for endosome to Golgi transport. Involved in transport vesicle docking at the Golgi complex, possibly by participating in release M6PRBP1/TIP47 from vesicles to permit their efficient docking and fusion at the Golgi. Specifically binds Rab9, but not other Rab proteins. Has low intrinsic ATPase activity due to autoinhibition, which is relieved by Rab9. {ECO:0000269|PubMed:19490898}.
O95149 SNUPN Y334 ochoa Snurportin-1 (RNA U transporter 1) Functions as an U snRNP-specific nuclear import adapter. Involved in the trimethylguanosine (m3G)-cap-dependent nuclear import of U snRNPs. Binds specifically to the terminal m3G-cap U snRNAs. {ECO:0000269|PubMed:10209022, ECO:0000269|PubMed:15920472, ECO:0000269|PubMed:16030253, ECO:0000269|PubMed:38413582, ECO:0000269|PubMed:9670026}.
O95202 LETM1 Y141 ochoa Mitochondrial proton/calcium exchanger protein (Electroneutral mitochondrial K(+)/H(+)exchanger) (KHE) (Leucine zipper-EF-hand-containing transmembrane protein 1) Plays an important role in maintenance of mitochondrial morphology and in mediating either calcium or potassium/proton antiport (PubMed:18628306, PubMed:19797662, PubMed:24344246, PubMed:24898248, PubMed:29123128, PubMed:32139798, PubMed:36055214, PubMed:36321428). Mediates proton-dependent calcium efflux from mitochondrion (PubMed:19797662, PubMed:24344246, PubMed:29123128). Also functions as an electroneutral mitochondrial proton/potassium exchanger (PubMed:24898248, PubMed:36055214, PubMed:36321428). Crucial for the maintenance of mitochondrial tubular networks and for the assembly of the supercomplexes of the respiratory chain (PubMed:18628306, PubMed:36055214). Required for the maintenance of the tubular shape and cristae organization (PubMed:18628306, PubMed:32139798). {ECO:0000269|PubMed:18628306, ECO:0000269|PubMed:19797662, ECO:0000269|PubMed:24344246, ECO:0000269|PubMed:24898248, ECO:0000269|PubMed:29123128, ECO:0000269|PubMed:32139798, ECO:0000269|PubMed:36055214, ECO:0000269|PubMed:36321428}.
O95613 PCNT S49 ochoa Pericentrin (Kendrin) (Pericentrin-B) Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}.
O95757 HSPA4L S587 ochoa Heat shock 70 kDa protein 4L (Heat shock 70-related protein APG-1) (Heat shock protein family H member 3) (Heat-shock protein family A member 4-like protein) (HSPA4-like protein) (Osmotic stress protein 94) Possesses chaperone activity in vitro where it inhibits aggregation of citrate synthase. {ECO:0000250}.
O95831 AIFM1 S100 ochoa Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}.
O96017 CHEK2 S260 ochoa|psp Serine/threonine-protein kinase Chk2 (EC 2.7.11.1) (CHK2 checkpoint homolog) (Cds1 homolog) (Hucds1) (hCds1) (Checkpoint kinase 2) Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis in response to the presence of DNA double-strand breaks. May also negatively regulate cell cycle progression during unperturbed cell cycles. Following activation, phosphorylates numerous effectors preferentially at the consensus sequence [L-X-R-X-X-S/T] (PubMed:37943659). Regulates cell cycle checkpoint arrest through phosphorylation of CDC25A, CDC25B and CDC25C, inhibiting their activity. Inhibition of CDC25 phosphatase activity leads to increased inhibitory tyrosine phosphorylation of CDK-cyclin complexes and blocks cell cycle progression. May also phosphorylate NEK6 which is involved in G2/M cell cycle arrest. Regulates DNA repair through phosphorylation of BRCA2, enhancing the association of RAD51 with chromatin which promotes DNA repair by homologous recombination. Also stimulates the transcription of genes involved in DNA repair (including BRCA2) through the phosphorylation and activation of the transcription factor FOXM1. Regulates apoptosis through the phosphorylation of p53/TP53, MDM4 and PML. Phosphorylation of p53/TP53 at 'Ser-20' by CHEK2 may alleviate inhibition by MDM2, leading to accumulation of active p53/TP53. Phosphorylation of MDM4 may also reduce degradation of p53/TP53. Also controls the transcription of pro-apoptotic genes through phosphorylation of the transcription factor E2F1. Tumor suppressor, it may also have a DNA damage-independent function in mitotic spindle assembly by phosphorylating BRCA1. Its absence may be a cause of the chromosomal instability observed in some cancer cells. Promotes the CCAR2-SIRT1 association and is required for CCAR2-mediated SIRT1 inhibition (PubMed:25361978). Under oxidative stress, promotes ATG7 ubiquitination by phosphorylating the E3 ubiquitin ligase TRIM32 at 'Ser-55' leading to positive regulation of the autophagosme assembly (PubMed:37943659). {ECO:0000250|UniProtKB:Q9Z265, ECO:0000269|PubMed:10097108, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11298456, ECO:0000269|PubMed:12402044, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12717439, ECO:0000269|PubMed:12810724, ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:17380128, ECO:0000269|PubMed:17715138, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:18644861, ECO:0000269|PubMed:18728393, ECO:0000269|PubMed:20364141, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25619829, ECO:0000269|PubMed:37943659, ECO:0000269|PubMed:9836640, ECO:0000269|PubMed:9889122}.; FUNCTION: (Microbial infection) Phosphorylates herpes simplex virus 1/HHV-1 protein ICP0 and thus activates its SUMO-targeted ubiquitin ligase activity. {ECO:0000269|PubMed:32001251}.
P06748 NPM1 S242 ochoa Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}.
P08238 HSP90AB1 Y276 ochoa Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}.
P0DJD0 RGPD1 S1597 ochoa RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) None
P0DJD1 RGPD2 S1605 ochoa RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) None
P20929 NEB S367 ochoa Nebulin This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
P21127 CDK11B S115 ochoa|psp Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}.
P26358 DNMT1 S732 ochoa DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}.
P26639 TARS1 S39 ochoa Threonine--tRNA ligase 1, cytoplasmic (EC 6.1.1.3) (Threonyl-tRNA synthetase) (ThrRS) (Threonyl-tRNA synthetase 1) Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction: threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr) (PubMed:25824639, PubMed:31374204). Also edits incorrectly charged tRNA(Thr) via its editing domain, at the post-transfer stage (By similarity). {ECO:0000250|UniProtKB:Q9D0R2, ECO:0000269|PubMed:25824639, ECO:0000269|PubMed:31374204}.
P33981 TTK S403 ochoa Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}.
P42677 RPS27 Y31 ochoa Small ribosomal subunit protein eS27 (40S ribosomal protein S27) (Metallopan-stimulin 1) (MPS-1) Component of the small ribosomal subunit (PubMed:23636399, PubMed:8706699). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Required for proper rRNA processing and maturation of 18S rRNAs (PubMed:25424902). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25424902, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:8706699}.
P46734 MAP2K3 S31 ochoa Dual specificity mitogen-activated protein kinase kinase 3 (MAP kinase kinase 3) (MAPKK 3) (EC 2.7.12.2) (MAPK/ERK kinase 3) (MEK 3) (Stress-activated protein kinase kinase 2) (SAPK kinase 2) (SAPKK-2) (SAPKK2) Dual specificity kinase. Is activated by cytokines and environmental stress in vivo. Catalyzes the concomitant phosphorylation of a threonine and a tyrosine residue in the MAP kinase p38. Part of a signaling cascade that begins with the activation of the adrenergic receptor ADRA1B and leads to the activation of MAPK14. {ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:8622669}.
P46821 MAP1B T744 ochoa Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}.
P48382 RFX5 S476 ochoa DNA-binding protein RFX5 (Regulatory factor X 5) Activates transcription from class II MHC promoters. Recognizes X-boxes. Mediates cooperative binding between RFX and NF-Y. RFX binds the X1 box of MHC-II promoters.
P49792 RANBP2 S2588 ochoa E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}.
P51532 SMARCA4 S1421 ochoa SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
P55198 MLLT6 S258 ochoa Protein AF-17 (ALL1-fused gene from chromosome 17 protein) None
P57053 H2BC12L Y38 ochoa Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P58876 H2BC5 Y38 ochoa Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P62807 H2BC4 Y38 ochoa Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P63151 PPP2R2A S409 ochoa Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform (PP2A subunit B isoform B55-alpha) (B55) (PP2A subunit B isoform PR55-alpha) (PP2A subunit B isoform R2-alpha) (PP2A subunit B isoform alpha) Substrate-recognition subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit (PubMed:1849734, PubMed:33108758). Involved in chromosome clustering during late mitosis by mediating dephosphorylation of MKI67 (By similarity). Essential for serine/threonine-protein phosphatase 2A-mediated dephosphorylation of WEE1, preventing its ubiquitin-mediated proteolysis, increasing WEE1 protein levels, and promoting the G2/M checkpoint (PubMed:33108758). {ECO:0000250|UniProtKB:Q6P1F6, ECO:0000269|PubMed:1849734, ECO:0000269|PubMed:33108758}.
Q01831 XPC S398 ochoa DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}.
Q02641 CACNB1 S46 ochoa Voltage-dependent L-type calcium channel subunit beta-1 (CAB1) (Calcium channel voltage-dependent subunit beta 1) Regulatory subunit of L-type calcium channels (PubMed:1309651, PubMed:15615847, PubMed:8107964). Regulates the activity of L-type calcium channels that contain CACNA1A as pore-forming subunit (By similarity). Regulates the activity of L-type calcium channels that contain CACNA1C as pore-forming subunit and increases the presence of the channel complex at the cell membrane (PubMed:15615847). Required for functional expression L-type calcium channels that contain CACNA1D as pore-forming subunit (PubMed:1309651). Regulates the activity of L-type calcium channels that contain CACNA1B as pore-forming subunit (PubMed:8107964). {ECO:0000250|UniProtKB:P19517, ECO:0000269|PubMed:1309651, ECO:0000269|PubMed:15615847, ECO:0000269|PubMed:8107964}.
Q03701 CEBPZ S149 ochoa CCAAT/enhancer-binding protein zeta (CCAAT-box-binding transcription factor) (CBF) (CCAAT-binding factor) Stimulates transcription from the HSP70 promoter.
Q13185 CBX3 S97 ochoa Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}.
Q13523 PRP4K S277 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q13610 PWP1 S250 ochoa Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}.
Q14515 SPARCL1 S84 ochoa SPARC-like protein 1 (High endothelial venule protein) (Hevin) (MAST 9) None
Q14568 HSP90AA2P Y283 ochoa Heat shock protein HSP 90-alpha A2 (Heat shock 90 kDa protein 1 alpha-like 3) (Heat shock protein HSP 90-alpha A2 pseudogene) (Heat shock protein family C member 2) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q14677 CLINT1 S163 ochoa Clathrin interactor 1 (Clathrin-interacting protein localized in the trans-Golgi region) (Clint) (Enthoprotin) (Epsin-4) (Epsin-related protein) (EpsinR) Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May have a role in transport via clathrin-coated vesicles from the trans-Golgi network to endosomes. Stimulates clathrin assembly. {ECO:0000269|PubMed:12429846, ECO:0000269|PubMed:12538641}.
Q14978 NOLC1 S90 ochoa Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}.
Q14997 PSME4 S1746 ochoa Proteasome activator complex subunit 4 (Proteasome activator PA200) (Protein BLM10 homolog) (Blm10) (hBlm10) Associated component of the proteasome that specifically recognizes acetylated histones and promotes ATP- and ubiquitin-independent degradation of core histones during spermatogenesis and DNA damage response. Recognizes and binds acetylated histones via its bromodomain-like (BRDL) region and activates the proteasome by opening the gated channel for substrate entry. Binds to the core proteasome via its C-terminus, which occupies the same binding sites as the proteasomal ATPases, opening the closed structure of the proteasome via an active gating mechanism. Component of the spermatoproteasome, a form of the proteasome specifically found in testis: binds to acetylated histones and promotes degradation of histones, thereby participating actively to the exchange of histones during spermatogenesis. Also involved in DNA damage response in somatic cells, by promoting degradation of histones following DNA double-strand breaks. {ECO:0000269|PubMed:12093752, ECO:0000269|PubMed:18845680, ECO:0000269|PubMed:22550082, ECO:0000269|PubMed:23706739}.
Q15014 MORF4L2 S90 ochoa Mortality factor 4-like protein 2 (MORF-related gene X protein) (Protein MSL3-2) (Transcription factor-like protein MRGX) Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histone H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. Also a component of the MSIN3A complex which acts to repress transcription by deacetylation of nucleosomal histones.
Q15021 NCAPD2 S1371 ochoa Condensin complex subunit 1 (Chromosome condensation-related SMC-associated protein 1) (Chromosome-associated protein D2) (hCAP-D2) (Non-SMC condensin I complex subunit D2) (XCAP-D2 homolog) Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. May target the condensin complex to DNA via its C-terminal domain (PubMed:11136719). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Required for decatenation of non-centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}.
Q15032 R3HDM1 S138 ochoa R3H domain-containing protein 1 None
Q15287 RNPS1 S53 ochoa|psp RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) Part of pre- and post-splicing multiprotein mRNP complexes. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP and PSAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Enhances the formation of the ATP-dependent A complex of the spliceosome. Involved in both constitutive splicing and, in association with SRP54 and TRA2B/SFRS10, in distinctive modulation of alternative splicing in a substrate-dependent manner. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Participates in mRNA 3'-end cleavage. Involved in UPF2-dependent nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Also mediates increase of mRNA abundance and translational efficiency. Binds spliced mRNA 20-25 nt upstream of exon-exon junctions. {ECO:0000269|PubMed:10449421, ECO:0000269|PubMed:11546874, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:14729963, ECO:0000269|PubMed:14752011, ECO:0000269|PubMed:15684395, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:17586820, ECO:0000269|PubMed:22203037}.
Q15785 TOMM34 S186 ochoa Mitochondrial import receptor subunit TOM34 (hTom34) (Translocase of outer membrane 34 kDa subunit) Plays a role in the import of cytosolically synthesized preproteins into mitochondria. Binds the mature portion of precursor proteins. Interacts with cellular components, and possesses weak ATPase activity. May be a chaperone-like protein that helps to keep newly synthesized precursors in an unfolded import compatible state. {ECO:0000269|PubMed:10101285, ECO:0000269|PubMed:11913975, ECO:0000269|PubMed:9324309}.
Q16778 H2BC21 Y38 ochoa Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
Q32NC0 C18orf21 S195 ochoa UPF0711 protein C18orf21 (HBV X-transactivated gene 13 protein) (HBV XAg-transactivated protein 13) None
Q562F6 SGO2 S1085 ochoa Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}.
Q58FF8 HSP90AB2P Y198 ochoa Putative heat shock protein HSP 90-beta 2 (Heat shock protein 90-beta b) (Heat shock protein 90Bb) Putative molecular chaperone that may promote the maturation, structural maintenance and proper regulation of specific target proteins. {ECO:0000250}.
Q5HYJ3 FAM76B S232 ochoa Protein FAM76B Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}.
Q5QNW6 H2BC18 Y38 ochoa Histone H2B type 2-F (H2B-clustered histone 18) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q5W0Q7 USPL1 S908 ochoa SUMO-specific isopeptidase USPL1 (EC 3.4.22.-) (Ubiquitin-specific peptidase-like protein 1) (USP-like 1) SUMO-specific isopeptidase involved in protein desumoylation. Specifically binds SUMO proteins with a higher affinity for SUMO2 and SUMO3 which it cleaves more efficiently. Also able to process full-length SUMO proteins to their mature forms (PubMed:22878415). Plays a key role in RNA polymerase-II-mediated snRNA transcription in the Cajal bodies (PubMed:24413172). Is a component of complexes that can bind to U snRNA genes (PubMed:24413172). {ECO:0000269|PubMed:22878415, ECO:0000269|PubMed:24413172}.
Q641Q2 WASHC2A S912 ochoa WASH complex subunit 2A Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}.
Q66LE6 PPP2R2D S415 ochoa Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B delta isoform (PP2A subunit B isoform B55-delta) (PP2A subunit B isoform PR55-delta) (PP2A subunit B isoform R2-delta) (PP2A subunit B isoform delta) Substrate-recognition subunit of protein phosphatase 2A (PP2A) that plays a key role in cell cycle by controlling mitosis entry and exit. Involved in chromosome clustering during late mitosis by mediating dephosphorylation of MKI67 (By similarity). The activity of PP2A complexes containing PPP2R2D (PR55-delta) fluctuate during the cell cycle: the activity is high in interphase and low in mitosis (By similarity). {ECO:0000250|UniProtKB:Q7ZX64, ECO:0000250|UniProtKB:Q925E7}.
Q6DN03 H2BC20P Y38 ochoa Putative histone H2B type 2-C (H2B-clustered histone 20 pseudogene) (Histone H2B.t) (H2B/t) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6DRA6 H2BC19P Y38 ochoa Putative histone H2B type 2-D (H2B-clustered histone 19 pseudogene) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q6P1L5 FAM117B S276 ochoa Protein FAM117B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 13 protein) None
Q6PD62 CTR9 S1016 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6PD62 CTR9 S1020 ochoa RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}.
Q6UB98 ANKRD12 S1079 ochoa Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Q7Z3J3 RGPD4 S1613 ochoa RanBP2-like and GRIP domain-containing protein 4 None
Q7Z6E9 RBBP6 S1221 ochoa E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}.
Q86UD5 SLC9B2 S49 ochoa Sodium/hydrogen exchanger 9B2 (Na(+)/H(+) exchanger NHA2) (Na(+)/H(+) exchanger-like domain-containing protein 2) (NHE domain-containing protein 2) (Sodium/hydrogen exchanger-like domain-containing protein 2) (Solute carrier family 9 subfamily B member 2) Electroneutral Na(+) Li(+)/H(+) antiporter that extrudes Na(+) or Li(+) in exchange for external protons across the membrane (PubMed:18000046, PubMed:18508966, PubMed:22948142, PubMed:28154142, PubMed:36177733). Uses the proton gradient/membrane potential to extrude sodium (PubMed:22948142). Contributes to the regulation of intracellular pH and sodium homeostasis (By similarity). Also able to mediate Na(+)/Li(+) antiporter activity in kidney (PubMed:22948142). May play a physiological role in renal tubular function and blood pressure homeostasis (By similarity). Plays an important role for insulin secretion and clathrin-mediated endocytosis in beta-cells (By similarity). Involved in sperm motility and fertility (By similarity). It is controversial whether SLC9B2 plays a role in osteoclast differentiation or not (By similarity). {ECO:0000250|UniProtKB:Q5BKR2, ECO:0000269|PubMed:18000046, ECO:0000269|PubMed:18508966, ECO:0000269|PubMed:22948142, ECO:0000269|PubMed:28154142, ECO:0000269|PubMed:36177733}.
Q8IY81 FTSJ3 S335 ochoa pre-rRNA 2'-O-ribose RNA methyltransferase FTSJ3 (EC 2.1.1.-) (Protein ftsJ homolog 3) (Putative rRNA methyltransferase 3) RNA 2'-O-methyltransferase involved in the processing of the 34S pre-rRNA to 18S rRNA and in 40S ribosomal subunit formation. {ECO:0000255|HAMAP-Rule:MF_03163, ECO:0000269|PubMed:22195017}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, recruited to HIV-1 RNA and catalyzes 2'-O-methylation of the viral genome, allowing HIV-1 virus to escape the innate immune system (PubMed:30626973). RNA 2'-O-methylation provides a molecular signature for discrimination of self from non-self and is used by HIV-1 to evade innate immune recognition by IFIH1/MDA5 (PubMed:30626973). Mediates methylation of internal residues of HIV-1 RNA, with a strong preference for adenosine (PubMed:30626973). Recruited to HIV-1 RNA via interaction with TARBP2/TRBP (PubMed:30626973). {ECO:0000269|PubMed:30626973}.
Q8IZA0 KIAA0319L T974 ochoa Dyslexia-associated protein KIAA0319-like protein (Adeno-associated virus receptor) (AAVR) Possible role in axon guidance through interaction with RTN4R. {ECO:0000269|PubMed:20697954}.; FUNCTION: (Microbial infection) Acts as a receptor for adeno-associated virus and is involved in adeno-associated virus infection through endocytosis system. {ECO:0000269|PubMed:26814968}.
Q8N257 H2BC26 Y38 ochoa Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q8N3V7 SYNPO S721 ochoa Synaptopodin Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}.
Q8N5H7 SH2D3C S22 ochoa SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}.
Q8NI27 THOC2 T1288 ochoa THO complex subunit 2 (Tho2) (hTREX120) Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}.
Q8TAQ2 SMARCC2 S813 ochoa SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}.
Q93073 SECISBP2L T573 psp Selenocysteine insertion sequence-binding protein 2-like (SECIS-binding protein 2-like) Binds SECIS (Sec insertion sequence) elements present on selenocysteine (Sec) protein mRNAs, but does not promote Sec incorporation into selenoproteins in vitro.
Q93079 H2BC9 Y38 ochoa Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q96BK5 PINX1 S117 psp PIN2/TERF1-interacting telomerase inhibitor 1 (Liver-related putative tumor suppressor) (Pin2-interacting protein X1) (Protein 67-11-3) (TRF1-interacting protein 1) Microtubule-binding protein essential for faithful chromosome segregation. Mediates TRF1 and TERT accumulation in nucleolus and enhances TRF1 binding to telomeres. Inhibits telomerase activity. May inhibit cell proliferation and act as tumor suppressor. {ECO:0000269|PubMed:15381700, ECO:0000269|PubMed:17198684, ECO:0000269|PubMed:19117989, ECO:0000269|PubMed:19265708, ECO:0000269|PubMed:19393617, ECO:0000269|PubMed:19553660}.
Q99549 MPHOSPH8 S192 ochoa M-phase phosphoprotein 8 (Two hybrid-associated protein 3 with RanBPM) (Twa3) Heterochromatin component that specifically recognizes and binds methylated 'Lys-9' of histone H3 (H3K9me) and promotes recruitment of proteins that mediate epigenetic repression (PubMed:20871592, PubMed:26022416). Mediates recruitment of the HUSH complex to H3K9me3 sites: the HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Binds H3K9me and promotes DNA methylation by recruiting DNMT3A to target CpG sites; these can be situated within the coding region of the gene (PubMed:20871592). Mediates down-regulation of CDH1 expression (PubMed:20871592). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). {ECO:0000269|PubMed:20871592, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}.
Q99575 POP1 S95 ochoa Ribonucleases P/MRP protein subunit POP1 (hPOP1) Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends (PubMed:30454648, PubMed:8918471). Also a component of the MRP ribonuclease complex, which cleaves pre-rRNA sequences (PubMed:28115465). {ECO:0000269|PubMed:28115465, ECO:0000269|PubMed:30454648, ECO:0000269|PubMed:8918471}.
Q99666 RGPD5 S1612 ochoa RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) None
Q99877 H2BC15 Y38 ochoa Histone H2B type 1-N (Histone H2B.d) (H2B/d) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99879 H2BC14 Y38 ochoa Histone H2B type 1-M (Histone H2B.e) (H2B/e) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q99880 H2BC13 Y38 ochoa Histone H2B type 1-L (Histone H2B.c) (H2B/c) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q9BQ70 TCF25 S137 ochoa Ribosome quality control complex subunit TCF25 (Nuclear localized protein 1) (Transcription factor 25) (TCF-25) Component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates ubiquitination and extraction of incompletely synthesized nascent chains for proteasomal degradation (PubMed:30244831). In the RQC complex, required to promote formation of 'Lys-48'-linked polyubiquitin chains during ubiquitination of incompletely synthesized proteins by LTN1 (PubMed:30244831). May negatively regulate the calcineurin-NFAT signaling cascade by suppressing the activity of transcription factor NFATC4 (By similarity). May play a role in cell death control (By similarity). {ECO:0000250|UniProtKB:A0A8I6ASZ5, ECO:0000250|UniProtKB:Q8R3L2, ECO:0000269|PubMed:30244831}.
Q9BVP2 GNL3 S53 ochoa Guanine nucleotide-binding protein-like 3 (E2-induced gene 3 protein) (Novel nucleolar protein 47) (NNP47) (Nucleolar GTP-binding protein 3) (Nucleostemin) May be required to maintain the proliferative capacity of stem cells. Stabilizes MDM2 by preventing its ubiquitination, and hence proteasomal degradation (By similarity). {ECO:0000250, ECO:0000269|PubMed:12464630, ECO:0000269|PubMed:16012751}.
Q9BXF6 RAB11FIP5 S207 ochoa Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}.
Q9BYW2 SETD2 S1888 ochoa Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}.
Q9H1E3 NUCKS1 S58 ochoa Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 (P1) Chromatin-associated protein involved in DNA repair by promoting homologous recombination (HR) (PubMed:26323318). Binds double-stranded DNA (dsDNA) and secondary DNA structures, such as D-loop structures, but with less affinity than RAD51AP1 (PubMed:26323318). {ECO:0000269|PubMed:26323318}.
Q9NQ55 PPAN S364 ochoa Suppressor of SWI4 1 homolog (Ssf-1) (Brix domain-containing protein 3) (Peter Pan homolog) May have a role in cell growth.
Q9NRG4 SMYD2 S283 ochoa N-lysine methyltransferase SMYD2 (EC 2.1.1.-) (HSKM-B) (Histone methyltransferase SMYD2) (EC 2.1.1.354) (Lysine N-methyltransferase 3C) (SET and MYND domain-containing protein 2) Protein-lysine N-methyltransferase that methylates both histones and non-histone proteins, including p53/TP53 and RB1. Specifically trimethylates histone H3 'Lys-4' (H3K4me3) in vivo. The activity requires interaction with HSP90alpha. Shows even higher methyltransferase activity on p53/TP53. Monomethylates 'Lys-370' of p53/TP53, leading to decreased DNA-binding activity and subsequent transcriptional regulation activity of p53/TP53. Monomethylates RB1 at 'Lys-860'. {ECO:0000269|PubMed:17108971, ECO:0000269|PubMed:17805299, ECO:0000269|PubMed:18065756, ECO:0000269|PubMed:20870719, ECO:0000269|PubMed:21782458, ECO:0000269|PubMed:21880715}.
Q9NSI8 SAMSN1 S90 ochoa SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}.
Q9NWM3 CUEDC1 S345 ochoa CUE domain-containing protein 1 None
Q9P2D0 IBTK S990 ochoa Inhibitor of Bruton tyrosine kinase (IBtk) Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}.
Q9P2N5 RBM27 S128 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}.
Q9UBU7 DBF4 S381 ochoa Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}.
Q9UEW8 STK39 S315 ochoa STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}.
Q9ULW2 FZD10 S553 ochoa Frizzled-10 (Fz-10) (hFz10) (FzE7) (CD antigen CD350) Receptor for Wnt proteins. Functions in the canonical Wnt/beta-catenin signaling pathway (By similarity). The canonical Wnt/beta-catenin signaling pathway leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues (Probable). {ECO:0000250|UniProtKB:Q8BKG4, ECO:0000305}.
Q9UN37 VPS4A S90 ochoa Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}.
Q9UQ35 SRRM2 S248 ochoa Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}.
Q9Y2K5 R3HDM2 S139 ochoa R3H domain-containing protein 2 None
Q9Y2K5 R3HDM2 S143 ochoa R3H domain-containing protein 2 None
U3KPZ7 LOC127814297 S128 ochoa RNA-binding protein 27 (RNA-binding motif protein 27) May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}.
Q99848 EBNA1BP2 Y265 Sugiyama Probable rRNA-processing protein EBP2 (EBNA1-binding protein 2) (Nucleolar protein p40) Required for the processing of the 27S pre-rRNA. {ECO:0000250}.
O15446 POLR1G T435 Sugiyama DNA-directed RNA polymerase I subunit RPA34 (A34.5) (Antisense to ERCC-1 protein) (ASE-1) (CD3-epsilon-associated protein) (CD3E-associated protein) (DNA-directed RNA polymerase I subunit G) (RNA polymerase I-associated factor PAF49) Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Involved in UBTF-activated transcription, presumably at a step following PIC formation. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}.; FUNCTION: [Isoform 2]: Has been described as a component of preformed T-cell receptor (TCR) complex. {ECO:0000269|PubMed:10373416}.
Q9BZI7 UPF3B T153 Sugiyama Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q92522 H1-10 Y48 Sugiyama Histone H1.10 (Histone H1x) Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures.
P06899 H2BC11 Y38 Sugiyama Histone H2B type 1-J (Histone H2B.1) (Histone H2B.r) (H2B/r) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.
P23527 H2BC17 Y38 Sugiyama Histone H2B type 1-O (H2B-clustered histone 17) (Histone H2B.2) (Histone H2B.n) (H2B/n) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
P33778 H2BC3 Y38 Sugiyama Histone H2B type 1-B (H2B-clustered histone 3) (Histone H2B.1) (Histone H2B.f) (H2B/f) Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
Q9NTJ3 SMC4 S466 Sugiyama Structural maintenance of chromosomes protein 4 (SMC protein 4) (SMC-4) (Chromosome-associated polypeptide C) (hCAP-C) (XCAP-C homolog) Central component of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases. {ECO:0000269|PubMed:11136719}.
Q9H173 SIL1 S128 Sugiyama Nucleotide exchange factor SIL1 (BiP-associated protein) (BAP) Required for protein translocation and folding in the endoplasmic reticulum (ER). Functions as a nucleotide exchange factor for the ER lumenal chaperone HSPA5. {ECO:0000269|PubMed:12356756}.
A0A0A6YYK5 None S189 ochoa Uncharacterized protein None
Q13523 PRP4K S285 ochoa Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}.
Q9BT81 SOX7 S137 ochoa Transcription factor SOX-7 Binds to and activates the CDH5 promoter, hence plays a role in the transcriptional regulation of genes expressed in the hemogenic endothelium and blocks further differentiation into blood precursors (By similarity). May be required for the survival of both hematopoietic and endothelial precursors during specification (By similarity). Competes with GATA4 for binding and activation of the FGF3 promoter (By similarity). Represses Wnt/beta-catenin-stimulated transcription, probably by targeting CTNNB1 to proteasomal degradation. Binds the DNA sequence 5'-AACAAT-3'. {ECO:0000250, ECO:0000269|PubMed:18819930}.
Q9BZI7 UPF3B Y160 ochoa Regulator of nonsense transcripts 3B (Nonsense mRNA reducing factor 3B) (Up-frameshift suppressor 3 homolog B) (hUpf3B) (Up-frameshift suppressor 3 homolog on chromosome X) (hUpf3p-X) Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. In cooperation with UPF2 stimulates both ATPase and RNA helicase activities of UPF1. Binds spliced mRNA upstream of exon-exon junctions. In vitro, stimulates translation; the function is independent of association with UPF2 and components of the EJC core. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:12718880, ECO:0000269|PubMed:16209946, ECO:0000269|PubMed:16601204, ECO:0000269|PubMed:18066079}.
Q9NRF2 SH2B1 S161 psp SH2B adapter protein 1 (Pro-rich, PH and SH2 domain-containing signaling mediator) (PSM) (SH2 domain-containing protein 1B) Adapter protein for several members of the tyrosine kinase receptor family. Involved in multiple signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases, including the receptors of insulin (INS), insulin-like growth factor 1 (IGF1), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), platelet-derived growth factor (PDGF) and fibroblast growth factors (FGFs). In growth hormone (GH) signaling, autophosphorylated ('Tyr-813') JAK2 recruits SH2B1, which in turn is phosphorylated by JAK2 on tyrosine residues. These phosphotyrosines form potential binding sites for other signaling proteins. GH also promotes serine/threonine phosphorylation of SH2B1 and these phosphorylated residues may serve to recruit other proteins to the GHR-JAK2-SH2B1 complexes, such as RAC1. In leptin (LEP) signaling, binds to and potentiates the activation of JAK2 by globally enhancing downstream pathways. In response to leptin, binds simultaneously to both, JAK2 and IRS1 or IRS2, thus mediating formation of a complex of JAK2, SH2B1 and IRS1 or IRS2. Mediates tyrosine phosphorylation of IRS1 and IRS2, resulting in activation of the PI 3-kinase pathway. Acts as a positive regulator of NGF-mediated activation of the Akt/Forkhead pathway; prolongs NGF-induced phosphorylation of AKT1 on 'Ser-473' and AKT1 enzymatic activity. Enhances the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2 and of other receptor tyrosine kinases, such as FGFR3 and NTRK1. For JAK2, the mechanism seems to involve dimerization of both, SH2B1 and JAK2. Enhances RET phosphorylation and kinase activity. Isoforms seem to be differentially involved in IGF1 and PDGF-induced mitogenesis (By similarity). {ECO:0000250|UniProtKB:Q91ZM2, ECO:0000269|PubMed:11827956, ECO:0000269|PubMed:14565960, ECO:0000269|PubMed:15767667, ECO:0000269|PubMed:16569669, ECO:0000269|PubMed:17471236, ECO:0000269|PubMed:9694882, ECO:0000269|PubMed:9742218}.
Q9Y232 CDYL Y86 ochoa Chromodomain Y-like protein (CDY-like) (Crotonyl-CoA hydratase) (EC 4.2.1.-) [Isoform 2]: Chromatin reader protein that recognizes and binds histone H3 trimethylated at 'Lys-9', dimethylated at 'Lys-27' and trimethylated at 'Lys-27' (H3K9me3, H3K27me2 and H3K27me3, respectively) (PubMed:19808672, PubMed:28402439). Part of multimeric repressive chromatin complexes, where it is required for transmission and restoration of repressive histone marks, thereby preserving the epigenetic landscape (PubMed:28402439). Required for chromatin targeting and maximal enzymatic activity of Polycomb repressive complex 2 (PRC2); acts as a positive regulator of PRC2 activity by bridging the pre-existing histone H3K27me3 and newly recruited PRC2 on neighboring nucleosomes (PubMed:22009739). Acts as a corepressor for REST by facilitating histone-lysine N-methyltransferase EHMT2 recruitment and H3K9 dimethylation at REST target genes for repression (PubMed:19061646). Involved in X chromosome inactivation in females: recruited to Xist RNA-coated X chromosome and facilitates propagation of H3K9me2 by anchoring EHMT2 (By similarity). Promotes EZH2 accumulation and H3K27me3 methylation at DNA double strand breaks (DSBs), thereby facilitating transcriptional repression at sites of DNA damage and homology-directed repair of DSBs (PubMed:29177481). Required for neuronal migration during brain development by repressing expression of RHOA (By similarity). By repressing the expression of SCN8A, contributes to the inhibition of intrinsic neuronal excitability and epileptogenesis (By similarity). In addition to acting as a chromatin reader, acts as a hydro-lyase (PubMed:28803779). Shows crotonyl-coA hydratase activity by mediating the conversion of crotonyl-CoA ((2E)-butenoyl-CoA) to beta-hydroxybutyryl-CoA (3-hydroxybutanoyl-CoA), thereby acting as a negative regulator of histone crotonylation (PubMed:28803779). Histone crotonylation is required during spermatogenesis; down-regulation of histone crotonylation by CDYL regulates the reactivation of sex chromosome-linked genes in round spermatids and histone replacement in elongating spermatids (By similarity). By regulating histone crotonylation and trimethylation of H3K27, may be involved in stress-induced depression-like behaviors, possibly by regulating VGF expression (By similarity). {ECO:0000250|UniProtKB:Q9WTK2, ECO:0000269|PubMed:19061646, ECO:0000269|PubMed:19808672, ECO:0000269|PubMed:22009739, ECO:0000269|PubMed:28402439, ECO:0000269|PubMed:28803779, ECO:0000269|PubMed:29177481}.; FUNCTION: [Isoform 1]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the presence of a N-terminal extension that inactivates the chromo domain (PubMed:19808672). {ECO:0000269|PubMed:19808672}.; FUNCTION: [Isoform 3]: Not able to recognize and bind histone H3K9me3, histone H3K27me2 and histone H3K27me3, due to the absence of the chromo domain (PubMed:19808672). Acts as a negative regulator of isoform 2 by displacing isoform 2 from chromatin. {ECO:0000269|PubMed:19808672}.
P42167 TMPO S158 Sugiyama Lamina-associated polypeptide 2, isoforms beta/gamma (Thymopoietin, isoforms beta/gamma) (TP beta/gamma) (Thymopoietin-related peptide isoforms beta/gamma) (TPRP isoforms beta/gamma) [Cleaved into: Thymopoietin (TP) (Splenin); Thymopentin (TP5)] May help direct the assembly of the nuclear lamina and thereby help maintain the structural organization of the nuclear envelope. Possible receptor for attachment of lamin filaments to the inner nuclear membrane. May be involved in the control of initiation of DNA replication through its interaction with NAKAP95.; FUNCTION: Thymopoietin (TP) and Thymopentin (TP5) may play a role in T-cell development and function. TP5 is an immunomodulating pentapeptide.
P20810 CAST S295 Sugiyama Calpastatin (Calpain inhibitor) (Sperm BS-17 component) Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue.
P54577 YARS1 S366 Sugiyama Tyrosine--tRNA ligase, cytoplasmic (EC 6.1.1.1) (Tyrosyl-tRNA synthetase) (TyrRS) [Cleaved into: Tyrosine--tRNA ligase, cytoplasmic, N-terminally processed] Tyrosine--tRNA ligase that catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (Probable) (PubMed:25533949). Also acts as a positive regulator of poly-ADP-ribosylation in the nucleus, independently of its tyrosine--tRNA ligase activity (PubMed:25533949). Activity is switched upon resveratrol-binding: resveratrol strongly inhibits the tyrosine--tRNA ligase activity and promotes relocalization to the nucleus, where YARS1 specifically stimulates the poly-ADP-ribosyltransferase activity of PARP1 (PubMed:25533949). {ECO:0000269|PubMed:25533949, ECO:0000305|PubMed:16429158, ECO:0000305|PubMed:9162081}.
Download
reactome_id name p -log10_p
R-HSA-4839726 Chromatin organization 4.329870e-15 14.364
R-HSA-1640170 Cell Cycle 7.327472e-15 14.135
R-HSA-3247509 Chromatin modifying enzymes 2.331468e-14 13.632
R-HSA-8953854 Metabolism of RNA 1.412315e-12 11.850
R-HSA-69620 Cell Cycle Checkpoints 2.306710e-12 11.637
R-HSA-69278 Cell Cycle, Mitotic 6.058598e-12 11.218
R-HSA-68886 M Phase 4.095058e-11 10.388
R-HSA-427389 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression 1.139395e-10 9.943
R-HSA-5250913 Positive epigenetic regulation of rRNA expression 1.381444e-10 9.860
R-HSA-5693538 Homology Directed Repair 1.675016e-10 9.776
R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... 1.942864e-10 9.712
R-HSA-9845323 Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) 2.549232e-10 9.594
R-HSA-5693606 DNA Double Strand Break Response 2.784299e-10 9.555
R-HSA-212165 Epigenetic regulation of gene expression 3.946612e-10 9.404
R-HSA-774815 Nucleosome assembly 8.075197e-10 9.093
R-HSA-606279 Deposition of new CENPA-containing nucleosomes at the centromere 8.075197e-10 9.093
R-HSA-201722 Formation of the beta-catenin:TCF transactivating complex 8.648094e-10 9.063
R-HSA-69481 G2/M Checkpoints 9.331571e-10 9.030
R-HSA-5693567 HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) 1.010892e-09 8.995
R-HSA-6791226 Major pathway of rRNA processing in the nucleolus and cytosol 1.524028e-09 8.817
R-HSA-5693607 Processing of DNA double-strand break ends 1.400861e-09 8.854
R-HSA-5693532 DNA Double-Strand Break Repair 1.512960e-09 8.820
R-HSA-69473 G2/M DNA damage checkpoint 1.481917e-09 8.829
R-HSA-73854 RNA Polymerase I Promoter Clearance 2.313902e-09 8.636
R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 2.395507e-09 8.621
R-HSA-73864 RNA Polymerase I Transcription 3.566229e-09 8.448
R-HSA-3214847 HATs acetylate histones 4.301985e-09 8.366
R-HSA-5334118 DNA methylation 4.708786e-09 8.327
R-HSA-8868773 rRNA processing in the nucleus and cytosol 4.734532e-09 8.325
R-HSA-9843970 Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex 5.357168e-09 8.271
R-HSA-9821993 Replacement of protamines by nucleosomes in the male pronucleus 5.332518e-09 8.273
R-HSA-5250924 B-WICH complex positively regulates rRNA expression 7.576464e-09 8.121
R-HSA-3214815 HDACs deacetylate histones 1.255370e-08 7.901
R-HSA-8878171 Transcriptional regulation by RUNX1 1.479053e-08 7.830
R-HSA-73728 RNA Polymerase I Promoter Opening 1.725671e-08 7.763
R-HSA-9842860 Regulation of endogenous retroelements 2.993068e-08 7.524
R-HSA-73772 RNA Polymerase I Promoter Escape 3.253927e-08 7.488
R-HSA-72203 Processing of Capped Intron-Containing Pre-mRNA 4.823638e-08 7.317
R-HSA-9018519 Estrogen-dependent gene expression 6.464740e-08 7.189
R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 6.588855e-08 7.181
R-HSA-427413 NoRC negatively regulates rRNA expression 8.743340e-08 7.058
R-HSA-72163 mRNA Splicing - Major Pathway 9.129933e-08 7.040
R-HSA-72172 mRNA Splicing 1.019510e-07 6.992
R-HSA-5250941 Negative epigenetic regulation of rRNA expression 1.104690e-07 6.957
R-HSA-171306 Packaging Of Telomere Ends 1.282246e-07 6.892
R-HSA-927802 Nonsense-Mediated Decay (NMD) 1.679172e-07 6.775
R-HSA-975957 Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) 1.679172e-07 6.775
R-HSA-9764725 Negative Regulation of CDH1 Gene Transcription 2.012997e-07 6.696
R-HSA-9670095 Inhibition of DNA recombination at telomere 2.064374e-07 6.685
R-HSA-72312 rRNA processing 2.180684e-07 6.661
R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... 2.199021e-07 6.658
R-HSA-110328 Recognition and association of DNA glycosylase with site containing an affected ... 2.353557e-07 6.628
R-HSA-9821002 Chromatin modifications during the maternal to zygotic transition (MZT) 2.683848e-07 6.571
R-HSA-9764560 Regulation of CDH1 Gene Transcription 3.234204e-07 6.490
R-HSA-212300 PRC2 methylates histones and DNA 4.122058e-07 6.385
R-HSA-9954716 ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... 4.856401e-07 6.314
R-HSA-427359 SIRT1 negatively regulates rRNA expression 5.392680e-07 6.268
R-HSA-110330 Recognition and association of DNA glycosylase with site containing an affected ... 6.157935e-07 6.211
R-HSA-912446 Meiotic recombination 6.905752e-07 6.161
R-HSA-9909649 Regulation of PD-L1(CD274) transcription 6.679727e-07 6.175
R-HSA-201681 TCF dependent signaling in response to WNT 6.976601e-07 6.156
R-HSA-73886 Chromosome Maintenance 7.736133e-07 6.111
R-HSA-68616 Assembly of the ORC complex at the origin of replication 8.186537e-07 6.087
R-HSA-8866654 E3 ubiquitin ligases ubiquitinate target proteins 8.565947e-07 6.067
R-HSA-8939236 RUNX1 regulates transcription of genes involved in differentiation of HSCs 9.124154e-07 6.040
R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 9.124154e-07 6.040
R-HSA-1221632 Meiotic synapsis 1.057826e-06 5.976
R-HSA-72706 GTP hydrolysis and joining of the 60S ribosomal subunit 1.200059e-06 5.921
R-HSA-5625886 Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... 1.474182e-06 5.831
R-HSA-68877 Mitotic Prometaphase 1.898396e-06 5.722
R-HSA-9633012 Response of EIF2AK4 (GCN2) to amino acid deficiency 2.092472e-06 5.679
R-HSA-73894 DNA Repair 2.156184e-06 5.666
R-HSA-110329 Cleavage of the damaged pyrimidine 2.347710e-06 5.629
R-HSA-73928 Depyrimidination 2.347710e-06 5.629
R-HSA-9710421 Defective pyroptosis 2.937661e-06 5.532
R-HSA-110331 Cleavage of the damaged purine 3.015156e-06 5.521
R-HSA-1799339 SRP-dependent cotranslational protein targeting to membrane 3.576696e-06 5.447
R-HSA-73927 Depurination 3.830381e-06 5.417
R-HSA-2559583 Cellular Senescence 4.032169e-06 5.394
R-HSA-156842 Eukaryotic Translation Elongation 4.192089e-06 5.378
R-HSA-72737 Cap-dependent Translation Initiation 4.403041e-06 5.356
R-HSA-72613 Eukaryotic Translation Initiation 4.403041e-06 5.356
R-HSA-2299718 Condensation of Prophase Chromosomes 5.577438e-06 5.254
R-HSA-9917777 Epigenetic regulation by WDR5-containing histone modifying complexes 5.926786e-06 5.227
R-HSA-72689 Formation of a pool of free 40S subunits 7.295226e-06 5.137
R-HSA-156902 Peptide chain elongation 7.323903e-06 5.135
R-HSA-2559584 Formation of Senescence-Associated Heterochromatin Foci (SAHF) 9.485004e-06 5.023
R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 9.595727e-06 5.018
R-HSA-73884 Base Excision Repair 9.694015e-06 5.013
R-HSA-9954714 PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA 1.112036e-05 4.954
R-HSA-975956 Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) 1.273247e-05 4.895
R-HSA-156827 L13a-mediated translational silencing of Ceruloplasmin expression 1.323587e-05 4.878
R-HSA-74160 Gene expression (Transcription) 1.341371e-05 4.872
R-HSA-140342 Apoptosis induced DNA fragmentation 1.459564e-05 4.836
R-HSA-1500620 Meiosis 1.474398e-05 4.831
R-HSA-69002 DNA Replication Pre-Initiation 1.492966e-05 4.826
R-HSA-3769402 Deactivation of the beta-catenin transactivating complex 1.567394e-05 4.805
R-HSA-68867 Assembly of the pre-replicative complex 1.659977e-05 4.780
R-HSA-2559580 Oxidative Stress Induced Senescence 1.798861e-05 4.745
R-HSA-69275 G2/M Transition 1.847268e-05 4.733
R-HSA-68875 Mitotic Prophase 2.168800e-05 4.664
R-HSA-9843940 Regulation of endogenous retroelements by KRAB-ZFP proteins 2.181340e-05 4.661
R-HSA-453274 Mitotic G2-G2/M phases 2.196018e-05 4.658
R-HSA-9948299 Ribosome-associated quality control 2.369661e-05 4.625
R-HSA-72764 Eukaryotic Translation Termination 2.438484e-05 4.613
R-HSA-73929 Base-Excision Repair, AP Site Formation 2.526031e-05 4.598
R-HSA-9616222 Transcriptional regulation of granulopoiesis 2.388000e-05 4.622
R-HSA-9645723 Diseases of programmed cell death 2.539932e-05 4.595
R-HSA-75153 Apoptotic execution phase 2.549297e-05 4.594
R-HSA-380284 Loss of proteins required for interphase microtubule organization from the centr... 2.801496e-05 4.553
R-HSA-380259 Loss of Nlp from mitotic centrosomes 2.801496e-05 4.553
R-HSA-5578749 Transcriptional regulation by small RNAs 2.940412e-05 4.532
R-HSA-977225 Amyloid fiber formation 2.963369e-05 4.528
R-HSA-5620912 Anchoring of the basal body to the plasma membrane 3.295316e-05 4.482
R-HSA-157579 Telomere Maintenance 3.124572e-05 4.505
R-HSA-376176 Signaling by ROBO receptors 3.071963e-05 4.513
R-HSA-380270 Recruitment of mitotic centrosome proteins and complexes 3.401079e-05 4.468
R-HSA-9010553 Regulation of expression of SLITs and ROBOs 3.697524e-05 4.432
R-HSA-1912408 Pre-NOTCH Transcription and Translation 3.743149e-05 4.427
R-HSA-8854518 AURKA Activation by TPX2 4.445105e-05 4.352
R-HSA-8852135 Protein ubiquitination 4.517509e-05 4.345
R-HSA-380287 Centrosome maturation 4.517509e-05 4.345
R-HSA-9772755 Formation of WDR5-containing histone-modifying complexes 5.012487e-05 4.300
R-HSA-2408557 Selenocysteine synthesis 5.032636e-05 4.298
R-HSA-5688426 Deubiquitination 5.379978e-05 4.269
R-HSA-192823 Viral mRNA Translation 6.328913e-05 4.199
R-HSA-9954709 Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide 7.753294e-05 4.111
R-HSA-5617472 Activation of anterior HOX genes in hindbrain development during early embryogen... 7.912995e-05 4.102
R-HSA-5619507 Activation of HOX genes during differentiation 7.912995e-05 4.102
R-HSA-9692914 SARS-CoV-1-host interactions 9.838251e-05 4.007
R-HSA-9725370 Signaling by ALK fusions and activated point mutants 1.094761e-04 3.961
R-HSA-9700206 Signaling by ALK in cancer 1.094761e-04 3.961
R-HSA-9933939 Formation of the polybromo-BAF (pBAF) complex 1.108716e-04 3.955
R-HSA-9932444 ATP-dependent chromatin remodelers 1.113944e-04 3.953
R-HSA-9932451 SWI/SNF chromatin remodelers 1.113944e-04 3.953
R-HSA-168273 Influenza Viral RNA Transcription and Replication 1.252702e-04 3.902
R-HSA-422475 Axon guidance 1.262023e-04 3.899
R-HSA-5696399 Global Genome Nucleotide Excision Repair (GG-NER) 1.454185e-04 3.837
R-HSA-110312 Translesion synthesis by REV1 1.539943e-04 3.812
R-HSA-168255 Influenza Infection 1.574143e-04 3.803
R-HSA-5696394 DNA Damage Recognition in GG-NER 1.577404e-04 3.802
R-HSA-5633007 Regulation of TP53 Activity 1.895772e-04 3.722
R-HSA-6804756 Regulation of TP53 Activity through Phosphorylation 2.072488e-04 3.684
R-HSA-5656121 Translesion synthesis by POLI 2.097857e-04 3.678
R-HSA-8953897 Cellular responses to stimuli 2.224718e-04 3.653
R-HSA-5696397 Gap-filling DNA repair synthesis and ligation in GG-NER 2.312785e-04 3.636
R-HSA-9816359 Maternal to zygotic transition (MZT) 2.337756e-04 3.631
R-HSA-5689880 Ub-specific processing proteases 2.361909e-04 3.627
R-HSA-9764265 Regulation of CDH1 Expression and Function 2.361909e-04 3.627
R-HSA-9764274 Regulation of Expression and Function of Type I Classical Cadherins 2.361909e-04 3.627
R-HSA-69306 DNA Replication 2.640461e-04 3.578
R-HSA-2262752 Cellular responses to stress 2.388934e-04 3.622
R-HSA-5655862 Translesion synthesis by POLK 2.808390e-04 3.552
R-HSA-9824446 Viral Infection Pathways 3.058130e-04 3.515
R-HSA-211000 Gene Silencing by RNA 3.109846e-04 3.507
R-HSA-8863795 Downregulation of ERBB2 signaling 3.314464e-04 3.480
R-HSA-9675108 Nervous system development 3.404368e-04 3.468
R-HSA-195721 Signaling by WNT 3.685135e-04 3.434
R-HSA-8939211 ESR-mediated signaling 3.717994e-04 3.430
R-HSA-1358803 Downregulation of ERBB2:ERBB3 signaling 4.122615e-04 3.385
R-HSA-674695 RNA Polymerase II Pre-transcription Events 4.410144e-04 3.356
R-HSA-2682334 EPH-Ephrin signaling 4.461813e-04 3.350
R-HSA-110314 Recognition of DNA damage by PCNA-containing replication complex 4.617965e-04 3.336
R-HSA-9613829 Chaperone Mediated Autophagy 4.806081e-04 3.318
R-HSA-6804760 Regulation of TP53 Activity through Methylation 4.806081e-04 3.318
R-HSA-9828211 Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation 5.307157e-04 3.275
R-HSA-141424 Amplification of signal from the kinetochores 5.586729e-04 3.253
R-HSA-141444 Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... 5.586729e-04 3.253
R-HSA-1912422 Pre-NOTCH Expression and Processing 5.478012e-04 3.261
R-HSA-9909648 Regulation of PD-L1(CD274) expression 5.112355e-04 3.291
R-HSA-9933947 Formation of the non-canonical BAF (ncBAF) complex 5.648526e-04 3.248
R-HSA-162599 Late Phase of HIV Life Cycle 6.500134e-04 3.187
R-HSA-73857 RNA Polymerase II Transcription 6.946333e-04 3.158
R-HSA-5696398 Nucleotide Excision Repair 6.991148e-04 3.155
R-HSA-380320 Recruitment of NuMA to mitotic centrosomes 7.641719e-04 3.117
R-HSA-9851695 Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes 7.827635e-04 3.106
R-HSA-9841922 MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... 7.827635e-04 3.106
R-HSA-9818564 Epigenetic regulation of gene expression by MLL3 and MLL4 complexes 7.827635e-04 3.106
R-HSA-5696400 Dual Incision in GG-NER 8.283135e-04 3.082
R-HSA-9706377 FLT3 signaling by CBL mutants 8.353740e-04 3.078
R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR signaling 8.353740e-04 3.078
R-HSA-162587 HIV Life Cycle 8.510891e-04 3.070
R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 8.628847e-04 3.064
R-HSA-9711097 Cellular response to starvation 9.144646e-04 3.039
R-HSA-168927 TICAM1, RIP1-mediated IKK complex recruitment 9.986569e-04 3.001
R-HSA-1236382 Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants 9.768440e-04 3.010
R-HSA-5637815 Signaling by Ligand-Responsive EGFR Variants in Cancer 9.768440e-04 3.010
R-HSA-69618 Mitotic Spindle Checkpoint 1.072906e-03 2.969
R-HSA-5663202 Diseases of signal transduction by growth factor receptors and second messengers 1.017690e-03 2.992
R-HSA-9705683 SARS-CoV-2-host interactions 9.400892e-04 3.027
R-HSA-6804757 Regulation of TP53 Degradation 1.148794e-03 2.940
R-HSA-9759476 Regulation of Homotypic Cell-Cell Adhesion 1.158703e-03 2.936
R-HSA-9705462 Inactivation of CSF3 (G-CSF) signaling 1.210706e-03 2.917
R-HSA-5656169 Termination of translesion DNA synthesis 1.232536e-03 2.909
R-HSA-9694493 Maturation of protein E 1.361291e-03 2.866
R-HSA-9683683 Maturation of protein E 1.361291e-03 2.866
R-HSA-2467813 Separation of Sister Chromatids 1.386938e-03 2.858
R-HSA-2408522 Selenoamino acid metabolism 1.386938e-03 2.858
R-HSA-389948 Co-inhibition by PD-1 1.481820e-03 2.829
R-HSA-1500931 Cell-Cell communication 1.779840e-03 2.750
R-HSA-6806003 Regulation of TP53 Expression and Degradation 1.810476e-03 2.742
R-HSA-5685942 HDR through Homologous Recombination (HRR) 1.873634e-03 2.727
R-HSA-68882 Mitotic Anaphase 1.950878e-03 2.710
R-HSA-2555396 Mitotic Metaphase and Anaphase 2.063684e-03 2.685
R-HSA-9824878 Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 2.069444e-03 2.684
R-HSA-9013973 TICAM1-dependent activation of IRF3/IRF7 2.069444e-03 2.684
R-HSA-418990 Adherens junctions interactions 2.182023e-03 2.661
R-HSA-388841 Regulation of T cell activation by CD28 family 2.203785e-03 2.657
R-HSA-9648025 EML4 and NUDC in mitotic spindle formation 2.518807e-03 2.599
R-HSA-110313 Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... 2.399870e-03 2.620
R-HSA-73893 DNA Damage Bypass 2.277166e-03 2.643
R-HSA-3928664 Ephrin signaling 2.587479e-03 2.587
R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... 2.397272e-03 2.620
R-HSA-109581 Apoptosis 2.651923e-03 2.576
R-HSA-937039 IRAK1 recruits IKK complex 2.725539e-03 2.565
R-HSA-975144 IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation 2.725539e-03 2.565
R-HSA-9656223 Signaling by RAF1 mutants 2.746804e-03 2.561
R-HSA-1474165 Reproduction 2.944684e-03 2.531
R-HSA-72202 Transport of Mature Transcript to Cytoplasm 2.968777e-03 2.527
R-HSA-9678108 SARS-CoV-1 Infection 2.977446e-03 2.526
R-HSA-8948747 Regulation of PTEN localization 3.033330e-03 2.518
R-HSA-1643713 Signaling by EGFR in Cancer 3.106490e-03 2.508
R-HSA-73762 RNA Polymerase I Transcription Initiation 3.132247e-03 2.504
R-HSA-937041 IKK complex recruitment mediated by RIP1 3.182343e-03 2.497
R-HSA-72187 mRNA 3'-end processing 3.263932e-03 2.486
R-HSA-9705671 SARS-CoV-2 activates/modulates innate and adaptive immune responses 3.421445e-03 2.466
R-HSA-446728 Cell junction organization 3.442585e-03 2.463
R-HSA-174490 Membrane binding and targetting of GAG proteins 3.520345e-03 2.453
R-HSA-157118 Signaling by NOTCH 3.575245e-03 2.447
R-HSA-5357956 TNFR1-induced NF-kappa-B signaling pathway 3.668003e-03 2.436
R-HSA-9934037 Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) 3.873612e-03 2.412
R-HSA-6802952 Signaling by BRAF and RAF1 fusions 4.420922e-03 2.354
R-HSA-174495 Synthesis And Processing Of GAG, GAGPOL Polyproteins 4.469146e-03 2.350
R-HSA-3785653 Myoclonic epilepsy of Lafora 4.243437e-03 2.372
R-HSA-5684264 MAP3K8 (TPL2)-dependent MAPK1/3 activation 4.469146e-03 2.350
R-HSA-1253288 Downregulation of ERBB4 signaling 4.243437e-03 2.372
R-HSA-5687128 MAPK6/MAPK4 signaling 3.891428e-03 2.410
R-HSA-69231 Cyclin D associated events in G1 4.030248e-03 2.395
R-HSA-69236 G1 Phase 4.030248e-03 2.395
R-HSA-5357801 Programmed Cell Death 4.212964e-03 2.375
R-HSA-9637628 Modulation by Mtb of host immune system 4.243437e-03 2.372
R-HSA-8849469 PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 4.243437e-03 2.372
R-HSA-179409 APC-Cdc20 mediated degradation of Nek2A 4.670246e-03 2.331
R-HSA-5689896 Ovarian tumor domain proteases 4.902623e-03 2.310
R-HSA-9674555 Signaling by CSF3 (G-CSF) 5.018805e-03 2.299
R-HSA-6782210 Gap-filling DNA repair synthesis and ligation in TC-NER 5.077822e-03 2.294
R-HSA-9649948 Signaling downstream of RAS mutants 5.117867e-03 2.291
R-HSA-6802946 Signaling by moderate kinase activity BRAF mutants 5.117867e-03 2.291
R-HSA-6802955 Paradoxical activation of RAF signaling by kinase inactive BRAF 5.117867e-03 2.291
R-HSA-6802949 Signaling by RAS mutants 5.117867e-03 2.291
R-HSA-6796648 TP53 Regulates Transcription of DNA Repair Genes 5.487271e-03 2.261
R-HSA-3700989 Transcriptional Regulation by TP53 5.531826e-03 2.257
R-HSA-9933946 Formation of the embryonic stem cell BAF (esBAF) complex 5.587079e-03 2.253
R-HSA-399954 Sema3A PAK dependent Axon repulsion 5.587079e-03 2.253
R-HSA-937042 IRAK2 mediated activation of TAK1 complex 5.743044e-03 2.241
R-HSA-421270 Cell-cell junction organization 6.066534e-03 2.217
R-HSA-6782135 Dual incision in TC-NER 6.240683e-03 2.205
R-HSA-9673013 Diseases of Telomere Maintenance 6.301482e-03 2.201
R-HSA-9670621 Defective Inhibition of DNA Recombination at Telomere 6.301482e-03 2.201
R-HSA-9006821 Alternative Lengthening of Telomeres (ALT) 6.301482e-03 2.201
R-HSA-9670613 Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations 6.301482e-03 2.201
R-HSA-9022534 Loss of MECP2 binding ability to 5hmC-DNA 6.301482e-03 2.201
R-HSA-9670615 Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations 6.301482e-03 2.201
R-HSA-5696395 Formation of Incision Complex in GG-NER 7.157955e-03 2.145
R-HSA-9014325 TICAM1,TRAF6-dependent induction of TAK1 complex 7.559685e-03 2.121
R-HSA-1227986 Signaling by ERBB2 7.600790e-03 2.119
R-HSA-2122947 NOTCH1 Intracellular Domain Regulates Transcription 7.160007e-03 2.145
R-HSA-9758274 Regulation of NF-kappa B signaling 6.888989e-03 2.162
R-HSA-2500257 Resolution of Sister Chromatid Cohesion 6.966893e-03 2.157
R-HSA-5689877 Josephin domain DUBs 7.559685e-03 2.121
R-HSA-3214841 PKMTs methylate histone lysines 8.060760e-03 2.094
R-HSA-9833109 Evasion by RSV of host interferon responses 6.713056e-03 2.173
R-HSA-111932 CaMK IV-mediated phosphorylation of CREB 7.559685e-03 2.121
R-HSA-9706369 Negative regulation of FLT3 6.888989e-03 2.162
R-HSA-9664873 Pexophagy 7.559685e-03 2.121
R-HSA-73856 RNA Polymerase II Transcription Termination 8.361272e-03 2.078
R-HSA-936964 Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) 8.389283e-03 2.076
R-HSA-3134975 Regulation of innate immune responses to cytosolic DNA 8.389283e-03 2.076
R-HSA-450531 Regulation of mRNA stability by proteins that bind AU-rich elements 8.464495e-03 2.072
R-HSA-5675482 Regulation of necroptotic cell death 8.799107e-03 2.056
R-HSA-9930044 Nuclear RNA decay 8.799107e-03 2.056
R-HSA-69273 Cyclin A/B1/B2 associated events during G2/M transition 8.799107e-03 2.056
R-HSA-159236 Transport of Mature mRNA derived from an Intron-Containing Transcript 9.221664e-03 2.035
R-HSA-204998 Cell death signalling via NRAGE, NRIF and NADE 9.221664e-03 2.035
R-HSA-9614399 Regulation of localization of FOXO transcription factors 9.718496e-03 2.012
R-HSA-9645460 Alpha-protein kinase 1 signaling pathway 9.718496e-03 2.012
R-HSA-8876493 InlA-mediated entry of Listeria monocytogenes into host cells 9.718496e-03 2.012
R-HSA-112382 Formation of RNA Pol II elongation complex 9.773601e-03 2.010
R-HSA-9692916 SARS-CoV-1 activates/modulates innate immune responses 9.773601e-03 2.010
R-HSA-373755 Semaphorin interactions 1.005626e-02 1.998
R-HSA-4641263 Regulation of FZD by ubiquitination 1.010181e-02 1.996
R-HSA-168928 DDX58/IFIH1-mediated induction of interferon-alpha/beta 1.013692e-02 1.994
R-HSA-75955 RNA Polymerase II Transcription Elongation 1.078738e-02 1.967
R-HSA-6781827 Transcription-Coupled Nucleotide Excision Repair (TC-NER) 1.089185e-02 1.963
R-HSA-5689901 Metalloprotease DUBs 1.216538e-02 1.915
R-HSA-162906 HIV Infection 1.223505e-02 1.912
R-HSA-209560 NF-kB is activated and signals survival 1.224200e-02 1.912
R-HSA-212436 Generic Transcription Pathway 1.333468e-02 1.875
R-HSA-3928663 EPHA-mediated growth cone collapse 1.394859e-02 1.855
R-HSA-174048 APC/C:Cdc20 mediated degradation of Cyclin B 1.421549e-02 1.847
R-HSA-9709603 Impaired BRCA2 binding to PALB2 1.421549e-02 1.847
R-HSA-110320 Translesion Synthesis by POLH 1.421549e-02 1.847
R-HSA-912631 Regulation of signaling by CBL 1.421549e-02 1.847
R-HSA-72702 Ribosomal scanning and start codon recognition 1.430340e-02 1.845
R-HSA-4641265 Repression of WNT target genes 1.514999e-02 1.820
R-HSA-5661231 Metallothioneins bind metals 1.514999e-02 1.820
R-HSA-2691230 Signaling by NOTCH1 HD Domain Mutants in Cancer 1.514999e-02 1.820
R-HSA-2691232 Constitutive Signaling by NOTCH1 HD Domain Mutants 1.514999e-02 1.820
R-HSA-8866427 VLDLR internalisation and degradation 1.514999e-02 1.820
R-HSA-209543 p75NTR recruits signalling complexes 1.514999e-02 1.820
R-HSA-72695 Formation of the ternary complex, and subsequently, the 43S complex 1.536992e-02 1.813
R-HSA-9701193 Defective homologous recombination repair (HRR) due to PALB2 loss of function 1.664058e-02 1.779
R-HSA-9701192 Defective homologous recombination repair (HRR) due to BRCA1 loss of function 1.664058e-02 1.779
R-HSA-9704331 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.664058e-02 1.779
R-HSA-9704646 Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... 1.664058e-02 1.779
R-HSA-6807004 Negative regulation of MET activity 1.664058e-02 1.779
R-HSA-72766 Translation 1.698110e-02 1.770
R-HSA-9665230 Drug resistance in ERBB2 KD mutants 2.334882e-02 1.632
R-HSA-9652282 Drug-mediated inhibition of ERBB2 signaling 2.334882e-02 1.632
R-HSA-9665246 Resistance of ERBB2 KD mutants to neratinib 2.334882e-02 1.632
R-HSA-9665737 Drug resistance in ERBB2 TMD/JMD mutants 2.334882e-02 1.632
R-HSA-9665250 Resistance of ERBB2 KD mutants to AEE788 2.334882e-02 1.632
R-HSA-9665245 Resistance of ERBB2 KD mutants to tesevatinib 2.334882e-02 1.632
R-HSA-9665244 Resistance of ERBB2 KD mutants to sapitinib 2.334882e-02 1.632
R-HSA-9665247 Resistance of ERBB2 KD mutants to osimertinib 2.334882e-02 1.632
R-HSA-9665233 Resistance of ERBB2 KD mutants to trastuzumab 2.334882e-02 1.632
R-HSA-9665251 Resistance of ERBB2 KD mutants to lapatinib 2.334882e-02 1.632
R-HSA-9665249 Resistance of ERBB2 KD mutants to afatinib 2.334882e-02 1.632
R-HSA-9933937 Formation of the canonical BAF (cBAF) complex 2.218436e-02 1.654
R-HSA-917729 Endosomal Sorting Complex Required For Transport (ESCRT) 1.804617e-02 1.744
R-HSA-9646399 Aggrephagy 2.200690e-02 1.657
R-HSA-2979096 NOTCH2 Activation and Transmission of Signal to the Nucleus 1.932565e-02 1.714
R-HSA-195253 Degradation of beta-catenin by the destruction complex 1.809521e-02 1.742
R-HSA-5213460 RIPK1-mediated regulated necrosis 1.788503e-02 1.748
R-HSA-975163 IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation 2.218436e-02 1.654
R-HSA-6802957 Oncogenic MAPK signaling 2.292403e-02 1.640
R-HSA-162588 Budding and maturation of HIV virion 2.290005e-02 1.640
R-HSA-69541 Stabilization of p53 1.987148e-02 1.702
R-HSA-9725371 Nuclear events stimulated by ALK signaling in cancer 1.863036e-02 1.730
R-HSA-75035 Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 1.845940e-02 1.734
R-HSA-450302 activated TAK1 mediates p38 MAPK activation 2.228032e-02 1.652
R-HSA-205043 NRIF signals cell death from the nucleus 2.218436e-02 1.654
R-HSA-8953750 Transcriptional Regulation by E2F6 1.987148e-02 1.702
R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 2.290005e-02 1.640
R-HSA-175474 Assembly Of The HIV Virion 2.228032e-02 1.652
R-HSA-9006931 Signaling by Nuclear Receptors 1.935789e-02 1.713
R-HSA-9679506 SARS-CoV Infections 2.231855e-02 1.651
R-HSA-9694516 SARS-CoV-2 Infection 1.944110e-02 1.711
R-HSA-9820952 Respiratory Syncytial Virus Infection Pathway 2.128110e-02 1.672
R-HSA-9008059 Interleukin-37 signaling 2.037517e-02 1.691
R-HSA-2173788 Downregulation of TGF-beta receptor signaling 2.551317e-02 1.593
R-HSA-69615 G1/S DNA Damage Checkpoints 2.569483e-02 1.590
R-HSA-8848021 Signaling by PTK6 2.569483e-02 1.590
R-HSA-9006927 Signaling by Non-Receptor Tyrosine Kinases 2.569483e-02 1.590
R-HSA-937072 TRAF6-mediated induction of TAK1 complex within TLR4 complex 2.633612e-02 1.579
R-HSA-418885 DCC mediated attractive signaling 2.633612e-02 1.579
R-HSA-8875360 InlB-mediated entry of Listeria monocytogenes into host cell 2.633612e-02 1.579
R-HSA-2173791 TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) 2.633612e-02 1.579
R-HSA-1295596 Spry regulation of FGF signaling 2.633612e-02 1.579
R-HSA-193639 p75NTR signals via NF-kB 2.633612e-02 1.579
R-HSA-9022692 Regulation of MECP2 expression and activity 2.856173e-02 1.544
R-HSA-445355 Smooth Muscle Contraction 2.888901e-02 1.539
R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 2.935388e-02 1.532
R-HSA-9708530 Regulation of BACH1 activity 3.092316e-02 1.510
R-HSA-9610379 HCMV Late Events 3.125337e-02 1.505
R-HSA-72649 Translation initiation complex formation 3.133076e-02 1.504
R-HSA-9754678 SARS-CoV-2 modulates host translation machinery 3.133076e-02 1.504
R-HSA-390522 Striated Muscle Contraction 3.170944e-02 1.499
R-HSA-383280 Nuclear Receptor transcription pathway 3.217405e-02 1.492
R-HSA-5621575 CD209 (DC-SIGN) signaling 3.284242e-02 1.484
R-HSA-9680350 Signaling by CSF1 (M-CSF) in myeloid cells 3.507477e-02 1.455
R-HSA-9735869 SARS-CoV-1 modulates host translation machinery 3.507477e-02 1.455
R-HSA-901042 Calnexin/calreticulin cycle 3.507477e-02 1.455
R-HSA-3214858 RMTs methylate histone arginines 3.507776e-02 1.455
R-HSA-5368598 Negative regulation of TCF-dependent signaling by DVL-interacting proteins 3.512297e-02 1.454
R-HSA-9022538 Loss of MECP2 binding ability to 5mC-DNA 3.512297e-02 1.454
R-HSA-5660526 Response to metal ions 3.595127e-02 1.444
R-HSA-975110 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 3.595127e-02 1.444
R-HSA-5693554 Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... 3.695055e-02 1.432
R-HSA-9620244 Long-term potentiation 3.695055e-02 1.432
R-HSA-3214842 HDMs demethylate histones 3.695055e-02 1.432
R-HSA-167172 Transcription of the HIV genome 3.701418e-02 1.432
R-HSA-5218859 Regulated Necrosis 3.701418e-02 1.432
R-HSA-69601 Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A 3.819850e-02 1.418
R-HSA-69613 p53-Independent G1/S DNA Damage Checkpoint 3.819850e-02 1.418
R-HSA-9824585 Regulation of MITF-M-dependent genes involved in pigmentation 3.819850e-02 1.418
R-HSA-2559585 Oncogene Induced Senescence 3.866179e-02 1.413
R-HSA-3229121 Glycogen storage diseases 4.142360e-02 1.383
R-HSA-5357905 Regulation of TNFR1 signaling 4.149593e-02 1.382
R-HSA-450408 AUF1 (hnRNP D0) binds and destabilizes mRNA 4.247402e-02 1.372
R-HSA-9682385 FLT3 signaling in disease 4.247402e-02 1.372
R-HSA-72662 Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... 4.250075e-02 1.372
R-HSA-9833110 RSV-host interactions 4.308743e-02 1.366
R-HSA-73863 RNA Polymerase I Transcription Termination 4.607481e-02 1.337
R-HSA-901032 ER Quality Control Compartment (ERQC) 4.607481e-02 1.337
R-HSA-6802948 Signaling by high-kinase activity BRAF mutants 4.651438e-02 1.332
R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription 4.651438e-02 1.332
R-HSA-1852241 Organelle biogenesis and maintenance 4.687903e-02 1.329
R-HSA-1839117 Signaling by cytosolic FGFR1 fusion mutants 4.734084e-02 1.325
R-HSA-9022927 MECP2 regulates transcription of genes involved in GABA signaling 4.870171e-02 1.312
R-HSA-1306955 GRB7 events in ERBB2 signaling 4.870171e-02 1.312
R-HSA-5205685 PINK1-PRKN Mediated Mitophagy 5.109601e-02 1.292
R-HSA-9609690 HCMV Early Events 5.229472e-02 1.282
R-HSA-69563 p53-Dependent G1 DNA Damage Response 5.247360e-02 1.280
R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 5.247360e-02 1.280
R-HSA-5467333 APC truncation mutants are not K63 polyubiquitinated 5.670483e-02 1.246
R-HSA-3134963 DEx/H-box helicases activate type I IFN and inflammatory cytokines production 6.384297e-02 1.195
R-HSA-9022535 Loss of phosphorylation of MECP2 at T308 6.384297e-02 1.195
R-HSA-9022537 Loss of MECP2 binding ability to the NCoR/SMRT complex 8.032628e-02 1.095
R-HSA-9027276 Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 6.847765e-02 1.164
R-HSA-5685939 HDR through MMEJ (alt-NHEJ) 7.880461e-02 1.103
R-HSA-438066 Unblocking of NMDA receptors, glutamate binding and activation 7.539322e-02 1.123
R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor 7.539322e-02 1.123
R-HSA-9615710 Late endosomal microautophagy 5.642484e-02 1.249
R-HSA-211733 Regulation of activated PAK-2p34 by proteasome mediated degradation 6.800371e-02 1.167
R-HSA-73779 RNA Polymerase II Transcription Pre-Initiation And Promoter Opening 6.002465e-02 1.222
R-HSA-167162 RNA Polymerase II HIV Promoter Escape 7.019927e-02 1.154
R-HSA-167161 HIV Transcription Initiation 7.019927e-02 1.154
R-HSA-75953 RNA Polymerase II Transcription Initiation 7.019927e-02 1.154
R-HSA-176409 APC/C:Cdc20 mediated degradation of mitotic proteins 7.945181e-02 1.100
R-HSA-5685938 HDR through Single Strand Annealing (SSA) 8.079816e-02 1.093
R-HSA-5674135 MAP2K and MAPK activation 7.019927e-02 1.154
R-HSA-3134973 LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production 6.384297e-02 1.195
R-HSA-9664565 Signaling by ERBB2 KD Mutants 5.642484e-02 1.249
R-HSA-9818028 NFE2L2 regulates pentose phosphate pathway genes 5.881792e-02 1.230
R-HSA-1227990 Signaling by ERBB2 in Cancer 6.206113e-02 1.207
R-HSA-5693568 Resolution of D-loop Structures through Holliday Junction Intermediates 8.079816e-02 1.093
R-HSA-9818025 NFE2L2 regulating TCA cycle genes 6.384297e-02 1.195
R-HSA-9617324 Negative regulation of NMDA receptor-mediated neuronal transmission 7.539322e-02 1.123
R-HSA-73933 Resolution of Abasic Sites (AP sites) 6.499500e-02 1.187
R-HSA-1980143 Signaling by NOTCH1 6.147434e-02 1.211
R-HSA-182971 EGFR downregulation 6.800371e-02 1.167
R-HSA-5683057 MAPK family signaling cascades 6.598429e-02 1.181
R-HSA-397014 Muscle contraction 5.797437e-02 1.237
R-HSA-6790901 rRNA modification in the nucleus and cytosol 5.979473e-02 1.223
R-HSA-450321 JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... 6.773438e-02 1.169
R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional activity 7.425042e-02 1.129
R-HSA-8876384 Listeria monocytogenes entry into host cells 7.539322e-02 1.123
R-HSA-9931509 Expression of BMAL (ARNTL), CLOCK, and NPAS2 5.528825e-02 1.257
R-HSA-5675221 Negative regulation of MAPK pathway 7.019927e-02 1.154
R-HSA-5617833 Cilium Assembly 6.966148e-02 1.157
R-HSA-428540 Activation of RAC1 5.881792e-02 1.230
R-HSA-399719 Trafficking of AMPA receptors 6.800371e-02 1.167
R-HSA-9679191 Potential therapeutics for SARS 7.273180e-02 1.138
R-HSA-9636383 Prevention of phagosomal-lysosomal fusion 6.773438e-02 1.169
R-HSA-389359 CD28 dependent Vav1 pathway 7.880461e-02 1.103
R-HSA-416572 Sema4D induced cell migration and growth-cone collapse 6.050113e-02 1.218
R-HSA-9931295 PD-L1(CD274) glycosylation and translocation to plasma membrane 6.773438e-02 1.169
R-HSA-111465 Apoptotic cleavage of cellular proteins 7.425042e-02 1.129
R-HSA-193704 p75 NTR receptor-mediated signalling 6.187998e-02 1.208
R-HSA-399721 Glutamate binding, activation of AMPA receptors and synaptic plasticity 8.079816e-02 1.093
R-HSA-381038 XBP1(S) activates chaperone genes 5.562934e-02 1.255
R-HSA-381070 IRE1alpha activates chaperones 7.630046e-02 1.117
R-HSA-3322077 Glycogen synthesis 6.050113e-02 1.218
R-HSA-73776 RNA Polymerase II Promoter Escape 8.130672e-02 1.090
R-HSA-6804115 TP53 regulates transcription of additional cell cycle genes whose exact role in ... 8.346807e-02 1.078
R-HSA-9013507 NOTCH3 Activation and Transmission of Signal to the Nucleus 8.346807e-02 1.078
R-HSA-176814 Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 8.460566e-02 1.073
R-HSA-75893 TNF signaling 8.460566e-02 1.073
R-HSA-177929 Signaling by EGFR 8.460566e-02 1.073
R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer 8.460566e-02 1.073
R-HSA-193648 NRAGE signals death through JNK 8.460566e-02 1.073
R-HSA-3928662 EPHB-mediated forward signaling 8.720708e-02 1.059
R-HSA-5693537 Resolution of D-Loop Structures 8.764289e-02 1.057
R-HSA-982772 Growth hormone receptor signaling 9.194780e-02 1.036
R-HSA-5674400 Constitutive Signaling by AKT1 E17K in Cancer 9.194780e-02 1.036
R-HSA-76042 RNA Polymerase II Transcription Initiation And Promoter Clearance 9.333574e-02 1.030
R-HSA-1980145 Signaling by NOTCH2 9.477975e-02 1.023
R-HSA-5673000 RAF activation 9.477975e-02 1.023
R-HSA-9675136 Diseases of DNA Double-Strand Break Repair 9.477975e-02 1.023
R-HSA-9701190 Defective homologous recombination repair (HRR) due to BRCA2 loss of function 9.477975e-02 1.023
R-HSA-168638 NOD1/2 Signaling Pathway 9.477975e-02 1.023
R-HSA-5205647 Mitophagy 9.477975e-02 1.023
R-HSA-9027283 Erythropoietin activates STAT5 9.795112e-02 1.009
R-HSA-8939256 RUNX1 regulates transcription of genes involved in WNT signaling 9.795112e-02 1.009
R-HSA-6781823 Formation of TC-NER Pre-Incision Complex 9.968999e-02 1.001
R-HSA-9861718 Regulation of pyruvate metabolism 9.968999e-02 1.001
R-HSA-9665686 Signaling by ERBB2 TMD/JMD mutants 1.008198e-01 0.996
R-HSA-1810476 RIP-mediated NFkB activation via ZBP1 1.013184e-01 0.994
R-HSA-450385 Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA 1.013184e-01 0.994
R-HSA-450513 Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA 1.013184e-01 0.994
R-HSA-9735871 SARS-CoV-1 targets host intracellular signalling and regulatory pathways 1.013184e-01 0.994
R-HSA-169911 Regulation of Apoptosis 1.022031e-01 0.991
R-HSA-453279 Mitotic G1 phase and G1/S transition 1.053408e-01 0.977
R-HSA-174154 APC/C:Cdc20 mediated degradation of Securin 1.062666e-01 0.974
R-HSA-445989 TAK1-dependent IKK and NF-kappa-B activation 1.062666e-01 0.974
R-HSA-111933 Calmodulin induced events 1.099064e-01 0.959
R-HSA-111997 CaM pathway 1.099064e-01 0.959
R-HSA-400685 Sema4D in semaphorin signaling 1.100703e-01 0.958
R-HSA-211728 Regulation of PAK-2p34 activity by PS-GAP/RHG10 1.101974e-01 0.958
R-HSA-9663199 Defective DNA double strand break response due to BRCA1 loss of function 1.101974e-01 0.958
R-HSA-9699150 Defective DNA double strand break response due to BARD1 loss of function 1.101974e-01 0.958
R-HSA-373756 SDK interactions 1.101974e-01 0.958
R-HSA-450294 MAP kinase activation 1.131453e-01 0.946
R-HSA-112043 PLC beta mediated events 1.131453e-01 0.946
R-HSA-162909 Host Interactions of HIV factors 1.150482e-01 0.939
R-HSA-9022707 MECP2 regulates transcription factors 1.165353e-01 0.934
R-HSA-2470946 Cohesin Loading onto Chromatin 1.165353e-01 0.934
R-HSA-9726840 SHOC2 M1731 mutant abolishes MRAS complex function 1.165353e-01 0.934
R-HSA-5336415 Uptake and function of diphtheria toxin 1.165353e-01 0.934
R-HSA-1169408 ISG15 antiviral mechanism 1.171526e-01 0.931
R-HSA-4641258 Degradation of DVL 1.178825e-01 0.929
R-HSA-9707616 Heme signaling 1.193940e-01 0.923
R-HSA-110373 Resolution of AP sites via the multiple-nucleotide patch replacement pathway 1.196843e-01 0.922
R-HSA-2122948 Activated NOTCH1 Transmits Signal to the Nucleus 1.196843e-01 0.922
R-HSA-9637687 Suppression of phagosomal maturation 1.196843e-01 0.922
R-HSA-532668 N-glycan trimming in the ER and Calnexin/Calreticulin cycle 1.200717e-01 0.921
R-HSA-5689603 UCH proteinases 1.229318e-01 0.910
R-HSA-9020591 Interleukin-12 signaling 1.229318e-01 0.910
R-HSA-9675151 Disorders of Developmental Biology 1.260569e-01 0.899
R-HSA-5693579 Homologous DNA Pairing and Strand Exchange 1.261237e-01 0.899
R-HSA-8866652 Synthesis of active ubiquitin: roles of E1 and E2 enzymes 1.296458e-01 0.887
R-HSA-176034 Interactions of Tat with host cellular proteins 1.606596e-01 0.794
R-HSA-163282 Mitochondrial transcription initiation 1.606596e-01 0.794
R-HSA-5603027 IKBKG deficiency causes anhidrotic ectodermal dysplasia with immunodeficiency (E... 1.606596e-01 0.794
R-HSA-5619054 Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... 1.606596e-01 0.794
R-HSA-5602636 IKBKB deficiency causes SCID 1.606596e-01 0.794
R-HSA-5602571 TRAF3 deficiency - HSE 1.606596e-01 0.794
R-HSA-5339700 Signaling by TCF7L2 mutants 1.606596e-01 0.794
R-HSA-211736 Stimulation of the cell death response by PAK-2p34 2.082629e-01 0.681
R-HSA-1296067 Potassium transport channels 2.082629e-01 0.681
R-HSA-9673766 Signaling by cytosolic PDGFRA and PDGFRB fusion proteins 2.531690e-01 0.597
R-HSA-5579012 Defective MAOA causes BRUNS 2.531690e-01 0.597
R-HSA-9944971 Loss of Function of KMT2D in Kabuki Syndrome 2.531690e-01 0.597
R-HSA-8865999 MET activates PTPN11 2.531690e-01 0.597
R-HSA-9944997 Loss of Function of KMT2D in MLL4 Complex Formation in Kabuki Syndrome 2.531690e-01 0.597
R-HSA-9660537 Signaling by MRAS-complex mutants 1.359137e-01 0.867
R-HSA-9726842 Gain-of-function MRAS complexes activate RAF signaling 1.359137e-01 0.867
R-HSA-190873 Gap junction degradation 1.559367e-01 0.807
R-HSA-9700645 ALK mutants bind TKIs 1.559367e-01 0.807
R-HSA-9022702 MECP2 regulates transcription of neuronal ligands 1.764691e-01 0.753
R-HSA-2468052 Establishment of Sister Chromatid Cohesion 1.764691e-01 0.753
R-HSA-9027277 Erythropoietin activates Phospholipase C gamma (PLCG) 1.764691e-01 0.753
R-HSA-933543 NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 1.973888e-01 0.705
R-HSA-4839744 Signaling by APC mutants 1.973888e-01 0.705
R-HSA-5467348 Truncations of AMER1 destabilize the destruction complex 1.973888e-01 0.705
R-HSA-5467337 APC truncation mutants have impaired AXIN binding 1.973888e-01 0.705
R-HSA-5467340 AXIN missense mutants destabilize the destruction complex 1.973888e-01 0.705
R-HSA-5637812 Signaling by EGFRvIII in Cancer 1.391602e-01 0.856
R-HSA-5637810 Constitutive Signaling by EGFRvIII 1.391602e-01 0.856
R-HSA-1963642 PI3K events in ERBB2 signaling 1.391602e-01 0.856
R-HSA-2514853 Condensation of Prometaphase Chromosomes 2.185862e-01 0.660
R-HSA-9931512 Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters 2.185862e-01 0.660
R-HSA-5339716 Signaling by GSK3beta mutants 2.185862e-01 0.660
R-HSA-5651801 PCNA-Dependent Long Patch Base Excision Repair 1.526987e-01 0.816
R-HSA-9697154 Disorders of Nervous System Development 2.399626e-01 0.620
R-HSA-9005895 Pervasive developmental disorders 2.399626e-01 0.620
R-HSA-9005891 Loss of function of MECP2 in Rett syndrome 2.399626e-01 0.620
R-HSA-69091 Polymerase switching 2.399626e-01 0.620
R-HSA-69109 Leading Strand Synthesis 2.399626e-01 0.620
R-HSA-4839743 Signaling by CTNNB1 phospho-site mutants 2.399626e-01 0.620
R-HSA-5358751 CTNNB1 S45 mutants aren't phosphorylated 2.399626e-01 0.620
R-HSA-5358747 CTNNB1 S33 mutants aren't phosphorylated 2.399626e-01 0.620
R-HSA-5358752 CTNNB1 T41 mutants aren't phosphorylated 2.399626e-01 0.620
R-HSA-5358749 CTNNB1 S37 mutants aren't phosphorylated 2.399626e-01 0.620
R-HSA-9818030 NFE2L2 regulating tumorigenic genes 2.614296e-01 0.583
R-HSA-9709570 Impaired BRCA2 binding to RAD51 1.505440e-01 0.822
R-HSA-159231 Transport of Mature mRNA Derived from an Intronless Transcript 1.346215e-01 0.871
R-HSA-912694 Regulation of IFNA/IFNB signaling 2.255057e-01 0.647
R-HSA-350054 Notch-HLH transcription pathway 2.255057e-01 0.647
R-HSA-159234 Transport of Mature mRNAs Derived from Intronless Transcripts 1.433670e-01 0.844
R-HSA-174178 APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... 1.501589e-01 0.823
R-HSA-179419 APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... 1.501589e-01 0.823
R-HSA-174084 Autodegradation of Cdh1 by Cdh1:APC/C 2.106771e-01 0.676
R-HSA-180910 Vpr-mediated nuclear import of PICs 2.570264e-01 0.590
R-HSA-194441 Metabolism of non-coding RNA 2.007827e-01 0.697
R-HSA-191859 snRNP Assembly 2.007827e-01 0.697
R-HSA-5362768 Hh mutants are degraded by ERAD 1.523507e-01 0.817
R-HSA-2586552 Signaling by Leptin 1.764691e-01 0.753
R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 1.830492e-01 0.737
R-HSA-453276 Regulation of mitotic cell cycle 1.830492e-01 0.737
R-HSA-8984722 Interleukin-35 Signalling 2.399626e-01 0.620
R-HSA-177243 Interactions of Rev with host cellular proteins 1.433670e-01 0.844
R-HSA-3371571 HSF1-dependent transactivation 1.347162e-01 0.871
R-HSA-5387390 Hh mutants abrogate ligand secretion 1.806303e-01 0.743
R-HSA-180746 Nuclear import of Rev protein 2.197252e-01 0.658
R-HSA-1059683 Interleukin-6 signaling 2.614296e-01 0.583
R-HSA-9759194 Nuclear events mediated by NFE2L2 1.715739e-01 0.766
R-HSA-75944 Transcription from mitochondrial promoters 2.082629e-01 0.681
R-HSA-9020933 Interleukin-23 signaling 1.359137e-01 0.867
R-HSA-9832991 Formation of the posterior neural plate 1.973888e-01 0.705
R-HSA-5676590 NIK-->noncanonical NF-kB signaling 1.523507e-01 0.817
R-HSA-8854050 FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 2.320026e-01 0.635
R-HSA-174113 SCF-beta-TrCP mediated degradation of Emi1 2.320026e-01 0.635
R-HSA-6783310 Fanconi Anemia Pathway 2.004837e-01 0.698
R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 2.004837e-01 0.698
R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in Cancer 2.097740e-01 0.678
R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer 2.097740e-01 0.678
R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants 2.097740e-01 0.678
R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain Mutants 2.097740e-01 0.678
R-HSA-6788467 IL-6-type cytokine receptor ligand interactions 2.614296e-01 0.583
R-HSA-937061 TRIF (TICAM1)-mediated TLR4 signaling 1.813012e-01 0.742
R-HSA-5658442 Regulation of RAS by GAPs 2.529594e-01 0.597
R-HSA-166166 MyD88-independent TLR4 cascade 1.813012e-01 0.742
R-HSA-3371556 Cellular response to heat stress 1.715739e-01 0.766
R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 1.519078e-01 0.818
R-HSA-9755511 KEAP1-NFE2L2 pathway 1.948058e-01 0.710
R-HSA-9929356 GSK3B-mediated proteasomal degradation of PD-L1(CD274) 1.346215e-01 0.871
R-HSA-9617629 Regulation of FOXO transcriptional activity by acetylation 2.399626e-01 0.620
R-HSA-379716 Cytosolic tRNA aminoacylation 1.709928e-01 0.767
R-HSA-2465910 MASTL Facilitates Mitotic Progression 1.559367e-01 0.807
R-HSA-68884 Mitotic Telophase/Cytokinesis 2.185862e-01 0.660
R-HSA-4839735 Signaling by AXIN mutants 2.185862e-01 0.660
R-HSA-4839748 Signaling by AMER1 mutants 2.185862e-01 0.660
R-HSA-9634285 Constitutive Signaling by Overexpressed ERBB2 2.399626e-01 0.620
R-HSA-877312 Regulation of IFNG signaling 2.399626e-01 0.620
R-HSA-5678895 Defective CFTR causes cystic fibrosis 2.004837e-01 0.698
R-HSA-180585 Vif-mediated degradation of APOBEC3G 2.444426e-01 0.612
R-HSA-4641257 Degradation of AXIN 2.570264e-01 0.590
R-HSA-9762114 GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 2.570264e-01 0.590
R-HSA-9766229 Degradation of CDH1 2.421859e-01 0.616
R-HSA-6807878 COPI-mediated anterograde transport 1.785276e-01 0.748
R-HSA-9843745 Adipogenesis 2.449129e-01 0.611
R-HSA-9665348 Signaling by ERBB2 ECD mutants 1.526987e-01 0.816
R-HSA-2644603 Signaling by NOTCH1 in Cancer 2.097740e-01 0.678
R-HSA-8941858 Regulation of RUNX3 expression and activity 1.433670e-01 0.844
R-HSA-447115 Interleukin-12 family signaling 2.029918e-01 0.693
R-HSA-9860927 Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... 2.320026e-01 0.635
R-HSA-9856649 Transcriptional and post-translational regulation of MITF-M expression and activ... 1.830492e-01 0.737
R-HSA-2995383 Initiation of Nuclear Envelope (NE) Reformation 2.103935e-01 0.677
R-HSA-9609646 HCMV Infection 1.695970e-01 0.771
R-HSA-9909396 Circadian clock 2.514962e-01 0.599
R-HSA-73887 Death Receptor Signaling 1.373221e-01 0.862
R-HSA-9020956 Interleukin-27 signaling 1.764691e-01 0.753
R-HSA-5655302 Signaling by FGFR1 in disease 1.615627e-01 0.792
R-HSA-5610785 GLI3 is processed to GLI3R by the proteasome 1.615627e-01 0.792
R-HSA-5610783 Degradation of GLI2 by the proteasome 1.615627e-01 0.792
R-HSA-180534 Vpu mediated degradation of CD4 2.076294e-01 0.683
R-HSA-349425 Autodegradation of the E3 ubiquitin ligase COP1 2.197252e-01 0.658
R-HSA-75815 Ubiquitin-dependent degradation of Cyclin D 2.197252e-01 0.658
R-HSA-8878159 Transcriptional regulation by RUNX3 1.850859e-01 0.733
R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 1.526987e-01 0.816
R-HSA-9663891 Selective autophagy 2.104587e-01 0.677
R-HSA-8981607 Intracellular oxygen transport 2.531690e-01 0.597
R-HSA-112411 MAPK1 (ERK2) activation 1.559367e-01 0.807
R-HSA-176187 Activation of ATR in response to replication stress 1.957343e-01 0.708
R-HSA-1839124 FGFR1 mutant receptor activation 1.957343e-01 0.708
R-HSA-438064 Post NMDA receptor activation events 2.029918e-01 0.693
R-HSA-162582 Signal Transduction 1.686302e-01 0.773
R-HSA-390650 Histamine receptors 2.531690e-01 0.597
R-HSA-210990 PECAM1 interactions 1.973888e-01 0.705
R-HSA-442742 CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling 1.957343e-01 0.708
R-HSA-5693616 Presynaptic phase of homologous DNA pairing and strand exchange 2.320026e-01 0.635
R-HSA-4608870 Asymmetric localization of PCP proteins 2.004837e-01 0.698
R-HSA-448424 Interleukin-17 signaling 1.753652e-01 0.756
R-HSA-75108 Activation, myristolyation of BID and translocation to mitochondria 2.082629e-01 0.681
R-HSA-198693 AKT phosphorylates targets in the nucleus 1.559367e-01 0.807
R-HSA-110056 MAPK3 (ERK1) activation 1.764691e-01 0.753
R-HSA-9820962 Assembly and release of respiratory syncytial virus (RSV) virions 1.764691e-01 0.753
R-HSA-5654743 Signaling by FGFR4 1.806303e-01 0.743
R-HSA-373752 Netrin-1 signaling 1.904643e-01 0.720
R-HSA-5654741 Signaling by FGFR3 2.004837e-01 0.698
R-HSA-8862803 Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... 2.562948e-01 0.591
R-HSA-8863678 Neurodegenerative Diseases 2.562948e-01 0.591
R-HSA-2173789 TGF-beta receptor signaling activates SMADs 1.806303e-01 0.743
R-HSA-198323 AKT phosphorylates targets in the cytosol 2.399626e-01 0.620
R-HSA-1592230 Mitochondrial biogenesis 2.400057e-01 0.620
R-HSA-9762293 Regulation of CDH11 gene transcription 1.559367e-01 0.807
R-HSA-9764790 Positive Regulation of CDH1 Gene Transcription 1.764691e-01 0.753
R-HSA-5654732 Negative regulation of FGFR3 signaling 1.399382e-01 0.854
R-HSA-5654733 Negative regulation of FGFR4 signaling 1.505440e-01 0.822
R-HSA-6804758 Regulation of TP53 Activity through Acetylation 1.957343e-01 0.708
R-HSA-5654727 Negative regulation of FGFR2 signaling 2.197252e-01 0.658
R-HSA-9675135 Diseases of DNA repair 2.106771e-01 0.676
R-HSA-9825895 Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... 1.359137e-01 0.867
R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins 1.559367e-01 0.807
R-HSA-9834752 Respiratory syncytial virus genome replication 1.559367e-01 0.807
R-HSA-5654726 Negative regulation of FGFR1 signaling 1.957343e-01 0.708
R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 checkpoint 2.281642e-01 0.642
R-HSA-168643 Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... 2.470455e-01 0.607
R-HSA-112040 G-protein mediated events 1.531865e-01 0.815
R-HSA-202403 TCR signaling 1.813012e-01 0.742
R-HSA-9012852 Signaling by NOTCH3 1.663528e-01 0.779
R-HSA-111996 Ca-dependent events 1.709928e-01 0.767
R-HSA-1489509 DAG and IP3 signaling 2.004837e-01 0.698
R-HSA-9730414 MITF-M-regulated melanocyte development 2.091749e-01 0.679
R-HSA-1855204 Synthesis of IP3 and IP4 in the cytosol 1.957343e-01 0.708
R-HSA-71384 Ethanol oxidation 2.255057e-01 0.647
R-HSA-9768919 NPAS4 regulates expression of target genes 2.197252e-01 0.658
R-HSA-9933387 RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression 1.614451e-01 0.792
R-HSA-8950505 Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... 2.566504e-01 0.591
R-HSA-381119 Unfolded Protein Response (UPR) 1.310416e-01 0.883
R-HSA-416482 G alpha (12/13) signalling events 2.403876e-01 0.619
R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian expression 2.197252e-01 0.658
R-HSA-9607240 FLT3 Signaling 1.523507e-01 0.817
R-HSA-69239 Synthesis of DNA 2.634579e-01 0.579
R-HSA-1169091 Activation of NF-kappaB in B cells 2.638489e-01 0.579
R-HSA-5358346 Hedgehog ligand biogenesis 2.638489e-01 0.579
R-HSA-2151201 Transcriptional activation of mitochondrial biogenesis 2.665573e-01 0.574
R-HSA-69242 S Phase 2.678341e-01 0.572
R-HSA-165054 Rev-mediated nuclear export of HIV RNA 2.697354e-01 0.569
R-HSA-202131 Metabolism of nitric oxide: NOS3 activation and regulation 2.697354e-01 0.569
R-HSA-2672351 Stimuli-sensing channels 2.710615e-01 0.567
R-HSA-9839394 TGFBR3 expression 2.719019e-01 0.566
R-HSA-174184 Cdc20:Phospho-APC/C mediated degradation of Cyclin A 2.748425e-01 0.561
R-HSA-9931269 AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) 2.748425e-01 0.561
R-HSA-68949 Orc1 removal from chromatin 2.748425e-01 0.561
R-HSA-9634815 Transcriptional Regulation by NPAS4 2.748425e-01 0.561
R-HSA-167200 Formation of HIV-1 elongation complex containing HIV-1 Tat 2.825514e-01 0.549
R-HSA-168276 NS1 Mediated Effects on Host Pathways 2.825514e-01 0.549
R-HSA-9648002 RAS processing 2.825514e-01 0.549
R-HSA-8964043 Plasma lipoprotein clearance 2.825514e-01 0.549
R-HSA-1170546 Prolactin receptor signaling 2.829084e-01 0.548
R-HSA-8847993 ERBB2 Activates PTK6 Signaling 2.829084e-01 0.548
R-HSA-1433559 Regulation of KIT signaling 2.829084e-01 0.548
R-HSA-391160 Signal regulatory protein family interactions 2.829084e-01 0.548
R-HSA-1266738 Developmental Biology 2.849559e-01 0.545
R-HSA-432722 Golgi Associated Vesicle Biogenesis 2.859287e-01 0.544
R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... 2.860253e-01 0.544
R-HSA-381340 Transcriptional regulation of white adipocyte differentiation 2.901719e-01 0.537
R-HSA-446652 Interleukin-1 family signaling 2.939231e-01 0.532
R-HSA-167246 Tat-mediated elongation of the HIV-1 transcript 2.954564e-01 0.530
R-HSA-167152 Formation of HIV elongation complex in the absence of HIV Tat 2.954564e-01 0.530
R-HSA-167169 HIV Transcription Elongation 2.954564e-01 0.530
R-HSA-3371568 Attenuation phase 2.954564e-01 0.530
R-HSA-176033 Interactions of Vpr with host cellular proteins 2.954564e-01 0.530
R-HSA-9604323 Negative regulation of NOTCH4 signaling 2.954564e-01 0.530
R-HSA-202433 Generation of second messenger molecules 2.954564e-01 0.530
R-HSA-8982491 Glycogen metabolism 2.954564e-01 0.530
R-HSA-9013957 TLR3-mediated TICAM1-dependent programmed cell death 2.955307e-01 0.529
R-HSA-211163 AKT-mediated inactivation of FOXO1A 2.955307e-01 0.529
R-HSA-9818035 NFE2L2 regulating ER-stress associated genes 2.955307e-01 0.529
R-HSA-5083630 Defective LFNG causes SCDO3 2.955307e-01 0.529
R-HSA-9692913 SARS-CoV-1-mediated effects on programmed cell death 2.955307e-01 0.529
R-HSA-69017 CDK-mediated phosphorylation and removal of Cdc6 2.970960e-01 0.527
R-HSA-170834 Signaling by TGF-beta Receptor Complex 2.985482e-01 0.525
R-HSA-167243 Tat-mediated HIV elongation arrest and recovery 3.033771e-01 0.518
R-HSA-8949613 Cristae formation 3.033771e-01 0.518
R-HSA-167238 Pausing and recovery of Tat-mediated HIV elongation 3.033771e-01 0.518
R-HSA-4641262 Disassembly of the destruction complex and recruitment of AXIN to the membrane 3.033771e-01 0.518
R-HSA-9734009 Defective Intrinsic Pathway for Apoptosis 3.033771e-01 0.518
R-HSA-9027284 Erythropoietin activates RAS 3.043286e-01 0.517
R-HSA-196299 Beta-catenin phosphorylation cascade 3.043286e-01 0.517
R-HSA-6785631 ERBB2 Regulates Cell Motility 3.043286e-01 0.517
R-HSA-111447 Activation of BAD and translocation to mitochondria 3.043286e-01 0.517
R-HSA-9823739 Formation of the anterior neural plate 3.043286e-01 0.517
R-HSA-446353 Cell-extracellular matrix interactions 3.043286e-01 0.517
R-HSA-9755779 SARS-CoV-2 targets host intracellular signalling and regulatory pathways 3.043286e-01 0.517
R-HSA-975871 MyD88 cascade initiated on plasma membrane 3.069796e-01 0.513
R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 3.069796e-01 0.513
R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 3.069796e-01 0.513
R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 3.072329e-01 0.513
R-HSA-5218920 VEGFR2 mediated vascular permeability 3.084332e-01 0.511
R-HSA-8853884 Transcriptional Regulation by VENTX 3.084332e-01 0.511
R-HSA-9929491 SPOP-mediated proteasomal degradation of PD-L1(CD274) 3.084332e-01 0.511
R-HSA-5663205 Infectious disease 3.108429e-01 0.507
R-HSA-167287 HIV elongation arrest and recovery 3.191842e-01 0.496
R-HSA-167290 Pausing and recovery of HIV elongation 3.191842e-01 0.496
R-HSA-5576892 Phase 0 - rapid depolarisation 3.191842e-01 0.496
R-HSA-5578775 Ion homeostasis 3.196289e-01 0.495
R-HSA-5654736 Signaling by FGFR1 3.196289e-01 0.495
R-HSA-6807505 RNA polymerase II transcribes snRNA genes 3.209223e-01 0.494
R-HSA-9609736 Assembly and cell surface presentation of NMDA receptors 3.214646e-01 0.493
R-HSA-9932298 Degradation of CRY and PER proteins 3.214646e-01 0.493
R-HSA-5610780 Degradation of GLI1 by the proteasome 3.214646e-01 0.493
R-HSA-9683701 Translation of Structural Proteins 3.214646e-01 0.493
R-HSA-450604 KSRP (KHSRP) binds and destabilizes mRNA 3.256278e-01 0.487
R-HSA-9764561 Regulation of CDH1 Function 3.309722e-01 0.480
R-HSA-2980766 Nuclear Envelope Breakdown 3.309722e-01 0.480
R-HSA-6791312 TP53 Regulates Transcription of Cell Cycle Genes 3.309722e-01 0.480
R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 3.338874e-01 0.476
R-HSA-9006335 Signaling by Erythropoietin 3.349996e-01 0.475
R-HSA-9818026 NFE2L2 regulating inflammation associated genes 3.354920e-01 0.474
R-HSA-110381 Resolution of AP sites via the single-nucleotide replacement pathway 3.354920e-01 0.474
R-HSA-8939247 RUNX1 regulates transcription of genes involved in interleukin signaling 3.354920e-01 0.474
R-HSA-8849468 PTK6 Regulates Proteins Involved in RNA Processing 3.354920e-01 0.474
R-HSA-390648 Muscarinic acetylcholine receptors 3.354920e-01 0.474
R-HSA-9927353 Co-inhibition by BTLA 3.354920e-01 0.474
R-HSA-8941284 RUNX2 regulates chondrocyte maturation 3.354920e-01 0.474
R-HSA-69052 Switching of origins to a post-replicative state 3.363674e-01 0.473
R-HSA-442755 Activation of NMDA receptors and postsynaptic events 3.411610e-01 0.467
R-HSA-909733 Interferon alpha/beta signaling 3.419332e-01 0.466
R-HSA-1236394 Signaling by ERBB4 3.465720e-01 0.460
R-HSA-9013694 Signaling by NOTCH4 3.465720e-01 0.460
R-HSA-8964616 G beta:gamma signalling through CDC42 3.467510e-01 0.460
R-HSA-77595 Processing of Intronless Pre-mRNAs 3.467510e-01 0.460
R-HSA-918233 TRAF3-dependent IRF activation pathway 3.467510e-01 0.460
R-HSA-9931521 The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... 3.467510e-01 0.460
R-HSA-430039 mRNA decay by 5' to 3' exoribonuclease 3.467510e-01 0.460
R-HSA-399997 Acetylcholine regulates insulin secretion 3.467510e-01 0.460
R-HSA-1483148 Synthesis of PG 3.467510e-01 0.460
R-HSA-6804114 TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest 3.467510e-01 0.460
R-HSA-9637690 Response of Mtb to phagocytosis 3.476260e-01 0.459
R-HSA-1236974 ER-Phagosome pathway 3.487935e-01 0.457
R-HSA-5619107 Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... 3.507966e-01 0.455
R-HSA-68962 Activation of the pre-replicative complex 3.507966e-01 0.455
R-HSA-429914 Deadenylation-dependent mRNA decay 3.537589e-01 0.451
R-HSA-111885 Opioid Signalling 3.584598e-01 0.446
R-HSA-8864260 Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors 3.607246e-01 0.443
R-HSA-187577 SCF(Skp2)-mediated degradation of p27/p21 3.607246e-01 0.443
R-HSA-379724 tRNA Aminoacylation 3.651813e-01 0.437
R-HSA-1855196 IP3 and IP4 transport between cytosol and nucleus 3.665501e-01 0.436
R-HSA-1855229 IP6 and IP7 transport between cytosol and nucleus 3.665501e-01 0.436
R-HSA-2028269 Signaling by Hippo 3.676497e-01 0.435
R-HSA-5358606 Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) 3.676497e-01 0.435
R-HSA-5358565 Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) 3.676497e-01 0.435
R-HSA-199977 ER to Golgi Anterograde Transport 3.707564e-01 0.431
R-HSA-9865113 Loss-of-function mutations in DBT cause MSUD2 3.731887e-01 0.428
R-HSA-9907570 Loss-of-function mutations in DLD cause MSUD3/DLDD 3.731887e-01 0.428
R-HSA-5250992 Toxicity of botulinum toxin type E (botE) 3.731887e-01 0.428
R-HSA-8937144 Aryl hydrocarbon receptor signalling 3.731887e-01 0.428
R-HSA-5603029 IkBA variant leads to EDA-ID 3.731887e-01 0.428
R-HSA-8941855 RUNX3 regulates CDKN1A transcription 3.731887e-01 0.428
R-HSA-446388 Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... 3.731887e-01 0.428
R-HSA-9860276 SLC15A4:TASL-dependent IRF5 activation 3.731887e-01 0.428
R-HSA-168333 NEP/NS2 Interacts with the Cellular Export Machinery 3.738150e-01 0.427
R-HSA-8939902 Regulation of RUNX2 expression and activity 3.766096e-01 0.424
R-HSA-9694635 Translation of Structural Proteins 3.773201e-01 0.423
R-HSA-69190 DNA strand elongation 3.822367e-01 0.418
R-HSA-4791275 Signaling by WNT in cancer 3.822367e-01 0.418
R-HSA-9675126 Diseases of mitotic cell cycle 3.822367e-01 0.418
R-HSA-9772573 Late SARS-CoV-2 Infection Events 3.863123e-01 0.413
R-HSA-168274 Export of Viral Ribonucleoproteins from Nucleus 3.868831e-01 0.412
R-HSA-4086400 PCP/CE pathway 3.875898e-01 0.412
R-HSA-176408 Regulation of APC/C activators between G1/S and early anaphase 3.880340e-01 0.411
R-HSA-9614657 FOXO-mediated transcription of cell death genes 3.882814e-01 0.411
R-HSA-8849932 Synaptic adhesion-like molecules 3.882814e-01 0.411
R-HSA-5358508 Mismatch Repair 3.882814e-01 0.411
R-HSA-4419969 Depolymerization of the Nuclear Lamina 3.882814e-01 0.411
R-HSA-156711 Polo-like kinase mediated events 3.882814e-01 0.411
R-HSA-5684996 MAPK1/MAPK3 signaling 3.885694e-01 0.411
R-HSA-1855170 IPs transport between nucleus and cytosol 3.978342e-01 0.400
R-HSA-159227 Transport of the SLBP independent Mature mRNA 3.978342e-01 0.400
R-HSA-397795 G-protein beta:gamma signalling 3.978342e-01 0.400
R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 3.994450e-01 0.399
R-HSA-975138 TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation 4.020192e-01 0.396
R-HSA-9837999 Mitochondrial protein degradation 4.051232e-01 0.392
R-HSA-6806834 Signaling by MET 4.081168e-01 0.389
R-HSA-449836 Other interleukin signaling 4.086092e-01 0.389
R-HSA-1834941 STING mediated induction of host immune responses 4.086092e-01 0.389
R-HSA-9694631 Maturation of nucleoprotein 4.086092e-01 0.389
R-HSA-9834899 Specification of the neural plate border 4.086092e-01 0.389
R-HSA-8869496 TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... 4.087491e-01 0.389
R-HSA-177539 Autointegration results in viral DNA circles 4.087491e-01 0.389
R-HSA-9912481 Branched-chain ketoacid dehydrogenase kinase deficiency 4.087491e-01 0.389
R-HSA-9912529 H139Hfs13* PPM1K causes a mild variant of MSUD 4.087491e-01 0.389
R-HSA-5250981 Toxicity of botulinum toxin type F (botF) 4.087491e-01 0.389
R-HSA-5250955 Toxicity of botulinum toxin type D (botD) 4.087491e-01 0.389
R-HSA-69478 G2/M DNA replication checkpoint 4.087491e-01 0.389
R-HSA-175567 Integration of viral DNA into host genomic DNA 4.087491e-01 0.389
R-HSA-9818749 Regulation of NFE2L2 gene expression 4.087491e-01 0.389
R-HSA-164944 Nef and signal transduction 4.087491e-01 0.389
R-HSA-975155 MyD88 dependent cascade initiated on endosome 4.107491e-01 0.386
R-HSA-389356 Co-stimulation by CD28 4.128981e-01 0.384
R-HSA-159230 Transport of the SLBP Dependant Mature mRNA 4.133224e-01 0.384
R-HSA-170822 Regulation of Glucokinase by Glucokinase Regulatory Protein 4.133224e-01 0.384
R-HSA-1234174 Cellular response to hypoxia 4.221904e-01 0.374
R-HSA-163210 Formation of ATP by chemiosmotic coupling 4.286012e-01 0.368
R-HSA-1362277 Transcription of E2F targets under negative control by DREAM complex 4.286012e-01 0.368
R-HSA-373753 Nephrin family interactions 4.286012e-01 0.368
R-HSA-203615 eNOS activation 4.286821e-01 0.368
R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 4.387762e-01 0.358
R-HSA-5673001 RAF/MAP kinase cascade 4.413087e-01 0.355
R-HSA-8951430 RUNX3 regulates WNT signaling 4.422941e-01 0.354
R-HSA-8851907 MET activates PI3K/AKT signaling 4.422941e-01 0.354
R-HSA-428890 Role of ABL in ROBO-SLIT signaling 4.422941e-01 0.354
R-HSA-4411364 Binding of TCF/LEF:CTNNB1 to target gene promoters 4.422941e-01 0.354
R-HSA-2562578 TRIF-mediated programmed cell death 4.422941e-01 0.354
R-HSA-9732724 IFNG signaling activates MAPKs 4.422941e-01 0.354
R-HSA-1912399 Pre-NOTCH Processing in the Endoplasmic Reticulum 4.422941e-01 0.354
R-HSA-72731 Recycling of eIF2:GDP 4.422941e-01 0.354
R-HSA-163754 Insulin effects increased synthesis of Xylulose-5-Phosphate 4.422941e-01 0.354
R-HSA-8849473 PTK6 Expression 4.422941e-01 0.354
R-HSA-203641 NOSTRIN mediated eNOS trafficking 4.422941e-01 0.354
R-HSA-9686347 Microbial modulation of RIPK1-mediated regulated necrosis 4.422941e-01 0.354
R-HSA-110357 Displacement of DNA glycosylase by APEX1 4.422941e-01 0.354
R-HSA-3301854 Nuclear Pore Complex (NPC) Disassembly 4.438958e-01 0.353
R-HSA-381042 PERK regulates gene expression 4.438958e-01 0.353
R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 4.455870e-01 0.351
R-HSA-5357786 TNFR1-induced proapoptotic signaling 4.482301e-01 0.348
R-HSA-69186 Lagging Strand Synthesis 4.482301e-01 0.348
R-HSA-9013695 NOTCH4 Intracellular Domain Regulates Transcription 4.482301e-01 0.348
R-HSA-1234176 Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha 4.514307e-01 0.345
R-HSA-3371511 HSF1 activation 4.589474e-01 0.338
R-HSA-5339562 Uptake and actions of bacterial toxins 4.640988e-01 0.333
R-HSA-8856828 Clathrin-mediated endocytosis 4.651738e-01 0.332
R-HSA-9006936 Signaling by TGFB family members 4.659770e-01 0.332
R-HSA-9909615 Regulation of PD-L1(CD274) Post-translational modification 4.691267e-01 0.329
R-HSA-382556 ABC-family proteins mediated transport 4.705129e-01 0.327
R-HSA-9010642 ROBO receptors bind AKAP5 4.739378e-01 0.324
R-HSA-446107 Type I hemidesmosome assembly 4.739378e-01 0.324
R-HSA-8875656 MET receptor recycling 4.739378e-01 0.324
R-HSA-196025 Formation of annular gap junctions 4.739378e-01 0.324
R-HSA-9028335 Activated NTRK2 signals through PI3K 4.739378e-01 0.324
R-HSA-3371378 Regulation by c-FLIP 4.739378e-01 0.324
R-HSA-8939246 RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... 4.739378e-01 0.324
R-HSA-69416 Dimerization of procaspase-8 4.739378e-01 0.324
R-HSA-442729 CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde 4.739378e-01 0.324
R-HSA-351906 Apoptotic cleavage of cell adhesion proteins 4.739378e-01 0.324
R-HSA-8948751 Regulation of PTEN stability and activity 4.766617e-01 0.322
R-HSA-1168372 Downstream signaling events of B Cell Receptor (BCR) 4.782147e-01 0.320
R-HSA-69202 Cyclin E associated events during G1/S transition 4.782147e-01 0.320
R-HSA-9670439 Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... 4.863101e-01 0.313
R-HSA-9669938 Signaling by KIT in disease 4.863101e-01 0.313
R-HSA-112409 RAF-independent MAPK1/3 activation 4.863101e-01 0.313
R-HSA-70268 Pyruvate metabolism 4.891112e-01 0.311
R-HSA-5632684 Hedgehog 'on' state 4.892143e-01 0.311
R-HSA-199992 trans-Golgi Network Vesicle Budding 5.001294e-01 0.301
R-HSA-69656 Cyclin A:Cdk2-associated events at S phase entry 5.001294e-01 0.301
R-HSA-9820965 Respiratory syncytial virus (RSV) genome replication, transcription and translat... 5.029875e-01 0.298
R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 5.032116e-01 0.298
R-HSA-9818032 NFE2L2 regulating MDR associated enzymes 5.037879e-01 0.298
R-HSA-201688 WNT mediated activation of DVL 5.037879e-01 0.298
R-HSA-5218900 CASP8 activity is inhibited 5.037879e-01 0.298
R-HSA-5250968 Toxicity of botulinum toxin type A (botA) 5.037879e-01 0.298
R-HSA-5649702 APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... 5.037879e-01 0.298
R-HSA-176974 Unwinding of DNA 5.037879e-01 0.298
R-HSA-379398 Enzymatic degradation of Dopamine by monoamine oxidase 5.037879e-01 0.298
R-HSA-450341 Activation of the AP-1 family of transcription factors 5.037879e-01 0.298
R-HSA-170984 ARMS-mediated activation 5.037879e-01 0.298
R-HSA-9619229 Activation of RAC1 downstream of NMDARs 5.037879e-01 0.298
R-HSA-1433617 Regulation of signaling by NODAL 5.037879e-01 0.298
R-HSA-450520 HuR (ELAVL1) binds and stabilizes mRNA 5.037879e-01 0.298
R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription factors 5.037879e-01 0.298
R-HSA-9768777 Regulation of NPAS4 gene transcription 5.037879e-01 0.298
R-HSA-442380 Zinc influx into cells by the SLC39 gene family 5.037879e-01 0.298
R-HSA-9840373 Cellular response to mitochondrial stress 5.037879e-01 0.298
R-HSA-912526 Interleukin receptor SHC signaling 5.047259e-01 0.297
R-HSA-167160 RNA Pol II CTD phosphorylation and interaction with CE during HIV infection 5.047259e-01 0.297
R-HSA-77075 RNA Pol II CTD phosphorylation and interaction with CE 5.047259e-01 0.297
R-HSA-8854691 Interleukin-20 family signaling 5.047259e-01 0.297
R-HSA-8856825 Cargo recognition for clathrin-mediated endocytosis 5.071120e-01 0.295
R-HSA-9662361 Sensory processing of sound by outer hair cells of the cochlea 5.136282e-01 0.289
R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma membrane 5.140619e-01 0.289
R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 5.140619e-01 0.289
R-HSA-9711123 Cellular response to chemical stress 5.147567e-01 0.288
R-HSA-5602358 Diseases associated with the TLR signaling cascade 5.172552e-01 0.286
R-HSA-5260271 Diseases of Immune System 5.172552e-01 0.286
R-HSA-9844594 Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 5.172552e-01 0.286
R-HSA-9843743 Transcriptional regulation of brown and beige adipocyte differentiation 5.172552e-01 0.286
R-HSA-9856651 MITF-M-dependent gene expression 5.182255e-01 0.285
R-HSA-1226099 Signaling by FGFR in disease 5.216814e-01 0.283
R-HSA-933542 TRAF6 mediated NF-kB activation 5.227074e-01 0.282
R-HSA-6783589 Interleukin-6 family signaling 5.227074e-01 0.282
R-HSA-75067 Processing of Capped Intronless Pre-mRNA 5.227074e-01 0.282
R-HSA-429947 Deadenylation of mRNA 5.227074e-01 0.282
R-HSA-8986944 Transcriptional Regulation by MECP2 5.282958e-01 0.277
R-HSA-9820841 M-decay: degradation of maternal mRNAs by maternally stored factors 5.312992e-01 0.275
R-HSA-168271 Transport of Ribonucleoproteins into the Host Nucleus 5.312992e-01 0.275
R-HSA-8875555 MET activates RAP1 and RAC1 5.319459e-01 0.274
R-HSA-9858328 OADH complex synthesizes glutaryl-CoA from 2-OA 5.319459e-01 0.274
R-HSA-9693928 Defective RIPK1-mediated regulated necrosis 5.319459e-01 0.274
R-HSA-68952 DNA replication initiation 5.319459e-01 0.274
R-HSA-380612 Metabolism of serotonin 5.319459e-01 0.274
R-HSA-428359 Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... 5.319459e-01 0.274
R-HSA-164843 2-LTR circle formation 5.319459e-01 0.274
R-HSA-379397 Enzymatic degradation of dopamine by COMT 5.319459e-01 0.274
R-HSA-3858494 Beta-catenin independent WNT signaling 5.358462e-01 0.271
R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 5.390376e-01 0.268
R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 5.390376e-01 0.268
R-HSA-174411 Polymerase switching on the C-strand of the telomere 5.402447e-01 0.267
R-HSA-9006925 Intracellular signaling by second messengers 5.414985e-01 0.266
R-HSA-9615017 FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 5.451107e-01 0.264
R-HSA-174417 Telomere C-strand (Lagging Strand) Synthesis 5.451107e-01 0.264
R-HSA-180786 Extension of Telomeres 5.493454e-01 0.260
R-HSA-9033241 Peroxisomal protein import 5.493454e-01 0.260
R-HSA-1236975 Antigen processing-Cross presentation 5.515795e-01 0.258
R-HSA-1989781 PPARA activates gene expression 5.550964e-01 0.256
R-HSA-983712 Ion channel transport 5.553639e-01 0.255
R-HSA-9022699 MECP2 regulates neuronal receptors and channels 5.573302e-01 0.254
R-HSA-9931510 Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... 5.573302e-01 0.254
R-HSA-9703465 Signaling by FLT3 fusion proteins 5.573302e-01 0.254
R-HSA-525793 Myogenesis 5.573302e-01 0.254
R-HSA-3295583 TRP channels 5.573302e-01 0.254
R-HSA-9706019 RHOBTB3 ATPase cycle 5.585076e-01 0.253
R-HSA-112308 Presynaptic depolarization and calcium channel opening 5.585076e-01 0.253
R-HSA-5682910 LGI-ADAM interactions 5.585076e-01 0.253
R-HSA-192814 vRNA Synthesis 5.585076e-01 0.253
R-HSA-192905 vRNP Assembly 5.585076e-01 0.253
R-HSA-425381 Bicarbonate transporters 5.585076e-01 0.253
R-HSA-8943724 Regulation of PTEN gene transcription 5.609419e-01 0.251
R-HSA-9612973 Autophagy 5.623400e-01 0.250
R-HSA-5619084 ABC transporter disorders 5.635184e-01 0.249
R-HSA-400206 Regulation of lipid metabolism by PPARalpha 5.695355e-01 0.244
R-HSA-69206 G1/S Transition 5.715310e-01 0.243
R-HSA-1433557 Signaling by SCF-KIT 5.720063e-01 0.243
R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP (SREBF) 5.736855e-01 0.241
R-HSA-174414 Processive synthesis on the C-strand of the telomere 5.739588e-01 0.241
R-HSA-445095 Interaction between L1 and Ankyrins 5.739588e-01 0.241
R-HSA-1632852 Macroautophagy 5.741346e-01 0.241
R-HSA-1250342 PI3K events in ERBB4 signaling 5.835635e-01 0.234
R-HSA-162592 Integration of provirus 5.835635e-01 0.234
R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible Factor 5.835635e-01 0.234
R-HSA-110362 POLB-Dependent Long Patch Base Excision Repair 5.835635e-01 0.234
R-HSA-141333 Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB 5.835635e-01 0.234
R-HSA-180689 APOBEC3G mediated resistance to HIV-1 infection 5.835635e-01 0.234
R-HSA-433692 Proton-coupled monocarboxylate transport 5.835635e-01 0.234
R-HSA-5693548 Sensing of DNA Double Strand Breaks 5.835635e-01 0.234
R-HSA-1268020 Mitochondrial protein import 5.836378e-01 0.234
R-HSA-6784531 tRNA processing in the nucleus 5.836378e-01 0.234
R-HSA-2995410 Nuclear Envelope (NE) Reassembly 5.837272e-01 0.234
R-HSA-5654738 Signaling by FGFR2 5.837272e-01 0.234
R-HSA-1483249 Inositol phosphate metabolism 5.858614e-01 0.232
R-HSA-113418 Formation of the Early Elongation Complex 5.901272e-01 0.229
R-HSA-167158 Formation of the HIV-1 Early Elongation Complex 5.901272e-01 0.229
R-HSA-380994 ATF4 activates genes in response to endoplasmic reticulum stress 5.901272e-01 0.229
R-HSA-5620971 Pyroptosis 5.901272e-01 0.229
R-HSA-72086 mRNA Capping 6.058343e-01 0.218
R-HSA-9759475 Regulation of CDH11 Expression and Function 6.058343e-01 0.218
R-HSA-2197563 NOTCH2 intracellular domain regulates transcription 6.071988e-01 0.217
R-HSA-3000484 Scavenging by Class F Receptors 6.071988e-01 0.217
R-HSA-5619094 Variant SLC6A14 may confer susceptibility towards obesity 6.071988e-01 0.217
R-HSA-9865114 Maple Syrup Urine Disease 6.071988e-01 0.217
R-HSA-8941856 RUNX3 regulates NOTCH signaling 6.071988e-01 0.217
R-HSA-879415 Advanced glycosylation endproduct receptor signaling 6.071988e-01 0.217
R-HSA-8951936 RUNX3 regulates p14-ARF 6.071988e-01 0.217
R-HSA-380615 Serotonin clearance from the synaptic cleft 6.071988e-01 0.217
R-HSA-9842663 Signaling by LTK 6.071988e-01 0.217
R-HSA-9839373 Signaling by TGFBR3 6.104438e-01 0.214
R-HSA-2514859 Inactivation, recovery and regulation of the phototransduction cascade 6.104438e-01 0.214
R-HSA-9707564 Cytoprotection by HMOX1 6.130655e-01 0.212
R-HSA-9614085 FOXO-mediated transcription 6.201166e-01 0.208
R-HSA-1250196 SHC1 events in ERBB2 signaling 6.210801e-01 0.207
R-HSA-9013508 NOTCH3 Intracellular Domain Regulates Transcription 6.210801e-01 0.207
R-HSA-114452 Activation of BH3-only proteins 6.210801e-01 0.207
R-HSA-5610787 Hedgehog 'off' state 6.287254e-01 0.202
R-HSA-9861559 PDH complex synthesizes acetyl-CoA from PYR 6.294941e-01 0.201
R-HSA-9853506 OGDH complex synthesizes succinyl-CoA from 2-OG 6.294941e-01 0.201
R-HSA-162658 Golgi Cisternae Pericentriolar Stack Reorganization 6.294941e-01 0.201
R-HSA-170968 Frs2-mediated activation 6.294941e-01 0.201
R-HSA-5676594 TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway 6.294941e-01 0.201
R-HSA-75892 Platelet Adhesion to exposed collagen 6.294941e-01 0.201
R-HSA-6804759 Regulation of TP53 Activity through Association with Co-factors 6.294941e-01 0.201
R-HSA-442720 CREB1 phosphorylation through the activation of Adenylate Cyclase 6.294941e-01 0.201
R-HSA-9682706 Replication of the SARS-CoV-1 genome 6.294941e-01 0.201
R-HSA-8856688 Golgi-to-ER retrograde transport 6.331718e-01 0.198
R-HSA-9020702 Interleukin-1 signaling 6.372200e-01 0.196
R-HSA-3371453 Regulation of HSF1-mediated heat shock response 6.455985e-01 0.190
R-HSA-1538133 G0 and Early G1 6.501966e-01 0.187
R-HSA-2219528 PI3K/AKT Signaling in Cancer 6.502570e-01 0.187
R-HSA-69166 Removal of the Flap Intermediate 6.505251e-01 0.187
R-HSA-9859138 BCKDH synthesizes BCAA-CoA from KIC, KMVA, KIV 6.505251e-01 0.187
R-HSA-5655291 Signaling by FGFR4 in disease 6.505251e-01 0.187
R-HSA-9856872 Malate-aspartate shuttle 6.505251e-01 0.187
R-HSA-435354 Zinc transporters 6.505251e-01 0.187
R-HSA-9679514 SARS-CoV-1 Genome Replication and Transcription 6.505251e-01 0.187
R-HSA-8878166 Transcriptional regulation by RUNX2 6.578764e-01 0.182
R-HSA-913531 Interferon Signaling 6.580664e-01 0.182
R-HSA-9733709 Cardiogenesis 6.640744e-01 0.178
R-HSA-9764260 Regulation of Expression and Function of Type II Classical Cadherins 6.640744e-01 0.178
R-HSA-2514856 The phototransduction cascade 6.691876e-01 0.174
R-HSA-69183 Processive synthesis on the lagging strand 6.703636e-01 0.174
R-HSA-379401 Dopamine clearance from the synaptic cleft 6.703636e-01 0.174
R-HSA-3270619 IRF3-mediated induction of type I IFN 6.703636e-01 0.174
R-HSA-9701898 STAT3 nuclear events downstream of ALK signaling 6.703636e-01 0.174
R-HSA-8876725 Protein methylation 6.703636e-01 0.174
R-HSA-5621481 C-type lectin receptors (CLRs) 6.706191e-01 0.174
R-HSA-9818027 NFE2L2 regulating anti-oxidant/detoxification enzymes 6.775052e-01 0.169
R-HSA-390471 Association of TriC/CCT with target proteins during biosynthesis 6.775052e-01 0.169
R-HSA-6794361 Neurexins and neuroligins 6.801244e-01 0.167
R-HSA-168898 Toll-like Receptor Cascades 6.807705e-01 0.167
R-HSA-202424 Downstream TCR signaling 6.850691e-01 0.164
R-HSA-354194 GRB2:SOS provides linkage to MAPK signaling for Integrins 6.890770e-01 0.162
R-HSA-176412 Phosphorylation of the APC/C 6.890770e-01 0.162
R-HSA-9687136 Aberrant regulation of mitotic exit in cancer due to RB1 defects 6.890770e-01 0.162
R-HSA-9673324 WNT5:FZD7-mediated leishmania damping 6.890770e-01 0.162
R-HSA-9664420 Killing mechanisms 6.890770e-01 0.162
R-HSA-9733458 Induction of Cell-Cell Fusion 6.890770e-01 0.162
R-HSA-140534 Caspase activation via Death Receptors in the presence of ligand 6.890770e-01 0.162
R-HSA-5635838 Activation of SMO 6.890770e-01 0.162
R-HSA-9678110 Attachment and Entry 6.890770e-01 0.162
R-HSA-5576886 Phase 4 - resting membrane potential 6.890770e-01 0.162
R-HSA-169893 Prolonged ERK activation events 6.890770e-01 0.162
R-HSA-434316 Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion 6.890770e-01 0.162
R-HSA-388844 Receptor-type tyrosine-protein phosphatases 6.890770e-01 0.162
R-HSA-210744 Regulation of gene expression in late stage (branching morphogenesis) pancreatic... 6.890770e-01 0.162
R-HSA-399955 SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion 6.890770e-01 0.162
R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 6.890792e-01 0.162
R-HSA-6807070 PTEN Regulation 6.895862e-01 0.161
R-HSA-983170 Antigen Presentation: Folding, assembly and peptide loading of class I MHC 6.904949e-01 0.161
R-HSA-5365859 RA biosynthesis pathway 6.904949e-01 0.161
R-HSA-983231 Factors involved in megakaryocyte development and platelet production 6.950905e-01 0.158
R-HSA-5663084 Diseases of carbohydrate metabolism 6.954282e-01 0.158
R-HSA-983705 Signaling by the B Cell Receptor (BCR) 6.984871e-01 0.156
R-HSA-112314 Neurotransmitter receptors and postsynaptic signal transmission 7.012307e-01 0.154
R-HSA-1250347 SHC1 events in ERBB4 signaling 7.067291e-01 0.151
R-HSA-5576893 Phase 2 - plateau phase 7.067291e-01 0.151
R-HSA-1963640 GRB2 events in ERBB2 signaling 7.067291e-01 0.151
R-HSA-141430 Inactivation of APC/C via direct inhibition of the APC/C complex 7.067291e-01 0.151
R-HSA-9027307 Biosynthesis of maresin-like SPMs 7.067291e-01 0.151
R-HSA-6783984 Glycine degradation 7.067291e-01 0.151
R-HSA-141405 Inhibition of the proteolytic activity of APC/C required for the onset of anapha... 7.067291e-01 0.151
R-HSA-6787450 tRNA modification in the mitochondrion 7.067291e-01 0.151
R-HSA-8866910 TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... 7.067291e-01 0.151
R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic 7.113145e-01 0.148
R-HSA-917937 Iron uptake and transport 7.132584e-01 0.147
R-HSA-8853659 RET signaling 7.151788e-01 0.146
R-HSA-749476 RNA Polymerase III Abortive And Retractive Initiation 7.151788e-01 0.146
R-HSA-74158 RNA Polymerase III Transcription 7.151788e-01 0.146
R-HSA-114604 GPVI-mediated activation cascade 7.151788e-01 0.146
R-HSA-8941326 RUNX2 regulates bone development 7.151788e-01 0.146
R-HSA-109606 Intrinsic Pathway for Apoptosis 7.211758e-01 0.142
R-HSA-174437 Removal of the Flap Intermediate from the C-strand 7.233801e-01 0.141
R-HSA-372708 p130Cas linkage to MAPK signaling for integrins 7.233801e-01 0.141
R-HSA-176407 Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 7.233801e-01 0.141
R-HSA-139853 Elevation of cytosolic Ca2+ levels 7.233801e-01 0.141
R-HSA-9768759 Regulation of NPAS4 gene expression 7.233801e-01 0.141
R-HSA-9909505 Modulation of host responses by IFN-stimulated genes 7.233801e-01 0.141
R-HSA-1660517 Synthesis of PIPs at the late endosome membrane 7.233801e-01 0.141
R-HSA-5210891 Uptake and function of anthrax toxins 7.233801e-01 0.141
R-HSA-9694686 Replication of the SARS-CoV-2 genome 7.233801e-01 0.141
R-HSA-419037 NCAM1 interactions 7.268885e-01 0.139
R-HSA-180292 GAB1 signalosome 7.390866e-01 0.131
R-HSA-418217 G beta:gamma signalling through PLC beta 7.390866e-01 0.131
R-HSA-2564830 Cytosolic iron-sulfur cluster assembly 7.390866e-01 0.131
R-HSA-500657 Presynaptic function of Kainate receptors 7.390866e-01 0.131
R-HSA-73980 RNA Polymerase III Transcription Termination 7.390866e-01 0.131
R-HSA-432142 Platelet sensitization by LDL 7.390866e-01 0.131
R-HSA-9679504 Translation of Replicase and Assembly of the Replication Transcription Complex 7.390866e-01 0.131
R-HSA-9772572 Early SARS-CoV-2 Infection Events 7.401082e-01 0.131
R-HSA-948021 Transport to the Golgi and subsequent modification 7.414546e-01 0.130
R-HSA-9855142 Cellular responses to mechanical stimuli 7.433979e-01 0.129
R-HSA-1257604 PIP3 activates AKT signaling 7.452855e-01 0.128
R-HSA-9659379 Sensory processing of sound 7.465940e-01 0.127
R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic 7.474485e-01 0.126
R-HSA-5607764 CLEC7A (Dectin-1) signaling 7.474485e-01 0.126
R-HSA-201556 Signaling by ALK 7.490854e-01 0.125
R-HSA-5576891 Cardiac conduction 7.535845e-01 0.123
R-HSA-1912420 Pre-NOTCH Processing in Golgi 7.539022e-01 0.123
R-HSA-5654710 PI-3K cascade:FGFR3 7.539022e-01 0.123
R-HSA-167242 Abortive elongation of HIV-1 transcript in the absence of Tat 7.539022e-01 0.123
R-HSA-429958 mRNA decay by 3' to 5' exoribonuclease 7.539022e-01 0.123
R-HSA-392517 Rap1 signalling 7.539022e-01 0.123
R-HSA-140179 Amine Oxidase reactions 7.539022e-01 0.123
R-HSA-844456 The NLRP3 inflammasome 7.539022e-01 0.123
R-HSA-9856532 Mechanical load activates signaling by PIEZO1 and integrins in osteocytes 7.539022e-01 0.123
R-HSA-9694682 SARS-CoV-2 Genome Replication and Transcription 7.539022e-01 0.123
R-HSA-9833482 PKR-mediated signaling 7.544489e-01 0.122
R-HSA-5362517 Signaling by Retinoic Acid 7.580053e-01 0.120
R-HSA-451927 Interleukin-2 family signaling 7.595907e-01 0.119
R-HSA-190236 Signaling by FGFR 7.615225e-01 0.118
R-HSA-168325 Viral Messenger RNA Synthesis 7.665737e-01 0.115
R-HSA-2428928 IRS-related events triggered by IGF1R 7.665737e-01 0.115
R-HSA-5654720 PI-3K cascade:FGFR4 7.678774e-01 0.115
R-HSA-5620916 VxPx cargo-targeting to cilium 7.678774e-01 0.115
R-HSA-389513 Co-inhibition by CTLA4 7.678774e-01 0.115
R-HSA-1181150 Signaling by NODAL 7.678774e-01 0.115
R-HSA-9823730 Formation of definitive endoderm 7.678774e-01 0.115
R-HSA-9629569 Protein hydroxylation 7.678774e-01 0.115
R-HSA-445144 Signal transduction by L1 7.678774e-01 0.115
R-HSA-1660499 Synthesis of PIPs at the plasma membrane 7.748935e-01 0.111
R-HSA-9609507 Protein localization 7.795938e-01 0.108
R-HSA-5602498 MyD88 deficiency (TLR2/4) 7.810597e-01 0.107
R-HSA-162594 Early Phase of HIV Life Cycle 7.810597e-01 0.107
R-HSA-111931 PKA-mediated phosphorylation of CREB 7.810597e-01 0.107
R-HSA-2161541 Abacavir metabolism 7.810597e-01 0.107
R-HSA-9819196 Zygotic genome activation (ZGA) 7.810597e-01 0.107
R-HSA-381676 Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 7.888469e-01 0.103
R-HSA-936837 Ion transport by P-type ATPases 7.908025e-01 0.102
R-HSA-2428924 IGF1R signaling cascade 7.908025e-01 0.102
R-HSA-6794362 Protein-protein interactions at synapses 7.909238e-01 0.102
R-HSA-5603041 IRAK4 deficiency (TLR2/4) 7.934942e-01 0.100
R-HSA-9617828 FOXO-mediated transcription of cell cycle genes 7.934942e-01 0.100
R-HSA-76066 RNA Polymerase III Transcription Initiation From Type 2 Promoter 7.934942e-01 0.100
R-HSA-9694614 Attachment and Entry 7.934942e-01 0.100
R-HSA-9825892 Regulation of MITF-M-dependent genes involved in cell cycle and proliferation 7.934942e-01 0.100
R-HSA-2022377 Metabolism of Angiotensinogen to Angiotensins 7.934942e-01 0.100
R-HSA-8949215 Mitochondrial calcium ion transport 7.934942e-01 0.100
R-HSA-9671555 Signaling by PDGFR in disease 7.934942e-01 0.100
R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) 7.984000e-01 0.098
R-HSA-5358351 Signaling by Hedgehog 7.988773e-01 0.098
R-HSA-9860931 Response of endothelial cells to shear stress 8.001835e-01 0.097
R-HSA-1643685 Disease 8.052047e-01 0.094
R-HSA-5654689 PI-3K cascade:FGFR1 8.052231e-01 0.094
R-HSA-76071 RNA Polymerase III Transcription Initiation From Type 3 Promoter 8.052231e-01 0.094
R-HSA-76061 RNA Polymerase III Transcription Initiation From Type 1 Promoter 8.052231e-01 0.094
R-HSA-168799 Neurotoxicity of clostridium toxins 8.052231e-01 0.094
R-HSA-166208 mTORC1-mediated signalling 8.052231e-01 0.094
R-HSA-9694676 Translation of Replicase and Assembly of the Replication Transcription Complex 8.052231e-01 0.094
R-HSA-190828 Gap junction trafficking 8.065656e-01 0.093
R-HSA-375280 Amine ligand-binding receptors 8.065656e-01 0.093
R-HSA-877300 Interferon gamma signaling 8.097231e-01 0.092
R-HSA-2029482 Regulation of actin dynamics for phagocytic cup formation 8.141347e-01 0.089
R-HSA-9648895 Response of EIF2AK1 (HRI) to heme deficiency 8.162866e-01 0.088
R-HSA-400451 Free fatty acids regulate insulin secretion 8.162866e-01 0.088
R-HSA-9018682 Biosynthesis of maresins 8.162866e-01 0.088
R-HSA-9634638 Estrogen-dependent nuclear events downstream of ESR-membrane signaling 8.162866e-01 0.088
R-HSA-164952 The role of Nef in HIV-1 replication and disease pathogenesis 8.162866e-01 0.088
R-HSA-9662360 Sensory processing of sound by inner hair cells of the cochlea 8.198165e-01 0.086
R-HSA-72165 mRNA Splicing - Minor Pathway 8.229483e-01 0.085
R-HSA-211999 CYP2E1 reactions 8.267223e-01 0.083
R-HSA-181430 Norepinephrine Neurotransmitter Release Cycle 8.267223e-01 0.083
R-HSA-9865881 Complex III assembly 8.267223e-01 0.083
R-HSA-3928665 EPH-ephrin mediated repulsion of cells 8.306634e-01 0.081
R-HSA-204005 COPII-mediated vesicle transport 8.329930e-01 0.079
R-HSA-114608 Platelet degranulation 8.350306e-01 0.078
R-HSA-5654695 PI-3K cascade:FGFR2 8.365658e-01 0.077
R-HSA-203927 MicroRNA (miRNA) biogenesis 8.365658e-01 0.077
R-HSA-1660516 Synthesis of PIPs at the early endosome membrane 8.365658e-01 0.077
R-HSA-5601884 PIWI-interacting RNA (piRNA) biogenesis 8.365658e-01 0.077
R-HSA-1266695 Interleukin-7 signaling 8.365658e-01 0.077
R-HSA-9031628 NGF-stimulated transcription 8.380739e-01 0.077
R-HSA-983168 Antigen processing: Ubiquitination & Proteasome degradation 8.399817e-01 0.076
R-HSA-157858 Gap junction trafficking and regulation 8.451897e-01 0.073
R-HSA-174824 Plasma lipoprotein assembly, remodeling, and clearance 8.455153e-01 0.073
R-HSA-9615933 Postmitotic nuclear pore complex (NPC) reformation 8.458507e-01 0.073
R-HSA-9865118 Diseases of branched-chain amino acid catabolism 8.458507e-01 0.073
R-HSA-5357769 Caspase activation via extrinsic apoptotic signalling pathway 8.458507e-01 0.073
R-HSA-2161522 Abacavir ADME 8.458507e-01 0.073
R-HSA-1660514 Synthesis of PIPs at the Golgi membrane 8.458507e-01 0.073
R-HSA-983695 Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... 8.507680e-01 0.070
R-HSA-4086398 Ca2+ pathway 8.511998e-01 0.070
R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma membrane 8.511998e-01 0.070
R-HSA-109704 PI3K Cascade 8.520202e-01 0.070
R-HSA-201451 Signaling by BMP 8.546086e-01 0.068
R-HSA-202427 Phosphorylation of CD3 and TCR zeta chains 8.546086e-01 0.068
R-HSA-5655332 Signaling by FGFR3 in disease 8.546086e-01 0.068
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 8.546086e-01 0.068
R-HSA-9006115 Signaling by NTRK2 (TRKB) 8.546086e-01 0.068
R-HSA-9828806 Maturation of hRSV A proteins 8.546086e-01 0.068
R-HSA-70895 Branched-chain amino acid catabolism 8.585749e-01 0.066
R-HSA-199991 Membrane Trafficking 8.590322e-01 0.066
R-HSA-171319 Telomere Extension By Telomerase 8.628694e-01 0.064
R-HSA-451326 Activation of kainate receptors upon glutamate binding 8.628694e-01 0.064
R-HSA-77387 Insulin receptor recycling 8.628694e-01 0.064
R-HSA-622312 Inflammasomes 8.628694e-01 0.064
R-HSA-8940973 RUNX2 regulates osteoblast differentiation 8.628694e-01 0.064
R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 8.658729e-01 0.063
R-HSA-9927432 Developmental Lineage of Mammary Gland Myoepithelial Cells 8.706614e-01 0.060
R-HSA-204174 Regulation of pyruvate dehydrogenase (PDH) complex 8.706614e-01 0.060
R-HSA-5654708 Downstream signaling of activated FGFR3 8.706614e-01 0.060
R-HSA-210745 Regulation of gene expression in beta cells 8.706614e-01 0.060
R-HSA-418360 Platelet calcium homeostasis 8.706614e-01 0.060
R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP kinases 8.706614e-01 0.060
R-HSA-180024 DARPP-32 events 8.706614e-01 0.060
R-HSA-4420097 VEGFA-VEGFR2 Pathway 8.711488e-01 0.060
R-HSA-76046 RNA Polymerase III Transcription Initiation 8.780110e-01 0.057
R-HSA-9687139 Aberrant regulation of mitotic cell cycle due to RB1 defects 8.780110e-01 0.057
R-HSA-5654716 Downstream signaling of activated FGFR4 8.780110e-01 0.057
R-HSA-112311 Neurotransmitter clearance 8.780110e-01 0.057
R-HSA-1474151 Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation 8.780110e-01 0.057
R-HSA-422356 Regulation of insulin secretion 8.791972e-01 0.056
R-HSA-9820960 Respiratory syncytial virus (RSV) attachment and entry 8.849434e-01 0.053
R-HSA-449147 Signaling by Interleukins 8.871841e-01 0.052
R-HSA-1296065 Inwardly rectifying K+ channels 8.914823e-01 0.050
R-HSA-6811442 Intra-Golgi and retrograde Golgi-to-ER traffic 8.915644e-01 0.050
R-HSA-112399 IRS-mediated signalling 8.926185e-01 0.049
R-HSA-1483166 Synthesis of PA 8.926185e-01 0.049
R-HSA-1483255 PI Metabolism 8.954320e-01 0.048
R-HSA-354192 Integrin signaling 8.976499e-01 0.047
R-HSA-9668328 Sealing of the nuclear envelope (NE) by ESCRT-III 8.976499e-01 0.047
R-HSA-2132295 MHC class II antigen presentation 9.011875e-01 0.045
R-HSA-983169 Class I MHC mediated antigen processing & presentation 9.020951e-01 0.045
R-HSA-186712 Regulation of beta-cell development 9.021596e-01 0.045
R-HSA-1280218 Adaptive Immune System 9.026844e-01 0.044
R-HSA-9619665 EGR2 and SOX10-mediated initiation of Schwann cell myelination 9.034673e-01 0.044
R-HSA-9768727 Regulation of CDH1 posttranslational processing and trafficking to plasma membra... 9.034673e-01 0.044
R-HSA-5223345 Miscellaneous transport and binding events 9.034673e-01 0.044
R-HSA-114508 Effects of PIP2 hydrolysis 9.034673e-01 0.044
R-HSA-392499 Metabolism of proteins 9.058471e-01 0.043
R-HSA-983189 Kinesins 9.066278e-01 0.043
R-HSA-5686938 Regulation of TLR by endogenous ligand 9.089544e-01 0.041
R-HSA-2871837 FCERI mediated NF-kB activation 9.104625e-01 0.041
R-HSA-194138 Signaling by VEGF 9.107742e-01 0.041
R-HSA-5654696 Downstream signaling of activated FGFR2 9.141299e-01 0.039
R-HSA-5654687 Downstream signaling of activated FGFR1 9.141299e-01 0.039
R-HSA-187687 Signalling to ERKs 9.141299e-01 0.039
R-HSA-375165 NCAM signaling for neurite out-growth 9.149972e-01 0.039
R-HSA-432720 Lysosome Vesicle Biogenesis 9.190115e-01 0.037
R-HSA-5690714 CD22 mediated BCR regulation 9.226583e-01 0.035
R-HSA-74751 Insulin receptor signalling cascade 9.226583e-01 0.035
R-HSA-933541 TRAF6 mediated IRF7 activation 9.236159e-01 0.035
R-HSA-71064 Lysine catabolism 9.236159e-01 0.035
R-HSA-196757 Metabolism of folate and pterines 9.236159e-01 0.035
R-HSA-9758941 Gastrulation 9.238361e-01 0.034
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 9.247879e-01 0.034
R-HSA-6785470 tRNA processing in the mitochondrion 9.279588e-01 0.032
R-HSA-8875878 MET promotes cell motility 9.279588e-01 0.032
R-HSA-9958790 SLC-mediated transport of inorganic anions 9.279588e-01 0.032
R-HSA-71336 Pentose phosphate pathway 9.320550e-01 0.031
R-HSA-381771 Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) 9.320550e-01 0.031
R-HSA-8868766 rRNA processing in the mitochondrion 9.359185e-01 0.029
R-HSA-379726 Mitochondrial tRNA aminoacylation 9.359185e-01 0.029
R-HSA-1251985 Nuclear signaling by ERBB4 9.359185e-01 0.029
R-HSA-112315 Transmission across Chemical Synapses 9.364921e-01 0.028
R-HSA-74752 Signaling by Insulin receptor 9.365310e-01 0.028
R-HSA-9925563 Developmental Lineage of Pancreatic Ductal Cells 9.390602e-01 0.027
R-HSA-8951664 Neddylation 9.413329e-01 0.026
R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 9.416810e-01 0.026
R-HSA-442660 SLC-mediated transport of neurotransmitters 9.429996e-01 0.025
R-HSA-163685 Integration of energy metabolism 9.434934e-01 0.025
R-HSA-373760 L1CAM interactions 9.448944e-01 0.025
R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 9.459873e-01 0.024
R-HSA-165159 MTOR signalling 9.462414e-01 0.024
R-HSA-400508 Incretin synthesis, secretion, and inactivation 9.462414e-01 0.024
R-HSA-70326 Glucose metabolism 9.469986e-01 0.024
R-HSA-198725 Nuclear Events (kinase and transcription factor activation) 9.472554e-01 0.024
R-HSA-74259 Purine catabolism 9.472554e-01 0.024
R-HSA-5619115 Disorders of transmembrane transporters 9.484280e-01 0.023
R-HSA-8854214 TBC/RABGAPs 9.492990e-01 0.023
R-HSA-73621 Pyrimidine catabolism 9.492990e-01 0.023
R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 9.496416e-01 0.022
R-HSA-9664417 Leishmania phagocytosis 9.511210e-01 0.022
R-HSA-9664422 FCGR3A-mediated phagocytosis 9.511210e-01 0.022
R-HSA-9664407 Parasite infection 9.511210e-01 0.022
R-HSA-5683826 Surfactant metabolism 9.521828e-01 0.021
R-HSA-9907900 Proteasome assembly 9.521828e-01 0.021
R-HSA-71403 Citric acid cycle (TCA cycle) 9.543936e-01 0.020
R-HSA-9635486 Infection with Mycobacterium tuberculosis 9.546995e-01 0.020
R-HSA-76009 Platelet Aggregation (Plug Formation) 9.549028e-01 0.020
R-HSA-9660821 ADORA2B mediated anti-inflammatory cytokines production 9.549028e-01 0.020
R-HSA-432040 Vasopressin regulates renal water homeostasis via Aquaporins 9.549028e-01 0.020
R-HSA-70171 Glycolysis 9.568066e-01 0.019
R-HSA-9664424 Cell recruitment (pro-inflammatory response) 9.574683e-01 0.019
R-HSA-9660826 Purinergic signaling in leishmaniasis infection 9.574683e-01 0.019
R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 9.581507e-01 0.019
R-HSA-437239 Recycling pathway of L1 9.598879e-01 0.018
R-HSA-6811440 Retrograde transport at the Trans-Golgi-Network 9.598879e-01 0.018
R-HSA-70263 Gluconeogenesis 9.621700e-01 0.017
R-HSA-425410 Metal ion SLC transporters 9.621700e-01 0.017
R-HSA-72306 tRNA processing 9.639855e-01 0.016
R-HSA-389661 Glyoxylate metabolism and glycine degradation 9.643224e-01 0.016
R-HSA-5655253 Signaling by FGFR2 in disease 9.663525e-01 0.015
R-HSA-9864848 Complex IV assembly 9.682672e-01 0.014
R-HSA-199418 Negative regulation of the PI3K/AKT network 9.696613e-01 0.013
R-HSA-597592 Post-translational protein modification 9.721650e-01 0.012
R-HSA-418597 G alpha (z) signalling events 9.748975e-01 0.011
R-HSA-9753281 Paracetamol ADME 9.748975e-01 0.011
R-HSA-446203 Asparagine N-linked glycosylation 9.751614e-01 0.011
R-HSA-2871796 FCERI mediated MAPK activation 9.756383e-01 0.011
R-HSA-390466 Chaperonin-mediated protein folding 9.759581e-01 0.011
R-HSA-5621480 Dectin-2 family 9.776740e-01 0.010
R-HSA-5628897 TP53 Regulates Metabolic Genes 9.796461e-01 0.009
R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 9.801437e-01 0.009
R-HSA-352230 Amino acid transport across the plasma membrane 9.801437e-01 0.009
R-HSA-8873719 RAB geranylgeranylation 9.812742e-01 0.008
R-HSA-391251 Protein folding 9.821958e-01 0.008
R-HSA-9793380 Formation of paraxial mesoderm 9.823404e-01 0.008
R-HSA-445717 Aquaporin-mediated transport 9.823404e-01 0.008
R-HSA-5619102 SLC transporter disorders 9.831638e-01 0.007
R-HSA-416476 G alpha (q) signalling events 9.846938e-01 0.007
R-HSA-211981 Xenobiotics 9.851887e-01 0.006
R-HSA-1280215 Cytokine Signaling in Immune system 9.861972e-01 0.006
R-HSA-6782315 tRNA modification in the nucleus and cytosol 9.868278e-01 0.006
R-HSA-112316 Neuronal System 9.869761e-01 0.006
R-HSA-6809371 Formation of the cornified envelope 9.870971e-01 0.006
R-HSA-166520 Signaling by NTRKs 9.873689e-01 0.006
R-HSA-8957275 Post-translational protein phosphorylation 9.875011e-01 0.005
R-HSA-9958863 SLC-mediated transport of amino acids 9.875781e-01 0.005
R-HSA-76002 Platelet activation, signaling and aggregation 9.890607e-01 0.005
R-HSA-5653656 Vesicle-mediated transport 9.892172e-01 0.005
R-HSA-9009391 Extra-nuclear estrogen signaling 9.892704e-01 0.005
R-HSA-75105 Fatty acyl-CoA biosynthesis 9.895823e-01 0.005
R-HSA-187037 Signaling by NTRK1 (TRKA) 9.897597e-01 0.004
R-HSA-5620920 Cargo trafficking to the periciliary membrane 9.901759e-01 0.004
R-HSA-3906995 Diseases associated with O-glycosylation of proteins 9.901759e-01 0.004
R-HSA-8978934 Metabolism of cofactors 9.901759e-01 0.004
R-HSA-9924644 Developmental Lineages of the Mammary Gland 9.907356e-01 0.004
R-HSA-9749641 Aspirin ADME 9.912635e-01 0.004
R-HSA-418346 Platelet homeostasis 9.921066e-01 0.003
R-HSA-3000171 Non-integrin membrane-ECM interactions 9.922308e-01 0.003
R-HSA-5633008 TP53 Regulates Transcription of Cell Death Genes 9.922308e-01 0.003
R-HSA-71291 Metabolism of amino acids and derivatives 9.926842e-01 0.003
R-HSA-6783783 Interleukin-10 signaling 9.934849e-01 0.003
R-HSA-9955298 SLC-mediated transport of organic anions 9.934849e-01 0.003
R-HSA-5579029 Metabolic disorders of biological oxidation enzymes 9.938563e-01 0.003
R-HSA-9856530 High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... 9.942065e-01 0.003
R-HSA-1428517 Aerobic respiration and respiratory electron transport 9.944082e-01 0.002
R-HSA-9018677 Biosynthesis of DHA-derived SPMs 9.945368e-01 0.002
R-HSA-6798695 Neutrophil degranulation 9.948337e-01 0.002
R-HSA-381426 Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... 9.950387e-01 0.002
R-HSA-2029485 Role of phospholipids in phagocytosis 9.955278e-01 0.002
R-HSA-8876198 RAB GEFs exchange GTP for GDP on RABs 9.959265e-01 0.002
R-HSA-2980736 Peptide hormone metabolism 9.959695e-01 0.002
R-HSA-163841 Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation 9.961588e-01 0.002
R-HSA-2187338 Visual phototransduction 9.963770e-01 0.002
R-HSA-9824443 Parasitic Infection Pathways 9.964321e-01 0.002
R-HSA-9658195 Leishmania infection 9.964321e-01 0.002
R-HSA-373080 Class B/2 (Secretin family receptors) 9.969630e-01 0.001
R-HSA-112310 Neurotransmitter release cycle 9.969630e-01 0.001
R-HSA-2029481 FCGR activation 9.975990e-01 0.001
R-HSA-9664323 FCGR3A-mediated IL10 synthesis 9.976104e-01 0.001
R-HSA-1474290 Collagen formation 9.977360e-01 0.001
R-HSA-8956319 Nucleotide catabolism 9.979590e-01 0.001
R-HSA-2730905 Role of LAT2/NTAL/LAB on calcium mobilization 9.981019e-01 0.001
R-HSA-1296071 Potassium Channels 9.981019e-01 0.001
R-HSA-211945 Phase I - Functionalization of compounds 9.985323e-01 0.001
R-HSA-418594 G alpha (i) signalling events 9.987212e-01 0.001
R-HSA-9937383 Mitochondrial ribosome-associated quality control 9.987421e-01 0.001
R-HSA-9734779 Developmental Cell Lineages of the Integumentary System 9.991161e-01 0.000
R-HSA-611105 Respiratory electron transport 9.992417e-01 0.000
R-HSA-2871809 FCERI mediated Ca+2 mobilization 9.994794e-01 0.000
R-HSA-9820448 Developmental Cell Lineages of the Exocrine Pancreas 9.994873e-01 0.000
R-HSA-9007101 Rab regulation of trafficking 9.995372e-01 0.000
R-HSA-211897 Cytochrome P450 - arranged by substrate type 9.997713e-01 0.000
R-HSA-1483257 Phospholipid metabolism 9.997800e-01 0.000
R-HSA-6805567 Keratinization 9.998237e-01 0.000
R-HSA-1474228 Degradation of the extracellular matrix 9.998299e-01 0.000
R-HSA-9664433 Leishmania parasite growth and survival 9.998434e-01 0.000
R-HSA-9662851 Anti-inflammatory response favouring Leishmania parasite infection 9.998434e-01 0.000
R-HSA-5368287 Mitochondrial translation 9.998874e-01 0.000
R-HSA-9018678 Biosynthesis of specialized proresolving mediators (SPMs) 9.999210e-01 0.000
R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Receptors 9.999477e-01 0.000
R-HSA-9824439 Bacterial Infection Pathways 9.999593e-01 0.000
R-HSA-388396 GPCR downstream signalling 9.999623e-01 0.000
R-HSA-1483206 Glycerophospholipid biosynthesis 9.999696e-01 0.000
R-HSA-418555 G alpha (s) signalling events 9.999857e-01 0.000
R-HSA-8957322 Metabolism of steroids 9.999862e-01 0.000
R-HSA-9748784 Drug ADME 9.999874e-01 0.000
R-HSA-9734767 Developmental Cell Lineages 9.999908e-01 0.000
R-HSA-71387 Metabolism of carbohydrates and carbohydrate derivatives 9.999916e-01 0.000
R-HSA-3781865 Diseases of glycosylation 9.999934e-01 0.000
R-HSA-372790 Signaling by GPCR 9.999950e-01 0.000
R-HSA-15869 Metabolism of nucleotides 9.999954e-01 0.000
R-HSA-202733 Cell surface interactions at the vascular wall 9.999956e-01 0.000
R-HSA-168249 Innate Immune System 9.999965e-01 0.000
R-HSA-168256 Immune System 9.999973e-01 0.000
R-HSA-5668914 Diseases of metabolism 9.999980e-01 0.000
R-HSA-109582 Hemostasis 9.999980e-01 0.000
R-HSA-196849 Metabolism of water-soluble vitamins and cofactors 9.999996e-01 0.000
R-HSA-1474244 Extracellular matrix organization 9.999998e-01 0.000
R-HSA-425407 SLC-mediated transmembrane transport 9.999999e-01 0.000
R-HSA-382551 Transport of small molecules 1.000000e+00 0.000
R-HSA-211859 Biological oxidations 1.000000e+00 0.000
R-HSA-373076 Class A/1 (Rhodopsin-like receptors) 1.000000e+00 0.000
R-HSA-196854 Metabolism of vitamins and cofactors 1.000000e+00 0.000
R-HSA-8978868 Fatty acid metabolism 1.000000e+00 0.000
R-HSA-500792 GPCR ligand binding 1.000000e+00 0.000
R-HSA-556833 Metabolism of lipids 1.000000e+00 -0.000
R-HSA-1430728 Metabolism 1.000000e+00 -0.000
R-HSA-9709957 Sensory Perception 1.000000e+00 -0.000
Download
kinase JSD_mean pearson_surrounding kinase_max_IC_position max_position_JSD
CLK3CLK3 0.903 0.377 1 0.877
COTCOT 0.901 0.303 2 0.885
MOSMOS 0.892 0.340 1 0.924
BMPR1BBMPR1B 0.885 0.372 1 0.853
CDC7CDC7 0.885 0.163 1 0.911
GRK1GRK1 0.884 0.261 -2 0.817
PIM3PIM3 0.883 0.153 -3 0.864
CAMK2GCAMK2G 0.883 0.142 2 0.878
PRPKPRPK 0.879 -0.035 -1 0.873
GRK7GRK7 0.877 0.264 1 0.788
GRK6GRK6 0.877 0.194 1 0.864
NDR2NDR2 0.877 0.120 -3 0.866
CAMK1BCAMK1B 0.877 0.089 -3 0.878
FAM20CFAM20C 0.877 0.235 2 0.702
TGFBR1TGFBR1 0.876 0.285 -2 0.885
DSTYKDSTYK 0.876 0.072 2 0.895
PIM1PIM1 0.876 0.188 -3 0.810
RSK2RSK2 0.874 0.147 -3 0.797
IKKBIKKB 0.874 -0.031 -2 0.747
BMPR2BMPR2 0.874 -0.006 -2 0.908
CAMK2BCAMK2B 0.873 0.214 2 0.860
RAF1RAF1 0.873 -0.059 1 0.833
KISKIS 0.872 0.167 1 0.735
BMPR1ABMPR1A 0.871 0.344 1 0.846
MTORMTOR 0.871 -0.073 1 0.783
ALK2ALK2 0.871 0.309 -2 0.889
GRK5GRK5 0.871 0.003 -3 0.871
CDKL1CDKL1 0.870 0.062 -3 0.820
ALK4ALK4 0.870 0.211 -2 0.900
SKMLCKSKMLCK 0.870 0.074 -2 0.848
NLKNLK 0.869 0.019 1 0.847
ATRATR 0.869 -0.042 1 0.811
SRPK1SRPK1 0.868 0.121 -3 0.776
ACVR2BACVR2B 0.868 0.249 -2 0.875
CAMK2ACAMK2A 0.868 0.186 2 0.877
CLK2CLK2 0.867 0.245 -3 0.787
PKN3PKN3 0.867 0.033 -3 0.841
GCN2GCN2 0.867 -0.133 2 0.792
LATS1LATS1 0.867 0.184 -3 0.878
IKKAIKKA 0.866 0.049 -2 0.749
TBK1TBK1 0.866 -0.116 1 0.722
GRK4GRK4 0.866 0.044 -2 0.868
ACVR2AACVR2A 0.865 0.213 -2 0.864
NIKNIK 0.865 -0.021 -3 0.891
CK2A2CK2A2 0.865 0.352 1 0.819
CAMLCKCAMLCK 0.865 0.004 -2 0.839
TGFBR2TGFBR2 0.865 0.052 -2 0.877
PDHK4PDHK4 0.864 -0.331 1 0.846
MST4MST4 0.864 0.063 2 0.843
NDR1NDR1 0.864 0.051 -3 0.853
ERK5ERK5 0.863 -0.016 1 0.811
P70S6KBP70S6KB 0.863 0.081 -3 0.816
DAPK2DAPK2 0.862 -0.016 -3 0.875
ATMATM 0.862 0.039 1 0.752
IKKEIKKE 0.862 -0.136 1 0.718
P90RSKP90RSK 0.862 0.058 -3 0.796
MAPKAPK2MAPKAPK2 0.862 0.108 -3 0.750
RSK4RSK4 0.862 0.148 -3 0.777
CDK1CDK1 0.861 0.158 1 0.685
NUAK2NUAK2 0.861 0.020 -3 0.862
PLK1PLK1 0.861 0.068 -2 0.858
MLK1MLK1 0.861 -0.083 2 0.803
LATS2LATS2 0.861 0.046 -5 0.753
WNK1WNK1 0.860 -0.023 -2 0.854
NEK6NEK6 0.860 -0.055 -2 0.895
CDKL5CDKL5 0.860 0.049 -3 0.805
PLK3PLK3 0.860 0.119 2 0.818
ICKICK 0.860 0.045 -3 0.848
SRPK2SRPK2 0.860 0.112 -3 0.701
CAMK2DCAMK2D 0.860 0.008 -3 0.835
PKCDPKCD 0.859 0.063 2 0.790
ULK2ULK2 0.859 -0.228 2 0.766
PKN2PKN2 0.859 0.020 -3 0.848
NEK7NEK7 0.858 -0.162 -3 0.823
PKACGPKACG 0.858 0.061 -2 0.760
PRKXPRKX 0.858 0.195 -3 0.723
RSK3RSK3 0.858 0.044 -3 0.792
PRKD1PRKD1 0.857 0.001 -3 0.821
PRKD2PRKD2 0.857 0.071 -3 0.787
DLKDLK 0.857 -0.123 1 0.824
CHAK2CHAK2 0.857 -0.066 -1 0.842
CLK4CLK4 0.857 0.122 -3 0.794
RIPK3RIPK3 0.856 -0.136 3 0.719
PDHK1PDHK1 0.856 -0.330 1 0.828
AMPKA1AMPKA1 0.856 0.007 -3 0.865
HUNKHUNK 0.856 -0.133 2 0.812
MARK4MARK4 0.856 -0.046 4 0.841
SRPK3SRPK3 0.856 0.069 -3 0.752
GRK2GRK2 0.855 0.055 -2 0.769
CK2A1CK2A1 0.854 0.312 1 0.796
HIPK4HIPK4 0.854 0.013 1 0.790
PASKPASK 0.854 0.162 -3 0.875
TSSK2TSSK2 0.853 -0.001 -5 0.801
ANKRD3ANKRD3 0.853 -0.151 1 0.834
JNK3JNK3 0.853 0.107 1 0.702
PKACBPKACB 0.853 0.109 -2 0.684
PKRPKR 0.853 -0.025 1 0.822
JNK2JNK2 0.852 0.126 1 0.664
MLK3MLK3 0.852 -0.006 2 0.744
CLK1CLK1 0.851 0.126 -3 0.773
MAPKAPK3MAPKAPK3 0.851 -0.024 -3 0.780
AURCAURC 0.851 0.051 -2 0.659
TTBK2TTBK2 0.851 -0.146 2 0.705
PAK1PAK1 0.850 -0.012 -2 0.756
CDK8CDK8 0.850 0.030 1 0.710
MSK1MSK1 0.850 0.053 -3 0.761
DYRK2DYRK2 0.849 0.064 1 0.725
MEK1MEK1 0.849 -0.158 2 0.832
MASTLMASTL 0.848 -0.361 -2 0.808
ULK1ULK1 0.848 -0.243 -3 0.795
MSK2MSK2 0.848 -0.012 -3 0.755
TLK2TLK2 0.848 -0.031 1 0.766
CDK5CDK5 0.848 0.097 1 0.735
BCKDKBCKDK 0.847 -0.205 -1 0.799
TSSK1TSSK1 0.847 0.001 -3 0.883
MYLK4MYLK4 0.847 0.016 -2 0.756
AMPKA2AMPKA2 0.847 -0.006 -3 0.838
AURAAURA 0.846 0.018 -2 0.620
CDK3CDK3 0.846 0.164 1 0.627
GRK3GRK3 0.846 0.076 -2 0.736
MLK4MLK4 0.846 -0.047 2 0.709
WNK3WNK3 0.846 -0.300 1 0.787
DRAK1DRAK1 0.846 -0.004 1 0.775
PLK2PLK2 0.846 0.183 -3 0.859
GSK3AGSK3A 0.845 0.125 4 0.532
CDK2CDK2 0.845 0.084 1 0.758
PKCBPKCB 0.845 0.023 2 0.728
CAMK4CAMK4 0.845 -0.088 -3 0.835
YSK4YSK4 0.845 -0.143 1 0.754
PIM2PIM2 0.845 0.084 -3 0.767
PKCGPKCG 0.845 -0.003 2 0.746
P38BP38B 0.844 0.087 1 0.676
DNAPKDNAPK 0.844 0.005 1 0.663
P38GP38G 0.844 0.094 1 0.598
VRK2VRK2 0.844 -0.341 1 0.861
NEK9NEK9 0.844 -0.295 2 0.807
P38AP38A 0.843 0.056 1 0.732
BRAFBRAF 0.843 -0.048 -4 0.812
AKT2AKT2 0.843 0.064 -3 0.718
MLK2MLK2 0.842 -0.255 2 0.792
PKCAPKCA 0.842 -0.009 2 0.723
MEKK3MEKK3 0.842 -0.092 1 0.783
CDK18CDK18 0.841 0.077 1 0.652
CK1ECK1E 0.841 0.029 -3 0.580
SGK3SGK3 0.841 0.040 -3 0.777
PRKD3PRKD3 0.841 -0.001 -3 0.764
DYRK4DYRK4 0.841 0.110 1 0.666
RIPK1RIPK1 0.841 -0.311 1 0.780
AURBAURB 0.841 -0.004 -2 0.653
IRE1IRE1 0.840 -0.164 1 0.758
PRP4PRP4 0.840 0.031 -3 0.766
DCAMKL1DCAMKL1 0.840 0.033 -3 0.813
PKG2PKG2 0.840 0.040 -2 0.694
CDK7CDK7 0.840 0.011 1 0.720
IRE2IRE2 0.840 -0.087 2 0.732
GAKGAK 0.840 0.092 1 0.839
NIM1NIM1 0.840 -0.142 3 0.763
HIPK2HIPK2 0.840 0.098 1 0.643
CDK19CDK19 0.840 0.020 1 0.672
HIPK1HIPK1 0.839 0.073 1 0.739
MNK1MNK1 0.839 0.003 -2 0.794
PAK3PAK3 0.839 -0.112 -2 0.749
TLK1TLK1 0.839 -0.045 -2 0.895
TAO3TAO3 0.839 -0.005 1 0.781
PKCHPKCH 0.839 -0.036 2 0.712
MARK3MARK3 0.838 -0.015 4 0.774
BRSK1BRSK1 0.838 -0.022 -3 0.810
MNK2MNK2 0.838 -0.045 -2 0.777
CAMK1GCAMK1G 0.838 -0.006 -3 0.778
QSKQSK 0.837 -0.050 4 0.809
CDK17CDK17 0.837 0.065 1 0.607
ERK1ERK1 0.837 0.048 1 0.660
CHK1CHK1 0.837 -0.062 -3 0.841
PAK2PAK2 0.837 -0.105 -2 0.737
CK1DCK1D 0.837 0.037 -3 0.525
SIKSIK 0.836 -0.033 -3 0.783
GSK3BGSK3B 0.836 0.043 4 0.520
CDK13CDK13 0.836 -0.002 1 0.692
JNK1JNK1 0.836 0.093 1 0.664
MST3MST3 0.836 -0.003 2 0.823
MARK2MARK2 0.836 -0.049 4 0.739
SMMLCKSMMLCK 0.836 -0.026 -3 0.829
ERK2ERK2 0.836 0.014 1 0.700
MELKMELK 0.835 -0.084 -3 0.814
PKACAPKACA 0.835 0.070 -2 0.638
NUAK1NUAK1 0.835 -0.079 -3 0.814
MEKK2MEKK2 0.835 -0.132 2 0.778
SMG1SMG1 0.834 -0.145 1 0.750
QIKQIK 0.834 -0.155 -3 0.837
PERKPERK 0.834 -0.162 -2 0.876
P38DP38D 0.834 0.090 1 0.609
DCAMKL2DCAMKL2 0.833 -0.004 -3 0.833
DAPK3DAPK3 0.833 0.047 -3 0.826
CDK16CDK16 0.833 0.110 1 0.623
PKCZPKCZ 0.833 -0.104 2 0.754
DYRK1ADYRK1A 0.833 0.032 1 0.766
ZAKZAK 0.832 -0.175 1 0.763
CK1A2CK1A2 0.832 0.020 -3 0.526
CHAK1CHAK1 0.832 -0.217 2 0.735
PLK4PLK4 0.832 -0.152 2 0.625
HRIHRI 0.832 -0.210 -2 0.885
MEK5MEK5 0.831 -0.333 2 0.803
MEKK1MEKK1 0.831 -0.238 1 0.791
DYRK1BDYRK1B 0.831 0.053 1 0.697
MARK1MARK1 0.830 -0.067 4 0.792
PHKG1PHKG1 0.830 -0.114 -3 0.839
DAPK1DAPK1 0.830 0.042 -3 0.807
NEK2NEK2 0.830 -0.253 2 0.777
PAK6PAK6 0.829 -0.038 -2 0.658
EEF2KEEF2K 0.829 0.010 3 0.836
CAMK1DCAMK1D 0.829 0.034 -3 0.710
CDK14CDK14 0.829 0.049 1 0.691
CDK12CDK12 0.828 -0.005 1 0.665
NEK5NEK5 0.828 -0.226 1 0.795
PINK1PINK1 0.828 -0.230 1 0.823
CDK10CDK10 0.827 0.092 1 0.678
GCKGCK 0.827 -0.030 1 0.781
TAO2TAO2 0.826 -0.102 2 0.840
AKT1AKT1 0.826 0.024 -3 0.732
MST2MST2 0.826 -0.071 1 0.794
P70S6KP70S6K 0.826 -0.010 -3 0.719
BRSK2BRSK2 0.825 -0.135 -3 0.821
DYRK3DYRK3 0.825 0.026 1 0.736
SSTKSSTK 0.825 -0.023 4 0.798
CK1G1CK1G1 0.825 -0.043 -3 0.586
MAPKAPK5MAPKAPK5 0.825 -0.160 -3 0.710
SGK1SGK1 0.825 0.080 -3 0.636
CDK9CDK9 0.825 -0.036 1 0.695
PDHK3_TYRPDHK3_TYR 0.824 0.320 4 0.921
WNK4WNK4 0.824 -0.219 -2 0.840
NEK8NEK8 0.824 -0.210 2 0.798
HIPK3HIPK3 0.823 -0.013 1 0.729
MPSK1MPSK1 0.823 -0.071 1 0.762
TAK1TAK1 0.822 -0.103 1 0.800
PKCEPKCE 0.822 0.028 2 0.726
MRCKAMRCKA 0.822 0.066 -3 0.775
CAMKK1CAMKK1 0.822 -0.258 -2 0.735
TNIKTNIK 0.821 -0.036 3 0.849
NEK11NEK11 0.821 -0.253 1 0.776
TTBK1TTBK1 0.821 -0.191 2 0.644
PDK1PDK1 0.821 -0.171 1 0.783
MAKMAK 0.820 0.103 -2 0.727
ROCK2ROCK2 0.820 0.066 -3 0.806
ALPHAK3ALPHAK3 0.819 0.103 -1 0.815
IRAK4IRAK4 0.819 -0.222 1 0.760
PKCTPKCT 0.819 -0.080 2 0.715
SNRKSNRK 0.819 -0.287 2 0.662
MST1MST1 0.818 -0.093 1 0.769
CAMKK2CAMKK2 0.818 -0.242 -2 0.729
DMPK1DMPK1 0.817 0.103 -3 0.791
ERK7ERK7 0.817 -0.026 2 0.524
MRCKBMRCKB 0.817 0.042 -3 0.761
MAP2K6_TYRMAP2K6_TYR 0.816 0.175 -1 0.898
BMPR2_TYRBMPR2_TYR 0.816 0.165 -1 0.906
MINKMINK 0.816 -0.141 1 0.762
PDHK4_TYRPDHK4_TYR 0.816 0.181 2 0.892
HPK1HPK1 0.816 -0.087 1 0.762
AKT3AKT3 0.816 0.049 -3 0.652
LKB1LKB1 0.816 -0.228 -3 0.810
PDHK1_TYRPDHK1_TYR 0.815 0.159 -1 0.919
PHKG2PHKG2 0.815 -0.102 -3 0.820
LRRK2LRRK2 0.815 -0.241 2 0.830
HGKHGK 0.814 -0.144 3 0.836
PKCIPKCI 0.814 -0.095 2 0.725
TTKTTK 0.814 0.043 -2 0.881
CDK6CDK6 0.813 0.030 1 0.668
MAP2K4_TYRMAP2K4_TYR 0.813 0.058 -1 0.895
VRK1VRK1 0.812 -0.274 2 0.824
KHS2KHS2 0.812 -0.024 1 0.764
MAP3K15MAP3K15 0.812 -0.240 1 0.741
EPHA6EPHA6 0.811 0.167 -1 0.912
SLKSLK 0.810 -0.113 -2 0.722
TESK1_TYRTESK1_TYR 0.810 -0.009 3 0.868
KHS1KHS1 0.810 -0.087 1 0.751
SBKSBK 0.809 0.032 -3 0.598
NEK4NEK4 0.809 -0.306 1 0.754
LOKLOK 0.809 -0.132 -2 0.765
CAMK1ACAMK1A 0.809 -0.012 -3 0.684
OSR1OSR1 0.809 -0.062 2 0.765
CHK2CHK2 0.808 -0.037 -3 0.661
CDK4CDK4 0.808 0.013 1 0.654
TXKTXK 0.808 0.216 1 0.876
PAK5PAK5 0.808 -0.100 -2 0.602
IRAK1IRAK1 0.808 -0.396 -1 0.744
MOKMOK 0.807 0.040 1 0.733
STK33STK33 0.807 -0.185 2 0.645
MAP2K7_TYRMAP2K7_TYR 0.807 -0.149 2 0.863
MEKK6MEKK6 0.807 -0.284 1 0.762
NEK1NEK1 0.807 -0.275 1 0.765
PAK4PAK4 0.806 -0.086 -2 0.610
EPHB4EPHB4 0.806 0.094 -1 0.885
YANK3YANK3 0.805 -0.030 2 0.464
EPHA4EPHA4 0.805 0.128 2 0.832
PBKPBK 0.805 -0.070 1 0.760
PKMYT1_TYRPKMYT1_TYR 0.804 -0.135 3 0.832
PKN1PKN1 0.804 -0.073 -3 0.734
PINK1_TYRPINK1_TYR 0.804 -0.129 1 0.834
BUB1BUB1 0.803 -0.020 -5 0.755
ROCK1ROCK1 0.803 0.021 -3 0.771
CRIKCRIK 0.802 0.051 -3 0.726
YSK1YSK1 0.802 -0.189 2 0.777
MEK2MEK2 0.801 -0.380 2 0.778
YES1YES1 0.799 0.034 -1 0.870
SRMSSRMS 0.798 0.069 1 0.873
EPHB2EPHB2 0.798 0.099 -1 0.871
BLKBLK 0.797 0.137 -1 0.880
RETRET 0.797 -0.127 1 0.778
LIMK2_TYRLIMK2_TYR 0.797 -0.094 -3 0.882
BIKEBIKE 0.797 -0.029 1 0.717
CK1ACK1A 0.797 0.000 -3 0.440
INSRRINSRR 0.796 0.015 3 0.714
FERFER 0.796 -0.035 1 0.887
EPHB1EPHB1 0.796 0.034 1 0.861
HASPINHASPIN 0.796 -0.066 -1 0.663
FYNFYN 0.795 0.136 -1 0.854
ABL2ABL2 0.794 -0.018 -1 0.842
FGRFGR 0.794 -0.061 1 0.842
RIPK2RIPK2 0.794 -0.393 1 0.724
ITKITK 0.794 0.021 -1 0.826
LCKLCK 0.793 0.072 -1 0.871
EPHB3EPHB3 0.793 0.020 -1 0.871
DDR1DDR1 0.793 -0.143 4 0.842
ASK1ASK1 0.793 -0.257 1 0.734
MST1RMST1R 0.792 -0.202 3 0.778
MYO3AMYO3A 0.792 -0.139 1 0.754
TYRO3TYRO3 0.792 -0.169 3 0.761
CSF1RCSF1R 0.791 -0.125 3 0.753
FGFR2FGFR2 0.791 -0.061 3 0.771
HCKHCK 0.791 -0.034 -1 0.865
LIMK1_TYRLIMK1_TYR 0.791 -0.264 2 0.839
PTK2PTK2 0.790 0.168 -1 0.857
JAK3JAK3 0.789 -0.092 1 0.765
KITKIT 0.789 -0.086 3 0.760
MYO3BMYO3B 0.789 -0.173 2 0.795
EPHA7EPHA7 0.789 0.035 2 0.818
ROS1ROS1 0.788 -0.198 3 0.727
FLT1FLT1 0.788 0.019 -1 0.888
BMXBMX 0.788 0.005 -1 0.759
PKG1PKG1 0.788 -0.054 -2 0.613
ABL1ABL1 0.788 -0.071 -1 0.833
TYK2TYK2 0.788 -0.306 1 0.776
SYKSYK 0.788 0.170 -1 0.845
EPHA5EPHA5 0.787 0.085 2 0.814
KDRKDR 0.787 -0.076 3 0.721
TAO1TAO1 0.786 -0.181 1 0.699
JAK2JAK2 0.786 -0.260 1 0.772
METMET 0.786 -0.050 3 0.748
EPHA3EPHA3 0.786 -0.033 2 0.797
TECTEC 0.785 -0.018 -1 0.769
TNK2TNK2 0.785 -0.116 3 0.728
MERTKMERTK 0.784 -0.076 3 0.739
EPHA8EPHA8 0.783 0.044 -1 0.864
FGFR3FGFR3 0.783 -0.052 3 0.745
EGFREGFR 0.782 0.021 1 0.677
FLT3FLT3 0.782 -0.169 3 0.753
PTK2BPTK2B 0.781 0.004 -1 0.800
PDGFRBPDGFRB 0.781 -0.216 3 0.768
NEK3NEK3 0.781 -0.382 1 0.725
FGFR1FGFR1 0.780 -0.167 3 0.734
CK1G3CK1G3 0.780 -0.008 -3 0.396
ERBB2ERBB2 0.780 -0.112 1 0.759
TEKTEK 0.779 -0.173 3 0.701
LYNLYN 0.779 -0.033 3 0.680
STLK3STLK3 0.779 -0.295 1 0.729
FRKFRK 0.779 -0.051 -1 0.879
SRCSRC 0.778 -0.003 -1 0.849
AXLAXL 0.778 -0.175 3 0.740
AAK1AAK1 0.777 0.006 1 0.612
LTKLTK 0.777 -0.143 3 0.707
NTRK1NTRK1 0.777 -0.186 -1 0.844
MATKMATK 0.777 -0.080 -1 0.771
FGFR4FGFR4 0.776 -0.020 -1 0.820
DDR2DDR2 0.776 -0.029 3 0.708
BTKBTK 0.776 -0.206 -1 0.780
YANK2YANK2 0.775 -0.051 2 0.483
EPHA2EPHA2 0.774 0.040 -1 0.836
ALKALK 0.774 -0.182 3 0.679
WEE1_TYRWEE1_TYR 0.774 -0.159 -1 0.757
INSRINSR 0.774 -0.155 3 0.689
FLT4FLT4 0.773 -0.169 3 0.722
TNNI3K_TYRTNNI3K_TYR 0.773 -0.155 1 0.795
PTK6PTK6 0.772 -0.239 -1 0.751
CSKCSK 0.772 -0.098 2 0.818
NEK10_TYRNEK10_TYR 0.772 -0.230 1 0.645
CK1G2CK1G2 0.772 0.026 -3 0.498
ERBB4ERBB4 0.772 0.029 1 0.715
JAK1JAK1 0.772 -0.207 1 0.715
EPHA1EPHA1 0.772 -0.146 3 0.721
NTRK3NTRK3 0.770 -0.159 -1 0.800
NTRK2NTRK2 0.769 -0.247 3 0.723
TNK1TNK1 0.768 -0.262 3 0.737
PDGFRAPDGFRA 0.768 -0.351 3 0.767
IGF1RIGF1R 0.764 -0.101 3 0.633
ZAP70ZAP70 0.755 0.007 -1 0.751
MUSKMUSK 0.749 -0.220 1 0.660
FESFES 0.747 -0.151 -1 0.737