Motif 66 (n=508)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A6NEL2 | SOWAHB | S271 | ochoa | Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) | None |
A7XYQ1 | SOBP | S313 | ochoa | Sine oculis-binding protein homolog (Jackson circler protein 1) | Implicated in development of the cochlea. {ECO:0000250|UniProtKB:Q0P5V2}. |
B2RTY4 | MYO9A | S1829 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
H0YHG0 | None | S431 | ochoa | DnaJ homolog subfamily C member 14 (Nuclear protein Hcc-1) (SAP domain-containing ribonucleoprotein) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway. Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export. {ECO:0000256|ARBA:ARBA00054093}.; FUNCTION: Regulates the export of target proteins, such as DRD1, from the endoplasmic reticulum to the cell surface. {ECO:0000256|ARBA:ARBA00055510}. |
O00151 | PDLIM1 | S130 | ochoa | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
O00308 | WWP2 | S211 | ochoa | NEDD4-like E3 ubiquitin-protein ligase WWP2 (EC 2.3.2.26) (Atrophin-1-interacting protein 2) (AIP2) (HECT-type E3 ubiquitin transferase WWP2) (WW domain-containing protein 2) | E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Polyubiquitinates POU5F1 by 'Lys-63'-linked conjugation and promotes it to proteasomal degradation; in embryonic stem cells (ESCs) the ubiquitination is proposed to regulate POU5F1 protein level. Ubiquitinates EGR2 and promotes it to proteasomal degradation; in T-cells the ubiquitination inhibits activation-induced cell death. Ubiquitinates SLC11A2; the ubiquitination is enhanced by presence of NDFIP1 and NDFIP2. Ubiquitinates RPB1 and promotes it to proteasomal degradation. {ECO:0000269|PubMed:19274063, ECO:0000269|PubMed:19651900}. |
O00482 | NR5A2 | S510 | psp | Nuclear receptor subfamily 5 group A member 2 (Alpha-1-fetoprotein transcription factor) (B1-binding factor) (hB1F) (CYP7A promoter-binding factor) (Hepatocytic transcription factor) (Liver receptor homolog 1) (LRH-1) | Orphan nuclear receptor that binds DNA as a monomer to the 5'-TCAAGGCCA-3' sequence and controls expression of target genes: regulates key biological processes, such as early embryonic development, cholesterol and bile acid synthesis pathways, as well as liver and pancreas morphogenesis (PubMed:16289203, PubMed:18410128, PubMed:21614002, PubMed:32433991, PubMed:38409506, PubMed:9786908). Ligand-binding causes conformational change which causes recruitment of coactivators, promoting target gene activation (PubMed:21614002). The specific ligand is unknown, but specific phospholipids, such as phosphatidylethanolamine, phosphatidylserine, dilauroyl phosphatidylcholine and diundecanoyl phosphatidylcholine can act as ligand in vitro (PubMed:15707893, PubMed:15723037, PubMed:15897460, PubMed:21614002, PubMed:22504882, PubMed:23737522, PubMed:26416531, PubMed:26553876). Acts as a pioneer transcription factor, which unwraps target DNA from histones and elicits local opening of closed chromatin (PubMed:38409506). Plays a central role during preimplantation stages of embryonic development (By similarity). Plays a minor role in zygotic genome activation (ZGA) by regulating a small set of two-cell stage genes (By similarity). Plays a major role in morula development (2-16 cells embryos) by acting as a master regulator at the 8-cell stage, controlling expression of lineage-specifying transcription factors and genes involved in mitosis, telomere maintenance and DNA repair (By similarity). Zygotic NR5A2 binds to both closed and open chromatin with other transcription factors, often at SINE B1/Alu repeats DNA elements, promoting chromatin accessibility at nearby regulatory regions (By similarity). Also involved in the epiblast stage of development and embryonic stem cell pluripotency, by promoting expression of POU5F1/OCT4 (PubMed:27984042). Regulates other processes later in development, such as formation of connective tissue in lower jaw and middle ear, neural stem cell differentiation, ovarian follicle development and Sertoli cell differentiation (By similarity). Involved in exocrine pancreas development and acinar cell differentiation (By similarity). Acts as an essential transcriptional regulator of lipid metabolism (PubMed:20159957). Key regulator of cholesterol 7-alpha-hydroxylase gene (CYP7A) expression in liver (PubMed:10359768). Also acts as a negative regulator of inflammation in different organs, such as, liver and pancreas (PubMed:20159957). Protects against intestinal inflammation via its ability to regulate glucocorticoid production (By similarity). Plays an anti-inflammatory role during the hepatic acute phase response by acting as a corepressor: inhibits the hepatic acute phase response by preventing dissociation of the N-Cor corepressor complex (PubMed:20159957). Acts as a regulator of immunity by promoting lymphocyte T-cell development, proliferation and effector functions (By similarity). Also involved in resolution of endoplasmic reticulum stress in the liver (By similarity). {ECO:0000250|UniProtKB:P45448, ECO:0000269|PubMed:10359768, ECO:0000269|PubMed:15707893, ECO:0000269|PubMed:15723037, ECO:0000269|PubMed:15897460, ECO:0000269|PubMed:16289203, ECO:0000269|PubMed:18410128, ECO:0000269|PubMed:20159957, ECO:0000269|PubMed:21614002, ECO:0000269|PubMed:22504882, ECO:0000269|PubMed:23737522, ECO:0000269|PubMed:26416531, ECO:0000269|PubMed:26553876, ECO:0000269|PubMed:27984042, ECO:0000269|PubMed:32433991, ECO:0000269|PubMed:38409506, ECO:0000269|PubMed:9786908}.; FUNCTION: [Isoform 3]: In constrast to isoform 1 and isoform 2, does not induce cholesterol 7-alpha-hydroxylase gene (CYP7A) promoter activity. {ECO:0000269|PubMed:10359768}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with HNF1A to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:9786908}. |
O14497 | ARID1A | S715 | ochoa | AT-rich interactive domain-containing protein 1A (ARID domain-containing protein 1A) (B120) (BRG1-associated factor 250) (BAF250) (BRG1-associated factor 250a) (BAF250A) (Osa homolog 1) (hOSA1) (SWI-like protein) (SWI/SNF complex protein p270) (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily F member 1) (hELD) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Binds DNA non-specifically. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250|UniProtKB:A2BH40, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
O14508 | SOCS2 | S30 | ochoa | Suppressor of cytokine signaling 2 (SOCS-2) (Cytokine-inducible SH2 protein 2) (CIS-2) (STAT-induced STAT inhibitor 2) (SSI-2) | Substrate-recognition component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex, also named CRL5 complex), which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, such as EPOR and GHR (PubMed:11781573, PubMed:21980433, PubMed:25505247, PubMed:31182716, PubMed:34857742). Specifically recognizes and binds phosphorylated proteins via its SH2 domain, promoting their ubiquitination (PubMed:21980433, PubMed:25505247, PubMed:31182716, PubMed:34857742, PubMed:37816714). The ECS(SOCS2) complex acts as a key regulator of growth hormone receptor (GHR) levels by mediating ubiquitination and degradation of GHR, following GHR phosphorylation by JAK2 (PubMed:21980433, PubMed:25505247, PubMed:34857742). The ECS(SOCS2) also catalyzes ubiquitination and degradation of JAK2-phosphorylated EPOR (PubMed:11781573). {ECO:0000269|PubMed:11781573, ECO:0000269|PubMed:21980433, ECO:0000269|PubMed:25505247, ECO:0000269|PubMed:31182716, ECO:0000269|PubMed:34857742, ECO:0000269|PubMed:37816714}. |
O14795 | UNC13B | S1251 | ochoa | Protein unc-13 homolog B (Munc13-2) (munc13) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Is involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-depending refilling of readily releasable vesicle pool (RRP) (By similarity). Essential for synaptic vesicle maturation in a subset of excitatory/glutamatergic but not inhibitory/GABA-mediated synapses (By similarity). In collaboration with UNC13A, facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). {ECO:0000250|UniProtKB:Q9Z1N9}. |
O15047 | SETD1A | S565 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15117 | FYB1 | S46 | ochoa | FYN-binding protein 1 (Adhesion and degranulation promoting adaptor protein) (ADAP) (FYB-120/130) (p120/p130) (FYN-T-binding protein) (SLAP-130) (SLP-76-associated phosphoprotein) | Acts as an adapter protein of the FYN and LCP2 signaling cascades in T-cells (By similarity). May play a role in linking T-cell signaling to remodeling of the actin cytoskeleton (PubMed:10747096, PubMed:16980616). Modulates the expression of IL2 (By similarity). Involved in platelet activation (By similarity). Prevents the degradation of SKAP1 and SKAP2 (PubMed:15849195). May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells (By similarity). {ECO:0000250|UniProtKB:D3ZIE4, ECO:0000250|UniProtKB:O35601, ECO:0000269|PubMed:10747096, ECO:0000269|PubMed:15849195, ECO:0000269|PubMed:16980616}. |
O15525 | MAFG | S124 | ochoa|psp | Transcription factor MafG (V-maf musculoaponeurotic fibrosarcoma oncogene homolog G) (hMAF) | Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves (PubMed:11154691). However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2, NFE2L1 and NFE2L2, and recruiting them to specific DNA-binding sites (PubMed:11154691, PubMed:8932385, PubMed:9421508). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NFE2L2 transcription factor (PubMed:11154691). Transcription factor, component of erythroid-specific transcription factor NFE2L2 (PubMed:11154691). Activates globin gene expression when associated with NFE2L2 (PubMed:11154691). May be involved in signal transduction of extracellular H(+) (By similarity). {ECO:0000250|UniProtKB:Q76MX4, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:8932385, ECO:0000269|PubMed:9421508}. |
O43633 | CHMP2A | S203 | ochoa | Charged multivesicular body protein 2a (Chromatin-modifying protein 2a) (CHMP2a) (Putative breast adenocarcinoma marker BC-2) (Vacuolar protein sorting-associated protein 2-1) (Vps2-1) (hVps2-1) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:21310966). Together with SPAST, the ESCRT-III complex promotes nuclear envelope sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712). Recruited to the reforming nuclear envelope (NE) during anaphase by LEMD2 (PubMed:28242692). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. {ECO:0000269|PubMed:21310966, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692, ECO:0000305}.; FUNCTION: (Microbial infection) The ESCRT machinery functions in topologically equivalent membrane fission events, such as the budding of enveloped viruses (HIV-1 and other lentiviruses). Involved in HIV-1 p6- and p9-dependent virus release. {ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844}. |
O43660 | PLRG1 | S119 | ochoa | Pleiotropic regulator 1 | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:28076346, PubMed:28502770). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing (PubMed:11101529, PubMed:11544257). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000305|PubMed:33509932}. |
O60303 | KATNIP | S660 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60336 | MAPKBP1 | S1216 | ochoa | Mitogen-activated protein kinase-binding protein 1 (JNK-binding protein 1) (JNKBP-1) | Negative regulator of NOD2 function. It down-regulates NOD2-induced processes such as activation of NF-kappa-B signaling, IL8 secretion and antibacterial response (PubMed:22700971). Involved in JNK signaling pathway (By similarity). {ECO:0000250|UniProtKB:Q6NS57, ECO:0000269|PubMed:22700971}. |
O60343 | TBC1D4 | S787 | ochoa | TBC1 domain family member 4 (Akt substrate of 160 kDa) (AS160) | May act as a GTPase-activating protein for RAB2A, RAB8A, RAB10 and RAB14. Isoform 2 promotes insulin-induced glucose transporter SLC2A4/GLUT4 translocation at the plasma membrane, thus increasing glucose uptake. {ECO:0000269|PubMed:15971998, ECO:0000269|PubMed:18771725, ECO:0000269|PubMed:22908308}. |
O75037 | KIF21B | S520 | ochoa | Kinesin-like protein KIF21B | Plus-end directed microtubule-dependent motor protein which displays processive activity. Is involved in regulation of microtubule dynamics, synapse function and neuronal morphology, including dendritic tree branching and spine formation. Plays a role in lerning and memory. Involved in delivery of gamma-aminobutyric acid (GABA(A)) receptor to cell surface. {ECO:0000250|UniProtKB:Q9QXL1}. |
O75330 | HMMR | S20 | ochoa | Hyaluronan mediated motility receptor (Intracellular hyaluronic acid-binding protein) (Receptor for hyaluronan-mediated motility) (CD antigen CD168) | Receptor for hyaluronic acid (HA) (By similarity). Involved in cell motility (By similarity). When hyaluronan binds to HMMR, the phosphorylation of a number of proteins, including PTK2/FAK1 occurs. May also be involved in cellular transformation and metastasis formation, and in regulating extracellular-regulated kinase (ERK) activity. May act as a regulator of adipogenisis (By similarity). {ECO:0000250|UniProtKB:Q00547}. |
O75376 | NCOR1 | S1111 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75381 | PEX14 | S44 | ochoa | Peroxisomal membrane protein PEX14 (PTS1 receptor-docking protein) (Peroxin-14) (Peroxisomal membrane anchor protein PEX14) | Component of the PEX13-PEX14 docking complex, a translocon channel that specifically mediates the import of peroxisomal cargo proteins bound to PEX5 receptor (PubMed:24235149, PubMed:28765278, PubMed:9653144). The PEX13-PEX14 docking complex forms a large import pore which can be opened to a diameter of about 9 nm (By similarity). Mechanistically, PEX5 receptor along with cargo proteins associates with the PEX14 subunit of the PEX13-PEX14 docking complex in the cytosol, leading to the insertion of the receptor into the organelle membrane with the concomitant translocation of the cargo into the peroxisome matrix (PubMed:24235149, PubMed:28765278). Plays a key role for peroxisome movement through a direct interaction with tubulin (PubMed:21525035). {ECO:0000250|UniProtKB:P53112, ECO:0000269|PubMed:21525035, ECO:0000269|PubMed:24235149, ECO:0000269|PubMed:28765278, ECO:0000269|PubMed:9653144}. |
O75534 | CSDE1 | S116 | ochoa | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
O76074 | PDE5A | S86 | ochoa | cGMP-specific 3',5'-cyclic phosphodiesterase (EC 3.1.4.35) (cGMP-binding cGMP-specific phosphodiesterase) (CGB-PDE) | Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. This phosphodiesterase catalyzes the specific hydrolysis of cGMP to 5'-GMP (PubMed:15489334, PubMed:9714779). Specifically regulates nitric-oxide-generated cGMP (PubMed:15489334). {ECO:0000269|PubMed:15489334, ECO:0000269|PubMed:9714779}. |
O94855 | SEC24D | S826 | ochoa | Protein transport protein Sec24D (SEC24-related protein D) | Component of the coat protein complex II (COPII) which promotes the formation of transport vesicles from the endoplasmic reticulum (ER). The coat has two main functions, the physical deformation of the endoplasmic reticulum membrane into vesicles and the selection of cargo molecules for their transport to the Golgi complex (PubMed:17499046, PubMed:18843296, PubMed:20427317). Plays a central role in cargo selection within the COPII complex and together with SEC24C may have a different specificity compared to SEC24A and SEC24B (PubMed:17499046, PubMed:18843296, PubMed:20427317). May more specifically package GPI-anchored proteins through the cargo receptor TMED10 (PubMed:20427317). May also be specific for IxM motif-containing cargos like the SNAREs GOSR2 and STX5 (PubMed:18843296). {ECO:0000269|PubMed:17499046, ECO:0000269|PubMed:18843296, ECO:0000269|PubMed:20427317}. |
O94864 | SUPT7L | S323 | ochoa | STAGA complex 65 subunit gamma (Adenocarcinoma antigen ART1) (SPTF-associated factor 65 gamma) (STAF65gamma) (Suppressor of Ty 7-like) | None |
O95180 | CACNA1H | S53 | ochoa | Voltage-dependent T-type calcium channel subunit alpha-1H (Low-voltage-activated calcium channel alpha1 3.2 subunit) (Voltage-gated calcium channel subunit alpha Cav3.2) | Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation (PubMed:27149520, PubMed:9670923, PubMed:9930755). T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons (PubMed:15048902). In the adrenal zona glomerulosa, participates in the signaling pathway leading to aldosterone production in response to either AGT/angiotensin II, or hyperkalemia (PubMed:25907736, PubMed:27729216). {ECO:0000269|PubMed:24277868, ECO:0000269|PubMed:25907736, ECO:0000269|PubMed:27149520, ECO:0000269|PubMed:27729216, ECO:0000269|PubMed:9670923, ECO:0000269|PubMed:9930755, ECO:0000305, ECO:0000305|PubMed:15048902}. |
O95359 | TACC2 | S962 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95359 | TACC2 | S1313 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95503 | CBX6 | S301 | ochoa | Chromobox protein homolog 6 | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development (PubMed:21282530). PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Possibly contributes to the target selectivity of the PRC1 complex by binding specific regions of chromatin (PubMed:18927235). Recruitment to chromatin might occur in an H3K27me3-independent fashion (By similarity). May have a PRC1-independent function in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:Q9DBY5, ECO:0000269|PubMed:18927235, ECO:0000269|PubMed:21282530}. |
O95613 | PCNT | S2900 | ochoa | Pericentrin (Kendrin) (Pericentrin-B) | Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome. {ECO:0000269|PubMed:10823944, ECO:0000269|PubMed:11171385, ECO:0000269|PubMed:18955030, ECO:0000269|PubMed:20599736, ECO:0000269|PubMed:30420784}. |
O95644 | NFATC1 | S772 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 1 (NF-ATc1) (NFATc1) (NFAT transcription complex cytosolic component) (NF-ATc) (NFATc) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2 or IL-4 gene transcription. Also controls gene expression in embryonic cardiac cells. Could regulate not only the activation and proliferation but also the differentiation and programmed death of T-lymphocytes as well as lymphoid and non-lymphoid cells (PubMed:10358178). Required for osteoclastogenesis and regulates many genes important for osteoclast differentiation and function (By similarity). {ECO:0000250|UniProtKB:O88942, ECO:0000269|PubMed:10358178}. |
O95782 | AP2A1 | S655 | ochoa | AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
O96013 | PAK4 | Y208 | ochoa | Serine/threonine-protein kinase PAK 4 (EC 2.7.11.1) (p21-activated kinase 4) (PAK-4) | Serine/threonine-protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell adhesion turnover, cell migration, growth, proliferation or cell survival (PubMed:26598620). Activation by various effectors including growth factor receptors or active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates and inactivates the protein phosphatase SSH1, leading to increased inhibitory phosphorylation of the actin binding/depolymerizing factor cofilin. Decreased cofilin activity may lead to stabilization of actin filaments. Phosphorylates LIMK1, a kinase that also inhibits the activity of cofilin. Phosphorylates integrin beta5/ITGB5 and thus regulates cell motility. Phosphorylates ARHGEF2 and activates the downstream target RHOA that plays a role in the regulation of assembly of focal adhesions and actin stress fibers. Stimulates cell survival by phosphorylating the BCL2 antagonist of cell death BAD. Alternatively, inhibits apoptosis by preventing caspase-8 binding to death domain receptors in a kinase independent manner. Plays a role in cell-cycle progression by controlling levels of the cell-cycle regulatory protein CDKN1A and by phosphorylating RAN. Promotes kinase-independent stabilization of RHOU, thereby contributing to focal adhesion disassembly during cell migration (PubMed:26598620). {ECO:0000269|PubMed:11278822, ECO:0000269|PubMed:11313478, ECO:0000269|PubMed:14560027, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:20507994, ECO:0000269|PubMed:20631255, ECO:0000269|PubMed:20805321, ECO:0000269|PubMed:26598620, ECO:0000269|PubMed:26607847}. |
P02042 | HBD | S51 | ochoa | Hemoglobin subunit delta (Delta-globin) (Hemoglobin delta chain) | Involved in oxygen transport from the lung to the various peripheral tissues. |
P05120 | SERPINB2 | Y90 | ochoa | Plasminogen activator inhibitor 2 (PAI-2) (Monocyte Arg-serpin) (Placental plasminogen activator inhibitor) (Serpin B2) (Urokinase inhibitor) | Inhibits urokinase-type plasminogen activator. The monocyte derived PAI-2 is distinct from the endothelial cell-derived PAI-1. |
P10070 | GLI2 | S388 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P11137 | MAP2 | S629 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11137 | MAP2 | S725 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P12270 | TPR | S379 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P17861 | XBP1 | S47 | ochoa | X-box-binding protein 1 (XBP-1) (Tax-responsive element-binding protein 5) (TREB-5) [Cleaved into: X-box-binding protein 1, cytoplasmic form; X-box-binding protein 1, luminal form] | Functions as a transcription factor during endoplasmic reticulum (ER) stress by regulating the unfolded protein response (UPR). Required for cardiac myogenesis and hepatogenesis during embryonic development, and the development of secretory tissues such as exocrine pancreas and salivary gland (By similarity). Involved in terminal differentiation of B lymphocytes to plasma cells and production of immunoglobulins (PubMed:11460154). Modulates the cellular response to ER stress in a PIK3R-dependent manner (PubMed:20348923). Binds to the cis-acting X box present in the promoter regions of major histocompatibility complex class II genes (PubMed:8349596). Involved in VEGF-induced endothelial cell (EC) proliferation and retinal blood vessel formation during embryonic development but also for angiogenesis in adult tissues under ischemic conditions. Also functions as a major regulator of the UPR in obesity-induced insulin resistance and type 2 diabetes for the management of obesity and diabetes prevention (By similarity). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11460154, ECO:0000269|PubMed:20348923, ECO:0000269|PubMed:8349596}.; FUNCTION: [Isoform 1]: Plays a role in the unconventional cytoplasmic splicing processing of its own mRNA triggered by the endoplasmic reticulum (ER) transmembrane endoribonuclease ERN1: upon ER stress, the emerging XBP1 polypeptide chain, as part of a mRNA-ribosome-nascent chain (R-RNC) complex, cotranslationally recruits its own unprocessed mRNA through transient docking to the ER membrane and translational pausing, therefore facilitating efficient IRE1-mediated XBP1 mRNA isoform 2 production (PubMed:19394296, PubMed:21233347). In endothelial cells (EC), associated with KDR, promotes IRE1-mediated XBP1 mRNA isoform 2 productions in a vascular endothelial growth factor (VEGF)-dependent manner, leading to EC proliferation and angiogenesis (PubMed:23529610). Functions as a negative feed-back regulator of the potent transcription factor XBP1 isoform 2 protein levels through proteasome-mediated degradation, thus preventing the constitutive activation of the ER stress response signaling pathway (PubMed:16461360, PubMed:25239945). Inhibits the transactivation activity of XBP1 isoform 2 in myeloma cells (By similarity). Acts as a weak transcriptional factor (PubMed:8657566). Together with HDAC3, contributes to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to EC survival under disturbed flow/oxidative stress (PubMed:25190803). Binds to the ER stress response element (ERSE) upon ER stress (PubMed:11779464). Binds to the consensus 5'-GATGACGTG[TG]N(3)[AT]T-3' sequence related to cAMP responsive element (CRE)-like sequences (PubMed:8657566). Binds the Tax-responsive element (TRE) present in the long terminal repeat (LTR) of T-cell leukemia virus type 1 (HTLV-I) and to the TPA response elements (TRE) (PubMed:1903538, PubMed:2196176, PubMed:2321018, PubMed:8657566). Associates preferentially to the HDAC3 gene promoter region in a static flow-dependent manner (PubMed:25190803). Binds to the CDH5/VE-cadherin gene promoter region (PubMed:19416856). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11779464, ECO:0000269|PubMed:16461360, ECO:0000269|PubMed:1903538, ECO:0000269|PubMed:19394296, ECO:0000269|PubMed:19416856, ECO:0000269|PubMed:21233347, ECO:0000269|PubMed:2196176, ECO:0000269|PubMed:2321018, ECO:0000269|PubMed:23529610, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25239945, ECO:0000269|PubMed:8657566}.; FUNCTION: [Isoform 2]: Functions as a stress-inducible potent transcriptional activator during endoplasmic reticulum (ER) stress by inducing unfolded protein response (UPR) target genes via binding to the UPR element (UPRE). Up-regulates target genes encoding ER chaperones and ER-associated degradation (ERAD) components to enhance the capacity of productive folding and degradation mechanism, respectively, in order to maintain the homeostasis of the ER under ER stress (PubMed:11779464, PubMed:25239945). Plays a role in the production of immunoglobulins and interleukin-6 in the presence of stimuli required for plasma cell differentiation (By similarity). Induces phospholipid biosynthesis and ER expansion (PubMed:15466483). Contributes to the VEGF-induced endothelial cell (EC) growth and proliferation in a Akt/GSK-dependent and/or -independent signaling pathway, respectively, leading to beta-catenin nuclear translocation and E2F2 gene expression (PubMed:23529610). Promotes umbilical vein EC apoptosis and atherosclerotisis development in a caspase-dependent signaling pathway, and contributes to VEGF-induced EC proliferation and angiogenesis in adult tissues under ischemic conditions (PubMed:19416856, PubMed:23529610). Involved in the regulation of endostatin-induced autophagy in EC through BECN1 transcriptional activation (PubMed:23184933). Plays a role as an oncogene by promoting tumor progression: stimulates zinc finger protein SNAI1 transcription to induce epithelial-to-mesenchymal (EMT) transition, cell migration and invasion of breast cancer cells (PubMed:25280941). Involved in adipocyte differentiation by regulating lipogenic gene expression during lactation. Plays a role in the survival of both dopaminergic neurons of the substantia nigra pars compacta (SNpc), by maintaining protein homeostasis and of myeloma cells. Increases insulin sensitivity in the liver as a response to a high carbohydrate diet, resulting in improved glucose tolerance. Also improves glucose homeostasis in an ER stress- and/or insulin-independent manner through both binding and proteasome-induced degradation of the transcription factor FOXO1, hence resulting in suppression of gluconeogenic genes expression and in a reduction of blood glucose levels. Controls the induction of de novo fatty acid synthesis in hepatocytes by regulating the expression of a subset of lipogenic genes in an ER stress- and UPR-independent manner (By similarity). Associates preferentially to the HDAC3 gene promoter region in a disturbed flow-dependent manner (PubMed:25190803). Binds to the BECN1 gene promoter region (PubMed:23184933). Binds to the CDH5/VE-cadherin gene promoter region (PubMed:19416856). Binds to the ER stress response element (ERSE) upon ER stress (PubMed:11779464). Binds to the 5'-CCACG-3' motif in the PPARG promoter (By similarity). {ECO:0000250|UniProtKB:O35426, ECO:0000269|PubMed:11779464, ECO:0000269|PubMed:15466483, ECO:0000269|PubMed:19416856, ECO:0000269|PubMed:23184933, ECO:0000269|PubMed:23529610, ECO:0000269|PubMed:25190803, ECO:0000269|PubMed:25239945, ECO:0000269|PubMed:25280941}. |
P27105 | STOM | S244 | ochoa | Stomatin (Erythrocyte band 7 integral membrane protein) (Erythrocyte membrane protein band 7.2) (Protein 7.2b) | Regulates ion channel activity and transmembrane ion transport. Regulates ASIC2 and ASIC3 channel activity. |
P27694 | RPA1 | S135 | ochoa | Replication protein A 70 kDa DNA-binding subunit (RP-A p70) (Replication factor A protein 1) (RF-A protein 1) (Single-stranded DNA-binding protein) [Cleaved into: Replication protein A 70 kDa DNA-binding subunit, N-terminally processed] | As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism (PubMed:17596542, PubMed:27723717, PubMed:27723720). Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage (PubMed:9430682). In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP activates the ATR kinase a master regulator of the DNA damage response (PubMed:24332808). It is required for the recruitment of the DNA double-strand break repair factors RAD51 and RAD52 to chromatin in response to DNA damage (PubMed:17765923). Also recruits to sites of DNA damage proteins like XPA and XPG that are involved in nucleotide excision repair and is required for this mechanism of DNA repair (PubMed:7697716). Also plays a role in base excision repair (BER) probably through interaction with UNG (PubMed:9765279). Also recruits SMARCAL1/HARP, which is involved in replication fork restart, to sites of DNA damage. Plays a role in telomere maintenance (PubMed:17959650, PubMed:34767620). As part of the alternative replication protein A complex, aRPA, binds single-stranded DNA and probably plays a role in DNA repair. Compared to the RPA2-containing, canonical RPA complex, may not support chromosomal DNA replication and cell cycle progression through S-phase. The aRPA may not promote efficient priming by DNA polymerase alpha but could support DNA synthesis by polymerase delta in presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange (PubMed:19996105). RPA stimulates 5'-3' helicase activity of the BRIP1/FANCJ (PubMed:17596542). {ECO:0000269|PubMed:12791985, ECO:0000269|PubMed:17596542, ECO:0000269|PubMed:17765923, ECO:0000269|PubMed:17959650, ECO:0000269|PubMed:19116208, ECO:0000269|PubMed:19996105, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:34767620, ECO:0000269|PubMed:7697716, ECO:0000269|PubMed:7700386, ECO:0000269|PubMed:9430682, ECO:0000269|PubMed:9765279}. |
P28360 | MSX1 | S160 | ochoa | Homeobox protein MSX-1 (Homeobox protein Hox-7) (Msh homeobox 1-like protein) | Acts as a transcriptional repressor (By similarity). Capable of transcription autoinactivation (By similarity). Binds to the consensus sequence 5'-C/GTAAT-3' in downstream activin regulatory elements (DARE) in the gene promoter, thereby repressing the transcription of CGA/alpha-GSU and GNRHR (By similarity). Represses transcription of myoblast differentiation factors (By similarity). Binds to core enhancer regions in target gene promoters of myoblast differentiation factors with binding specificity facilitated by interaction with PIAS1 (By similarity). Regulates, in a stage-specific manner, a developmental program of gene expression in the fetal tooth bud that controls odontoblast differentiation and proliferation of dental mesenchymal cells (By similarity). At the bud stage, required for mesenchymal molar tooth bud development via facilitating reciprocal signaling between dental epithelial and mesenchymal cells (By similarity). May also regulate expression of Wnt antagonists such as DKK2 and SFPR2 in the developing tooth mesenchyme (By similarity). Required for BMP4 expression in dental mesenchyme cells (By similarity). Also, in response to BMP4, required for BMP4 expression in neighboring dental epithelial cells (By similarity). Required for maximal FGF4-induced expression of SDC1 in dental mesenchyme cells (By similarity). Also in response to SDC1, required for SDC1 expression in neighboring dental epithelial cells (By similarity). At the early bell stage, acts to drive proliferation of dental mesenchyme cells, however during the late bell stage acts as an homeostatic regulator of the cell cycle (By similarity). Regulates proliferation and inhibits premature mesenchymal odontogenesis during the bell stage via inhibition of the Wnt signaling component CTNNB1 and subsequent repression of the odontoblast differentiation factors BMP2, BMP4, LEF1, ALPL and BGLAP/OCN (By similarity). Additionally, required for correct development and fusion of the palatal shelves and embryonic mandibular formation (By similarity). Plays a role in embryonic bone formation of the middle ear, skull and nasal bones (By similarity). Required for correct formation and thickness of the nail plate (By similarity). May play a role in limb-pattern formation (By similarity). {ECO:0000250|UniProtKB:P13297, ECO:0000269|PubMed:12807959, ECO:0000303|PubMed:8696335}. |
P31274 | HOXC9 | S159 | ochoa | Homeobox protein Hox-C9 (Homeobox protein Hox-3B) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
P32298 | GRK4 | S139 | psp | G protein-coupled receptor kinase 4 (EC 2.7.11.16) (G protein-coupled receptor kinase GRK4) (ITI1) | Specifically phosphorylates the activated forms of G protein-coupled receptors. GRK4-alpha can phosphorylate rhodopsin and its activity is inhibited by calmodulin; the other three isoforms do not phosphorylate rhodopsin and do not interact with calmodulin. GRK4-alpha and GRK4-gamma phosphorylate DRD3. Phosphorylates ADRB2. {ECO:0000269|PubMed:19520868, ECO:0000269|PubMed:8626439}. |
P35568 | IRS1 | S1005 | ochoa|psp | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P37059 | HSD17B2 | S235 | ochoa | 17-beta-hydroxysteroid dehydrogenase type 2 (17-beta-HSD 2) (20 alpha-hydroxysteroid dehydrogenase) (20-alpha-HSD) (E2DH) (Estradiol 17-beta-dehydrogenase 2) (EC 1.1.1.62) (Microsomal 17-beta-hydroxysteroid dehydrogenase) (Short chain dehydrogenase/reductase family 9C member 2) (Testosterone 17-beta-dehydrogenase) (EC 1.1.1.239) | Catalyzes the NAD-dependent oxidation of the highly active 17beta-hydroxysteroids, such as estradiol (E2), testosterone (T), and dihydrotestosterone (DHT), to their less active forms and thus regulates the biological potency of these steroids. Oxidizes estradiol to estrone, testosterone to androstenedione, and dihydrotestosterone to 5alpha-androstan-3,17-dione. Also has 20-alpha-HSD activity. {ECO:0000269|PubMed:10385431, ECO:0000269|PubMed:11940569, ECO:0000269|PubMed:8099587}. |
P38398 | BRCA1 | S1613 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P48436 | SOX9 | S199 | ochoa | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P50548 | ERF | S327 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P50851 | LRBA | S2201 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51608 | MECP2 | S68 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P53804 | TTC3 | S1819 | ochoa | E3 ubiquitin-protein ligase TTC3 (EC 2.3.2.27) (Protein DCRR1) (RING finger protein 105) (RING-type E3 ubiquitin transferase TTC3) (TPR repeat protein D) (Tetratricopeptide repeat protein 3) (TPR repeat protein 3) | E3 ubiquitin-protein ligase which catalyzes the formation of 'Lys-48'-polyubiquitin chains (PubMed:20059950, PubMed:30696809). Mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus (PubMed:20059950). Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation (PubMed:20059950). Positively regulates TGFB1-induced epithelial-mesenchymal transition and myofibroblast differentiation by mediating the ubiquitination and subsequent degradation of SMURF2 (PubMed:30696809). Regulates neuronal differentiation by regulating actin remodeling and Golgi organization via a signaling cascade involving RHOA, CIT and ROCK (PubMed:17488780, PubMed:24695496). Inhibits cell proliferation (PubMed:30203323). {ECO:0000269|PubMed:17488780, ECO:0000269|PubMed:20059950, ECO:0000269|PubMed:24695496, ECO:0000269|PubMed:30203323, ECO:0000269|PubMed:30696809}. |
P53814 | SMTN | S341 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P59923 | ZNF445 | S171 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P59923 | ZNF445 | S927 | ochoa | Zinc finger protein 445 (ZFP445) (Zinc finger protein 168) (Zinc finger protein with KRAB and SCAN domains 15) | Transcription regulator required to maintain maternal and paternal gene imprinting, a process by which gene expression is restricted in a parent of origin-specific manner by epigenetic modification of genomic DNA and chromatin, including DNA methylation. Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions (ICRs) (PubMed:30602440). Acts together with ZFP57, but seems to be the major factor in human early embryonic imprinting maintenance. In contrast, in mice, ZFP57 plays the predominant role in imprinting maintenance (PubMed:30602440). {ECO:0000269|PubMed:30602440}. |
P62263 | RPS14 | S70 | ochoa | Small ribosomal subunit protein uS11 (40S ribosomal protein S14) | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
P82979 | SARNP | S118 | ochoa | SAP domain-containing ribonucleoprotein (Cytokine-induced protein of 29 kDa) (Nuclear protein Hcc-1) (Proliferation-associated cytokine-inducible protein CIP29) | Binds both single-stranded and double-stranded DNA with higher affinity for the single-stranded form. Specifically binds to scaffold/matrix attachment region DNA. Also binds single-stranded RNA. Enhances RNA unwinding activity of DDX39A. May participate in important transcriptional or translational control of cell growth, metabolism and carcinogenesis. Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15338056, PubMed:17196963, PubMed:20844015). The TREX complex is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15338056, PubMed:17196963, PubMed:20844015). Associates with DDX39B, which facilitates RNA binding of DDX39B and likely plays a role in mRNA export (PubMed:37578863). {ECO:0000269|PubMed:15338056, ECO:0000269|PubMed:17196963, ECO:0000269|PubMed:20844015, ECO:0000269|PubMed:37578863}. |
P98164 | LRP2 | S4569 | ochoa | Low-density lipoprotein receptor-related protein 2 (LRP-2) (Glycoprotein 330) (gp330) (Megalin) | Multiligand endocytic receptor (By similarity). Acts together with CUBN to mediate endocytosis of high-density lipoproteins (By similarity). Mediates receptor-mediated uptake of polybasic drugs such as aprotinin, aminoglycosides and polymyxin B (By similarity). In the kidney, mediates the tubular uptake and clearance of leptin (By similarity). Also mediates transport of leptin across the blood-brain barrier through endocytosis at the choroid plexus epithelium (By similarity). Endocytosis of leptin in neuronal cells is required for hypothalamic leptin signaling and leptin-mediated regulation of feeding and body weight (By similarity). Mediates endocytosis and subsequent lysosomal degradation of CST3 in kidney proximal tubule cells (By similarity). Mediates renal uptake of 25-hydroxyvitamin D3 in complex with the vitamin D3 transporter GC/DBP (By similarity). Mediates renal uptake of metallothionein-bound heavy metals (PubMed:15126248). Together with CUBN, mediates renal reabsorption of myoglobin (By similarity). Mediates renal uptake and subsequent lysosomal degradation of APOM (By similarity). Plays a role in kidney selenium homeostasis by mediating renal endocytosis of selenoprotein SEPP1 (By similarity). Mediates renal uptake of the antiapoptotic protein BIRC5/survivin which may be important for functional integrity of the kidney (PubMed:23825075). Mediates renal uptake of matrix metalloproteinase MMP2 in complex with metalloproteinase inhibitor TIMP1 (By similarity). Mediates endocytosis of Sonic hedgehog protein N-product (ShhN), the active product of SHH (By similarity). Also mediates ShhN transcytosis (By similarity). In the embryonic neuroepithelium, mediates endocytic uptake and degradation of BMP4, is required for correct SHH localization in the ventral neural tube and plays a role in patterning of the ventral telencephalon (By similarity). Required at the onset of neurulation to sequester SHH on the apical surface of neuroepithelial cells of the rostral diencephalon ventral midline and to control PTCH1-dependent uptake and intracellular trafficking of SHH (By similarity). During neurulation, required in neuroepithelial cells for uptake of folate bound to the folate receptor FOLR1 which is necessary for neural tube closure (By similarity). In the adult brain, negatively regulates BMP signaling in the subependymal zone which enables neurogenesis to proceed (By similarity). In astrocytes, mediates endocytosis of ALB which is required for the synthesis of the neurotrophic factor oleic acid (By similarity). Involved in neurite branching (By similarity). During optic nerve development, required for SHH-mediated migration and proliferation of oligodendrocyte precursor cells (By similarity). Mediates endocytic uptake and clearance of SHH in the retinal margin which protects retinal progenitor cells from mitogenic stimuli and keeps them quiescent (By similarity). Plays a role in reproductive organ development by mediating uptake in reproductive tissues of androgen and estrogen bound to the sex hormone binding protein SHBG (By similarity). Mediates endocytosis of angiotensin-2 (By similarity). Also mediates endocytosis of angiotensis 1-7 (By similarity). Binds to the complex composed of beta-amyloid protein 40 and CLU/APOJ and mediates its endocytosis and lysosomal degradation (By similarity). Required for embryonic heart development (By similarity). Required for normal hearing, possibly through interaction with estrogen in the inner ear (By similarity). {ECO:0000250|UniProtKB:A2ARV4, ECO:0000250|UniProtKB:C0HL13, ECO:0000250|UniProtKB:P98158, ECO:0000269|PubMed:15126248, ECO:0000269|PubMed:23825075}. |
Q00613 | HSF1 | S275 | ochoa|psp | Heat shock factor protein 1 (HSF 1) (Heat shock transcription factor 1) (HSTF 1) | Functions as a stress-inducible and DNA-binding transcription factor that plays a central role in the transcriptional activation of the heat shock response (HSR), leading to the expression of a large class of molecular chaperones, heat shock proteins (HSPs), that protect cells from cellular insult damage (PubMed:11447121, PubMed:12659875, PubMed:12917326, PubMed:15016915, PubMed:18451878, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7760831, PubMed:8940068, PubMed:8946918, PubMed:9121459, PubMed:9341107, PubMed:9499401, PubMed:9535852, PubMed:9727490). In unstressed cells, is present in a HSP90-containing multichaperone complex that maintains it in a non-DNA-binding inactivated monomeric form (PubMed:11583998, PubMed:16278218, PubMed:9727490). Upon exposure to heat and other stress stimuli, undergoes homotrimerization and activates HSP gene transcription through binding to site-specific heat shock elements (HSEs) present in the promoter regions of HSP genes (PubMed:10359787, PubMed:11583998, PubMed:12659875, PubMed:16278218, PubMed:1871105, PubMed:1986252, PubMed:25963659, PubMed:26754925, PubMed:7623826, PubMed:7935471, PubMed:8455624, PubMed:8940068, PubMed:9499401, PubMed:9727490). Upon heat shock stress, forms a chromatin-associated complex with TTC5/STRAP and p300/EP300 to stimulate HSR transcription, therefore increasing cell survival (PubMed:18451878). Activation is reversible, and during the attenuation and recovery phase period of the HSR, returns to its unactivated form (PubMed:11583998, PubMed:16278218). Binds to inverted 5'-NGAAN-3' pentamer DNA sequences (PubMed:1986252, PubMed:26727489). Binds to chromatin at heat shock gene promoters (PubMed:25963659). Activates transcription of transcription factor FOXR1 which in turn activates transcription of the heat shock chaperones HSPA1A and HSPA6 and the antioxidant NADPH-dependent reductase DHRS2 (PubMed:34723967). Also serves several other functions independently of its transcriptional activity. Involved in the repression of Ras-induced transcriptional activation of the c-fos gene in heat-stressed cells (PubMed:9341107). Positively regulates pre-mRNA 3'-end processing and polyadenylation of HSP70 mRNA upon heat-stressed cells in a symplekin (SYMPK)-dependent manner (PubMed:14707147). Plays a role in nuclear export of stress-induced HSP70 mRNA (PubMed:17897941). Plays a role in the regulation of mitotic progression (PubMed:18794143). Also plays a role as a negative regulator of non-homologous end joining (NHEJ) repair activity in a DNA damage-dependent manner (PubMed:26359349). Involved in stress-induced cancer cell proliferation in a IER5-dependent manner (PubMed:26754925). {ECO:0000269|PubMed:10359787, ECO:0000269|PubMed:11447121, ECO:0000269|PubMed:11583998, ECO:0000269|PubMed:12659875, ECO:0000269|PubMed:12917326, ECO:0000269|PubMed:14707147, ECO:0000269|PubMed:15016915, ECO:0000269|PubMed:16278218, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:1871105, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:1986252, ECO:0000269|PubMed:25963659, ECO:0000269|PubMed:26359349, ECO:0000269|PubMed:26727489, ECO:0000269|PubMed:26754925, ECO:0000269|PubMed:34723967, ECO:0000269|PubMed:7623826, ECO:0000269|PubMed:7760831, ECO:0000269|PubMed:7935471, ECO:0000269|PubMed:8455624, ECO:0000269|PubMed:8940068, ECO:0000269|PubMed:8946918, ECO:0000269|PubMed:9121459, ECO:0000269|PubMed:9341107, ECO:0000269|PubMed:9499401, ECO:0000269|PubMed:9535852, ECO:0000269|PubMed:9727490}.; FUNCTION: (Microbial infection) Plays a role in latent human immunodeficiency virus (HIV-1) transcriptional reactivation. Binds to the HIV-1 long terminal repeat promoter (LTR) to reactivate viral transcription by recruiting cellular transcriptional elongation factors, such as CDK9, CCNT1 and EP300. {ECO:0000269|PubMed:27189267}. |
Q02086 | SP2 | S371 | ochoa | Transcription factor Sp2 | Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites. |
Q03164 | KMT2A | S3060 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05397 | PTK2 | S29 | ochoa | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q05516 | ZBTB16 | S256 | ochoa | Zinc finger and BTB domain-containing protein 16 (Promyelocytic leukemia zinc finger protein) (Zinc finger protein 145) (Zinc finger protein PLZF) | Acts as a transcriptional repressor (PubMed:10688654, PubMed:24359566). Transcriptional repression may be mediated through recruitment of histone deacetylases to target promoters (PubMed:10688654). May play a role in myeloid maturation and in the development and/or maintenance of other differentiated tissues. Probable substrate-recognition component of an E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:14528312). {ECO:0000269|PubMed:10688654, ECO:0000269|PubMed:14528312, ECO:0000269|PubMed:24359566}. |
Q09666 | AHNAK | S41 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S2397 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12772 | SREBF2 | S106 | ochoa | Sterol regulatory element-binding protein 2 (SREBP-2) (Class D basic helix-loop-helix protein 2) (bHLHd2) (Sterol regulatory element-binding transcription factor 2) [Cleaved into: Processed sterol regulatory element-binding protein 2 (Transcription factor SREBF2)] | [Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis (PubMed:32322062). {ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis (PubMed:12177166, PubMed:32322062). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:7903453). Regulates transcription of genes related to cholesterol synthesis pathway (PubMed:12177166, PubMed:32322062). {ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:7903453}. |
Q12888 | TP53BP1 | S265 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12955 | ANK3 | S623 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q13118 | KLF10 | S351 | ochoa | Krueppel-like factor 10 (EGR-alpha) (Transforming growth factor-beta-inducible early growth response protein 1) (TGFB-inducible early growth response protein 1) (TIEG-1) | Transcriptional repressor which binds to the consensus sequence 5'-GGTGTG-3'. Plays a role in the regulation of the circadian clock; binds to the GC box sequence in the promoter of the core clock component ARTNL/BMAL1 and represses its transcriptional activity. Regulates the circadian expression of genes involved in lipogenesis, gluconeogenesis, and glycolysis in the liver. Represses the expression of PCK2, a rate-limiting step enzyme of gluconeogenesis (By similarity). May play a role in the cell cycle regulation. {ECO:0000250|UniProtKB:O89091, ECO:0000269|PubMed:8584037}. |
Q13151 | HNRNPA0 | S68 | ochoa | Heterogeneous nuclear ribonucleoprotein A0 (hnRNP A0) | mRNA-binding component of ribonucleosomes. Specifically binds AU-rich element (ARE)-containing mRNAs. Involved in post-transcriptional regulation of cytokines mRNAs. {ECO:0000269|PubMed:12456657}. |
Q13469 | NFATC2 | S737 | ochoa | Nuclear factor of activated T-cells, cytoplasmic 2 (NF-ATc2) (NFATc2) (NFAT pre-existing subunit) (NF-ATp) (T-cell transcription factor NFAT1) | Plays a role in the inducible expression of cytokine genes in T-cells, especially in the induction of the IL-2, IL-3, IL-4, TNF-alpha or GM-CSF (PubMed:15790681). Promotes invasive migration through the activation of GPC6 expression and WNT5A signaling pathway (PubMed:21871017). Is involved in the negative regulation of chondrogenesis (PubMed:35789258). Recruited by AKAP5 to ORAI1 pore-forming subunit of CRAC channels in Ca(2+) signaling microdomains where store-operated Ca(2+) influx is coupled to calmodulin and calcineurin signaling and activation of NFAT-dependent transcriptional responses. {ECO:0000250|UniProtKB:Q60591, ECO:0000269|PubMed:15790681, ECO:0000269|PubMed:21871017, ECO:0000269|PubMed:35789258}. |
Q13615 | MTMR3 | S913 | ochoa | Phosphatidylinositol-3,5-bisphosphate 3-phosphatase MTMR3 (EC 3.1.3.95) (FYVE domain-containing dual specificity protein phosphatase 1) (FYVE-DSP1) (Myotubularin-related protein 3) (Phosphatidylinositol-3,5-bisphosphate 3-phosphatase) (Phosphatidylinositol-3-phosphate phosphatase) (Zinc finger FYVE domain-containing protein 10) | Lipid phosphatase that specifically dephosphorylates the D-3 position of phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate, generating phosphatidylinositol and phosphatidylinositol 5-phosphate (PubMed:10733931, PubMed:11302699, PubMed:11676921, PubMed:12646134). Decreases the levels of phosphatidylinositol 3-phosphate, a phospholipid found in cell membranes where it acts as key regulator of both cell signaling and intracellular membrane traffic (PubMed:11302699, PubMed:11676921, PubMed:12646134). Could also have a molecular sequestering/adapter activity and regulate biological processes independently of its phosphatase activity. It includes the regulation of midbody abscission during mitotic cytokinesis (PubMed:25659891). {ECO:0000269|PubMed:10733931, ECO:0000269|PubMed:11302699, ECO:0000269|PubMed:11676921, ECO:0000269|PubMed:12646134, ECO:0000269|PubMed:25659891}. |
Q13884 | SNTB1 | S389 | ochoa | Beta-1-syntrophin (59 kDa dystrophin-associated protein A1 basic component 1) (DAPA1B) (BSYN2) (Syntrophin-2) (Tax interaction protein 43) (TIP-43) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. |
Q14511 | NEDD9 | S333 | ochoa | Enhancer of filamentation 1 (hEF1) (CRK-associated substrate-related protein) (CAS-L) (CasL) (Cas scaffolding protein family member 2) (CASS2) (Neural precursor cell expressed developmentally down-regulated protein 9) (NEDD-9) (Renal carcinoma antigen NY-REN-12) (p105) [Cleaved into: Enhancer of filamentation 1 p55] | Scaffolding protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion (PubMed:24574519). As a focal adhesion protein, plays a role in embryonic fibroblast migration (By similarity). May play an important role in integrin beta-1 or B cell antigen receptor (BCR) mediated signaling in B- and T-cells. Integrin beta-1 stimulation leads to recruitment of various proteins including CRKL and SHPTP2 to the tyrosine phosphorylated form (PubMed:9020138). Promotes adhesion and migration of lymphocytes; as a result required for the correct migration of lymphocytes to the spleen and other secondary lymphoid organs (PubMed:17174122). Plays a role in the organization of T-cell F-actin cortical cytoskeleton and the centralization of T-cell receptor microclusters at the immunological synapse (By similarity). Negatively regulates cilia outgrowth in polarized cysts (By similarity). Modulates cilia disassembly via activation of AURKA-mediated phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723). Positively regulates RANKL-induced osteoclastogenesis (By similarity). Required for the maintenance of hippocampal dendritic spines in the dentate gyrus and CA1 regions, thereby involved in spatial learning and memory (By similarity). {ECO:0000250|UniProtKB:A0A8I3PDQ1, ECO:0000250|UniProtKB:O35177, ECO:0000269|PubMed:17174122, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:24574519, ECO:0000269|PubMed:9020138}. |
Q14526 | HIC1 | S713 | psp | Hypermethylated in cancer 1 protein (Hic-1) (Zinc finger and BTB domain-containing protein 29) | Transcriptional repressor (PubMed:12052894, PubMed:15231840). Recognizes and binds to the consensus sequence '5-[CG]NG[CG]GGGCA[CA]CC-3' (PubMed:15231840). May act as a tumor suppressor (PubMed:20154726). Involved in development of head, face, limbs and ventral body wall (By similarity). Involved in down-regulation of SIRT1 and thereby is involved in regulation of p53/TP53-dependent apoptotic DNA-damage responses (PubMed:16269335). The specific target gene promoter association seems to be depend on corepressors, such as CTBP1 or CTBP2 and MTA1 (PubMed:12052894, PubMed:20547755). In cooperation with MTA1 (indicative for an association with the NuRD complex) represses transcription from CCND1/cyclin-D1 and CDKN1C/p57Kip2 specifically in quiescent cells (PubMed:20547755). Involved in regulation of the Wnt signaling pathway probably by association with TCF7L2 and preventing TCF7L2 and CTNNB1 association with promoters of TCF-responsive genes (PubMed:16724116). Seems to repress transcription from E2F1 and ATOH1 which involves ARID1A, indicative for the participation of a distinct SWI/SNF-type chromatin-remodeling complex (PubMed:18347096, PubMed:19486893). Probably represses transcription of ACKR3, FGFBP1 and EFNA1 (PubMed:16690027, PubMed:19525223, PubMed:20154726). {ECO:0000250|UniProtKB:Q9R1Y5, ECO:0000269|PubMed:12052894, ECO:0000269|PubMed:15231840, ECO:0000269|PubMed:16269335, ECO:0000269|PubMed:16690027, ECO:0000269|PubMed:16724116, ECO:0000269|PubMed:18347096, ECO:0000269|PubMed:19486893, ECO:0000269|PubMed:19525223, ECO:0000269|PubMed:20154726, ECO:0000269|PubMed:20547755}. |
Q14865 | ARID5B | S566 | ochoa | AT-rich interactive domain-containing protein 5B (ARID domain-containing protein 5B) (MRF1-like protein) (Modulator recognition factor 2) (MRF-2) | Transcription coactivator that binds to the 5'-AATA[CT]-3' core sequence and plays a key role in adipogenesis and liver development. Acts by forming a complex with phosphorylated PHF2, which mediates demethylation at Lys-336, leading to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes. The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. Required for adipogenesis: regulates triglyceride metabolism in adipocytes by regulating expression of adipogenic genes. Overexpression leads to induction of smooth muscle marker genes, suggesting that it may also act as a regulator of smooth muscle cell differentiation and proliferation. Represses the cytomegalovirus enhancer. {ECO:0000269|PubMed:21532585}. |
Q14938 | NFIX | S301 | ochoa | Nuclear factor 1 X-type (NF1-X) (Nuclear factor 1/X) (CCAAT-box-binding transcription factor) (CTF) (Nuclear factor I/X) (NF-I/X) (NFI-X) (TGGCA-binding protein) | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication. |
Q15111 | PLCL1 | S47 | ochoa | Inactive phospholipase C-like protein 1 (PLC-L1) (Phospholipase C-deleted in lung carcinoma) (Phospholipase C-related but catalytically inactive protein) (PRIP) | Involved in an inositol phospholipid-based intracellular signaling cascade. Shows no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. Component in the phospho-dependent endocytosis process of GABA A receptor (By similarity). Regulates the turnover of receptors and thus contributes to the maintenance of GABA-mediated synaptic inhibition. Its aberrant expression could contribute to the genesis and progression of lung carcinoma. Acts as an inhibitor of PPP1C. {ECO:0000250, ECO:0000269|PubMed:17254016}. |
Q15468 | STIL | S719 | ochoa | SCL-interrupting locus protein (TAL-1-interrupting locus protein) | Immediate-early gene. Plays an important role in embryonic development as well as in cellular growth and proliferation; its long-term silencing affects cell survival and cell cycle distribution as well as decreases CDK1 activity correlated with reduced phosphorylation of CDK1. Plays a role as a positive regulator of the sonic hedgehog pathway, acting downstream of PTCH1 (PubMed:16024801, PubMed:9372240). Plays an important role in the regulation of centriole duplication. Required for the onset of procentriole formation and proper mitotic progression. During procentriole formation, is essential for the correct loading of SASS6 and CPAP to the base of the procentriole to initiate procentriole assembly (PubMed:22020124). In complex with STIL acts as a modulator of PLK4-driven cytoskeletal rearrangements and directional cell motility (PubMed:29712910, PubMed:32107292). {ECO:0000269|PubMed:16024801, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:29712910, ECO:0000269|PubMed:32107292, ECO:0000269|PubMed:9372240}. |
Q15562 | TEAD2 | S260 | ochoa | Transcriptional enhancer factor TEF-4 (TEA domain family member 2) (TEAD-2) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15911 | ZFHX3 | S1179 | ochoa | Zinc finger homeobox protein 3 (AT motif-binding factor 1) (AT-binding transcription factor 1) (Alpha-fetoprotein enhancer-binding protein) (Zinc finger homeodomain protein 3) (ZFH-3) | Transcriptional regulator which can act as an activator or a repressor. Inhibits the enhancer element of the AFP gene by binding to its AT-rich core sequence. In concert with SMAD-dependent TGF-beta signaling can repress the transcription of AFP via its interaction with SMAD2/3 (PubMed:25105025). Regulates the circadian locomotor rhythms via transcriptional activation of neuropeptidergic genes which are essential for intercellular synchrony and rhythm amplitude in the suprachiasmatic nucleus (SCN) of the brain (By similarity). Regulator of myoblasts differentiation through the binding to the AT-rich sequence of MYF6 promoter and promoter repression (PubMed:11312261). Down-regulates the MUC5AC promoter in gastric cancer (PubMed:17330845). In association with RUNX3, up-regulates CDKN1A promoter activity following TGF-beta stimulation (PubMed:20599712). Inhibits estrogen receptor (ESR1) function by selectively competing with coactivator NCOA3 for binding to ESR1 in ESR1-positive breast cancer cells (PubMed:20720010). {ECO:0000250|UniProtKB:Q61329, ECO:0000269|PubMed:11312261, ECO:0000269|PubMed:17330845, ECO:0000269|PubMed:20599712, ECO:0000269|PubMed:20720010, ECO:0000269|PubMed:25105025}. |
Q16630 | CPSF6 | S38 | ochoa | Cleavage and polyadenylation specificity factor subunit 6 (Cleavage and polyadenylation specificity factor 68 kDa subunit) (CPSF 68 kDa subunit) (Cleavage factor Im complex 68 kDa subunit) (CFIm68) (Pre-mRNA cleavage factor Im 68 kDa subunit) (Protein HPBRII-4/7) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:14690600, PubMed:29276085, PubMed:8626397, PubMed:9659921). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:14690600, PubMed:8626397, PubMed:9659921). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF6 enhances NUDT21/CPSF5 binding to 5'-UGUA-3' elements localized upstream of pA signals and promotes RNA looping, and hence activates directly the mRNA 3'-processing machinery (PubMed:15169763, PubMed:21295486, PubMed:29276085). Plays a role in mRNA export (PubMed:19864460). {ECO:0000269|PubMed:14690600, ECO:0000269|PubMed:15169763, ECO:0000269|PubMed:19864460, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:21295486, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397, ECO:0000269|PubMed:9659921}.; FUNCTION: (Microbial infection) Binds HIV-1 capsid-nucleocapsid (HIV-1 CA-NC) complexes and might thereby promote the integration of the virus in the nucleus of dividing cells (in vitro). {ECO:0000269|PubMed:24130490}. |
Q17RH5 | RAPGEF2 | S1010 | psp | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (Neural RAP guanine nucleotide exchange protein) (PDZ domain-containing guanine nucleotide exchange factor 1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | None |
Q24JP5 | TMEM132A | S529 | ochoa | Transmembrane protein 132A (HSPA5-binding protein 1) | May play a role in embryonic and postnatal development of the brain. Increased resistance to cell death induced by serum starvation in cultured cells. Regulates cAMP-induced GFAP gene expression via STAT3 phosphorylation (By similarity). {ECO:0000250}. |
Q2KJY2 | KIF26B | S1724 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q3KQU3 | MAP7D1 | S517 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q52LR7 | EPC2 | S754 | ochoa | Enhancer of polycomb homolog 2 (EPC-like) | May play a role in transcription or DNA repair. {ECO:0000250}. |
Q53EZ4 | CEP55 | S428 | ochoa|psp | Centrosomal protein of 55 kDa (Cep55) (Up-regulated in colon cancer 6) | Plays a role in mitotic exit and cytokinesis (PubMed:16198290, PubMed:17853893). Recruits PDCD6IP and TSG101 to midbody during cytokinesis. Required for successful completion of cytokinesis (PubMed:17853893). Not required for microtubule nucleation (PubMed:16198290). Plays a role in the development of the brain and kidney (PubMed:28264986). {ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:28264986}. |
Q5T011 | SZT2 | S1819 | ochoa | KICSTOR complex protein SZT2 (Seizure threshold 2 protein homolog) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose (PubMed:28199306, PubMed:28199315). May play a role in the cellular response to oxidative stress (By similarity). {ECO:0000250|UniProtKB:A2A9C3, ECO:0000269|PubMed:28199306, ECO:0000269|PubMed:28199315}. |
Q5T1M5 | FKBP15 | S356 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T1M5 | FKBP15 | S1065 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T5Y3 | CAMSAP1 | S375 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5U623 | ATF7IP2 | S488 | ochoa | Activating transcription factor 7-interacting protein 2 (ATF7-interacting protein 2) (MBD1-containing chromatin-associated factor 2) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1. The complex formed with MBD1 and SETDB1 represses transcription and probably couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) activity (Probable). {ECO:0000305}. |
Q5VST9 | OBSCN | S136 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT52 | RPRD2 | S638 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VV41 | ARHGEF16 | S77 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q5W0V3 | FHIP2A | S549 | ochoa | FHF complex subunit HOOK interacting protein 2A (FHIP2A) | Required for proper functioning of the nervous system. {ECO:0000269|PubMed:31353455}. |
Q676U5 | ATG16L1 | S331 | ochoa | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q6F5E8 | CARMIL2 | S1120 | ochoa | Capping protein, Arp2/3 and myosin-I linker protein 2 (Capping protein regulator and myosin 1 linker 2) (F-actin-uncapping protein RLTPR) (Leucine-rich repeat-containing protein 16C) (RGD, leucine-rich repeat, tropomodulin and proline-rich-containing protein) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization (PubMed:26466680). Plays a role in cell protrusion formations; involved in cell polarity, lamellipodial assembly, membrane ruffling and macropinosome formations (PubMed:19846667, PubMed:26466680, PubMed:26578515). Involved as well in cell migration and invadopodia formation during wound healing (PubMed:19846667, PubMed:26466680, PubMed:26578515). Required for CD28-mediated stimulation of NF-kappa-B signaling, involved in naive T cells activation, maturation into T memory cells, and differentiation into T helper and T regulatory cells (PubMed:27647348, PubMed:27647349, PubMed:28112205). {ECO:0000269|PubMed:19846667, ECO:0000269|PubMed:26466680, ECO:0000269|PubMed:26578515, ECO:0000269|PubMed:27647348, ECO:0000269|PubMed:27647349, ECO:0000269|PubMed:28112205}. |
Q6P0Q8 | MAST2 | S209 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6PGQ7 | BORA | S299 | ochoa | Protein aurora borealis (HsBora) | Required for the activation of AURKA at the onset of mitosis. {ECO:0000269|PubMed:16890155}. |
Q6PI47 | KCTD18 | S346 | ochoa | BTB/POZ domain-containing protein KCTD18 | None |
Q6PI47 | KCTD18 | S393 | ochoa | BTB/POZ domain-containing protein KCTD18 | None |
Q6UB99 | ANKRD11 | S556 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6UUV9 | CRTC1 | S139 | ochoa | CREB-regulated transcription coactivator 1 (Mucoepidermoid carcinoma translocated protein 1) (Transducer of regulated cAMP response element-binding protein 1) (TORC-1) (Transducer of CREB protein 1) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PGC1alpha and inducer of mitochondrial biogenesis in muscle cells. In the hippocampus, involved in late-phase long-term potentiation (L-LTP) maintenance at the Schaffer collateral-CA1 synapses. May be required for dendritic growth of developing cortical neurons (By similarity). In concert with SIK1, regulates the light-induced entrainment of the circadian clock. In response to light stimulus, coactivates the CREB-mediated transcription of PER1 which plays an important role in the photic entrainment of the circadian clock. {ECO:0000250|UniProtKB:Q157S1, ECO:0000250|UniProtKB:Q68ED7, ECO:0000269|PubMed:23699513}.; FUNCTION: (Microbial infection) Plays a role of coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:16809310}. |
Q6ZN55 | ZNF574 | S728 | ochoa | Zinc finger protein 574 | May be involved in transcriptional regulation. |
Q6ZSR9 | None | S300 | ochoa | Uncharacterized protein FLJ45252 | None |
Q6ZVF9 | GPRIN3 | S57 | ochoa | G protein-regulated inducer of neurite outgrowth 3 (GRIN3) | May be involved in neurite outgrowth. {ECO:0000250}. |
Q6ZW31 | SYDE1 | S60 | ochoa | Rho GTPase-activating protein SYDE1 (Synapse defective protein 1 homolog 1) (Protein syd-1 homolog 1) | GTPase activator for the Rho-type GTPases. As a GCM1 downstream effector, it is involved in placental development and positively regulates trophoblast cells migration. It regulates cytoskeletal remodeling by controlling the activity of Rho GTPases including RHOA, CDC42 and RAC1 (PubMed:27917469). {ECO:0000269|PubMed:27917469}. |
Q70EL4 | USP43 | S1041 | ochoa | Ubiquitin carboxyl-terminal hydrolase 43 (EC 3.4.19.12) (Deubiquitinating enzyme 43) (Ubiquitin thioesterase 43) (Ubiquitin-specific-processing protease 43) | May recognize and hydrolyze the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins (By similarity). {ECO:0000250}. |
Q717R9 | CYS1 | S59 | ochoa | Cystin-1 (Cilia-associated protein) | None |
Q765P7 | MTSS2 | S441 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q765P7 | MTSS2 | S624 | ochoa | Protein MTSS 2 (Actin-bundling with BAIAP2 homology protein 1) (ABBA-1) (MTSS1-like protein) | Involved in plasma membrane dynamics. Potentiated PDGF-mediated formation of membrane ruffles and lamellipodia in fibroblasts, acting via RAC1 activation (PubMed:14752106). May function in actin bundling (PubMed:14752106). {ECO:0000269|PubMed:14752106}. |
Q76L83 | ASXL2 | S637 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7L2J0 | MEPCE | S60 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7L7X3 | TAOK1 | S965 | ochoa | Serine/threonine-protein kinase TAO1 (EC 2.7.11.1) (Kinase from chicken homolog B) (hKFC-B) (MARK Kinase) (MARKK) (Prostate-derived sterile 20-like kinase 2) (PSK-2) (PSK2) (Prostate-derived STE20-like kinase 2) (Thousand and one amino acid protein kinase 1) (TAOK1) (hTAOK1) | Serine/threonine-protein kinase involved in various processes such as p38/MAPK14 stress-activated MAPK cascade, DNA damage response and regulation of cytoskeleton stability. Phosphorylates MAP2K3, MAP2K6 and MARK2. Acts as an activator of the p38/MAPK14 stress-activated MAPK cascade by mediating phosphorylation and subsequent activation of the upstream MAP2K3 and MAP2K6 kinases. Involved in G-protein coupled receptor signaling to p38/MAPK14. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of MAP2K3 and MAP2K6. Acts as a regulator of cytoskeleton stability by phosphorylating 'Thr-208' of MARK2, leading to activate MARK2 kinase activity and subsequent phosphorylation and detachment of MAPT/TAU from microtubules. Also acts as a regulator of apoptosis: regulates apoptotic morphological changes, including cell contraction, membrane blebbing and apoptotic bodies formation via activation of the MAPK8/JNK cascade. Plays an essential role in the regulation of neuronal development in the central nervous system (PubMed:33565190). Also plays a role in the regulation of neuronal migration to the cortical plate (By similarity). {ECO:0000250|UniProtKB:Q5F2E8, ECO:0000269|PubMed:12665513, ECO:0000269|PubMed:13679851, ECO:0000269|PubMed:16407310, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:17900936, ECO:0000269|PubMed:33565190}. |
Q7Z2Z1 | TICRR | S1413 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z5L9 | IRF2BP2 | S423 | ochoa | Interferon regulatory factor 2-binding protein 2 (IRF-2-binding protein 2) (IRF-2BP2) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities (PubMed:12799427). Represses the NFAT1-dependent transactivation of NFAT-responsive promoters (PubMed:21576369). Acts as a coactivator of VEGFA expression in cardiac and skeletal muscles (PubMed:20702774). Plays a role in immature B-cell differentiation (PubMed:27016798). {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:20702774, ECO:0000269|PubMed:21576369, ECO:0000269|PubMed:27016798}. |
Q86UU0 | BCL9L | S947 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86UU1 | PHLDB1 | S334 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86VP1 | TAX1BP1 | S508 | ochoa | Tax1-binding protein 1 (TRAF6-binding protein) | Ubiquitin-binding adapter that participates in inflammatory, antiviral and innate immune processes as well as selective autophagy regulation (PubMed:29940186, PubMed:30459273, PubMed:30909570). Plays a key role in the negative regulation of NF-kappa-B and IRF3 signalings by acting as an adapter for the ubiquitin-editing enzyme A20/TNFAIP3 to bind and inactivate its substrates (PubMed:17703191). Disrupts the interactions between the E3 ubiquitin ligase TRAF3 and TBK1/IKBKE to attenuate 'Lys63'-linked polyubiquitination of TBK1 and thereby IFN-beta production (PubMed:21885437). Also recruits A20/TNFAIP3 to ubiquitinated signaling proteins TRAF6 and RIPK1, leading to their deubiquitination and disruption of IL-1 and TNF-induced NF-kappa-B signaling pathways (PubMed:17703191). Inhibits virus-induced apoptosis by inducing the 'Lys-48'-linked polyubiquitination and degradation of MAVS via recruitment of the E3 ligase ITCH, thereby attenuating MAVS-mediated apoptosis signaling (PubMed:27736772). As a macroautophagy/autophagy receptor, facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis (PubMed:26451915). Upon NBR1 recruitment to the SQSTM1-ubiquitin condensates, acts as the major recruiter of RB1CC1 to these ubiquitin condensates to promote their autophagic degradation (PubMed:33226137, PubMed:34471133). Mediates the autophagic degradation of other substrates including TICAM1 (PubMed:28898289). {ECO:0000269|PubMed:10435631, ECO:0000269|PubMed:10920205, ECO:0000269|PubMed:17703191, ECO:0000269|PubMed:21885437, ECO:0000269|PubMed:26451915, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:28898289, ECO:0000269|PubMed:29940186, ECO:0000269|PubMed:30459273, ECO:0000269|PubMed:30909570, ECO:0000269|PubMed:33226137, ECO:0000269|PubMed:34471133}. |
Q86W56 | PARG | S22 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86YS7 | C2CD5 | S250 | ochoa | C2 domain-containing protein 5 (C2 domain-containing phosphoprotein of 138 kDa) | Required for insulin-stimulated glucose transport and glucose transporter SLC2A4/GLUT4 translocation from intracellular glucose storage vesicle (GSV) to the plasma membrane (PM) in adipocytes. Binds phospholipid membranes in a calcium-dependent manner and is necessary for the optimal membrane fusion between SLC2A4/GLUT4 GSV and the PM. {ECO:0000269|PubMed:21907143}. |
Q8IUG5 | MYO18B | S2245 | ochoa | Unconventional myosin-XVIIIb | May be involved in intracellular trafficking of the muscle cell when in the cytoplasm, whereas entering the nucleus, may be involved in the regulation of muscle specific genes. May play a role in the control of tumor development and progression; restored MYO18B expression in lung cancer cells suppresses anchorage-independent growth. |
Q8IVF2 | AHNAK2 | S1112 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S1710 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S4185 | ochoa | Protein AHNAK2 | None |
Q8IWC1 | MAP7D3 | S322 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IXJ9 | ASXL1 | S51 | ochoa | Polycomb group protein ASXL1 (Additional sex combs-like protein 1) | Probable Polycomb group (PcG) protein involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor gamma (PPARG) (PubMed:16606617). Acts as a coactivator of RARA and RXRA through association with NCOA1 (PubMed:16606617). Acts as a corepressor for PPARG and suppresses its adipocyte differentiation-inducing activity (By similarity). Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:20436459, PubMed:30664650, PubMed:36180891). Acts as a sensor of N(6)-methyladenine methylation on DNA (6mA): recognizes and binds 6mA DNA, leading to its ubiquitination and degradation by TRIP12, thereby inactivating the PR-DUB complex and regulating Polycomb silencing (PubMed:30982744). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). Together with BAP1, negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000250|UniProtKB:P59598, ECO:0000269|PubMed:16606617, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:30982744, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:36180891}. |
Q8IY33 | MICALL2 | S494 | ochoa | MICAL-like protein 2 (Junctional Rab13-binding protein) (Molecule interacting with CasL-like 2) (MICAL-L2) | Effector of small Rab GTPases which is involved in junctional complexes assembly through the regulation of cell adhesion molecules transport to the plasma membrane and actin cytoskeleton reorganization. Regulates the endocytic recycling of occludins, claudins and E-cadherin to the plasma membrane and may thereby regulate the establishment of tight junctions and adherens junctions. In parallel, may regulate actin cytoskeleton reorganization directly through interaction with F-actin or indirectly through actinins and filamins. Most probably involved in the processes of epithelial cell differentiation, cell spreading and neurite outgrowth (By similarity). Undergoes liquid-liquid phase separation to form tubular recycling endosomes. Plays 2 sequential roles in the biogenesis of tubular recycling endosomes: first organizes phase separation and then the closed form formed by interaction with RAB8A promotes endosomal tubulation (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q3TN34}. |
Q8IYB8 | SUPV3L1 | S725 | ochoa | ATP-dependent RNA helicase SUPV3L1, mitochondrial (EC 3.6.4.13) (Suppressor of var1 3-like protein 1) (SUV3-like protein 1) | Major helicase player in mitochondrial RNA metabolism. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules (PubMed:29967381). ATPase and ATP-dependent multisubstrate helicase, able to unwind double-stranded (ds) DNA and RNA, and RNA/DNA heteroduplexes in the 5'-to-3' direction. Plays a role in the RNA surveillance system in mitochondria; regulates the stability of mature mRNAs, the removal of aberrantly formed mRNAs and the rapid degradation of non coding processing intermediates. Also implicated in recombination and chromatin maintenance pathways. May protect cells from apoptosis. Associates with mitochondrial DNA. {ECO:0000269|PubMed:12466530, ECO:0000269|PubMed:15096047, ECO:0000269|PubMed:17352692, ECO:0000269|PubMed:17961633, ECO:0000269|PubMed:18678873, ECO:0000269|PubMed:19509288, ECO:0000269|PubMed:19864255, ECO:0000269|PubMed:29967381}. |
Q8IZT6 | ASPM | S446 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8N137 | CNTROB | S45 | psp | Centrobin (Centrosomal BRCA2-interacting protein) (LYST-interacting protein 8) | Required for centriole duplication. Inhibition of centriole duplication leading to defects in cytokinesis. {ECO:0000269|PubMed:16275750}. |
Q8N3F8 | MICALL1 | S273 | ochoa | MICAL-like protein 1 (Molecule interacting with Rab13) (MIRab13) | Lipid-binding protein with higher affinity for phosphatidic acid, a lipid enriched in recycling endosome membranes. On endosome membranes, acts as a downstream effector of Rab proteins recruiting cytosolic proteins to regulate membrane tubulation (PubMed:19864458, PubMed:20801876, PubMed:23596323, PubMed:34100897). Involved in a late step of receptor-mediated endocytosis regulating for instance endocytosed-EGF receptor trafficking (PubMed:21795389). Alternatively, regulates slow endocytic recycling of endocytosed proteins back to the plasma membrane (PubMed:19864458). Also involved in cargo protein delivery to the plasma membrane (PubMed:34100897). Plays a role in ciliogenesis coordination, recruits EHD1 to primary cilium where it is anchored to the centriole through interaction with tubulins (PubMed:31615969). May indirectly play a role in neurite outgrowth (By similarity). {ECO:0000250|UniProtKB:Q8BGT6, ECO:0000269|PubMed:19864458, ECO:0000269|PubMed:20801876, ECO:0000269|PubMed:21795389, ECO:0000269|PubMed:23596323, ECO:0000269|PubMed:31615969, ECO:0000269|PubMed:34100897}. |
Q8N3V7 | SYNPO | S828 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4L2 | PIP4P2 | S47 | ochoa | Type 2 phosphatidylinositol 4,5-bisphosphate 4-phosphatase (Type 2 PtdIns-4,5-P2 4-Ptase) (EC 3.1.3.78) (PtdIns-4,5-P2 4-Ptase II) (Transmembrane protein 55A) | Catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) to phosphatidylinositol-4-phosphate (PtdIns-4-P) (PubMed:16365287). Does not hydrolyze phosphatidylinositol 3,4,5-trisphosphate, phosphatidylinositol 3,4-bisphosphate, inositol 3,5-bisphosphate, inositol 3,4-bisphosphate, phosphatidylinositol 5-monophosphate, phosphatidylinositol 4-monophosphate and phosphatidylinositol 3-monophosphate (PubMed:16365287). Negatively regulates the phagocytosis of large particles by reducing phagosomal phosphatidylinositol 4,5-bisphosphate accumulation during cup formation (By similarity). {ECO:0000250|UniProtKB:Q9CZX7, ECO:0000269|PubMed:16365287}. |
Q8N884 | CGAS | S37 | psp | Cyclic GMP-AMP synthase (cGAMP synthase) (cGAS) (h-cGAS) (EC 2.7.7.86) (2'3'-cGAMP synthase) (Mab-21 domain-containing protein 1) | Nucleotidyltransferase that catalyzes the formation of cyclic GMP-AMP (2',3'-cGAMP) from ATP and GTP and plays a key role in innate immunity (PubMed:21478870, PubMed:23258413, PubMed:23707061, PubMed:23707065, PubMed:23722159, PubMed:24077100, PubMed:24116191, PubMed:24462292, PubMed:25131990, PubMed:26300263, PubMed:29976794, PubMed:30799039, PubMed:31142647, PubMed:32814054, PubMed:33273464, PubMed:33542149, PubMed:37217469, PubMed:37802025). Catalysis involves both the formation of a 2',5' phosphodiester linkage at the GpA step and the formation of a 3',5' phosphodiester linkage at the ApG step, producing c[G(2',5')pA(3',5')p] (PubMed:28214358, PubMed:28363908). Acts as a key DNA sensor: directly binds double-stranded DNA (dsDNA), inducing the formation of liquid-like droplets in which CGAS is activated, leading to synthesis of 2',3'-cGAMP, a second messenger that binds to and activates STING1, thereby triggering type-I interferon production (PubMed:28314590, PubMed:28363908, PubMed:29976794, PubMed:32817552, PubMed:33230297, PubMed:33606975, PubMed:35322803, PubMed:35438208, PubMed:35460603, PubMed:35503863). Preferentially recognizes and binds curved long dsDNAs of a minimal length of 40 bp (PubMed:30007416). Acts as a key foreign DNA sensor, the presence of double-stranded DNA (dsDNA) in the cytoplasm being a danger signal that triggers the immune responses (PubMed:28363908). Has antiviral activity by sensing the presence of dsDNA from DNA viruses in the cytoplasm (PubMed:28363908, PubMed:35613581). Also acts as an innate immune sensor of infection by retroviruses, such as HIV-2, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:23929945, PubMed:24269171, PubMed:30270045, PubMed:32852081). In contrast, HIV-1 is poorly sensed by CGAS, due to its capsid that cloaks viral DNA from CGAS detection (PubMed:24269171, PubMed:30270045, PubMed:32852081). Detection of retroviral reverse-transcribed DNA in the cytosol may be indirect and be mediated via interaction with PQBP1, which directly binds reverse-transcribed retroviral DNA (PubMed:26046437). Also detects the presence of DNA from bacteria, such as M.tuberculosis (PubMed:26048138). 2',3'-cGAMP can be transferred from producing cells to neighboring cells through gap junctions, leading to promote STING1 activation and convey immune response to connecting cells (PubMed:24077100). 2',3'-cGAMP can also be transferred between cells by virtue of packaging within viral particles contributing to IFN-induction in newly infected cells in a cGAS-independent but STING1-dependent manner (PubMed:26229115). Also senses the presence of neutrophil extracellular traps (NETs) that are translocated to the cytosol following phagocytosis, leading to synthesis of 2',3'-cGAMP (PubMed:33688080). In addition to foreign DNA, can also be activated by endogenous nuclear or mitochondrial DNA (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297). When self-DNA leaks into the cytosol during cellular stress (such as mitochondrial stress, SARS-CoV-2 infection causing severe COVID-19 disease, DNA damage, mitotic arrest or senescence), or is present in form of cytosolic micronuclei, CGAS is activated leading to a state of sterile inflammation (PubMed:28738408, PubMed:28759889, PubMed:31299200, PubMed:33031745, PubMed:33230297, PubMed:35045565). Acts as a regulator of cellular senescence by binding to cytosolic chromatin fragments that are present in senescent cells, leading to trigger type-I interferon production via STING1 and promote cellular senescence (By similarity). Also involved in the inflammatory response to genome instability and double-stranded DNA breaks: acts by localizing to micronuclei arising from genome instability (PubMed:28738408, PubMed:28759889). Micronuclei, which are frequently found in cancer cells, consist of chromatin surrounded by their own nuclear membrane: following breakdown of the micronuclear envelope, a process associated with chromothripsis, CGAS binds self-DNA exposed to the cytosol, leading to 2',3'-cGAMP synthesis and subsequent activation of STING1 and type-I interferon production (PubMed:28738408, PubMed:28759889). Activated in response to prolonged mitotic arrest, promoting mitotic cell death (PubMed:31299200). In a healthy cell, CGAS is however kept inactive even in cellular events that directly expose it to self-DNA, such as mitosis, when cGAS associates with chromatin directly after nuclear envelope breakdown or remains in the form of postmitotic persistent nuclear cGAS pools bound to chromatin (PubMed:31299200, PubMed:33542149). Nuclear CGAS is inactivated by chromatin via direct interaction with nucleosomes, which block CGAS from DNA binding and thus prevent CGAS-induced autoimmunity (PubMed:31299200, PubMed:32911482, PubMed:32912999, PubMed:33051594, PubMed:33542149). Also acts as a suppressor of DNA repair in response to DNA damage: inhibits homologous recombination repair by interacting with PARP1, the CGAS-PARP1 interaction leading to impede the formation of the PARP1-TIMELESS complex (PubMed:30356214, PubMed:31544964). In addition to DNA, also sense translation stress: in response to translation stress, translocates to the cytosol and associates with collided ribosomes, promoting its activation and triggering type-I interferon production (PubMed:34111399). In contrast to other mammals, human CGAS displays species-specific mechanisms of DNA recognition and produces less 2',3'-cGAMP, allowing a more fine-tuned response to pathogens (PubMed:30007416). {ECO:0000250|UniProtKB:Q8C6L5, ECO:0000269|PubMed:21478870, ECO:0000269|PubMed:23258413, ECO:0000269|PubMed:23707061, ECO:0000269|PubMed:23707065, ECO:0000269|PubMed:23722159, ECO:0000269|PubMed:23929945, ECO:0000269|PubMed:24077100, ECO:0000269|PubMed:24116191, ECO:0000269|PubMed:24269171, ECO:0000269|PubMed:24462292, ECO:0000269|PubMed:25131990, ECO:0000269|PubMed:26046437, ECO:0000269|PubMed:26048138, ECO:0000269|PubMed:26229115, ECO:0000269|PubMed:26300263, ECO:0000269|PubMed:28214358, ECO:0000269|PubMed:28314590, ECO:0000269|PubMed:28363908, ECO:0000269|PubMed:28738408, ECO:0000269|PubMed:28759889, ECO:0000269|PubMed:29976794, ECO:0000269|PubMed:30007416, ECO:0000269|PubMed:30270045, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:30799039, ECO:0000269|PubMed:31142647, ECO:0000269|PubMed:31299200, ECO:0000269|PubMed:31544964, ECO:0000269|PubMed:32814054, ECO:0000269|PubMed:32817552, ECO:0000269|PubMed:32852081, ECO:0000269|PubMed:32911482, ECO:0000269|PubMed:32912999, ECO:0000269|PubMed:33031745, ECO:0000269|PubMed:33051594, ECO:0000269|PubMed:33230297, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33542149, ECO:0000269|PubMed:33606975, ECO:0000269|PubMed:33688080, ECO:0000269|PubMed:34111399, ECO:0000269|PubMed:35045565, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:35438208, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:35503863, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:37217469, ECO:0000269|PubMed:37802025}. |
Q8NAP3 | ZBTB38 | S1021 | ochoa | Zinc finger and BTB domain-containing protein 38 | Transcriptional regulator with bimodal DNA-binding specificity. Binds with a higher affinity to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' but can also bind to E-box elements (5'-CACGTG-3'). Can also bind specifically to a single methyl-CpG pair. Represses transcription in a methyl-CpG-dependent manner (PubMed:16354688). Plays an important role in regulating DNA replication and common fragile sites (CFS) stability in a RBBP6- and MCM10-dependent manner; represses expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). Acts as a transcriptional activator. May be involved in the differentiation and/or survival of late postmitotic neurons (By similarity). {ECO:0000250|UniProtKB:Q5EXX3, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:24726359}. |
Q8NC74 | RBBP8NL | S487 | ochoa | RBBP8 N-terminal-like protein | None |
Q8NEY1 | NAV1 | S1000 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NEZ4 | KMT2C | S2011 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NHL6 | LILRB1 | S522 | ochoa | Leukocyte immunoglobulin-like receptor subfamily B member 1 (LIR-1) (Leukocyte immunoglobulin-like receptor 1) (CD85 antigen-like family member J) (Immunoglobulin-like transcript 2) (ILT-2) (Monocyte/macrophage immunoglobulin-like receptor 7) (MIR-7) (CD antigen CD85j) | Receptor for class I MHC antigens. Recognizes a broad spectrum of HLA-A, HLA-B, HLA-C, HLA-G and HLA-F alleles (PubMed:16455647, PubMed:28636952). Receptor for H301/UL18, a human cytomegalovirus class I MHC homolog. Ligand binding results in inhibitory signals and down-regulation of the immune response. Engagement of LILRB1 present on natural killer cells or T-cells by class I MHC molecules protects the target cells from lysis. Interaction with HLA-B or HLA-E leads to inhibition of FCER1A signaling and serotonin release. Inhibits FCGR1A-mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions (PubMed:11907092, PubMed:9285411, PubMed:9842885). Recognizes HLA-G in complex with B2M/beta-2 microglobulin and a nonamer self-peptide (PubMed:16455647). Upon interaction with peptide-bound HLA-G-B2M complex, triggers secretion of growth-promoting factors by decidual NK cells (PubMed:19304799, PubMed:29262349). Reprograms B cells toward an immune suppressive phenotype (PubMed:24453251). {ECO:0000269|PubMed:11907092, ECO:0000269|PubMed:16455647, ECO:0000269|PubMed:19304799, ECO:0000269|PubMed:24453251, ECO:0000269|PubMed:28636952, ECO:0000269|PubMed:29262349, ECO:0000269|PubMed:9285411, ECO:0000269|PubMed:9842885}. |
Q8TBN0 | RAB3IL1 | S35 | ochoa | Guanine nucleotide exchange factor for Rab-3A (Rab-3A-interacting-like protein 1) (Rab3A-interacting-like protein 1) (Rabin3-like 1) | Guanine nucleotide exchange factor (GEF) which may activate RAB3A, a GTPase that regulates synaptic vesicle exocytosis. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. May also activate RAB8A and RAB8B. {ECO:0000269|PubMed:20937701}. |
Q8TCN5 | ZNF507 | S95 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q8WW38 | ZFPM2 | S400 | ochoa | Zinc finger protein ZFPM2 (Friend of GATA protein 2) (FOG-2) (Friend of GATA 2) (hFOG-2) (Zinc finger protein 89B) (Zinc finger protein multitype 2) | Transcription regulator that plays a central role in heart morphogenesis and development of coronary vessels from epicardium, by regulating genes that are essential during cardiogenesis. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA4, GATA5 and GATA6. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. Also required in gonadal differentiation, possibly be regulating expression of SRY. Probably acts a corepressor of NR2F2 (By similarity). {ECO:0000250, ECO:0000269|PubMed:10438528}. |
Q8WWM7 | ATXN2L | S409 | ochoa | Ataxin-2-like protein (Ataxin-2 domain protein) (Ataxin-2-related protein) | Involved in the regulation of stress granule and P-body formation. {ECO:0000269|PubMed:23209657}. |
Q92508 | PIEZO1 | S165 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q92508 | PIEZO1 | S544 | ochoa | Piezo-type mechanosensitive ion channel component 1 (Membrane protein induced by beta-amyloid treatment) (Mib) (Protein FAM38A) | Pore-forming subunit of the mechanosensitive non-specific cation Piezo channel required for rapidly adapting mechanically activated (MA) currents and has a key role in sensing touch and tactile pain (PubMed:23479567, PubMed:23695678, PubMed:25955826, PubMed:37590348). Piezo channels are homotrimeric three-blade propeller-shaped structures that utilize a cap-motion and plug-and-latch mechanism to gate their ion-conducting pathways (PubMed:37590348). Generates currents characterized by a linear current-voltage relationship that are sensitive to ruthenium red and gadolinium (By similarity). Conductance to monovalent alkali ions is highest for K(+), intermediate for Na(+) and lowest for Li(+) (PubMed:25955826). Divalent ions except for Mn(2+) permeate the channel but more slowly than the monovalent ions and they also reduce K(+) currents (PubMed:25955826). Plays a key role in epithelial cell adhesion by maintaining integrin activation through R-Ras recruitment to the ER, most probably in its activated state, and subsequent stimulation of calpain signaling (PubMed:20016066). In inner ear hair cells, PIEZO1/2 subunits may constitute part of the mechanotransducer (MET) non-selective cation channel complex where they may act as pore-forming ion-conducting component in the complex (By similarity). In the kidney, may contribute to the detection of intraluminal pressure changes and to urine flow sensing (By similarity). Acts as a shear-stress sensor that promotes endothelial cell organization and alignment in the direction of blood flow through calpain activation (PubMed:25119035). Plays a key role in blood vessel formation and vascular structure in both development and adult physiology (By similarity). Acts as a sensor of phosphatidylserine (PS) flipping at the plasma membrane and governs morphogenesis of muscle cells (By similarity). In myoblasts, flippase-mediated PS enrichment at the inner leaflet of plasma membrane triggers channel activation and Ca2+ influx followed by Rho GTPases signal transduction, leading to assembly of cortical actomyosin fibers and myotube formation (PubMed:29799007). {ECO:0000250|UniProtKB:E2JF22, ECO:0000250|UniProtKB:Q91X60, ECO:0000269|PubMed:25955826, ECO:0000269|PubMed:29799007}. |
Q92574 | TSC1 | S295 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92585 | MAML1 | S303 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92733 | PRCC | S241 | ochoa | Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) | May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}. |
Q92738 | USP6NL | S791 | ochoa | USP6 N-terminal-like protein (Related to the N-terminus of tre) (RN-tre) | Acts as a GTPase-activating protein for RAB5A and RAB43. Involved in receptor trafficking. In complex with EPS8 inhibits internalization of EGFR. Involved in retrograde transport from the endocytic pathway to the Golgi apparatus. Involved in the transport of Shiga toxin from early and recycling endosomes to the trans-Golgi network. Required for structural integrity of the Golgi complex. {ECO:0000269|PubMed:11099046, ECO:0000269|PubMed:17562788, ECO:0000269|PubMed:17684057}. |
Q92766 | RREB1 | S1653 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q969R8 | ITFG2 | S220 | ochoa | KICSTOR complex protein ITFG2 (Integrin-alpha FG-GAP repeat-containing protein 2) | As part of the KICSTOR complex functions in the amino acid-sensing branch of the TORC1 signaling pathway. Recruits, in an amino acid-independent manner, the GATOR1 complex to the lysosomal membranes and allows its interaction with GATOR2 and the RAG GTPases. Functions upstream of the RAG GTPases and is required to negatively regulate mTORC1 signaling in absence of amino acids. In absence of the KICSTOR complex mTORC1 is constitutively localized to the lysosome and activated. The KICSTOR complex is also probably involved in the regulation of mTORC1 by glucose. {ECO:0000269|PubMed:28199306}. |
Q96B18 | DACT3 | S316 | ochoa | Dapper homolog 3 (Antagonist of beta-catenin Dapper homolog 3) (Arginine-rich region 1 protein) (Dapper antagonist of catenin 3) | May be involved in regulation of intracellular signaling pathways during development. Specifically thought to play a role in canonical and/or non-canonical Wnt signaling pathways through interaction with DSH (Dishevelled) family proteins. {ECO:0000269|PubMed:18538736}. |
Q96DA6 | DNAJC19 | S70 | ochoa | Mitochondrial import inner membrane translocase subunit TIM14 (DnaJ homolog subfamily C member 19) | Mitochondrial co-chaperone which forms a complex with prohibitins to regulate cardiolipin remodeling (By similarity). May be a component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner. May act as a co-chaperone that stimulate the ATP-dependent activity (By similarity). {ECO:0000250|UniProtKB:Q07914, ECO:0000250|UniProtKB:Q9CQV7}. |
Q96DF8 | ESS2 | S440 | ochoa | Splicing factor ESS-2 homolog (DiGeorge syndrome critical region 13) (DiGeorge syndrome critical region 14) (DiGeorge syndrome protein H) (DGS-H) (Protein ES2) | May be involved in pre-mRNA splicing. {ECO:0000250|UniProtKB:P34420}. |
Q96G74 | OTUD5 | S527 | ochoa | OTU domain-containing protein 5 (EC 3.4.19.12) (Deubiquitinating enzyme A) (DUBA) | Deubiquitinating enzyme that functions as a negative regulator of the innate immune system (PubMed:17991829, PubMed:22245969, PubMed:23827681, PubMed:33523931). Has peptidase activity towards 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:22245969). Can also cleave 'Lys-11'-linked ubiquitin chains (in vitro) (PubMed:22245969). Acts via TRAF3 deubiquitination and subsequent suppression of type I interferon (IFN) production (PubMed:17991829). Controls neuroectodermal differentiation through cleaving 'Lys-48'-linked ubiquitin chains to counteract degradation of select chromatin regulators such as ARID1A, HDAC2 and HCF1 (PubMed:33523931). Acts as a positive regulator of mTORC1 and mTORC2 signaling following phosphorylation by MTOR: acts by mediating deubiquitination of BTRC, leading to its stability (PubMed:33110214). {ECO:0000269|PubMed:17991829, ECO:0000269|PubMed:22245969, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:33523931}. |
Q96IF1 | AJUBA | S237 | ochoa | LIM domain-containing protein ajuba | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, mitosis, cell-cell adhesion, cell differentiation, proliferation and migration. Contributes to the linking and/or strengthening of epithelia cell-cell junctions in part by linking adhesive receptors to the actin cytoskeleton. May be involved in signal transduction from cell adhesion sites to the nucleus. Plays an important role in regulation of the kinase activity of AURKA for mitotic commitment. Also a component of the IL-1 signaling pathway modulating IL-1-induced NFKB1 activation by influencing the assembly and activity of the PRKCZ-SQSTM1-TRAF6 multiprotein signaling complex. Functions as an HDAC-dependent corepressor for a subset of GFI1 target genes. Acts as a transcriptional corepressor for SNAI1 and SNAI2/SLUG-dependent repression of E-cadherin transcription. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Positively regulates microRNA (miRNA)-mediated gene silencing. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. {ECO:0000269|PubMed:12417594, ECO:0000269|PubMed:13678582, ECO:0000269|PubMed:15870274, ECO:0000269|PubMed:16413547, ECO:0000269|PubMed:17909014, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:22286099}. |
Q96JM3 | CHAMP1 | S260 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JN0 | LCOR | S42 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96JN8 | NEURL4 | S907 | ochoa | Neuralized-like protein 4 | Promotes CCP110 ubiquitination and proteasome-dependent degradation. By counteracting accumulation of CP110, maintains normal centriolar homeostasis and preventing formation of ectopic microtubular organizing centers. {ECO:0000269|PubMed:22261722, ECO:0000269|PubMed:22441691}. |
Q96KB5 | PBK | S59 | ochoa | Lymphokine-activated killer T-cell-originated protein kinase (EC 2.7.12.2) (Cancer/testis antigen 84) (CT84) (MAPKK-like protein kinase) (Nori-3) (PDZ-binding kinase) (Spermatogenesis-related protein kinase) (SPK) (T-LAK cell-originated protein kinase) | Phosphorylates MAP kinase p38. Seems to be active only in mitosis. May also play a role in the activation of lymphoid cells. When phosphorylated, forms a complex with TP53, leading to TP53 destabilization and attenuation of G2/M checkpoint during doxorubicin-induced DNA damage. {ECO:0000269|PubMed:10781613, ECO:0000269|PubMed:17482142}. |
Q96NY7 | CLIC6 | S305 | ochoa | Chloride intracellular channel protein 6 (Glutaredoxin-like oxidoreductase CLIC6) (EC 1.8.-.-) (Parchorin) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor (By similarity). Can insert into membranes and form voltage-dependent chloride-selective channels. The channel opens upon membrane depolarization at positive voltages and closes at negative membrane voltages (PubMed:37838179). May play a critical role in water-secreting cells, possibly through the regulation of chloride ion transport (By similarity). {ECO:0000250|UniProtKB:Q9N2G5, ECO:0000250|UniProtKB:Q9Y696, ECO:0000269|PubMed:37838179}. |
Q96Q15 | SMG1 | S1903 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96Q15 | SMG1 | S3556 | ochoa | Serine/threonine-protein kinase SMG1 (SMG-1) (hSMG-1) (EC 2.7.11.1) (Lambda/iota protein kinase C-interacting protein) (Lambda-interacting protein) (Nonsense mediated mRNA decay-associated PI3K-related kinase SMG1) | Serine/threonine protein kinase involved in both mRNA surveillance and genotoxic stress response pathways. Recognizes the substrate consensus sequence [ST]-Q. Plays a central role in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by phosphorylating UPF1/RENT1. Recruited by release factors to stalled ribosomes together with SMG8 and SMG9 (forming the SMG1C protein kinase complex), and UPF1 to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex. In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD. Also acts as a genotoxic stress-activated protein kinase that displays some functional overlap with ATM. Can phosphorylate p53/TP53 and is required for optimal p53/TP53 activation after cellular exposure to genotoxic stress. Its depletion leads to spontaneous DNA damage and increased sensitivity to ionizing radiation (IR). May activate PRKCI but not PRKCZ. {ECO:0000269|PubMed:11331269, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:15175154, ECO:0000269|PubMed:16452507}. |
Q96QD9 | FYTTD1 | S118 | ochoa | UAP56-interacting factor (Forty-two-three domain-containing protein 1) (Protein 40-2-3) | Required for mRNA export from the nucleus to the cytoplasm. Acts as an adapter that uses the DDX39B/UAP56-NFX1 pathway to ensure efficient mRNA export and delivering to the nuclear pore. Associates with spliced and unspliced mRNAs simultaneously with ALYREF/THOC4. {ECO:0000269|PubMed:19836239}. |
Q96R06 | SPAG5 | S341 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q99708 | RBBP8 | S233 | ochoa | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99958 | FOXC2 | S288 | ochoa|psp | Forkhead box protein C2 (Forkhead-related protein FKHL14) (Mesenchyme fork head protein 1) (MFH-1 protein) (Transcription factor FKH-14) | Transcriptional activator. {ECO:0000269|PubMed:9169153}. |
Q9BRL6 | SRSF8 | S26 | ochoa | Serine/arginine-rich splicing factor 8 (Pre-mRNA-splicing factor SRP46) (Splicing factor SRp46) (Splicing factor, arginine/serine-rich 2B) | Involved in pre-mRNA alternative splicing. {ECO:0000269|PubMed:9671500}. |
Q9BSE2 | TMEM79 | S41 | ochoa | Transmembrane protein 79 (Mattrin) | Contributes to the epidermal integrity and skin barrier function. Plays a role in the lamellar granule (LG) secretory system and in the stratum corneum (SC) epithelial cell formation (By similarity). {ECO:0000250}. |
Q9BWF3 | RBM4 | S337 | ochoa | RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) | RNA-binding factor involved in multiple aspects of cellular processes like alternative splicing of pre-mRNA and translation regulation. Modulates alternative 5'-splice site and exon selection. Acts as a muscle cell differentiation-promoting factor. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation. Antagonizes the activity of the splicing factor PTBP1 to modulate muscle cell-specific exon selection of alpha tropomyosin. Binds to intronic pyrimidine-rich sequence of the TPM1 and MAPT pre-mRNAs. Required for the translational activation of PER1 mRNA in response to circadian clock. Binds directly to the 3'-UTR of the PER1 mRNA. Exerts a suppressive activity on Cap-dependent translation via binding to CU-rich responsive elements within the 3'UTR of mRNAs, a process increased under stress conditions or during myocytes differentiation. Recruits EIF4A1 to stimulate IRES-dependent translation initiation in respons to cellular stress. Associates to internal ribosome entry segment (IRES) in target mRNA species under stress conditions. Plays a role for miRNA-guided RNA cleavage and translation suppression by promoting association of AGO2-containing miRNPs with their cognate target mRNAs. Associates with miRNAs during muscle cell differentiation. Binds preferentially to 5'-CGCGCG[GCA]-3' motif in vitro. {ECO:0000269|PubMed:12628928, ECO:0000269|PubMed:16260624, ECO:0000269|PubMed:16777844, ECO:0000269|PubMed:16934801, ECO:0000269|PubMed:17284590, ECO:0000269|PubMed:17932509, ECO:0000269|PubMed:19801630, ECO:0000269|PubMed:21343338, ECO:0000269|PubMed:21518792, ECO:0000269|PubMed:37548402}. |
Q9BXB5 | OSBPL10 | S223 | ochoa | Oxysterol-binding protein-related protein 10 (ORP-10) (OSBP-related protein 10) | Probable lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane. Its ability to bind phosphatidylserine, suggests that it specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P (Probable) (PubMed:23934110). Plays a role in negative regulation of lipid biosynthesis (PubMed:19554302). Negatively regulates APOB secretion from hepatocytes (PubMed:19554302, PubMed:22906437). Binds cholesterol and acidic phospholipids (PubMed:22906437). Also binds 25-hydroxycholesterol (PubMed:17428193). Binds phosphatidylserine (PubMed:23934110). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:19554302, ECO:0000269|PubMed:22906437, ECO:0000269|PubMed:23934110, ECO:0000305}. |
Q9BY89 | KIAA1671 | S1488 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9C0B0 | UNK | S360 | psp | RING finger protein unkempt homolog (Zinc finger CCCH domain-containing protein 5) | Sequence-specific RNA-binding protein which plays an important role in the establishment and maintenance of the early morphology of cortical neurons during embryonic development. Acts as a translation repressor and controls a translationally regulated cell morphology program to ensure proper structuring of the nervous system. Translational control depends on recognition of its binding element within target mRNAs which consists of a mandatory UAG trimer upstream of a U/A-rich motif. Associated with polysomes (PubMed:25737280). {ECO:0000269|PubMed:25737280}. |
Q9C0D2 | CEP295 | S914 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9C0H5 | ARHGAP39 | S115 | ochoa | Rho GTPase-activating protein 39 | None |
Q9GZU1 | MCOLN1 | S547 | ochoa | Mucolipin-1 (ML1) (MG-2) (Mucolipidin) (Transient receptor potential channel mucolipin 1) (TRPML1) | Nonselective cation channel probably playing a role in the regulation of membrane trafficking events and of metal homeostasis (PubMed:11013137, PubMed:12459486, PubMed:14749347, PubMed:15336987, PubMed:18794901, PubMed:25720963, PubMed:27623384, PubMed:29019983). Acts as a Ca(2+)-permeable cation channel with inwardly rectifying activity (PubMed:25720963, PubMed:29019983). Proposed to play a major role in Ca(2+) release from late endosome and lysosome vesicles to the cytoplasm, which is important for many lysosome-dependent cellular events, including the fusion and trafficking of these organelles, exocytosis and autophagy (PubMed:11013137, PubMed:12459486, PubMed:14749347, PubMed:15336987, PubMed:25720963, PubMed:27623384, PubMed:29019983). Required for efficient uptake of large particles in macrophages in which Ca(2+) release from the lysosomes triggers lysosomal exocytosis. May also play a role in phagosome-lysosome fusion (By similarity). Involved in lactosylceramide trafficking indicative for a role in the regulation of late endocytic membrane fusion/fission events (PubMed:16978393). By mediating lysosomal Ca(2+) release is involved in regulation of mTORC1 signaling and in mTOR/TFEB-dependent lysosomal adaptation to environmental cues such as nutrient levels (PubMed:25720963, PubMed:25733853, PubMed:27787197). Seems to act as lysosomal active oxygen species (ROS) sensor involved in ROS-induced TFEB activation and autophagy (PubMed:27357649). Also functions as a Fe(2+) permeable channel in late endosomes and lysosomes (PubMed:18794901). Also permeable to Mg(2+), Na(+). K(+) and Cs(+) (By similarity). Proposed to play a role in zinc homeostasis probably implicating its association with TMEM163 (PubMed:25130899) In adaptive immunity, TRPML2 and TRPML1 may play redundant roles in the function of the specialized lysosomes of B cells (By similarity). {ECO:0000250|UniProtKB:Q99J21, ECO:0000269|PubMed:12459486, ECO:0000269|PubMed:14749347, ECO:0000269|PubMed:15336987, ECO:0000269|PubMed:16978393, ECO:0000269|PubMed:18794901, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:25733853, ECO:0000269|PubMed:27357649, ECO:0000269|PubMed:27623384, ECO:0000269|PubMed:27787197, ECO:0000269|PubMed:29019983, ECO:0000305|PubMed:11013137}.; FUNCTION: May contribute to cellular lipase activity within the late endosomal pathway or at the cell surface which may be involved in processes of membrane reshaping and vesiculation, especially the growth of tubular structures. However, it is not known, whether it conveys the enzymatic activity directly, or merely facilitates the activity of an associated phospholipase. {ECO:0000305|PubMed:21256127}. |
Q9H1B7 | IRF2BPL | S622 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H2P0 | ADNP | S608 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H4Z2 | ZNF335 | S992 | ochoa | Zinc finger protein 335 (NRC-interacting factor 1) (NIF-1) | Component or associated component of some histone methyltransferase complexes may regulate transcription through recruitment of those complexes on gene promoters (PubMed:19131338, PubMed:23178126). Enhances ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:12215545, PubMed:18180299, PubMed:19131338). Plays an important role in neural progenitor cell proliferation and self-renewal through the regulation of specific genes involved brain development, including REST (PubMed:23178126). Also controls the expression of genes involved in somatic development and regulates, for instance, lymphoblast proliferation (PubMed:23178126). {ECO:0000269|PubMed:12215545, ECO:0000269|PubMed:18180299, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:23178126}. |
Q9H694 | BICC1 | S766 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H6W3 | RIOX1 | S109 | ochoa | Ribosomal oxygenase 1 (60S ribosomal protein L8 histidine hydroxylase) (Bifunctional lysine-specific demethylase and histidyl-hydroxylase NO66) (EC 1.14.11.27, EC 1.14.11.79) (Myc-associated protein with JmjC domain) (Nucleolar protein 66) (hsNO66) (Ribosomal oxygenase NO66) (ROX) | Oxygenase that can act as both a histone lysine demethylase and a ribosomal histidine hydroxylase (PubMed:23103944). Specifically demethylates 'Lys-4' (H3K4me) and 'Lys-36' (H3K36me) of histone H3, thereby playing a central role in histone code (By similarity). Preferentially demethylates trimethylated H3 'Lys-4' (H3K4me3) and monomethylated H3 'Lys-4' (H3K4me1) residues, while it has weaker activity for dimethylated H3 'Lys-36' (H3K36me2) (By similarity). Acts as a regulator of osteoblast differentiation via its interaction with SP7/OSX by demethylating H3K4me and H3K36me, thereby inhibiting SP7/OSX-mediated promoter activation (By similarity). Also catalyzes demethylation of non-histone proteins, such as CGAS: demethylation of monomethylated CGAS promotes interaction between CGAS and PARP1, followed by PARP1 inactivation (By similarity). Also catalyzes the hydroxylation of 60S ribosomal protein L8 on 'His-216', thereby playing a role in ribosome biogenesis (PubMed:23103944). Participates in MYC-induced transcriptional activation (PubMed:17308053). {ECO:0000250|UniProtKB:Q9JJF3, ECO:0000269|PubMed:17308053, ECO:0000269|PubMed:23103944}. |
Q9H7M9 | VSIR | S248 | ochoa | V-type immunoglobulin domain-containing suppressor of T-cell activation (Platelet receptor Gi24) (Stress-induced secreted protein-1) (Sisp-1) (V-set domain-containing immunoregulatory receptor) (V-set immunoregulatory receptor) | Immunoregulatory receptor which inhibits the T-cell response (PubMed:24691993). May promote differentiation of embryonic stem cells, by inhibiting BMP4 signaling (By similarity). May stimulate MMP14-mediated MMP2 activation (PubMed:20666777). {ECO:0000250|UniProtKB:Q9D659, ECO:0000269|PubMed:20666777, ECO:0000269|PubMed:24691993}. |
Q9H7Z7 | PTGES2 | S46 | ochoa | Prostaglandin E synthase 2 (EC 5.3.99.3) (Membrane-associated prostaglandin E synthase-2) (mPGE synthase-2) (Microsomal prostaglandin E synthase 2) (mPGES-2) (Prostaglandin-H(2) E-isomerase) [Cleaved into: Prostaglandin E synthase 2 truncated form] | Isomerase that catalyzes the conversion of PGH2 into the more stable prostaglandin E2 (PGE2) (in vitro) (PubMed:12804604, PubMed:17585783, PubMed:18198127). The biological function and the GSH-dependent property of PTGES2 is still under debate (PubMed:17585783, PubMed:18198127). In vivo, PTGES2 could form a complex with GSH and heme and would not participate in PGE2 synthesis but would catalyze the degradation of prostaglandin E2 H2 (PGH2) to 12(S)-hydroxy-5(Z),8(E),10(E)-heptadecatrienoic acid (HHT) and malondialdehyde (MDA) (By similarity) (PubMed:17585783). {ECO:0000250|UniProtKB:Q9N0A4, ECO:0000269|PubMed:12804604, ECO:0000269|PubMed:17585783, ECO:0000269|PubMed:18198127}. |
Q9HAP2 | MLXIP | S640 | ochoa | MLX-interacting protein (Class E basic helix-loop-helix protein 36) (bHLHe36) (Transcriptional activator MondoA) | Binds DNA as a heterodimer with MLX and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000250|UniProtKB:Q2VPU4, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9HCD6 | TANC2 | S1619 | ochoa | Protein TANC2 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 2) | Scaffolding protein in the dendritic spines which acts as immobile postsynaptic posts able to recruit KIF1A-driven dense core vesicles to dendritic spines. {ECO:0000269|PubMed:30021165}. |
Q9HCU4 | CELSR2 | S2648 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 2 (Cadherin family member 10) (Epidermal growth factor-like protein 2) (EGF-like protein 2) (Flamingo homolog 3) (Multiple epidermal growth factor-like domains protein 3) (Multiple EGF-like domains protein 3) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NP71 | MLXIPL | S602 | ochoa | Carbohydrate-responsive element-binding protein (ChREBP) (Class D basic helix-loop-helix protein 14) (bHLHd14) (MLX interactor) (MLX-interacting protein-like) (WS basic-helix-loop-helix leucine zipper protein) (WS-bHLH) (Williams-Beuren syndrome chromosomal region 14 protein) | Binds DNA as a heterodimer with MLX/TCFL4 and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation (By similarity). Regulates transcription in response to changes in cellular carbohydrate abundance such as occurs during fasting to feeding metabolic transition. Refeeding stimulates MLXIPL/ChREBP transcription factor, leading to increased BCKDK to PPM1K expression ratio, phosphorylation and activation of ACLY that ultimately results in the generation of malonyl-CoA and oxaloacetate immediate substrates of de novo lipogenesis and gluconeogenesis, respectively (By similarity). {ECO:0000250|UniProtKB:Q2VPU4, ECO:0000250|UniProtKB:Q9HAP2}. |
Q9NPI6 | DCP1A | S422 | ochoa | mRNA-decapping enzyme 1A (EC 3.6.1.62) (Smad4-interacting transcriptional co-activator) (Transcription factor SMIF) | Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:12417715). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12417715). Contributes to the transactivation of target genes after stimulation by TGFB1 (PubMed:11836524). Essential for embryonic development (PubMed:33813271). {ECO:0000269|PubMed:11836524, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:33813271}. |
Q9NRC1 | ST7 | S386 | ochoa | Suppressor of tumorigenicity 7 protein (Protein FAM4A1) (Protein HELG) | May act as a tumor suppressor. {ECO:0000269|PubMed:16474848}. |
Q9NUA8 | ZBTB40 | S190 | ochoa | Zinc finger and BTB domain-containing protein 40 | May be involved in transcriptional regulation. |
Q9NW97 | TMEM51 | S192 | ochoa | Transmembrane protein 51 | None |
Q9NWQ4 | GPATCH2L | S426 | ochoa | G patch domain-containing protein 2-like | None |
Q9NWS6 | FAM118A | S311 | ochoa | Protein FAM118A | None |
Q9NYZ3 | GTSE1 | S223 | psp | G2 and S phase-expressed protein 1 (GTSE-1) (Protein B99 homolog) | May be involved in p53-induced cell cycle arrest in G2/M phase by interfering with microtubule rearrangements that are required to enter mitosis. Overexpression delays G2/M phase progression. |
Q9NZ56 | FMN2 | S461 | ochoa | Formin-2 | Actin-binding protein that is involved in actin cytoskeleton assembly and reorganization (PubMed:21730168, PubMed:22330775). Acts as an actin nucleation factor and promotes assembly of actin filaments together with SPIRE1 and SPIRE2 (PubMed:21730168, PubMed:22330775). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (By similarity). Required for asymmetric spindle positioning, asymmetric oocyte division and polar body extrusion during female germ cell meiosis (By similarity). Plays a role in responses to DNA damage, cellular stress and hypoxia by protecting CDKN1A against degradation, and thereby plays a role in stress-induced cell cycle arrest (PubMed:23375502). Also acts in the nucleus: together with SPIRE1 and SPIRE2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). Protects cells against apoptosis by protecting CDKN1A against degradation (PubMed:23375502). {ECO:0000250|UniProtKB:Q9JL04, ECO:0000269|PubMed:21730168, ECO:0000269|PubMed:22330775, ECO:0000269|PubMed:23375502, ECO:0000269|PubMed:26287480}. |
Q9P1Y5 | CAMSAP3 | S193 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P1Y6 | PHRF1 | S867 | ochoa | PHD and RING finger domain-containing protein 1 | None |
Q9P2B4 | CTTNBP2NL | S592 | ochoa | CTTNBP2 N-terminal-like protein | Regulates lamellipodial actin dynamics in a CTTN-dependent manner (By similarity). Associates with core striatin-interacting phosphatase and kinase (STRIPAK) complex to form CTTNBP2NL-STRIPAK complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000250|UniProtKB:Q8SX68, ECO:0000269|PubMed:18782753}. |
Q9UGK8 | SERGEF | S418 | ochoa | Secretion-regulating guanine nucleotide exchange factor (Deafness locus-associated putative guanine nucleotide exchange factor) (DelGEF) (Guanine nucleotide exchange factor-related protein) | Probable guanine nucleotide exchange factor (GEF), which may be involved in the secretion process. |
Q9UGU0 | TCF20 | S966 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHF7 | TRPS1 | S157 | ochoa | Zinc finger transcription factor Trps1 (Tricho-rhino-phalangeal syndrome type I protein) (Zinc finger protein GC79) | Transcriptional repressor. Binds specifically to GATA sequences and represses expression of GATA-regulated genes at selected sites and stages in vertebrate development. Regulates chondrocyte proliferation and differentiation. Executes multiple functions in proliferating chondrocytes, expanding the region of distal chondrocytes, activating proliferation in columnar cells and supporting the differentiation of columnar into hypertrophic chondrocytes. {ECO:0000269|PubMed:12885770, ECO:0000269|PubMed:17391059}. |
Q9ULD6 | INTU | S453 | ochoa | Protein inturned (Inturned planar cell polarity effector homolog) (PDZ domain-containing protein 6) | Plays a key role in ciliogenesis and embryonic development. Regulator of cilia formation by controlling the organization of the apical actin cytoskeleton and the positioning of the basal bodies at the apical cell surface, which in turn is essential for the normal orientation of elongating ciliary microtubules. Plays a key role in definition of cell polarity via its role in ciliogenesis but not via conversion extension. Has an indirect effect on hedgehog signaling (By similarity). Proposed to function as core component of the CPLANE (ciliogenesis and planar polarity effectors) complex involved in the recruitment of peripheral IFT-A proteins to basal bodies (PubMed:27158779). Required for recruitment of CPLANE2 to the mother centriole (By similarity). Binds phosphatidylinositol 3-phosphate with highest affinity, followed by phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate (By similarity). {ECO:0000250|UniProtKB:Q059U7, ECO:0000250|UniProtKB:Q2I0E5, ECO:0000305|PubMed:27158779}. |
Q9ULI4 | KIF26A | S1687 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULM0 | PLEKHH1 | S219 | ochoa | Pleckstrin homology domain-containing family H member 1 (PH domain-containing family H member 1) | None |
Q9UM11 | FZR1 | S70 | ochoa | Fizzy-related protein homolog (Fzr) (CDC20-like protein 1) (Cdh1/Hct1 homolog) (hCDH1) | Substrate-specific adapter for the anaphase promoting complex/cyclosome (APC/C) E3 ubiquitin-protein ligase complex. Associates with the APC/C in late mitosis, in replacement of CDC20, and activates the APC/C during anaphase and telophase. The APC/C remains active in degrading substrates to ensure that positive regulators of the cell cycle do not accumulate prematurely. At the G1/S transition FZR1 is phosphorylated, leading to its dissociation from the APC/C. Following DNA damage, it is required for the G2 DNA damage checkpoint: its dephosphorylation and reassociation with the APC/C leads to the ubiquitination of PLK1, preventing entry into mitosis. Acts as an adapter for APC/C to target the DNA-end resection factor RBBP8/CtIP for ubiquitination and subsequent proteasomal degradation. Through the regulation of RBBP8/CtIP protein turnover, may play a role in DNA damage response, favoring DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:25349192). {ECO:0000269|PubMed:14701726, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:25349192, ECO:0000269|PubMed:9734353}. |
Q9UMD9 | COL17A1 | S314 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UMS6 | SYNPO2 | S611 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UN70 | PCDHGC3 | S780 | ochoa | Protocadherin gamma-C3 (PCDH-gamma-C3) (Protocadherin-2) (Protocadherin-43) (PC-43) | Potential calcium-dependent cell-adhesion protein. May be involved in the establishment and maintenance of specific neuronal connections in the brain. |
Q9UPN7 | PPP6R1 | S759 | ochoa | Serine/threonine-protein phosphatase 6 regulatory subunit 1 (SAPS domain family member 1) | Regulatory subunit of protein phosphatase 6 (PP6). May function as a scaffolding PP6 subunit. Involved in the PP6-mediated dephosphorylation of NFKBIE opposing its degradation in response to TNF-alpha. {ECO:0000269|PubMed:16769727}. |
Q9UPP1 | PHF8 | S880 | ochoa|psp | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9Y261 | FOXA2 | S436 | ochoa | Hepatocyte nuclear factor 3-beta (HNF-3-beta) (HNF-3B) (Forkhead box protein A2) (Transcription factor 3B) (TCF-3B) | Transcription factor that is involved in embryonic development, establishment of tissue-specific gene expression and regulation of gene expression in differentiated tissues. Is thought to act as a 'pioneer' factor opening the compacted chromatin for other proteins through interactions with nucleosomal core histones and thereby replacing linker histones at target enhancer and/or promoter sites. Binds DNA with the consensus sequence 5'-[AC]A[AT]T[AG]TT[GT][AG][CT]T[CT]-3' (By similarity). In embryonic development is required for notochord formation. Involved in the development of multiple endoderm-derived organ systems such as the liver, pancreas and lungs; FOXA1 and FOXA2 seem to have at least in part redundant roles. Originally described as a transcription activator for a number of liver genes such as AFP, albumin, tyrosine aminotransferase, PEPCK, etc. Interacts with the cis-acting regulatory regions of these genes. Involved in glucose homeostasis; regulates the expression of genes important for glucose sensing in pancreatic beta-cells and glucose homeostasis. Involved in regulation of fat metabolism. Binds to fibrinogen beta promoter and is involved in IL6-induced fibrinogen beta transcriptional activation. {ECO:0000250}. |
Q9Y467 | SALL2 | S684 | ochoa | Sal-like protein 2 (Zinc finger protein 795) (Zinc finger protein SALL2) (Zinc finger protein Spalt-2) (Sal-2) (hSal2) | Probable transcription factor that plays a role in eye development before, during, and after optic fissure closure. {ECO:0000269|PubMed:24412933}. |
Q9Y4B4 | RAD54L2 | S1421 | ochoa | Helicase ARIP4 (EC 3.6.4.12) (Androgen receptor-interacting protein 4) (RAD54-like protein 2) | DNA helicase that modulates androgen receptor (AR)-dependent transactivation in a promoter-dependent manner. Not able to remodel mononucleosomes in vitro (By similarity). {ECO:0000250}. |
Q9Y4B5 | MTCL1 | S1514 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y4F5 | CEP170B | S785 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F5 | CEP170B | S829 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4F5 | CEP170B | S1088 | ochoa | Centrosomal protein of 170 kDa protein B (Centrosomal protein 170B) (Cep170B) | Plays a role in microtubule organization. {ECO:0000250|UniProtKB:Q5SW79}. |
Q9Y4G6 | TLN2 | S473 | ochoa | Talin-2 | As a major component of focal adhesion plaques that links integrin to the actin cytoskeleton, may play an important role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques and strongly activates its kinase activity (By similarity). {ECO:0000250}. |
Q9Y4G8 | RAPGEF2 | S1022 | ochoa | Rap guanine nucleotide exchange factor 2 (Cyclic nucleotide ras GEF) (CNrasGEF) (Neural RAP guanine nucleotide exchange protein) (nRap GEP) (PDZ domain-containing guanine nucleotide exchange factor 1) (PDZ-GEF1) (RA-GEF-1) (Ras/Rap1-associating GEF-1) | Functions as a guanine nucleotide exchange factor (GEF), which activates Rap and Ras family of small GTPases by exchanging bound GDP for free GTP in a cAMP-dependent manner. Serves as a link between cell surface receptors and Rap/Ras GTPases in intracellular signaling cascades. Also acts as an effector for Rap1 by direct association with Rap1-GTP thereby leading to the amplification of Rap1-mediated signaling. Shows weak activity on HRAS. It is controversial whether RAPGEF2 binds cAMP and cGMP (PubMed:23800469, PubMed:10801446) or not (PubMed:10548487, PubMed:10608844, PubMed:11359771). Its binding to ligand-activated beta-1 adrenergic receptor ADRB1 leads to the Ras activation through the G(s)-alpha signaling pathway. Involved in the cAMP-induced Ras and Erk1/2 signaling pathway that leads to sustained inhibition of long term melanogenesis by reducing dendrite extension and melanin synthesis. Also provides inhibitory signals for cell proliferation of melanoma cells and promotes their apoptosis in a cAMP-independent nanner. Regulates cAMP-induced neuritogenesis by mediating the Rap1/B-Raf/ERK signaling through a pathway that is independent on both PKA and RAPGEF3/RAPGEF4. Involved in neuron migration and in the formation of the major forebrain fiber connections forming the corpus callosum, the anterior commissure and the hippocampal commissure during brain development. Involved in neuronal growth factor (NGF)-induced sustained activation of Rap1 at late endosomes and in brain-derived neurotrophic factor (BDNF)-induced axon outgrowth of hippocampal neurons. Plays a role in the regulation of embryonic blood vessel formation and in the establishment of basal junction integrity and endothelial barrier function. May be involved in the regulation of the vascular endothelial growth factor receptor KDR and cadherin CDH5 expression at allantois endothelial cell-cell junctions. {ECO:0000269|PubMed:10548487, ECO:0000269|PubMed:10608844, ECO:0000269|PubMed:10608883, ECO:0000269|PubMed:10801446, ECO:0000269|PubMed:10934204, ECO:0000269|PubMed:11359771, ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:16272156, ECO:0000269|PubMed:17724123, ECO:0000269|PubMed:21840392, ECO:0000269|PubMed:23800469}. |
Q9Y4P3 | TBL2 | S340 | ochoa | Transducin beta-like protein 2 (WS beta-transducin repeats protein) (WS-betaTRP) (Williams-Beuren syndrome chromosomal region 13 protein) | None |
Q9Y608 | LRRFIP2 | S190 | ochoa|psp | Leucine-rich repeat flightless-interacting protein 2 (LRR FLII-interacting protein 2) | May function as activator of the canonical Wnt signaling pathway, in association with DVL3, upstream of CTNNB1/beta-catenin. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:15677333, ECO:0000269|PubMed:19265123}. |
Q9Y6I3 | EPN1 | S435 | ochoa | Epsin-1 (EH domain-binding mitotic phosphoprotein) (EPS-15-interacting protein 1) | Binds to membranes enriched in phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Modifies membrane curvature and facilitates the formation of clathrin-coated invaginations (By similarity). Regulates receptor-mediated endocytosis (PubMed:10393179, PubMed:10557078). {ECO:0000250|UniProtKB:O88339, ECO:0000269|PubMed:10393179, ECO:0000269|PubMed:10557078}. |
Q9Y6J0 | CABIN1 | S1752 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q96RT7 | TUBGCP6 | S1176 | SIGNOR | Gamma-tubulin complex component 6 (GCP-6) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:11694571, PubMed:38305685, PubMed:38609661, PubMed:39321809). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:11694571, ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
Q86VQ1 | GLCCI1 | S206 | Sugiyama | Glucocorticoid-induced transcript 1 protein | None |
O43488 | AKR7A2 | S56 | Sugiyama | Aflatoxin B1 aldehyde reductase member 2 (EC 1.1.1.n11) (AFB1 aldehyde reductase 1) (AFB1-AR 1) (Aldoketoreductase 7) (Succinic semialdehyde reductase) (SSA reductase) | Catalyzes the NADPH-dependent reduction of succinic semialdehyde to gamma-hydroxybutyrate. May have an important role in producing the neuromodulator gamma-hydroxybutyrate (GHB). Has broad substrate specificity. Has NADPH-dependent aldehyde reductase activity towards 2-carboxybenzaldehyde, 2-nitrobenzaldehyde and pyridine-2-aldehyde (in vitro). Can reduce 1,2-naphthoquinone and 9,10-phenanthrenequinone (in vitro). Can reduce the dialdehyde protein-binding form of aflatoxin B1 (AFB1) to the non-binding AFB1 dialcohol. May be involved in protection of liver against the toxic and carcinogenic effects of AFB1, a potent hepatocarcinogen. {ECO:0000269|PubMed:17591773, ECO:0000269|PubMed:9576847}. |
A0A0G2JLL6 | None | S208 | ochoa | Proline-rich transmembrane protein 2 | None |
A1L020 | MEX3A | S308 | ochoa | RNA-binding protein MEX3A (RING finger and KH domain-containing protein 4) | RNA binding protein, may be involved in post-transcriptional regulatory mechanisms. |
A5PL33 | KRBA1 | S101 | ochoa | Protein KRBA1 | None |
A6H8Y1 | BDP1 | S2451 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
A6ND36 | FAM83G | S666 | ochoa | Protein FAM83G (Protein associated with SMAD1) | Substrate for type I BMP receptor kinase involved in regulation of some target genes of the BMP signaling pathway. Also regulates the expression of several non-BMP target genes, suggesting a role in other signaling pathways. {ECO:0000269|PubMed:24554596}. |
A6NEL2 | SOWAHB | S258 | ochoa | Ankyrin repeat domain-containing protein SOWAHB (Ankyrin repeat domain-containing protein 56) (Protein sosondowah homolog B) | None |
A6NFI3 | ZNF316 | S328 | ochoa | Zinc finger protein 316 | May be involved in transcriptional regulation. {ECO:0000250}. |
A8MYA2 | CXorf49; | S28 | ochoa | Uncharacterized protein CXorf49 | None |
B7U540 | KCNJ18 | S405 | ochoa | Inward rectifier potassium channel 18 (Inward rectifier K(+) channel Kir2.6) (Potassium channel, inwardly rectifying subfamily J member 18) | Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. {ECO:0000269|PubMed:20074522, ECO:0000269|PubMed:27008341}. |
E7EW31 | PROB1 | S179 | ochoa | Proline-rich basic protein 1 | None |
I3L0D1 | RBAK-RBAKDN | S78 | ochoa | HCG1647537, isoform CRA_b (RBAK-RBAKDN readthrough) | None |
O00294 | TULP1 | S219 | ochoa | Tubby-related protein 1 (Tubby-like protein 1) | Required for normal development of photoreceptor synapses. Required for normal photoreceptor function and for long-term survival of photoreceptor cells. Interacts with cytoskeleton proteins and may play a role in protein transport in photoreceptor cells (By similarity). Binds lipids, especially phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 3,4-bisphosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylinositol 3,4,5-bisphosphate, phosphatidylserine and phosphatidic acid (in vitro). Contribute to stimulation of phagocytosis of apoptotic retinal pigment epithelium (RPE) cells and macrophages. {ECO:0000250, ECO:0000269|PubMed:16303976, ECO:0000269|PubMed:19837063}. |
O00358 | FOXE1 | S308 | ochoa | Forkhead box protein E1 (Forkhead box protein E2) (Forkhead-related protein FKHL15) (HFKH4) (HNF-3/fork head-like protein 5) (HFKL5) (Thyroid transcription factor 2) (TTF-2) | Transcription factor that binds consensus sites on a variety of gene promoters and activate their transcription. Involved in proper palate formation, most probably through the expression of MSX1 and TGFB3 genes which are direct targets of this transcription factor. Also implicated in thyroid gland morphogenesis. May indirectly play a role in cell growth and migration through the regulation of WNT5A expression. {ECO:0000269|PubMed:12165566, ECO:0000269|PubMed:16882747, ECO:0000269|PubMed:20094846, ECO:0000269|PubMed:20484477, ECO:0000269|PubMed:21177256, ECO:0000269|PubMed:24219130, ECO:0000269|PubMed:25381600, ECO:0000269|PubMed:9697705}. |
O00499 | BIN1 | S303 | ochoa | Myc box-dependent-interacting protein 1 (Amphiphysin II) (Amphiphysin-like protein) (Box-dependent myc-interacting protein 1) (Bridging integrator 1) | Is a key player in the control of plasma membrane curvature, membrane shaping and membrane remodeling. Required in muscle cells for the formation of T-tubules, tubular invaginations of the plasma membrane that function in depolarization-contraction coupling (PubMed:24755653). Is a negative regulator of endocytosis (By similarity). Is also involved in the regulation of intracellular vesicles sorting, modulation of BACE1 trafficking and the control of amyloid-beta production (PubMed:27179792). In neuronal circuits, endocytosis regulation may influence the internalization of PHF-tau aggregates (By similarity). May be involved in the regulation of MYC activity and the control cell proliferation (PubMed:8782822). Has actin bundling activity and stabilizes actin filaments against depolymerization in vitro (PubMed:28893863). {ECO:0000250|UniProtKB:O08839, ECO:0000269|PubMed:24755653, ECO:0000269|PubMed:27179792, ECO:0000269|PubMed:28893863, ECO:0000269|PubMed:8782822}. |
O00515 | LAD1 | S272 | ochoa | Ladinin-1 (Lad-1) (Linear IgA disease antigen) (LADA) | Anchoring filament protein which is a component of the basement membrane zone. {ECO:0000250}. |
O00562 | PITPNM1 | S300 | ochoa | Membrane-associated phosphatidylinositol transfer protein 1 (Drosophila retinal degeneration B homolog) (Phosphatidylinositol transfer protein, membrane-associated 1) (PITPnm 1) (Pyk2 N-terminal domain-interacting receptor 2) (NIR-2) | Catalyzes the transfer of phosphatidylinositol (PI) between membranes (PubMed:10531358, PubMed:22822086). Binds PI, phosphatidylcholine (PC) and phosphatidic acid (PA) with the binding affinity order of PI > PA > PC (PubMed:22822086). Regulates RHOA activity, and plays a role in cytoskeleton remodeling (PubMed:11909959). Necessary for normal completion of cytokinesis (PubMed:15125835). Plays a role in maintaining normal diacylglycerol levels in the Golgi apparatus (PubMed:15723057). Necessary for maintaining the normal structure of the endoplasmic reticulum and the Golgi apparatus (PubMed:15545272). Required for protein export from the endoplasmic reticulum and the Golgi (PubMed:15723057). Binds calcium ions (PubMed:10022914). {ECO:0000269|PubMed:10022914, ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:11909959, ECO:0000269|PubMed:15545272, ECO:0000269|PubMed:15723057, ECO:0000269|PubMed:22822086}. |
O15015 | ZNF646 | S230 | ochoa | Zinc finger protein 646 | May be involved in transcriptional regulation. |
O15056 | SYNJ2 | S838 | ochoa | Synaptojanin-2 (EC 3.1.3.36) (Synaptic inositol 1,4,5-trisphosphate 5-phosphatase 2) | Inositol 5-phosphatase which may be involved in distinct membrane trafficking and signal transduction pathways. May mediate the inhibitory effect of Rac1 on endocytosis. |
O15164 | TRIM24 | S209 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15195 | VILL | S723 | ochoa | Villin-like protein | Possible tumor suppressor. |
O15297 | PPM1D | S54 | psp | Protein phosphatase 1D (EC 3.1.3.16) (Protein phosphatase 2C isoform delta) (PP2C-delta) (Protein phosphatase magnesium-dependent 1 delta) (p53-induced protein phosphatase 1) | Involved in the negative regulation of p53 expression (PubMed:23242139). Required for the relief of p53-dependent checkpoint mediated cell cycle arrest. Binds to and dephosphorylates 'Ser-15' of TP53 and 'Ser-345' of CHEK1 which contributes to the functional inactivation of these proteins (PubMed:15870257, PubMed:16311512). Mediates MAPK14 dephosphorylation and inactivation (PubMed:21283629). Is also an important regulator of global heterochromatin silencing and critical in maintaining genome integrity (By similarity). {ECO:0000250|UniProtKB:Q9QZ67, ECO:0000269|PubMed:15870257, ECO:0000269|PubMed:16311512, ECO:0000269|PubMed:21283629, ECO:0000269|PubMed:23242139}. |
O15350 | TP73 | S333 | ochoa | Tumor protein p73 (p53-like transcription factor) (p53-related protein) | Participates in the apoptotic response to DNA damage. Isoforms containing the transactivation domain are pro-apoptotic, isoforms lacking the domain are anti-apoptotic and block the function of p53 and transactivating p73 isoforms. May be a tumor suppressor protein. Is an activator of FOXJ1 expression (By similarity). It is an essential factor for the positive regulation of lung ciliated cell differentiation (PubMed:34077761). {ECO:0000250|UniProtKB:Q9JJP2, ECO:0000269|PubMed:10203277, ECO:0000269|PubMed:11753569, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:34077761}. |
O15360 | FANCA | S1377 | ochoa | Fanconi anemia group A protein (Protein FACA) | DNA repair protein that may operate in a postreplication repair or a cell cycle checkpoint function. May be involved in interstrand DNA cross-link repair and in the maintenance of normal chromosome stability. |
O60333 | KIF1B | S1162 | ochoa | Kinesin-like protein KIF1B (Klp) (EC 5.6.1.3) | Has a plus-end-directed microtubule motor activity and functions as a motor for transport of vesicles and organelles along microtubules. {ECO:0000269|PubMed:16225668}.; FUNCTION: [Isoform 2]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde synaptic vesicle transport along axonal microtubules from the cell body to the presynapse in neuronal cells (By similarity). Functions as a downstream effector in a developmental apoptotic pathway that is activated when nerve growth factor (NGF) becomes limiting for neuronal progenitor cells (PubMed:18334619). {ECO:0000250|UniProtKB:Q60575, ECO:0000269|PubMed:18334619}.; FUNCTION: [Isoform 3]: Has a plus-end-directed microtubule motor activity and functions as a motor for anterograde transport of mitochondria. {ECO:0000269|PubMed:16225668}. |
O60499 | STX10 | S108 | ochoa | Syntaxin-10 (Syn10) | SNARE involved in vesicular transport from the late endosomes to the trans-Golgi network. {ECO:0000269|PubMed:18195106}. |
O60814 | H2BC12 | S56 | ochoa | Histone H2B type 1-K (H2B K) (HIRA-interacting protein 1) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
O60828 | PQBP1 | S247 | ochoa|psp | Polyglutamine-binding protein 1 (PQBP-1) (38 kDa nuclear protein containing a WW domain) (Npw38) (Polyglutamine tract-binding protein 1) | Intrinsically disordered protein that acts as a scaffold, and which is involved in different processes, such as pre-mRNA splicing, transcription regulation, innate immunity and neuron development (PubMed:10198427, PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). Interacts with splicing-related factors via the intrinsically disordered region and regulates alternative splicing of target pre-mRNA species (PubMed:10332029, PubMed:12062018, PubMed:20410308, PubMed:23512658). May suppress the ability of POU3F2 to transactivate the DRD1 gene in a POU3F2 dependent manner. Can activate transcription directly or via association with the transcription machinery (PubMed:10198427). May be involved in ATXN1 mutant-induced cell death (PubMed:12062018). The interaction with ATXN1 mutant reduces levels of phosphorylated RNA polymerase II large subunit (PubMed:12062018). Involved in the assembly of cytoplasmic stress granule, possibly by participating in the transport of neuronal RNA granules (PubMed:21933836). Also acts as an innate immune sensor of infection by retroviruses, such as HIV, by detecting the presence of reverse-transcribed DNA in the cytosol (PubMed:26046437). Directly binds retroviral reverse-transcribed DNA in the cytosol and interacts with CGAS, leading to activate the cGAS-STING signaling pathway, triggering type-I interferon production (PubMed:26046437). {ECO:0000269|PubMed:10198427, ECO:0000269|PubMed:10332029, ECO:0000269|PubMed:12062018, ECO:0000269|PubMed:20410308, ECO:0000269|PubMed:21933836, ECO:0000269|PubMed:23512658, ECO:0000269|PubMed:26046437}. |
O75165 | DNAJC13 | S2151 | ochoa | DnaJ homolog subfamily C member 13 (Required for receptor-mediated endocytosis 8) (RME-8) | Involved in membrane trafficking through early endosomes, such as the early endosome to recycling endosome transport implicated in the recycling of transferrin and the early endosome to late endosome transport implicated in degradation of EGF and EGFR (PubMed:18256511, PubMed:18307993). Involved in the regulation of endosomal membrane tubulation and regulates the dynamics of SNX1 on the endosomal membrane; via association with WASHC2 may link the WASH complex to the retromer SNX-BAR subcomplex (PubMed:24643499). {ECO:0000269|PubMed:18256511, ECO:0000269|PubMed:18307993, ECO:0000269|PubMed:24643499}. |
O75362 | ZNF217 | S570 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75362 | ZNF217 | S890 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75417 | POLQ | S1587 | ochoa | DNA polymerase theta (DNA polymerase eta) [Includes: Helicase POLQ (EC 3.6.4.12); DNA polymerase POLQ (EC 2.7.7.7) (RNA-directed DNA polymerase POLQ) (EC 2.7.7.49)] | Low-fidelity DNA polymerase with a helicase activity that promotes microhomology-mediated end-joining (MMEJ), an alternative non-homologous end-joining (NHEJ) machinery required to repair double-strand breaks in DNA during mitosis (PubMed:14576298, PubMed:18503084, PubMed:24648516, PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:26636256, PubMed:27311885, PubMed:27591252, PubMed:30655289, PubMed:31562312, PubMed:32873648, PubMed:34140467, PubMed:34179826, PubMed:36455556, PubMed:37440612, PubMed:37674080). MMEJ is an error-prone repair pathway that produces deletions of sequences from the strand being repaired and promotes genomic rearrangements, such as telomere fusions, some of them leading to cellular transformation (PubMed:25642963, PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252, PubMed:31562312, PubMed:32873648). MMEJ is required during mitosis to repair persistent double-strand breaks that originate in S-phase (PubMed:37440612, PubMed:37674080). Although error-prone, MMEJ protects against chromosomal instability and tumorigenesis (By similarity). The polymerase acts by binding directly the 2 ends of resected double-strand breaks, allowing microhomologous sequences in the overhangs to form base pairs (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). It then extends each strand from the base-paired region using the opposing overhang as a template (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). Requires partially resected DNA containing 2 to 6 base pairs of microhomology to perform MMEJ (PubMed:25643323, PubMed:25775267, PubMed:27311885, PubMed:27591252). The polymerase lacks proofreading activity and is highly promiscuous: unlike most polymerases, promotes extension of ssDNA and partial ssDNA (pssDNA) substrates (PubMed:18503084, PubMed:21050863, PubMed:22135286). When the ends of a break do not contain terminal microhomology must identify embedded complementary sequences through a scanning step (PubMed:32234782). Also acts as a DNA helicase, promoting dissociation of the replication protein A complex (RPA/RP-A), composed of RPA1, RPA2 and RPA3, from resected double-strand breaks to allow their annealing and subsequent joining by MMEJ (PubMed:36455556). Removal of RPA/RP-A complex proteins prevents RAD51 accumulation at resected ends, thereby inhibiting homology-recombination repair (HR) pathway (PubMed:25642963, PubMed:28695890). Also shows RNA-directed DNA polymerase activity to mediate DNA repair in vitro; however this activity needs additional evidence in vivo (PubMed:34117057). May also have lyase activity (PubMed:19188258). Involved in somatic hypermutation of immunoglobulin genes, a process that requires the activity of DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs (By similarity). POLQ-mediated end joining activity is involved in random integration of exogenous DNA hampers (PubMed:28695890). {ECO:0000250|UniProtKB:Q8CGS6, ECO:0000269|PubMed:14576298, ECO:0000269|PubMed:18503084, ECO:0000269|PubMed:19188258, ECO:0000269|PubMed:21050863, ECO:0000269|PubMed:22135286, ECO:0000269|PubMed:24648516, ECO:0000269|PubMed:25642963, ECO:0000269|PubMed:25643323, ECO:0000269|PubMed:25775267, ECO:0000269|PubMed:26636256, ECO:0000269|PubMed:27311885, ECO:0000269|PubMed:27591252, ECO:0000269|PubMed:28695890, ECO:0000269|PubMed:30655289, ECO:0000269|PubMed:31562312, ECO:0000269|PubMed:32234782, ECO:0000269|PubMed:32873648, ECO:0000269|PubMed:34117057, ECO:0000269|PubMed:34140467, ECO:0000269|PubMed:34179826, ECO:0000269|PubMed:36455556, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080}. |
O75427 | LRCH4 | S380 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 4 (Leucine-rich repeat neuronal protein 4) (Leucine-rich neuronal protein) | Accessory protein that regulates signaling by multiple TLRs, acting as a broad-spanning regulator of the innate immune response. In macrophages, binds LPS and promotes proper docking of LPS in lipid raft membrane. May be required for lipid raft maintenance. {ECO:0000250|UniProtKB:Q921G6}. |
O75582 | RPS6KA5 | S360 | ochoa|psp | Ribosomal protein S6 kinase alpha-5 (S6K-alpha-5) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 5) (Nuclear mitogen- and stress-activated protein kinase 1) (RSK-like protein kinase) (RSKL) | Serine/threonine-protein kinase that is required for the mitogen or stress-induced phosphorylation of the transcription factors CREB1 and ATF1 and for the regulation of the transcription factors RELA, STAT3 and ETV1/ER81, and that contributes to gene activation by histone phosphorylation and functions in the regulation of inflammatory genes (PubMed:11909979, PubMed:12569367, PubMed:12763138, PubMed:18511904, PubMed:9687510, PubMed:9873047). Phosphorylates CREB1 and ATF1 in response to mitogenic or stress stimuli such as UV-C irradiation, epidermal growth factor (EGF) and anisomycin (PubMed:11909979, PubMed:9873047). Plays an essential role in the control of RELA transcriptional activity in response to TNF and upon glucocorticoid, associates in the cytoplasm with the glucocorticoid receptor NR3C1 and contributes to RELA inhibition and repression of inflammatory gene expression (PubMed:12628924, PubMed:18511904). In skeletal myoblasts is required for phosphorylation of RELA at 'Ser-276' during oxidative stress (PubMed:12628924). In erythropoietin-stimulated cells, is necessary for the 'Ser-727' phosphorylation of STAT3 and regulation of its transcriptional potential (PubMed:12763138). Phosphorylates ETV1/ER81 at 'Ser-191' and 'Ser-216', and thereby regulates its ability to stimulate transcription, which may be important during development and breast tumor formation (PubMed:12569367). Directly represses transcription via phosphorylation of 'Ser-1' of histone H2A (PubMed:15010469). Phosphorylates 'Ser-10' of histone H3 in response to mitogenics, stress stimuli and EGF, which results in the transcriptional activation of several immediate early genes, including proto-oncogenes c-fos/FOS and c-jun/JUN (PubMed:12773393). May also phosphorylate 'Ser-28' of histone H3 (PubMed:12773393). Mediates the mitogen- and stress-induced phosphorylation of high mobility group protein 1 (HMGN1/HMG14) (PubMed:12773393). In lipopolysaccharide-stimulated primary macrophages, acts downstream of the Toll-like receptor TLR4 to limit the production of pro-inflammatory cytokines (By similarity). Functions probably by inducing transcription of the MAP kinase phosphatase DUSP1 and the anti-inflammatory cytokine interleukin 10 (IL10), via CREB1 and ATF1 transcription factors (By similarity). Plays a role in neuronal cell death by mediating the downstream effects of excitotoxic injury (By similarity). Phosphorylates TRIM7 at 'Ser-107' in response to growth factor signaling via the MEK/ERK pathway, thereby stimulating its ubiquitin ligase activity (PubMed:25851810). {ECO:0000250|UniProtKB:Q8C050, ECO:0000269|PubMed:11909979, ECO:0000269|PubMed:12569367, ECO:0000269|PubMed:12628924, ECO:0000269|PubMed:12763138, ECO:0000269|PubMed:12773393, ECO:0000269|PubMed:15010469, ECO:0000269|PubMed:18511904, ECO:0000269|PubMed:25851810, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9873047}. |
O75962 | TRIO | S1745 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94925 | GLS | S95 | ochoa|psp | Glutaminase kidney isoform, mitochondrial (GLS) (EC 3.5.1.2) (K-glutaminase) (L-glutamine amidohydrolase) [Cleaved into: Glutaminase kidney isoform, mitochondrial 68 kDa chain; Glutaminase kidney isoform, mitochondrial 65 kDa chain] | Catalyzes the first reaction in the primary pathway for the renal catabolism of glutamine. Plays a role in maintaining acid-base homeostasis. Regulates the levels of the neurotransmitter glutamate, the main excitatory neurotransmitter in the brain (PubMed:30239721, PubMed:30575854, PubMed:30970188). {ECO:0000269|PubMed:30239721, ECO:0000269|PubMed:30575854, ECO:0000269|PubMed:30970188}.; FUNCTION: [Isoform 2]: Lacks catalytic activity. {ECO:0000269|PubMed:11015561}. |
O94964 | MTCL2 | S1320 | ochoa | Microtubule cross-linking factor 2 (SOGA family member 1) (Suppressor of glucose by autophagy) (Suppressor of glucose, autophagy-associated protein 1) [Cleaved into: N-terminal form; C-terminal 80 kDa form (80-kDa SOGA fragment)] | Microtubule-associated factor that enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Preferentially acts on the perinuclear microtubules accumulated around the Golgi. Associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the C-terminal domain (By similarity). Required for faithful chromosome segregation during mitosis (PubMed:33587225). Regulates autophagy by playing a role in the reduction of glucose production in an adiponectin- and insulin-dependent manner (By similarity). {ECO:0000250|UniProtKB:E1U8D0, ECO:0000269|PubMed:33587225}. |
O94966 | USP19 | S62 | ochoa | Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.4.19.12) (Deubiquitinating enzyme 19) (Ubiquitin thioesterase 19) (Ubiquitin-specific-processing protease 19) (Zinc finger MYND domain-containing protein 9) | Deubiquitinating enzyme that regulates the degradation of various proteins by removing ubiquitin moieties, thereby preventing their proteasomal degradation. Stabilizes RNF123, which promotes CDKN1B degradation and contributes to cell proliferation (By similarity). Decreases the levels of ubiquitinated proteins during skeletal muscle formation and acts to repress myogenesis. Modulates transcription of major myofibrillar proteins. Also involved in turnover of endoplasmic-reticulum-associated degradation (ERAD) substrates (PubMed:19465887, PubMed:24356957). Mechanistically, deubiquitinates and thereby stabilizes several E3 ligases involved in the ERAD pathway including SYVN1 or MARCHF6 (PubMed:24356957). Regulates the stability of other E3 ligases including BIRC2/c-IAP1 and BIRC3/c-IAP2 by preventing their ubiquitination (PubMed:21849505). Required for cells to mount an appropriate response to hypoxia by rescuing HIF1A from degradation in a non-catalytic manner and by mediating the deubiquitination of FUNDC1 (PubMed:22128162, PubMed:33978709). Attenuates mitochondrial damage and ferroptosis by targeting and stabilizing NADPH oxidase 4/NOX4 (PubMed:38943386). Negatively regulates TNF-alpha- and IL-1beta-triggered NF-kappa-B activation by hydrolyzing 'Lys-27'- and 'Lys-63'-linked polyubiquitin chains from MAP3K7 (PubMed:31127032). Modulates also the protein level and aggregation of polyQ-expanded huntingtin/HTT through HSP90AA1 (PubMed:33094816). {ECO:0000250|UniProtKB:Q3UJD6, ECO:0000250|UniProtKB:Q6J1Y9, ECO:0000269|PubMed:19465887, ECO:0000269|PubMed:21849505, ECO:0000269|PubMed:22128162, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:24356957, ECO:0000269|PubMed:31127032, ECO:0000269|PubMed:33094816, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:38943386}. |
O95180 | CACNA1H | S1905 | ochoa | Voltage-dependent T-type calcium channel subunit alpha-1H (Low-voltage-activated calcium channel alpha1 3.2 subunit) (Voltage-gated calcium channel subunit alpha Cav3.2) | Voltage-sensitive calcium channel that gives rise to T-type calcium currents. T-type calcium channels belong to the 'low-voltage activated (LVA)' group. A particularity of this type of channel is an opening at quite negative potentials, and a voltage-dependent inactivation (PubMed:27149520, PubMed:9670923, PubMed:9930755). T-type channels serve pacemaking functions in both central neurons and cardiac nodal cells and support calcium signaling in secretory cells and vascular smooth muscle (Probable). They may also be involved in the modulation of firing patterns of neurons (PubMed:15048902). In the adrenal zona glomerulosa, participates in the signaling pathway leading to aldosterone production in response to either AGT/angiotensin II, or hyperkalemia (PubMed:25907736, PubMed:27729216). {ECO:0000269|PubMed:24277868, ECO:0000269|PubMed:25907736, ECO:0000269|PubMed:27149520, ECO:0000269|PubMed:27729216, ECO:0000269|PubMed:9670923, ECO:0000269|PubMed:9930755, ECO:0000305, ECO:0000305|PubMed:15048902}. |
O95359 | TACC2 | S1562 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95425 | SVIL | S270 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95425 | SVIL | S1225 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95707 | POP4 | S43 | ochoa | Ribonuclease P protein subunit p29 (hPOP4) | Component of ribonuclease P, a ribonucleoprotein complex that generates mature tRNA molecules by cleaving their 5'-ends. {ECO:0000269|PubMed:10024167, ECO:0000269|PubMed:10352175, ECO:0000269|PubMed:30454648}. |
O95785 | WIZ | S1106 | ochoa | Protein Wiz (Widely-interspaced zinc finger-containing protein) (Zinc finger protein 803) | May link EHMT1 and EHMT2 histone methyltransferases to the CTBP corepressor machinery. May be involved in EHMT1-EHMT2 heterodimer formation and stabilization (By similarity). {ECO:0000250}. |
O95793 | STAU1 | S465 | ochoa | Double-stranded RNA-binding protein Staufen homolog 1 | Binds double-stranded RNA (regardless of the sequence) and tubulin. May play a role in specific positioning of mRNAs at given sites in the cell by cross-linking cytoskeletal and RNA components, and in stimulating their translation at the site.; FUNCTION: (Microbial infection) Plays a role in virus particles production of many viruses including of HIV-1, HERV-K, ebola virus and influenza virus. Acts by interacting with various viral proteins involved in particle budding process. {ECO:0000269|PubMed:10325410, ECO:0000269|PubMed:18498651, ECO:0000269|PubMed:23926355, ECO:0000269|PubMed:30301857}. |
P04626 | ERBB2 | S1073 | ochoa | Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) | Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}. |
P06132 | UROD | S61 | ochoa | Uroporphyrinogen decarboxylase (UPD) (URO-D) (EC 4.1.1.37) | Catalyzes the sequential decarboxylation of the four acetate side chains of uroporphyrinogen to form coproporphyrinogen and participates in the fifth step in the heme biosynthetic pathway (PubMed:11069625, PubMed:11719352, PubMed:14633982, PubMed:18004775, PubMed:21668429). Isomer I or isomer III of uroporphyrinogen may serve as substrate, but only coproporphyrinogen III can ultimately be converted to heme (PubMed:11069625, PubMed:11719352, PubMed:14633982, PubMed:21668429). In vitro also decarboxylates pentacarboxylate porphyrinogen I (PubMed:12071824). {ECO:0000269|PubMed:11069625, ECO:0000269|PubMed:11719352, ECO:0000269|PubMed:12071824, ECO:0000269|PubMed:14633982, ECO:0000269|PubMed:18004775, ECO:0000269|PubMed:21668429}. |
P06401 | PGR | S294 | psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P08588 | ADRB1 | S423 | ochoa|psp | Beta-1 adrenergic receptor (Beta-1 adrenoreceptor) (Beta-1 adrenoceptor) | Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling. Involved in the regulation of sleep/wake behaviors (PubMed:31473062). {ECO:0000269|PubMed:12391161, ECO:0000269|PubMed:31473062}. |
P10275 | AR | S426 | psp | Androgen receptor (Dihydrotestosterone receptor) (Nuclear receptor subfamily 3 group C member 4) | Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues (PubMed:19022849). Transcription factor activity is modulated by bound coactivator and corepressor proteins like ZBTB7A that recruits NCOR1 and NCOR2 to the androgen response elements/ARE on target genes, negatively regulating androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Transcription activation is also down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3. {ECO:0000269|PubMed:14664718, ECO:0000269|PubMed:15563469, ECO:0000269|PubMed:17591767, ECO:0000269|PubMed:17911242, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:19022849, ECO:0000269|PubMed:19345326, ECO:0000269|PubMed:20812024, ECO:0000269|PubMed:20980437, ECO:0000269|PubMed:25091737}.; FUNCTION: [Isoform 3]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}.; FUNCTION: [Isoform 4]: Lacks the C-terminal ligand-binding domain and may therefore constitutively activate the transcription of a specific set of genes independently of steroid hormones. {ECO:0000269|PubMed:19244107}. |
P16157 | ANK1 | S903 | ochoa | Ankyrin-1 (ANK-1) (Ankyrin-R) (Erythrocyte ankyrin) | Component of the ankyrin-1 complex, a multiprotein complex involved in the stability and shape of the erythrocyte membrane (PubMed:35835865). Attaches integral membrane proteins to cytoskeletal elements; binds to the erythrocyte membrane protein band 4.2, to Na-K ATPase, to the lymphocyte membrane protein GP85, and to the cytoskeletal proteins fodrin, tubulin, vimentin and desmin. Erythrocyte ankyrins also link spectrin (beta chain) to the cytoplasmic domain of the erythrocytes anion exchange protein; they retain most or all of these binding functions. {ECO:0000269|PubMed:12456646, ECO:0000269|PubMed:35835865}.; FUNCTION: [Isoform Mu17]: Together with obscurin in skeletal muscle may provide a molecular link between the sarcoplasmic reticulum and myofibrils. {ECO:0000269|PubMed:12527750}. |
P17542 | TAL1 | S122 | ochoa|psp | T-cell acute lymphocytic leukemia protein 1 (TAL-1) (Class A basic helix-loop-helix protein 17) (bHLHa17) (Stem cell protein) (T-cell leukemia/lymphoma protein 5) | Implicated in the genesis of hemopoietic malignancies. It may play an important role in hemopoietic differentiation. Serves as a positive regulator of erythroid differentiation (By similarity). {ECO:0000250, ECO:0000269|PubMed:1396592}. |
P18206 | VCL | S346 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P18206 | VCL | S566 | ochoa | Vinculin (Metavinculin) (MV) | Actin filament (F-actin)-binding protein involved in cell-matrix adhesion and cell-cell adhesion. Regulates cell-surface E-cadherin expression and potentiates mechanosensing by the E-cadherin complex. May also play important roles in cell morphology and locomotion. {ECO:0000269|PubMed:20484056}. |
P19338 | NCL | S563 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P20393 | NR1D1 | S322 | ochoa | Nuclear receptor subfamily 1 group D member 1 (Rev-erbA-alpha) (V-erbA-related protein 1) (EAR-1) | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity). {ECO:0000250|UniProtKB:Q3UV55, ECO:0000269|PubMed:12021280, ECO:0000269|PubMed:15761026, ECO:0000269|PubMed:16968709, ECO:0000269|PubMed:18006707, ECO:0000269|PubMed:19710360, ECO:0000269|PubMed:1971514, ECO:0000269|PubMed:21479263, ECO:0000269|PubMed:22184247, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:2539258}. |
P20810 | CAST | S243 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P21359 | NF1 | S2515 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P21580 | TNFAIP3 | S645 | ochoa | Tumor necrosis factor alpha-induced protein 3 (TNF alpha-induced protein 3) (EC 2.3.2.-) (EC 3.4.19.12) (OTU domain-containing protein 7C) (Putative DNA-binding protein A20) (Zinc finger protein A20) [Cleaved into: A20p50; A20p37] | Ubiquitin-editing enzyme that contains both ubiquitin ligase and deubiquitinase activities. Involved in immune and inflammatory responses signaled by cytokines, such as TNF-alpha and IL-1 beta, or pathogens via Toll-like receptors (TLRs) through terminating NF-kappa-B activity. Essential component of a ubiquitin-editing protein complex, comprising also RNF11, ITCH and TAX1BP1, that ensures the transient nature of inflammatory signaling pathways. In cooperation with TAX1BP1 promotes disassembly of E2-E3 ubiquitin protein ligase complexes in IL-1R and TNFR-1 pathways; affected are at least E3 ligases TRAF6, TRAF2 and BIRC2, and E2 ubiquitin-conjugating enzymes UBE2N and UBE2D3. In cooperation with TAX1BP1 promotes ubiquitination of UBE2N and proteasomal degradation of UBE2N and UBE2D3. Upon TNF stimulation, deubiquitinates 'Lys-63'-polyubiquitin chains on RIPK1 and catalyzes the formation of 'Lys-48'-polyubiquitin chains. This leads to RIPK1 proteasomal degradation and consequently termination of the TNF- or LPS-mediated activation of NF-kappa-B. Deubiquitinates TRAF6 probably acting on 'Lys-63'-linked polyubiquitin. Upon T-cell receptor (TCR)-mediated T-cell activation, deubiquitinates 'Lys-63'-polyubiquitin chains on MALT1 thereby mediating disassociation of the CBM (CARD11:BCL10:MALT1) and IKK complexes and preventing sustained IKK activation. Deubiquitinates NEMO/IKBKG; the function is facilitated by TNIP1 and leads to inhibition of NF-kappa-B activation. Upon stimulation by bacterial peptidoglycans, probably deubiquitinates RIPK2. Can also inhibit I-kappa-B-kinase (IKK) through a non-catalytic mechanism which involves polyubiquitin; polyubiquitin promotes association with IKBKG and prevents IKK MAP3K7-mediated phosphorylation. Targets TRAF2 for lysosomal degradation. In vitro able to deubiquitinate 'Lys-11'-, 'Lys-48'- and 'Lys-63' polyubiquitin chains. Inhibitor of programmed cell death. Has a role in the function of the lymphoid system. Required for LPS-induced production of pro-inflammatory cytokines and IFN beta in LPS-tolerized macrophages. {ECO:0000269|PubMed:14748687, ECO:0000269|PubMed:15258597, ECO:0000269|PubMed:16684768, ECO:0000269|PubMed:17961127, ECO:0000269|PubMed:18164316, ECO:0000269|PubMed:18952128, ECO:0000269|PubMed:19494296, ECO:0000269|PubMed:22099304, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:8692885, ECO:0000269|PubMed:9299557, ECO:0000269|PubMed:9882303}. |
P27708 | CAD | S1038 | ochoa | Multifunctional protein CAD (Carbamoyl phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase) [Includes: Glutamine-dependent carbamoyl phosphate synthase (EC 6.3.5.5); Glutamine amidotransferase (GATase) (GLNase) (EC 3.5.1.2); Ammonium-dependent carbamoyl phosphate synthase (CPS) (CPSase) (EC 6.3.4.16); Aspartate carbamoyltransferase (EC 2.1.3.2); Dihydroorotase (EC 3.5.2.3)] | Multifunctional protein that encodes the first 3 enzymatic activities of the de novo pyrimidine pathway: carbamoylphosphate synthetase (CPSase; EC 6.3.5.5), aspartate transcarbamylase (ATCase; EC 2.1.3.2) and dihydroorotase (DHOase; EC 3.5.2.3). The CPSase-function is accomplished in 2 steps, by a glutamine-dependent amidotransferase activity (GATase) that binds and cleaves glutamine to produce ammonia, followed by an ammonium-dependent carbamoyl phosphate synthetase, which reacts with the ammonia, hydrogencarbonate and ATP to form carbamoyl phosphate. The endogenously produced carbamoyl phosphate is sequestered and channeled to the ATCase active site. ATCase then catalyzes the formation of carbamoyl-L-aspartate from L-aspartate and carbamoyl phosphate. In the last step, DHOase catalyzes the cyclization of carbamoyl aspartate to dihydroorotate. {ECO:0000269|PubMed:24332717}. |
P27987 | ITPKB | S456 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P28906 | CD34 | S346 | ochoa | Hematopoietic progenitor cell antigen CD34 (CD antigen CD34) | Possible adhesion molecule with a role in early hematopoiesis by mediating the attachment of stem cells to the bone marrow extracellular matrix or directly to stromal cells. Could act as a scaffold for the attachment of lineage specific glycans, allowing stem cells to bind to lectins expressed by stromal cells or other marrow components. Presents carbohydrate ligands to selectins. |
P29966 | MARCKS | S46 | ochoa|psp | Myristoylated alanine-rich C-kinase substrate (MARCKS) (Protein kinase C substrate, 80 kDa protein, light chain) (80K-L protein) (PKCSL) | Membrane-associated protein that plays a role in the structural modulation of the actin cytoskeleton, chemotaxis, motility, cell adhesion, phagocytosis, and exocytosis through lipid sequestering and/or protein docking to membranes (PubMed:23704996, PubMed:36009319). Thus, exerts an influence on a plethora of physiological processes, such as embryonic development, tissue regeneration, neuronal plasticity, and inflammation. Sequesters phosphatidylinositol 4,5-bisphosphate (PIP2) at lipid rafts in the plasma membrane of quiescent cells, an action reversed by protein kinase C, ultimately inhibiting exocytosis (PubMed:23704996). During inflammation, promotes the migration and adhesion of inflammatory cells and the secretion of cytokines such as tumor necrosis factor (TNF), particularly in macrophages (PubMed:37949888). Plays an essential role in bacteria-induced intracellular reactive oxygen species (ROS) formation in the monocytic cell type. Participates in the regulation of neurite initiation and outgrowth by interacting with components of cellular machinery including CDC42 that regulates cell shape and process extension through modulation of the cytoskeleton (By similarity). Plays also a role in axon development by mediating docking and fusion of RAB10-positive vesicles with the plasma membrane (By similarity). {ECO:0000250|UniProtKB:P26645, ECO:0000250|UniProtKB:P30009, ECO:0000269|PubMed:23704996, ECO:0000269|PubMed:36009319, ECO:0000269|PubMed:37949888}. |
P34903 | GABRA3 | S433 | ochoa | Gamma-aminobutyric acid receptor subunit alpha-3 (GABA(A) receptor subunit alpha-3) (GABAAR subunit alpha-3) | Alpha subunit of the heteropentameric ligand-gated chloride channel gated by gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter in the brain (PubMed:16412217, PubMed:29053855). GABA-gated chloride channels, also named GABA(A) receptors (GABAAR), consist of five subunits arranged around a central pore and contain GABA active binding site(s) located at the alpha and beta subunit interface(s) (By similarity). When activated by GABA, GABAARs selectively allow the flow of chloride anions across the cell membrane down their electrochemical gradient (PubMed:16412217, PubMed:29053855). Chloride influx into the postsynaptic neuron following GABAAR opening decreases the neuron ability to generate a new action potential, thereby reducing nerve transmission (PubMed:16412217, PubMed:29053855). {ECO:0000250|UniProtKB:P14867, ECO:0000269|PubMed:16412217, ECO:0000269|PubMed:29053855}. |
P35711 | SOX5 | S439 | ochoa | Transcription factor SOX-5 | Transcription factor involved in chondrocytes differentiation and cartilage formation. Specifically binds the 5'-AACAAT-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes, such as COL2A1 and AGC1. Required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes: SOX5 and SOX6 cooperatively bind with SOX9 on active enhancers and super-enhancers associated with cartilage-specific genes, and thereby potentiate SOX9's ability to transactivate. Not involved in precartilaginous condensation, the first step in chondrogenesis, during which skeletal progenitors differentiate into prechondrocytes. Together with SOX6, required to form and maintain a pool of highly proliferating chondroblasts between epiphyses and metaphyses, to form columnar chondroblasts, delay chondrocyte prehypertrophy but promote hypertrophy, and to delay terminal differentiation of chondrocytes on contact with ossification fronts. Binds to the proximal promoter region of the myelin protein MPZ gene. {ECO:0000250|UniProtKB:P35710}. |
P39880 | CUX1 | S1321 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P46087 | NOP2 | S67 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P46109 | CRKL | S222 | ochoa | Crk-like protein | May mediate the transduction of intracellular signals. |
P46527 | CDKN1B | S178 | ochoa|psp | Cyclin-dependent kinase inhibitor 1B (Cyclin-dependent kinase inhibitor p27) (p27Kip1) | Important regulator of cell cycle progression. Inhibits the kinase activity of CDK2 bound to cyclin A, but has little inhibitory activity on CDK2 bound to SPDYA (PubMed:28666995). Involved in G1 arrest. Potent inhibitor of cyclin E- and cyclin A-CDK2 complexes. Forms a complex with cyclin type D-CDK4 complexes and is involved in the assembly, stability, and modulation of CCND1-CDK4 complex activation. Acts either as an inhibitor or an activator of cyclin type D-CDK4 complexes depending on its phosphorylation state and/or stoichometry. {ECO:0000269|PubMed:10831586, ECO:0000269|PubMed:12244301, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:17254966, ECO:0000269|PubMed:19075005, ECO:0000269|PubMed:28666995}. |
P49146 | NPY2R | S251 | ochoa | Neuropeptide Y receptor type 2 (NPY2-R) (NPY-Y2 receptor) (Y2 receptor) | Receptor for neuropeptide Y and peptide YY. The rank order of affinity of this receptor for pancreatic polypeptides is PYY > NPY > PYY (3-36) > NPY (2-36) > [Ile-31, Gln-34] PP > [Leu-31, Pro-34] NPY > PP, [Pro-34] PYY and NPY free acid. |
P49674 | CSNK1E | S363 | ochoa | Casein kinase I isoform epsilon (CKI-epsilon) (CKIe) (EC 2.7.11.1) | Casein kinases are operationally defined by their preferential utilization of acidic proteins such as caseins as substrates (Probable). Participates in Wnt signaling (PubMed:12556519, PubMed:23413191). Phosphorylates DVL1 (PubMed:12556519). Phosphorylates DVL2 (PubMed:23413191). Phosphorylates NEDD9/HEF1 (By similarity). Central component of the circadian clock (PubMed:16790549). In balance with PP1, determines the circadian period length, through the regulation of the speed and rhythmicity of PER1 and PER2 phosphorylation (PubMed:15917222, PubMed:16790549). Controls PER1 and PER2 nuclear transport and degradation (By similarity). Inhibits cytokine-induced granuloytic differentiation (PubMed:15070676). {ECO:0000250|UniProtKB:Q9JMK2, ECO:0000269|PubMed:12556519, ECO:0000269|PubMed:15070676, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16790549, ECO:0000269|PubMed:23413191, ECO:0000305|PubMed:7797465}. |
P49790 | NUP153 | S320 | ochoa|psp | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49918 | CDKN1C | S297 | ochoa | Cyclin-dependent kinase inhibitor 1C (Cyclin-dependent kinase inhibitor p57) (p57Kip2) | Potent tight-binding inhibitor of several G1 cyclin/CDK complexes (cyclin E-CDK2, cyclin D2-CDK4, and cyclin A-CDK2) and, to lesser extent, of the mitotic cyclin B-CDC2. Negative regulator of cell proliferation. May play a role in maintenance of the non-proliferative state throughout life. |
P50851 | LRBA | S1135 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51398 | DAP3 | S44 | ochoa | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P53621 | COPA | S895 | ochoa | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
P53621 | COPA | S915 | ochoa | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
P54259 | ATN1 | S677 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P54725 | RAD23A | S92 | ochoa | UV excision repair protein RAD23 homolog A (HR23A) (hHR23A) | Multiubiquitin chain receptor involved in modulation of proteasomal degradation. Binds to 'Lys-48'-linked polyubiquitin chains in a length-dependent manner and with a lower affinity to 'Lys-63'-linked polyubiquitin chains. Proposed to be capable to bind simultaneously to the 26S proteasome and to polyubiquitinated substrates and to deliver ubiquitinated proteins to the proteasome.; FUNCTION: Involved in nucleotide excision repair and is thought to be functional equivalent for RAD23B in global genome nucleotide excision repair (GG-NER) by association with XPC. In vitro, the XPC:RAD23A dimer has NER activity. Can stabilize XPC.; FUNCTION: (Microbial infection) Involved in Vpr-dependent replication of HIV-1 in non-proliferating cells and primary macrophages. Required for the association of HIV-1 Vpr with the host proteasome. {ECO:0000269|PubMed:20614012}. |
P57053 | H2BC12L | S56 | ochoa | Histone H2B type F-S (H2B-clustered histone 12 like) (H2B.S histone 1) (Histone H2B.s) (H2B/s) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
P58876 | H2BC5 | S56 | ochoa | Histone H2B type 1-D (H2B-clustered histone 5) (HIRA-interacting protein 2) (Histone H2B.1 B) (Histone H2B.b) (H2B/b) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
P61978 | HNRNPK | S116 | ochoa|psp | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P62807 | H2BC4 | S56 | ochoa | Histone H2B type 1-C/E/F/G/I (Histone H2B.1 A) (Histone H2B.a) (H2B/a) (Histone H2B.g) (H2B/g) (Histone H2B.h) (H2B/h) (Histone H2B.k) (H2B/k) (Histone H2B.l) (H2B/l) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
P78364 | PHC1 | S786 | ochoa | Polyhomeotic-like protein 1 (hPH1) (Early development regulatory protein 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. Required for proper control of cellular levels of GMNN expression. {ECO:0000269|PubMed:23418308}. |
P78414 | IRX1 | S267 | ochoa | Iroquois-class homeodomain protein IRX-1 (Homeodomain protein IRXA1) (Iroquois homeobox protein 1) | None |
Q02078 | MEF2A | S192 | ochoa | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q05682 | CALD1 | S724 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q08J23 | NSUN2 | S743 | ochoa | RNA cytosine C(5)-methyltransferase NSUN2 (EC 2.1.1.-) (Myc-induced SUN domain-containing protein) (Misu) (NOL1/NOP2/Sun domain family member 2) (Substrate of AIM1/Aurora kinase B) (mRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-) (tRNA cytosine C(5)-methyltransferase) (EC 2.1.1.-, EC 2.1.1.203) (tRNA methyltransferase 4 homolog) (hTrm4) | RNA cytosine C(5)-methyltransferase that methylates cytosine to 5-methylcytosine (m5C) in various RNAs, such as tRNAs, mRNAs and some long non-coding RNAs (lncRNAs) (PubMed:17071714, PubMed:22995836, PubMed:31199786, PubMed:31358969). Involved in various processes, such as epidermal stem cell differentiation, testis differentiation and maternal to zygotic transition during early development: acts by increasing protein synthesis; cytosine C(5)-methylation promoting tRNA stability and preventing mRNA decay (PubMed:31199786). Methylates cytosine to 5-methylcytosine (m5C) at positions 34 and 48 of intron-containing tRNA(Leu)(CAA) precursors, and at positions 48, 49 and 50 of tRNA(Gly)(GCC) precursors (PubMed:17071714, PubMed:22995836, PubMed:31199786). tRNA methylation is required generation of RNA fragments derived from tRNAs (tRFs) (PubMed:31199786). Also mediates C(5)-methylation of mitochondrial tRNAs (PubMed:31276587). Catalyzes cytosine C(5)-methylation of mRNAs, leading to stabilize them and prevent mRNA decay: mRNA stabilization involves YBX1 that specifically recognizes and binds m5C-modified transcripts (PubMed:22395603, PubMed:31358969, PubMed:34556860). Cytosine C(5)-methylation of mRNAs also regulates mRNA export: methylated transcripts are specifically recognized by THOC4/ALYREF, which mediates mRNA nucleo-cytoplasmic shuttling (PubMed:28418038). Also mediates cytosine C(5)-methylation of non-coding RNAs, such as vault RNAs (vtRNAs), promoting their processing into regulatory small RNAs (PubMed:23871666). Cytosine C(5)-methylation of vtRNA VTRNA1.1 promotes its processing into small-vault RNA4 (svRNA4) and regulates epidermal differentiation (PubMed:31186410). May act downstream of Myc to regulate epidermal cell growth and proliferation (By similarity). Required for proper spindle assembly and chromosome segregation, independently of its methyltransferase activity (PubMed:19596847). {ECO:0000250|UniProtKB:Q1HFZ0, ECO:0000269|PubMed:17071714, ECO:0000269|PubMed:19596847, ECO:0000269|PubMed:22395603, ECO:0000269|PubMed:22995836, ECO:0000269|PubMed:23871666, ECO:0000269|PubMed:28418038, ECO:0000269|PubMed:31186410, ECO:0000269|PubMed:31199786, ECO:0000269|PubMed:31276587, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:34556860}. |
Q09666 | AHNAK | S4986 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0VF96 | CGNL1 | S261 | ochoa | Cingulin-like protein 1 (Junction-associated coiled-coil protein) (Paracingulin) | May be involved in anchoring the apical junctional complex, especially tight junctions, to actin-based cytoskeletons. {ECO:0000269|PubMed:22891260}. |
Q12830 | BPTF | S763 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12830 | BPTF | S1251 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13085 | ACACA | S756 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13207 | TBX2 | S336 | ochoa | T-box transcription factor TBX2 (T-box protein 2) | Transcription factor which acts as a transcriptional repressor (PubMed:11062467, PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). May also function as a transcriptional activator (By similarity). Binds to the palindromic T site 5'-TTCACACCTAGGTGTGAA-3' DNA sequence, or a half-site, which are present in the regulatory region of several genes (PubMed:11111039, PubMed:12000749, PubMed:22844464, PubMed:30599067). Required for cardiac atrioventricular canal formation (PubMed:29726930). May cooperate with NKX2.5 to negatively modulate expression of NPPA/ANF in the atrioventricular canal (By similarity). May play a role as a positive regulator of TGFB2 expression, perhaps acting in concert with GATA4 in the developing outflow tract myocardium (By similarity). Plays a role in limb pattern formation (PubMed:29726930). Acts as a transcriptional repressor of ADAM10 gene expression, perhaps in concert with histone deacetylase HDAC1 as cofactor (PubMed:30599067). Involved in branching morphogenesis in both developing lungs and adult mammary glands, via negative modulation of target genes; acting redundantly with TBX3 (By similarity). Required, together with TBX3, to maintain cell proliferation in the embryonic lung mesenchyme; perhaps acting downstream of SHH, BMP and TGFbeta signaling (By similarity). Involved in modulating early inner ear development, acting independently of, and also redundantly with TBX3, in different subregions of the developing ear (By similarity). Acts as a negative regulator of PML function in cellular senescence (PubMed:22002537). Acts as a negative regulator of expression of CDKN1A/p21, IL33 and CCN4; repression of CDKN1A is enhanced in response to UV-induced stress, perhaps as a result of phosphorylation by p38 MAPK (By similarity). Negatively modulates expression of CDKN2A/p14ARF and CDH1/E-cadherin (PubMed:11062467, PubMed:12000749, PubMed:22844464). Plays a role in induction of the epithelial-mesenchymal transition (EMT) (PubMed:22844464). Plays a role in melanocyte proliferation, perhaps via regulation of cyclin CCND1 (By similarity). Involved in melanogenesis, acting via negative modulation of expression of DHICA oxidase/TYRP1 and P protein/OCA2 (By similarity). Involved in regulating retinal pigment epithelium (RPE) cell proliferation, perhaps via negatively modulating transcription of the transcription factor CEBPD (PubMed:28910203). {ECO:0000250|UniProtKB:Q60707, ECO:0000269|PubMed:11062467, ECO:0000269|PubMed:11111039, ECO:0000269|PubMed:12000749, ECO:0000269|PubMed:22002537, ECO:0000269|PubMed:22844464, ECO:0000269|PubMed:28910203, ECO:0000269|PubMed:29726930, ECO:0000269|PubMed:30599067}. |
Q13330 | MTA1 | S386 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13459 | MYO9B | S1323 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13492 | PICALM | S474 | ochoa | Phosphatidylinositol-binding clathrin assembly protein (Clathrin assembly lymphoid myeloid leukemia protein) | Cytoplasmic adapter protein that plays a critical role in clathrin-mediated endocytosis which is important in processes such as internalization of cell receptors, synaptic transmission or removal of apoptotic cells. Recruits AP-2 and attaches clathrin triskelions to the cytoplasmic side of plasma membrane leading to clathrin-coated vesicles (CCVs) assembly (PubMed:10436022, PubMed:16262731, PubMed:27574975). Furthermore, regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature (PubMed:25898166). In addition to binding to clathrin, mediates the endocytosis of small R-SNARES (Soluble NSF Attachment Protein REceptors) between plasma membranes and endosomes including VAMP2, VAMP3, VAMP4, VAMP7 or VAMP8 (PubMed:21808019, PubMed:22118466, PubMed:23741335). In turn, PICALM-dependent SNARE endocytosis is required for the formation and maturation of autophagic precursors (PubMed:25241929). Modulates thereby autophagy and the turnover of autophagy substrates such as MAPT/TAU or amyloid precursor protein cleaved C-terminal fragment (APP-CTF) (PubMed:24067654, PubMed:25241929). {ECO:0000269|PubMed:10436022, ECO:0000269|PubMed:16262731, ECO:0000269|PubMed:21808019, ECO:0000269|PubMed:22118466, ECO:0000269|PubMed:23741335, ECO:0000269|PubMed:24067654, ECO:0000269|PubMed:25241929, ECO:0000269|PubMed:25898166, ECO:0000269|PubMed:27574975}. |
Q13936 | CACNA1C | S815 | ochoa | Voltage-dependent L-type calcium channel subunit alpha-1C (Calcium channel, L type, alpha-1 polypeptide, isoform 1, cardiac muscle) (Voltage-gated calcium channel subunit alpha Cav1.2) | Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents (PubMed:12181424, PubMed:15454078, PubMed:15863612, PubMed:16299511, PubMed:17224476, PubMed:20953164, PubMed:23677916, PubMed:24728418, PubMed:26253506, PubMed:27218670, PubMed:29078335, PubMed:29742403, PubMed:30023270, PubMed:30172029, PubMed:34163037, PubMed:8099908). Mediates influx of calcium ions into the cytoplasm, and thereby triggers calcium release from the sarcoplasm (By similarity). Plays an important role in excitation-contraction coupling in the heart. Required for normal heart development and normal regulation of heart rhythm (PubMed:15454078, PubMed:15863612, PubMed:17224476, PubMed:24728418, PubMed:26253506). Required for normal contraction of smooth muscle cells in blood vessels and in the intestine. Essential for normal blood pressure regulation via its role in the contraction of arterial smooth muscle cells (PubMed:28119464). Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group (Probable). {ECO:0000250|UniProtKB:P15381, ECO:0000269|PubMed:12181424, ECO:0000269|PubMed:15454078, ECO:0000269|PubMed:15863612, ECO:0000269|PubMed:16299511, ECO:0000269|PubMed:17224476, ECO:0000269|PubMed:20953164, ECO:0000269|PubMed:23677916, ECO:0000269|PubMed:24728418, ECO:0000269|PubMed:25260352, ECO:0000269|PubMed:25633834, ECO:0000269|PubMed:26253506, ECO:0000269|PubMed:27218670, ECO:0000269|PubMed:28119464, ECO:0000269|PubMed:29078335, ECO:0000269|PubMed:29742403, ECO:0000269|PubMed:30023270, ECO:0000269|PubMed:30172029, ECO:0000269|PubMed:31430211, ECO:0000269|PubMed:34163037, ECO:0000269|PubMed:8099908, ECO:0000305}.; FUNCTION: [Isoform 12]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:12176756, ECO:0000269|PubMed:7737988}.; FUNCTION: [Isoform 13]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 14]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 15]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 16]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9087614}.; FUNCTION: [Isoform 17]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9087614}.; FUNCTION: [Isoform 18]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:8392192}.; FUNCTION: [Isoform 19]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:7737988}.; FUNCTION: [Isoform 20]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:7737988}.; FUNCTION: [Isoform 21]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9607315}.; FUNCTION: [Isoform 22]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9607315}.; FUNCTION: [Isoform 23]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9607315}.; FUNCTION: [Isoform 24]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 25]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:17071743}.; FUNCTION: [Isoform 26]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9013606}.; FUNCTION: [Isoform 27]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:9013606}.; FUNCTION: [Isoform 34]: Pore-forming, alpha-1C subunit of the voltage-gated calcium channel that gives rise to L-type calcium currents. {ECO:0000269|PubMed:11741969}.; FUNCTION: (Microbial infection) Acts as a receptor for Influenzavirus (PubMed:29779930). May play a critical role in allowing virus entry when sialylated and expressed on lung tissues (PubMed:29779930). {ECO:0000269|PubMed:29779930}. |
Q14106 | TOB2 | S254 | ochoa|psp | Protein Tob2 (Protein Tob4) (Transducer of erbB-2 2) | Anti-proliferative protein inhibits cell cycle progression from the G0/G1 to S phases. |
Q14151 | SAFB2 | S444 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14156 | EFR3A | S220 | ochoa | Protein EFR3 homolog A (Protein EFR3-like) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:23229899, PubMed:25608530, PubMed:26571211). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, EFR3A probably acts as the membrane-anchoring component (PubMed:23229899). Also involved in responsiveness to G-protein-coupled receptors; it is however unclear whether this role is direct or indirect (PubMed:25380825). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:25380825, ECO:0000269|PubMed:25608530, ECO:0000305}. |
Q14202 | ZMYM3 | S214 | ochoa | Zinc finger MYM-type protein 3 (Zinc finger protein 261) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q14247 | CTTN | S447 | ochoa | Src substrate cortactin (Amplaxin) (Oncogene EMS1) | Contributes to the organization of the actin cytoskeleton and cell shape (PubMed:21296879). Plays a role in the formation of lamellipodia and in cell migration. Plays a role in the regulation of neuron morphology, axon growth and formation of neuronal growth cones (By similarity). Through its interaction with CTTNBP2, involved in the regulation of neuronal spine density (By similarity). Plays a role in focal adhesion assembly and turnover (By similarity). In complex with ABL1 and MYLK regulates cortical actin-based cytoskeletal rearrangement critical to sphingosine 1-phosphate (S1P)-mediated endothelial cell (EC) barrier enhancement (PubMed:20861316). Plays a role in intracellular protein transport and endocytosis, and in modulating the levels of potassium channels present at the cell membrane (PubMed:17959782). Plays a role in receptor-mediated endocytosis via clathrin-coated pits (By similarity). Required for stabilization of KCNH1 channels at the cell membrane (PubMed:23144454). Plays a role in the invasiveness of cancer cells, and the formation of metastases (PubMed:16636290). {ECO:0000250|UniProtKB:Q60598, ECO:0000250|UniProtKB:Q66HL2, ECO:0000269|PubMed:16636290, ECO:0000269|PubMed:17959782, ECO:0000269|PubMed:21296879, ECO:0000269|PubMed:23144454}. |
Q14315 | FLNC | S566 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14449 | GRB14 | S419 | ochoa|psp | Growth factor receptor-bound protein 14 (GRB14 adapter protein) | Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}. |
Q14500 | KCNJ12 | S405 | ochoa | ATP-sensitive inward rectifier potassium channel 12 (Inward rectifier K(+) channel Kir2.2) (IRK-2) (Inward rectifier K(+) channel Kir2.2v) (Potassium channel, inwardly rectifying subfamily J member 12) | Inward rectifying potassium channel that probably participates in controlling the resting membrane potential in electrically excitable cells. Probably participates in establishing action potential waveform and excitability of neuronal and muscle tissues. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. {ECO:0000269|PubMed:12417321, ECO:0000269|PubMed:20921230, ECO:0000269|PubMed:7859381, ECO:0000269|PubMed:8647284}. |
Q14566 | MCM6 | S413 | ochoa | DNA replication licensing factor MCM6 (EC 3.6.4.12) (p105MCM) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:16899510, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). {ECO:0000269|PubMed:16899510, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
Q15424 | SAFB | S443 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15599 | NHERF2 | S303 | ochoa|psp | Na(+)/H(+) exchange regulatory cofactor NHE-RF2 (NHERF-2) (NHE3 kinase A regulatory protein E3KARP) (SRY-interacting protein 1) (SIP-1) (Sodium-hydrogen exchanger regulatory factor 2) (Solute carrier family 9 isoform A3 regulatory factor 2) (Tyrosine kinase activator protein 1) (TKA-1) | Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3 (PubMed:18829453). May also act as scaffold protein in the nucleus. {ECO:0000269|PubMed:10455146, ECO:0000269|PubMed:18829453, ECO:0000269|PubMed:9096337}. |
Q15742 | NAB2 | S209 | ochoa | NGFI-A-binding protein 2 (EGR-1-binding protein 2) (Melanoma-associated delayed early response protein) (Protein MADER) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. Isoform 2 lacks repression ability (By similarity). {ECO:0000250}. |
Q16778 | H2BC21 | S56 | ochoa | Histone H2B type 2-E (H2B-clustered histone 21) (Histone H2B-GL105) (Histone H2B.q) (H2B/q) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.; FUNCTION: Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid. |
Q16799 | RTN1 | S71 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q1MSJ5 | CSPP1 | S747 | ochoa | Centrosome and spindle pole-associated protein 1 | May play a role in cell-cycle-dependent microtubule organization. {ECO:0000269|PubMed:16826565}. |
Q2KHR3 | QSER1 | S1272 | ochoa | Glutamine and serine-rich protein 1 | Plays an essential role in the protection and maintenance of transcriptional and developmental programs. Protects many bivalent promoters and poised enhancers from hypermethylation, showing a marked preference for these regulatory elements over other types of promoters or enhancers. Mechanistically, cooperates with TET1 and binds to DNA in a common complex to inhibit the binding of DNMT3A/3B and therefore de novo methylation. {ECO:0000269|PubMed:33833093}. |
Q2M1Z3 | ARHGAP31 | S629 | ochoa | Rho GTPase-activating protein 31 (Cdc42 GTPase-activating protein) | Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. Required for cell spreading, polarized lamellipodia formation and cell migration. {ECO:0000269|PubMed:12192056, ECO:0000269|PubMed:16519628}. |
Q2TAL8 | QRICH1 | S345 | ochoa | Transcriptional regulator QRICH1 (Glutamine-rich protein 1) | Transcriptional regulator that acts as a mediator of the integrated stress response (ISR) through transcriptional control of protein homeostasis under conditions of ER stress (PubMed:33384352). Controls the outcome of the unfolded protein response (UPR) which is an ER-stress response pathway (PubMed:33384352). ER stress induces QRICH1 translation by a ribosome translation re-initiation mechanism in response to EIF2S1/eIF-2-alpha phosphorylation, and stress-induced QRICH1 regulates a transcriptional program associated with protein translation, protein secretion-mediated proteotoxicity and cell death during the terminal UPR (PubMed:33384352). May cooperate with ATF4 transcription factor signaling to regulate ER homeostasis which is critical for cell viability (PubMed:33384352). Up-regulates CASP3/caspase-3 activity in epithelial cells under ER stress. Central regulator of proteotoxicity associated with ER stress-mediated inflammatory diseases in the intestines and liver (PubMed:33384352). Involved in chondrocyte hypertrophy, a process required for normal longitudinal bone growth (PubMed:30281152). {ECO:0000269|PubMed:30281152, ECO:0000269|PubMed:33384352}. |
Q2TB10 | ZNF800 | S462 | ochoa | Zinc finger protein 800 | May be involved in transcriptional regulation. |
Q2V2M9 | FHOD3 | S763 | ochoa | FH1/FH2 domain-containing protein 3 (Formactin-2) (Formin homolog overexpressed in spleen 2) (hFHOS2) | Actin-organizing protein that may cause stress fiber formation together with cell elongation (By similarity). Isoform 4 may play a role in actin filament polymerization in cardiomyocytes. {ECO:0000250, ECO:0000269|PubMed:21149568}. |
Q3V6T2 | CCDC88A | S1837 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q4KMZ1 | IQCC | S196 | ochoa | IQ domain-containing protein C | None |
Q5JTV8 | TOR1AIP1 | S39 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5JVL4 | EFHC1 | S524 | ochoa | EF-hand domain-containing protein 1 (Myoclonin-1) | Microtubule inner protein (MIP) part of the dynein-decorated doublet microtubules (DMTs) in cilia axoneme, which is required for motile cilia beating (PubMed:36191189). Microtubule-associated protein which regulates cell division and neuronal migration during cortical development (PubMed:19734894, PubMed:28370826). Necessary for radial and tangential cell migration during brain development, possibly acting as a regulator of cell morphology and process formation during migration (PubMed:22926142). May enhance calcium influx through CACNA1E and stimulate programmed cell death (PubMed:15258581, PubMed:19734894, PubMed:22926142, PubMed:28370826). {ECO:0000269|PubMed:15258581, ECO:0000269|PubMed:19734894, ECO:0000269|PubMed:22926142, ECO:0000269|PubMed:28370826, ECO:0000269|PubMed:36191189}. |
Q5JYT7 | KIAA1755 | S429 | ochoa | Uncharacterized protein KIAA1755 | None |
Q5QNW6 | H2BC18 | S56 | ochoa | Histone H2B type 2-F (H2B-clustered histone 18) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q5T5P2 | KIAA1217 | S1684 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5T7W0 | ZNF618 | S429 | ochoa | Zinc finger protein 618 | Regulates UHRF2 function as a specific 5-hydroxymethylcytosine (5hmC) reader by regulating its chromatin localization. {ECO:0000269|PubMed:27129234}. |
Q5TH69 | ARFGEF3 | S1651 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5VST9 | OBSCN | S4829 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VTB9 | RNF220 | S282 | ochoa | E3 ubiquitin-protein ligase RNF220 (EC 2.3.2.27) (RING finger protein 220) (RING-type E3 ubiquitin transferase RNF220) | E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of SIN3B (By similarity). Independently of its E3 ligase activity, acts as a CTNNB1 stabilizer through USP7-mediated deubiquitination of CTNNB1 promoting Wnt signaling (PubMed:25266658, PubMed:33964137). Plays a critical role in the regulation of nuclear lamina (PubMed:33964137). {ECO:0000250|UniProtKB:Q6PDX6, ECO:0000269|PubMed:25266658, ECO:0000269|PubMed:33964137}. |
Q6P0N0 | MIS18BP1 | S541 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P5Q4 | LMOD2 | S186 | ochoa | Leiomodin-2 (Cardiac leiomodin) (C-LMOD) (Leiomodin) | Mediates nucleation of actin filaments and thereby promotes actin polymerization (PubMed:18403713, PubMed:25250574, PubMed:26370058, PubMed:26417072). Plays a role in the regulation of actin filament length (By similarity). Required for normal sarcomere organization in the heart, and for normal heart function (PubMed:18403713). {ECO:0000250|UniProtKB:Q3UHZ5, ECO:0000269|PubMed:18403713, ECO:0000269|PubMed:25250574, ECO:0000269|PubMed:26370058, ECO:0000269|PubMed:26417072}. |
Q6T4R5 | NHS | S551 | ochoa | Actin remodeling regulator NHS (Congenital cataracts and dental anomalies protein) (Nance-Horan syndrome protein) | May function in cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. Involved in the regulation eye, tooth, brain and craniofacial development. {ECO:0000269|PubMed:20332100}. |
Q6ZN55 | ZNF574 | S113 | ochoa | Zinc finger protein 574 | May be involved in transcriptional regulation. |
Q6ZRV2 | FAM83H | S945 | ochoa | Protein FAM83H | May play a major role in the structural organization and calcification of developing enamel (PubMed:18252228). May play a role in keratin cytoskeleton disassembly by recruiting CSNK1A1 to keratin filaments. Thereby, it may regulate epithelial cell migration (PubMed:23902688). {ECO:0000269|PubMed:18252228, ECO:0000269|PubMed:23902688}. |
Q6ZS81 | WDFY4 | S1847 | ochoa | WD repeat- and FYVE domain-containing protein 4 | Plays a critical role in the regulation of cDC1-mediated cross-presentation of viral and tumor antigens in dendritic cells. Mechanistically, acts near the plasma membrane and interacts with endosomal membranes to promote endosomal-to-cytosol antigen trafficking. Also plays a role in B-cell survival through regulation of autophagy. {ECO:0000250|UniProtKB:E9Q2M9}. |
Q6ZSS7 | MFSD6 | S755 | ochoa | Major facilitator superfamily domain-containing protein 6 (Macrophage MHC class I receptor 2 homolog) | None |
Q6ZUM4 | ARHGAP27 | S239 | ochoa | Rho GTPase-activating protein 27 (CIN85-associated multi-domain-containing Rho GTPase-activating protein 1) (Rho-type GTPase-activating protein 27) (SH3 domain-containing protein 20) | Rho GTPase-activating protein which may be involved in clathrin-mediated endocytosis. GTPase activators for the Rho-type GTPases act by converting them to an inactive GDP-bound state. Has activity toward CDC42 and RAC1 (By similarity). {ECO:0000250}. |
Q6ZUT9 | DENND5B | S822 | ochoa | DENN domain-containing protein 5B (Rab6IP1-like protein) | Guanine nucleotide exchange factor (GEF) which may activate RAB39A and/or RAB39B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}. |
Q76L83 | ASXL2 | S51 | ochoa | Putative Polycomb group protein ASXL2 (Additional sex combs-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. PcG proteins are not required to initiate repression, but to maintain it during later stages of development. They probably act via methylation of histones, rendering chromatin heritably changed in its expressibility (By similarity). Involved in transcriptional regulation mediated by ligand-bound nuclear hormone receptors, such as peroxisome proliferator-activated receptor gamma (PPARG). Acts as coactivator for PPARG and enhances its adipocyte differentiation-inducing activity; the function seems to involve differential recruitment of acetylated and methylated histone H3. Non-catalytic component of the PR-DUB complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-119' (H2AK119ub1) (PubMed:30664650, PubMed:36180891). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:30664650, PubMed:36180891). ASXL1, ASXL2 and ASXL3 function redundantly in the PR-DUB complex (By similarity) (PubMed:30664650). The ASXL proteins are essential for chromatin recruitment and transcriptional activation of associated genes (By similarity). ASXL1 and ASXL2 are important for BAP1 protein stability (PubMed:30664650). {ECO:0000250, ECO:0000250|UniProtKB:Q8BZ32, ECO:0000269|PubMed:21047783, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:36180891}. |
Q7L2J0 | MEPCE | S69 | ochoa | 7SK snRNA methylphosphate capping enzyme (MePCE) (EC 2.1.1.-) (Bicoid-interacting protein 3 homolog) (Bin3 homolog) | S-adenosyl-L-methionine-dependent methyltransferase that adds a methylphosphate cap at the 5'-end of 7SK snRNA (7SK RNA), leading to stabilize it (PubMed:17643375, PubMed:19906723, PubMed:30559425). Also has a non-enzymatic function as part of the 7SK RNP complex: the 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:17643375). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). In the 7SK RNP complex, MEPCE is required to stabilize 7SK RNA and facilitate the assembly of 7SK RNP complex (PubMed:19906723, PubMed:38100593). MEPCE has a non-enzymatic function in the 7SK RNP complex; interaction with LARP7 within the 7SK RNP complex occluding its catalytic center (PubMed:19906723). Also required for stability of U6 snRNAs (PubMed:38100593). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:19906723, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:30559425, ECO:0000269|PubMed:38100593}. |
Q7L804 | RAB11FIP2 | S388 | ochoa | Rab11 family-interacting protein 2 (Rab11-FIP2) (NRip11) | A Rab11 effector binding preferentially phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and phosphatidic acid (PA) and acting in the regulation of the transport of vesicles from the endosomal recycling compartment (ERC) to the plasma membrane. Involved in insulin granule exocytosis. Also involved in receptor-mediated endocytosis and membrane trafficking of recycling endosomes, probably originating from clathrin-coated vesicles. Required in a complex with MYO5B and RAB11 for the transport of NPC1L1 to the plasma membrane. Also acts as a regulator of cell polarity. Plays an essential role in phagocytosis through a mechanism involving TICAM2, RAC1 and CDC42 Rho GTPases for controlling actin-dynamics. {ECO:0000269|PubMed:12364336, ECO:0000269|PubMed:15304524, ECO:0000269|PubMed:16251358, ECO:0000269|PubMed:16775013, ECO:0000269|PubMed:19542231, ECO:0000269|PubMed:30883606}. |
Q7Z591 | AKNA | S159 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q7Z6I6 | ARHGAP30 | S822 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z6L0 | PRRT2 | S208 | ochoa | Proline-rich transmembrane protein 2 (Dispanin subfamily B member 3) (DSPB3) | As a component of the outer core of AMPAR complex, may be involved in synaptic transmission in the central nervous system. In hippocampal neurons, in presynaptic terminals, plays an important role in the final steps of neurotransmitter release, possibly by regulating Ca(2+)-sensing. In the cerebellum, may inhibit SNARE complex formation and down-regulate short-term facilitation. {ECO:0000250|UniProtKB:E9PUL5}. |
Q7Z6M1 | RABEPK | S27 | ochoa | Rab9 effector protein with kelch motifs (40 kDa Rab9 effector protein) (p40) | Rab9 effector required for endosome to trans-Golgi network (TGN) transport. {ECO:0000269|PubMed:9230071}. |
Q7Z6Z7 | HUWE1 | S2918 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86UB9 | TMEM135 | S198 | ochoa | Transmembrane protein 135 (Peroxisomal membrane protein 52) (PMP52) | Involved in mitochondrial metabolism by regulating the balance between mitochondrial fusion and fission. May act as a regulator of mitochondrial fission that promotes DNM1L-dependent fission through activation of DNM1L. May be involved in peroxisome organization. {ECO:0000250|UniProtKB:Q5U4F4, ECO:0000250|UniProtKB:Q9CYV5}. |
Q86V48 | LUZP1 | S805 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VP3 | PACS2 | S390 | ochoa | Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) | Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}. |
Q86W50 | METTL16 | S498 | ochoa | RNA N(6)-adenosine-methyltransferase METTL16 (EC 2.1.1.348) (Methyltransferase 10 domain-containing protein) (Methyltransferase-like protein 16) (U6 small nuclear RNA (adenine-(43)-N(6))-methyltransferase) (EC 2.1.1.346) | RNA N6-methyltransferase that methylates adenosine residues at the N(6) position of a subset of RNAs and is involved in S-adenosyl-L-methionine homeostasis by regulating expression of MAT2A transcripts (PubMed:28525753, PubMed:30197297, PubMed:30197299, PubMed:33428944, PubMed:33930289). Able to N6-methylate a subset of mRNAs and U6 small nuclear RNAs (U6 snRNAs) (PubMed:28525753). In contrast to the METTL3-METTL14 heterodimer, only able to methylate a limited number of RNAs: requires both a 5'UACAGAGAA-3' nonamer sequence and a specific RNA structure (PubMed:28525753, PubMed:30197297, PubMed:30197299). Plays a key role in S-adenosyl-L-methionine homeostasis by mediating N6-methylation of MAT2A mRNAs, altering splicing of MAT2A transcripts: in presence of S-adenosyl-L-methionine, binds the 3'-UTR region of MAT2A mRNA and specifically N6-methylates the first hairpin of MAT2A mRNA, preventing recognition of their 3'-splice site by U2AF1/U2AF35, thereby inhibiting splicing and protein production of S-adenosylmethionine synthase (PubMed:28525753, PubMed:33930289). In S-adenosyl-L-methionine-limiting conditions, binds the 3'-UTR region of MAT2A mRNA but stalls due to the lack of a methyl donor, preventing N6-methylation and promoting expression of MAT2A (PubMed:28525753). In addition to mRNAs, also able to mediate N6-methylation of U6 small nuclear RNA (U6 snRNA): specifically N6-methylates adenine in position 43 of U6 snRNAs (PubMed:28525753, PubMed:29051200, PubMed:32266935). Also able to bind various lncRNAs, such as 7SK snRNA (7SK RNA) or 7SL RNA (PubMed:29051200). Specifically binds the 3'-end of the MALAT1 long non-coding RNA (PubMed:27872311). {ECO:0000269|PubMed:27872311, ECO:0000269|PubMed:28525753, ECO:0000269|PubMed:29051200, ECO:0000269|PubMed:30197297, ECO:0000269|PubMed:30197299, ECO:0000269|PubMed:32266935, ECO:0000269|PubMed:33428944}. |
Q86XL3 | ANKLE2 | S53 | ochoa | Ankyrin repeat and LEM domain-containing protein 2 (LEM domain-containing protein 4) | Involved in mitotic nuclear envelope reassembly by promoting dephosphorylation of BAF/BANF1 during mitotic exit (PubMed:22770216). Coordinates the control of BAF/BANF1 dephosphorylation by inhibiting VRK1 kinase and promoting dephosphorylation of BAF/BANF1 by protein phosphatase 2A (PP2A), thereby facilitating nuclear envelope assembly (PubMed:22770216). May regulate nuclear localization of VRK1 in non-dividing cells (PubMed:31735666). It is unclear whether it acts as a real PP2A regulatory subunit or whether it is involved in recruitment of the PP2A complex (PubMed:22770216). Involved in brain development (PubMed:25259927). {ECO:0000269|PubMed:22770216, ECO:0000269|PubMed:25259927, ECO:0000269|PubMed:31735666}. |
Q86YV5 | PRAG1 | S263 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IU81 | IRF2BP1 | S453 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IU81 | IRF2BP1 | S478 | ochoa | Interferon regulatory factor 2-binding protein 1 (IRF-2-binding protein 1) (IRF-2BP1) (Probable E3 ubiquitin-protein ligase IRF2BP1) (EC 2.3.2.27) (Probable RING-type E3 ubiquitin transferase IRF2BP1) | Acts as a transcriptional corepressor in a IRF2-dependent manner; this repression is not mediated by histone deacetylase activities. May act as an E3 ligase towards JDP2, enhancing its polyubiquitination. Represses ATF2-dependent transcriptional activation. {ECO:0000269|PubMed:12799427, ECO:0000269|PubMed:18671972}. |
Q8IYA7 | MKX | S36 | ochoa | Homeobox protein Mohawk | May act as a morphogenetic regulator of cell adhesion. {ECO:0000250}. |
Q8IZL8 | PELP1 | S1043 | ochoa | Proline-, glutamic acid- and leucine-rich protein 1 (Modulator of non-genomic activity of estrogen receptor) (Transcription factor HMX3) | Coactivator of estrogen receptor-mediated transcription and a corepressor of other nuclear hormone receptors and sequence-specific transcription factors (PubMed:14963108). Plays a role in estrogen receptor (ER) genomic activity when present in the nuclear compartment by activating the ER target genes in a hormonal stimulation dependent manner. Can facilitate ER non-genomic signaling via SRC and PI3K interaction in the cytosol. Plays a role in E2-mediated cell cycle progression by interacting with RB1. May have important functional implications in ER/growth factor cross-talk. Interacts with several growth factor signaling components including EGFR and HRS. Functions as the key stabilizing component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes. Component of the PELP1 complex involved in the nucleolar steps of 28S rRNA maturation and the subsequent nucleoplasmic transit of the pre-60S ribosomal subunit. Regulates pre-60S association of the critical remodeling factor MDN1 (PubMed:21326211). May promote tumorigenesis via its interaction with and modulation of several oncogenes including SRC, PI3K, STAT3 and EGFR. Plays a role in cancer cell metastasis via its ability to modulate E2-mediated cytoskeleton changes and cell migration via its interaction with SRC and PI3K. {ECO:0000269|PubMed:11481323, ECO:0000269|PubMed:12682072, ECO:0000269|PubMed:14963108, ECO:0000269|PubMed:15374949, ECO:0000269|PubMed:15456770, ECO:0000269|PubMed:15579769, ECO:0000269|PubMed:15994929, ECO:0000269|PubMed:16140940, ECO:0000269|PubMed:16352611, ECO:0000269|PubMed:16574651, ECO:0000269|PubMed:21326211, ECO:0000269|PubMed:22872859}. |
Q8N111 | CEND1 | S87 | ochoa | Cell cycle exit and neuronal differentiation protein 1 (BM88 antigen) | Involved in neuronal differentiation. {ECO:0000250|UniProtKB:Q9JKC6}. |
Q8N1G0 | ZNF687 | S271 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G0 | ZNF687 | S519 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N257 | H2BC26 | S56 | ochoa | Histone H2B type 3-B (H2B type 12) (H2B-clustered histone 26) (H2B.U histone 1) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q8N350 | CBARP | S200 | ochoa | Voltage-dependent calcium channel beta subunit-associated regulatory protein | Negatively regulates voltage-gated calcium channels by preventing the interaction between their alpha and beta subunits. Thereby, negatively regulates calcium channels activity at the plasma membrane and indirectly inhibits calcium-regulated exocytosis. {ECO:0000250|UniProtKB:Q66L44}. |
Q8N350 | CBARP | S528 | ochoa | Voltage-dependent calcium channel beta subunit-associated regulatory protein | Negatively regulates voltage-gated calcium channels by preventing the interaction between their alpha and beta subunits. Thereby, negatively regulates calcium channels activity at the plasma membrane and indirectly inhibits calcium-regulated exocytosis. {ECO:0000250|UniProtKB:Q66L44}. |
Q8N3V7 | SYNPO | S685 | ochoa | Synaptopodin | Actin-associated protein that may play a role in modulating actin-based shape and motility of dendritic spines and renal podocyte foot processes. Seems to be essential for the formation of spine apparatuses in spines of telencephalic neurons, which is involved in synaptic plasticity (By similarity). {ECO:0000250}. |
Q8N4X5 | AFAP1L2 | S165 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N594 | MPND | S123 | ochoa | MPN domain-containing protein (EC 3.4.-.-) | Probable protease (By similarity). Acts as a sensor of N(6)-methyladenosine methylation on DNA (m6A): recognizes and binds m6A DNA, leading to its degradation (PubMed:30982744). Binds only double strand DNA (dsDNA) in a sequence-independent manner (By similarity). {ECO:0000250|UniProtKB:Q3TV65, ECO:0000250|UniProtKB:Q5VVJ2, ECO:0000269|PubMed:30982744}. |
Q8N5D0 | WDTC1 | S227 | ochoa | WD and tetratricopeptide repeats protein 1 | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16964240}. |
Q8N5H7 | SH2D3C | S63 | ochoa | SH2 domain-containing protein 3C (Cas/HEF1-associated signal transducer) (Chat-H) (Novel SH2-containing protein 3) (SH2 domain-containing Eph receptor-binding protein 1) (SHEP1) | Acts as an adapter protein that mediates cell signaling pathways involved in cellular functions such as cell adhesion and migration, tissue organization, and the regulation of the immune response (PubMed:12432078, PubMed:20881139). Plays a role in integrin-mediated cell adhesion through BCAR1-CRK-RAPGEF1 signaling and activation of the small GTPase RAP1 (PubMed:12432078). Promotes cell migration and invasion through the extracellular matrix (PubMed:20881139). Required for marginal zone B-cell development and thymus-independent type 2 immune responses (By similarity). Mediates migration and adhesion of B cells in the splenic marginal zone via promoting hyperphosphorylation of NEDD9/CASL (By similarity). Plays a role in CXCL13-induced chemotaxis of B-cells (By similarity). Plays a role in the migration of olfactory sensory neurons (OSNs) into the forebrain and the innervation of the olfactory bulb by the OSN axons during development (By similarity). Required for the efficient tyrosine phosphorylation of BCAR1 in OSN axons (By similarity). {ECO:0000250|UniProtKB:Q9QZS8, ECO:0000269|PubMed:12432078, ECO:0000269|PubMed:20881139}.; FUNCTION: [Isoform 1]: Important regulator of chemokine-induced, integrin-mediated T lymphocyte adhesion and migration, acting upstream of RAP1 (By similarity). Required for tissue-specific adhesion of T lymphocytes to peripheral tissues (By similarity). Required for basal and CXCL2 stimulated serine-threonine phosphorylation of NEDD9 (By similarity). May be involved in the regulation of T-cell receptor-mediated IL2 production through the activation of the JNK pathway in T-cells (By similarity). {ECO:0000250|UniProtKB:Q9QZS8}.; FUNCTION: [Isoform 2]: May be involved in the BCAR1/CAS-mediated JNK activation pathway. {ECO:0000250|UniProtKB:Q9QZS8}. |
Q8N612 | FHIP1B | S897 | ochoa | FHF complex subunit HOOK-interacting protein 1B (FHIP1B) (FTS- and Hook-interacting protein) (FHIP) | Component of the FTS/Hook/FHIP complex (FHF complex). The FHF complex may function to promote vesicle trafficking and/or fusion via the homotypic vesicular protein sorting complex (the HOPS complex). FHF complex promotes the distribution of AP-4 complex to the perinuclear area of the cell (PubMed:32073997). {ECO:0000269|PubMed:18799622, ECO:0000269|PubMed:32073997}. |
Q8NB14 | USP38 | S895 | ochoa | Ubiquitin carboxyl-terminal hydrolase 38 (EC 3.4.19.12) (Deubiquitinating enzyme 38) (HP43.8KD) (Ubiquitin thioesterase 38) (Ubiquitin-specific-processing protease 38) | Deubiquitinating enzyme that plays a role in various cellular processes, including DNA repair, cell cycle regulation, and immune response (PubMed:22689415, PubMed:30497519, PubMed:31874856, PubMed:35238669). Plays a role in the inhibition of type I interferon signaling by mediating the 'Lys-33' to 'Lys-48' ubiquitination transition of TBK1 leading to its degradation (PubMed:27692986). Cleaves the ubiquitin chain from the histone demethylase LSD1/KDM1A and prevents it from degradation by the 26S proteasome, thus maintaining LSD1 protein level in cells (PubMed:30497519). Plays a role in the DNA damage response by regulating the deacetylase activity of HDAC1 (PubMed:31874856). Mechanistically, removes the 'Lys-63'-linked ubiquitin chain promoting the deacetylase activity of HDAC1 in response to DNA damage (PubMed:31874856). Also acts as a specific deubiquitinase of histone deacetylase 3/HDAC3 and cleaves its 'Lys-63'-linked ubiquitin chains to lower its histone deacetylase activity (PubMed:32404892). Regulates MYC levels and cell proliferation via antagonizing ubiquitin E3 ligase FBXW7 thereby preventing MYC 'Lys-48'-linked ubiquitination and degradation (PubMed:34102342). Participates in antiviral response by removing both 'Lys-48'-linked and 'Lys-63'-linked polyubiquitination of Zika virus envelope protein E (PubMed:34696459). Constitutively associated with IL-33R/IL1RL1, deconjugates its 'Lys-27'-linked polyubiquitination resulting in its autophagic degradation (PubMed:35238669). {ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:27692986, ECO:0000269|PubMed:30497519, ECO:0000269|PubMed:31874856, ECO:0000269|PubMed:32404892, ECO:0000269|PubMed:34102342, ECO:0000269|PubMed:34696459, ECO:0000269|PubMed:35238669}. |
Q8NC74 | RBBP8NL | S190 | ochoa | RBBP8 N-terminal-like protein | None |
Q8NC74 | RBBP8NL | S466 | ochoa | RBBP8 N-terminal-like protein | None |
Q8NDX5 | PHC3 | S616 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8NFT8 | DNER | S714 | ochoa | Delta and Notch-like epidermal growth factor-related receptor | Activator of the NOTCH1 pathway. May mediate neuron-glia interaction during astrocytogenesis (By similarity). {ECO:0000250}. |
Q8TBC4 | UBA3 | S377 | ochoa | NEDD8-activating enzyme E1 catalytic subunit (EC 6.2.1.64) (NEDD8-activating enzyme E1C) (Ubiquitin-activating enzyme E1C) (Ubiquitin-like modifier-activating enzyme 3) (Ubiquitin-activating enzyme 3) | Catalytic subunit of the dimeric UBA3-NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-UBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of UBE2M. Down-regulates steroid receptor activity. Necessary for cell cycle progression. {ECO:0000269|PubMed:10207026, ECO:0000269|PubMed:12740388, ECO:0000269|PubMed:9694792}. |
Q8TBE0 | BAHD1 | S405 | ochoa | Bromo adjacent homology domain-containing 1 protein (BAH domain-containing protein 1) | Heterochromatin protein that acts as a transcription repressor and has the ability to promote the formation of large heterochromatic domains. May act by recruiting heterochromatin proteins such as CBX5 (HP1 alpha), HDAC5 and MBD1. Represses IGF2 expression by binding to its CpG-rich P3 promoter and recruiting heterochromatin proteins. At specific stages of Listeria infection, in complex with TRIM28, corepresses interferon-stimulated genes, including IFNL1, IFNL2 and IFNL3. {ECO:0000269|PubMed:19666599, ECO:0000269|PubMed:21252314}. |
Q8TD17 | ZNF398 | S284 | ochoa | Zinc finger protein 398 (Zinc finger DNA-binding protein p52/p71) | Functions as a transcriptional activator. |
Q8TDM6 | DLG5 | S1209 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TER5 | ARHGEF40 | S931 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8TEW8 | PARD3B | S100 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8WUF5 | PPP1R13L | S316 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUY3 | PRUNE2 | S774 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WUY3 | PRUNE2 | S1803 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WXR4 | MYO3B | S1135 | ochoa | Myosin-IIIb (EC 2.7.11.1) | Probable actin-based motor with a protein kinase activity. Required for normal cochlear hair bundle development and hearing. Plays an important role in the early steps of cochlear hair bundle morphogenesis. Influences the number and lengths of stereocilia to be produced and limits the growth of microvilli within the forming auditory hair bundles thereby contributing to the architecture of the hair bundle, including its staircase pattern. Involved in the elongation of actin in stereocilia tips by transporting the actin regulatory factor ESPN to the plus ends of actin filaments. {ECO:0000250|UniProtKB:Q1EG27}. |
Q8WXX7 | AUTS2 | S1198 | ochoa | Autism susceptibility gene 2 protein | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:25519132). The PRC1-like complex that contains PCGF5, RNF2, CSNK2B, RYBP and AUTS2 has decreased histone H2A ubiquitination activity, due to the phosphorylation of RNF2 by CSNK2B (PubMed:25519132). As a consequence, the complex mediates transcriptional activation (PubMed:25519132). In the cytoplasm, plays a role in axon and dendrite elongation and in neuronal migration during embryonic brain development. Promotes reorganization of the actin cytoskeleton, lamellipodia formation and neurite elongation via its interaction with RAC guanine nucleotide exchange factors, which then leads to the activation of RAC1 (By similarity). {ECO:0000250|UniProtKB:A0A087WPF7, ECO:0000269|PubMed:25519132}. |
Q8WYL5 | SSH1 | S689 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q92543 | SNX19 | S306 | ochoa | Sorting nexin-19 | Plays a role in intracellular vesicle trafficking and exocytosis (PubMed:24843546). May play a role in maintaining insulin-containing dense core vesicles in pancreatic beta-cells and in preventing their degradation. May play a role in insulin secretion (PubMed:24843546). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (By similarity). {ECO:0000250|UniProtKB:Q6P4T1, ECO:0000269|PubMed:24843546}. |
Q92610 | ZNF592 | S573 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q93079 | H2BC9 | S56 | ochoa | Histone H2B type 1-H (H2B-clustered histone 9) (Histone H2B.j) (H2B/j) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q969Z4 | RELT | S309 | ochoa | Tumor necrosis factor receptor superfamily member 19L (Receptor expressed in lymphoid tissues) | May play a role in apoptosis (PubMed:19969290, PubMed:28688764). Induces activation of MAPK14/p38 and MAPK8/JNK MAPK cascades, when overexpressed (PubMed:16530727). Involved in dental enamel formation (PubMed:30506946). {ECO:0000269|PubMed:16530727, ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:30506946}. |
Q96A08 | H2BC1 | S57 | ochoa | Histone H2B type 1-A (Histone H2B, testis) (TSH2B.1) (hTSH2B) (Testis-specific histone H2B) | Variant histone specifically required to direct the transformation of dissociating nucleosomes to protamine in male germ cells (By similarity). Entirely replaces classical histone H2B prior nucleosome to protamine transition and probably acts as a nucleosome dissociating factor that creates a more dynamic chromatin, facilitating the large-scale exchange of histones (By similarity). Core component of nucleosome (By similarity). Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template (By similarity). Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability (By similarity). DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). Also found in fat cells, its function and the presence of post-translational modifications specific to such cells are still unclear (PubMed:21249133). {ECO:0000250|UniProtKB:P70696, ECO:0000269|PubMed:21249133}. |
Q96B18 | DACT3 | S505 | ochoa | Dapper homolog 3 (Antagonist of beta-catenin Dapper homolog 3) (Arginine-rich region 1 protein) (Dapper antagonist of catenin 3) | May be involved in regulation of intracellular signaling pathways during development. Specifically thought to play a role in canonical and/or non-canonical Wnt signaling pathways through interaction with DSH (Dishevelled) family proteins. {ECO:0000269|PubMed:18538736}. |
Q96BY7 | ATG2B | S1743 | ochoa | Autophagy-related protein 2 homolog B | Lipid transfer protein required for both autophagosome formation and regulation of lipid droplet morphology and dispersion (PubMed:22219374, PubMed:31721365). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:22219374, PubMed:31721365). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (By similarity). Lipid transfer activity is enhanced by WDR45/WIPI4, which promotes ATG2B-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31721365). {ECO:0000250|UniProtKB:Q2TAZ0, ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:31721365}. |
Q96C12 | ARMC5 | S510 | ochoa | Armadillo repeat-containing protein 5 | Substrate-recognition component of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the BCR(ARMC5) complex acts by mediating ubiquitination of Pol II subunit POLR2A phosphorylated at 'Ser-5' of the C-terminal domain (CTD), leading to POLR2A degradation (PubMed:35687106, PubMed:38225631, PubMed:39504960, PubMed:39667934). The BCR(ARMC5) complex acts in parallel of the integrator complex and is specific for RNA Pol II originating from the promoter-proximal zone: it does not ubiquitinate elongation-stalled RNA Pol II (PubMed:39667934). The BCR(ARMC5) complex also acts as a regulator of fatty acid desaturation by mediating ubiquitination and degradation of SCAP-free SREBF1 and SREBF2 (PubMed:35862218). Involved in fetal development, T-cell function and adrenal gland growth homeostasis (PubMed:24283224, PubMed:28676429). Plays a role in steroidogenesis, modulates steroidogenic enzymes expression and cortisol production (PubMed:24283224, PubMed:28676429). {ECO:0000269|PubMed:24283224, ECO:0000269|PubMed:28676429, ECO:0000269|PubMed:35687106, ECO:0000269|PubMed:35862218, ECO:0000269|PubMed:38225631, ECO:0000269|PubMed:39504960, ECO:0000269|PubMed:39667934}. |
Q96DX5 | ASB9 | S243 | ochoa | Ankyrin repeat and SOCS box protein 9 (ASB-9) | Substrate-recognition component of a cullin-5-RING E3 ubiquitin-protein ligase complex (ECS complex, also named CRL5 complex), which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:25654263, PubMed:33268465). The ECS(ASB9) complex catalyzes ubiquitination of creatine kinases CKB and CKMT1A (PubMed:20302626, PubMed:22418839, PubMed:25654263, PubMed:33268465). {ECO:0000269|PubMed:20302626, ECO:0000269|PubMed:22418839, ECO:0000269|PubMed:25654263, ECO:0000269|PubMed:33268465}.; FUNCTION: [Isoform 2]: Does not interact with the Elongin BC complex, likely to be a negative regulator of isoform 1. {ECO:0000269|PubMed:20302626}. |
Q96F45 | ZNF503 | S111 | ochoa | Zinc finger protein 503 | May function as a transcriptional repressor. {ECO:0000250}. |
Q96F46 | IL17RA | S708 | ochoa|psp | Interleukin-17 receptor A (IL-17 receptor A) (IL-17RA) (CDw217) (CD antigen CD217) | Receptor for IL17A and IL17F, major effector cytokines of innate and adaptive immune system involved in antimicrobial host defense and maintenance of tissue integrity. Receptor for IL17A (PubMed:17911633, PubMed:9367539). Receptor for IL17F (PubMed:17911633, PubMed:19838198). Binds to IL17A with higher affinity than to IL17F (PubMed:17911633). Binds IL17A and IL17F homodimers as part of a heterodimeric complex with IL17RC (PubMed:16785495). Also binds heterodimers formed by IL17A and IL17F as part of a heterodimeric complex with IL17RC (PubMed:18684971). Cytokine binding triggers homotypic interaction of IL17RA and IL17RC chains with TRAF3IP2 adapter, leading to TRAF6-mediated activation of NF-kappa-B and MAPkinase pathways, ultimately resulting in transcriptional activation of cytokines, chemokines, antimicrobial peptides and matrix metalloproteinases, with potential strong immune inflammation (PubMed:16785495, PubMed:17911633, PubMed:18684971, PubMed:21350122, PubMed:24120361). Involved in antimicrobial host defense primarily promoting neutrophil activation and recruitment at infection sites to destroy extracellular bacteria and fungi (By similarity). In secondary lymphoid organs, contributes to germinal center formation by regulating the chemotactic response of B cells to CXCL12 and CXCL13, enhancing retention of B cells within the germinal centers, B cell somatic hypermutation rate and selection toward plasma cells (By similarity). Plays a role in the maintenance of the integrity of epithelial barriers during homeostasis and pathogen infection. Stimulates the production of antimicrobial beta-defensins DEFB1, DEFB103A, and DEFB104A by mucosal epithelial cells, limiting the entry of microbes through the epithelial barriers (By similarity). Involved in antiviral host defense through various mechanisms. Enhances immunity against West Nile virus by promoting T cell cytotoxicity. Contributes to Influenza virus clearance by driving the differentiation of B-1a B cells, providing for production of virus-specific IgM antibodies at first line of host defense (By similarity). Receptor for IL17C as part of a heterodimeric complex with IL17RE (PubMed:21993848). {ECO:0000250|UniProtKB:Q60943, ECO:0000269|PubMed:16785495, ECO:0000269|PubMed:17911633, ECO:0000269|PubMed:18684971, ECO:0000269|PubMed:19838198, ECO:0000269|PubMed:21350122, ECO:0000269|PubMed:21993848, ECO:0000269|PubMed:24120361, ECO:0000269|PubMed:9367539}.; FUNCTION: (Microbial infection) Receptor for SARS coronavirus-2/SARS-CoV-2 virus protein ORF8, leading to IL17 pathway activation and an increased secretion of pro-inflammatory factors through activating NF-kappa-B signaling pathway. {ECO:0000269|PubMed:33723527}. |
Q96HR8 | NAF1 | S98 | ochoa | H/ACA ribonucleoprotein complex non-core subunit NAF1 (hNAF1) | RNA-binding protein required for the maturation of box H/ACA snoRNPs complex and ribosome biogenesis. During assembly of the H/ACA snoRNPs complex, it associates with the complex and disappears during maturation of the complex and is replaced by NOLA1/GAR1 to yield mature H/ACA snoRNPs complex. Probably competes with NOLA1/GAR1 for binding with DKC1/NOLA4. {ECO:0000269|PubMed:16618814}. |
Q96I24 | FUBP3 | S296 | ochoa | Far upstream element-binding protein 3 (FUSE-binding protein 3) | May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. |
Q96JK9 | MAML3 | S364 | ochoa | Mastermind-like protein 3 (Mam-3) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. {ECO:0000269|PubMed:12370315, ECO:0000269|PubMed:12386158}. |
Q96JK9 | MAML3 | S373 | ochoa | Mastermind-like protein 3 (Mam-3) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. {ECO:0000269|PubMed:12370315, ECO:0000269|PubMed:12386158}. |
Q96JM3 | CHAMP1 | S507 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96KR1 | ZFR | S195 | ochoa | Zinc finger RNA-binding protein (hZFR) (M-phase phosphoprotein homolog) | Involved in postimplantation and gastrulation stages of development. Involved in the nucleocytoplasmic shuttling of STAU2. Binds to DNA and RNA (By similarity). {ECO:0000250}. |
Q96L73 | NSD1 | S822 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S2623 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96P47 | AGAP3 | S443 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 (AGAP-3) (CRAM-associated GTPase) (CRAG) (Centaurin-gamma-3) (Cnt-g3) (MR1-interacting protein) (MRIP-1) | GTPase-activating protein for the ADP ribosylation factor family (Potential). GTPase which may be involved in the degradation of expanded polyglutamine proteins through the ubiquitin-proteasome pathway. {ECO:0000269|PubMed:16461359, ECO:0000305}. |
Q96RY7 | IFT140 | S360 | ochoa | Intraflagellar transport protein 140 homolog (WD and tetratricopeptide repeats protein 2) | Component of the IFT complex A (IFT-A), a complex required for retrograde ciliary transport and entry into cilia of G protein-coupled receptors (GPCRs) (PubMed:20889716, PubMed:22503633). Plays a pivotal role in proper development and function of ciliated cells through its role in ciliogenesis and/or cilium maintenance (PubMed:22503633). Required for the development and maintenance of the outer segments of rod and cone photoreceptor cells. Plays a role in maintenance and the delivery of opsin to the outer segment of photoreceptor cells (By similarity). {ECO:0000250|UniProtKB:E9PY46, ECO:0000269|PubMed:20889716, ECO:0000269|PubMed:22503633, ECO:0000269|PubMed:28724397}. |
Q96SI1 | KCTD15 | S38 | ochoa | BTB/POZ domain-containing protein KCTD15 (Potassium channel tetramerization domain-containing protein 15) | During embryonic development, it is involved in neural crest formation (By similarity). Inhibits AP2 transcriptional activity by interaction with its activation domain (PubMed:23382213). {ECO:0000250|UniProtKB:Q6DC02, ECO:0000269|PubMed:23382213}. |
Q99501 | GAS2L1 | S620 | ochoa | GAS2-like protein 1 (GAS2-related protein on chromosome 22) (Growth arrest-specific protein 2-like 1) | Involved in the cross-linking of microtubules and microfilaments (PubMed:12584248, PubMed:24706950). Regulates microtubule dynamics and stability by interacting with microtubule plus-end tracking proteins, such as MAPRE1, to regulate microtubule growth along actin stress fibers (PubMed:24706950). {ECO:0000269|PubMed:12584248, ECO:0000269|PubMed:24706950}. |
Q99650 | OSMR | S877 | ochoa | Oncostatin-M-specific receptor subunit beta (Interleukin-31 receptor subunit beta) (IL-31 receptor subunit beta) (IL-31R subunit beta) (IL-31R-beta) (IL-31RB) | Associates with IL31RA to form the IL31 receptor. Binds IL31 to activate STAT3 and possibly STAT1 and STAT5. Capable of transducing OSM-specific signaling events. {ECO:0000269|PubMed:15184896, ECO:0000269|PubMed:8999038}. |
Q99700 | ATXN2 | S624 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99877 | H2BC15 | S56 | ochoa | Histone H2B type 1-N (Histone H2B.d) (H2B/d) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99879 | H2BC14 | S56 | ochoa | Histone H2B type 1-M (Histone H2B.e) (H2B/e) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q99880 | H2BC13 | S56 | ochoa | Histone H2B type 1-L (Histone H2B.c) (H2B/c) | Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. |
Q9BRP8 | PYM1 | S64 | ochoa | Partner of Y14 and mago (PYM homolog 1 exon junction complex-associated factor) (Protein wibg homolog) | Key regulator of the exon junction complex (EJC), a multiprotein complex that associates immediately upstream of the exon-exon junction on mRNAs and serves as a positional landmark for the intron exon structure of genes and directs post-transcriptional processes in the cytoplasm such as mRNA export, nonsense-mediated mRNA decay (NMD) or translation. Acts as an EJC disassembly factor, allowing translation-dependent EJC removal and recycling by disrupting mature EJC from spliced mRNAs. Its association with the 40S ribosomal subunit probably prevents a translation-independent disassembly of the EJC from spliced mRNAs, by restricting its activity to mRNAs that have been translated. Interferes with NMD and enhances translation of spliced mRNAs, probably by antagonizing EJC functions. May bind RNA; the relevance of RNA-binding remains unclear in vivo, RNA-binding was detected by PubMed:14968132, while PubMed:19410547 did not detect RNA-binding activity independently of the EJC. {ECO:0000269|PubMed:18026120, ECO:0000269|PubMed:19410547}. |
Q9BRR8 | GPATCH1 | S477 | ochoa | G patch domain-containing protein 1 (Evolutionarily conserved G-patch domain-containing protein) | None |
Q9BST9 | RTKN | S529 | ochoa | Rhotekin | Mediates Rho signaling to activate NF-kappa-B and may confer increased resistance to apoptosis to cells in gastric tumorigenesis. May play a novel role in the organization of septin structures. {ECO:0000269|PubMed:10940294, ECO:0000269|PubMed:15480428, ECO:0000269|PubMed:16007136}. |
Q9BWG4 | SSBP4 | S342 | ochoa | Single-stranded DNA-binding protein 4 | None |
Q9BY89 | KIAA1671 | S465 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BZI1 | IRX2 | S317 | ochoa | Iroquois-class homeodomain protein IRX-2 (Homeodomain protein IRXA2) (Iroquois homeobox protein 2) | None |
Q9C0D5 | TANC1 | S132 | ochoa | Protein TANC1 (Tetratricopeptide repeat, ankyrin repeat and coiled-coil domain-containing protein 1) | May be a scaffold component in the postsynaptic density. {ECO:0000250}. |
Q9GZM8 | NDEL1 | S231 | ochoa|psp | Nuclear distribution protein nudE-like 1 (Protein Nudel) (Mitosin-associated protein 1) | Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the centripetal motion of secretory vesicles and the coupling of the nucleus and centrosome. Also required during brain development for the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Plays a role, together with DISC1, in the regulation of neurite outgrowth. Required for mitosis in some cell types but appears to be dispensible for mitosis in cortical neuronal progenitors, which instead requires NDE1. Facilitates the polymerization of neurofilaments from the individual subunits NEFH and NEFL. Positively regulates lysosome peripheral distribution and ruffled border formation in osteoclasts (By similarity). Plays a role, together with DISC1, in the regulation of neurite outgrowth (By similarity). May act as a RAB9A/B effector that tethers RAB9-associated late endosomes to the dynein motor for their retrograde transport to the trans-Golgi network (PubMed:34793709). {ECO:0000250|UniProtKB:Q78PB6, ECO:0000250|UniProtKB:Q9ERR1, ECO:0000269|PubMed:12556484, ECO:0000269|PubMed:14970193, ECO:0000269|PubMed:16291865, ECO:0000269|PubMed:17600710, ECO:0000269|PubMed:34793709}. |
Q9GZN7 | ROGDI | S227 | ochoa | Protein rogdi homolog | None |
Q9H0H3 | KLHL25 | S285 | ochoa | Kelch-like protein 25 (Ectoderm-neural cortex protein 2) (ENC-2) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex involved in various processes, such as translation homeostasis and lipid synthesis (PubMed:22578813, PubMed:27664236, PubMed:34491895). The BCR(KLHL25) ubiquitin ligase complex acts by mediating ubiquitination of hypophosphorylated EIF4EBP1 (4E-BP1): ubiquitination and subsequent degradation of hypophosphorylated EIF4EBP1 (4E-BP1) probably serves as a homeostatic mechanism to maintain translation and prevent eIF4E inhibition when eIF4E levels are low (PubMed:22578813). The BCR(KLHL25) complex does not target EIF4EBP1 (4E-BP1) when it is hyperphosphorylated or associated with eIF4E (PubMed:22578813). The BCR(KLHL25) complex also acts as a regulator of lipid synthesis by mediating ubiquitination and degradation of ACLY, thereby inhibiting lipid synthesis (PubMed:27664236, PubMed:34491895). BCR(KLHL25)-mediated degradation of ACLY promotes fatty acid oxidation and is required for differentiation of inducible regulatory T (iTreg) cells (PubMed:34491895). {ECO:0000269|PubMed:22578813, ECO:0000269|PubMed:27664236, ECO:0000269|PubMed:34491895}. |
Q9H0X9 | OSBPL5 | S88 | ochoa | Oxysterol-binding protein-related protein 5 (ORP-5) (OSBP-related protein 5) (Oxysterol-binding protein homolog 1) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:23934110, PubMed:26206935). May cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes (PubMed:21220512). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:21220512, ECO:0000269|PubMed:23934110, ECO:0000269|PubMed:26206935}. |
Q9H2D6 | TRIOBP | S88 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H4B6 | SAV1 | S56 | ochoa | Protein salvador homolog 1 (45 kDa WW domain protein) (hWW45) | Regulator of STK3/MST2 and STK4/MST1 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:29063833). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. SAV1 is required for STK3/MST2 and STK4/MST1 activation and promotes cell-cycle exit and terminal differentiation in developing epithelial tissues. Plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosomes, and its ability to phosphorylate CROCC and CEP250. In conjunction with STK3/MST2, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation. {ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:19212654, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:29063833}. |
Q9H6X5 | C19orf44 | S185 | ochoa | Uncharacterized protein C19orf44 | None |
Q9H6Y5 | MAGIX | S21 | ochoa | PDZ domain-containing protein MAGIX | None |
Q9H7N4 | SCAF1 | S30 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9H7S9 | ZNF703 | S87 | ochoa | Zinc finger protein 703 (Zinc finger elbow-related proline domain protein 1) | Transcriptional corepressor which does not bind directly to DNA and may regulate transcription through recruitment of histone deacetylases to gene promoters. Regulates cell adhesion, migration and proliferation. May be required for segmental gene expression during hindbrain development. {ECO:0000269|PubMed:21328542, ECO:0000269|PubMed:21337521}. |
Q9HAH7 | FBRS | S210 | ochoa | Probable fibrosin-1 | None |
Q9HC35 | EML4 | S73 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9HC44 | GPBP1L1 | S21 | ochoa | Vasculin-like protein 1 (GC-rich promoter-binding protein 1-like 1) | Possible transcription factor. {ECO:0000305}. |
Q9HCE3 | ZNF532 | S602 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9NP31 | SH2D2A | S43 | ochoa | SH2 domain-containing protein 2A (SH2 domain-containing adapter protein) (T cell-specific adapter protein) (TSAd) (VEGF receptor-associated protein) | Could be a T-cell-specific adapter protein involved in the control of T-cell activation. May play a role in the CD4-p56-LCK-dependent signal transduction pathway. Could also play an important role in normal and pathological angiogenesis. Could be an adapter protein that facilitates and regulates interaction of KDR with effector proteins important to endothelial cell survival and proliferation. |
Q9NQB0 | TCF7L2 | S122 | ochoa | Transcription factor 7-like 2 (HMG box transcription factor 4) (T-cell-specific transcription factor 4) (T-cell factor 4) (TCF-4) (hTCF-4) | Participates in the Wnt signaling pathway and modulates MYC expression by binding to its promoter in a sequence-specific manner. Acts as a repressor in the absence of CTNNB1, and as activator in its presence. Activates transcription from promoters with several copies of the Tcf motif 5'-CCTTTGATC-3' in the presence of CTNNB1. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7L2/TCF4 and CTNNB1. Expression of dominant-negative mutants results in cell-cycle arrest in G1. Necessary for the maintenance of the epithelial stem-cell compartment of the small intestine. {ECO:0000269|PubMed:12408868, ECO:0000269|PubMed:12727872, ECO:0000269|PubMed:19443654, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:9727977}. |
Q9NQT8 | KIF13B | S661 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NQX3 | GPHN | S270 | ochoa|psp | Gephyrin [Includes: Molybdopterin adenylyltransferase (MPT adenylyltransferase) (EC 2.7.7.75) (Domain G); Molybdopterin molybdenumtransferase (MPT Mo-transferase) (EC 2.10.1.1) (Domain E)] | Microtubule-associated protein involved in membrane protein-cytoskeleton interactions. It is thought to anchor the inhibitory glycine receptor (GLYR) to subsynaptic microtubules (By similarity). Acts as a major instructive molecule at inhibitory synapses, where it also clusters GABA type A receptors (PubMed:25025157, PubMed:26613940). {ECO:0000250|UniProtKB:Q03555, ECO:0000269|PubMed:25025157, ECO:0000269|PubMed:26613940}.; FUNCTION: Also has a catalytic activity and catalyzes two steps in the biosynthesis of the molybdenum cofactor. In the first step, molybdopterin is adenylated. Subsequently, molybdate is inserted into adenylated molybdopterin and AMP is released. {ECO:0000269|PubMed:26613940}. |
Q9NR48 | ASH1L | S22 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NS87 | KIF15 | S568 | ochoa | Kinesin-like protein KIF15 (Kinesin-like protein 2) (hKLP2) (Kinesin-like protein 7) (Serologically defined breast cancer antigen NY-BR-62) | Plus-end directed kinesin-like motor enzyme involved in mitotic spindle assembly. {ECO:0000250}. |
Q9NYK6 | EURL | S205 | ochoa | Protein EURL homolog | Plays a role in cortical progenitor cell proliferation and differentiation. Promotes dendritic spine development of post-migratory cortical projection neurons by modulating the beta-catenin signaling pathway. {ECO:0000250|UniProtKB:Q9D7G4}. |
Q9NYW8 | RBAK | S78 | ochoa | RB-associated KRAB zinc finger protein (RB-associated KRAB repressor) (hRBaK) (Zinc finger protein 769) | May repress E2F-dependent transcription. May promote AR-dependent transcription. {ECO:0000269|PubMed:10702291, ECO:0000269|PubMed:14664718}. |
Q9P0L2 | MARK1 | S588 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P107 | GMIP | S914 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P1Y5 | CAMSAP3 | S554 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P2D3 | HEATR5B | S1123 | ochoa | HEAT repeat-containing protein 5B | Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025}. |
Q9UDT6 | CLIP2 | S54 | ochoa | CAP-Gly domain-containing linker protein 2 (Cytoplasmic linker protein 115) (CLIP-115) (Cytoplasmic linker protein 2) (Williams-Beuren syndrome chromosomal region 3 protein) (Williams-Beuren syndrome chromosomal region 4 protein) | Seems to link microtubules to dendritic lamellar body (DLB), a membranous organelle predominantly present in bulbous dendritic appendages of neurons linked by dendrodendritic gap junctions. May operate in the control of brain-specific organelle translocations (By similarity). {ECO:0000250}. |
Q9UGU0 | TCF20 | S574 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHI5 | SLC7A8 | S24 | ochoa | Large neutral amino acids transporter small subunit 2 (L-type amino acid transporter 2) (hLAT2) (Solute carrier family 7 member 8) | Associates with SLC3A2 to form a functional heterodimeric complex that translocates small and large neutral amino acids with broad specificity and a stoichiometry of 1:1. Functions as amino acid antiporter mediating the influx of extracellular essential amino acids mainly in exchange with the efflux of highly concentrated intracellular amino acids (PubMed:10391915, PubMed:11311135, PubMed:11847106, PubMed:12716892, PubMed:15081149, PubMed:15918515, PubMed:29355479, PubMed:33298890, PubMed:34848541). Has relatively symmetrical selectivities but strongly asymmetrical substrate affinities at both the intracellular and extracellular sides of the transporter (PubMed:11847106). This asymmetry allows SLC7A8 to regulate intracellular amino acid pools (mM concentrations) by exchange with external amino acids (uM concentration range), equilibrating the relative concentrations of different amino acids across the plasma membrane instead of mediating their net uptake (PubMed:10391915, PubMed:11847106). May play an essential role in the reabsorption of neutral amino acids from the epithelial cells to the bloodstream in the kidney (PubMed:12716892). Involved in the uptake of methylmercury (MeHg) when administered as the L-cysteine or D,L-homocysteine complexes, and hence plays a role in metal ion homeostasis and toxicity (PubMed:12117417). Involved in the cellular activity of small molecular weight nitrosothiols, via the stereoselective transport of L-nitrosocysteine (L-CNSO) across the transmembrane (PubMed:15769744). Imports the thyroid hormone diiodothyronine (T2) and to a smaller extent triiodothyronine (T3) but not rT 3 or thyroxine (T4) (By similarity). Mediates the uptake of L-DOPA (By similarity). May participate in auditory function (By similarity). {ECO:0000250|UniProtKB:Q9QXW9, ECO:0000250|UniProtKB:Q9WVR6, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11847106, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15081149, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15918515, ECO:0000269|PubMed:29355479, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:34848541}. |
Q9UIF9 | BAZ2A | S1770 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJX6 | ANAPC2 | S314 | ochoa | Anaphase-promoting complex subunit 2 (APC2) (Cyclosome subunit 2) | Together with the RING-H2 protein ANAPC11, constitutes the catalytic component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:11739784, PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:11739784, PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 drives presynaptic differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BZQ7, ECO:0000269|PubMed:11739784, ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UKV0 | HDAC9 | S422 | ochoa | Histone deacetylase 9 (HD9) (EC 3.5.1.98) (Histone deacetylase 7B) (HD7) (HD7b) (Histone deacetylase-related protein) (MEF2-interacting transcription repressor MITR) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription. {ECO:0000269|PubMed:11535832}.; FUNCTION: Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter. |
Q9ULH7 | MRTFB | S66 | ochoa | Myocardin-related transcription factor B (MRTF-B) (MKL/myocardin-like protein 2) (Megakaryoblastic leukemia 2) | Acts as a transcriptional coactivator of serum response factor (SRF). Required for skeletal myogenic differentiation. {ECO:0000269|PubMed:14565952}. |
Q9ULT0 | TTC7A | S51 | ochoa | Tetratricopeptide repeat protein 7A (TPR repeat protein 7A) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane (PubMed:23229899, PubMed:24417819). The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis (Probable). In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (By similarity). {ECO:0000250|UniProtKB:Q86TV6, ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:24417819}. |
Q9ULT6 | ZNRF3 | S690 | ochoa | E3 ubiquitin-protein ligase ZNRF3 (EC 2.3.2.27) (RING finger protein 203) (RING-type E3 ubiquitin transferase ZNRF3) (Zinc/RING finger protein 3) | E3 ubiquitin-protein ligase that acts as a negative regulator of the Wnt signaling pathway by mediating the ubiquitination and subsequent degradation of Wnt receptor complex components Frizzled and LRP6. Acts on both canonical and non-canonical Wnt signaling pathway. Acts as a tumor suppressor in the intestinal stem cell zone by inhibiting the Wnt signaling pathway, thereby restricting the size of the intestinal stem cell zone (PubMed:22575959). Along with RSPO2 and RNF43, constitutes a master switch that governs limb specification (By similarity). {ECO:0000250|UniProtKB:Q08D68, ECO:0000269|PubMed:22575959}. |
Q9UQB3 | CTNND2 | S267 | ochoa | Catenin delta-2 (Delta-catenin) (GT24) (Neural plakophilin-related ARM-repeat protein) (NPRAP) (Neurojungin) | Has a critical role in neuronal development, particularly in the formation and/or maintenance of dendritic spines and synapses (PubMed:25807484). Involved in the regulation of Wnt signaling (PubMed:25807484). It probably acts on beta-catenin turnover, facilitating beta-catenin interaction with GSK3B, phosphorylation, ubiquitination and degradation (By similarity). Functions as a transcriptional activator when bound to ZBTB33 (By similarity). May be involved in neuronal cell adhesion and tissue morphogenesis and integrity by regulating adhesion molecules. {ECO:0000250|UniProtKB:O35927, ECO:0000269|PubMed:25807484, ECO:0000269|PubMed:9971746}. |
Q9UQB8 | BAIAP2 | S311 | ochoa | BAR/IMD domain-containing adapter protein 2 (Brain-specific angiogenesis inhibitor 1-associated protein 2) (BAI-associated protein 2) (BAI1-associated protein 2) (Protein BAP2) (Fas ligand-associated factor 3) (FLAF3) (Insulin receptor substrate p53/p58) (IRS-58) (IRSp53/58) (Insulin receptor substrate protein of 53 kDa) (IRSp53) (Insulin receptor substrate p53) | Adapter protein that links membrane-bound small G-proteins to cytoplasmic effector proteins. Necessary for CDC42-mediated reorganization of the actin cytoskeleton and for RAC1-mediated membrane ruffling. Involved in the regulation of the actin cytoskeleton by WASF family members and the Arp2/3 complex. Plays a role in neurite growth. Acts syngeristically with ENAH to promote filipodia formation. Plays a role in the reorganization of the actin cytoskeleton in response to bacterial infection. Participates in actin bundling when associated with EPS8, promoting filopodial protrusions. {ECO:0000269|PubMed:11130076, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:14752106, ECO:0000269|PubMed:17115031, ECO:0000269|PubMed:19366662}. |
Q9UQC2 | GAB2 | S480 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9UQL6 | HDAC5 | S662 | ochoa | Histone deacetylase 5 (HD5) (EC 3.5.1.98) (Antigen NY-CO-9) | Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. Serves as a corepressor of RARA and causes its deacetylation (PubMed:28167758). In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response (PubMed:28167758). {ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:28167758}. |
Q9Y2F5 | ICE1 | S1470 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2F5 | ICE1 | S1699 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2H2 | INPP5F | S940 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y2K7 | KDM2A | S740 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y4B5 | MTCL1 | S685 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y5B0 | CTDP1 | S740 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y5T4 | DNAJC15 | S104 | ochoa | DnaJ homolog subfamily C member 15 (Cell growth-inhibiting gene 22 protein) (Methylation-controlled J protein) (MCJ) | Negative regulator of the mitochondrial respiratory chain. Prevents mitochondrial hyperpolarization state and restricts mitochondrial generation of ATP (By similarity). Acts as an import component of the TIM23 translocase complex. Stimulates the ATPase activity of HSPA9. {ECO:0000250, ECO:0000269|PubMed:23263864}. |
Q9Y613 | FHOD1 | S523 | ochoa | FH1/FH2 domain-containing protein 1 (Formin homolog overexpressed in spleen 1) (FHOS) (Formin homology 2 domain-containing protein 1) | Required for the assembly of F-actin structures, such as stress fibers. Depends on the Rho-ROCK cascade for its activity. Contributes to the coordination of microtubules with actin fibers and plays a role in cell elongation. Acts synergistically with ROCK1 to promote SRC-dependent non-apoptotic plasma membrane blebbing. {ECO:0000269|PubMed:14576350, ECO:0000269|PubMed:15878344, ECO:0000269|PubMed:18694941}. |
Q9Y6R1 | SLC4A4 | S86 | ochoa | Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) | Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}. |
O15264 | MAPK13 | S278 | Sugiyama | Mitogen-activated protein kinase 13 (MAP kinase 13) (MAPK 13) (EC 2.7.11.24) (Mitogen-activated protein kinase p38 delta) (MAP kinase p38 delta) (Stress-activated protein kinase 4) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK13 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors such as ELK1 and ATF2. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. MAPK13 is one of the less studied p38 MAPK isoforms. Some of the targets are downstream kinases such as MAPKAPK2, which are activated through phosphorylation and further phosphorylate additional targets. Plays a role in the regulation of protein translation by phosphorylating and inactivating EEF2K. Involved in cytoskeletal remodeling through phosphorylation of MAPT and STMN1. Mediates UV irradiation induced up-regulation of the gene expression of CXCL14. Plays an important role in the regulation of epidermal keratinocyte differentiation, apoptosis and skin tumor development. Phosphorylates the transcriptional activator MYB in response to stress which leads to rapid MYB degradation via a proteasome-dependent pathway. MAPK13 also phosphorylates and down-regulates PRKD1 during regulation of insulin secretion in pancreatic beta cells. {ECO:0000269|PubMed:11500363, ECO:0000269|PubMed:11943212, ECO:0000269|PubMed:15632108, ECO:0000269|PubMed:17256148, ECO:0000269|PubMed:18006338, ECO:0000269|PubMed:18367666, ECO:0000269|PubMed:20478268, ECO:0000269|PubMed:9731215}. |
Q6PD62 | CTR9 | S1125 | Sugiyama | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q8N3Y1 | FBXW8 | S85 | SIGNOR | F-box/WD repeat-containing protein 8 (F-box and WD-40 domain-containing protein 8) (F-box only protein 29) | Substrate-recognition component of the Cul7-RING(FBXW8) ubiquitin ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:17205132, PubMed:18498745, PubMed:21572988, PubMed:24362026, PubMed:35982156). The Cul7-RING(FBXW8) complex mediates ubiquitination and consequent degradation of GORASP1, acting as a component of the ubiquitin ligase pathway that regulates Golgi morphogenesis and dendrite patterning in brain (PubMed:21572988). Mediates ubiquitination and degradation of IRS1 in a mTOR-dependent manner: the Cul7-RING(FBXW8) complex recognizes and binds IRS1 previously phosphorylated by S6 kinase (RPS6KB1 or RPS6KB2) (PubMed:18498745). The Cul7-RING(FBXW8) complex also mediates ubiquitination of MAP4K1/HPK1: recognizes and binds autophosphorylated MAP4K1/HPK1, leading to its degradation, thereby affecting cell proliferation and differentiation (PubMed:24362026). The Cul7-RING(FBXW8) complex also mediates ubiquitination of phosphorylated cyclin-D1 (CCND1) (PubMed:17205132). The Cul7-RING(FBXW8) complex is however not a major regulator of CCND1 stability during the G1/S transition (By similarity). Associated component of the 3M complex, suggesting that it mediates some of 3M complex functions (PubMed:24793695). {ECO:0000250|UniProtKB:Q8BIA4, ECO:0000269|PubMed:17205132, ECO:0000269|PubMed:18498745, ECO:0000269|PubMed:21572988, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:24793695, ECO:0000269|PubMed:35982156}. |
P43403 | ZAP70 | S263 | Sugiyama | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
Q15751 | HERC1 | S3238 | Sugiyama | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
P43490 | NAMPT | S241 | Sugiyama | Nicotinamide phosphoribosyltransferase (NAmPRTase) (Nampt) (EC 2.4.2.12) (Pre-B-cell colony-enhancing factor 1) (Pre-B cell-enhancing factor) (Visfatin) | Catalyzes the condensation of nicotinamide with 5-phosphoribosyl-1-pyrophosphate to yield nicotinamide mononucleotide, an intermediate in the biosynthesis of NAD. It is the rate limiting component in the mammalian NAD biosynthesis pathway. The secreted form behaves both as a cytokine with immunomodulating properties and an adipokine with anti-diabetic properties, it has no enzymatic activity, partly because of lack of activation by ATP, which has a low level in extracellular space and plasma. Plays a role in the modulation of circadian clock function. NAMPT-dependent oscillatory production of NAD regulates oscillation of clock target gene expression by releasing the core clock component: CLOCK-BMAL1 heterodimer from NAD-dependent SIRT1-mediated suppression (By similarity). {ECO:0000250|UniProtKB:Q99KQ4, ECO:0000269|PubMed:24130902}. |
P08151 | GLI1 | S602 | GPS6 | Zinc finger protein GLI1 (Glioma-associated oncogene) (Oncogene GLI) | Acts as a transcriptional activator (PubMed:10806483, PubMed:19706761, PubMed:19878745, PubMed:24076122, PubMed:24217340, PubMed:24311597). Binds to the DNA consensus sequence 5'-GACCACCCA-3' (PubMed:2105456, PubMed:24217340, PubMed:8378770). Regulates the transcription of specific genes during normal development (PubMed:19706761). Plays a role in craniofacial development and digital development, as well as development of the central nervous system and gastrointestinal tract. Mediates SHH signaling (PubMed:19706761, PubMed:28973407). Plays a role in cell proliferation and differentiation via its role in SHH signaling (PubMed:11238441, PubMed:28973407). {ECO:0000269|PubMed:10806483, ECO:0000269|PubMed:11238441, ECO:0000269|PubMed:19706761, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:2105456, ECO:0000269|PubMed:24076122, ECO:0000269|PubMed:24217340, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:28973407, ECO:0000269|PubMed:8378770}.; FUNCTION: [Isoform 2]: Acts as a transcriptional activator, but activates a different set of genes than isoform 1. Activates expression of CD24, unlike isoform 1. Mediates SHH signaling. Promotes cancer cell migration. {ECO:0000269|PubMed:19706761}. |
P11498 | PC | S122 | Sugiyama | Pyruvate carboxylase, mitochondrial (EC 6.4.1.1) (Pyruvic carboxylase) (PCB) | Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate. {ECO:0000269|PubMed:9585002}. |
Q8NE63 | HIPK4 | S337 | Sugiyama | Homeodomain-interacting protein kinase 4 (EC 2.7.11.1) | Protein kinase that phosphorylates human TP53 at Ser-9, and thus induces TP53 repression of BIRC5 promoter (By similarity). May act as a corepressor of transcription factors (Potential). {ECO:0000250, ECO:0000305}. |
Q8WXE0 | CASKIN2 | S1154 | Sugiyama | Caskin-2 (CASK-interacting protein 2) | None |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-2299718 | Condensation of Prophase Chromosomes | 6.424188e-10 | 9.192 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 6.099097e-10 | 9.215 |
R-HSA-171306 | Packaging Of Telomere Ends | 1.752554e-09 | 8.756 |
R-HSA-912446 | Meiotic recombination | 2.090367e-09 | 8.680 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 1.752554e-09 | 8.756 |
R-HSA-5334118 | DNA methylation | 3.348053e-09 | 8.475 |
R-HSA-3214815 | HDACs deacetylate histones | 4.965862e-09 | 8.304 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 5.857948e-09 | 8.232 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 9.298651e-09 | 8.032 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 8.826708e-09 | 8.054 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 8.224325e-09 | 8.085 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 1.090728e-08 | 7.962 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 1.187074e-08 | 7.926 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 1.437180e-08 | 7.842 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 1.874311e-08 | 7.727 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 1.874311e-08 | 7.727 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 2.060151e-08 | 7.686 |
R-HSA-69473 | G2/M DNA damage checkpoint | 2.386575e-08 | 7.622 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 2.520905e-08 | 7.598 |
R-HSA-212300 | PRC2 methylates histones and DNA | 3.130102e-08 | 7.504 |
R-HSA-774815 | Nucleosome assembly | 3.714688e-08 | 7.430 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 3.714688e-08 | 7.430 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 4.005187e-08 | 7.397 |
R-HSA-110331 | Cleavage of the damaged purine | 4.005187e-08 | 7.397 |
R-HSA-73927 | Depurination | 5.093268e-08 | 7.293 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 5.631969e-08 | 7.249 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 6.180947e-08 | 7.209 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 6.551805e-08 | 7.184 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 7.189066e-08 | 7.143 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 7.851610e-08 | 7.105 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 7.836729e-08 | 7.106 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 8.093528e-08 | 7.092 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 9.380011e-08 | 7.028 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 9.209874e-08 | 7.036 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 1.011859e-07 | 6.995 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 1.326752e-07 | 6.877 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 1.326752e-07 | 6.877 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 1.557379e-07 | 6.808 |
R-HSA-73928 | Depyrimidination | 1.557379e-07 | 6.808 |
R-HSA-1221632 | Meiotic synapsis | 1.825159e-07 | 6.739 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 1.993944e-07 | 6.700 |
R-HSA-9710421 | Defective pyroptosis | 1.918068e-07 | 6.717 |
R-HSA-73864 | RNA Polymerase I Transcription | 2.674729e-07 | 6.573 |
R-HSA-5693606 | DNA Double Strand Break Response | 3.007093e-07 | 6.522 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 4.699104e-07 | 6.328 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 6.097982e-07 | 6.215 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 6.158711e-07 | 6.211 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 6.404105e-07 | 6.194 |
R-HSA-1500620 | Meiosis | 7.031794e-07 | 6.153 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 1.448109e-06 | 5.839 |
R-HSA-69481 | G2/M Checkpoints | 1.713250e-06 | 5.766 |
R-HSA-3247509 | Chromatin modifying enzymes | 1.749919e-06 | 5.757 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 2.238110e-06 | 5.650 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 2.238110e-06 | 5.650 |
R-HSA-68867 | Assembly of the pre-replicative complex | 2.420753e-06 | 5.616 |
R-HSA-5693538 | Homology Directed Repair | 2.688468e-06 | 5.570 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 2.705067e-06 | 5.568 |
R-HSA-68875 | Mitotic Prophase | 3.271483e-06 | 5.485 |
R-HSA-69002 | DNA Replication Pre-Initiation | 3.791334e-06 | 5.421 |
R-HSA-4839726 | Chromatin organization | 4.686367e-06 | 5.329 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 6.249699e-06 | 5.204 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 6.534863e-06 | 5.185 |
R-HSA-73884 | Base Excision Repair | 7.226187e-06 | 5.141 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 7.232374e-06 | 5.141 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 8.076702e-06 | 5.093 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 1.018512e-05 | 4.992 |
R-HSA-2559583 | Cellular Senescence | 1.396779e-05 | 4.855 |
R-HSA-9645723 | Diseases of programmed cell death | 2.636506e-05 | 4.579 |
R-HSA-9842860 | Regulation of endogenous retroelements | 3.050149e-05 | 4.516 |
R-HSA-211000 | Gene Silencing by RNA | 5.276719e-05 | 4.278 |
R-HSA-977225 | Amyloid fiber formation | 5.040501e-05 | 4.298 |
R-HSA-9018519 | Estrogen-dependent gene expression | 6.286146e-05 | 4.202 |
R-HSA-69620 | Cell Cycle Checkpoints | 6.521564e-05 | 4.186 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 6.898039e-05 | 4.161 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 7.394862e-05 | 4.131 |
R-HSA-157579 | Telomere Maintenance | 7.722699e-05 | 4.112 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 8.117490e-05 | 4.091 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 8.117490e-05 | 4.091 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 8.117490e-05 | 4.091 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 8.810477e-05 | 4.055 |
R-HSA-3214847 | HATs acetylate histones | 9.246708e-05 | 4.034 |
R-HSA-8852135 | Protein ubiquitination | 1.190845e-04 | 3.924 |
R-HSA-1474165 | Reproduction | 1.276907e-04 | 3.894 |
R-HSA-69278 | Cell Cycle, Mitotic | 1.476346e-04 | 3.831 |
R-HSA-73886 | Chromosome Maintenance | 1.930542e-04 | 3.714 |
R-HSA-69306 | DNA Replication | 2.191755e-04 | 3.659 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 2.657410e-04 | 3.576 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 2.657410e-04 | 3.576 |
R-HSA-9610379 | HCMV Late Events | 2.820459e-04 | 3.550 |
R-HSA-5688426 | Deubiquitination | 3.836851e-04 | 3.416 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 4.690634e-04 | 3.329 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 7.144173e-04 | 3.146 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 7.304122e-04 | 3.136 |
R-HSA-73857 | RNA Polymerase II Transcription | 8.281695e-04 | 3.082 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 9.235299e-04 | 3.035 |
R-HSA-74160 | Gene expression (Transcription) | 9.927063e-04 | 3.003 |
R-HSA-68886 | M Phase | 1.005678e-03 | 2.998 |
R-HSA-212165 | Epigenetic regulation of gene expression | 1.180784e-03 | 2.928 |
R-HSA-157118 | Signaling by NOTCH | 1.184652e-03 | 2.926 |
R-HSA-1640170 | Cell Cycle | 1.202188e-03 | 2.920 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 1.265189e-03 | 2.898 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 2.047314e-03 | 2.689 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 2.449652e-03 | 2.611 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 2.449652e-03 | 2.611 |
R-HSA-9609690 | HCMV Early Events | 2.349099e-03 | 2.629 |
R-HSA-8939211 | ESR-mediated signaling | 2.472984e-03 | 2.607 |
R-HSA-212436 | Generic Transcription Pathway | 2.479611e-03 | 2.606 |
R-HSA-350054 | Notch-HLH transcription pathway | 2.499601e-03 | 2.602 |
R-HSA-418990 | Adherens junctions interactions | 2.644716e-03 | 2.578 |
R-HSA-389948 | Co-inhibition by PD-1 | 2.806623e-03 | 2.552 |
R-HSA-9609646 | HCMV Infection | 4.103044e-03 | 2.387 |
R-HSA-1500931 | Cell-Cell communication | 4.230180e-03 | 2.374 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 4.385425e-03 | 2.358 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 4.462009e-03 | 2.350 |
R-HSA-5689880 | Ub-specific processing proteases | 5.084224e-03 | 2.294 |
R-HSA-446728 | Cell junction organization | 5.163478e-03 | 2.287 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 7.329062e-03 | 2.135 |
R-HSA-9831926 | Nephron development | 7.329062e-03 | 2.135 |
R-HSA-2025928 | Calcineurin activates NFAT | 7.510523e-03 | 2.124 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 8.184134e-03 | 2.087 |
R-HSA-421270 | Cell-cell junction organization | 9.159635e-03 | 2.038 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 9.812892e-03 | 2.008 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 9.812892e-03 | 2.008 |
R-HSA-195721 | Signaling by WNT | 9.863402e-03 | 2.006 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 1.199536e-02 | 1.921 |
R-HSA-9697154 | Disorders of Nervous System Development | 1.618322e-02 | 1.791 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 1.618322e-02 | 1.791 |
R-HSA-9005895 | Pervasive developmental disorders | 1.618322e-02 | 1.791 |
R-HSA-73894 | DNA Repair | 1.534439e-02 | 1.814 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 1.690739e-02 | 1.772 |
R-HSA-9796292 | Formation of axial mesoderm | 1.895578e-02 | 1.722 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 2.166314e-02 | 1.664 |
R-HSA-3214841 | PKMTs methylate histone lysines | 2.192115e-02 | 1.659 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 2.197460e-02 | 1.658 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 2.252667e-02 | 1.647 |
R-HSA-196780 | Biotin transport and metabolism | 2.524011e-02 | 1.598 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 2.585124e-02 | 1.588 |
R-HSA-983189 | Kinesins | 2.585124e-02 | 1.588 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 2.949237e-02 | 1.530 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 3.173492e-02 | 1.498 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 3.250858e-02 | 1.488 |
R-HSA-9675151 | Disorders of Developmental Biology | 3.250858e-02 | 1.488 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 3.250858e-02 | 1.488 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 3.748485e-02 | 1.426 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 4.056940e-02 | 1.392 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 3.748485e-02 | 1.426 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 3.568764e-02 | 1.447 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 4.056940e-02 | 1.392 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 4.103168e-02 | 1.387 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 4.296337e-02 | 1.367 |
R-HSA-9022707 | MECP2 regulates transcription factors | 4.313581e-02 | 1.365 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 4.313581e-02 | 1.365 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 4.446757e-02 | 1.352 |
R-HSA-9700206 | Signaling by ALK in cancer | 4.446757e-02 | 1.352 |
R-HSA-9823730 | Formation of definitive endoderm | 4.993508e-02 | 1.302 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 5.082703e-02 | 1.294 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 5.110400e-02 | 1.292 |
R-HSA-9909396 | Circadian clock | 5.749776e-02 | 1.240 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 5.955112e-02 | 1.225 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 6.003636e-02 | 1.222 |
R-HSA-1980143 | Signaling by NOTCH1 | 6.026321e-02 | 1.220 |
R-HSA-193648 | NRAGE signals death through JNK | 6.120862e-02 | 1.213 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 6.336134e-02 | 1.198 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 6.336134e-02 | 1.198 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 6.843821e-02 | 1.165 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 6.478187e-02 | 1.189 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 6.843821e-02 | 1.165 |
R-HSA-9607240 | FLT3 Signaling | 7.456563e-02 | 1.127 |
R-HSA-186712 | Regulation of beta-cell development | 7.130361e-02 | 1.147 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 7.485974e-02 | 1.126 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 7.485974e-02 | 1.126 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 7.485974e-02 | 1.126 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 7.485974e-02 | 1.126 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 7.485974e-02 | 1.126 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 7.681363e-02 | 1.115 |
R-HSA-210747 | Regulation of gene expression in early pancreatic precursor cells | 7.772830e-02 | 1.109 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 7.851053e-02 | 1.105 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 7.901801e-02 | 1.102 |
R-HSA-3214842 | HDMs demethylate histones | 8.281632e-02 | 1.082 |
R-HSA-1266695 | Interleukin-7 signaling | 8.281632e-02 | 1.082 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 8.359978e-02 | 1.078 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 8.738633e-02 | 1.059 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 8.738633e-02 | 1.059 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 8.738633e-02 | 1.059 |
R-HSA-6791462 | TALDO1 deficiency: failed conversion of Fru(6)P, E4P to SH7P, GA3P | 9.352299e-02 | 1.029 |
R-HSA-5619054 | Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... | 9.352299e-02 | 1.029 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 9.352299e-02 | 1.029 |
R-HSA-6791055 | TALDO1 deficiency: failed conversion of SH7P, GA3P to Fru(6)P, E4P | 9.352299e-02 | 1.029 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 9.737908e-02 | 1.012 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 1.076751e-01 | 0.968 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 1.076751e-01 | 0.968 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 1.087073e-01 | 0.964 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 9.737908e-02 | 1.012 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 1.076751e-01 | 0.968 |
R-HSA-199991 | Membrane Trafficking | 1.130263e-01 | 0.947 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 1.093345e-01 | 0.961 |
R-HSA-2262752 | Cellular responses to stress | 9.469711e-02 | 1.024 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 1.012057e-01 | 0.995 |
R-HSA-8953897 | Cellular responses to stimuli | 1.106215e-01 | 0.956 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 1.076751e-01 | 0.968 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 1.087388e-01 | 0.964 |
R-HSA-9758941 | Gastrulation | 1.016235e-01 | 0.993 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 1.076751e-01 | 0.968 |
R-HSA-9830369 | Kidney development | 1.023590e-01 | 0.990 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 1.136853e-01 | 0.944 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 1.156160e-01 | 0.937 |
R-HSA-391160 | Signal regulatory protein family interactions | 1.182445e-01 | 0.927 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 1.183358e-01 | 0.927 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 1.226851e-01 | 0.911 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 1.227152e-01 | 0.911 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 1.227152e-01 | 0.911 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 1.227152e-01 | 0.911 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 1.227152e-01 | 0.911 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 1.227152e-01 | 0.911 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 1.227152e-01 | 0.911 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 1.227152e-01 | 0.911 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 1.227152e-01 | 0.911 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 1.227152e-01 | 0.911 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 1.227152e-01 | 0.911 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 1.227152e-01 | 0.911 |
R-HSA-1296053 | Classical Kir channels | 1.509689e-01 | 0.821 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 1.783145e-01 | 0.749 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 1.783145e-01 | 0.749 |
R-HSA-74713 | IRS activation | 2.047809e-01 | 0.689 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 2.303963e-01 | 0.638 |
R-HSA-176417 | Phosphorylation of Emi1 | 2.303963e-01 | 0.638 |
R-HSA-8849470 | PTK6 Regulates Cell Cycle | 2.303963e-01 | 0.638 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 2.303963e-01 | 0.638 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 2.551882e-01 | 0.593 |
R-HSA-9645135 | STAT5 Activation | 2.551882e-01 | 0.593 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 2.551882e-01 | 0.593 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 1.400926e-01 | 0.854 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 2.791829e-01 | 0.554 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 2.791829e-01 | 0.554 |
R-HSA-112412 | SOS-mediated signalling | 2.791829e-01 | 0.554 |
R-HSA-111367 | SLBP independent Processing of Histone Pre-mRNAs | 2.791829e-01 | 0.554 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 1.627155e-01 | 0.789 |
R-HSA-8875656 | MET receptor recycling | 3.024060e-01 | 0.519 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 1.859278e-01 | 0.731 |
R-HSA-9700645 | ALK mutants bind TKIs | 3.248823e-01 | 0.488 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 1.977027e-01 | 0.704 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 1.977027e-01 | 0.704 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 1.977027e-01 | 0.704 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 1.977027e-01 | 0.704 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 3.466358e-01 | 0.460 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 2.334790e-01 | 0.632 |
R-HSA-72187 | mRNA 3'-end processing | 1.360273e-01 | 0.866 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 2.695918e-01 | 0.569 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 2.816373e-01 | 0.550 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 4.077873e-01 | 0.390 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 2.936658e-01 | 0.532 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 4.268741e-01 | 0.370 |
R-HSA-9615710 | Late endosomal microautophagy | 3.176271e-01 | 0.498 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 3.295393e-01 | 0.482 |
R-HSA-177504 | Retrograde neurotrophin signalling | 4.453468e-01 | 0.351 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 4.453468e-01 | 0.351 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 3.413934e-01 | 0.467 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 3.413934e-01 | 0.467 |
R-HSA-9027284 | Erythropoietin activates RAS | 4.632252e-01 | 0.334 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 4.632252e-01 | 0.334 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 3.648933e-01 | 0.438 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 3.648933e-01 | 0.438 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 3.765237e-01 | 0.424 |
R-HSA-5656121 | Translesion synthesis by POLI | 4.805284e-01 | 0.318 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 4.805284e-01 | 0.318 |
R-HSA-176412 | Phosphorylation of the APC/C | 4.805284e-01 | 0.318 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 2.749144e-01 | 0.561 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 3.995113e-01 | 0.398 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 4.972749e-01 | 0.303 |
R-HSA-5655862 | Translesion synthesis by POLK | 4.972749e-01 | 0.303 |
R-HSA-3371511 | HSF1 activation | 4.108563e-01 | 0.386 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 3.184945e-01 | 0.497 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 5.134825e-01 | 0.289 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 5.134825e-01 | 0.289 |
R-HSA-194441 | Metabolism of non-coding RNA | 3.754349e-01 | 0.425 |
R-HSA-191859 | snRNP Assembly | 3.754349e-01 | 0.425 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 3.405057e-01 | 0.468 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 4.442331e-01 | 0.352 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 4.551243e-01 | 0.342 |
R-HSA-8854518 | AURKA Activation by TPX2 | 4.362252e-01 | 0.360 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 3.969060e-01 | 0.401 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 4.946724e-01 | 0.306 |
R-HSA-380287 | Centrosome maturation | 5.108178e-01 | 0.292 |
R-HSA-72172 | mRNA Splicing | 4.507938e-01 | 0.346 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 4.824521e-01 | 0.317 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 2.320338e-01 | 0.634 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 3.295393e-01 | 0.482 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 2.095645e-01 | 0.679 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 3.176271e-01 | 0.498 |
R-HSA-68962 | Activation of the pre-replicative complex | 3.295393e-01 | 0.482 |
R-HSA-9646399 | Aggrephagy | 4.551243e-01 | 0.342 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 1.592566e-01 | 0.798 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 4.658919e-01 | 0.332 |
R-HSA-418885 | DCC mediated attractive signaling | 1.290593e-01 | 0.889 |
R-HSA-446107 | Type I hemidesmosome assembly | 3.024060e-01 | 0.519 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 3.466358e-01 | 0.460 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 2.051622e-01 | 0.688 |
R-HSA-8875878 | MET promotes cell motility | 4.332219e-01 | 0.363 |
R-HSA-163358 | PKA-mediated phosphorylation of key metabolic factors | 2.303963e-01 | 0.638 |
R-HSA-198203 | PI3K/AKT activation | 3.466358e-01 | 0.460 |
R-HSA-110312 | Translesion synthesis by REV1 | 4.632252e-01 | 0.334 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 4.551243e-01 | 0.342 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 1.524217e-01 | 0.817 |
R-HSA-9734767 | Developmental Cell Lineages | 3.246519e-01 | 0.489 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 4.108563e-01 | 0.386 |
R-HSA-163767 | PP2A-mediated dephosphorylation of key metabolic factors | 2.791829e-01 | 0.554 |
R-HSA-9931530 | Phosphorylation and nuclear translocation of the CRY:PER:kinase complex | 4.077873e-01 | 0.390 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 2.936658e-01 | 0.532 |
R-HSA-69166 | Removal of the Flap Intermediate | 4.453468e-01 | 0.351 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 2.677435e-01 | 0.572 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 5.134825e-01 | 0.289 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 2.775506e-01 | 0.557 |
R-HSA-4641265 | Repression of WNT target genes | 4.077873e-01 | 0.390 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 1.923402e-01 | 0.716 |
R-HSA-8849473 | PTK6 Expression | 2.791829e-01 | 0.554 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 3.024060e-01 | 0.519 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 1.372757e-01 | 0.862 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 2.259265e-01 | 0.646 |
R-HSA-176187 | Activation of ATR in response to replication stress | 3.648933e-01 | 0.438 |
R-HSA-5576893 | Phase 2 - plateau phase | 4.972749e-01 | 0.303 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 5.134825e-01 | 0.289 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 3.552093e-01 | 0.450 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 2.888576e-01 | 0.539 |
R-HSA-74158 | RNA Polymerase III Transcription | 4.108563e-01 | 0.386 |
R-HSA-5610787 | Hedgehog 'off' state | 1.597481e-01 | 0.797 |
R-HSA-5693537 | Resolution of D-Loop Structures | 3.765237e-01 | 0.424 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 2.791829e-01 | 0.554 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 1.513192e-01 | 0.820 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 4.453468e-01 | 0.351 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 4.632252e-01 | 0.334 |
R-HSA-9012852 | Signaling by NOTCH3 | 3.400755e-01 | 0.468 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 3.648933e-01 | 0.438 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 3.568930e-01 | 0.447 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 3.295393e-01 | 0.482 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 5.059698e-01 | 0.296 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 4.447409e-01 | 0.352 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 1.783145e-01 | 0.749 |
R-HSA-5624138 | Trafficking of myristoylated proteins to the cilium | 2.047809e-01 | 0.689 |
R-HSA-6791465 | Pentose phosphate pathway disease | 2.303963e-01 | 0.638 |
R-HSA-199920 | CREB phosphorylation | 2.551882e-01 | 0.593 |
R-HSA-390696 | Adrenoceptors | 3.024060e-01 | 0.519 |
R-HSA-176974 | Unwinding of DNA | 3.248823e-01 | 0.488 |
R-HSA-428543 | Inactivation of CDC42 and RAC1 | 3.248823e-01 | 0.488 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 3.466358e-01 | 0.460 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 1.524217e-01 | 0.817 |
R-HSA-5689896 | Ovarian tumor domain proteases | 1.760562e-01 | 0.754 |
R-HSA-8866427 | VLDLR internalisation and degradation | 4.077873e-01 | 0.390 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 3.176271e-01 | 0.498 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 4.805284e-01 | 0.318 |
R-HSA-5576886 | Phase 4 - resting membrane potential | 4.805284e-01 | 0.318 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 3.880652e-01 | 0.411 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 4.972749e-01 | 0.303 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 4.220948e-01 | 0.375 |
R-HSA-69231 | Cyclin D associated events in G1 | 5.076639e-01 | 0.294 |
R-HSA-69236 | G1 Phase | 5.076639e-01 | 0.294 |
R-HSA-5632684 | Hedgehog 'on' state | 4.782663e-01 | 0.320 |
R-HSA-5358351 | Signaling by Hedgehog | 3.968465e-01 | 0.401 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 1.601849e-01 | 0.795 |
R-HSA-447043 | Neurofascin interactions | 2.551882e-01 | 0.593 |
R-HSA-198753 | ERK/MAPK targets | 2.095645e-01 | 0.679 |
R-HSA-74749 | Signal attenuation | 3.466358e-01 | 0.460 |
R-HSA-69183 | Processive synthesis on the lagging strand | 4.632252e-01 | 0.334 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 2.816373e-01 | 0.550 |
R-HSA-1980145 | Signaling by NOTCH2 | 3.880652e-01 | 0.411 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 2.791829e-01 | 0.554 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 2.791829e-01 | 0.554 |
R-HSA-9761174 | Formation of intermediate mesoderm | 3.466358e-01 | 0.460 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 1.841501e-01 | 0.735 |
R-HSA-9707616 | Heme signaling | 1.984870e-01 | 0.702 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 2.692803e-01 | 0.570 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 3.765237e-01 | 0.424 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 4.805284e-01 | 0.318 |
R-HSA-2028269 | Signaling by Hippo | 5.134825e-01 | 0.289 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 5.134825e-01 | 0.289 |
R-HSA-445355 | Smooth Muscle Contraction | 1.418724e-01 | 0.848 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 2.816373e-01 | 0.550 |
R-HSA-163685 | Integration of energy metabolism | 2.381739e-01 | 0.623 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 1.984870e-01 | 0.702 |
R-HSA-69275 | G2/M Transition | 1.399001e-01 | 0.854 |
R-HSA-8941855 | RUNX3 regulates CDKN1A transcription | 2.303963e-01 | 0.638 |
R-HSA-163754 | Insulin effects increased synthesis of Xylulose-5-Phosphate | 2.791829e-01 | 0.554 |
R-HSA-1483226 | Synthesis of PI | 3.676895e-01 | 0.435 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 3.880662e-01 | 0.411 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 4.453468e-01 | 0.351 |
R-HSA-69190 | DNA strand elongation | 3.531807e-01 | 0.452 |
R-HSA-453274 | Mitotic G2-G2/M phases | 1.460225e-01 | 0.836 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 4.972749e-01 | 0.303 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 4.972749e-01 | 0.303 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 2.145621e-01 | 0.668 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 2.807857e-01 | 0.552 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 3.176271e-01 | 0.498 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 2.677435e-01 | 0.572 |
R-HSA-5653656 | Vesicle-mediated transport | 4.592969e-01 | 0.338 |
R-HSA-9842663 | Signaling by LTK | 4.077873e-01 | 0.390 |
R-HSA-69052 | Switching of origins to a post-replicative state | 4.946724e-01 | 0.306 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 3.765237e-01 | 0.424 |
R-HSA-202433 | Generation of second messenger molecules | 4.551243e-01 | 0.342 |
R-HSA-373752 | Netrin-1 signaling | 5.076639e-01 | 0.294 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 1.601849e-01 | 0.795 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 1.760562e-01 | 0.754 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 4.268741e-01 | 0.370 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 4.453468e-01 | 0.351 |
R-HSA-180746 | Nuclear import of Rev protein | 3.880652e-01 | 0.411 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 4.972749e-01 | 0.303 |
R-HSA-6784531 | tRNA processing in the nucleus | 4.017086e-01 | 0.396 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 2.305269e-01 | 0.637 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 4.017086e-01 | 0.396 |
R-HSA-9612973 | Autophagy | 5.047199e-01 | 0.297 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 2.047809e-01 | 0.689 |
R-HSA-447038 | NrCAM interactions | 2.047809e-01 | 0.689 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 1.400926e-01 | 0.854 |
R-HSA-201688 | WNT mediated activation of DVL | 3.248823e-01 | 0.488 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 3.248823e-01 | 0.488 |
R-HSA-425381 | Bicarbonate transporters | 3.676895e-01 | 0.435 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 2.454992e-01 | 0.610 |
R-HSA-428540 | Activation of RAC1 | 3.880662e-01 | 0.411 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 4.077873e-01 | 0.390 |
R-HSA-418457 | cGMP effects | 4.453468e-01 | 0.351 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 4.632252e-01 | 0.334 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 4.805284e-01 | 0.318 |
R-HSA-9945266 | Differentiation of T cells | 4.805284e-01 | 0.318 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 4.551243e-01 | 0.342 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 4.551243e-01 | 0.342 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 4.658919e-01 | 0.332 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 2.006196e-01 | 0.698 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 2.089815e-01 | 0.680 |
R-HSA-170968 | Frs2-mediated activation | 4.268741e-01 | 0.370 |
R-HSA-3928662 | EPHB-mediated forward signaling | 5.076639e-01 | 0.294 |
R-HSA-448424 | Interleukin-17 signaling | 4.699707e-01 | 0.328 |
R-HSA-9758890 | Transport of RCbl within the body | 3.676895e-01 | 0.435 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 5.134825e-01 | 0.289 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 1.601849e-01 | 0.795 |
R-HSA-9675135 | Diseases of DNA repair | 2.605208e-01 | 0.584 |
R-HSA-447041 | CHL1 interactions | 2.791829e-01 | 0.554 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 3.880662e-01 | 0.411 |
R-HSA-171007 | p38MAPK events | 4.632252e-01 | 0.334 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 5.134825e-01 | 0.289 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 4.332219e-01 | 0.363 |
R-HSA-1266738 | Developmental Biology | 2.071638e-01 | 0.684 |
R-HSA-1632852 | Macroautophagy | 4.141335e-01 | 0.383 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 4.658919e-01 | 0.332 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 1.859278e-01 | 0.731 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 3.111804e-01 | 0.507 |
R-HSA-166520 | Signaling by NTRKs | 1.812913e-01 | 0.742 |
R-HSA-8866904 | Negative regulation of activity of TFAP2 (AP-2) family transcription factors | 3.024060e-01 | 0.519 |
R-HSA-5689877 | Josephin domain DUBs | 3.466358e-01 | 0.460 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 4.632252e-01 | 0.334 |
R-HSA-9706369 | Negative regulation of FLT3 | 4.805284e-01 | 0.318 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 4.442331e-01 | 0.352 |
R-HSA-169893 | Prolonged ERK activation events | 4.805284e-01 | 0.318 |
R-HSA-1236394 | Signaling by ERBB4 | 5.027787e-01 | 0.299 |
R-HSA-1226099 | Signaling by FGFR in disease | 2.821169e-01 | 0.550 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 4.268741e-01 | 0.370 |
R-HSA-525793 | Myogenesis | 2.816373e-01 | 0.550 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 4.972749e-01 | 0.303 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 5.134825e-01 | 0.289 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 4.532055e-01 | 0.344 |
R-HSA-9834899 | Specification of the neural plate border | 1.859278e-01 | 0.731 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 4.699707e-01 | 0.328 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 4.870431e-01 | 0.312 |
R-HSA-1482801 | Acyl chain remodelling of PS | 2.695918e-01 | 0.569 |
R-HSA-193144 | Estrogen biosynthesis | 4.077873e-01 | 0.390 |
R-HSA-187687 | Signalling to ERKs | 3.995113e-01 | 0.398 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 3.489384e-01 | 0.457 |
R-HSA-1483255 | PI Metabolism | 5.059698e-01 | 0.296 |
R-HSA-1280218 | Adaptive Immune System | 2.085363e-01 | 0.681 |
R-HSA-8983432 | Interleukin-15 signaling | 4.077873e-01 | 0.390 |
R-HSA-6804116 | TP53 Regulates Transcription of Genes Involved in G1 Cell Cycle Arrest | 4.805284e-01 | 0.318 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 4.805284e-01 | 0.318 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 4.103996e-01 | 0.387 |
R-HSA-8848021 | Signaling by PTK6 | 4.103996e-01 | 0.387 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 1.513192e-01 | 0.820 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 4.077873e-01 | 0.390 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 3.880652e-01 | 0.411 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 3.880652e-01 | 0.411 |
R-HSA-982772 | Growth hormone receptor signaling | 2.454992e-01 | 0.610 |
R-HSA-2586552 | Signaling by Leptin | 3.466358e-01 | 0.460 |
R-HSA-446353 | Cell-extracellular matrix interactions | 4.632252e-01 | 0.334 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 3.995113e-01 | 0.398 |
R-HSA-419037 | NCAM1 interactions | 4.220948e-01 | 0.375 |
R-HSA-9856651 | MITF-M-dependent gene expression | 4.712041e-01 | 0.327 |
R-HSA-8941326 | RUNX2 regulates bone development | 4.108563e-01 | 0.386 |
R-HSA-6807070 | PTEN Regulation | 2.527305e-01 | 0.597 |
R-HSA-1257604 | PIP3 activates AKT signaling | 4.559303e-01 | 0.341 |
R-HSA-9008059 | Interleukin-37 signaling | 3.295393e-01 | 0.482 |
R-HSA-416482 | G alpha (12/13) signalling events | 1.540918e-01 | 0.812 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 4.641099e-01 | 0.333 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 1.293738e-01 | 0.888 |
R-HSA-73887 | Death Receptor Signaling | 3.340238e-01 | 0.476 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 3.880652e-01 | 0.411 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 4.276611e-01 | 0.369 |
R-HSA-75205 | Dissolution of Fibrin Clot | 3.676895e-01 | 0.435 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 2.214955e-01 | 0.655 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 2.932886e-01 | 0.533 |
R-HSA-6783310 | Fanconi Anemia Pathway | 5.177696e-01 | 0.286 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 5.177696e-01 | 0.286 |
R-HSA-9020591 | Interleukin-12 signaling | 5.187880e-01 | 0.285 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 5.196008e-01 | 0.284 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 5.277365e-01 | 0.278 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 5.277365e-01 | 0.278 |
R-HSA-75153 | Apoptotic execution phase | 5.277365e-01 | 0.278 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 5.277365e-01 | 0.278 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 5.291685e-01 | 0.276 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 5.291685e-01 | 0.276 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 5.291685e-01 | 0.276 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 5.291685e-01 | 0.276 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 5.291685e-01 | 0.276 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 5.291685e-01 | 0.276 |
R-HSA-5358508 | Mismatch Repair | 5.291685e-01 | 0.276 |
R-HSA-210993 | Tie2 Signaling | 5.291685e-01 | 0.276 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 5.291685e-01 | 0.276 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 5.291685e-01 | 0.276 |
R-HSA-8951664 | Neddylation | 5.321279e-01 | 0.274 |
R-HSA-437239 | Recycling pathway of L1 | 5.375629e-01 | 0.270 |
R-HSA-9659379 | Sensory processing of sound | 5.422686e-01 | 0.266 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 5.443497e-01 | 0.264 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 5.443497e-01 | 0.264 |
R-HSA-110320 | Translesion Synthesis by POLH | 5.443497e-01 | 0.264 |
R-HSA-500753 | Pyrimidine biosynthesis | 5.443497e-01 | 0.264 |
R-HSA-912631 | Regulation of signaling by CBL | 5.443497e-01 | 0.264 |
R-HSA-1834941 | STING mediated induction of host immune responses | 5.443497e-01 | 0.264 |
R-HSA-69239 | Synthesis of DNA | 5.463151e-01 | 0.263 |
R-HSA-9031628 | NGF-stimulated transcription | 5.472476e-01 | 0.262 |
R-HSA-73893 | DNA Damage Bypass | 5.567894e-01 | 0.254 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 5.575494e-01 | 0.254 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 5.590423e-01 | 0.253 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 5.590423e-01 | 0.253 |
R-HSA-9629569 | Protein hydroxylation | 5.590423e-01 | 0.253 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 5.627199e-01 | 0.250 |
R-HSA-109704 | PI3K Cascade | 5.661875e-01 | 0.247 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 5.732620e-01 | 0.242 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 5.732620e-01 | 0.242 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 5.732620e-01 | 0.242 |
R-HSA-69186 | Lagging Strand Synthesis | 5.732620e-01 | 0.242 |
R-HSA-167044 | Signalling to RAS | 5.732620e-01 | 0.242 |
R-HSA-210991 | Basigin interactions | 5.732620e-01 | 0.242 |
R-HSA-1483249 | Inositol phosphate metabolism | 5.785899e-01 | 0.238 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 5.845503e-01 | 0.233 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 5.845503e-01 | 0.233 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 5.870240e-01 | 0.231 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 5.870240e-01 | 0.231 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 5.870240e-01 | 0.231 |
R-HSA-947581 | Molybdenum cofactor biosynthesis | 5.870240e-01 | 0.231 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 5.870240e-01 | 0.231 |
R-HSA-6802957 | Oncogenic MAPK signaling | 5.871729e-01 | 0.231 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 5.911280e-01 | 0.228 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 5.935142e-01 | 0.227 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 5.935142e-01 | 0.227 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 5.935142e-01 | 0.227 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 6.003430e-01 | 0.222 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 6.003430e-01 | 0.222 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 6.003430e-01 | 0.222 |
R-HSA-8964038 | LDL clearance | 6.003430e-01 | 0.222 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 6.003430e-01 | 0.222 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 6.003430e-01 | 0.222 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 6.003430e-01 | 0.222 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 6.003430e-01 | 0.222 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 6.015003e-01 | 0.221 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 6.023329e-01 | 0.220 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 6.023329e-01 | 0.220 |
R-HSA-447115 | Interleukin-12 family signaling | 6.085403e-01 | 0.216 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 6.095177e-01 | 0.215 |
R-HSA-912526 | Interleukin receptor SHC signaling | 6.132332e-01 | 0.212 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 6.132332e-01 | 0.212 |
R-HSA-200425 | Carnitine shuttle | 6.132332e-01 | 0.212 |
R-HSA-9830674 | Formation of the ureteric bud | 6.132332e-01 | 0.212 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 6.132332e-01 | 0.212 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 6.154969e-01 | 0.211 |
R-HSA-373760 | L1CAM interactions | 6.155337e-01 | 0.211 |
R-HSA-75893 | TNF signaling | 6.195350e-01 | 0.208 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 6.257085e-01 | 0.204 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 6.257085e-01 | 0.204 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 6.257085e-01 | 0.204 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 6.257085e-01 | 0.204 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 6.257085e-01 | 0.204 |
R-HSA-429947 | Deadenylation of mRNA | 6.257085e-01 | 0.204 |
R-HSA-9836573 | Mitochondrial RNA degradation | 6.257085e-01 | 0.204 |
R-HSA-6783589 | Interleukin-6 family signaling | 6.257085e-01 | 0.204 |
R-HSA-8863678 | Neurodegenerative Diseases | 6.257085e-01 | 0.204 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 6.257085e-01 | 0.204 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 6.257085e-01 | 0.204 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 6.273916e-01 | 0.202 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 6.278315e-01 | 0.202 |
R-HSA-112399 | IRS-mediated signalling | 6.279188e-01 | 0.202 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 6.279188e-01 | 0.202 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 6.279188e-01 | 0.202 |
R-HSA-69242 | S Phase | 6.330703e-01 | 0.199 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 6.332326e-01 | 0.198 |
R-HSA-997272 | Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits | 6.377821e-01 | 0.195 |
R-HSA-1296041 | Activation of G protein gated Potassium channels | 6.377821e-01 | 0.195 |
R-HSA-1296059 | G protein gated Potassium channels | 6.377821e-01 | 0.195 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 6.377821e-01 | 0.195 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 6.377821e-01 | 0.195 |
R-HSA-400685 | Sema4D in semaphorin signaling | 6.377821e-01 | 0.195 |
R-HSA-2160916 | Hyaluronan degradation | 6.377821e-01 | 0.195 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 6.377821e-01 | 0.195 |
R-HSA-9006925 | Intracellular signaling by second messengers | 6.388014e-01 | 0.195 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 6.403446e-01 | 0.194 |
R-HSA-381070 | IRE1alpha activates chaperones | 6.424817e-01 | 0.192 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 6.442546e-01 | 0.191 |
R-HSA-3371556 | Cellular response to heat stress | 6.447364e-01 | 0.191 |
R-HSA-2682334 | EPH-Ephrin signaling | 6.490157e-01 | 0.188 |
R-HSA-8874081 | MET activates PTK2 signaling | 6.494669e-01 | 0.187 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 6.494669e-01 | 0.187 |
R-HSA-400042 | Adrenaline,noradrenaline inhibits insulin secretion | 6.494669e-01 | 0.187 |
R-HSA-5689901 | Metalloprotease DUBs | 6.494669e-01 | 0.187 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 6.494669e-01 | 0.187 |
R-HSA-3295583 | TRP channels | 6.494669e-01 | 0.187 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 6.494669e-01 | 0.187 |
R-HSA-1227986 | Signaling by ERBB2 | 6.522077e-01 | 0.186 |
R-HSA-977443 | GABA receptor activation | 6.522077e-01 | 0.186 |
R-HSA-2132295 | MHC class II antigen presentation | 6.560006e-01 | 0.183 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 6.600187e-01 | 0.180 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 6.600187e-01 | 0.180 |
R-HSA-450294 | MAP kinase activation | 6.600187e-01 | 0.180 |
R-HSA-9793380 | Formation of paraxial mesoderm | 6.600187e-01 | 0.180 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 6.607755e-01 | 0.180 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 6.607755e-01 | 0.180 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 6.607755e-01 | 0.180 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 6.607755e-01 | 0.180 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 6.607755e-01 | 0.180 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 6.607755e-01 | 0.180 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 6.607755e-01 | 0.180 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 6.618278e-01 | 0.179 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 6.676884e-01 | 0.175 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 6.681057e-01 | 0.175 |
R-HSA-113418 | Formation of the Early Elongation Complex | 6.717200e-01 | 0.173 |
R-HSA-167287 | HIV elongation arrest and recovery | 6.717200e-01 | 0.173 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 6.717200e-01 | 0.173 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 6.717200e-01 | 0.173 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 6.717200e-01 | 0.173 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 6.717200e-01 | 0.173 |
R-HSA-5620971 | Pyroptosis | 6.717200e-01 | 0.173 |
R-HSA-194138 | Signaling by VEGF | 6.724425e-01 | 0.172 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 6.752179e-01 | 0.171 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 6.752179e-01 | 0.171 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 6.752179e-01 | 0.171 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 6.752179e-01 | 0.171 |
R-HSA-162582 | Signal Transduction | 6.798664e-01 | 0.168 |
R-HSA-6807878 | COPI-mediated anterograde transport | 6.804052e-01 | 0.167 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 6.823120e-01 | 0.166 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 6.823120e-01 | 0.166 |
R-HSA-9006335 | Signaling by Erythropoietin | 6.823120e-01 | 0.166 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 6.823120e-01 | 0.166 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 6.823120e-01 | 0.166 |
R-HSA-210745 | Regulation of gene expression in beta cells | 6.823120e-01 | 0.166 |
R-HSA-74751 | Insulin receptor signalling cascade | 6.826081e-01 | 0.166 |
R-HSA-2428924 | IGF1R signaling cascade | 6.826081e-01 | 0.166 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 6.826081e-01 | 0.166 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 6.898603e-01 | 0.161 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 6.898603e-01 | 0.161 |
R-HSA-5633007 | Regulation of TP53 Activity | 6.923268e-01 | 0.160 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 6.925628e-01 | 0.160 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 6.925628e-01 | 0.160 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 6.925628e-01 | 0.160 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 6.925628e-01 | 0.160 |
R-HSA-114452 | Activation of BH3-only proteins | 6.925628e-01 | 0.160 |
R-HSA-68877 | Mitotic Prometaphase | 6.929842e-01 | 0.159 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 7.024835e-01 | 0.153 |
R-HSA-399719 | Trafficking of AMPA receptors | 7.024835e-01 | 0.153 |
R-HSA-162588 | Budding and maturation of HIV virion | 7.024835e-01 | 0.153 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 7.024835e-01 | 0.153 |
R-HSA-182971 | EGFR downregulation | 7.024835e-01 | 0.153 |
R-HSA-5694530 | Cargo concentration in the ER | 7.024835e-01 | 0.153 |
R-HSA-186763 | Downstream signal transduction | 7.024835e-01 | 0.153 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 7.039820e-01 | 0.152 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 7.108009e-01 | 0.148 |
R-HSA-1296065 | Inwardly rectifying K+ channels | 7.120847e-01 | 0.147 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 7.120847e-01 | 0.147 |
R-HSA-4791275 | Signaling by WNT in cancer | 7.120847e-01 | 0.147 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 7.120847e-01 | 0.147 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 7.213766e-01 | 0.142 |
R-HSA-354192 | Integrin signaling | 7.213766e-01 | 0.142 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 7.213766e-01 | 0.142 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 7.213766e-01 | 0.142 |
R-HSA-204005 | COPII-mediated vesicle transport | 7.240947e-01 | 0.140 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 7.262088e-01 | 0.139 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 7.303691e-01 | 0.136 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 7.303691e-01 | 0.136 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 7.303691e-01 | 0.136 |
R-HSA-453276 | Regulation of mitotic cell cycle | 7.305460e-01 | 0.136 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 7.305460e-01 | 0.136 |
R-HSA-975634 | Retinoid metabolism and transport | 7.305460e-01 | 0.136 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 7.368689e-01 | 0.133 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 7.368689e-01 | 0.133 |
R-HSA-5696400 | Dual Incision in GG-NER | 7.390720e-01 | 0.131 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 7.390720e-01 | 0.131 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 7.390720e-01 | 0.131 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 7.390720e-01 | 0.131 |
R-HSA-2142845 | Hyaluronan metabolism | 7.390720e-01 | 0.131 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 7.430649e-01 | 0.129 |
R-HSA-4086398 | Ca2+ pathway | 7.430649e-01 | 0.129 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 7.447101e-01 | 0.128 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 7.474945e-01 | 0.126 |
R-HSA-2559585 | Oncogene Induced Senescence | 7.474945e-01 | 0.126 |
R-HSA-917977 | Transferrin endocytosis and recycling | 7.474945e-01 | 0.126 |
R-HSA-8953854 | Metabolism of RNA | 7.475413e-01 | 0.126 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 7.491357e-01 | 0.125 |
R-HSA-9013694 | Signaling by NOTCH4 | 7.491357e-01 | 0.125 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 7.508342e-01 | 0.124 |
R-HSA-1169408 | ISG15 antiviral mechanism | 7.550829e-01 | 0.122 |
R-HSA-9682385 | FLT3 signaling in disease | 7.556456e-01 | 0.122 |
R-HSA-8853659 | RET signaling | 7.556456e-01 | 0.122 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 7.556456e-01 | 0.122 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 7.570729e-01 | 0.121 |
R-HSA-5689603 | UCH proteinases | 7.609081e-01 | 0.119 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 7.616230e-01 | 0.118 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 7.635340e-01 | 0.117 |
R-HSA-8948216 | Collagen chain trimerization | 7.635340e-01 | 0.117 |
R-HSA-9675108 | Nervous system development | 7.661631e-01 | 0.116 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 7.680107e-01 | 0.115 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 7.680107e-01 | 0.115 |
R-HSA-397014 | Muscle contraction | 7.705311e-01 | 0.113 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 7.711683e-01 | 0.113 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 7.714216e-01 | 0.113 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 7.714216e-01 | 0.113 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 7.785566e-01 | 0.109 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 7.785566e-01 | 0.109 |
R-HSA-8964043 | Plasma lipoprotein clearance | 7.785566e-01 | 0.109 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 7.785566e-01 | 0.109 |
R-HSA-71336 | Pentose phosphate pathway | 7.785566e-01 | 0.109 |
R-HSA-201556 | Signaling by ALK | 7.785566e-01 | 0.109 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 7.830228e-01 | 0.106 |
R-HSA-6806834 | Signaling by MET | 7.830228e-01 | 0.106 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 7.830228e-01 | 0.106 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 7.842484e-01 | 0.106 |
R-HSA-3371568 | Attenuation phase | 7.857067e-01 | 0.105 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 7.857067e-01 | 0.105 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 7.857067e-01 | 0.105 |
R-HSA-167169 | HIV Transcription Elongation | 7.857067e-01 | 0.105 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 7.857067e-01 | 0.105 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 7.857067e-01 | 0.105 |
R-HSA-451927 | Interleukin-2 family signaling | 7.857067e-01 | 0.105 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 7.882635e-01 | 0.103 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 7.894682e-01 | 0.103 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 7.926264e-01 | 0.101 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 7.926264e-01 | 0.101 |
R-HSA-5423646 | Aflatoxin activation and detoxification | 7.926264e-01 | 0.101 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 7.937908e-01 | 0.100 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 7.984116e-01 | 0.098 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 7.993231e-01 | 0.097 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 7.993231e-01 | 0.097 |
R-HSA-5674135 | MAP2K and MAPK activation | 7.993231e-01 | 0.097 |
R-HSA-9656223 | Signaling by RAF1 mutants | 7.993231e-01 | 0.097 |
R-HSA-6811438 | Intra-Golgi traffic | 7.993231e-01 | 0.097 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 7.993231e-01 | 0.097 |
R-HSA-189451 | Heme biosynthesis | 7.993231e-01 | 0.097 |
R-HSA-9007101 | Rab regulation of trafficking | 8.022144e-01 | 0.096 |
R-HSA-70326 | Glucose metabolism | 8.022144e-01 | 0.096 |
R-HSA-1592230 | Mitochondrial biogenesis | 8.022144e-01 | 0.096 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 8.033224e-01 | 0.095 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 8.045830e-01 | 0.094 |
R-HSA-991365 | Activation of GABAB receptors | 8.058039e-01 | 0.094 |
R-HSA-977444 | GABA B receptor activation | 8.058039e-01 | 0.094 |
R-HSA-165159 | MTOR signalling | 8.058039e-01 | 0.094 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 8.058039e-01 | 0.094 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 8.072180e-01 | 0.093 |
R-HSA-1433557 | Signaling by SCF-KIT | 8.120758e-01 | 0.090 |
R-HSA-8854214 | TBC/RABGAPs | 8.120758e-01 | 0.090 |
R-HSA-141424 | Amplification of signal from the kinetochores | 8.128264e-01 | 0.090 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 8.128264e-01 | 0.090 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 8.128264e-01 | 0.090 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 8.174231e-01 | 0.088 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 8.181455e-01 | 0.087 |
R-HSA-375280 | Amine ligand-binding receptors | 8.181455e-01 | 0.087 |
R-HSA-3214858 | RMTs methylate histone arginines | 8.181455e-01 | 0.087 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 8.181455e-01 | 0.087 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 8.212983e-01 | 0.085 |
R-HSA-597592 | Post-translational protein modification | 8.215075e-01 | 0.085 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 8.240195e-01 | 0.084 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 8.240195e-01 | 0.084 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 8.240195e-01 | 0.084 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 8.240195e-01 | 0.084 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 8.240195e-01 | 0.084 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 8.240195e-01 | 0.084 |
R-HSA-162587 | HIV Life Cycle | 8.242589e-01 | 0.084 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 8.257685e-01 | 0.083 |
R-HSA-9663891 | Selective autophagy | 8.263144e-01 | 0.083 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 8.269708e-01 | 0.083 |
R-HSA-422475 | Axon guidance | 8.288915e-01 | 0.082 |
R-HSA-162909 | Host Interactions of HIV factors | 8.294523e-01 | 0.081 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 8.297042e-01 | 0.081 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 8.297042e-01 | 0.081 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 8.297042e-01 | 0.081 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 8.297042e-01 | 0.081 |
R-HSA-6802949 | Signaling by RAS mutants | 8.297042e-01 | 0.081 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 8.297042e-01 | 0.081 |
R-HSA-2514859 | Inactivation, recovery and regulation of the phototransduction cascade | 8.297042e-01 | 0.081 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 8.348147e-01 | 0.078 |
R-HSA-112310 | Neurotransmitter release cycle | 8.348147e-01 | 0.078 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 8.352055e-01 | 0.078 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 8.352055e-01 | 0.078 |
R-HSA-69206 | G1/S Transition | 8.366201e-01 | 0.077 |
R-HSA-5620924 | Intraflagellar transport | 8.405295e-01 | 0.075 |
R-HSA-70263 | Gluconeogenesis | 8.405295e-01 | 0.075 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 8.456817e-01 | 0.073 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 8.456817e-01 | 0.073 |
R-HSA-74752 | Signaling by Insulin receptor | 8.468619e-01 | 0.072 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 8.490281e-01 | 0.071 |
R-HSA-5658442 | Regulation of RAS by GAPs | 8.506678e-01 | 0.070 |
R-HSA-2162123 | Synthesis of Prostaglandins (PG) and Thromboxanes (TX) | 8.506678e-01 | 0.070 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 8.534129e-01 | 0.069 |
R-HSA-3371571 | HSF1-dependent transactivation | 8.554932e-01 | 0.068 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 8.554932e-01 | 0.068 |
R-HSA-9864848 | Complex IV assembly | 8.554932e-01 | 0.068 |
R-HSA-2514856 | The phototransduction cascade | 8.554932e-01 | 0.068 |
R-HSA-9843745 | Adipogenesis | 8.596971e-01 | 0.066 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 8.601628e-01 | 0.065 |
R-HSA-68949 | Orc1 removal from chromatin | 8.601628e-01 | 0.065 |
R-HSA-6794361 | Neurexins and neuroligins | 8.601628e-01 | 0.065 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 8.646819e-01 | 0.063 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 8.646819e-01 | 0.063 |
R-HSA-8956320 | Nucleotide biosynthesis | 8.646819e-01 | 0.063 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 8.646819e-01 | 0.063 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 8.651774e-01 | 0.063 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 8.661100e-01 | 0.062 |
R-HSA-72306 | tRNA processing | 8.661100e-01 | 0.062 |
R-HSA-72649 | Translation initiation complex formation | 8.690552e-01 | 0.061 |
R-HSA-422356 | Regulation of insulin secretion | 8.719247e-01 | 0.060 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 8.719247e-01 | 0.060 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 8.719247e-01 | 0.060 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 8.719247e-01 | 0.060 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 8.732874e-01 | 0.059 |
R-HSA-9614085 | FOXO-mediated transcription | 8.751807e-01 | 0.058 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 8.771540e-01 | 0.057 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 8.773830e-01 | 0.057 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 8.773830e-01 | 0.057 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 8.773830e-01 | 0.057 |
R-HSA-177929 | Signaling by EGFR | 8.773830e-01 | 0.057 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 8.773830e-01 | 0.057 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 8.773830e-01 | 0.057 |
R-HSA-70171 | Glycolysis | 8.783604e-01 | 0.056 |
R-HSA-9764561 | Regulation of CDH1 Function | 8.813466e-01 | 0.055 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 8.814651e-01 | 0.055 |
R-HSA-6782135 | Dual incision in TC-NER | 8.851822e-01 | 0.053 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 8.851822e-01 | 0.053 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 8.851822e-01 | 0.053 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 8.851822e-01 | 0.053 |
R-HSA-68882 | Mitotic Anaphase | 8.852026e-01 | 0.053 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 8.873267e-01 | 0.052 |
R-HSA-9664407 | Parasite infection | 8.876960e-01 | 0.052 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 8.876960e-01 | 0.052 |
R-HSA-9664417 | Leishmania phagocytosis | 8.876960e-01 | 0.052 |
R-HSA-9033241 | Peroxisomal protein import | 8.888941e-01 | 0.051 |
R-HSA-180786 | Extension of Telomeres | 8.888941e-01 | 0.051 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 8.888941e-01 | 0.051 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 8.888941e-01 | 0.051 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 8.902021e-01 | 0.051 |
R-HSA-1483257 | Phospholipid metabolism | 8.905202e-01 | 0.050 |
R-HSA-5696398 | Nucleotide Excision Repair | 8.959186e-01 | 0.048 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 8.959186e-01 | 0.048 |
R-HSA-445717 | Aquaporin-mediated transport | 8.959624e-01 | 0.048 |
R-HSA-1442490 | Collagen degradation | 8.959624e-01 | 0.048 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 8.993264e-01 | 0.046 |
R-HSA-1268020 | Mitochondrial protein import | 8.993264e-01 | 0.046 |
R-HSA-186797 | Signaling by PDGF | 8.993264e-01 | 0.046 |
R-HSA-373755 | Semaphorin interactions | 9.025818e-01 | 0.045 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 9.037863e-01 | 0.044 |
R-HSA-2672351 | Stimuli-sensing channels | 9.037863e-01 | 0.044 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 9.062831e-01 | 0.043 |
R-HSA-2187338 | Visual phototransduction | 9.063860e-01 | 0.043 |
R-HSA-162906 | HIV Infection | 9.067746e-01 | 0.043 |
R-HSA-202403 | TCR signaling | 9.087193e-01 | 0.042 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 9.087193e-01 | 0.042 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 9.087193e-01 | 0.042 |
R-HSA-1234174 | Cellular response to hypoxia | 9.087808e-01 | 0.042 |
R-HSA-5617833 | Cilium Assembly | 9.109227e-01 | 0.041 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 9.117310e-01 | 0.040 |
R-HSA-9679191 | Potential therapeutics for SARS | 9.126372e-01 | 0.040 |
R-HSA-196807 | Nicotinate metabolism | 9.145860e-01 | 0.039 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 9.145860e-01 | 0.039 |
R-HSA-196071 | Metabolism of steroid hormones | 9.145860e-01 | 0.039 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 9.146352e-01 | 0.039 |
R-HSA-72312 | rRNA processing | 9.153525e-01 | 0.038 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 9.156770e-01 | 0.038 |
R-HSA-167172 | Transcription of the HIV genome | 9.173488e-01 | 0.037 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 9.173488e-01 | 0.037 |
R-HSA-5218859 | Regulated Necrosis | 9.173488e-01 | 0.037 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 9.203823e-01 | 0.036 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 9.221348e-01 | 0.035 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 9.222182e-01 | 0.035 |
R-HSA-1989781 | PPARA activates gene expression | 9.222182e-01 | 0.035 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 9.226097e-01 | 0.035 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 9.226097e-01 | 0.035 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 9.226097e-01 | 0.035 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 9.226097e-01 | 0.035 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 9.251135e-01 | 0.034 |
R-HSA-189445 | Metabolism of porphyrins | 9.251135e-01 | 0.034 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 9.251135e-01 | 0.034 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 9.257744e-01 | 0.033 |
R-HSA-9711097 | Cellular response to starvation | 9.274961e-01 | 0.033 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 9.274961e-01 | 0.033 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 9.275364e-01 | 0.033 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 9.285639e-01 | 0.032 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 9.298810e-01 | 0.032 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 9.318741e-01 | 0.031 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 9.318741e-01 | 0.031 |
R-HSA-376176 | Signaling by ROBO receptors | 9.323762e-01 | 0.030 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 9.323762e-01 | 0.030 |
R-HSA-8957322 | Metabolism of steroids | 9.334382e-01 | 0.030 |
R-HSA-109581 | Apoptosis | 9.340227e-01 | 0.030 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 9.343456e-01 | 0.029 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 9.343456e-01 | 0.029 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 9.343456e-01 | 0.029 |
R-HSA-917937 | Iron uptake and transport | 9.343456e-01 | 0.029 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 9.354377e-01 | 0.029 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 9.354377e-01 | 0.029 |
R-HSA-5357801 | Programmed Cell Death | 9.366119e-01 | 0.028 |
R-HSA-2467813 | Separation of Sister Chromatids | 9.370791e-01 | 0.028 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 9.371527e-01 | 0.028 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 9.371527e-01 | 0.028 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 9.385264e-01 | 0.028 |
R-HSA-5673001 | RAF/MAP kinase cascade | 9.388106e-01 | 0.027 |
R-HSA-4086400 | PCP/CE pathway | 9.405161e-01 | 0.027 |
R-HSA-191273 | Cholesterol biosynthesis | 9.405161e-01 | 0.027 |
R-HSA-5619102 | SLC transporter disorders | 9.414195e-01 | 0.026 |
R-HSA-9833482 | PKR-mediated signaling | 9.443046e-01 | 0.025 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 9.464527e-01 | 0.024 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 9.495407e-01 | 0.022 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 9.516749e-01 | 0.022 |
R-HSA-6794362 | Protein-protein interactions at synapses | 9.527554e-01 | 0.021 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 9.527554e-01 | 0.021 |
R-HSA-5576891 | Cardiac conduction | 9.533747e-01 | 0.021 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.546327e-01 | 0.020 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 9.557657e-01 | 0.020 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 9.557657e-01 | 0.020 |
R-HSA-5683057 | MAPK family signaling cascades | 9.561842e-01 | 0.019 |
R-HSA-70268 | Pyruvate metabolism | 9.571983e-01 | 0.019 |
R-HSA-168255 | Influenza Infection | 9.572075e-01 | 0.019 |
R-HSA-9694516 | SARS-CoV-2 Infection | 9.577872e-01 | 0.019 |
R-HSA-156902 | Peptide chain elongation | 9.585846e-01 | 0.018 |
R-HSA-9711123 | Cellular response to chemical stress | 9.590834e-01 | 0.018 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 9.615258e-01 | 0.017 |
R-HSA-449147 | Signaling by Interleukins | 9.621319e-01 | 0.017 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 9.624802e-01 | 0.017 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 9.636957e-01 | 0.016 |
R-HSA-156842 | Eukaryotic Translation Elongation | 9.648719e-01 | 0.016 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 9.648719e-01 | 0.016 |
R-HSA-1474290 | Collagen formation | 9.671114e-01 | 0.015 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 9.681771e-01 | 0.014 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.682214e-01 | 0.014 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 9.692083e-01 | 0.014 |
R-HSA-72764 | Eukaryotic Translation Termination | 9.692083e-01 | 0.014 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.702062e-01 | 0.013 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.702062e-01 | 0.013 |
R-HSA-1296071 | Potassium Channels | 9.702062e-01 | 0.013 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 9.711718e-01 | 0.013 |
R-HSA-8957275 | Post-translational protein phosphorylation | 9.721062e-01 | 0.012 |
R-HSA-5368286 | Mitochondrial translation initiation | 9.721062e-01 | 0.012 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 9.724211e-01 | 0.012 |
R-HSA-9824446 | Viral Infection Pathways | 9.741733e-01 | 0.011 |
R-HSA-2408557 | Selenocysteine synthesis | 9.747318e-01 | 0.011 |
R-HSA-446652 | Interleukin-1 family signaling | 9.753406e-01 | 0.011 |
R-HSA-9609507 | Protein localization | 9.760225e-01 | 0.011 |
R-HSA-192823 | Viral mRNA Translation | 9.763437e-01 | 0.010 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 9.763437e-01 | 0.010 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.764292e-01 | 0.010 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 9.771107e-01 | 0.010 |
R-HSA-9833110 | RSV-host interactions | 9.778529e-01 | 0.010 |
R-HSA-418346 | Platelet homeostasis | 9.792661e-01 | 0.009 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 9.792661e-01 | 0.009 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 9.799385e-01 | 0.009 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 9.805892e-01 | 0.009 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 9.805892e-01 | 0.009 |
R-HSA-5419276 | Mitochondrial translation termination | 9.812188e-01 | 0.008 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 9.817186e-01 | 0.008 |
R-HSA-6803157 | Antimicrobial peptides | 9.824175e-01 | 0.008 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 9.845907e-01 | 0.007 |
R-HSA-72737 | Cap-dependent Translation Initiation | 9.860427e-01 | 0.006 |
R-HSA-72613 | Eukaryotic Translation Initiation | 9.860427e-01 | 0.006 |
R-HSA-2980736 | Peptide hormone metabolism | 9.864957e-01 | 0.006 |
R-HSA-9678108 | SARS-CoV-1 Infection | 9.875061e-01 | 0.005 |
R-HSA-112315 | Transmission across Chemical Synapses | 9.877052e-01 | 0.005 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.882118e-01 | 0.005 |
R-HSA-109582 | Hemostasis | 9.894948e-01 | 0.005 |
R-HSA-114608 | Platelet degranulation | 9.906073e-01 | 0.004 |
R-HSA-168256 | Immune System | 9.906133e-01 | 0.004 |
R-HSA-9679506 | SARS-CoV Infections | 9.912993e-01 | 0.004 |
R-HSA-983712 | Ion channel transport | 9.916470e-01 | 0.004 |
R-HSA-168898 | Toll-like Receptor Cascades | 9.921165e-01 | 0.003 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 9.925459e-01 | 0.003 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.926546e-01 | 0.003 |
R-HSA-5368287 | Mitochondrial translation | 9.938863e-01 | 0.003 |
R-HSA-9948299 | Ribosome-associated quality control | 9.938863e-01 | 0.003 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 9.962767e-01 | 0.002 |
R-HSA-2142753 | Arachidonate metabolism | 9.962767e-01 | 0.002 |
R-HSA-9658195 | Leishmania infection | 9.970554e-01 | 0.001 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.970554e-01 | 0.001 |
R-HSA-9006936 | Signaling by TGFB family members | 9.971425e-01 | 0.001 |
R-HSA-2408522 | Selenoamino acid metabolism | 9.974968e-01 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.980155e-01 | 0.001 |
R-HSA-418555 | G alpha (s) signalling events | 9.980793e-01 | 0.001 |
R-HSA-611105 | Respiratory electron transport | 9.984768e-01 | 0.001 |
R-HSA-112316 | Neuronal System | 9.987775e-01 | 0.001 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.988315e-01 | 0.001 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 9.988576e-01 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.988820e-01 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.990736e-01 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 9.991148e-01 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 9.992629e-01 | 0.000 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 9.993451e-01 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.995161e-01 | 0.000 |
R-HSA-6798695 | Neutrophil degranulation | 9.995403e-01 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 9.997255e-01 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 9.997851e-01 | 0.000 |
R-HSA-913531 | Interferon Signaling | 9.998373e-01 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 9.999154e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 9.999548e-01 | 0.000 |
R-HSA-1643685 | Disease | 9.999606e-01 | 0.000 |
R-HSA-5663205 | Infectious disease | 9.999757e-01 | 0.000 |
R-HSA-168249 | Innate Immune System | 9.999794e-01 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 9.999842e-01 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.999856e-01 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 9.999895e-01 | 0.000 |
R-HSA-72766 | Translation | 9.999947e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.999981e-01 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 9.999993e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999998e-01 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000e+00 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000e+00 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000e+00 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDK3 |
0.816 | 0.533 | 1 | 0.910 |
CDK18 |
0.814 | 0.626 | 1 | 0.888 |
KIS |
0.812 | 0.575 | 1 | 0.821 |
CDK19 |
0.810 | 0.612 | 1 | 0.871 |
P38G |
0.809 | 0.651 | 1 | 0.919 |
CDK17 |
0.809 | 0.622 | 1 | 0.913 |
JNK2 |
0.806 | 0.664 | 1 | 0.883 |
CDK5 |
0.806 | 0.587 | 1 | 0.826 |
CDK7 |
0.806 | 0.614 | 1 | 0.848 |
HIPK2 |
0.805 | 0.563 | 1 | 0.867 |
CDK8 |
0.803 | 0.607 | 1 | 0.840 |
CDK1 |
0.803 | 0.578 | 1 | 0.876 |
P38D |
0.802 | 0.641 | 1 | 0.917 |
P38B |
0.800 | 0.633 | 1 | 0.857 |
CDK13 |
0.800 | 0.600 | 1 | 0.865 |
ERK1 |
0.800 | 0.615 | 1 | 0.867 |
CDK16 |
0.799 | 0.593 | 1 | 0.901 |
CDK12 |
0.798 | 0.602 | 1 | 0.882 |
JNK3 |
0.797 | 0.649 | 1 | 0.861 |
CDK9 |
0.792 | 0.586 | 1 | 0.858 |
DYRK2 |
0.792 | 0.547 | 1 | 0.794 |
P38A |
0.790 | 0.610 | 1 | 0.795 |
CDK14 |
0.787 | 0.585 | 1 | 0.850 |
HIPK4 |
0.787 | 0.379 | 1 | 0.591 |
DYRK4 |
0.786 | 0.546 | 1 | 0.881 |
CLK3 |
0.786 | 0.353 | 1 | 0.579 |
CDK10 |
0.785 | 0.542 | 1 | 0.866 |
HIPK1 |
0.783 | 0.512 | 1 | 0.774 |
JNK1 |
0.783 | 0.576 | 1 | 0.886 |
ERK2 |
0.779 | 0.591 | 1 | 0.825 |
DYRK1B |
0.779 | 0.523 | 1 | 0.846 |
CDK4 |
0.779 | 0.575 | 1 | 0.887 |
CDK6 |
0.777 | 0.548 | 1 | 0.863 |
NLK |
0.777 | 0.530 | 1 | 0.599 |
HIPK3 |
0.775 | 0.504 | 1 | 0.739 |
CDK2 |
0.775 | 0.421 | 1 | 0.762 |
SRPK1 |
0.774 | 0.232 | -3 | 0.740 |
DYRK1A |
0.770 | 0.438 | 1 | 0.757 |
ERK5 |
0.770 | 0.313 | 1 | 0.523 |
CLK2 |
0.763 | 0.279 | -3 | 0.726 |
DYRK3 |
0.761 | 0.400 | 1 | 0.737 |
SRPK2 |
0.760 | 0.179 | -3 | 0.658 |
MTOR |
0.759 | 0.176 | 1 | 0.390 |
MAK |
0.759 | 0.379 | -2 | 0.792 |
CLK1 |
0.758 | 0.280 | -3 | 0.711 |
CDKL5 |
0.755 | 0.134 | -3 | 0.794 |
COT |
0.754 | -0.040 | 2 | 0.842 |
ICK |
0.754 | 0.258 | -3 | 0.842 |
CLK4 |
0.754 | 0.263 | -3 | 0.741 |
MOK |
0.749 | 0.359 | 1 | 0.671 |
SRPK3 |
0.749 | 0.144 | -3 | 0.709 |
CHAK2 |
0.749 | 0.138 | -1 | 0.843 |
CDC7 |
0.748 | -0.069 | 1 | 0.253 |
CDKL1 |
0.747 | 0.098 | -3 | 0.798 |
PRP4 |
0.747 | 0.341 | -3 | 0.818 |
MOS |
0.745 | -0.016 | 1 | 0.288 |
PRPK |
0.744 | -0.023 | -1 | 0.864 |
PRKD1 |
0.743 | 0.009 | -3 | 0.843 |
TBK1 |
0.742 | -0.107 | 1 | 0.182 |
NEK6 |
0.741 | -0.022 | -2 | 0.879 |
ERK7 |
0.740 | 0.210 | 2 | 0.553 |
NDR2 |
0.739 | -0.035 | -3 | 0.851 |
IKKE |
0.739 | -0.108 | 1 | 0.181 |
PIM3 |
0.739 | -0.043 | -3 | 0.839 |
ATR |
0.737 | -0.030 | 1 | 0.276 |
PDHK4 |
0.737 | -0.091 | 1 | 0.283 |
DSTYK |
0.736 | -0.089 | 2 | 0.876 |
NUAK2 |
0.736 | -0.001 | -3 | 0.823 |
GCN2 |
0.736 | -0.163 | 2 | 0.768 |
MST4 |
0.735 | -0.031 | 2 | 0.864 |
WNK1 |
0.735 | -0.057 | -2 | 0.909 |
CAMK1B |
0.734 | -0.033 | -3 | 0.846 |
MARK4 |
0.734 | -0.039 | 4 | 0.846 |
SKMLCK |
0.734 | -0.037 | -2 | 0.894 |
PKN3 |
0.734 | -0.051 | -3 | 0.827 |
BMPR2 |
0.734 | -0.116 | -2 | 0.892 |
ULK2 |
0.734 | -0.135 | 2 | 0.753 |
RSK2 |
0.733 | -0.005 | -3 | 0.758 |
PRKD2 |
0.733 | -0.008 | -3 | 0.759 |
TGFBR2 |
0.733 | -0.061 | -2 | 0.815 |
RAF1 |
0.732 | -0.169 | 1 | 0.220 |
RIPK3 |
0.732 | -0.159 | 3 | 0.144 |
CAMLCK |
0.732 | -0.013 | -2 | 0.871 |
AURC |
0.732 | 0.028 | -2 | 0.700 |
PKCD |
0.732 | -0.025 | 2 | 0.781 |
IKKB |
0.732 | -0.125 | -2 | 0.734 |
P90RSK |
0.731 | -0.004 | -3 | 0.769 |
MLK2 |
0.731 | -0.033 | 2 | 0.814 |
NEK7 |
0.731 | -0.110 | -3 | 0.866 |
NDR1 |
0.731 | -0.057 | -3 | 0.831 |
RSK3 |
0.731 | -0.005 | -3 | 0.752 |
HUNK |
0.730 | -0.121 | 2 | 0.775 |
NIK |
0.730 | -0.067 | -3 | 0.874 |
MLK1 |
0.728 | -0.105 | 2 | 0.807 |
PKN2 |
0.728 | -0.060 | -3 | 0.825 |
BMPR1B |
0.728 | -0.012 | 1 | 0.229 |
PDHK1 |
0.728 | -0.159 | 1 | 0.255 |
TSSK1 |
0.728 | -0.028 | -3 | 0.871 |
PIM1 |
0.728 | -0.009 | -3 | 0.768 |
IRE1 |
0.728 | -0.088 | 1 | 0.216 |
AMPKA1 |
0.728 | -0.056 | -3 | 0.847 |
MAPKAPK3 |
0.727 | -0.029 | -3 | 0.774 |
NIM1 |
0.727 | -0.066 | 3 | 0.182 |
DAPK2 |
0.727 | -0.037 | -3 | 0.863 |
PKCB |
0.727 | -0.015 | 2 | 0.752 |
NEK9 |
0.726 | -0.089 | 2 | 0.823 |
CAMK2G |
0.726 | -0.111 | 2 | 0.765 |
AMPKA2 |
0.725 | -0.041 | -3 | 0.810 |
GRK1 |
0.725 | -0.036 | -2 | 0.773 |
PHKG1 |
0.725 | -0.044 | -3 | 0.818 |
MLK3 |
0.725 | -0.053 | 2 | 0.754 |
DNAPK |
0.725 | -0.024 | 1 | 0.244 |
MNK2 |
0.725 | -0.014 | -2 | 0.830 |
MAPKAPK2 |
0.724 | -0.034 | -3 | 0.724 |
IKKA |
0.724 | -0.082 | -2 | 0.729 |
LATS2 |
0.724 | -0.046 | -5 | 0.742 |
P70S6KB |
0.724 | -0.009 | -3 | 0.776 |
CAMK2D |
0.723 | -0.064 | -3 | 0.842 |
MASTL |
0.723 | -0.134 | -2 | 0.824 |
TSSK2 |
0.723 | -0.065 | -5 | 0.859 |
PKCA |
0.723 | -0.028 | 2 | 0.736 |
IRE2 |
0.723 | -0.106 | 2 | 0.723 |
MPSK1 |
0.722 | 0.070 | 1 | 0.278 |
QSK |
0.722 | -0.043 | 4 | 0.831 |
VRK2 |
0.721 | 0.082 | 1 | 0.321 |
PKACG |
0.721 | -0.033 | -2 | 0.773 |
PKCZ |
0.721 | -0.036 | 2 | 0.773 |
TGFBR1 |
0.721 | -0.033 | -2 | 0.826 |
BCKDK |
0.721 | -0.131 | -1 | 0.762 |
PKCG |
0.721 | -0.040 | 2 | 0.741 |
GRK5 |
0.721 | -0.146 | -3 | 0.872 |
ULK1 |
0.720 | -0.145 | -3 | 0.840 |
ALK4 |
0.720 | -0.039 | -2 | 0.849 |
PAK6 |
0.720 | 0.021 | -2 | 0.725 |
WNK3 |
0.720 | -0.194 | 1 | 0.213 |
SMG1 |
0.719 | -0.045 | 1 | 0.255 |
LATS1 |
0.719 | -0.002 | -3 | 0.873 |
PAK3 |
0.719 | -0.041 | -2 | 0.801 |
PRKD3 |
0.718 | -0.023 | -3 | 0.717 |
NUAK1 |
0.718 | -0.059 | -3 | 0.766 |
PKR |
0.718 | -0.071 | 1 | 0.241 |
ATM |
0.717 | -0.080 | 1 | 0.241 |
CHAK1 |
0.717 | -0.073 | 2 | 0.766 |
RIPK1 |
0.717 | -0.195 | 1 | 0.208 |
TTBK2 |
0.717 | -0.119 | 2 | 0.692 |
GRK7 |
0.717 | -0.035 | 1 | 0.253 |
PKG2 |
0.716 | 0.000 | -2 | 0.711 |
ANKRD3 |
0.716 | -0.167 | 1 | 0.235 |
PAK1 |
0.716 | -0.044 | -2 | 0.807 |
MELK |
0.716 | -0.079 | -3 | 0.792 |
TLK2 |
0.715 | -0.048 | 1 | 0.208 |
MNK1 |
0.715 | -0.039 | -2 | 0.832 |
PKACB |
0.715 | 0.006 | -2 | 0.714 |
NEK2 |
0.715 | -0.084 | 2 | 0.807 |
RSK4 |
0.715 | -0.019 | -3 | 0.733 |
GSK3A |
0.715 | 0.114 | 4 | 0.390 |
PINK1 |
0.715 | 0.081 | 1 | 0.426 |
CAMK2B |
0.714 | -0.058 | 2 | 0.733 |
SGK3 |
0.714 | -0.002 | -3 | 0.750 |
DLK |
0.714 | -0.194 | 1 | 0.233 |
QIK |
0.714 | -0.095 | -3 | 0.825 |
FAM20C |
0.713 | -0.033 | 2 | 0.590 |
AKT2 |
0.713 | 0.014 | -3 | 0.658 |
CAMK2A |
0.713 | -0.051 | 2 | 0.758 |
PKCH |
0.713 | -0.060 | 2 | 0.719 |
MLK4 |
0.713 | -0.097 | 2 | 0.721 |
AURB |
0.713 | -0.017 | -2 | 0.695 |
MARK3 |
0.713 | -0.059 | 4 | 0.776 |
GRK6 |
0.712 | -0.161 | 1 | 0.229 |
MSK2 |
0.712 | -0.052 | -3 | 0.739 |
YSK4 |
0.712 | -0.125 | 1 | 0.196 |
BRSK1 |
0.711 | -0.076 | -3 | 0.775 |
SIK |
0.711 | -0.066 | -3 | 0.738 |
BRSK2 |
0.711 | -0.088 | -3 | 0.801 |
PLK4 |
0.711 | -0.089 | 2 | 0.569 |
ALK2 |
0.710 | -0.056 | -2 | 0.827 |
ACVR2B |
0.710 | -0.067 | -2 | 0.805 |
PKCT |
0.710 | -0.036 | 2 | 0.728 |
MST3 |
0.710 | -0.026 | 2 | 0.852 |
MARK2 |
0.710 | -0.063 | 4 | 0.753 |
MEK1 |
0.709 | -0.125 | 2 | 0.804 |
ACVR2A |
0.709 | -0.075 | -2 | 0.797 |
PLK1 |
0.708 | -0.132 | -2 | 0.816 |
MSK1 |
0.708 | -0.034 | -3 | 0.741 |
CAMK4 |
0.708 | -0.128 | -3 | 0.802 |
BMPR1A |
0.708 | -0.041 | 1 | 0.217 |
MEKK1 |
0.708 | -0.114 | 1 | 0.220 |
PIM2 |
0.707 | -0.011 | -3 | 0.723 |
WNK4 |
0.707 | -0.094 | -2 | 0.901 |
IRAK4 |
0.707 | -0.111 | 1 | 0.195 |
GRK4 |
0.707 | -0.164 | -2 | 0.818 |
MYLK4 |
0.707 | -0.057 | -2 | 0.796 |
DRAK1 |
0.707 | -0.130 | 1 | 0.210 |
NEK5 |
0.707 | -0.095 | 1 | 0.215 |
DCAMKL1 |
0.706 | -0.048 | -3 | 0.766 |
PAK2 |
0.705 | -0.075 | -2 | 0.788 |
SSTK |
0.705 | -0.043 | 4 | 0.826 |
MAPKAPK5 |
0.705 | -0.070 | -3 | 0.718 |
CHK1 |
0.705 | -0.073 | -3 | 0.830 |
PHKG2 |
0.704 | -0.073 | -3 | 0.763 |
BUB1 |
0.704 | 0.033 | -5 | 0.822 |
PERK |
0.704 | -0.124 | -2 | 0.836 |
PKCI |
0.703 | -0.031 | 2 | 0.743 |
AURA |
0.703 | -0.026 | -2 | 0.669 |
PRKX |
0.703 | -0.006 | -3 | 0.652 |
MEKK2 |
0.703 | -0.102 | 2 | 0.785 |
SNRK |
0.703 | -0.158 | 2 | 0.629 |
MEK5 |
0.702 | -0.156 | 2 | 0.800 |
MARK1 |
0.702 | -0.099 | 4 | 0.799 |
ZAK |
0.702 | -0.130 | 1 | 0.203 |
TLK1 |
0.702 | -0.075 | -2 | 0.837 |
HRI |
0.701 | -0.153 | -2 | 0.853 |
TAO3 |
0.701 | -0.069 | 1 | 0.245 |
PKCE |
0.701 | -0.015 | 2 | 0.732 |
CAMK1G |
0.701 | -0.080 | -3 | 0.734 |
LKB1 |
0.699 | -0.023 | -3 | 0.867 |
AKT1 |
0.699 | -0.014 | -3 | 0.681 |
PLK3 |
0.699 | -0.142 | 2 | 0.720 |
TNIK |
0.699 | -0.021 | 3 | 0.218 |
CK1E |
0.699 | -0.028 | -3 | 0.562 |
CK2A2 |
0.699 | -0.095 | 1 | 0.209 |
MEKK6 |
0.699 | -0.029 | 1 | 0.222 |
GRK2 |
0.698 | -0.092 | -2 | 0.708 |
GSK3B |
0.698 | 0.004 | 4 | 0.384 |
PAK5 |
0.698 | -0.023 | -2 | 0.664 |
PAK4 |
0.698 | -0.012 | -2 | 0.678 |
PKN1 |
0.698 | -0.032 | -3 | 0.700 |
PASK |
0.697 | -0.076 | -3 | 0.863 |
NEK11 |
0.697 | -0.119 | 1 | 0.237 |
PKACA |
0.696 | -0.009 | -2 | 0.665 |
MAP3K15 |
0.696 | -0.055 | 1 | 0.212 |
PDK1 |
0.696 | -0.054 | 1 | 0.249 |
HGK |
0.695 | -0.061 | 3 | 0.208 |
GAK |
0.695 | -0.053 | 1 | 0.279 |
NEK4 |
0.695 | -0.107 | 1 | 0.196 |
TAO2 |
0.695 | -0.072 | 2 | 0.837 |
DCAMKL2 |
0.695 | -0.075 | -3 | 0.782 |
MEKK3 |
0.694 | -0.185 | 1 | 0.222 |
VRK1 |
0.694 | -0.031 | 2 | 0.803 |
SMMLCK |
0.694 | -0.071 | -3 | 0.801 |
CK1G1 |
0.693 | -0.043 | -3 | 0.549 |
GCK |
0.693 | -0.092 | 1 | 0.230 |
BRAF |
0.693 | -0.152 | -4 | 0.848 |
KHS1 |
0.692 | -0.056 | 1 | 0.215 |
P70S6K |
0.692 | -0.050 | -3 | 0.686 |
NEK1 |
0.691 | -0.078 | 1 | 0.193 |
NEK8 |
0.691 | -0.152 | 2 | 0.801 |
EEF2K |
0.691 | -0.089 | 3 | 0.193 |
AKT3 |
0.691 | -0.001 | -3 | 0.602 |
HPK1 |
0.690 | -0.070 | 1 | 0.228 |
MINK |
0.690 | -0.095 | 1 | 0.199 |
KHS2 |
0.690 | -0.045 | 1 | 0.230 |
PBK |
0.690 | -0.020 | 1 | 0.255 |
CK2A1 |
0.689 | -0.100 | 1 | 0.201 |
TTBK1 |
0.689 | -0.134 | 2 | 0.603 |
CK1D |
0.688 | -0.019 | -3 | 0.513 |
HASPIN |
0.688 | 0.003 | -1 | 0.700 |
CAMKK2 |
0.688 | -0.112 | -2 | 0.754 |
DAPK3 |
0.688 | -0.054 | -3 | 0.779 |
LOK |
0.688 | -0.073 | -2 | 0.776 |
LRRK2 |
0.688 | -0.043 | 2 | 0.823 |
CAMKK1 |
0.688 | -0.153 | -2 | 0.751 |
MST2 |
0.687 | -0.113 | 1 | 0.214 |
SGK1 |
0.687 | 0.008 | -3 | 0.584 |
CAMK1D |
0.686 | -0.061 | -3 | 0.653 |
ROCK2 |
0.685 | -0.016 | -3 | 0.775 |
MRCKB |
0.685 | -0.015 | -3 | 0.707 |
CK1A2 |
0.685 | -0.033 | -3 | 0.507 |
YSK1 |
0.684 | -0.078 | 2 | 0.813 |
NEK3 |
0.684 | -0.054 | 1 | 0.209 |
SBK |
0.684 | 0.053 | -3 | 0.533 |
IRAK1 |
0.684 | -0.218 | -1 | 0.753 |
AAK1 |
0.683 | 0.022 | 1 | 0.259 |
CHK2 |
0.683 | -0.039 | -3 | 0.598 |
BIKE |
0.682 | -0.017 | 1 | 0.259 |
PDHK3_TYR |
0.682 | 0.101 | 4 | 0.885 |
GRK3 |
0.682 | -0.091 | -2 | 0.663 |
DAPK1 |
0.681 | -0.058 | -3 | 0.759 |
LIMK2_TYR |
0.680 | 0.141 | -3 | 0.906 |
CAMK1A |
0.679 | -0.045 | -3 | 0.616 |
TAK1 |
0.679 | -0.158 | 1 | 0.205 |
MST1 |
0.678 | -0.138 | 1 | 0.201 |
SLK |
0.677 | -0.102 | -2 | 0.715 |
MEK2 |
0.677 | -0.137 | 2 | 0.778 |
MYO3B |
0.676 | -0.043 | 2 | 0.829 |
OSR1 |
0.676 | -0.050 | 2 | 0.780 |
PKG1 |
0.676 | -0.028 | -2 | 0.624 |
RIPK2 |
0.676 | -0.208 | 1 | 0.182 |
MRCKA |
0.675 | -0.053 | -3 | 0.729 |
PKMYT1_TYR |
0.675 | 0.082 | 3 | 0.194 |
DMPK1 |
0.675 | -0.007 | -3 | 0.722 |
STK33 |
0.675 | -0.139 | 2 | 0.576 |
TESK1_TYR |
0.674 | 0.016 | 3 | 0.207 |
TTK |
0.672 | -0.101 | -2 | 0.837 |
ROCK1 |
0.671 | -0.023 | -3 | 0.728 |
PLK2 |
0.671 | -0.106 | -3 | 0.783 |
TAO1 |
0.671 | -0.077 | 1 | 0.201 |
CRIK |
0.671 | -0.013 | -3 | 0.689 |
PDHK4_TYR |
0.669 | -0.022 | 2 | 0.843 |
MAP2K4_TYR |
0.669 | -0.003 | -1 | 0.871 |
ASK1 |
0.669 | -0.097 | 1 | 0.209 |
MYO3A |
0.667 | -0.089 | 1 | 0.217 |
MAP2K6_TYR |
0.667 | -0.020 | -1 | 0.870 |
MAP2K7_TYR |
0.667 | -0.076 | 2 | 0.826 |
ROS1 |
0.666 | -0.087 | 3 | 0.182 |
JAK2 |
0.666 | -0.059 | 1 | 0.237 |
RET |
0.665 | -0.087 | 1 | 0.233 |
CSF1R |
0.665 | -0.084 | 3 | 0.171 |
MST1R |
0.664 | -0.092 | 3 | 0.180 |
TXK |
0.664 | -0.034 | 1 | 0.221 |
LIMK1_TYR |
0.664 | 0.005 | 2 | 0.827 |
JAK1 |
0.663 | -0.047 | 1 | 0.203 |
ABL2 |
0.663 | -0.067 | -1 | 0.817 |
BMPR2_TYR |
0.662 | -0.031 | -1 | 0.857 |
TYRO3 |
0.662 | -0.126 | 3 | 0.176 |
PINK1_TYR |
0.662 | -0.121 | 1 | 0.275 |
PDHK1_TYR |
0.661 | -0.096 | -1 | 0.880 |
YES1 |
0.661 | -0.084 | -1 | 0.870 |
TNK2 |
0.661 | -0.085 | 3 | 0.174 |
EPHA6 |
0.661 | -0.063 | -1 | 0.845 |
TYK2 |
0.660 | -0.143 | 1 | 0.218 |
LCK |
0.660 | -0.064 | -1 | 0.851 |
TNK1 |
0.660 | -0.043 | 3 | 0.184 |
BLK |
0.659 | -0.062 | -1 | 0.855 |
FGR |
0.659 | -0.096 | 1 | 0.221 |
EPHB4 |
0.659 | -0.076 | -1 | 0.817 |
YANK3 |
0.659 | -0.068 | 2 | 0.379 |
ABL1 |
0.659 | -0.074 | -1 | 0.814 |
TNNI3K_TYR |
0.659 | -0.018 | 1 | 0.248 |
TEK |
0.657 | -0.053 | 3 | 0.152 |
JAK3 |
0.656 | -0.106 | 1 | 0.227 |
HCK |
0.656 | -0.109 | -1 | 0.847 |
NEK10_TYR |
0.655 | -0.089 | 1 | 0.197 |
ITK |
0.655 | -0.096 | -1 | 0.810 |
FGFR1 |
0.654 | -0.074 | 3 | 0.158 |
KDR |
0.654 | -0.102 | 3 | 0.154 |
FGFR2 |
0.653 | -0.086 | 3 | 0.157 |
DDR1 |
0.652 | -0.122 | 4 | 0.811 |
FER |
0.652 | -0.135 | 1 | 0.235 |
ALPHAK3 |
0.652 | -0.134 | -1 | 0.766 |
INSRR |
0.652 | -0.153 | 3 | 0.149 |
STLK3 |
0.651 | -0.145 | 1 | 0.185 |
MERTK |
0.650 | -0.125 | 3 | 0.159 |
KIT |
0.650 | -0.129 | 3 | 0.163 |
CK1A |
0.649 | -0.049 | -3 | 0.419 |
DDR2 |
0.649 | -0.055 | 3 | 0.150 |
BMX |
0.648 | -0.077 | -1 | 0.732 |
EPHB1 |
0.648 | -0.135 | 1 | 0.214 |
MET |
0.647 | -0.107 | 3 | 0.171 |
AXL |
0.647 | -0.152 | 3 | 0.157 |
FYN |
0.647 | -0.081 | -1 | 0.833 |
SRMS |
0.647 | -0.145 | 1 | 0.211 |
PDGFRB |
0.647 | -0.181 | 3 | 0.173 |
ALK |
0.647 | -0.143 | 3 | 0.152 |
EPHB3 |
0.646 | -0.124 | -1 | 0.804 |
FLT3 |
0.646 | -0.165 | 3 | 0.175 |
EPHA4 |
0.645 | -0.095 | 2 | 0.725 |
EPHB2 |
0.645 | -0.117 | -1 | 0.795 |
EPHA1 |
0.644 | -0.124 | 3 | 0.177 |
FRK |
0.644 | -0.117 | -1 | 0.852 |
TEC |
0.643 | -0.126 | -1 | 0.757 |
BTK |
0.643 | -0.122 | -1 | 0.781 |
FGFR3 |
0.642 | -0.105 | 3 | 0.145 |
LTK |
0.641 | -0.145 | 3 | 0.164 |
INSR |
0.641 | -0.139 | 3 | 0.163 |
LYN |
0.641 | -0.130 | 3 | 0.144 |
PDGFRA |
0.641 | -0.200 | 3 | 0.163 |
PTK2B |
0.640 | -0.093 | -1 | 0.795 |
SRC |
0.639 | -0.106 | -1 | 0.834 |
EPHA7 |
0.639 | -0.128 | 2 | 0.723 |
WEE1_TYR |
0.639 | -0.105 | -1 | 0.741 |
ERBB2 |
0.637 | -0.152 | 1 | 0.208 |
NTRK3 |
0.636 | -0.128 | -1 | 0.747 |
FLT4 |
0.634 | -0.173 | 3 | 0.142 |
NTRK1 |
0.634 | -0.189 | -1 | 0.792 |
EPHA8 |
0.633 | -0.106 | -1 | 0.793 |
PTK6 |
0.633 | -0.160 | -1 | 0.743 |
FLT1 |
0.633 | -0.148 | -1 | 0.804 |
EPHA3 |
0.631 | -0.149 | 2 | 0.697 |
MATK |
0.630 | -0.098 | -1 | 0.735 |
EGFR |
0.630 | -0.104 | 1 | 0.177 |
NTRK2 |
0.628 | -0.257 | 3 | 0.101 |
CSK |
0.627 | -0.132 | 2 | 0.731 |
MUSK |
0.627 | -0.120 | 1 | 0.166 |
EPHA5 |
0.627 | -0.150 | 2 | 0.703 |
ERBB4 |
0.625 | -0.097 | 1 | 0.189 |
IGF1R |
0.625 | -0.147 | 3 | 0.131 |
FGFR4 |
0.625 | -0.118 | -1 | 0.755 |
CK1G3 |
0.624 | -0.073 | -3 | 0.368 |
PTK2 |
0.623 | -0.067 | -1 | 0.767 |
YANK2 |
0.623 | -0.087 | 2 | 0.389 |
EPHA2 |
0.621 | -0.133 | -1 | 0.745 |
SYK |
0.619 | -0.083 | -1 | 0.756 |
ZAP70 |
0.617 | -0.048 | -1 | 0.682 |
FES |
0.615 | -0.135 | -1 | 0.711 |
CK1G2 |
0.612 | -0.072 | -3 | 0.463 |