Motif 659 (n=1,234)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0B4J203 | None | S57 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
A7KAX9 | ARHGAP32 | S43 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
A8MPP1 | DDX11L8 | Y202 | ochoa | Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) | Putative DNA helicase. {ECO:0000305}. |
H0Y626 | None | S62 | ochoa | RING-type E3 ubiquitin transferase (EC 2.3.2.27) | None |
H3BQZ7 | HNRNPUL2-BSCL2 | S161 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | None |
H3BQZ7 | HNRNPUL2-BSCL2 | S185 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | None |
H7BY64 | ZNF511-PRAP1 | S151 | ochoa | ZNF511-PRAP1 readthrough | None |
O00148 | DDX39A | S25 | ochoa | ATP-dependent RNA helicase DDX39A (EC 3.6.4.13) (DEAD box protein 39) (Nuclear RNA helicase URH49) | Helicase that plays an essential role in mRNA export and is involved in multiple steps in RNA metabolism including alternative splicing (PubMed:33941617, PubMed:38801080). Regulates nuclear mRNA export to the cytoplasm through association with ECD (PubMed:33941617). Also involved in spliceosomal uridine-rich small nuclear RNA (U snRNA) export by stimulating the RNA binding of adapter PHAX (PubMed:39011894). Plays a role in the negative regulation of type I IFN production by increasing the nuclear retention of antiviral transcripts and thus reducing their protein expression (PubMed:32393512). Independently of the interferon pathway, plays an antiviral role against alphaviruses by binding to a 5' conserved sequence element in the viral genomic RNA (PubMed:37949067). {ECO:0000269|PubMed:15047853, ECO:0000269|PubMed:17548965, ECO:0000269|PubMed:32393512, ECO:0000269|PubMed:33941617, ECO:0000269|PubMed:37949067, ECO:0000269|PubMed:38801080}. |
O00161 | SNAP23 | S161 | ochoa|psp | Synaptosomal-associated protein 23 (SNAP-23) (Vesicle-membrane fusion protein SNAP-23) | Essential component of the high affinity receptor for the general membrane fusion machinery and an important regulator of transport vesicle docking and fusion. |
O00193 | SMAP | S87 | ochoa | Small acidic protein | None |
O00213 | APBB1 | S175 | psp | Amyloid beta precursor protein binding family B member 1 (Amyloid-beta A4 precursor protein-binding family B member 1) (Protein Fe65) | Transcription coregulator that can have both coactivator and corepressor functions (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469, PubMed:33938178). Adapter protein that forms a transcriptionally active complex with the gamma-secretase-derived amyloid precursor protein (APP) intracellular domain (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). Plays a central role in the response to DNA damage by translocating to the nucleus and inducing apoptosis (PubMed:15031292, PubMed:18468999, PubMed:18922798, PubMed:25342469). May act by specifically recognizing and binding histone H2AX phosphorylated on 'Tyr-142' (H2AXY142ph) at double-strand breaks (DSBs), recruiting other pro-apoptosis factors such as MAPK8/JNK1 (PubMed:19234442). Required for histone H4 acetylation at double-strand breaks (DSBs) (PubMed:19234442). Its ability to specifically bind modified histones and chromatin modifying enzymes such as KAT5/TIP60, probably explains its transcription activation activity (PubMed:33938178). Functions in association with TSHZ3, SET and HDAC factors as a transcriptional repressor, that inhibits the expression of CASP4 (PubMed:19343227). Associates with chromatin in a region surrounding the CASP4 transcriptional start site(s) (PubMed:19343227). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Plays a role in the maintenance of lens transparency (By similarity). May play a role in muscle cell strength (By similarity). Acts as a molecular adapter that functions in neurite outgrowth by activating the RAC1-ARF6 axis upon insulin treatment (PubMed:36250347). {ECO:0000250|UniProtKB:Q9QXJ1, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:18468999, ECO:0000269|PubMed:18922798, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:25342469, ECO:0000269|PubMed:33938178, ECO:0000269|PubMed:36250347}. |
O00267 | SUPT5H | S108 | ochoa | Transcription elongation factor SPT5 (hSPT5) (DRB sensitivity-inducing factor 160 kDa subunit) (DSIF p160) (DRB sensitivity-inducing factor large subunit) (DSIF large subunit) (Tat-cotransactivator 1 protein) (Tat-CT1 protein) | Component of the DRB sensitivity-inducing factor complex (DSIF complex), which regulates mRNA processing and transcription elongation by RNA polymerase II (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF positively regulates mRNA capping by stimulating the mRNA guanylyltransferase activity of RNGTT/CAP1A (PubMed:10075709, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF also acts cooperatively with the negative elongation factor complex (NELF complex) to enhance transcriptional pausing at sites proximal to the promoter (PubMed:10075709, PubMed:10199401, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). Transcriptional pausing may facilitate the assembly of an elongation competent RNA polymerase II complex (PubMed:10075709, PubMed:10199401, PubMed:10421630, PubMed:10757782, PubMed:10912001, PubMed:11112772, PubMed:11553615, PubMed:12653964, PubMed:12718890, PubMed:15136722, PubMed:15380072, PubMed:9450929, PubMed:9857195). DSIF and NELF promote pausing by inhibition of the transcription elongation factor TFIIS/S-II (PubMed:16214896). TFIIS/S-II binds to RNA polymerase II at transcription pause sites and stimulates the weak intrinsic nuclease activity of the enzyme (PubMed:16214896). Cleavage of blocked transcripts by RNA polymerase II promotes the resumption of transcription from the new 3' terminus and may allow repeated attempts at transcription through natural pause sites (PubMed:16214896). Following phosphorylation by CDK9, DSIF can also positively regulate transcriptional elongation (PubMed:16427012). Required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat (PubMed:10393184, PubMed:10454543, PubMed:11809800, PubMed:9514752). DSIF acts to suppress transcriptional pausing in transcripts derived from the HIV-1 LTR and blocks premature release of HIV-1 transcripts at terminator sequences (PubMed:11112772, PubMed:14701750). {ECO:0000269|PubMed:10075709, ECO:0000269|PubMed:10199401, ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:10421630, ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10757782, ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11112772, ECO:0000269|PubMed:11553615, ECO:0000269|PubMed:11809800, ECO:0000269|PubMed:12653964, ECO:0000269|PubMed:12718890, ECO:0000269|PubMed:14701750, ECO:0000269|PubMed:15136722, ECO:0000269|PubMed:15380072, ECO:0000269|PubMed:16214896, ECO:0000269|PubMed:16427012, ECO:0000269|PubMed:9450929, ECO:0000269|PubMed:9514752, ECO:0000269|PubMed:9857195}. |
O00472 | ELL2 | S502 | ochoa | RNA polymerase II elongation factor ELL2 | Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). Plays a role in immunoglobulin secretion in plasma cells: directs efficient alternative mRNA processing, influencing both proximal poly(A) site choice and exon skipping, as well as immunoglobulin heavy chain (IgH) alternative processing. Probably acts by regulating histone modifications accompanying transition from membrane-specific to secretory IgH mRNA expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23251033}. |
O00566 | MPHOSPH10 | S139 | ochoa | U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10) | Component of the 60-80S U3 small nucleolar ribonucleoprotein (U3 snoRNP). Required for the early cleavages during pre-18S ribosomal RNA processing (PubMed:12655004). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12655004, ECO:0000269|PubMed:34516797}. |
O14647 | CHD2 | S1365 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14967 | CLGN | S560 | ochoa | Calmegin | Functions during spermatogenesis as a chaperone for a range of client proteins that are important for sperm adhesion onto the egg zona pellucida and for subsequent penetration of the zona pellucida. Required for normal sperm migration from the uterus into the oviduct. Required for normal male fertility. Binds calcium ions (By similarity). {ECO:0000250}. |
O14967 | CLGN | S591 | ochoa | Calmegin | Functions during spermatogenesis as a chaperone for a range of client proteins that are important for sperm adhesion onto the egg zona pellucida and for subsequent penetration of the zona pellucida. Required for normal sperm migration from the uterus into the oviduct. Required for normal male fertility. Binds calcium ions (By similarity). {ECO:0000250}. |
O15013 | ARHGEF10 | S59 | ochoa | Rho guanine nucleotide exchange factor 10 | May play a role in developmental myelination of peripheral nerves. {ECO:0000269|PubMed:14508709}. |
O15027 | SEC16A | S1601 | psp | Protein transport protein Sec16A (SEC16 homolog A) (p250) | Acts as a molecular scaffold that plays a key role in the organization of the endoplasmic reticulum exit sites (ERES), also known as transitional endoplasmic reticulum (tER). SAR1A-GTP-dependent assembly of SEC16A on the ER membrane forms an organized scaffold defining an ERES. Required for secretory cargo traffic from the endoplasmic reticulum to the Golgi apparatus (PubMed:17005010, PubMed:17192411, PubMed:17428803, PubMed:21768384, PubMed:22355596). Mediates the recruitment of MIA3/TANGO to ERES (PubMed:28442536). Regulates both conventional (ER/Golgi-dependent) and GORASP2-mediated unconventional (ER/Golgi-independent) trafficking of CFTR to cell membrane (PubMed:28067262). Positively regulates the protein stability of E3 ubiquitin-protein ligases RNF152 and RNF183 and the ER localization of RNF183 (PubMed:29300766). Acts as a RAB10 effector in the regulation of insulin-induced SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the cell membrane in adipocytes (By similarity). {ECO:0000250|UniProtKB:E9QAT4, ECO:0000269|PubMed:17005010, ECO:0000269|PubMed:17192411, ECO:0000269|PubMed:17428803, ECO:0000269|PubMed:21768384, ECO:0000269|PubMed:22355596, ECO:0000269|PubMed:28067262, ECO:0000269|PubMed:28442536, ECO:0000269|PubMed:29300766}. |
O15231 | ZNF185 | S231 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15259 | NPHP1 | S126 | psp | Nephrocystin-1 (Juvenile nephronophthisis 1 protein) | Together with BCAR1 it may play a role in the control of epithelial cell polarity (By similarity). Involved in the organization of apical junctions in kidney cells together with NPHP4 and RPGRIP1L/NPHP8 (By similarity). Does not seem to be strictly required for ciliogenesis (By similarity). Seems to help to recruit PTK2B/PYK2 to cell matrix adhesions, thereby initiating phosphorylation of PTK2B/PYK2 and PTK2B/PYK2-dependent signaling (By similarity). May play a role in the regulation of intraflagellar transport (IFT) during cilia assembly. Required for normal retina development (By similarity). In connecting photoreceptor cilia influences the movement of some IFT proteins such as IFT88 and WDR19. Involved in spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q9QY53}. |
O43149 | ZZEF1 | S2443 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43149 | ZZEF1 | S2444 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43248 | HOXC11 | S210 | ochoa | Homeobox protein Hox-C11 (Homeobox protein Hox-3H) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to a promoter element of the lactase-phlorizin hydrolase gene. |
O43248 | HOXC11 | S211 | ochoa | Homeobox protein Hox-C11 (Homeobox protein Hox-3H) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Binds to a promoter element of the lactase-phlorizin hydrolase gene. |
O43290 | SART1 | S760 | ochoa | U4/U6.U5 tri-snRNP-associated protein 1 (SNU66 homolog) (hSnu66) (Squamous cell carcinoma antigen recognized by T-cells 1) (SART-1) (hSART-1) (U4/U6.U5 tri-snRNP-associated 110 kDa protein) (allergen Hom s 1) | Plays a role in mRNA splicing as a component of the U4/U6-U5 tri-snRNP, one of the building blocks of the spliceosome. May also bind to DNA. {ECO:0000269|PubMed:11350945, ECO:0000269|PubMed:25092792}. |
O43390 | HNRNPR | S22 | ochoa | Heterogeneous nuclear ribonucleoprotein R (hnRNP R) | Component of ribonucleosomes, which are complexes of at least 20 other different heterogeneous nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus. |
O43390 | HNRNPR | S23 | ochoa | Heterogeneous nuclear ribonucleoprotein R (hnRNP R) | Component of ribonucleosomes, which are complexes of at least 20 other different heterogeneous nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus. |
O43493 | TGOLN2 | S349 | ochoa | Trans-Golgi network integral membrane protein 2 (Trans-Golgi network glycoprotein 46) (TGN38 homolog) (hTGN46) (Trans-Golgi network glycoprotein 48) (hTGN48) (Trans-Golgi network glycoprotein 51) (hTGN51) (Trans-Golgi network protein 2) | May be involved in regulating membrane traffic to and from trans-Golgi network. |
O43719 | HTATSF1 | S467 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O43719 | HTATSF1 | S494 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O43818 | RRP9 | T74 | ochoa | U3 small nucleolar RNA-interacting protein 2 (RRP9 homolog) (U3 small nucleolar ribonucleoprotein-associated 55 kDa protein) (U3 snoRNP-associated 55 kDa protein) (U3-55K) | Component of a nucleolar small nuclear ribonucleoprotein particle (snoRNP) thought to participate in the processing and modification of pre-ribosomal RNA (pre-rRNA) (PubMed:26867678). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:26867678, ECO:0000269|PubMed:34516797}. |
O43822 | CFAP410 | S136 | ochoa | Cilia- and flagella-associated protein 410 (C21orf-HUMF09G8.5) (Leucine-rich repeat-containing protein 76) (YF5/A2) | Plays a role in cilia formation and/or maintenance (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). Involved in DNA damage repair (PubMed:26290490). {ECO:0000250|UniProtKB:Q8C6G1, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:26290490}. |
O43847 | NRDC | S96 | ochoa | Nardilysin (EC 3.4.24.61) (N-arginine dibasic convertase) (NRD convertase) (NRD-C) (Nardilysin convertase) | Cleaves peptide substrates on the N-terminus of arginine residues in dibasic pairs. Is a critical activator of BACE1- and ADAM17-mediated pro-neuregulin ectodomain shedding, involved in the positive regulation of axonal maturation and myelination. Required for proper functioning of 2-oxoglutarate dehydrogenase (OGDH) (By similarity). {ECO:0000250|UniProtKB:Q8BHG1}. |
O60216 | RAD21 | S454 | ochoa|psp | Double-strand-break repair protein rad21 homolog (hHR21) (Nuclear matrix protein 1) (NXP-1) (SCC1 homolog) [Cleaved into: 64-kDa C-terminal product (64-kDa carboxy-terminal product) (65-kDa carboxy-terminal product)] | [Double-strand-break repair protein rad21 homolog]: As a member of the cohesin complex, involved in sister chromatid cohesion from the time of DNA replication in S phase to their segregation in mitosis, a function that is essential for proper chromosome segregation, post-replicative DNA repair, and the prevention of inappropriate recombination between repetitive regions (PubMed:11509732). The cohesin complex may also play a role in spindle pole assembly during mitosis (PubMed:11590136). In interphase, cohesins may function in the control of gene expression by binding to numerous sites within the genome (By similarity). May control RUNX1 gene expression (Probable). Binds to and represses APOB gene promoter (PubMed:25575569). May play a role in embryonic gut development, possibly through the regulation of enteric neuron development (By similarity). {ECO:0000250|UniProtKB:Q61550, ECO:0000250|UniProtKB:Q6TEL1, ECO:0000269|PubMed:11509732, ECO:0000269|PubMed:11590136, ECO:0000269|PubMed:25575569, ECO:0000305|PubMed:25575569}.; FUNCTION: [64-kDa C-terminal product]: May promote apoptosis. {ECO:0000269|PubMed:11875078, ECO:0000269|PubMed:12417729}. |
O60216 | RAD21 | S545 | ochoa | Double-strand-break repair protein rad21 homolog (hHR21) (Nuclear matrix protein 1) (NXP-1) (SCC1 homolog) [Cleaved into: 64-kDa C-terminal product (64-kDa carboxy-terminal product) (65-kDa carboxy-terminal product)] | [Double-strand-break repair protein rad21 homolog]: As a member of the cohesin complex, involved in sister chromatid cohesion from the time of DNA replication in S phase to their segregation in mitosis, a function that is essential for proper chromosome segregation, post-replicative DNA repair, and the prevention of inappropriate recombination between repetitive regions (PubMed:11509732). The cohesin complex may also play a role in spindle pole assembly during mitosis (PubMed:11590136). In interphase, cohesins may function in the control of gene expression by binding to numerous sites within the genome (By similarity). May control RUNX1 gene expression (Probable). Binds to and represses APOB gene promoter (PubMed:25575569). May play a role in embryonic gut development, possibly through the regulation of enteric neuron development (By similarity). {ECO:0000250|UniProtKB:Q61550, ECO:0000250|UniProtKB:Q6TEL1, ECO:0000269|PubMed:11509732, ECO:0000269|PubMed:11590136, ECO:0000269|PubMed:25575569, ECO:0000305|PubMed:25575569}.; FUNCTION: [64-kDa C-terminal product]: May promote apoptosis. {ECO:0000269|PubMed:11875078, ECO:0000269|PubMed:12417729}. |
O60231 | DHX16 | S141 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) | Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}. |
O60237 | PPP1R12B | S789 | ochoa | Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) | Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}. |
O60264 | SMARCA5 | S158 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin A5) (EC 3.6.4.-) (Sucrose nonfermenting protein 2 homolog) (hSNF2H) | ATPase that possesses intrinsic ATP-dependent nucleosome-remodeling activity (PubMed:12972596, PubMed:28801535). Catalytic subunit of ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair; this may require intact histone H4 tails (PubMed:10880450, PubMed:12198550, PubMed:12434153, PubMed:12972596, PubMed:23911928, PubMed:28801535). Within the ISWI chromatin-remodeling complexes, slides edge- and center-positioned histone octamers away from their original location on the DNA template (PubMed:28801535). Catalytic activity and histone octamer sliding propensity is regulated and determined by components of the ISWI chromatin-remodeling complexes (PubMed:28801535). The BAZ1A/ACF1-, BAZ1B/WSTF-, BAZ2A/TIP5- and BAZ2B-containing ISWI chromatin-remodeling complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:15543136, PubMed:28801535). The CECR2- and RSF1-containing ISWI chromatin-remodeling complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Binds to core histones together with RSF1, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Involved in DNA replication and together with BAZ1A/ACF1 is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). Probably plays a role in repression of RNA polymerase I dependent transcription of the rDNA locus, through the recruitment of the SIN3/HDAC1 corepressor complex to the rDNA promoter (By similarity). Essential component of the WICH-5 ISWI chromatin-remodeling complex (also called the WICH complex), a chromatin-remodeling complex that mobilizes nucleosomes and reconfigures irregular chromatin to a regular nucleosomal array structure (PubMed:11980720, PubMed:15543136). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the histone H2AX phosphorylation at 'Tyr-142', and is involved in the maintenance of chromatin structures during DNA replication processes (By similarity). Essential component of NoRC-5 ISWI chromatin-remodeling complex, a complex that mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). {ECO:0000250|UniProtKB:Q91ZW3, ECO:0000269|PubMed:10880450, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:12198550, ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:23911928, ECO:0000269|PubMed:28801535}. |
O60315 | ZEB2 | S1167 | ochoa | Zinc finger E-box-binding homeobox 2 (Smad-interacting protein 1) (SMADIP1) (Zinc finger homeobox protein 1b) | Transcriptional inhibitor that binds to DNA sequence 5'-CACCT-3' in different promoters (PubMed:16061479, PubMed:20516212). Represses transcription of E-cadherin (PubMed:16061479). Represses expression of MEOX2 (PubMed:20516212). {ECO:0000269|PubMed:16061479, ECO:0000269|PubMed:20516212}. |
O60488 | ACSL4 | S542 | ochoa | Long-chain-fatty-acid--CoA ligase 4 (EC 6.2.1.3) (Arachidonate--CoA ligase) (EC 6.2.1.15) (Long-chain acyl-CoA synthetase 4) (LACS 4) | Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation (PubMed:21242590, PubMed:22633490, PubMed:24269233). Preferentially activates arachidonate and eicosapentaenoate as substrates (PubMed:21242590). Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose-stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion (PubMed:21242590). {ECO:0000250|UniProtKB:O35547, ECO:0000269|PubMed:21242590, ECO:0000269|PubMed:22633490, ECO:0000269|PubMed:24269233}. |
O60524 | NEMF | S748 | ochoa | Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) | Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}. |
O60524 | NEMF | S763 | ochoa | Ribosome quality control complex subunit NEMF (Antigen NY-CO-1) (Nuclear export mediator factor) (Serologically defined colon cancer antigen 1) | Key component of the ribosome quality control complex (RQC), a ribosome-associated complex that mediates the extraction of incompletely synthesized nascent chains from stalled ribosomes as well as their ubiquitin-mediated proteasomal degradation (PubMed:25578875, PubMed:32726578, PubMed:33406423, PubMed:33909987). Thereby, frees 60S subunit ribosomes from the stalled translation complex and prevents the accumulation of nascent polypeptide chains that are potentially toxic for the cell (PubMed:25578875, PubMed:33406423, PubMed:33909987). Within the RQC complex, NEMF specifically binds stalled 60S ribosomal subunits by recognizing an exposed, nascent chain-conjugated tRNA moiety and promotes the recruitment of LTN1 to stalled 60S subunits (PubMed:25578875). Following binding to stalled 60S ribosomal subunits, NEMF mediates CAT tailing by recruiting alanine-charged tRNA to the A-site and directing the elongation of stalled nascent chains independently of mRNA or 40S subunits, leading to non-templated C-terminal alanine extensions (CAT tails) (PubMed:33406423, PubMed:33909987). Mainly recruits alanine-charged tRNAs, but can also other amino acid-charged tRNAs (PubMed:33406423, PubMed:33909987). CAT tailing is required to promote ubiquitination of stalled nascent chains by different E3 ubiquitin-protein ligases (PubMed:33909987). In the canonical RQC pathway (RQC-L), CAT tailing facilitates LTN1-dependent ubiquitination by exposing lysine residues that would otherwise remain buried in the ribosomal exit tunnel (By similarity). In the alternative RQC pathway (RQC-C) CAT tailing creates an C-degron mainly composed of alanine that is recognized by the CRL2(KLHDC10) and RCHY1/PIRH2 E3 ligases, leading to ubiquitination and degradation of stalled nascent chains (PubMed:33909987). NEMF may also indirectly play a role in nuclear export (PubMed:16103875). {ECO:0000250|UniProtKB:Q12532, ECO:0000269|PubMed:16103875, ECO:0000269|PubMed:25578875, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33406423, ECO:0000269|PubMed:33909987}. |
O60716 | CTNND1 | S122 | ochoa | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60841 | EIF5B | S93 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60884 | DNAJA2 | S378 | ochoa | DnaJ homolog subfamily A member 2 (Cell cycle progression restoration gene 3 protein) (Dnj3) (Dj3) (HIRA-interacting protein 4) (Renal carcinoma antigen NY-REN-14) | Co-chaperone of Hsc70. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro) (PubMed:24318877). {ECO:0000269|PubMed:24318877}. |
O60936 | NOL3 | S162 | ochoa | Nucleolar protein 3 (Apoptosis repressor with CARD) (Muscle-enriched cytoplasmic protein) (Myp) (Nucleolar protein of 30 kDa) (Nop30) | [Isoform 1]: May be involved in RNA splicing. {ECO:0000269|PubMed:10196175}.; FUNCTION: [Isoform 2]: Functions as an apoptosis repressor that blocks multiple modes of cell death. Inhibits extrinsic apoptotic pathways through two different ways. Firstly by interacting with FAS and FADD upon FAS activation blocking death-inducing signaling complex (DISC) assembly (By similarity). Secondly by interacting with CASP8 in a mitochondria localization- and phosphorylation-dependent manner, limiting the amount of soluble CASP8 available for DISC-mediated activation (By similarity). Inhibits intrinsic apoptotic pathway in response to a wide range of stresses, through its interaction with BAX resulting in BAX inactivation, preventing mitochondrial dysfunction and release of pro-apoptotic factors (PubMed:15004034). Inhibits calcium-mediated cell death by functioning as a cytosolic calcium buffer, dissociating its interaction with CASP8 and maintaining calcium homeostasis (PubMed:15509781). Negatively regulates oxidative stress-induced apoptosis by phosphorylation-dependent suppression of the mitochondria-mediated intrinsic pathway, by blocking CASP2 activation and BAX translocation (By similarity). Negatively regulates hypoxia-induced apoptosis in part by inhibiting the release of cytochrome c from mitochondria in a caspase-independent manner (By similarity). Also inhibits TNF-induced necrosis by preventing TNF-signaling pathway through TNFRSF1A interaction abrogating the recruitment of RIPK1 to complex I (By similarity). Finally through its role as apoptosis repressor, promotes vascular remodeling through inhibition of apoptosis and stimulation of proliferation, in response to hypoxia (By similarity). Inhibits too myoblast differentiation through caspase inhibition (By similarity). {ECO:0000250|UniProtKB:Q62881, ECO:0000250|UniProtKB:Q9D1X0, ECO:0000269|PubMed:15004034, ECO:0000269|PubMed:15509781}. |
O75038 | PLCH2 | S605 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-2) (Phosphoinositide phospholipase C-like 4) (PLC-L4) (Phospholipase C-like protein 4) (Phospholipase C-eta-2) (PLC-eta2) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes (PubMed:18361507). This phospholipase activity is very sensitive to calcium. May be important for formation and maintenance of the neuronal network in the postnatal brain (By similarity). {ECO:0000250|UniProtKB:A2AP18, ECO:0000269|PubMed:18361507}. |
O75151 | PHF2 | S625 | ochoa | Lysine-specific demethylase PHF2 (EC 1.14.11.-) (GRC5) (PHD finger protein 2) | Lysine demethylase that demethylates both histones and non-histone proteins (PubMed:20129925, PubMed:21167174, PubMed:21532585). Enzymatically inactive by itself, and becomes active following phosphorylation by PKA: forms a complex with ARID5B and mediates demethylation of methylated ARID5B (PubMed:21532585). Demethylation of ARID5B leads to target the PHF2-ARID5B complex to target promoters, where PHF2 mediates demethylation of dimethylated 'Lys-9' of histone H3 (H3K9me2), followed by transcription activation of target genes (PubMed:21532585). The PHF2-ARID5B complex acts as a coactivator of HNF4A in liver. PHF2 is recruited to trimethylated 'Lys-4' of histone H3 (H3K4me3) at rDNA promoters and promotes expression of rDNA (PubMed:21532585). Involved in the activation of toll-like receptor 4 (TLR4)-target inflammatory genes in macrophages by catalyzing the demethylation of trimethylated histone H4 lysine 20 (H4K20me3) at the gene promoters (By similarity). {ECO:0000250|UniProtKB:Q9WTU0, ECO:0000269|PubMed:20129925, ECO:0000269|PubMed:21167174, ECO:0000269|PubMed:21532585}. |
O75152 | ZC3H11A | S119 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75264 | SMIM24 | S73 | ochoa | Small integral membrane protein 24 | None |
O75334 | PPFIA2 | S687 | ochoa | Liprin-alpha-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-2) (PTPRF-interacting protein alpha-2) | Alters PTPRF cellular localization and induces PTPRF clustering. May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. In neuronal cells, is a scaffolding protein in the dendritic spines which acts as immobile postsynaptic post able to recruit KIF1A-driven dense core vesicles to dendritic spines (PubMed:30021165). {ECO:0000269|PubMed:30021165, ECO:0000269|PubMed:9624153}. |
O75475 | PSIP1 | S118 | ochoa | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O75665 | OFD1 | S830 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75691 | UTP20 | S1732 | ochoa | Small subunit processome component 20 homolog (Down-regulated in metastasis protein) (Novel nucleolar protein 73) (NNP73) (Protein Key-1A6) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in 18S pre-rRNA processing. Associates with U3 snoRNA. {ECO:0000269|PubMed:17498821, ECO:0000269|PubMed:34516797}. |
O75695 | RP2 | S28 | ochoa | Protein XRP2 | Acts as a GTPase-activating protein (GAP) involved in trafficking between the Golgi and the ciliary membrane. Involved in localization of proteins, such as NPHP3, to the cilium membrane by inducing hydrolysis of GTP ARL3, leading to the release of UNC119 (or UNC119B). Acts as a GTPase-activating protein (GAP) for tubulin in concert with tubulin-specific chaperone C, but does not enhance tubulin heterodimerization. Acts as a guanine nucleotide dissociation inhibitor towards ADP-ribosylation factor-like proteins. {ECO:0000269|PubMed:11847227, ECO:0000269|PubMed:18376416, ECO:0000269|PubMed:20106869, ECO:0000269|PubMed:22085962}. |
O75717 | WDHD1 | S407 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O75717 | WDHD1 | S1035 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O75914 | PAK3 | S272 | ochoa | Serine/threonine-protein kinase PAK 3 (EC 2.7.11.1) (Beta-PAK) (Oligophrenin-3) (p21-activated kinase 3) (PAK-3) | Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Plays a role in dendrite spine morphogenesis as well as synapse formation and plasticity. Acts as a downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Additionally, phosphorylates TNNI3/troponin I to modulate calcium sensitivity and relaxation kinetics of thin myofilaments. May also be involved in early neuronal development. In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). {ECO:0000250|UniProtKB:Q61036, ECO:0000269|PubMed:21177870}. |
O75995 | SASH3 | S329 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O94864 | SUPT7L | S297 | ochoa | STAGA complex 65 subunit gamma (Adenocarcinoma antigen ART1) (SPTF-associated factor 65 gamma) (STAF65gamma) (Suppressor of Ty 7-like) | None |
O94992 | HEXIM1 | S252 | psp | Protein HEXIM1 (Cardiac lineage protein 1) (Estrogen down-regulated gene 1 protein) (Hexamethylene bis-acetamide-inducible protein 1) (Menage a quatre protein 1) | Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor (PubMed:14580347, PubMed:15201869, PubMed:15713661). Core component of the 7SK RNP complex: in cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:12832472, PubMed:14580347, PubMed:15201869, PubMed:15713661). May also regulate NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional activity (PubMed:15940264, PubMed:15941832, PubMed:17088550). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:12581153, ECO:0000269|PubMed:12832472, ECO:0000269|PubMed:14580347, ECO:0000269|PubMed:15201869, ECO:0000269|PubMed:15713661, ECO:0000269|PubMed:15940264, ECO:0000269|PubMed:15941832, ECO:0000269|PubMed:17088550, ECO:0000269|PubMed:28712728}. |
O95196 | CSPG5 | S541 | ochoa | Chondroitin sulfate proteoglycan 5 (Acidic leucine-rich EGF-like domain-containing brain protein) (Neuroglycan C) | May function as a growth and differentiation factor involved in neuritogenesis. May induce ERBB3 activation. {ECO:0000269|PubMed:15358134}. |
O95201 | ZNF205 | S292 | ochoa | Transcriptional repressor RHIT (Repressor of heat-inducible transcription) (RhitH) (Zinc finger protein 205) (Zinc finger protein 210) | Transcriptional repressor involved in regulating MPV17L expression (PubMed:22306510). By regulating MPV17L expression, contributes to the regulation of genes involved in H(2)O(2) metabolism and the mitochondrial apoptotic cascade (PubMed:22306510). {ECO:0000269|PubMed:22306510}. |
O95218 | ZRANB2 | S165 | ochoa | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
O95218 | ZRANB2 | S181 | ochoa | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
O95361 | TRIM16 | S62 | ochoa | Tripartite motif-containing protein 16 (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM16) (Estrogen-responsive B box protein) | E3 ubiquitin ligase that plays an essential role in the organization of autophagic response and ubiquitination upon lysosomal and phagosomal damages. Plays a role in the stress-induced biogenesis and degradation of protein aggresomes by regulating the p62-KEAP1-NRF2 signaling and particularly by modulating the ubiquitination levels and thus stability of NRF2. Acts as a scaffold protein and facilitates autophagic degradation of protein aggregates by interacting with p62/SQSTM, ATG16L1 and LC3B/MAP1LC3B. In turn, protects the cell against oxidative stress-induced cell death as a consequence of endomembrane damage. {ECO:0000269|PubMed:22629402, ECO:0000269|PubMed:27693506, ECO:0000269|PubMed:30143514}. |
O95400 | CD2BP2 | S60 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
O95400 | CD2BP2 | S61 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
O95400 | CD2BP2 | S151 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
O95425 | SVIL | S66 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95456 | PSMG1 | T31 | ochoa | Proteasome assembly chaperone 1 (PAC-1) (Chromosome 21 leucine-rich protein) (C21-LRP) (Down syndrome critical region protein 2) (Proteasome chaperone homolog 1) (Pba1) | Chaperone protein which promotes assembly of the 20S proteasome as part of a heterodimer with PSMG2. The PSMG1-PSMG2 heterodimer binds to the PSMA5 and PSMA7 proteasome subunits, promotes assembly of the proteasome alpha subunits into the heteroheptameric alpha ring and prevents alpha ring dimerization. {ECO:0000269|PubMed:16251969, ECO:0000269|PubMed:17707236}. |
O95551 | TDP2 | S98 | ochoa | Tyrosyl-DNA phosphodiesterase 2 (Tyr-DNA phosphodiesterase 2) (hTDP2) (EC 3.1.4.-) (5'-tyrosyl-DNA phosphodiesterase) (5'-Tyr-DNA phosphodiesterase) (ETS1-associated protein 2) (ETS1-associated protein II) (EAPII) (TRAF and TNF receptor-associated protein) (Tyrosyl-RNA phosphodiesterase) (VPg unlinkase) | DNA repair enzyme that can remove a variety of covalent adducts from DNA through hydrolysis of a 5'-phosphodiester bond, giving rise to DNA with a free 5' phosphate. Catalyzes the hydrolysis of dead-end complexes between DNA and the topoisomerase 2 (TOP2) active site tyrosine residue. The 5'-tyrosyl DNA phosphodiesterase activity can enable the repair of TOP2-induced DNA double-strand breaks/DSBs without the need for nuclease activity, creating a 'clean' DSB with 5'-phosphate termini that are ready for ligation (PubMed:27060144, PubMed:27099339). Thereby, protects the transcription of many genes involved in neurological development and maintenance from the abortive activity of TOP2. Hydrolyzes 5'-phosphoglycolates on protruding 5' ends on DSBs due to DNA damage by radiation and free radicals. Has preference for single-stranded DNA or duplex DNA with a 4 base pair overhang as substrate. Acts as a regulator of ribosome biogenesis following stress. Also has 3'-tyrosyl DNA phosphodiesterase activity, but less efficiently and much slower than TDP1. Constitutes the major if not only 5'-tyrosyl-DNA phosphodiesterase in cells. Also acts as an adapter by participating in the specific activation of MAP3K7/TAK1 in response to TGF-beta: associates with components of the TGF-beta receptor-TRAF6-TAK1 signaling module and promotes their ubiquitination dependent complex formation. Involved in non-canonical TGF-beta induced signaling routes. May also act as a negative regulator of ETS1 and may inhibit NF-kappa-B activation. {ECO:0000269|PubMed:19794497, ECO:0000269|PubMed:21030584, ECO:0000269|PubMed:21921940, ECO:0000269|PubMed:21980489, ECO:0000269|PubMed:22405347, ECO:0000269|PubMed:22822062, ECO:0000269|PubMed:24658003, ECO:0000269|PubMed:27060144, ECO:0000269|PubMed:27099339}.; FUNCTION: (Microbial infection) Used by picornaviruses to remove the small polypeptide, VPg (virus Protein genome-linked, the primer for viral RNA synthesis), from the genomic RNA of the virus. Acts as a 5'-tyrosyl RNA phosphodiesterase and cleaves the covalent VPg-Tyr-RNA bond. This cleavage would play a role in viral replication and occur in viral replication vesicles, but would not act on viral mRNA. {ECO:0000269|PubMed:22908287, ECO:0000269|PubMed:32023921}. |
O95714 | HERC2 | S1588 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95810 | CAVIN2 | S192 | ochoa | Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) | Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}. |
O95810 | CAVIN2 | S361 | ochoa | Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) | Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}. |
P00519 | ABL1 | S710 | ochoa | Tyrosine-protein kinase ABL1 (EC 2.7.10.2) (Abelson murine leukemia viral oncogene homolog 1) (Abelson tyrosine-protein kinase 1) (Proto-oncogene c-Abl) (p150) | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9 (PubMed:22810897). Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. In response to oxidative stress, phosphorylates serine/threonine kinase PRKD2 at 'Tyr-717' (PubMed:28428613). ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 also acts as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. Regulates T-cell differentiation in a TBX21-dependent manner (By similarity). Positively regulates chemokine-mediated T-cell migration, polarization, and homing to lymph nodes and immune-challenged tissues, potentially via activation of NEDD9/HEF1 and RAP1 (By similarity). Phosphorylates TBX21 on tyrosine residues leading to an enhancement of its transcriptional activator activity (By similarity). {ECO:0000250|UniProtKB:P00520, ECO:0000269|PubMed:10391250, ECO:0000269|PubMed:11971963, ECO:0000269|PubMed:12379650, ECO:0000269|PubMed:12531427, ECO:0000269|PubMed:12672821, ECO:0000269|PubMed:15031292, ECO:0000269|PubMed:15556646, ECO:0000269|PubMed:15657060, ECO:0000269|PubMed:15886098, ECO:0000269|PubMed:16424036, ECO:0000269|PubMed:16678104, ECO:0000269|PubMed:16943190, ECO:0000269|PubMed:17306540, ECO:0000269|PubMed:17623672, ECO:0000269|PubMed:18328268, ECO:0000269|PubMed:18945674, ECO:0000269|PubMed:19891780, ECO:0000269|PubMed:20357770, ECO:0000269|PubMed:20417104, ECO:0000269|PubMed:22810897, ECO:0000269|PubMed:28428613, ECO:0000269|PubMed:9037071, ECO:0000269|PubMed:9144171, ECO:0000269|PubMed:9461559}. |
P02730 | SLC4A1 | Y21 | psp | Band 3 anion transport protein (Anion exchange protein 1) (AE 1) (Anion exchanger 1) (Solute carrier family 4 member 1) (CD antigen CD233) | Functions both as a transporter that mediates electroneutral anion exchange across the cell membrane and as a structural protein (PubMed:10926824, PubMed:14734552, PubMed:1538405, PubMed:16227998, PubMed:20151848, PubMed:24121512, PubMed:28387307, PubMed:35835865). Component of the ankyrin-1 complex of the erythrocyte membrane; required for normal flexibility and stability of the erythrocyte membrane and for normal erythrocyte shape via the interactions of its cytoplasmic domain with cytoskeletal proteins, glycolytic enzymes, and hemoglobin (PubMed:1538405, PubMed:20151848, PubMed:35835865). Functions as a transporter that mediates the 1:1 exchange of inorganic anions across the erythrocyte membrane. Mediates chloride-bicarbonate exchange in the kidney, and is required for normal acidification of the urine (PubMed:10926824, PubMed:14734552, PubMed:16227998, PubMed:24121512, PubMed:28387307). {ECO:0000269|PubMed:10926824, ECO:0000269|PubMed:14734552, ECO:0000269|PubMed:1538405, ECO:0000269|PubMed:16227998, ECO:0000269|PubMed:20151848, ECO:0000269|PubMed:24121512, ECO:0000269|PubMed:28387307, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Acts as a receptor for P.falciparum (isolate 3D7) MSP9 and thus, facilitates merozoite invasion of erythrocytes (PubMed:14630931). Acts as a receptor for P.falciparum (isolate 3D7) MSP1 and thus, facilitates merozoite invasion of erythrocytes (PubMed:12692305). {ECO:0000269|PubMed:12692305, ECO:0000269|PubMed:14630931}. |
P04844 | RPN2 | S516 | ochoa | Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 2 (Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 63 kDa subunit) (RIBIIR) (Ribophorin II) (RPN-II) (Ribophorin-2) | Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation (PubMed:31831667). N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. {ECO:0000250|UniProtKB:F1PCT7, ECO:0000269|PubMed:31831667}. |
P05060 | CHGB | S272 | ochoa | Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] | Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides. |
P05060 | CHGB | S317 | ochoa | Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] | Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides. |
P06748 | NPM1 | S137 | ochoa|psp | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P06748 | NPM1 | S195 | ochoa | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07900 | HSP90AA1 | S315 | ochoa | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P07949 | RET | S909 | psp | Proto-oncogene tyrosine-protein kinase receptor Ret (EC 2.7.10.1) (Cadherin family member 12) (Proto-oncogene c-Ret) [Cleaved into: Soluble RET kinase fragment; Extracellular cell-membrane anchored RET cadherin 120 kDa fragment] | Receptor tyrosine-protein kinase involved in numerous cellular mechanisms including cell proliferation, neuronal navigation, cell migration, and cell differentiation in response to glia cell line-derived growth family factors (GDNF, NRTN, ARTN, PSPN and GDF15) (PubMed:20064382, PubMed:20616503, PubMed:20702524, PubMed:21357690, PubMed:21454698, PubMed:24560924, PubMed:28846097, PubMed:28846099, PubMed:28953886, PubMed:31118272). In contrast to most receptor tyrosine kinases, RET requires not only its cognate ligands but also coreceptors, for activation (PubMed:21994944, PubMed:23333276, PubMed:28846097, PubMed:28846099, PubMed:28953886). GDNF ligands (GDNF, NRTN, ARTN, PSPN and GDF15) first bind their corresponding GDNFR coreceptors (GFRA1, GFRA2, GFRA3, GFRA4 and GFRAL, respectively), triggering RET autophosphorylation and activation, leading to activation of downstream signaling pathways, including the MAPK- and AKT-signaling pathways (PubMed:21994944, PubMed:23333276, PubMed:24560924, PubMed:25242331, PubMed:28846097, PubMed:28846099, PubMed:28953886). Acts as a dependence receptor via the GDNF-GFRA1 signaling: in the presence of the ligand GDNF in somatotrophs within pituitary, promotes survival and down regulates growth hormone (GH) production, but triggers apoptosis in absence of GDNF (PubMed:20616503, PubMed:21994944). Required for the molecular mechanisms orchestration during intestine organogenesis via the ARTN-GFRA3 signaling: involved in the development of enteric nervous system and renal organogenesis during embryonic life, and promotes the formation of Peyer's patch-like structures, a major component of the gut-associated lymphoid tissue (By similarity). Mediates, through interaction with GDF15-receptor GFRAL, GDF15-induced cell-signaling in the brainstem which triggers an aversive response, characterized by nausea, vomiting, and/or loss of appetite in response to various stresses (PubMed:28846097, PubMed:28846099, PubMed:28953886). Modulates cell adhesion via its cleavage by caspase in sympathetic neurons and mediates cell migration in an integrin (e.g. ITGB1 and ITGB3)-dependent manner (PubMed:20702524, PubMed:21357690). Also active in the absence of ligand, triggering apoptosis through a mechanism that requires receptor intracellular caspase cleavage (PubMed:21357690). Triggers the differentiation of rapidly adapting (RA) mechanoreceptors (PubMed:20064382). Involved in the development of the neural crest (By similarity). Regulates nociceptor survival and size (By similarity). Phosphorylates PTK2/FAK1 (PubMed:21454698). {ECO:0000250|UniProtKB:P35546, ECO:0000269|PubMed:20064382, ECO:0000269|PubMed:20616503, ECO:0000269|PubMed:20702524, ECO:0000269|PubMed:21357690, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:21994944, ECO:0000269|PubMed:23333276, ECO:0000269|PubMed:24560924, ECO:0000269|PubMed:25242331, ECO:0000269|PubMed:28846097, ECO:0000269|PubMed:28846099, ECO:0000269|PubMed:28953886, ECO:0000269|PubMed:31118272}.; FUNCTION: [Isoform 1]: Isoform 1 in complex with GFRAL induces higher activation of MAPK-signaling pathway than isoform 2 in complex with GFRAL. {ECO:0000269|PubMed:28846099}. |
P08172 | CHRM2 | S286 | psp | Muscarinic acetylcholine receptor M2 | The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}. |
P08238 | HSP90AB1 | S307 | ochoa | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P08670 | VIM | S205 | ochoa | Vimentin | Vimentins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. Plays a role in cell directional movement, orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Protects SCRIB from proteasomal degradation and facilitates its localization to intermediate filaments in a cell contact-mediated manner (By similarity). {ECO:0000250|UniProtKB:A0A8C0N8E3, ECO:0000250|UniProtKB:P31000}.; FUNCTION: Involved with LARP6 in the stabilization of type I collagen mRNAs for CO1A1 and CO1A2. {ECO:0000269|PubMed:21746880}. |
P08758 | ANXA5 | S230 | ochoa | Annexin A5 (Anchorin CII) (Annexin V) (Annexin-5) (Calphobindin I) (CPB-I) (Endonexin II) (Lipocortin V) (Placental anticoagulant protein 4) (PP4) (Placental anticoagulant protein I) (PAP-I) (Thromboplastin inhibitor) (Vascular anticoagulant-alpha) (VAC-alpha) | This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. |
P0C7T5 | ATXN1L | S366 | ochoa | Ataxin-1-like (Brother of ataxin-1) (Brother of ATXN1) | Chromatin-binding factor that repress Notch signaling in the absence of Notch intracellular domain by acting as a CBF1 corepressor. Binds to the HEY promoter and might assist, along with NCOR2, RBPJ-mediated repression (PubMed:21475249). Can suppress ATXN1 cytotoxicity in spinocerebellar ataxia type 1 (SCA1). In concert with CIC and ATXN1, involved in brain development (By similarity). {ECO:0000250|UniProtKB:P0C7T6, ECO:0000269|PubMed:21475249}. |
P0CG23 | ZNF853 | S62 | ochoa | Zinc finger protein 853 | None |
P0CG23 | ZNF853 | S63 | ochoa | Zinc finger protein 853 | None |
P10244 | MYBL2 | S251 | ochoa | Myb-related protein B (B-Myb) (Myb-like protein 2) | Transcription factor involved in the regulation of cell survival, proliferation, and differentiation. Transactivates the expression of the CLU gene. {ECO:0000269|PubMed:10770937}. |
P10645 | CHGA | S370 | ochoa | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P11055 | MYH3 | S1916 | ochoa | Myosin-3 (Muscle embryonic myosin heavy chain) (Myosin heavy chain 3) (Myosin heavy chain, fast skeletal muscle, embryonic) (SMHCE) | Muscle contraction. |
P11171 | EPB41 | S104 | ochoa | Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) | Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
P11171 | EPB41 | S684 | ochoa | Protein 4.1 (P4.1) (4.1R) (Band 4.1) (EPB4.1) (Erythrocyte membrane protein band 4.1) | Protein 4.1 is a major structural element of the erythrocyte membrane skeleton. It plays a key role in regulating membrane physical properties of mechanical stability and deformability by stabilizing spectrin-actin interaction. Recruits DLG1 to membranes. Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
P12270 | TPR | S1843 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P12830 | CDH1 | S770 | ochoa | Cadherin-1 (CAM 120/80) (Epithelial cadherin) (E-cadherin) (Uvomorulin) (CD antigen CD324) [Cleaved into: E-Cad/CTF1; E-Cad/CTF2; E-Cad/CTF3] | Cadherins are calcium-dependent cell adhesion proteins (PubMed:11976333). They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. CDH1 is involved in mechanisms regulating cell-cell adhesions, mobility and proliferation of epithelial cells (PubMed:11976333). Promotes organization of radial actin fiber structure and cellular response to contractile forces, via its interaction with AMOTL2 which facilitates anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane (By similarity). Plays a role in the early stages of desmosome cell-cell junction formation via facilitating the recruitment of DSG2 and DSP to desmosome plaques (PubMed:29999492). Has a potent invasive suppressor role. It is a ligand for integrin alpha-E/beta-7. {ECO:0000250|UniProtKB:F1PAA9, ECO:0000269|PubMed:11976333, ECO:0000269|PubMed:16417575, ECO:0000269|PubMed:29999492}.; FUNCTION: E-Cad/CTF2 promotes non-amyloidogenic degradation of Abeta precursors. Has a strong inhibitory effect on APP C99 and C83 production. {ECO:0000269|PubMed:16417575}.; FUNCTION: (Microbial infection) Serves as a receptor for Listeria monocytogenes; internalin A (InlA) binds to this protein and promotes uptake of the bacteria. {ECO:0000269|PubMed:10406800, ECO:0000269|PubMed:17540170, ECO:0000269|PubMed:8601315}. |
P12882 | MYH1 | S1132 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12882 | MYH1 | S1898 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12882 | MYH1 | S1919 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P12883 | MYH7 | S782 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P12883 | MYH7 | S1894 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P12883 | MYH7 | S1915 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13533 | MYH6 | S784 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13533 | MYH6 | S1896 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13533 | MYH6 | S1917 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13535 | MYH8 | S1918 | ochoa | Myosin-8 (Myosin heavy chain 8) (Myosin heavy chain, skeletal muscle, perinatal) (MyHC-perinatal) | Muscle contraction. |
P14635 | CCNB1 | S147 | psp | G2/mitotic-specific cyclin-B1 | Essential for the control of the cell cycle at the G2/M (mitosis) transition. {ECO:0000269|PubMed:17495531, ECO:0000269|PubMed:17495533, ECO:0000269|PubMed:27030811}. |
P15374 | UCHL3 | S75 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCH-L3) (EC 3.4.19.12) (Ubiquitin thioesterase L3) | Deubiquitinating enzyme (DUB) that controls levels of cellular ubiquitin through processing of ubiquitin precursors and ubiquitinated proteins. Thiol protease that recognizes and hydrolyzes a peptide bond at the C-terminal glycine of either ubiquitin or NEDD8. Has a 10-fold preference for Arg and Lys at position P3'', and exhibits a preference towards 'Lys-48'-linked ubiquitin chains. Deubiquitinates ENAC in apical compartments, thereby regulating apical membrane recycling. Indirectly increases the phosphorylation of IGFIR, AKT and FOXO1 and promotes insulin-signaling and insulin-induced adipogenesis. Required for stress-response retinal, skeletal muscle and germ cell maintenance. May be involved in working memory. Can hydrolyze UBB(+1), a mutated form of ubiquitin which is not effectively degraded by the proteasome and is associated with neurogenerative disorders. {ECO:0000269|PubMed:19154770, ECO:0000269|PubMed:21762696, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:2530630, ECO:0000269|PubMed:9790970}. |
P15498 | VAV1 | Y174 | psp | Proto-oncogene vav | Couples tyrosine kinase signals with the activation of the Rho/Rac GTPases, thus leading to cell differentiation and/or proliferation. |
P15924 | DSP | S299 | psp | Desmoplakin (DP) (250/210 kDa paraneoplastic pemphigus antigen) | Major high molecular weight protein of desmosomes. Regulates profibrotic gene expression in cardiomyocytes via activation of the MAPK14/p38 MAPK signaling cascade and increase in TGFB1 protein abundance (By similarity). {ECO:0000250|UniProtKB:F1LMV6}. |
P16989 | YBX3 | S203 | ochoa | Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) | Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}. |
P16989 | YBX3 | S204 | ochoa | Y-box-binding protein 3 (Cold shock domain-containing protein A) (DNA-binding protein A) (Single-strand DNA-binding protein NF-GMB) | Binds to the GM-CSF promoter. Seems to act as a repressor. Also binds to full-length mRNA and to short RNA sequences containing the consensus site 5'-UCCAUCA-3'. May have a role in translation repression (By similarity). {ECO:0000250}. |
P17028 | ZNF24 | S167 | ochoa | Zinc finger protein 24 (Retinoic acid suppression protein A) (RSG-A) (Zinc finger and SCAN domain-containing protein 3) (Zinc finger protein 191) (Zinc finger protein KOX17) | Transcription factor required for myelination of differentiated oligodendrocytes. Required for the conversion of oligodendrocytes from the premyelinating to the myelinating state. In the developing central nervous system (CNS), involved in the maintenance in the progenitor stage by promoting the cell cycle. Specifically binds to the 5'-TCAT-3' DNA sequence (By similarity). Has transcription repressor activity in vitro. {ECO:0000250, ECO:0000269|PubMed:10585455}. |
P17174 | GOT1 | S149 | ochoa | Aspartate aminotransferase, cytoplasmic (cAspAT) (EC 2.6.1.1) (EC 2.6.1.3) (Cysteine aminotransferase, cytoplasmic) (Cysteine transaminase, cytoplasmic) (cCAT) (Glutamate oxaloacetate transaminase 1) (Transaminase A) | Biosynthesis of L-glutamate from L-aspartate or L-cysteine (PubMed:21900944). Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. In addition, catalyzes (2S)-2-aminobutanoate, a by-product in the cysteine biosynthesis pathway (PubMed:27827456). {ECO:0000269|PubMed:16039064, ECO:0000269|PubMed:21900944, ECO:0000269|PubMed:27827456}. |
P17480 | UBTF | S435 | ochoa | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P17661 | DES | S298 | ochoa | Desmin | Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}. |
P17661 | DES | S301 | ochoa | Desmin | Muscle-specific type III intermediate filament essential for proper muscular structure and function. Plays a crucial role in maintaining the structure of sarcomeres, inter-connecting the Z-disks and forming the myofibrils, linking them not only to the sarcolemmal cytoskeleton, but also to the nucleus and mitochondria, thus providing strength for the muscle fiber during activity (PubMed:25358400). In adult striated muscle they form a fibrous network connecting myofibrils to each other and to the plasma membrane from the periphery of the Z-line structures (PubMed:24200904, PubMed:25394388, PubMed:26724190). May act as a sarcomeric microtubule-anchoring protein: specifically associates with detyrosinated tubulin-alpha chains, leading to buckled microtubules and mechanical resistance to contraction. Required for nuclear membrane integrity, via anchoring at the cell tip and nuclear envelope, resulting in maintenance of microtubule-derived intracellular mechanical forces (By similarity). Contributes to the transcriptional regulation of the NKX2-5 gene in cardiac progenitor cells during a short period of cardiomyogenesis and in cardiac side population stem cells in the adult. Plays a role in maintaining an optimal conformation of nebulette (NEB) on heart muscle sarcomeres to bind and recruit cardiac alpha-actin (By similarity). {ECO:0000250|UniProtKB:P31001, ECO:0000269|PubMed:24200904, ECO:0000269|PubMed:25394388, ECO:0000269|PubMed:26724190, ECO:0000303|PubMed:25358400}. |
P18583 | SON | S142 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P18846 | ATF1 | S47 | psp | Cyclic AMP-dependent transcription factor ATF-1 (cAMP-dependent transcription factor ATF-1) (Activating transcription factor 1) (Protein TREB36) | This protein binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), a sequence present in many viral and cellular promoters. Binds to the Tax-responsive element (TRE) of HTLV-I. Mediates PKA-induced stimulation of CRE-reporter genes. Represses the expression of FTH1 and other antioxidant detoxification genes. Triggers cell proliferation and transformation. {ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:20980392}. |
P18858 | LIG1 | S163 | ochoa | DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) | DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}. |
P19022 | CDH2 | S788 | ochoa | Cadherin-2 (CDw325) (Neural cadherin) (N-cadherin) (CD antigen CD325) | Calcium-dependent cell adhesion protein; preferentially mediates homotypic cell-cell adhesion by dimerization with a CDH2 chain from another cell. Cadherins may thus contribute to the sorting of heterogeneous cell types. Acts as a regulator of neural stem cells quiescence by mediating anchorage of neural stem cells to ependymocytes in the adult subependymal zone: upon cleavage by MMP24, CDH2-mediated anchorage is affected, leading to modulate neural stem cell quiescence. Plays a role in cell-to-cell junction formation between pancreatic beta cells and neural crest stem (NCS) cells, promoting the formation of processes by NCS cells (By similarity). Required for proper neurite branching. Required for pre- and postsynaptic organization (By similarity). CDH2 may be involved in neuronal recognition mechanism. In hippocampal neurons, may regulate dendritic spine density. {ECO:0000250|UniProtKB:P10288, ECO:0000250|UniProtKB:P15116, ECO:0000269|PubMed:31585109}. |
P21860 | ERBB3 | Y1197 | ochoa|psp | Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}. |
P23327 | HRC | S494 | ochoa | Sarcoplasmic reticulum histidine-rich calcium-binding protein | May play a role in the regulation of calcium sequestration or release in the SR of skeletal and cardiac muscle. |
P23443 | RPS6KB1 | S53 | psp | Ribosomal protein S6 kinase beta-1 (S6K-beta-1) (S6K1) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 1) (P70S6K1) (p70-S6K 1) (Ribosomal protein S6 kinase I) (Serine/threonine-protein kinase 14A) (p70 ribosomal S6 kinase alpha) (p70 S6 kinase alpha) (p70 S6K-alpha) (p70 S6KA) | Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex (PubMed:16286006). Upon mitogenic stimulation, phosphorylation by the mechanistic target of rapamycin complex 1 (mTORC1) leads to dissociation from the EIF3 complex and activation (PubMed:16286006). The active form then phosphorylates and activates several substrates in the pre-initiation complex, including the EIF2B complex and the cap-binding complex component EIF4B (PubMed:16286006). Also controls translation initiation by phosphorylating a negative regulator of EIF4A, PDCD4, targeting it for ubiquitination and subsequent proteolysis (PubMed:17053147). Promotes initiation of the pioneer round of protein synthesis by phosphorylating POLDIP3/SKAR (PubMed:15341740). In response to IGF1, activates translation elongation by phosphorylating EEF2 kinase (EEF2K), which leads to its inhibition and thus activation of EEF2 (PubMed:11500364). Also plays a role in feedback regulation of mTORC2 by mTORC1 by phosphorylating MAPKAP1/SIN1, MTOR and RICTOR, resulting in the inhibition of mTORC2 and AKT1 signaling (PubMed:15899889, PubMed:19720745, PubMed:19935711, PubMed:19995915). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic protein BAD and suppressing its pro-apoptotic function (By similarity). Phosphorylates mitochondrial URI1 leading to dissociation of a URI1-PPP1CC complex (PubMed:17936702). The free mitochondrial PPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which is proposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function (PubMed:17936702). Mediates TNF-alpha-induced insulin resistance by phosphorylating IRS1 at multiple serine residues, resulting in accelerated degradation of IRS1 (PubMed:18952604). In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B (PubMed:17052453). May be involved in cytoskeletal rearrangement through binding to neurabin (By similarity). Phosphorylates and activates the pyrimidine biosynthesis enzyme CAD, downstream of MTOR (PubMed:23429703). Following activation by mTORC1, phosphorylates EPRS and thereby plays a key role in fatty acid uptake by adipocytes and also most probably in interferon-gamma-induced translation inhibition (PubMed:28178239). {ECO:0000250|UniProtKB:P67999, ECO:0000250|UniProtKB:Q8BSK8, ECO:0000269|PubMed:11500364, ECO:0000269|PubMed:12801526, ECO:0000269|PubMed:14673156, ECO:0000269|PubMed:15071500, ECO:0000269|PubMed:15341740, ECO:0000269|PubMed:15899889, ECO:0000269|PubMed:16286006, ECO:0000269|PubMed:17052453, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:17936702, ECO:0000269|PubMed:18952604, ECO:0000269|PubMed:19085255, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:28178239}. |
P23458 | JAK1 | S857 | ochoa | Tyrosine-protein kinase JAK1 (EC 2.7.10.2) (Janus kinase 1) (JAK-1) | Tyrosine kinase of the non-receptor type, involved in the IFN-alpha/beta/gamma signal pathway (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). Kinase partner for the interleukin (IL)-2 receptor (PubMed:11909529) as well as interleukin (IL)-10 receptor (PubMed:12133952). Kinase partner for the type I interferon receptor IFNAR2 (PubMed:16239216, PubMed:28111307, PubMed:32750333, PubMed:7615558, PubMed:8232552). In response to interferon-binding to IFNAR1-IFNAR2 heterodimer, phosphorylates and activates its binding partner IFNAR2, creating docking sites for STAT proteins (PubMed:7759950). Directly phosphorylates STAT proteins but also activates STAT signaling through the transactivation of other JAK kinases associated with signaling receptors (PubMed:16239216, PubMed:32750333, PubMed:8232552). {ECO:0000269|PubMed:11909529, ECO:0000269|PubMed:12133952, ECO:0000269|PubMed:16239216, ECO:0000269|PubMed:28111307, ECO:0000269|PubMed:32750333, ECO:0000269|PubMed:7615558, ECO:0000269|PubMed:7657660, ECO:0000269|PubMed:8232552}. |
P23497 | SP100 | S166 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P23508 | MCC | S115 | ochoa|psp | Colorectal mutant cancer protein (Protein MCC) | Candidate for the putative colorectal tumor suppressor gene located at 5q21. Suppresses cell proliferation and the Wnt/b-catenin pathway in colorectal cancer cells. Inhibits DNA binding of b-catenin/TCF/LEF transcription factors. Involved in cell migration independently of RAC1, CDC42 and p21-activated kinase (PAK) activation (PubMed:18591935, PubMed:19555689, PubMed:22480440). Represses the beta-catenin pathway (canonical Wnt signaling pathway) in a CCAR2-dependent manner by sequestering CCAR2 to the cytoplasm, thereby impairing its ability to inhibit SIRT1 which is involved in the deacetylation and negative regulation of beta-catenin (CTNB1) transcriptional activity (PubMed:24824780). {ECO:0000269|PubMed:18591935, ECO:0000269|PubMed:19555689, ECO:0000269|PubMed:22480440, ECO:0000269|PubMed:24824780}. |
P23588 | EIF4B | S418 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P23588 | EIF4B | S588 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P25205 | MCM3 | S681 | ochoa | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P25440 | BRD2 | S643 | ochoa | Bromodomain-containing protein 2 (O27.1.1) | Chromatin reader protein that specifically recognizes and binds histone H4 acetylated at 'Lys-5' and 'Lys-12' (H4K5ac and H4K12ac, respectively), thereby controlling gene expression and remodeling chromatin structures (PubMed:17148447, PubMed:17848202, PubMed:18406326, PubMed:20048151, PubMed:20709061, PubMed:20871596). Recruits transcription factors and coactivators to target gene sites, and activates RNA polymerase II machinery for transcriptional elongation (PubMed:28262505). Plays a key role in genome compartmentalization via its association with CTCF and cohesin: recruited to chromatin by CTCF and promotes formation of topologically associating domains (TADs) via its ability to bind acetylated histones, contributing to CTCF boundary formation and enhancer insulation (PubMed:35410381). Also recognizes and binds acetylated non-histone proteins, such as STAT3 (PubMed:28262505). Involved in inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17: recognizes and binds STAT3 acetylated at 'Lys-87', promoting STAT3 recruitment to chromatin (PubMed:28262505). In addition to acetylated lysines, also recognizes and binds lysine residues on histones that are both methylated and acetylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Specifically binds histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). {ECO:0000269|PubMed:17148447, ECO:0000269|PubMed:17848202, ECO:0000269|PubMed:18406326, ECO:0000269|PubMed:20048151, ECO:0000269|PubMed:20709061, ECO:0000269|PubMed:20871596, ECO:0000269|PubMed:28262505, ECO:0000269|PubMed:35410381, ECO:0000269|PubMed:37731000}. |
P25490 | YY1 | S118 | ochoa|psp | Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) | Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}. |
P25490 | YY1 | S247 | ochoa|psp | Transcriptional repressor protein YY1 (Delta transcription factor) (INO80 complex subunit S) (NF-E1) (Yin and yang 1) (YY-1) | Multifunctional transcription factor that exhibits positive and negative control on a large number of cellular and viral genes by binding to sites overlapping the transcription start site (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Binds to the consensus sequence 5'-CCGCCATNTT-3'; some genes have been shown to contain a longer binding motif allowing enhanced binding; the initial CG dinucleotide can be methylated greatly reducing the binding affinity (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). The effect on transcription regulation is depending upon the context in which it binds and diverse mechanisms of action include direct activation or repression, indirect activation or repression via cofactor recruitment, or activation or repression by disruption of binding sites or conformational DNA changes (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). Its activity is regulated by transcription factors and cytoplasmic proteins that have been shown to abrogate or completely inhibit YY1-mediated activation or repression (PubMed:15329343, PubMed:17721549, PubMed:24326773, PubMed:25787250). For example, it acts as a repressor in absence of adenovirus E1A protein but as an activator in its presence (PubMed:1655281). Acts synergistically with the SMAD1 and SMAD4 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression (PubMed:15329343). Binds to SMAD binding elements (SBEs) (5'-GTCT/AGAC-3') within BMP response element (BMPRE) of cardiac activating regions (PubMed:15329343). May play an important role in development and differentiation. Proposed to recruit the PRC2/EED-EZH2 complex to target genes that are transcriptional repressed (PubMed:11158321). Involved in DNA repair (PubMed:18026119, PubMed:28575647). In vitro, binds to DNA recombination intermediate structures (Holliday junctions). Plays a role in regulating enhancer activation (PubMed:28575647). Recruits the PR-DUB complex to specific gene-regulatory regions (PubMed:20805357). {ECO:0000269|PubMed:11158321, ECO:0000269|PubMed:15329343, ECO:0000269|PubMed:1655281, ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24326773, ECO:0000269|PubMed:25787250, ECO:0000269|PubMed:28575647}.; FUNCTION: Proposed core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair; proposed to target the INO80 complex to YY1-responsive elements. {ECO:0000269|PubMed:17721549, ECO:0000269|PubMed:18026119}. |
P25963 | NFKBIA | S293 | psp | NF-kappa-B inhibitor alpha (I-kappa-B-alpha) (IkB-alpha) (IkappaBalpha) (Major histocompatibility complex enhancer-binding protein MAD3) | Inhibits the activity of dimeric NF-kappa-B/REL complexes by trapping REL (RELA/p65 and NFKB1/p50) dimers in the cytoplasm by masking their nuclear localization signals (PubMed:1493333, PubMed:36651806, PubMed:7479976). On cellular stimulation by immune and pro-inflammatory responses, becomes phosphorylated promoting ubiquitination and degradation, enabling the dimeric RELA to translocate to the nucleus and activate transcription (PubMed:7479976, PubMed:7628694, PubMed:7796813, PubMed:7878466). {ECO:0000269|PubMed:1493333, ECO:0000269|PubMed:36651806, ECO:0000269|PubMed:7479976, ECO:0000269|PubMed:7628694, ECO:0000269|PubMed:7796813, ECO:0000269|PubMed:7878466}. |
P28340 | POLD1 | S60 | ochoa | DNA polymerase delta catalytic subunit (EC 2.7.7.7) (3'-5' exodeoxyribonuclease) (EC 3.1.11.-) (DNA polymerase subunit delta p125) | As the catalytic component of the trimeric (Pol-delta3 complex) and tetrameric DNA polymerase delta complexes (Pol-delta4 complex), plays a crucial role in high fidelity genome replication, including in lagging strand synthesis, and repair (PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24022480, PubMed:24035200, PubMed:31449058). Exhibits both DNA polymerase and 3'- to 5'-exonuclease activities (PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24022480, PubMed:24035200). Requires the presence of accessory proteins POLD2, POLD3 and POLD4 for full activity. Depending upon the absence (Pol-delta3) or the presence of POLD4 (Pol-delta4), displays differences in catalytic activity. Most notably, expresses higher proofreading activity in the context of Pol-delta3 compared with that of Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation (PubMed:20227374). Under conditions of DNA replication stress, in the presence of POLD3 and POLD4, may catalyze the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine, 8oxoG or abasic sites (PubMed:19074196, PubMed:24191025). {ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24022480, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24191025, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:31449058}. |
P29353 | SHC1 | Y349 | ochoa|psp | SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) | Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}. |
P29353 | SHC1 | Y350 | ochoa|psp | SHC-transforming protein 1 (SHC-transforming protein 3) (SHC-transforming protein A) (Src homology 2 domain-containing-transforming protein C1) (SH2 domain protein C1) | Signaling adapter that couples activated growth factor receptors to signaling pathways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does not mediate Ras activation, but is involved in signal transduction pathways that regulate the cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream target of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression of isoform p66Shc has been correlated with life span (By similarity). Participates in signaling downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of endothelial cell migration and sprouting angiogenesis. {ECO:0000250, ECO:0000269|PubMed:14665640}. |
P30740 | SERPINB1 | S72 | ochoa | Leukocyte elastase inhibitor (LEI) (Monocyte/neutrophil elastase inhibitor) (EI) (M/NEI) (Peptidase inhibitor 2) (PI-2) (Serpin B1) | Neutrophil serine protease inhibitor that plays an essential role in the regulation of the innate immune response, inflammation and cellular homeostasis (PubMed:30692621). Acts primarily to protect the cell from proteases released in the cytoplasm during stress or infection. These proteases are important in killing microbes but when released from granules, these potent enzymes also destroy host proteins and contribute to mortality. Regulates the activity of the neutrophil proteases elastase, cathepsin G, proteinase-3, chymase, chymotrypsin, and kallikrein-3 (PubMed:11747453, PubMed:30692621). Also acts as a potent intracellular inhibitor of GZMH by directly blocking its proteolytic activity (PubMed:23269243). During inflammation, limits the activity of inflammatory caspases CASP1, CASP4 and CASP5 by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation (PubMed:30692621). When secreted, promotes the proliferation of beta-cells via its protease inhibitory function (PubMed:26701651). {ECO:0000269|PubMed:11747453, ECO:0000269|PubMed:23269243, ECO:0000269|PubMed:26701651, ECO:0000269|PubMed:30692621}. |
P31749 | AKT1 | S122 | ochoa | RAC-alpha serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase B) (PKB) (Protein kinase B alpha) (PKB alpha) (Proto-oncogene c-Akt) (RAC-PK-alpha) | AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:29343641, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT also regulates the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT also regulates cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Part of a positive feedback loop of mTORC2 signaling by mediating phosphorylation of MAPKAP1/SIN1, promoting mTORC2 activation (By similarity). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor 1 (IGF1) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF1 (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173). {ECO:0000250|UniProtKB:P31750, ECO:0000250|UniProtKB:P47196, ECO:0000269|PubMed:10358075, ECO:0000269|PubMed:10576742, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11154276, ECO:0000269|PubMed:11994271, ECO:0000269|PubMed:12150915, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12176338, ECO:0000269|PubMed:12964941, ECO:0000269|PubMed:15861136, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:16982699, ECO:0000269|PubMed:17726016, ECO:0000269|PubMed:18507042, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20086174, ECO:0000269|PubMed:20471940, ECO:0000269|PubMed:20682768, ECO:0000269|PubMed:23431171, ECO:0000269|PubMed:30504268, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:32228865, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:9829964, ECO:0000303|PubMed:11882383, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:21432781, ECO:0000303|PubMed:21620960}. |
P31749 | AKT1 | S124 | ochoa|psp | RAC-alpha serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase B) (PKB) (Protein kinase B alpha) (PKB alpha) (Proto-oncogene c-Akt) (RAC-PK-alpha) | AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:29343641, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT also regulates the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT also regulates cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Part of a positive feedback loop of mTORC2 signaling by mediating phosphorylation of MAPKAP1/SIN1, promoting mTORC2 activation (By similarity). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor 1 (IGF1) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF1 (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173). {ECO:0000250|UniProtKB:P31750, ECO:0000250|UniProtKB:P47196, ECO:0000269|PubMed:10358075, ECO:0000269|PubMed:10576742, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11154276, ECO:0000269|PubMed:11994271, ECO:0000269|PubMed:12150915, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12176338, ECO:0000269|PubMed:12964941, ECO:0000269|PubMed:15861136, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:16982699, ECO:0000269|PubMed:17726016, ECO:0000269|PubMed:18507042, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20086174, ECO:0000269|PubMed:20471940, ECO:0000269|PubMed:20682768, ECO:0000269|PubMed:23431171, ECO:0000269|PubMed:30504268, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:32228865, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:9829964, ECO:0000303|PubMed:11882383, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:21432781, ECO:0000303|PubMed:21620960}. |
P35269 | GTF2F1 | T331 | ochoa | General transcription factor IIF subunit 1 (General transcription factor IIF 74 kDa subunit) (Transcription initiation factor IIF subunit alpha) (TFIIF-alpha) (Transcription initiation factor RAP74) | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation. {ECO:0000269|PubMed:10428810}. |
P35659 | DEK | S51 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P35749 | MYH11 | S1719 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P35749 | MYH11 | S1720 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P35749 | MYH11 | S1722 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P35968 | KDR | Y996 | psp | Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) (Protein-tyrosine kinase receptor flk-1) (CD antigen CD309) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC. {ECO:0000269|PubMed:10102632, ECO:0000269|PubMed:10368301, ECO:0000269|PubMed:10600473, ECO:0000269|PubMed:11387210, ECO:0000269|PubMed:12649282, ECO:0000269|PubMed:1417831, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15215251, ECO:0000269|PubMed:15962004, ECO:0000269|PubMed:16966330, ECO:0000269|PubMed:17303569, ECO:0000269|PubMed:18529047, ECO:0000269|PubMed:19668192, ECO:0000269|PubMed:19834490, ECO:0000269|PubMed:20080685, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20705758, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:7929439, ECO:0000269|PubMed:9160888, ECO:0000269|PubMed:9804796, ECO:0000269|PubMed:9837777}. |
P38935 | IGHMBP2 | S771 | ochoa | DNA-binding protein SMUBP-2 (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent helicase IGHMBP2) (Glial factor 1) (GF-1) (Immunoglobulin mu-binding protein 2) | 5' to 3' helicase that unwinds RNA and DNA duplexes in an ATP-dependent reaction (PubMed:19158098, PubMed:22999958, PubMed:30218034). Specific to 5'-phosphorylated single-stranded guanine-rich sequences (PubMed:22999958, PubMed:8349627). May play a role in RNA metabolism, ribosome biogenesis or initiation of translation (PubMed:19158098, PubMed:19299493). May play a role in regulation of transcription (By similarity). Interacts with tRNA-Tyr (PubMed:19299493). {ECO:0000250|UniProtKB:Q9EQN5, ECO:0000269|PubMed:19158098, ECO:0000269|PubMed:19299493, ECO:0000269|PubMed:22999958, ECO:0000269|PubMed:30218034, ECO:0000269|PubMed:8349627}. |
P42704 | LRPPRC | S743 | ochoa | Leucine-rich PPR motif-containing protein, mitochondrial (130 kDa leucine-rich protein) (LRP 130) (GP130) | May play a role in RNA metabolism in both nuclei and mitochondria. In the nucleus binds to HNRPA1-associated poly(A) mRNAs and is part of nmRNP complexes at late stages of mRNA maturation which are possibly associated with nuclear mRNA export. Positively modulates nuclear export of mRNAs containing the EIF4E sensitivity element (4ESE) by binding simultaneously to both EIF4E and the 4ESE and acting as a platform for assembly for the RNA export complex (PubMed:19262567, PubMed:28325843). Also binds to exportin XPO1/CRM1 to engage the nuclear pore and traffic the bound mRNAs to the cytoplasm (PubMed:28325843). May bind mature mRNA in the nucleus outer membrane. In mitochondria binds to poly(A) mRNA. Plays a role in translation or stability of mitochondrially encoded cytochrome c oxidase (COX) subunits. May be involved in transcription regulation. Cooperates with PPARGC1A to regulate certain mitochondrially encoded genes and gluconeogenic genes and may regulate docking of PPARGC1A to transcription factors. Seems to be involved in the transcription regulation of the multidrug-related genes MDR1 and MVP. Part of a nuclear factor that binds to the invMED1 element of MDR1 and MVP gene promoters. Binds single-stranded DNA (By similarity). Required for maintaining mitochondrial potential (PubMed:23822101). Suppresses the initiation of basal levels of autophagy and mitophagy by sustaining BCL2 levels (PubMed:23822101). {ECO:0000250, ECO:0000269|PubMed:11585913, ECO:0000269|PubMed:12832482, ECO:0000269|PubMed:15081402, ECO:0000269|PubMed:15139850, ECO:0000269|PubMed:15272088, ECO:0000269|PubMed:17050673, ECO:0000269|PubMed:19262567, ECO:0000269|PubMed:23822101, ECO:0000269|PubMed:28325843}. |
P42858 | HTT | S455 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P42858 | HTT | S457 | ochoa|psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P42892 | ECE1 | S36 | ochoa|psp | Endothelin-converting enzyme 1 (ECE-1) (EC 3.4.24.71) | Converts big endothelin-1 to endothelin-1. {ECO:0000269|PubMed:37835445, ECO:0000269|PubMed:9396733}. |
P43121 | MCAM | S627 | ochoa | Cell surface glycoprotein MUC18 (Cell surface glycoprotein P1H12) (Melanoma cell adhesion molecule) (Melanoma-associated antigen A32) (Melanoma-associated antigen MUC18) (S-endo 1 endothelial-associated antigen) (CD antigen CD146) | Plays a role in cell adhesion, and in cohesion of the endothelial monolayer at intercellular junctions in vascular tissue. Its expression may allow melanoma cells to interact with cellular elements of the vascular system, thereby enhancing hematogeneous tumor spread. Could be an adhesion molecule active in neural crest cells during embryonic development. Acts as a surface receptor that triggers tyrosine phosphorylation of FYN and PTK2/FAK1, and a transient increase in the intracellular calcium concentration. {ECO:0000269|PubMed:11036077, ECO:0000269|PubMed:8292890}. |
P43243 | MATR3 | S631 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P43243 | MATR3 | S747 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P46100 | ATRX | S1322 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46939 | UTRN | S286 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P46939 | UTRN | S1695 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P48681 | NES | S894 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48681 | NES | Y928 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48681 | NES | S945 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48681 | NES | S1286 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48681 | NES | S1590 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49321 | NASP | S127 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49411 | TUFM | S222 | psp | Elongation factor Tu, mitochondrial (EF-Tu) (EC 3.6.5.3) (P43) | GTP hydrolase that promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. Also plays a role in the regulation of autophagy and innate immunity. Recruits ATG5-ATG12 and NLRX1 at mitochondria and serves as a checkpoint of the RIGI-MAVS pathway. In turn, inhibits RLR-mediated type I interferon while promoting autophagy. {ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:28407488}. |
P49736 | MCM2 | S170 | ochoa | DNA replication licensing factor MCM2 (EC 3.6.4.12) (Minichromosome maintenance protein 2 homolog) (Nuclear protein BM28) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (PubMed:8175912). Plays a role in terminally differentiated hair cells development of the cochlea and induces cells apoptosis (PubMed:26196677). {ECO:0000269|PubMed:26196677, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:8175912}. |
P49736 | MCM2 | S700 | ochoa | DNA replication licensing factor MCM2 (EC 3.6.4.12) (Minichromosome maintenance protein 2 homolog) (Nuclear protein BM28) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (PubMed:8175912). Plays a role in terminally differentiated hair cells development of the cochlea and induces cells apoptosis (PubMed:26196677). {ECO:0000269|PubMed:26196677, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:8175912}. |
P49768 | PSEN1 | S346 | ochoa|psp | Presenilin-1 (PS-1) (EC 3.4.23.-) (Protein S182) [Cleaved into: Presenilin-1 NTF subunit; Presenilin-1 CTF subunit; Presenilin-1 CTF12 (PS1-CTF12)] | Catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:10206644, PubMed:10545183, PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:12679784, PubMed:12740439, PubMed:15274632, PubMed:20460383, PubMed:25043039, PubMed:26280335, PubMed:28269784, PubMed:30598546, PubMed:30630874). Requires the presence of the other members of the gamma-secretase complex for protease activity (PubMed:15274632, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:9738936). Stimulates cell-cell adhesion via its interaction with CDH1; this stabilizes the complexes between CDH1 (E-cadherin) and its interaction partners CTNNB1 (beta-catenin), CTNND1 and JUP (gamma-catenin) (PubMed:11953314). Under conditions of apoptosis or calcium influx, cleaves CDH1 (PubMed:11953314). This promotes the disassembly of the complexes between CDH1 and CTNND1, JUP and CTNNB1, increases the pool of cytoplasmic CTNNB1, and thereby negatively regulates Wnt signaling (PubMed:11953314, PubMed:9738936). Required for normal embryonic brain and skeleton development, and for normal angiogenesis (By similarity). Mediates the proteolytic cleavage of EphB2/CTF1 into EphB2/CTF2 (PubMed:17428795, PubMed:28269784). The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is therefore involved in calcium homeostasis (PubMed:16959576, PubMed:25394380). Involved in the regulation of neurite outgrowth (PubMed:15004326, PubMed:20460383). Is a regulator of presynaptic facilitation, spike transmission and synaptic vesicles replenishment in a process that depends on gamma-secretase activity. It acts through the control of SYT7 presynaptic expression (By similarity). {ECO:0000250|UniProtKB:P49769, ECO:0000269|PubMed:10206644, ECO:0000269|PubMed:10545183, ECO:0000269|PubMed:10593990, ECO:0000269|PubMed:10811883, ECO:0000269|PubMed:10899933, ECO:0000269|PubMed:11953314, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12740439, ECO:0000269|PubMed:15004326, ECO:0000269|PubMed:15274632, ECO:0000269|PubMed:15341515, ECO:0000269|PubMed:16305624, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:17428795, ECO:0000269|PubMed:20460383, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:25394380, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:28269784, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000269|PubMed:9738936}. |
P49810 | PSEN2 | S19 | ochoa|psp | Presenilin-2 (PS-2) (EC 3.4.23.-) (AD3LP) (AD5) (E5-1) (STM-2) [Cleaved into: Presenilin-2 NTF subunit; Presenilin-2 CTF subunit] | Probable catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Requires the other members of the gamma-secretase complex to have a protease activity. May play a role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. May function in the cytoplasmic partitioning of proteins. The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is involved in calcium homeostasis (PubMed:16959576). Is a regulator of mitochondrion-endoplasmic reticulum membrane tethering and modulates calcium ions shuttling between ER and mitochondria (PubMed:21285369). {ECO:0000269|PubMed:10497236, ECO:0000269|PubMed:10652302, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:21285369}. |
P49810 | PSEN2 | S330 | psp | Presenilin-2 (PS-2) (EC 3.4.23.-) (AD3LP) (AD5) (E5-1) (STM-2) [Cleaved into: Presenilin-2 NTF subunit; Presenilin-2 CTF subunit] | Probable catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein). Requires the other members of the gamma-secretase complex to have a protease activity. May play a role in intracellular signaling and gene expression or in linking chromatin to the nuclear membrane. May function in the cytoplasmic partitioning of proteins. The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is involved in calcium homeostasis (PubMed:16959576). Is a regulator of mitochondrion-endoplasmic reticulum membrane tethering and modulates calcium ions shuttling between ER and mitochondria (PubMed:21285369). {ECO:0000269|PubMed:10497236, ECO:0000269|PubMed:10652302, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:21285369}. |
P50548 | ERF | S444 | ochoa | ETS domain-containing transcription factor ERF (Ets2 repressor factor) (PE-2) | Potent transcriptional repressor that binds to the H1 element of the Ets2 promoter. May regulate other genes involved in cellular proliferation. Required for extraembryonic ectoderm differentiation, ectoplacental cone cavity closure, and chorioallantoic attachment (By similarity). May be important for regulating trophoblast stem cell differentiation (By similarity). {ECO:0000250}. |
P51114 | FXR1 | S420 | ochoa|psp | RNA-binding protein FXR1 (FMR1 autosomal homolog 1) (hFXR1p) | mRNA-binding protein that acts as a regulator of mRNAs translation and/or stability, and which is required for various processes, such as neurogenesis, muscle development and spermatogenesis (PubMed:17382880, PubMed:20417602, PubMed:30067974, PubMed:34731628, PubMed:35989368, PubMed:36306353). Specifically binds to AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:17382880, PubMed:34731628). Promotes formation of some phase-separated membraneless compartment by undergoing liquid-liquid phase separation upon binding to AREs-containing mRNAs, leading to assemble mRNAs into cytoplasmic ribonucleoprotein granules that concentrate mRNAs with associated regulatory factors (By similarity). Required to activate translation of stored mRNAs during late spermatogenesis: acts by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules that recruit translation initiation factor EIF4G3 to activate translation of stored mRNAs in late spermatids (By similarity). Promotes translation of MYC transcripts by recruiting the eIF4F complex to the translation start site (PubMed:34731628). Acts as a negative regulator of inflammation in response to IL19 by promoting destabilization of pro-inflammatory transcripts (PubMed:30067974). Also acts as an inhibitor of inflammation by binding to TNF mRNA, decreasing TNF protein production (By similarity). Acts as a negative regulator of AMPA receptor GRIA2/GluA2 synthesis during long-lasting synaptic potentiation of hippocampal neurons by binding to GRIA2/GluA2 mRNA, thereby inhibiting its translation (By similarity). Regulates proliferation of adult neural stem cells by binding to CDKN1A mRNA and promoting its expression (By similarity). Acts as a regulator of sleep and synaptic homeostasis by regulating translation of transcripts in neurons (By similarity). Required for embryonic and postnatal development of muscle tissue by undergoing liquid-liquid phase separation to assemble target mRNAs into cytoplasmic ribonucleoprotein granules (PubMed:30770808). Involved in the nuclear pore complex localization to the nuclear envelope by preventing cytoplasmic aggregation of nucleoporins: acts by preventing ectopic phase separation of nucleoporins in the cytoplasm via a microtubule-dependent mechanism (PubMed:32706158). Plays a role in the stabilization of PKP2 mRNA and therefore protein abundance, via its interaction with PKP3 (PubMed:25225333). May also do the same for PKP2, PKP3 and DSP via its interaction with PKP1 (PubMed:25225333). Forms a cytoplasmic messenger ribonucleoprotein (mRNP) network by packaging long mRNAs, serving as a scaffold that recruits proteins and signaling molecules. This network facilitates signaling reactions by maintaining proximity between kinases and substrates, crucial for processes like actomyosin reorganization (PubMed:39106863). {ECO:0000250|UniProtKB:Q61584, ECO:0000269|PubMed:17382880, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:30067974, ECO:0000269|PubMed:30770808, ECO:0000269|PubMed:32706158, ECO:0000269|PubMed:34731628, ECO:0000269|PubMed:35989368, ECO:0000269|PubMed:36306353, ECO:0000269|PubMed:39106863}. |
P51956 | NEK3 | S319 | ochoa | Serine/threonine-protein kinase Nek3 (EC 2.7.11.1) (HSPK 36) (Never in mitosis A-related kinase 3) (NimA-related protein kinase 3) | Protein kinase which influences neuronal morphogenesis and polarity through effects on microtubules. Regulates microtubule acetylation in neurons. Contributes to prolactin-mediated phosphorylation of PXN and VAV2. Implicated in prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells through mechanisms involving RAC1 activation and phosphorylation of PXN and VAV2. {ECO:0000269|PubMed:15618286, ECO:0000269|PubMed:17297458}. |
P52565 | ARHGDIA | Y27 | ochoa|psp | Rho GDP-dissociation inhibitor 1 (Rho GDI 1) (Rho-GDI alpha) | Controls Rho proteins homeostasis. Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. Retains Rho proteins such as CDC42, RAC1 and RHOA in an inactive cytosolic pool, regulating their stability and protecting them from degradation. Actively involved in the recycling and distribution of activated Rho GTPases in the cell, mediates extraction from membranes of both inactive and activated molecules due its exceptionally high affinity for prenylated forms. Through the modulation of Rho proteins, may play a role in cell motility regulation. In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1. {ECO:0000269|PubMed:20400958, ECO:0000269|PubMed:23434736}. |
P52701 | MSH6 | S279 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P52756 | RBM5 | S636 | ochoa | RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) | Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}. |
P52948 | NUP98 | T899 | ochoa | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P52948 | NUP98 | S900 | ochoa|psp | Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance. NUP98 and NUP96 are involved in the bidirectional transport across the NPC (PubMed:33097660). May anchor NUP153 and TPR to the NPC. In cooperation with DHX9, plays a role in transcription and alternative splicing activation of a subset of genes (PubMed:28221134). Involved in the localization of DHX9 in discrete intranuclear foci (GLFG-body) (PubMed:28221134). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:33097660}.; FUNCTION: (Microbial infection) Interacts with HIV-1 capsid protein P24 and nucleocapsid protein P7 and may thereby promote the integration of the virus in the host nucleus (in vitro) (PubMed:23523133). Binding affinity to HIV-1 CA-NC complexes bearing the capsid change Asn-74-Asp is reduced (in vitro) (PubMed:23523133). {ECO:0000269|PubMed:23523133}. |
P54829 | PTPN5 | S268 | psp | Tyrosine-protein phosphatase non-receptor type 5 (EC 3.1.3.48) (Neural-specific protein-tyrosine phosphatase) (Striatum-enriched protein-tyrosine phosphatase) (STEP) | May regulate the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs, Src family kinases and NMDA receptors. {ECO:0000269|PubMed:21777200}. |
P55081 | MFAP1 | S80 | ochoa | Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
P55081 | MFAP1 | S82 | ochoa | Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
P55081 | MFAP1 | S361 | ochoa | Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
P55196 | AFDN | T1590 | ochoa | Afadin (ALL1-fused gene from chromosome 6 protein) (Protein AF-6) (Afadin adherens junction formation factor) | Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton (PubMed:11024295). May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions (PubMed:30463011). {ECO:0000250|UniProtKB:O35889, ECO:0000250|UniProtKB:Q9QZQ1, ECO:0000269|PubMed:11024295, ECO:0000269|PubMed:30463011}. |
P55884 | EIF3B | S307 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P56856 | CLDN18 | S210 | ochoa | Claudin-18 | Involved in alveolar fluid homeostasis via regulation of alveolar epithelial tight junction composition and therefore ion transport and solute permeability, potentially via downstream regulation of the actin cytoskeleton organization and beta-2-adrenergic signaling (By similarity). Required for lung alveolarization and maintenance of the paracellular alveolar epithelial barrier (By similarity). Acts to maintain epithelial progenitor cell proliferation and organ size, via regulation of YAP1 localization away from the nucleus and thereby restriction of YAP1 target gene transcription (By similarity). Acts as a negative regulator of RANKL-induced osteoclast differentiation, potentially via relocation of TJP2/ZO-2 away from the nucleus, subsequently involved in bone resorption in response to calcium deficiency (By similarity). Mediates the osteoprotective effects of estrogen, potentially via acting downstream of estrogen signaling independently of RANKL signaling pathways (By similarity). {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A1]: Involved in the maintenance of homeostasis of the alveolar microenvironment via regulation of pH and subsequent T-cell activation in the alveolar space, is therefore indirectly involved in limiting C.neoformans infection. {ECO:0000250|UniProtKB:P56857}.; FUNCTION: [Isoform A2]: Required for the formation of the gastric paracellular barrier via its role in tight junction formation, thereby involved in the response to gastric acidification. {ECO:0000250|UniProtKB:P56857}. |
P61978 | HNRNPK | S36 | ochoa | Heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Transformation up-regulated nuclear protein) (TUNP) | One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single-stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription repression is concerned, acts by interacting with long intergenic RNA p21 (lincRNA-p21), a non-coding RNA induced by p53/TP53. This interaction is necessary for the induction of apoptosis, but not cell cycle arrest. As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPL and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). {ECO:0000250, ECO:0000269|PubMed:16360036, ECO:0000269|PubMed:20673990, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33174841}. |
P78312 | FAM193A | S985 | ochoa | Protein FAM193A (Protein IT14) | None |
P78316 | NOP14 | S133 | ochoa | Nucleolar protein 14 (Nucleolar complex protein 14) | Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity). {ECO:0000250}. |
P78316 | NOP14 | S349 | ochoa | Nucleolar protein 14 (Nucleolar complex protein 14) | Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity). {ECO:0000250}. |
P78332 | RBM6 | T923 | ochoa | RNA-binding protein 6 (Lung cancer antigen NY-LU-12) (Protein G16) (RNA-binding motif protein 6) (RNA-binding protein DEF-3) | Specifically binds poly(G) RNA homopolymers in vitro. |
P78559 | MAP1A | S118 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S119 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S667 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P80303 | NUCB2 | S89 | ochoa | Nucleobindin-2 (DNA-binding protein NEFA) (Epididymis secretory protein Li 109) (Gastric cancer antigen Zg4) (Prepronesfatin) [Cleaved into: Nesfatin-1] | Calcium-binding protein which may have a role in calcium homeostasis (By similarity). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein (G-protein) alpha subunit GNAI3 (By similarity). {ECO:0000250|UniProtKB:P81117, ECO:0000250|UniProtKB:Q9JI85}.; FUNCTION: [Nesfatin-1]: Anorexigenic peptide, seems to play an important role in hypothalamic pathways regulating food intake and energy homeostasis, acting in a leptin-independent manner. May also exert hypertensive roles and modulate blood pressure through directly acting on peripheral arterial resistance. In intestinal epithelial cells, plays a role in the inhibition of hepatic glucose production via MC4R receptor leading to increased cyclic adenosine monophosphate (cAMP) levels and glucagon-like peptide 1 (GLP-1) secretion (PubMed:39562740). {ECO:0000250|UniProtKB:Q9JI85, ECO:0000269|PubMed:39562740}. |
P80723 | BASP1 | S40 | ochoa | Brain acid soluble protein 1 (22 kDa neuronal tissue-enriched acidic protein) (Neuronal axonal membrane protein NAP-22) | None |
P84157 | MXRA7 | S140 | ochoa | Matrix-remodeling-associated protein 7 | None |
P98088 | MUC5AC | S5636 | ochoa | Mucin-5AC (MUC-5AC) (Gastric mucin) (Major airway glycoprotein) (Mucin-5 subtype AC, tracheobronchial) (Tracheobronchial mucin) (TBM) | Gel-forming glycoprotein of gastric and respiratory tract epithelia that protects the mucosa from infection and chemical damage by binding to inhaled microorganisms and particles that are subsequently removed by the mucociliary system (PubMed:14535999, PubMed:14718370). Interacts with H.pylori in the gastric epithelium, Barrett's esophagus as well as in gastric metaplasia of the duodenum (GMD) (PubMed:14535999). {ECO:0000269|PubMed:14535999, ECO:0000303|PubMed:14535999, ECO:0000303|PubMed:14718370}. |
P98182 | ZNF200 | S181 | ochoa | Zinc finger protein 200 | Localizes protein arginine N-methyltransferase PRMT3 to the nucleus. {ECO:0000269|PubMed:39513743}. |
Q00169 | PITPNA | S165 | psp | Phosphatidylinositol transfer protein alpha isoform (PI-TP-alpha) (PtdIns transfer protein alpha) (PtdInsTP alpha) | Catalyzes the transfer of phosphatidylinositol (PI) and phosphatidylcholine (PC) between membranes (PubMed:10531358, PubMed:14962392, PubMed:15522822, PubMed:18636990, PubMed:22822086). Shows a preference for PI and PC containing shorter saturated or monosaturated acyl chains at the sn-1 and sn-2 positions (PubMed:15522822, PubMed:22822086). Preference order for PC is C16:1 > C16:0 > C18:1 > C18:0 > C20:4 and for PI is C16:1 > C16:0 > C18:1 > C18:0 > C20:4 > C20:3 (PubMed:22822086). {ECO:0000269|PubMed:10531358, ECO:0000269|PubMed:14962392, ECO:0000269|PubMed:15522822, ECO:0000269|PubMed:18636990, ECO:0000269|PubMed:22822086}. |
Q00839 | HNRNPU | S26 | psp | Heterogeneous nuclear ribonucleoprotein U (hnRNP U) (GRIP120) (Nuclear p120 ribonucleoprotein) (Scaffold-attachment factor A) (SAF-A) (p120) (pp120) | DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression (PubMed:10490622, PubMed:18082603, PubMed:19029303, PubMed:22325991, PubMed:25986610, PubMed:28622508). Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability (PubMed:1324173, PubMed:28622508, PubMed:8174554). Required for the localization of the long non-coding Xist RNA on the inactive chromosome X (Xi) and the subsequent initiation and maintenance of X-linked transcriptional gene silencing during X-inactivation (By similarity). Plays a role as a RNA polymerase II (Pol II) holoenzyme transcription regulator (PubMed:10490622, PubMed:15711563, PubMed:19617346, PubMed:23811339, PubMed:8174554, PubMed:9353307). Promotes transcription initiation by direct association with the core-TFIIH basal transcription factor complex for the assembly of a functional pre-initiation complex with Pol II in a actin-dependent manner (PubMed:10490622, PubMed:15711563). Blocks Pol II transcription elongation activity by inhibiting the C-terminal domain (CTD) phosphorylation of Pol II and dissociates from Pol II pre-initiation complex prior to productive transcription elongation (PubMed:10490622). Positively regulates CBX5-induced transcriptional gene silencing and retention of CBX5 in the nucleus (PubMed:19617346). Negatively regulates glucocorticoid-mediated transcriptional activation (PubMed:9353307). Key regulator of transcription initiation and elongation in embryonic stem cells upon leukemia inhibitory factor (LIF) signaling (By similarity). Involved in the long non-coding RNA H19-mediated Pol II transcriptional repression (PubMed:23811339). Participates in the circadian regulation of the core clock component BMAL1 transcription (By similarity). Plays a role in the regulation of telomere length (PubMed:18082603). Plays a role as a global pre-mRNA alternative splicing modulator by regulating U2 small nuclear ribonucleoprotein (snRNP) biogenesis (PubMed:22325991). Plays a role in mRNA stability (PubMed:17174306, PubMed:17289661, PubMed:19029303). Component of the CRD-mediated complex that promotes MYC mRNA stabilization (PubMed:19029303). Enhances the expression of specific genes, such as tumor necrosis factor TNFA, by regulating mRNA stability, possibly through binding to the 3'-untranslated region (UTR) (PubMed:17174306). Plays a role in mitotic cell cycle regulation (PubMed:21242313, PubMed:25986610). Involved in the formation of stable mitotic spindle microtubules (MTs) attachment to kinetochore, spindle organization and chromosome congression (PubMed:21242313). Phosphorylation at Ser-59 by PLK1 is required for chromosome alignement and segregation and progression through mitosis (PubMed:25986610). Also contributes to the targeting of AURKA to mitotic spindle MTs (PubMed:21242313). Binds to double- and single-stranded DNA and RNA, poly(A), poly(C) and poly(G) oligoribonucleotides (PubMed:1628625, PubMed:8068679, PubMed:8174554, PubMed:9204873, PubMed:9405365). Binds to chromatin-associated RNAs (caRNAs) (PubMed:28622508). Associates with chromatin to scaffold/matrix attachment region (S/MAR) elements in a chromatin-associated RNAs (caRNAs)-dependent manner (PubMed:10671544, PubMed:11003645, PubMed:11909954, PubMed:1324173, PubMed:28622508, PubMed:7509195, PubMed:9204873, PubMed:9405365). Binds to the Xist RNA (PubMed:26244333). Binds the long non-coding H19 RNA (PubMed:23811339). Binds to SMN1/2 pre-mRNAs at G/U-rich regions (PubMed:22325991). Binds to small nuclear RNAs (snRNAs) (PubMed:22325991). Binds to the 3'-UTR of TNFA mRNA (PubMed:17174306). Binds (via RNA-binding RGG-box region) to the long non-coding Xist RNA; this binding is direct and bridges the Xist RNA and the inactive chromosome X (Xi) (By similarity). Also negatively regulates embryonic stem cell differentiation upon LIF signaling (By similarity). Required for embryonic development (By similarity). Binds to brown fat long non-coding RNA 1 (Blnc1); facilitates the recruitment of Blnc1 by ZBTB7B required to drive brown and beige fat development and thermogenesis (By similarity). {ECO:0000250|UniProtKB:Q8VEK3, ECO:0000269|PubMed:10490622, ECO:0000269|PubMed:10671544, ECO:0000269|PubMed:11003645, ECO:0000269|PubMed:11909954, ECO:0000269|PubMed:1324173, ECO:0000269|PubMed:15711563, ECO:0000269|PubMed:1628625, ECO:0000269|PubMed:17174306, ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19617346, ECO:0000269|PubMed:21242313, ECO:0000269|PubMed:22325991, ECO:0000269|PubMed:23811339, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26244333, ECO:0000269|PubMed:28622508, ECO:0000269|PubMed:7509195, ECO:0000269|PubMed:8068679, ECO:0000269|PubMed:8174554, ECO:0000269|PubMed:9204873, ECO:0000269|PubMed:9353307, ECO:0000269|PubMed:9405365}.; FUNCTION: (Microbial infection) Negatively regulates immunodeficiency virus type 1 (HIV-1) replication by preventing the accumulation of viral mRNA transcripts in the cytoplasm. {ECO:0000269|PubMed:16916646}. |
Q00839 | HNRNPU | T286 | ochoa | Heterogeneous nuclear ribonucleoprotein U (hnRNP U) (GRIP120) (Nuclear p120 ribonucleoprotein) (Scaffold-attachment factor A) (SAF-A) (p120) (pp120) | DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression (PubMed:10490622, PubMed:18082603, PubMed:19029303, PubMed:22325991, PubMed:25986610, PubMed:28622508). Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability (PubMed:1324173, PubMed:28622508, PubMed:8174554). Required for the localization of the long non-coding Xist RNA on the inactive chromosome X (Xi) and the subsequent initiation and maintenance of X-linked transcriptional gene silencing during X-inactivation (By similarity). Plays a role as a RNA polymerase II (Pol II) holoenzyme transcription regulator (PubMed:10490622, PubMed:15711563, PubMed:19617346, PubMed:23811339, PubMed:8174554, PubMed:9353307). Promotes transcription initiation by direct association with the core-TFIIH basal transcription factor complex for the assembly of a functional pre-initiation complex with Pol II in a actin-dependent manner (PubMed:10490622, PubMed:15711563). Blocks Pol II transcription elongation activity by inhibiting the C-terminal domain (CTD) phosphorylation of Pol II and dissociates from Pol II pre-initiation complex prior to productive transcription elongation (PubMed:10490622). Positively regulates CBX5-induced transcriptional gene silencing and retention of CBX5 in the nucleus (PubMed:19617346). Negatively regulates glucocorticoid-mediated transcriptional activation (PubMed:9353307). Key regulator of transcription initiation and elongation in embryonic stem cells upon leukemia inhibitory factor (LIF) signaling (By similarity). Involved in the long non-coding RNA H19-mediated Pol II transcriptional repression (PubMed:23811339). Participates in the circadian regulation of the core clock component BMAL1 transcription (By similarity). Plays a role in the regulation of telomere length (PubMed:18082603). Plays a role as a global pre-mRNA alternative splicing modulator by regulating U2 small nuclear ribonucleoprotein (snRNP) biogenesis (PubMed:22325991). Plays a role in mRNA stability (PubMed:17174306, PubMed:17289661, PubMed:19029303). Component of the CRD-mediated complex that promotes MYC mRNA stabilization (PubMed:19029303). Enhances the expression of specific genes, such as tumor necrosis factor TNFA, by regulating mRNA stability, possibly through binding to the 3'-untranslated region (UTR) (PubMed:17174306). Plays a role in mitotic cell cycle regulation (PubMed:21242313, PubMed:25986610). Involved in the formation of stable mitotic spindle microtubules (MTs) attachment to kinetochore, spindle organization and chromosome congression (PubMed:21242313). Phosphorylation at Ser-59 by PLK1 is required for chromosome alignement and segregation and progression through mitosis (PubMed:25986610). Also contributes to the targeting of AURKA to mitotic spindle MTs (PubMed:21242313). Binds to double- and single-stranded DNA and RNA, poly(A), poly(C) and poly(G) oligoribonucleotides (PubMed:1628625, PubMed:8068679, PubMed:8174554, PubMed:9204873, PubMed:9405365). Binds to chromatin-associated RNAs (caRNAs) (PubMed:28622508). Associates with chromatin to scaffold/matrix attachment region (S/MAR) elements in a chromatin-associated RNAs (caRNAs)-dependent manner (PubMed:10671544, PubMed:11003645, PubMed:11909954, PubMed:1324173, PubMed:28622508, PubMed:7509195, PubMed:9204873, PubMed:9405365). Binds to the Xist RNA (PubMed:26244333). Binds the long non-coding H19 RNA (PubMed:23811339). Binds to SMN1/2 pre-mRNAs at G/U-rich regions (PubMed:22325991). Binds to small nuclear RNAs (snRNAs) (PubMed:22325991). Binds to the 3'-UTR of TNFA mRNA (PubMed:17174306). Binds (via RNA-binding RGG-box region) to the long non-coding Xist RNA; this binding is direct and bridges the Xist RNA and the inactive chromosome X (Xi) (By similarity). Also negatively regulates embryonic stem cell differentiation upon LIF signaling (By similarity). Required for embryonic development (By similarity). Binds to brown fat long non-coding RNA 1 (Blnc1); facilitates the recruitment of Blnc1 by ZBTB7B required to drive brown and beige fat development and thermogenesis (By similarity). {ECO:0000250|UniProtKB:Q8VEK3, ECO:0000269|PubMed:10490622, ECO:0000269|PubMed:10671544, ECO:0000269|PubMed:11003645, ECO:0000269|PubMed:11909954, ECO:0000269|PubMed:1324173, ECO:0000269|PubMed:15711563, ECO:0000269|PubMed:1628625, ECO:0000269|PubMed:17174306, ECO:0000269|PubMed:17289661, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19617346, ECO:0000269|PubMed:21242313, ECO:0000269|PubMed:22325991, ECO:0000269|PubMed:23811339, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26244333, ECO:0000269|PubMed:28622508, ECO:0000269|PubMed:7509195, ECO:0000269|PubMed:8068679, ECO:0000269|PubMed:8174554, ECO:0000269|PubMed:9204873, ECO:0000269|PubMed:9353307, ECO:0000269|PubMed:9405365}.; FUNCTION: (Microbial infection) Negatively regulates immunodeficiency virus type 1 (HIV-1) replication by preventing the accumulation of viral mRNA transcripts in the cytoplasm. {ECO:0000269|PubMed:16916646}. |
Q00987 | MDM2 | S425 | psp | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q01082 | SPTBN1 | S2102 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q02952 | AKAP12 | S248 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03014 | HHEX | S214 | ochoa | Hematopoietically-expressed homeobox protein HHEX (Homeobox protein HEX) (Homeobox protein PRH) (Proline-rich homeodomain protein) | Recognizes the DNA sequence 5'-ATTAA-3' (By similarity). Transcriptional repressor (By similarity). Activator of WNT-mediated transcription in conjunction with CTNNB1 (PubMed:20028982). Establishes anterior identity at two levels; acts early to enhance canonical WNT-signaling by repressing expression of TLE4, and acts later to inhibit NODAL-signaling by directly targeting NODAL (By similarity). Inhibits EIF4E-mediated mRNA nuclear export (PubMed:12554669). May play a role in hematopoietic differentiation (PubMed:8096636). {ECO:0000250|UniProtKB:P43120, ECO:0000269|PubMed:12554669, ECO:0000269|PubMed:20028982, ECO:0000269|PubMed:8096636}. |
Q03164 | KMT2A | S3644 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03188 | CENPC | S308 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q03188 | CENPC | S439 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q03252 | LMNB2 | S90 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q03468 | ERCC6 | S35 | ochoa | DNA excision repair protein ERCC-6 (EC 3.6.4.-) (ATP-dependent helicase ERCC6) (Cockayne syndrome protein CSB) | Essential factor involved in transcription-coupled nucleotide excision repair (TC-NER), a process during which RNA polymerase II-blocking lesions are rapidly removed from the transcribed strand of active genes (PubMed:16246722, PubMed:20541997, PubMed:22483866, PubMed:26620705, PubMed:32355176, PubMed:34526721, PubMed:38316879, PubMed:38600235, PubMed:38600236). Plays a central role in the initiation of the TC-NER process: specifically recognizes and binds RNA polymerase II stalled at a lesion, and mediates recruitment of ERCC8/CSA, initiating DNA damage excision by TFIIH recruitment (PubMed:32355176, PubMed:34526721, PubMed:38600235, PubMed:38600236). Upon DNA-binding, it locally modifies DNA conformation by wrapping the DNA around itself, thereby modifying the interface between stalled RNA polymerase II and DNA (PubMed:15548521). Acts as a chromatin remodeler at DSBs; DNA-dependent ATPase-dependent activity is essential for this function (PubMed:16246722, PubMed:9565609). Plays an important role in regulating the choice of the DNA double-strand breaks (DSBs) repair pathway and G2/M checkpoint activation; DNA-dependent ATPase activity is essential for this function (PubMed:25820262). Regulates the DNA repair pathway choice by inhibiting non-homologous end joining (NHEJ), thereby promoting the homologous recombination (HR)-mediated repair of DSBs during the S/G2 phases of the cell cycle (PubMed:25820262). Mediates the activation of the ATM- and CHEK2-dependent DNA damage responses thus preventing premature entry of cells into mitosis following the induction of DNA DSBs (PubMed:25820262). Remodels chromatin by evicting histones from chromatin flanking DSBs, limiting RIF1 accumulation at DSBs thereby promoting BRCA1-mediated HR (PubMed:29203878). Required for stable recruitment of ELOA and CUL5 to DNA damage sites (PubMed:28292928). Also involved in UV-induced translocation of ERCC8 to the nuclear matrix (PubMed:26620705). Essential for neuronal differentiation and neuritogenesis; regulates transcription and chromatin remodeling activities required during neurogenesis (PubMed:24874740). {ECO:0000269|PubMed:15548521, ECO:0000269|PubMed:16246722, ECO:0000269|PubMed:20541997, ECO:0000269|PubMed:22483866, ECO:0000269|PubMed:24874740, ECO:0000269|PubMed:25820262, ECO:0000269|PubMed:26620705, ECO:0000269|PubMed:28292928, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:32355176, ECO:0000269|PubMed:34526721, ECO:0000269|PubMed:38316879, ECO:0000269|PubMed:38600235, ECO:0000269|PubMed:38600236, ECO:0000269|PubMed:9565609}. |
Q04637 | EIF4G1 | S1199 | ochoa | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q05682 | CALD1 | S202 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q07021 | C1QBP | S164 | ochoa | Complement component 1 Q subcomponent-binding protein, mitochondrial (ASF/SF2-associated protein p32) (Glycoprotein gC1qBP) (C1qBP) (Hyaluronan-binding protein 1) (Mitochondrial matrix protein p32) (gC1q-R protein) (p33) (SF2AP32) | Multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing (PubMed:10022843, PubMed:10479529, PubMed:10722602, PubMed:11086025, PubMed:11859136, PubMed:15243141, PubMed:16140380, PubMed:16177118, PubMed:17881511, PubMed:18676636, PubMed:19004836, PubMed:19164550, PubMed:20810993, PubMed:21536856, PubMed:21544310, PubMed:22700724, PubMed:28942965, PubMed:8662673, PubMed:8710908, PubMed:9461517). At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades (PubMed:10479529, PubMed:11859136, PubMed:8662673, PubMed:8710908). Putative receptor for C1q; specifically binds to the globular 'heads' of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93 (PubMed:20810993, PubMed:8195709). In complex with cytokeratin-1/KRT1 is a high affinity receptor for kininogen-1/HMWK (PubMed:21544310). Can also bind other plasma proteins, such as coagulation factor XII leading to its autoactivation. May function to bind initially fluid kininogen-1 to the cell membrane. The secreted form may enhance both extrinsic and intrinsic coagulation pathways. It is postulated that the cell surface form requires docking with transmembrane proteins for downstream signaling which might be specific for a cell-type or response. By acting as C1q receptor is involved in chemotaxis of immature dendritic cells and neutrophils and is proposed to signal through CD209/DC-SIGN on immature dendritic cells, through integrin alpha-4/beta-1 during trophoblast invasion of the decidua, and through integrin beta-1 during endothelial cell adhesion and spreading (PubMed:16140380, PubMed:22700724, PubMed:9461517). Signaling involved in inhibition of innate immune response is implicating the PI3K-AKT/PKB pathway (PubMed:16177118). Required for protein synthesis in mitochondria (PubMed:28942965). In mitochondrial translation may be involved in formation of functional 55S mitoribosomes; the function seems to involve its RNA-binding activity (By similarity). Acts as a RNA modification reader, which specifically recognizes and binds mitochondrial RNAs modified by C5-methylcytosine (m5C) in response to stress, and promotes recruitment of the mitochondrial degradosome complex, leading to their degradation (PubMed:39019044). May be involved in the nucleolar ribosome maturation process; the function may involve the exchange of FBL for RRP1 in the association with pre-ribosome particles (By similarity). Involved in regulation of RNA splicing by inhibiting the RNA-binding capacity of SRSF1 and its phosphorylation (PubMed:10022843, PubMed:21536856). Is required for the nuclear translocation of splicing factor U2AF1L4 (By similarity). Involved in regulation of CDKN2A- and HRK-mediated apoptosis. Stabilizes mitochondrial CDKN2A isoform smARF (PubMed:17486078). May be involved in regulation of FOXC1 transcriptional activity and NFY/CCAAT-binding factor complex-mediated transcription (PubMed:15243141, PubMed:18676636). May play a role in antibacterial defense as it can bind to cell surface hyaluronan and inhibit Streptococcus pneumoniae hyaluronate lyase (PubMed:19004836). May be involved in modulation of the immune response; ligation by HCV core protein is resulting in suppression of interleukin-12 production in monocyte-derived dendritic cells (PubMed:11086025, PubMed:17881511). Involved in regulation of antiviral response by inhibiting RIGI- and IFIH1-mediated signaling pathways probably involving its association with MAVS after viral infection (PubMed:19164550). Acts as a regulator of DNA repair via homologous recombination by inhibiting the activity of MRE11: interacts with unphosphorylated MRE11 and RAD50 in absence of DNA damage, preventing formation and activity of the MRN complex. Following DNA damage, dissociates from phosphorylated MRE11, allowing formation of the MRN complex (PubMed:31353207). {ECO:0000250|UniProtKB:O35658, ECO:0000269|PubMed:10022843, ECO:0000269|PubMed:10479529, ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:11086025, ECO:0000269|PubMed:11859136, ECO:0000269|PubMed:15243141, ECO:0000269|PubMed:16140380, ECO:0000269|PubMed:16177118, ECO:0000269|PubMed:17486078, ECO:0000269|PubMed:17881511, ECO:0000269|PubMed:18676636, ECO:0000269|PubMed:19004836, ECO:0000269|PubMed:19164550, ECO:0000269|PubMed:20810993, ECO:0000269|PubMed:21536856, ECO:0000269|PubMed:21544310, ECO:0000269|PubMed:22700724, ECO:0000269|PubMed:28942965, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:39019044, ECO:0000269|PubMed:8195709, ECO:0000269|PubMed:8662673, ECO:0000269|PubMed:8710908, ECO:0000269|PubMed:9461517}.; FUNCTION: (Microbial infection) Involved in HIV-1 replication, presumably by contributing to splicing of viral RNA. {ECO:0000269|PubMed:12833064}.; FUNCTION: (Microbial infection) In infection processes acts as an attachment site for microbial proteins, including Listeria monocytogenes internalin B (InlB) and Staphylococcus aureus protein A. {ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:10747014, ECO:0000269|PubMed:12411480}.; FUNCTION: (Microbial infection) Involved in replication of Rubella virus. {ECO:0000269|PubMed:12034482}. |
Q08495 | DMTN | S226 | ochoa | Dematin (Dematin actin-binding protein) (Erythrocyte membrane protein band 4.9) | Membrane-cytoskeleton-associated protein with F-actin-binding activity that induces F-actin bundles formation and stabilization. Its F-actin-bundling activity is reversibly regulated upon its phosphorylation by the cAMP-dependent protein kinase A (PKA). Binds to the erythrocyte membrane glucose transporter-1 SLC2A1/GLUT1, and hence stabilizes and attaches the spectrin-actin network to the erythrocytic plasma membrane. Plays a role in maintaining the functional integrity of PKA-activated erythrocyte shape and the membrane mechanical properties. Also plays a role as a modulator of actin dynamics in fibroblasts; acts as a negative regulator of the RhoA activation pathway. In platelets, functions as a regulator of internal calcium mobilization across the dense tubular system that affects platelet granule secretion pathways and aggregation. Also required for the formation of a diverse set of cell protrusions, such as filopodia and lamellipodia, necessary for platelet cell spreading, motility and migration. Acts as a tumor suppressor and inhibits malignant cell transformation. {ECO:0000269|PubMed:10565303, ECO:0000269|PubMed:11856323, ECO:0000269|PubMed:18347014, ECO:0000269|PubMed:19241372, ECO:0000269|PubMed:22927433, ECO:0000269|PubMed:23355471}. |
Q08AE8 | SPIRE1 | S477 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q09019 | DMWD | T410 | ochoa | Dystrophia myotonica WD repeat-containing protein (Dystrophia myotonica-containing WD repeat motif protein) (Protein 59) (Protein DMR-N9) | Regulator of the deubiquitinating USP12/DMWD/WDR48 complex (PubMed:33844468). Functions as a cofactor that promotes USP12 enzymatic activity (PubMed:33844468). {ECO:0000269|PubMed:33844468}. |
Q09472 | EP300 | S1033 | ochoa | Histone acetyltransferase p300 (p300 HAT) (EC 2.3.1.48) (E1A-associated protein p300) (Histone butyryltransferase p300) (EC 2.3.1.-) (Histone crotonyltransferase p300) (EC 2.3.1.-) (Protein 2-hydroxyisobutyryltransferase p300) (EC 2.3.1.-) (Protein lactyltransferas p300) (EC 2.3.1.-) (Protein propionyltransferase p300) (EC 2.3.1.-) | Functions as a histone acetyltransferase and regulates transcription via chromatin remodeling (PubMed:23415232, PubMed:23934153, PubMed:8945521). Acetylates all four core histones in nucleosomes (PubMed:23415232, PubMed:23934153, PubMed:8945521). Histone acetylation gives an epigenetic tag for transcriptional activation (PubMed:23415232, PubMed:23934153, PubMed:8945521). Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability (PubMed:23415232). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905, PubMed:23911289). Also able to acetylate histone lysine residues that are already monomethylated on the same side chain to form N6-acetyl-N6-methyllysine (Kacme), an epigenetic mark of active chromatin associated with increased transcriptional initiation (PubMed:37731000). Catalyzes formation of histone H4 acetyl-methylated at 'Lys-5' and 'Lys-12' (H4K5acme and H4K12acme, respectively) (PubMed:37731000). Also functions as acetyltransferase for non-histone targets, such as ALX1, HDAC1, PRMT1, SIRT2, STAT3 or GLUL (PubMed:12929931, PubMed:15653507, PubMed:16285960, PubMed:16762839, PubMed:18722353, PubMed:18782771, PubMed:26990986). Acetylates 'Lys-131' of ALX1 and acts as its coactivator (PubMed:12929931). Acetylates SIRT2 and is proposed to indirectly increase the transcriptional activity of p53/TP53 through acetylation and subsequent attenuation of SIRT2 deacetylase function (PubMed:18722353). Following DNA damage, forms a stress-responsive p53/TP53 coactivator complex with JMY which mediates p53/TP53 acetylation, thereby increasing p53/TP53-dependent transcription and apoptosis (PubMed:11511361, PubMed:15448695). Promotes chromatin acetylation in heat shock responsive HSP genes during the heat shock response (HSR), thereby stimulating HSR transcription (PubMed:18451878). Acetylates HDAC1 leading to its inactivation and modulation of transcription (PubMed:16762839). Acetylates 'Lys-247' of EGR2 (By similarity). Acts as a TFAP2A-mediated transcriptional coactivator in presence of CITED2 (PubMed:12586840). Plays a role as a coactivator of NEUROD1-dependent transcription of the secretin and p21 genes and controls terminal differentiation of cells in the intestinal epithelium. Promotes cardiac myocyte enlargement (PubMed:14752053). Can also mediate transcriptional repression. Acetylates FOXO1 and enhances its transcriptional activity (PubMed:15890677). Acetylates STAT3 at different sites, promoting both STAT3 dimerization and activation and recruitment to chromatin (PubMed:15653507, PubMed:16285960, PubMed:18782771). Acetylates BCL6 which disrupts its ability to recruit histone deacetylases and hinders its transcriptional repressor activity (PubMed:12402037). Participates in CLOCK or NPAS2-regulated rhythmic gene transcription; exhibits a circadian association with CLOCK or NPAS2, correlating with increase in PER1/2 mRNA and histone H3 acetylation on the PER1/2 promoter (PubMed:14645221). Acetylates MTA1 at 'Lys-626' which is essential for its transcriptional coactivator activity (PubMed:16617102). Acetylates XBP1 isoform 2; acetylation increases protein stability of XBP1 isoform 2 and enhances its transcriptional activity (PubMed:20955178). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates MEF2D (PubMed:21030595). Acetylates and stabilizes ZBTB7B protein by antagonizing ubiquitin conjugation and degradation, this mechanism may be involved in CD4/CD8 lineage differentiation (PubMed:20810990). Acetylates GABPB1, impairing GABPB1 heterotetramerization and activity (By similarity). Acetylates PCK1 and promotes PCK1 anaplerotic activity (PubMed:30193097). Acetylates RXRA and RXRG (PubMed:17761950). Acetylates isoform M2 of PKM (PKM2), promoting its homodimerization and conversion into a protein kinase (PubMed:24120661). Acetylates RPTOR in response to leucine, leading to activation of the mTORC1 complex (PubMed:30197302, PubMed:32561715). Acetylates RICTOR, leading to activation of the mTORC2 complex (PubMed:22084251). Mediates cAMP-gene regulation by binding specifically to phosphorylated CREBBP (PubMed:8917528). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as (2E)-butenoyl-CoA (crotonyl-CoA), butanoyl-CoA (butyryl-CoA), 2-hydroxyisobutanoyl-CoA (2-hydroxyisobutyryl-CoA), lactoyl-CoA or propanoyl-CoA (propionyl-CoA), and is able to mediate protein crotonylation, butyrylation, 2-hydroxyisobutyrylation, lactylation or propionylation, respectively (PubMed:17267393, PubMed:25818647, PubMed:29775581, PubMed:31645732). Acts as a histone crotonyltransferase; crotonylation marks active promoters and enhancers and confers resistance to transcriptional repressors (PubMed:25818647). Histone crotonyltransferase activity is dependent on the concentration of (2E)-butenoyl-CoA (crotonyl-CoA) substrate and such activity is weak when (2E)-butenoyl-CoA (crotonyl-CoA) concentration is low (PubMed:25818647). Also acts as a histone butyryltransferase; butyrylation marks active promoters (PubMed:17267393). Catalyzes histone lactylation in macrophages by using lactoyl-CoA directly derived from endogenous or exogenous lactate, leading to stimulates gene transcription (PubMed:31645732). Acts as a protein-lysine 2-hydroxyisobutyryltransferase; regulates glycolysis by mediating 2-hydroxyisobutyrylation of glycolytic enzymes (PubMed:29775581). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000250|UniProtKB:B2RWS6, ECO:0000269|PubMed:10733570, ECO:0000269|PubMed:11430825, ECO:0000269|PubMed:11511361, ECO:0000269|PubMed:11701890, ECO:0000269|PubMed:12402037, ECO:0000269|PubMed:12586840, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:14752053, ECO:0000269|PubMed:15186775, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15653507, ECO:0000269|PubMed:15890677, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17267393, ECO:0000269|PubMed:17761950, ECO:0000269|PubMed:18451878, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18782771, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:20810990, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:22084251, ECO:0000269|PubMed:23415232, ECO:0000269|PubMed:23911289, ECO:0000269|PubMed:23934153, ECO:0000269|PubMed:24120661, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:25818647, ECO:0000269|PubMed:26990986, ECO:0000269|PubMed:29775581, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30197302, ECO:0000269|PubMed:31645732, ECO:0000269|PubMed:32561715, ECO:0000269|PubMed:37731000, ECO:0000269|PubMed:8917528, ECO:0000269|PubMed:8945521, ECO:0000305|PubMed:20955178}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, it is recruited by the viral protein Tat. Regulates Tat's transactivating activity and may help inducing chromatin remodeling of proviral genes. Binds to and may be involved in the transforming capacity of the adenovirus E1A protein. {ECO:0000269|PubMed:10545121, ECO:0000269|PubMed:11080476}. |
Q09666 | AHNAK | S148 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0ZGT2 | NEXN | S564 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q0ZGT2 | NEXN | S569 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q12802 | AKAP13 | S1645 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S1374 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q12834 | CDC20 | S134 | ochoa | Cell division cycle protein 20 homolog (p55CDC) | Substrate-specific adapter of the anaphase promoting complex/cyclosome (APC/C) complex that confers substrate specificity by binding to substrates and targeting them to the APC/C complex for ubiquitination and degradation (PubMed:9734353, PubMed:27030811, PubMed:29343641). Recognizes and binds the destruction box (D box) on protein substrates (PubMed:29343641). Involved in the metaphase/anaphase transition of cell cycle (PubMed:32666501). Is regulated by MAD2L1: in metaphase the MAD2L1-CDC20-APC/C ternary complex is inactive and in anaphase the CDC20-APC/C binary complex is active in degrading substrates (PubMed:9811605, PubMed:9637688). The CDC20-APC/C complex positively regulates the formation of synaptic vesicle clustering at active zone to the presynaptic membrane in postmitotic neurons (By similarity). CDC20-APC/C-induced degradation of NEUROD2 induces presynaptic differentiation (By similarity). The CDC20-APC/C complex promotes proper dilation formation and radial migration by degrading CCDC41 (By similarity). {ECO:0000250|UniProtKB:Q9JJ66, ECO:0000269|PubMed:27030811, ECO:0000269|PubMed:29343641, ECO:0000269|PubMed:32666501, ECO:0000269|PubMed:9637688, ECO:0000269|PubMed:9734353, ECO:0000269|PubMed:9811605}. |
Q12846 | STX4 | S117 | ochoa | Syntaxin-4 (Renal carcinoma antigen NY-REN-31) | Plasma membrane t-SNARE that mediates docking of transport vesicles (By similarity). Necessary for the translocation of SLC2A4 from intracellular vesicles to the plasma membrane (By similarity). In neurons, recruited at neurite tips to membrane domains rich in the phospholipid 1-oleoyl-2-palmitoyl-PC (OPPC) which promotes neurite tip surface expression of the dopamine transporter SLC6A3/DAT by facilitating fusion of SLC6A3-containing transport vesicles with the plasma membrane (By similarity). Together with STXB3 and VAMP2, may also play a role in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes and in docking of synaptic vesicles at presynaptic active zones (By similarity). Required for normal hearing (PubMed:36355422). {ECO:0000250|UniProtKB:P70452, ECO:0000250|UniProtKB:Q08850, ECO:0000269|PubMed:36355422}. |
Q12872 | SFSWAP | S616 | ochoa | Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) | Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}. |
Q12873 | CHD3 | S330 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q12874 | SF3A3 | S365 | ochoa | Splicing factor 3A subunit 3 (SF3a60) (Spliceosome-associated protein 61) (SAP 61) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310, PubMed:8022796). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:8022796}. |
Q12874 | SF3A3 | S367 | ochoa | Splicing factor 3A subunit 3 (SF3a60) (Spliceosome-associated protein 61) (SAP 61) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310, PubMed:8022796). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:8022796}. |
Q12888 | TP53BP1 | S674 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12912 | IRAG2 | S179 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q13029 | PRDM2 | S1266 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13043 | STK4 | S410 | ochoa|psp | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
Q13136 | PPFIA1 | S666 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13144 | EIF2B5 | S466 | psp | Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
Q13153 | PAK1 | S259 | ochoa | Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) | Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}. |
Q13283 | G3BP1 | T162 | ochoa | Ras GTPase-activating protein-binding protein 1 (G3BP-1) (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent DNA helicase VIII) (hDH VIII) (GAP SH3 domain-binding protein 1) | Protein involved in various processes, such as stress granule formation and innate immunity (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:30510222, PubMed:30804210). Plays an essential role in stress granule formation (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:35977029, PubMed:36183834, PubMed:36279435, PubMed:36692217, PubMed:37379838). Stress granules are membraneless compartments that store mRNAs and proteins, such as stalled translation pre-initiation complexes, in response to stress (PubMed:12642610, PubMed:20180778, PubMed:23279204, PubMed:27022092, PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:36279435, PubMed:37379838). Promotes formation of stress granules phase-separated membraneless compartment by undergoing liquid-liquid phase separation (LLPS) upon unfolded RNA-binding: functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations (PubMed:32302570, PubMed:32302571, PubMed:32302572, PubMed:34739333, PubMed:36279435, PubMed:36692217). Also acts as an ATP- and magnesium-dependent helicase: unwinds DNA/DNA, RNA/DNA, and RNA/RNA substrates with comparable efficiency (PubMed:9889278). Acts unidirectionally by moving in the 5' to 3' direction along the bound single-stranded DNA (PubMed:9889278). Unwinds preferentially partial DNA and RNA duplexes having a 17 bp annealed portion and either a hanging 3' tail or hanging tails at both 5'- and 3'-ends (PubMed:9889278). Plays an essential role in innate immunity by promoting CGAS and RIGI activity (PubMed:30510222, PubMed:30804210). Participates in the DNA-triggered cGAS/STING pathway by promoting the DNA binding and activation of CGAS (PubMed:30510222). Triggers the condensation of cGAS, a process probably linked to the formation of membrane-less organelles (PubMed:34779554). Also enhances RIGI-induced type I interferon production probably by helping RIGI at sensing pathogenic RNA (PubMed:30804210). May also act as a phosphorylation-dependent sequence-specific endoribonuclease in vitro: Cleaves exclusively between cytosine and adenine and cleaves MYC mRNA preferentially at the 3'-UTR (PubMed:11604510). {ECO:0000269|PubMed:11604510, ECO:0000269|PubMed:12642610, ECO:0000269|PubMed:20180778, ECO:0000269|PubMed:23279204, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:30510222, ECO:0000269|PubMed:30804210, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:32302571, ECO:0000269|PubMed:32302572, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:34779554, ECO:0000269|PubMed:35977029, ECO:0000269|PubMed:36183834, ECO:0000269|PubMed:36279435, ECO:0000269|PubMed:36692217, ECO:0000269|PubMed:37379838, ECO:0000269|PubMed:9889278}. |
Q13416 | ORC2 | S249 | ochoa | Origin recognition complex subunit 2 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}. |
Q13435 | SF3B2 | S302 | ochoa | Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q13435 | SF3B2 | S303 | ochoa | Splicing factor 3B subunit 2 (Pre-mRNA-splicing factor SF3b 145 kDa subunit) (SF3b145) (Spliceosome-associated protein 145) (SAP 145) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:12234937, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3B2 is part of the SF3B subcomplex, which is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence in pre-mRNA (PubMed:12234937, PubMed:27720643). Sequence independent binding of SF3A and SF3B subcomplexes upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA (PubMed:12234937). May also be involved in the assembly of the 'E' complex (PubMed:10882114). Also acts as a component of the minor spliceosome, which is involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077, PubMed:33509932). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:27720643, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:33509932, ECO:0000269|PubMed:34822310}. |
Q13459 | MYO9B | S2002 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13813 | SPTAN1 | S1231 | ochoa | Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) (Fodrin alpha chain) (Spectrin, non-erythroid alpha subunit) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. |
Q14103 | HNRNPD | S82 | ochoa | Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) | Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}. |
Q14147 | DHX34 | S976 | ochoa | Probable ATP-dependent RNA helicase DHX34 (EC 3.6.4.13) (DEAH box protein 34) (DExH-box helicase 34) | Probable ATP-binding RNA helicase required for nonsense-mediated decay (NMD) degradation of mRNA transcripts containing premature stop codons (PubMed:25220460, PubMed:33205750). Promotes the phosphorylation of UPF1 along with its interaction with key NMD pathway proteins UPF2 and EIF4A3 (PubMed:25220460). Interaction with the RUVBL1-RUVBL2 complex results in loss of nucleotide binding ability and ATP hydrolysis of the complex (PubMed:33205750). Negatively regulates the nucleotide binding ability and ATP hydrolysis of the RUVBL1-RUVBL2 complex via induction of N-terminus conformation changes of the RUVBL2 subunits (PubMed:33205750). {ECO:0000269|PubMed:25220460, ECO:0000269|PubMed:33205750}. |
Q14152 | EIF3A | S881 | ochoa | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q14165 | MLEC | Y239 | ochoa | Malectin | Carbohydrate-binding protein with a strong ligand preference for Glc2-N-glycan. May play a role in the early steps of protein N-glycosylation (By similarity). {ECO:0000250}. |
Q14181 | POLA2 | T114 | ochoa | DNA polymerase alpha subunit B (DNA polymerase alpha 70 kDa subunit) | Accessory subunit of the DNA polymerase alpha complex (also known as the alpha DNA polymerase-primase complex) which plays an essential role in the initiation of DNA synthesis (PubMed:9705292). During the S phase of the cell cycle, the DNA polymerase alpha complex (composed of a catalytic subunit POLA1, an accessory subunit POLA2 and two primase subunits, the catalytic subunit PRIM1 and the regulatory subunit PRIM2) is recruited to DNA at the replicative forks via direct interactions with MCM10 and WDHD1 (By similarity). The primase subunit of the polymerase alpha complex initiates DNA synthesis by oligomerising short RNA primers on both leading and lagging strands (By similarity). These primers are initially extended by the polymerase alpha catalytic subunit and subsequently transferred to polymerase delta and polymerase epsilon for processive synthesis on the lagging and leading strand, respectively (By similarity). {ECO:0000250|UniProtKB:P09884, ECO:0000250|UniProtKB:P20664, ECO:0000269|PubMed:9705292}. |
Q14315 | FLNC | S2461 | ochoa | Filamin-C (FLN-C) (FLNc) (ABP-280-like protein) (ABP-L) (Actin-binding-like protein) (Filamin-2) (Gamma-filamin) | Muscle-specific filamin, which plays a central role in sarcomere assembly and organization (PubMed:34405687). Critical for normal myogenesis, it probably functions as a large actin-cross-linking protein with structural functions at the Z lines in muscle cells. May be involved in reorganizing the actin cytoskeleton in response to signaling events (By similarity). {ECO:0000250|UniProtKB:Q8VHX6, ECO:0000269|PubMed:34405687}. |
Q14676 | MDC1 | S20 | psp | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14683 | SMC1A | S358 | ochoa|psp | Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) | Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}. |
Q14683 | SMC1A | S360 | ochoa|psp | Structural maintenance of chromosomes protein 1A (SMC protein 1A) (SMC-1-alpha) (SMC-1A) (Sb1.8) | Involved in chromosome cohesion during cell cycle and in DNA repair. Central component of cohesin complex. The cohesin complex is required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. Involved in DNA repair via its interaction with BRCA1 and its related phosphorylation by ATM, or via its phosphorylation by ATR. Works as a downstream effector both in the ATM/NBS1 branch and in the ATR/MSH2 branch of S-phase checkpoint. {ECO:0000269|PubMed:11877377}. |
Q14789 | GOLGB1 | S3135 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q14940 | SLC9A5 | S709 | psp | Sodium/hydrogen exchanger 5 (Na(+)/H(+) exchanger 5) (NHE-5) (Solute carrier family 9 member 5) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, thus regulating intracellular pH homeostasis, in particular in neural tissues (PubMed:10692428, PubMed:19276089, PubMed:24936055, PubMed:9933641). Acts as a negative regulator of dendritic spine growth (PubMed:21551074). Plays a role in postsynaptic remodeling and signaling (PubMed:21551074, PubMed:24006492). Can also contribute to organellar pH regulation, with consequences for receptor tyrosine kinase trafficking (PubMed:24936055). {ECO:0000269|PubMed:10692428, ECO:0000269|PubMed:19276089, ECO:0000269|PubMed:21551074, ECO:0000269|PubMed:24006492, ECO:0000269|PubMed:24936055, ECO:0000269|PubMed:9933641}. |
Q14940 | SLC9A5 | S711 | psp | Sodium/hydrogen exchanger 5 (Na(+)/H(+) exchanger 5) (NHE-5) (Solute carrier family 9 member 5) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, thus regulating intracellular pH homeostasis, in particular in neural tissues (PubMed:10692428, PubMed:19276089, PubMed:24936055, PubMed:9933641). Acts as a negative regulator of dendritic spine growth (PubMed:21551074). Plays a role in postsynaptic remodeling and signaling (PubMed:21551074, PubMed:24006492). Can also contribute to organellar pH regulation, with consequences for receptor tyrosine kinase trafficking (PubMed:24936055). {ECO:0000269|PubMed:10692428, ECO:0000269|PubMed:19276089, ECO:0000269|PubMed:21551074, ECO:0000269|PubMed:24006492, ECO:0000269|PubMed:24936055, ECO:0000269|PubMed:9933641}. |
Q14940 | SLC9A5 | S712 | psp | Sodium/hydrogen exchanger 5 (Na(+)/H(+) exchanger 5) (NHE-5) (Solute carrier family 9 member 5) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, thus regulating intracellular pH homeostasis, in particular in neural tissues (PubMed:10692428, PubMed:19276089, PubMed:24936055, PubMed:9933641). Acts as a negative regulator of dendritic spine growth (PubMed:21551074). Plays a role in postsynaptic remodeling and signaling (PubMed:21551074, PubMed:24006492). Can also contribute to organellar pH regulation, with consequences for receptor tyrosine kinase trafficking (PubMed:24936055). {ECO:0000269|PubMed:10692428, ECO:0000269|PubMed:19276089, ECO:0000269|PubMed:21551074, ECO:0000269|PubMed:24006492, ECO:0000269|PubMed:24936055, ECO:0000269|PubMed:9933641}. |
Q14940 | SLC9A5 | T714 | psp | Sodium/hydrogen exchanger 5 (Na(+)/H(+) exchanger 5) (NHE-5) (Solute carrier family 9 member 5) | Plasma membrane Na(+)/H(+) antiporter. Mediates the electroneutral exchange of intracellular H(+) ions for extracellular Na(+) in 1:1 stoichiometry, thus regulating intracellular pH homeostasis, in particular in neural tissues (PubMed:10692428, PubMed:19276089, PubMed:24936055, PubMed:9933641). Acts as a negative regulator of dendritic spine growth (PubMed:21551074). Plays a role in postsynaptic remodeling and signaling (PubMed:21551074, PubMed:24006492). Can also contribute to organellar pH regulation, with consequences for receptor tyrosine kinase trafficking (PubMed:24936055). {ECO:0000269|PubMed:10692428, ECO:0000269|PubMed:19276089, ECO:0000269|PubMed:21551074, ECO:0000269|PubMed:24006492, ECO:0000269|PubMed:24936055, ECO:0000269|PubMed:9933641}. |
Q14966 | ZNF638 | S1641 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q149N8 | SHPRH | S266 | ochoa | E3 ubiquitin-protein ligase SHPRH (EC 2.3.2.27) (EC 3.6.4.-) (RING-type E3 ubiquitin transferase SHPRH) (SNF2, histone-linker, PHD and RING finger domain-containing helicase) | E3 ubiquitin-protein ligase involved in DNA repair. Upon genotoxic stress, accepts ubiquitin from the UBE2N-UBE2V2 E2 complex and transfers it to 'Lys-164' of PCNA which had been monoubiquitinated by UBE2A/B-RAD18, promoting the formation of non-canonical poly-ubiquitin chains linked through 'Lys-63'. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:17130289, ECO:0000269|PubMed:18719106}. |
Q14D04 | VEPH1 | S476 | ochoa | Ventricular zone-expressed PH domain-containing protein homolog 1 (Protein melted) | Interacts with TGF-beta receptor type-1 (TGFBR1) and inhibits dissociation of activated SMAD2 from TGFBR1, impeding its nuclear accumulation and resulting in impaired TGF-beta signaling. May also affect FOXO, Hippo and Wnt signaling. {ECO:0000269|PubMed:26039994}. |
Q15052 | ARHGEF6 | S649 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15054 | POLD3 | S423 | ochoa | DNA polymerase delta subunit 3 (DNA polymerase delta subunit C) (DNA polymerase delta subunit p66) (DNA polymerase delta subunit p68) | Accessory component of both the DNA polymerase delta complex and the DNA polymerase zeta complex (PubMed:17317665, PubMed:22801543, PubMed:24449906). As a component of the trimeric and tetrameric DNA polymerase delta complexes (Pol-delta3 and Pol-delta4, respectively), plays a role in high fidelity genome replication, including in lagging strand synthesis, and repair. Required for optimal Pol-delta activity. Stabilizes the Pol-delta complex and plays a major role in Pol-delta stimulation by PCNA (PubMed:10219083, PubMed:10852724, PubMed:11595739, PubMed:16510448, PubMed:24035200). Pol-delta3 and Pol-delta4 are characterized by the absence or the presence of POLD4. They exhibit differences in catalytic activity. Most notably, Pol-delta3 shows higher proofreading activity than Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may also be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation. In this context, POLD3, along with PCNA and RFC1-replication factor C complex, is required to recruit POLD1, the catalytic subunit of the polymerase delta complex, to DNA damage sites (PubMed:20227374). Under conditions of DNA replication stress, required for the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine or abasic sites performed by Pol-delta4, independently of DNA polymerase zeta (REV3L) or eta (POLH). Facilitates abasic site bypass by DNA polymerase delta by promoting extension from the nucleotide inserted opposite the lesion (PubMed:19074196, PubMed:25628356, PubMed:27185888). Also involved in TLS, as a component of the tetrameric DNA polymerase zeta complex. Along with POLD2, dramatically increases the efficiency and processivity of DNA synthesis of the DNA polymerase zeta complex compared to the minimal zeta complex, consisting of only REV3L and REV7 (PubMed:24449906). {ECO:0000269|PubMed:10219083, ECO:0000269|PubMed:10852724, ECO:0000269|PubMed:11595739, ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:25628356, ECO:0000269|PubMed:27185888, ECO:0000269|PubMed:38099988}. |
Q15058 | KIF14 | S346 | ochoa | Kinesin-like protein KIF14 | Microtubule motor protein that binds to microtubules with high affinity through each tubulin heterodimer and has an ATPase activity (By similarity). Plays a role in many processes like cell division, cytokinesis and also in cell proliferation and apoptosis (PubMed:16648480, PubMed:24784001). During cytokinesis, targets to central spindle and midbody through its interaction with PRC1 and CIT respectively (PubMed:16431929). Regulates cell growth through regulation of cell cycle progression and cytokinesis (PubMed:24854087). During cell cycle progression acts through SCF-dependent proteasomal ubiquitin-dependent protein catabolic process which controls CDKN1B degradation, resulting in positive regulation of cyclins, including CCNE1, CCND1 and CCNB1 (PubMed:24854087). During late neurogenesis, regulates the cerebellar, cerebral cortex and olfactory bulb development through regulation of apoptosis, cell proliferation and cell division (By similarity). Also is required for chromosome congression and alignment during mitotic cell cycle process (PubMed:15843429). Regulates cell spreading, focal adhesion dynamics, and cell migration through its interaction with RADIL resulting in regulation of RAP1A-mediated inside-out integrin activation by tethering RADIL on microtubules (PubMed:23209302). {ECO:0000250|UniProtKB:L0N7N1, ECO:0000269|PubMed:15843429, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:16648480, ECO:0000269|PubMed:23209302, ECO:0000269|PubMed:24784001, ECO:0000269|PubMed:24854087}. |
Q15276 | RABEP1 | S492 | ochoa | Rab GTPase-binding effector protein 1 (Rabaptin-4) (Rabaptin-5) (Rabaptin-5alpha) (Renal carcinoma antigen NY-REN-17) | Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. Involved in endocytic membrane fusion and membrane trafficking of recycling endosomes. Involved in KCNH1 channels trafficking to and from the cell membrane (PubMed:22841712). Stimulates RABGEF1 mediated nucleotide exchange on RAB5A. Mediates the traffic of PKD1:PKD2 complex from the endoplasmic reticulum through the Golgi to the cilium (By similarity). {ECO:0000250|UniProtKB:O35551, ECO:0000269|PubMed:10698684, ECO:0000269|PubMed:11452015, ECO:0000269|PubMed:12773381, ECO:0000269|PubMed:22841712, ECO:0000269|PubMed:8521472}. |
Q15326 | ZMYND11 | S380 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15326 | ZMYND11 | S381 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15326 | ZMYND11 | S421 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15398 | DLGAP5 | S787 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15459 | SF3A1 | S329 | ochoa | Splicing factor 3A subunit 1 (SF3a120) (Spliceosome-associated protein 114) (SAP 114) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006). Within the 17S U2 SnRNP complex, SF3A1 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006}. |
Q15633 | TARBP2 | S246 | ochoa | RISC-loading complex subunit TARBP2 (TAR RNA-binding protein 2) (Trans-activation-responsive RNA-binding protein) | Required for formation of the RNA induced silencing complex (RISC). Component of the RISC loading complex (RLC), also known as the micro-RNA (miRNA) loading complex (miRLC), which is composed of DICER1, AGO2 and TARBP2. Within the RLC/miRLC, DICER1 and TARBP2 are required to process precursor miRNAs (pre-miRNAs) to mature miRNAs and then load them onto AGO2. AGO2 bound to the mature miRNA constitutes the minimal RISC and may subsequently dissociate from DICER1 and TARBP2. May also play a role in the production of short interfering RNAs (siRNAs) from double-stranded RNA (dsRNA) by DICER1 (By similarity) (PubMed:15973356, PubMed:16142218, PubMed:16271387, PubMed:16357216, PubMed:16424907, PubMed:17452327, PubMed:18178619). Binds in vitro to the PRM1 3'-UTR (By similarity). Seems to act as a repressor of translation (By similarity). For some pre-miRNA substrates, may also alter the choice of cleavage site by DICER1 (PubMed:23063653). Negatively regulates IRF7-mediated IFN-beta signaling triggered by viral infection by inhibiting the phosphorylation of IRF7 and promoting its 'Lys'-48-linked ubiquitination and degradation (PubMed:30927622). {ECO:0000250|UniProtKB:P97473, ECO:0000255|HAMAP-Rule:MF_03034, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619, ECO:0000269|PubMed:23063653, ECO:0000269|PubMed:30927622}.; FUNCTION: (Microbial infection) Binds to the HIV-1 TAR RNA which is located in the long terminal repeat (LTR) of HIV-1, and stimulates translation of TAR-containing RNAs (PubMed:11438532, PubMed:12475984, PubMed:2011739). This is achieved in part at least by binding to and inhibiting EIF2AK2/PKR, thereby reducing phosphorylation and inhibition of EIF2S1/eIF-2-alpha (PubMed:11438532). May also promote translation of TAR-containing RNAs independently of EIF2AK2/PKR (PubMed:12475984). Mediates recruitment of FTSJ3 methyltransferase to HIV-1 RNA, leading to 2'-O-methylation of the viral genome, allowing HIV-1 to escape the innate immune system (PubMed:30626973). {ECO:0000269|PubMed:11438532, ECO:0000269|PubMed:12475984, ECO:0000269|PubMed:2011739, ECO:0000269|PubMed:30626973}. |
Q15648 | MED1 | S887 | psp | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15717 | ELAVL1 | S304 | psp | ELAV-like protein 1 (Hu-antigen R) (HuR) | RNA-binding protein that binds to the 3'-UTR region of mRNAs and increases their stability (PubMed:14517288, PubMed:18285462, PubMed:31358969). Involved in embryonic stem cell (ESC) differentiation: preferentially binds mRNAs that are not methylated by N6-methyladenosine (m6A), stabilizing them, promoting ESC differentiation (By similarity). Has also been shown to be capable of binding to m6A-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398, PubMed:17632515, PubMed:18285462, PubMed:23519412, PubMed:8626503). Binds avidly to the AU-rich element in FOS and IL3/interleukin-3 mRNAs. In the case of the FOS AU-rich element, binds to a core element of 27 nucleotides that contain AUUUA, AUUUUA, and AUUUUUA motifs. Binds preferentially to the 5'-UUUU[AG]UUU-3' motif in vitro (PubMed:8626503). With ZNF385A, binds the 3'-UTR of p53/TP53 mRNA to control their nuclear export induced by CDKN2A. Hence, may regulate p53/TP53 expression and mediate in part the CDKN2A anti-proliferative activity. May also bind with ZNF385A the CCNB1 mRNA (By similarity). Increases the stability of the leptin mRNA harboring an AU-rich element (ARE) in its 3' UTR (PubMed:29180010). {ECO:0000250|UniProtKB:P70372, ECO:0000269|PubMed:14517288, ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:17632515, ECO:0000269|PubMed:18285462, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23519412, ECO:0000269|PubMed:29180010, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:32245947, ECO:0000269|PubMed:8626503}. |
Q15910 | EZH2 | S406 | ochoa | Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) | Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}. |
Q16643 | DBN1 | S272 | ochoa | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q1KMD3 | HNRNPUL2 | S161 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) | None |
Q1KMD3 | HNRNPUL2 | S185 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) | None |
Q29RF7 | PDS5A | S1206 | ochoa | Sister chromatid cohesion protein PDS5 homolog A (Cell proliferation-inducing gene 54 protein) (Sister chromatid cohesion protein 112) (SCC-112) | Probable regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19907496}. |
Q2NKX8 | ERCC6L | S1135 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q2TAZ0 | ATG2A | S765 | ochoa | Autophagy-related protein 2 homolog A | Lipid transfer protein involved in autophagosome assembly (PubMed:28561066, PubMed:30952800, PubMed:31271352). Tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum (ER) and mediates direct lipid transfer from ER to IM for IM expansion (PubMed:30952800, PubMed:31271352). Binds to the ER exit site (ERES), which is the membrane source for autophagosome formation, and extracts phospholipids from the membrane source and transfers them to ATG9 (ATG9A or ATG9B) to the IM for membrane expansion (PubMed:30952800, PubMed:31271352). Lipid transfer activity is enhanced by WIPI1 and WDR45/WIPI4, which promote ATG2A-association with phosphatidylinositol 3-monophosphate (PI3P)-containing membranes (PubMed:31271352). Also regulates lipid droplets morphology and distribution within the cell (PubMed:22219374, PubMed:28561066). {ECO:0000269|PubMed:22219374, ECO:0000269|PubMed:28561066, ECO:0000269|PubMed:30952800, ECO:0000269|PubMed:31271352}. |
Q4G0N8 | SLC9C1 | S214 | ochoa | Solute carrier family 9 member C1 (Na(+)/H(+) exchanger 10) (NHE-10) (Sodium/hydrogen exchanger 10) (Solute carrier family 9 member 10) (Sperm-specific Na(+)/H(+) exchanger) (sNHE) | Sperm-specific solute carrier involved in intracellular pH regulation of spermatozoa. Required for sperm motility and fertility. Involved in sperm cell hyperactivation, a step needed for sperm motility which is essential late in the preparation of sperm for fertilization. Required for the expression and bicarbonate regulation of the soluble adenylyl cyclase (sAC) (By similarity). {ECO:0000250|UniProtKB:Q6UJY2}. |
Q53QZ3 | ARHGAP15 | S343 | ochoa | Rho GTPase-activating protein 15 (ArhGAP15) (Rho-type GTPase-activating protein 15) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has activity toward RAC1. Overexpression results in an increase in actin stress fibers and cell contraction. {ECO:0000269|PubMed:12650940}. |
Q53S48 | STON1-GTF2A1L | S1028 | ochoa | Stonin-1 (Stoned B-like factor) | May be involved in the endocytic machinery. {ECO:0000256|ARBA:ARBA00059680}. |
Q562F6 | SGO2 | S509 | ochoa | Shugoshin 2 (Shugoshin-2) (Shugoshin-like 2) (Tripin) | Cooperates with PPP2CA to protect centromeric cohesin from separase-mediated cleavage in oocytes specifically during meiosis I. Has a crucial role in protecting REC8 at centromeres from cleavage by separase. During meiosis, protects centromeric cohesion complexes until metaphase II/anaphase II transition, preventing premature release of meiosis-specific REC8 cohesin complexes from anaphase I centromeres. Is thus essential for an accurate gametogenesis. May act by targeting PPP2CA to centromeres, thus leading to cohesin dephosphorylation (By similarity). Essential for recruiting KIF2C to the inner centromere and for correcting defective kinetochore attachments. Involved in centromeric enrichment of AUKRB in prometaphase. {ECO:0000250, ECO:0000269|PubMed:16541025, ECO:0000269|PubMed:17485487, ECO:0000269|PubMed:20739936}. |
Q5C9Z4 | NOM1 | S320 | ochoa | Nucleolar MIF4G domain-containing protein 1 (SGD1 homolog) | Plays a role in targeting PPP1CA to the nucleolus. {ECO:0000269|PubMed:17965019}. |
Q5F1R6 | DNAJC21 | S436 | ochoa | DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) | May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}. |
Q5JTD0 | TJAP1 | S491 | ochoa | Tight junction-associated protein 1 (Protein incorporated later into tight junctions) (Tight junction protein 4) | Plays a role in regulating the structure of the Golgi apparatus. {ECO:0000250|UniProtKB:Q9DCD5}. |
Q5JTH9 | RRP12 | S1092 | ochoa | RRP12-like protein | None |
Q5JTV8 | TOR1AIP1 | S227 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5JTV8 | TOR1AIP1 | S228 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5QJE6 | DNTTIP2 | S145 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5SSJ5 | HP1BP3 | S70 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5SW79 | CEP170 | S359 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SXM2 | SNAPC4 | S68 | ochoa | snRNA-activating protein complex subunit 4 (SNAPc subunit 4) (Proximal sequence element-binding transcription factor subunit alpha) (PSE-binding factor subunit alpha) (PTF subunit alpha) (snRNA-activating protein complex 190 kDa subunit) (SNAPc 190 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023, ECO:0000269|PubMed:9418884}. |
Q5T0W9 | FAM83B | S729 | ochoa | Protein FAM83B | Probable proto-oncogene that functions in the epidermal growth factor receptor/EGFR signaling pathway. Activates both the EGFR itself and downstream RAS/MAPK and PI3K/AKT/TOR signaling cascades. {ECO:0000269|PubMed:22886302, ECO:0000269|PubMed:23676467, ECO:0000269|PubMed:23912460}. |
Q5T1M5 | FKBP15 | S1195 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T1R4 | HIVEP3 | S732 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T200 | ZC3H13 | S1404 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T4S7 | UBR4 | S1647 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T4S7 | UBR4 | S1652 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5T5Y3 | CAMSAP1 | S1232 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T8P6 | RBM26 | S589 | ochoa | RNA-binding protein 26 (CTCL tumor antigen se70-2) (RNA-binding motif protein 26) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q5UIP0 | RIF1 | S1454 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1844 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1893 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5UIP0 | RIF1 | S1952 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VSL9 | STRIP1 | S390 | ochoa | Striatin-interacting protein 1 (Protein FAM40A) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics and cell shape. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation. {ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:33633399}. |
Q5VT25 | CDC42BPA | S855 | ochoa | Serine/threonine-protein kinase MRCK alpha (EC 2.7.11.1) (CDC42-binding protein kinase alpha) (DMPK-like alpha) (Myotonic dystrophy kinase-related CDC42-binding kinase alpha) (MRCK alpha) (Myotonic dystrophy protein kinase-like alpha) | Serine/threonine-protein kinase which is an important downstream effector of CDC42 and plays a role in the regulation of cytoskeleton reorganization and cell migration (PubMed:15723050, PubMed:9092543, PubMed:9418861). Regulates actin cytoskeletal reorganization via phosphorylation of PPP1R12C and MYL9/MLC2 (PubMed:21457715). In concert with MYO18A and LURAP1, is involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). Phosphorylates: PPP1R12A, LIMK1 and LIMK2 (PubMed:11340065, PubMed:11399775). May play a role in TFRC-mediated iron uptake (PubMed:20188707). In concert with FAM89B/LRAP25 mediates the targeting of LIMK1 to the lamellipodium resulting in its activation and subsequent phosphorylation of CFL1 which is important for lamellipodial F-actin regulation (By similarity). Triggers the formation of an extrusion apical actin ring required for epithelial extrusion of apoptotic cells (PubMed:29162624). {ECO:0000250|UniProtKB:Q3UU96, ECO:0000269|PubMed:11340065, ECO:0000269|PubMed:11399775, ECO:0000269|PubMed:15723050, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:20188707, ECO:0000269|PubMed:21457715, ECO:0000269|PubMed:29162624, ECO:0000269|PubMed:9092543, ECO:0000269|PubMed:9418861}. |
Q5VYS8 | TUT7 | S718 | ochoa | Terminal uridylyltransferase 7 (TUTase 7) (EC 2.7.7.52) (Zinc finger CCHC domain-containing protein 6) | Uridylyltransferase that mediates the terminal uridylation of mRNAs with short (less than 25 nucleotides) poly(A) tails, hence facilitating global mRNA decay (PubMed:19703396, PubMed:25480299). Essential for both oocyte maturation and fertility. Through 3' terminal uridylation of mRNA, sculpts, with TUT7, the maternal transcriptome by eliminating transcripts during oocyte growth (By similarity). Involved in microRNA (miRNA)-induced gene silencing through uridylation of deadenylated miRNA targets (PubMed:25480299). Also functions as an integral regulator of microRNA biogenesiS using 3 different uridylation mechanisms (PubMed:25979828). Acts as a suppressor of miRNA biogenesis by mediating the terminal uridylation of some miRNA precursors, including that of let-7 (pre-let-7). Uridylated pre-let-7 RNA is not processed by Dicer and undergo degradation. Pre-let-7 uridylation is strongly enhanced in the presence of LIN28A (PubMed:22898984). In the absence of LIN28A, TUT7 and TUT4 monouridylate group II pre-miRNAs, which includes most of pre-let7 members, that shapes an optimal 3' end overhang for efficient processing (PubMed:25979828, PubMed:28671666). Add oligo-U tails to truncated pre-miRNAS with a 5' overhang which may promote rapid degradation of non-functional pre-miRNA species (PubMed:25979828). Does not play a role in replication-dependent histone mRNA degradation (PubMed:18172165). Due to functional redundancy between TUT4 and TUT7, the identification of the specific role of each of these proteins is difficult (PubMed:18172165, PubMed:19703396, PubMed:22898984, PubMed:25480299, PubMed:25979828, PubMed:28671666). TUT4 and TUT7 restrict retrotransposition of long interspersed element-1 (LINE-1) in cooperation with MOV10 counteracting the RNA chaperonne activity of L1RE1. TUT7 uridylates LINE-1 mRNAs in the cytoplasm which inhibits initiation of reverse transcription once in the nucleus, whereas uridylation by TUT4 destabilizes mRNAs in cytoplasmic ribonucleoprotein granules (PubMed:30122351). {ECO:0000250|UniProtKB:Q5BLK4, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:19703396, ECO:0000269|PubMed:22898984, ECO:0000269|PubMed:25480299, ECO:0000269|PubMed:25979828, ECO:0000269|PubMed:28671666, ECO:0000269|PubMed:30122351}. |
Q5W0B1 | OBI1 | S119 | ochoa | ORC ubiquitin ligase 1 (OBI1) (EC 2.3.2.27) (RING finger protein 219) | E3 ubiquitin ligase essential for DNA replication origin activation during S phase (PubMed:31160578). Acts as a replication origin selector which selects the origins to be fired and catalyzes the multi-mono-ubiquitination of a subset of chromatin-bound ORC3 and ORC5 during S-phase (PubMed:31160578). {ECO:0000269|PubMed:31160578}. |
Q63HN8 | RNF213 | S3494 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q641Q2 | WASHC2A | S230 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q641Q2 | WASHC2A | S549 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q68DQ2 | CRYBG3 | S39 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q68EM7 | ARHGAP17 | S497 | ochoa | Rho GTPase-activating protein 17 (Rho-type GTPase-activating protein 17) (RhoGAP interacting with CIP4 homologs protein 1) (RICH-1) | Rho GTPase-activating protein involved in the maintenance of tight junction by regulating the activity of CDC42, thereby playing a central role in apical polarity of epithelial cells. Specifically acts as a GTPase activator for the CDC42 GTPase by converting it to an inactive GDP-bound state. The complex formed with AMOT acts by regulating the uptake of polarity proteins at tight junctions, possibly by deciding whether tight junction transmembrane proteins are recycled back to the plasma membrane or sent elsewhere. Participates in the Ca(2+)-dependent regulation of exocytosis, possibly by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments. Acts as a GTPase activator in vitro for RAC1. {ECO:0000269|PubMed:11431473, ECO:0000269|PubMed:16678097}. |
Q6IN85 | PPP4R3A | S126 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6IN85 | PPP4R3A | S127 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6JBY9 | RCSD1 | S73 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6JBY9 | RCSD1 | S333 | ochoa | CapZ-interacting protein (Protein kinase substrate CapZIP) (RCSD domain-containing protein 1) | Stress-induced phosphorylation of CAPZIP may regulate the ability of F-actin-capping protein to remodel actin filament assembly. {ECO:0000269|PubMed:15850461}. |
Q6NSJ2 | PHLDB3 | S63 | ochoa | Pleckstrin homology-like domain family B member 3 | None |
Q6NSJ2 | PHLDB3 | S64 | ochoa | Pleckstrin homology-like domain family B member 3 | None |
Q6NXG1 | ESRP1 | S74 | ochoa | Epithelial splicing regulatory protein 1 (RNA-binding motif protein 35A) (RNA-binding protein 35A) | mRNA splicing factor that regulates the formation of epithelial cell-specific isoforms. Specifically regulates the expression of FGFR2-IIIb, an epithelial cell-specific isoform of FGFR2. Also regulates the splicing of CD44, CTNND1, ENAH, 3 transcripts that undergo changes in splicing during the epithelial-to-mesenchymal transition (EMT). Acts by directly binding specific sequences in mRNAs. Binds the GU-rich sequence motifs in the ISE/ISS-3, a cis-element regulatory region present in the mRNA of FGFR2 (PubMed:19285943). Regulates splicing and expression of genes involved in inner ear development, auditory hair cell differentiation, and cell fate specification in the cochlear epithelium (By similarity). {ECO:0000250|UniProtKB:Q3US41, ECO:0000269|PubMed:19285943}. |
Q6PCB5 | RSBN1L | S823 | ochoa | Lysine-specific demethylase RSBN1L (EC 1.14.11.-) (Round spermatid basic protein 1-like protein) | Lysine-specific demethylase that specifically demethylates methylated lysine residues of proteins. {ECO:0000250|UniProtKB:Q80T69}. |
Q6PKG0 | LARP1 | S1040 | ochoa | La-related protein 1 (La ribonucleoprotein domain family member 1) | RNA-binding protein that regulates the translation of specific target mRNA species downstream of the mTORC1 complex, in function of growth signals and nutrient availability (PubMed:20430826, PubMed:23711370, PubMed:24532714, PubMed:25940091, PubMed:28650797, PubMed:28673543, PubMed:29244122). Interacts on the one hand with the 3' poly-A tails that are present in all mRNA molecules, and on the other hand with the 7-methylguanosine cap structure of mRNAs containing a 5' terminal oligopyrimidine (5'TOP) motif, which is present in mRNAs encoding ribosomal proteins and several components of the translation machinery (PubMed:23711370, PubMed:25940091, PubMed:26206669, PubMed:28379136, PubMed:28650797, PubMed:29244122). The interaction with the 5' end of mRNAs containing a 5'TOP motif leads to translational repression by preventing the binding of EIF4G1 (PubMed:25940091, PubMed:28379136, PubMed:28650797, PubMed:29244122). When mTORC1 is activated, LARP1 is phosphorylated and dissociates from the 5' untranslated region (UTR) of mRNA (PubMed:25940091, PubMed:28650797). Does not prevent binding of EIF4G1 to mRNAs that lack a 5'TOP motif (PubMed:28379136). Interacts with the free 40S ribosome subunit and with ribosomes, both monosomes and polysomes (PubMed:20430826, PubMed:24532714, PubMed:25940091, PubMed:28673543). Under normal nutrient availability, interacts primarily with the 3' untranslated region (UTR) of mRNAs encoding ribosomal proteins and increases protein synthesis (PubMed:23711370, PubMed:28650797). Associates with actively translating ribosomes and stimulates translation of mRNAs containing a 5'TOP motif, thereby regulating protein synthesis, and as a consequence, cell growth and proliferation (PubMed:20430826, PubMed:24532714). Stabilizes mRNAs species with a 5'TOP motif, which is required to prevent apoptosis (PubMed:20430826, PubMed:23711370, PubMed:25940091, PubMed:28673543). {ECO:0000269|PubMed:20430826, ECO:0000269|PubMed:23711370, ECO:0000269|PubMed:24532714, ECO:0000269|PubMed:25940091, ECO:0000269|PubMed:26206669, ECO:0000269|PubMed:28379136, ECO:0000269|PubMed:28650797, ECO:0000269|PubMed:28673543, ECO:0000269|PubMed:29244122}.; FUNCTION: (Microbial infection) Positively regulates the replication of dengue virus (DENV). {ECO:0000269|PubMed:26735137}. |
Q6UN15 | FIP1L1 | S57 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6ZMS4 | ZNF852 | S145 | ochoa | Zinc finger protein 852 | May be involved in transcriptional regulation. {ECO:0000250}. |
Q6ZUJ8 | PIK3AP1 | S421 | ochoa | Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) | Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}. |
Q70CQ2 | USP34 | S2503 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q76FK4 | NOL8 | S1099 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76N32 | CEP68 | Y482 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7L0J3 | SV2A | S81 | psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7L0J3 | SV2A | S411 | psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7L590 | MCM10 | S95 | ochoa | Protein MCM10 homolog (HsMCM10) | Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}. |
Q7Z3K6 | MIER3 | S114 | ochoa | Mesoderm induction early response protein 3 (Mi-er3) | Transcriptional repressor. {ECO:0000250}. |
Q7Z401 | DENND4A | S935 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z478 | DHX29 | S251 | ochoa | ATP-dependent RNA helicase DHX29 (EC 3.6.4.13) (DEAH box protein 29) (Nucleic acid helicase DDXx) | ATP-binding RNA helicase involved in translation initiation. Part of the 43S pre-initiation complex that is required for efficient initiation on mRNAs of higher eukaryotes with structured 5'-UTRs by promoting efficient NTPase-dependent 48S complex formation. Specifically binds to the 40S ribosome near the mRNA entrance. Does not possess a processive helicase activity. {ECO:0000255|HAMAP-Rule:MF_03068, ECO:0000269|PubMed:19109895, ECO:0000269|PubMed:23706745}. |
Q7Z4H7 | HAUS6 | S550 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4V5 | HDGFL2 | S194 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z4V5 | HDGFL2 | S625 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z4V5 | HDGFL2 | S634 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z6I6 | ARHGAP30 | S865 | ochoa | Rho GTPase-activating protein 30 (Rho-type GTPase-activating protein 30) | GTPase-activating protein (GAP) for RAC1 and RHOA, but not for CDC42. {ECO:0000269|PubMed:21565175}. |
Q7Z6J6 | FRMD5 | S465 | ochoa | FERM domain-containing protein 5 | May be involved in regulation of cell migration (PubMed:22846708, PubMed:25448675). May regulate cell-matrix interactions via its interaction with ITGB5 and modifying ITGB5 cytoplasmic tail interactions such as with FERMT2 and TLN1. May regulate ROCK1 kinase activity possibly involved in regulation of actin stress fiber formation (PubMed:25448675). |
Q7Z6Z7 | HUWE1 | S2963 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z7E8 | UBE2Q1 | S217 | ochoa | Ubiquitin-conjugating enzyme E2 Q1 (EC 2.3.2.23) (E2 ubiquitin-conjugating enzyme Q1) (Protein NICE-5) (Ubiquitin carrier protein Q1) (Ubiquitin-protein ligase Q1) | Catalyzes the covalent attachment of ubiquitin to other proteins (PubMed:22496338). May be involved in hormonal homeostasis in females. Involved in regulation of B4GALT1 cell surface expression, B4GALT1-mediated cell adhesion to laminin and embryoid body formation (By similarity). {ECO:0000250|UniProtKB:Q7TSS2, ECO:0000269|PubMed:22496338}. |
Q86SK9 | SCD5 | S26 | ochoa | Stearoyl-CoA desaturase 5 (EC 1.14.19.1) (Acyl-CoA-desaturase 4) (HSCD5) (Stearoyl-CoA 9-desaturase) (Stearoyl-CoA desaturase 2) | Stearoyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA (PubMed:15610069, PubMed:15907797, PubMed:22745828). Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids (PubMed:15610069, PubMed:15907797). Involved in neuronal cell proliferation and differentiation through down-regulation of EGFR/AKT/MAPK and Wnt signaling pathways (PubMed:22745828). {ECO:0000269|PubMed:15610069, ECO:0000269|PubMed:15907797, ECO:0000269|PubMed:22745828}. |
Q86U86 | PBRM1 | S375 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86U86 | PBRM1 | S931 | ochoa | Protein polybromo-1 (hPB1) (BRG1-associated factor 180) (BAF180) (Polybromo-1D) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Required for the stability of the SWI/SNF chromatin remodeling complex SWI/SNF-B (PBAF). Acts as a negative regulator of cell proliferation. {ECO:0000269|PubMed:21248752, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q86UE4 | MTDH | S415 | ochoa | Protein LYRIC (3D3/LYRIC) (Astrocyte elevated gene-1 protein) (AEG-1) (Lysine-rich CEACAM1 co-isolated protein) (Metadherin) (Metastasis adhesion protein) | Down-regulates SLC1A2/EAAT2 promoter activity when expressed ectopically. Activates the nuclear factor kappa-B (NF-kappa-B) transcription factor. Promotes anchorage-independent growth of immortalized melanocytes and astrocytes which is a key component in tumor cell expansion. Promotes lung metastasis and also has an effect on bone and brain metastasis, possibly by enhancing the seeding of tumor cells to the target organ endothelium. Induces chemoresistance. {ECO:0000269|PubMed:15927426, ECO:0000269|PubMed:16452207, ECO:0000269|PubMed:18316612, ECO:0000269|PubMed:19111877}. |
Q86UL3 | GPAT4 | S98 | ochoa | Glycerol-3-phosphate acyltransferase 4 (EC 2.3.1.15) (1-acylglycerol-3-phosphate O-acyltransferase 6) (1-AGP acyltransferase 6) (1-AGPAT 6) (Acyl-CoA:glycerol-3-phosphate acyltransferase 4) (Lysophosphatidic acid acyltransferase zeta) (LPAAT-zeta) (Testis spermatogenesis apoptosis-related protein 7) (TSARG7) | Converts glycerol-3-phosphate to 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) by incorporating an acyl moiety at the sn-1 position of the glycerol backbone (PubMed:18238778). Active against both saturated and unsaturated long-chain fatty acyl-CoAs (PubMed:18238778). Protects cells against lipotoxicity (PubMed:30846318). {ECO:0000269|PubMed:18238778, ECO:0000269|PubMed:30846318}. |
Q86UU1 | PHLDB1 | S692 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86UU1 | PHLDB1 | S693 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86VM9 | ZC3H18 | S59 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86VR2 | RETREG3 | S373 | ochoa | Reticulophagy regulator 3 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Promotes ER membrane curvature and ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes (PubMed:33826365). Required for collagen quality control in a LIR motif-dependent manner (By similarity). Mediates NRF1-enhanced neurite outgrowth (PubMed:26040720). {ECO:0000250|UniProtKB:Q9CQV4, ECO:0000269|PubMed:26040720, ECO:0000269|PubMed:33826365, ECO:0000269|PubMed:34338405}. |
Q86WP2 | GPBP1 | S322 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86WV1 | SKAP1 | Y232 | psp | Src kinase-associated phosphoprotein 1 (Src family-associated phosphoprotein 1) (Src kinase-associated phosphoprotein of 55 kDa) (SKAP-55) (pp55) | Positively regulates T-cell receptor signaling by enhancing the MAP kinase pathway. Required for optimal conjugation between T-cells and antigen-presenting cells by promoting the clustering of integrin ITGAL on the surface of T-cells. May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells. {ECO:0000269|PubMed:10856234, ECO:0000269|PubMed:11909961, ECO:0000269|PubMed:12652296, ECO:0000269|PubMed:15939789, ECO:0000269|PubMed:16980616}. |
Q86WV1 | SKAP1 | Y271 | ochoa|psp | Src kinase-associated phosphoprotein 1 (Src family-associated phosphoprotein 1) (Src kinase-associated phosphoprotein of 55 kDa) (SKAP-55) (pp55) | Positively regulates T-cell receptor signaling by enhancing the MAP kinase pathway. Required for optimal conjugation between T-cells and antigen-presenting cells by promoting the clustering of integrin ITGAL on the surface of T-cells. May be involved in high affinity immunoglobulin epsilon receptor signaling in mast cells. {ECO:0000269|PubMed:10856234, ECO:0000269|PubMed:11909961, ECO:0000269|PubMed:12652296, ECO:0000269|PubMed:15939789, ECO:0000269|PubMed:16980616}. |
Q86XP3 | DDX42 | Y183 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q86XP3 | DDX42 | S185 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q86YV5 | PRAG1 | S651 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q86YW9 | MED12L | S1741 | ochoa | Mediator of RNA polymerase II transcription subunit 12-like protein (Mediator complex subunit 12-like protein) (Thyroid hormone receptor-associated-like protein) (Trinucleotide repeat-containing gene 11 protein-like) | May be a component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (By similarity). {ECO:0000250}. |
Q86YW9 | MED12L | S1744 | ochoa | Mediator of RNA polymerase II transcription subunit 12-like protein (Mediator complex subunit 12-like protein) (Thyroid hormone receptor-associated-like protein) (Trinucleotide repeat-containing gene 11 protein-like) | May be a component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (By similarity). {ECO:0000250}. |
Q8IVF2 | AHNAK2 | S375 | ochoa | Protein AHNAK2 | None |
Q8IWA0 | WDR75 | S782 | ochoa | WD repeat-containing protein 75 (U3 small nucleolar RNA-associated protein 17 homolog) | Ribosome biogenesis factor. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I. {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q8IWU2 | LMTK2 | S899 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IWV8 | UBR2 | S1022 | ochoa | E3 ubiquitin-protein ligase UBR2 (EC 2.3.2.27) (N-recognin-2) (Ubiquitin-protein ligase E3-alpha-2) (Ubiquitin-protein ligase E3-alpha-II) | E3 ubiquitin-protein ligase which is a component of the N-end rule pathway (PubMed:15548684, PubMed:20835242, PubMed:28392261). Recognizes and binds to proteins bearing specific N-terminal residues (N-degrons) that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation (PubMed:20835242, PubMed:28392261). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:20835242, PubMed:28392261). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:20835242). In contrast, it strongly binds methylated N-degrons (PubMed:28392261). Plays a critical role in chromatin inactivation and chromosome-wide transcriptional silencing during meiosis via ubiquitination of histone H2A (By similarity). Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth (PubMed:20298436). Required for spermatogenesis, promotes, with Tex19.1, SPO11-dependent recombination foci to accumulate and drive robust homologous chromosome synapsis (By similarity). Polyubiquitinates LINE-1 retrotransposon encoded, LIRE1, which induces degradation, inhibiting LINE-1 retrotransposon mobilization (By similarity). Catalyzes ubiquitination and degradation of the N-terminal part of NLRP1 following NLRP1 activation by pathogens and other damage-associated signals: ubiquitination promotes degradation of the N-terminal part and subsequent release of the cleaved C-terminal part of NLRP1, which polymerizes and forms the NLRP1 inflammasome followed by host cell pyroptosis (By similarity). Plays a role in T-cell receptor signaling by inducing 'Lys-63'-linked ubiquitination of lymphocyte cell-specific kinase LCK (PubMed:38225265). This activity is regulated by DUSP22, which induces 'Lys-48'-linked ubiquitination of UBR2, leading to its proteasomal degradation by SCF E3 ubiquitin-protein ligase complex (PubMed:38225265). {ECO:0000250|UniProtKB:Q6WKZ8, ECO:0000269|PubMed:15548684, ECO:0000269|PubMed:20298436, ECO:0000269|PubMed:20835242, ECO:0000269|PubMed:28392261, ECO:0000269|PubMed:38225265}. |
Q8IX07 | ZFPM1 | S87 | ochoa | Zinc finger protein ZFPM1 (Friend of GATA protein 1) (FOG-1) (Friend of GATA 1) (Zinc finger protein 89A) (Zinc finger protein multitype 1) | Transcription regulator that plays an essential role in erythroid and megakaryocytic cell differentiation. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA1, GATA2 and GATA3. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. The heterodimer formed with GATA proteins is essential to activate expression of genes such as NFE2, ITGA2B, alpha- and beta-globin, while it represses expression of KLF1. May be involved in regulation of some genes in gonads. May also be involved in cardiac development, in a non-redundant way with ZFPM2/FOG2 (By similarity). {ECO:0000250}. |
Q8IX12 | CCAR1 | S994 | ochoa | Cell division cycle and apoptosis regulator protein 1 (Cell cycle and apoptosis regulatory protein 1) (CARP-1) (Death inducer with SAP domain) | Associates with components of the Mediator and p160 coactivator complexes that play a role as intermediaries transducing regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Recruited to endogenous nuclear receptor target genes in response to the appropriate hormone. Also functions as a p53 coactivator. May thus play an important role in transcriptional regulation (By similarity). May be involved in apoptosis signaling in the presence of the reinoid CD437. Apoptosis induction involves sequestration of 14-3-3 protein(s) and mediated altered expression of multiple cell cycle regulatory genes including MYC, CCNB1 and CDKN1A. Plays a role in cell cycle progression and/or cell proliferation (PubMed:12816952). In association with CALCOCO1 enhances GATA1- and MED1-mediated transcriptional activation from the gamma-globin promoter during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). Can act as a both a coactivator and corepressor of AR-mediated transcription. Contributes to chromatin looping and AR transcription complex assembly by stabilizing AR-GATA2 association on chromatin and facilitating MED1 and RNA polymerase II recruitment to AR-binding sites. May play an important role in the growth and tumorigenesis of prostate cancer cells (PubMed:23887938). {ECO:0000250|UniProtKB:Q8CH18, ECO:0000269|PubMed:12816952, ECO:0000269|PubMed:23887938, ECO:0000269|PubMed:24245781}. |
Q8IXW5 | RPAP2 | S483 | ochoa | Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2 (EC 3.1.3.16) (RNA polymerase II-associated protein 2) | Protein phosphatase that displays CTD phosphatase activity and regulates transcription of snRNA genes. Recognizes and binds phosphorylated 'Ser-7' of the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and mediates dephosphorylation of 'Ser-5' of the CTD, thereby promoting transcription of snRNA genes (PubMed:17643375, PubMed:22137580, PubMed:24997600). Downstream of EIF2AK3/PERK, dephosphorylates ERN1, a sensor for the endoplasmic reticulum unfolded protein response (UPR), to abort failed ER-stress adaptation and trigger apoptosis (PubMed:30118681). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:22137580, ECO:0000269|PubMed:24997600, ECO:0000269|PubMed:30118681}. |
Q8IY81 | FTSJ3 | T371 | ochoa | pre-rRNA 2'-O-ribose RNA methyltransferase FTSJ3 (EC 2.1.1.-) (Protein ftsJ homolog 3) (Putative rRNA methyltransferase 3) | RNA 2'-O-methyltransferase involved in the processing of the 34S pre-rRNA to 18S rRNA and in 40S ribosomal subunit formation. {ECO:0000255|HAMAP-Rule:MF_03163, ECO:0000269|PubMed:22195017}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, recruited to HIV-1 RNA and catalyzes 2'-O-methylation of the viral genome, allowing HIV-1 virus to escape the innate immune system (PubMed:30626973). RNA 2'-O-methylation provides a molecular signature for discrimination of self from non-self and is used by HIV-1 to evade innate immune recognition by IFIH1/MDA5 (PubMed:30626973). Mediates methylation of internal residues of HIV-1 RNA, with a strong preference for adenosine (PubMed:30626973). Recruited to HIV-1 RNA via interaction with TARBP2/TRBP (PubMed:30626973). {ECO:0000269|PubMed:30626973}. |
Q8IY81 | FTSJ3 | S441 | ochoa | pre-rRNA 2'-O-ribose RNA methyltransferase FTSJ3 (EC 2.1.1.-) (Protein ftsJ homolog 3) (Putative rRNA methyltransferase 3) | RNA 2'-O-methyltransferase involved in the processing of the 34S pre-rRNA to 18S rRNA and in 40S ribosomal subunit formation. {ECO:0000255|HAMAP-Rule:MF_03163, ECO:0000269|PubMed:22195017}.; FUNCTION: (Microbial infection) In case of infection by HIV-1 virus, recruited to HIV-1 RNA and catalyzes 2'-O-methylation of the viral genome, allowing HIV-1 virus to escape the innate immune system (PubMed:30626973). RNA 2'-O-methylation provides a molecular signature for discrimination of self from non-self and is used by HIV-1 to evade innate immune recognition by IFIH1/MDA5 (PubMed:30626973). Mediates methylation of internal residues of HIV-1 RNA, with a strong preference for adenosine (PubMed:30626973). Recruited to HIV-1 RNA via interaction with TARBP2/TRBP (PubMed:30626973). {ECO:0000269|PubMed:30626973}. |
Q8IY92 | SLX4 | S1170 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IY92 | SLX4 | S1185 | ochoa | Structure-specific endonuclease subunit SLX4 (BTB/POZ domain-containing protein 12) | Regulatory subunit that interacts with and increases the activity of different structure-specific endonucleases. Has several distinct roles in protecting genome stability by resolving diverse forms of deleterious DNA structures originating from replication and recombination intermediates and from DNA damage. Component of the SLX1-SLX4 structure-specific endonuclease that resolves DNA secondary structures generated during DNA repair and recombination. Has endonuclease activity towards branched DNA substrates, introducing single-strand cuts in duplex DNA close to junctions with ss-DNA. Has a preference for 5'-flap structures, and promotes symmetrical cleavage of static and migrating Holliday junctions (HJs). Resolves HJs by generating two pairs of ligatable, nicked duplex products. Interacts with the structure-specific ERCC4-ERCC1 endonuclease and promotes the cleavage of bubble structures. Interacts with the structure-specific MUS81-EME1 endonuclease and promotes the cleavage of 3'-flap and replication fork-like structures. SLX4 is required for recovery from alkylation-induced DNA damage and is involved in the resolution of DNA double-strand breaks. {ECO:0000269|PubMed:19595721, ECO:0000269|PubMed:19595722, ECO:0000269|PubMed:19596235, ECO:0000269|PubMed:19596236}. |
Q8IZ21 | PHACTR4 | S131 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZ21 | PHACTR4 | S487 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZ21 | PHACTR4 | T488 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZ21 | PHACTR4 | S516 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZ21 | PHACTR4 | S518 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8N108 | MIER1 | Y172 | ochoa | Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) | Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}. |
Q8N128 | FAM177A1 | S156 | ochoa | Protein FAM177A1 | None |
Q8N163 | CCAR2 | S640 | ochoa | Cell cycle and apoptosis regulator protein 2 (Cell division cycle and apoptosis regulator protein 2) (DBIRD complex subunit KIAA1967) (Deleted in breast cancer gene 1 protein) (DBC-1) (DBC.1) (NET35) (p30 DBC) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions (PubMed:22446626). Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acetylation and p53-mediated apoptosis (PubMed:18235501, PubMed:18235502, PubMed:23352644). Inhibits SUV39H1 methyltransferase activity (PubMed:19218236). Mediates ligand-dependent transcriptional activation by nuclear hormone receptors (PubMed:19131338). Plays a critical role in maintaining genomic stability and cellular integrity following UV-induced genotoxic stress (PubMed:23398316). Regulates the circadian expression of the core clock components NR1D1 and BMAL1 (PubMed:23398316). Enhances the transcriptional repressor activity of NR1D1 through stabilization of NR1D1 protein levels by preventing its ubiquitination and subsequent degradation (PubMed:23398316). Represses the ligand-dependent transcriptional activation function of ESR2 (PubMed:20074560). Acts as a regulator of PCK1 expression and gluconeogenesis by a mechanism that involves, at least in part, both NR1D1 and SIRT1 (PubMed:24415752). Negatively regulates the deacetylase activity of HDAC3 and can alter its subcellular localization (PubMed:21030595). Positively regulates the beta-catenin pathway (canonical Wnt signaling pathway) and is required for MCC-mediated repression of the beta-catenin pathway (PubMed:24824780). Represses ligand-dependent transcriptional activation function of NR1H2 and NR1H3 and inhibits the interaction of SIRT1 with NR1H3 (PubMed:25661920). Plays an important role in tumor suppression through p53/TP53 regulation; stabilizes p53/TP53 by affecting its interaction with ubiquitin ligase MDM2 (PubMed:25732823). Represses the transcriptional activator activity of BRCA1 (PubMed:20160719). Inhibits SIRT1 in a CHEK2 and PSEM3-dependent manner and inhibits the activity of CHEK2 in vitro (PubMed:25361978). {ECO:0000269|PubMed:18235501, ECO:0000269|PubMed:18235502, ECO:0000269|PubMed:19131338, ECO:0000269|PubMed:19218236, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:21030595, ECO:0000269|PubMed:22446626, ECO:0000269|PubMed:23352644, ECO:0000269|PubMed:23398316, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:25361978, ECO:0000269|PubMed:25661920, ECO:0000269|PubMed:25732823}. |
Q8N1W1 | ARHGEF28 | S590 | ochoa | Rho guanine nucleotide exchange factor 28 (190 kDa guanine nucleotide exchange factor) (p190-RhoGEF) (p190RhoGEF) (Rho guanine nucleotide exchange factor) | Functions as a RHOA-specific guanine nucleotide exchange factor regulating signaling pathways downstream of integrins and growth factor receptors. Functions in axonal branching, synapse formation and dendritic morphogenesis. Also functions in focal adhesion formation, cell motility and B-lymphocytes activation. May regulate NEFL expression and aggregation and play a role in apoptosis (By similarity). {ECO:0000250}. |
Q8N344 | MIER2 | S142 | ochoa | Mesoderm induction early response protein 2 (Mi-er2) | Transcriptional repressor. {ECO:0000250}. |
Q8N3K9 | CMYA5 | S2452 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N4C6 | NIN | S1306 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N4N8 | KIF2B | S200 | psp | Kinesin-like protein KIF2B | Plus end-directed microtubule-dependent motor required for spindle assembly and chromosome movement. Has microtubule depolymerization activity (PubMed:17538014). Plays a role in chromosome congression (PubMed:23891108). {ECO:0000269|PubMed:17538014, ECO:0000269|PubMed:23891108}. |
Q8N7H5 | PAF1 | S117 | ochoa | RNA polymerase II-associated factor 1 homolog (hPAF1) (Pancreatic differentiation protein 2) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the RNF20/40 E3 ubiquitin-protein ligase complex. Involved in polyadenylation of mRNA precursors. Has oncogenic activity in vivo and in vitro. {ECO:0000269|PubMed:16491129, ECO:0000269|PubMed:19410543, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879, ECO:0000269|PubMed:22419161}. |
Q8N7H5 | PAF1 | S118 | ochoa | RNA polymerase II-associated factor 1 homolog (hPAF1) (Pancreatic differentiation protein 2) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the RNF20/40 E3 ubiquitin-protein ligase complex. Involved in polyadenylation of mRNA precursors. Has oncogenic activity in vivo and in vitro. {ECO:0000269|PubMed:16491129, ECO:0000269|PubMed:19410543, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879, ECO:0000269|PubMed:22419161}. |
Q8N7H5 | PAF1 | T386 | ochoa | RNA polymerase II-associated factor 1 homolog (hPAF1) (Pancreatic differentiation protein 2) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the RNF20/40 E3 ubiquitin-protein ligase complex. Involved in polyadenylation of mRNA precursors. Has oncogenic activity in vivo and in vitro. {ECO:0000269|PubMed:16491129, ECO:0000269|PubMed:19410543, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879, ECO:0000269|PubMed:22419161}. |
Q8N9T8 | KRI1 | S141 | ochoa | Protein KRI1 homolog | None |
Q8NBP7 | PCSK9 | S47 | ochoa|psp | Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) | Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}. |
Q8NCF5 | NFATC2IP | S161 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NCY6 | MSANTD4 | S152 | ochoa | Myb/SANT-like DNA-binding domain-containing protein 4 (Myb/SANT-like DNA-binding domain containing 4 with coiled-coils) | None |
Q8NDI1 | EHBP1 | S295 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NE00 | TMEM104 | S91 | ochoa | Transmembrane protein 104 | None |
Q8NEF9 | SRFBP1 | S264 | ochoa | Serum response factor-binding protein 1 (SRF-dependent transcription regulation-associated protein) (p49/STRAP) | May be involved in regulating transcriptional activation of cardiac genes during the aging process. May play a role in biosynthesis and/or processing of SLC2A4 in adipose cells (By similarity). {ECO:0000250|UniProtKB:Q9CZ91}. |
Q8NFC6 | BOD1L1 | S1124 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | S2845 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NG31 | KNL1 | S793 | ochoa | Outer kinetochore KNL1 complex subunit KNL1 (ALL1-fused gene from chromosome 15q14 protein) (AF15q14) (Bub-linking kinetochore protein) (Blinkin) (Cancer susceptibility candidate gene 5 protein) (Cancer/testis antigen 29) (CT29) (Kinetochore scaffold 1) (Kinetochore-null protein 1) (Protein CASC5) (Protein D40/AF15q14) | Acts as a component of the outer kinetochore KNL1 complex that serves as a docking point for spindle assembly checkpoint components and mediates microtubule-kinetochore interactions (PubMed:15502821, PubMed:17981135, PubMed:18045986, PubMed:19893618, PubMed:21199919, PubMed:22000412, PubMed:22331848, PubMed:27881301, PubMed:30100357). Kinetochores, consisting of a centromere-associated inner segment and a microtubule-contacting outer segment, play a crucial role in chromosome segregation by mediating the physical connection between centromeric DNA and spindle microtubules (PubMed:18045986, PubMed:19893618, PubMed:27881301). The outer kinetochore is made up of the ten-subunit KMN network, comprising the MIS12, NDC80 and KNL1 complexes, and auxiliary microtubule-associated components; together they connect the outer kinetochore with the inner kinetochore, bind microtubules, and mediate interactions with mitotic checkpoint proteins that delay anaphase until chromosomes are bioriented on the spindle (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:38459127, PubMed:38459128). Required for kinetochore binding by a distinct subset of kMAPs (kinetochore-bound microtubule-associated proteins) and motors (PubMed:19893618). Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore (PubMed:18045986, PubMed:27881301). Can bind either to microtubules or to the protein phosphatase 1 (PP1) catalytic subunits PPP1CA and PPP1CC (via overlapping binding sites), it has higher affinity for PP1 (PubMed:30100357). Recruits MAD2L1 to the kinetochore and also directly links BUB1 and BUB1B to the kinetochore (PubMed:17981135, PubMed:19893618, PubMed:22000412, PubMed:22331848, PubMed:25308863). In addition to orienting mitotic chromosomes, it is also essential for alignment of homologous chromosomes during meiotic metaphase I (By similarity). In meiosis I, required to activate the spindle assembly checkpoint at unattached kinetochores to correct erroneous kinetochore-microtubule attachments (By similarity). {ECO:0000250|UniProtKB:Q66JQ7, ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:17981135, ECO:0000269|PubMed:18045986, ECO:0000269|PubMed:19893618, ECO:0000269|PubMed:21199919, ECO:0000269|PubMed:22000412, ECO:0000269|PubMed:22331848, ECO:0000269|PubMed:25308863, ECO:0000269|PubMed:27881301, ECO:0000269|PubMed:30100357, ECO:0000269|PubMed:38459127, ECO:0000269|PubMed:38459128}. |
Q8NI35 | PATJ | S788 | ochoa | InaD-like protein (Inadl protein) (hINADL) (Channel-interacting PDZ domain-containing protein) (Pals1-associated tight junction protein) (Protein associated to tight junctions) | Scaffolding protein that facilitates the localization of proteins to the cell membrane (PubMed:11927608, PubMed:16678097, PubMed:22006950). Required for the correct formation of tight junctions and epithelial apico-basal polarity (PubMed:11927608, PubMed:16678097). Acts (via its L27 domain) as an apical connector and elongation factor for multistranded TJP1/ZO1 condensates that form a tight junction belt, thereby required for the formation of the tight junction-mediated cell barrier (By similarity). Positively regulates epithelial cell microtubule elongation and cell migration, possibly via facilitating localization of PRKCI/aPKC and PAR3D/PAR3 at the leading edge of migrating cells (By similarity). Plays a role in the correct reorientation of the microtubule-organizing center during epithelial migration (By similarity). May regulate the surface expression and/or function of ASIC3 in sensory neurons (By similarity). May recruit ARHGEF18 to apical cell-cell boundaries (PubMed:22006950). {ECO:0000250|UniProtKB:E2QYC9, ECO:0000250|UniProtKB:Q63ZW7, ECO:0000269|PubMed:11927608, ECO:0000269|PubMed:16678097, ECO:0000269|PubMed:22006950}. |
Q8TBA6 | GOLGA5 | S203 | ochoa | Golgin subfamily A member 5 (Cell proliferation-inducing gene 31 protein) (Golgin-84) (Protein Ret-II) (RET-fused gene 5 protein) | Involved in maintaining Golgi structure. Stimulates the formation of Golgi stacks and ribbons. Involved in intra-Golgi retrograde transport. {ECO:0000269|PubMed:12538640, ECO:0000269|PubMed:15718469}. |
Q8TBF4 | ZCRB1 | S155 | ochoa | Zinc finger CCHC-type and RNA-binding motif-containing protein 1 (U11/U12 small nuclear ribonucleoprotein 31 kDa protein) (U11/U12 snRNP 31 kDa protein) (U11/U12-31K) | None |
Q8TC26 | TMEM163 | S55 | ochoa | Transmembrane protein 163 | Zinc ion transporter that mediates zinc efflux and plays a crucial role in intracellular zinc homeostasis (PubMed:25130899, PubMed:31697912, PubMed:36204728). Binds the divalent cations Zn(2+), Ni(2+), and to a minor extent Cu(2+) (By similarity). Is a functional modulator of P2X purinoceptors, including P2RX1, P2RX3, P2RX4 and P2RX7 (PubMed:32492420). Plays a role in central nervous system development and is required for myelination, and survival and proliferation of oligodendrocytes (PubMed:35455965). {ECO:0000250|UniProtKB:A9CMA6, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:31697912, ECO:0000269|PubMed:32492420, ECO:0000269|PubMed:35455965, ECO:0000269|PubMed:36204728}. |
Q8TCU6 | PREX1 | S1272 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (P-Rex1) (PtdIns(3,4,5)-dependent Rac exchanger 1) | Functions as a RAC guanine nucleotide exchange factor (GEF), which activates the Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. May function downstream of heterotrimeric G proteins in neutrophils. |
Q8TD16 | BICD2 | S224 | ochoa | Protein bicaudal D homolog 2 (Bic-D 2) | Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates and stabilizes the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25814576). Facilitates the binding of RAB6A to the Golgi by stabilizing its GTP-bound form. Regulates coat complex coatomer protein I (COPI)-independent Golgi-endoplasmic reticulum transport via its interaction with RAB6A and recruitment of the dynein-dynactin motor complex (PubMed:25962623). Contributes to nuclear and centrosomal positioning prior to mitotic entry through regulation of both dynein and kinesin-1. During G2 phase of the cell cycle, associates with RANBP2 at the nuclear pores and recruits dynein and dynactin to the nuclear envelope to ensure proper positioning of the nucleus relative to centrosomes prior to the onset of mitosis (By similarity). {ECO:0000250|UniProtKB:Q921C5, ECO:0000269|PubMed:25814576, ECO:0000269|PubMed:25962623}. |
Q8TD26 | CHD6 | S1069 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8TD26 | CHD6 | S2058 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8TD43 | TRPM4 | S728 | ochoa | Transient receptor potential cation channel subfamily M member 4 (hTRPM4) (Calcium-activated non-selective cation channel 1) (Long transient receptor potential channel 4) (LTrpC-4) (LTrpC4) (Melastatin-4) | Calcium-activated selective cation channel that mediates membrane depolarization (PubMed:12015988, PubMed:12842017, PubMed:29211723, PubMed:30528822). While it is activated by increase in intracellular Ca(2+), it is impermeable to it (PubMed:12015988). Mediates transport of monovalent cations (Na(+) > K(+) > Cs(+) > Li(+)), leading to depolarize the membrane (PubMed:12015988). It thereby plays a central role in cadiomyocytes, neurons from entorhinal cortex, dorsal root and vomeronasal neurons, endocrine pancreas cells, kidney epithelial cells, cochlea hair cells etc. Participates in T-cell activation by modulating Ca(2+) oscillations after T lymphocyte activation, which is required for NFAT-dependent IL2 production. Involved in myogenic constriction of cerebral arteries. Controls insulin secretion in pancreatic beta-cells. May also be involved in pacemaking or could cause irregular electrical activity under conditions of Ca(2+) overload. Affects T-helper 1 (Th1) and T-helper 2 (Th2) cell motility and cytokine production through differential regulation of calcium signaling and NFATC1 localization. Enhances cell proliferation through up-regulation of the beta-catenin signaling pathway. Plays a role in keratinocyte differentiation (PubMed:30528822). {ECO:0000269|PubMed:11535825, ECO:0000269|PubMed:12015988, ECO:0000269|PubMed:12799367, ECO:0000269|PubMed:12842017, ECO:0000269|PubMed:14758478, ECO:0000269|PubMed:15121803, ECO:0000269|PubMed:15331675, ECO:0000269|PubMed:15472118, ECO:0000269|PubMed:15550671, ECO:0000269|PubMed:15590641, ECO:0000269|PubMed:15845551, ECO:0000269|PubMed:16186107, ECO:0000269|PubMed:16407466, ECO:0000269|PubMed:16424899, ECO:0000269|PubMed:16806463, ECO:0000269|PubMed:20625999, ECO:0000269|PubMed:20656926, ECO:0000269|PubMed:29211723, ECO:0000269|PubMed:30528822}.; FUNCTION: [Isoform 2]: Lacks channel activity. {ECO:0000269|PubMed:12842017}. |
Q8TDD1 | DDX54 | S644 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TDI0 | CHD5 | S1631 | ochoa | Chromodomain-helicase-DNA-binding protein 5 (CHD-5) (EC 3.6.4.-) (ATP-dependent helicase CHD5) | ATP-dependent chromatin-remodeling factor that binds DNA through histones and regulates gene transcription. May specifically recognize and bind trimethylated 'Lys-27' (H3K27me3) and non-methylated 'Lys-4' of histone H3. Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin. Plays a role in the development of the nervous system by activating the expression of genes promoting neuron terminal differentiation. In parallel, it may also positively regulate the trimethylation of histone H3 at 'Lys-27' thereby specifically repressing genes that promote the differentiation into non-neuronal cell lineages. Regulates the expression of genes involved in cell proliferation and differentiation. Downstream activated genes may include CDKN2A that positively regulates the p53/TP53 pathway, which in turn, prevents cell proliferation. In spermatogenesis, it probably regulates histone hyperacetylation and the replacement of histones by transition proteins in chromatin, a crucial step in the condensation of spermatid chromatin and the production of functional spermatozoa. {ECO:0000250|UniProtKB:A2A8L1, ECO:0000269|PubMed:23948251}. |
Q8TEQ6 | GEMIN5 | S770 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8TEW8 | PARD3B | S801 | ochoa | Partitioning defective 3 homolog B (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 19 protein) (PAR3-beta) (Partitioning defective 3-like protein) (PAR3-L protein) | Putative adapter protein involved in asymmetrical cell division and cell polarization processes. May play a role in the formation of epithelial tight junctions. |
Q8TF72 | SHROOM3 | S1421 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WUY3 | PRUNE2 | S576 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WVC0 | LEO1 | S273 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q8WWQ0 | PHIP | S1762 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WXH0 | SYNE2 | S4123 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WXH0 | SYNE2 | S4126 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q8WYA6 | CTNNBL1 | S80 | ochoa | Beta-catenin-like protein 1 (Nuclear-associated protein) (NAP) (Testis development protein NYD-SP19) | Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. Participates in AID/AICDA-mediated somatic hypermutation (SHM) and class-switch recombination (CSR), 2 processes resulting in the production of high-affinity, mutated isotype-switched antibodies (PubMed:32484799). {ECO:0000269|PubMed:32484799}. |
Q92499 | DDX1 | S671 | psp | ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) | Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}. |
Q92560 | BAP1 | S609 | ochoa | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92574 | TSC1 | S644 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92576 | PHF3 | S1181 | ochoa | PHD finger protein 3 | None |
Q92585 | MAML1 | S284 | ochoa | Mastermind-like protein 1 (Mam-1) | Acts as a transcriptional coactivator for NOTCH proteins. Has been shown to amplify NOTCH-induced transcription of HES1. Enhances phosphorylation and proteolytic turnover of the NOTCH intracellular domain in the nucleus through interaction with CDK8. Binds to CREBBP/CBP which promotes nucleosome acetylation at NOTCH enhancers and activates transcription. Induces phosphorylation and localization of CREBBP to nuclear foci. Plays a role in hematopoietic development by regulating NOTCH-mediated lymphoid cell fate decisions. {ECO:0000269|PubMed:11101851, ECO:0000269|PubMed:11390662, ECO:0000269|PubMed:12050117, ECO:0000269|PubMed:15546612, ECO:0000269|PubMed:17317671}. |
Q92610 | ZNF592 | S1227 | ochoa | Zinc finger protein 592 | May be involved in transcriptional regulation. {ECO:0000269|PubMed:20531441}. |
Q92622 | RUBCN | S528 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q92625 | ANKS1A | Y427 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92785 | DPF2 | S244 | ochoa | Zinc finger protein ubi-d4 (Apoptosis response zinc finger protein) (BRG1-associated factor 45D) (BAF45D) (D4, zinc and double PHD fingers family 2) (Protein requiem) | Plays an active role in transcriptional regulation by binding modified histones H3 and H4 (PubMed:27775714, PubMed:28533407). Is a negative regulator of myeloid differentiation of hematopoietic progenitor cells (PubMed:28533407). Might also have a role in the development and maturation of lymphoid cells (By similarity). Involved in the regulation of non-canonical NF-kappa-B pathway (PubMed:20460684). {ECO:0000250|UniProtKB:Q61103, ECO:0000269|PubMed:20460684, ECO:0000269|PubMed:27775714, ECO:0000269|PubMed:28533407}. |
Q92794 | KAT6A | S999 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92794 | KAT6A | S1000 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92973 | TNPO1 | S339 | ochoa | Transportin-1 (Importin beta-2) (Karyopherin beta-2) (M9 region interaction protein) (MIP) | Functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates (PubMed:24753571). May mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). Involved in nuclear import of M9-containing proteins. In vitro, binds directly to the M9 region of the heterogeneous nuclear ribonucleoproteins (hnRNP), A1 and A2 and mediates their nuclear import. Involved in hnRNP A1/A2 nuclear export. Mediates the nuclear import of ribosomal proteins RPL23A, RPS7 and RPL5 (PubMed:11682607). In vitro, mediates nuclear import of H2A, H2B, H3 and H4 histones (By similarity). In vitro, mediates nuclear import of SRP19 (PubMed:11682607). Mediates nuclear import of ADAR/ADAR1 isoform 1 and isoform 5 in a RanGTP-dependent manner (PubMed:19124606, PubMed:24753571). Main mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with the karyopherins KPNA1 and KPNA2 (PubMed:35446349). {ECO:0000250|UniProtKB:Q8BFY9, ECO:0000269|PubMed:11682607, ECO:0000269|PubMed:19124606, ECO:0000269|PubMed:24753571, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:8986607, ECO:0000269|PubMed:9687515}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, binds and mediates the nuclear import of HIV-1 Rev. {ECO:0000269|PubMed:16704975}. |
Q93063 | EXT2 | S375 | ochoa | Exostosin-2 (EC 2.4.1.224) (Exostosin glycosyltransferase 2) (Glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase) (Heparan sulfate co-polymerase subunit EXT1) (Multiple exostoses protein 2) | Glycosyltransferase forming with EXT1 the heterodimeric heparan sulfate polymerase which catalyzes the elongation of the heparan sulfate glycan backbone (PubMed:22660413, PubMed:36402845, PubMed:36593275). Glycan backbone extension consists in the alternating transfer of (1->4)-beta-D-GlcA and (1->4)-alpha-D-GlcNAc residues from their respective UDP-sugar donors. Both EXT1 and EXT2 are required for the full activity of the polymerase since EXT1 bears the N-acetylglucosaminyl-proteoglycan 4-beta-glucuronosyltransferase activity within the complex while EXT2 carries the glucuronosyl-N-acetylglucosaminyl-proteoglycan 4-alpha-N-acetylglucosaminyltransferase activity (PubMed:36402845, PubMed:36593275). Heparan sulfate proteoglycans are ubiquitous components of the extracellular matrix and play an important role in tissue homeostasis and signaling (PubMed:19344451, PubMed:22660413). {ECO:0000269|PubMed:19344451, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:36402845, ECO:0000269|PubMed:36593275}. |
Q969F1 | GTF3C6 | S173 | ochoa | General transcription factor 3C polypeptide 6 (Transcription factor IIIC 35 kDa subunit) (TFIIIC 35 kDa subunit) (TFIIIC35) (Transcription factor IIIC subunit 6) | Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters. {ECO:0000269|PubMed:17409385}. |
Q969F1 | GTF3C6 | S174 | ochoa | General transcription factor 3C polypeptide 6 (Transcription factor IIIC 35 kDa subunit) (TFIIIC 35 kDa subunit) (TFIIIC35) (Transcription factor IIIC subunit 6) | Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters. {ECO:0000269|PubMed:17409385}. |
Q96A54 | ADIPOR1 | T68 | ochoa | Adiponectin receptor protein 1 (Progestin and adipoQ receptor family member 1) (Progestin and adipoQ receptor family member I) | Receptor for ADIPOQ, an essential hormone secreted by adipocytes that regulates glucose and lipid metabolism (PubMed:12802337, PubMed:25855295). Required for normal glucose and fat homeostasis and for maintaining a normal body weight. ADIPOQ-binding activates a signaling cascade that leads to increased AMPK activity, and ultimately to increased fatty acid oxidation, increased glucose uptake and decreased gluconeogenesis. Has high affinity for globular adiponectin and low affinity for full-length adiponectin (By similarity). {ECO:0000250|UniProtKB:Q91VH1, ECO:0000269|PubMed:12802337, ECO:0000269|PubMed:25855295}. |
Q96B97 | SH3KBP1 | S521 | ochoa | SH3 domain-containing kinase-binding protein 1 (CD2-binding protein 3) (CD2BP3) (Cbl-interacting protein of 85 kDa) (Human Src family kinase-binding protein 1) (HSB-1) | Adapter protein involved in regulating diverse signal transduction pathways. Involved in the regulation of endocytosis and lysosomal degradation of ligand-induced receptor tyrosine kinases, including EGFR and MET/hepatocyte growth factor receptor, through an association with CBL and endophilins. The association with CBL, and thus the receptor internalization, may be inhibited by an interaction with PDCD6IP and/or SPRY2. Involved in regulation of ligand-dependent endocytosis of the IgE receptor. Attenuates phosphatidylinositol 3-kinase activity by interaction with its regulatory subunit (By similarity). May be involved in regulation of cell adhesion; promotes the interaction between TTK2B and PDCD6IP. May be involved in the regulation of cellular stress response via the MAPK pathways through its interaction with MAP3K4. Is involved in modulation of tumor necrosis factor mediated apoptosis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. Has an essential role in the stimulation of B cell activation (PubMed:29636373). {ECO:0000250, ECO:0000269|PubMed:11894095, ECO:0000269|PubMed:11894096, ECO:0000269|PubMed:12177062, ECO:0000269|PubMed:12734385, ECO:0000269|PubMed:12771190, ECO:0000269|PubMed:15090612, ECO:0000269|PubMed:15707590, ECO:0000269|PubMed:16177060, ECO:0000269|PubMed:16256071, ECO:0000269|PubMed:21275903, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29636373}. |
Q96BU1 | S100PBP | S187 | ochoa | S100P-binding protein (S100P-binding protein Riken) | None |
Q96D96 | HVCN1 | T60 | ochoa | Voltage-gated hydrogen channel 1 (Hydrogen voltage-gated channel 1) (HV1) (Voltage sensor domain-only protein) | Voltage-gated proton-selective channel that conducts outward proton currents in response to intracellular acidification. Lacks a canonical ion-channel pore domain and mediates proton permeability via its voltage sensor domain (PubMed:16554753, PubMed:20037153, PubMed:20548053, PubMed:22020278, PubMed:27859356, PubMed:30478045, PubMed:37669933). Appears to play a dominant role in regulation of CO2/HCO3(-)/H(+) equilibrium in sperm flagellum. Prevents the acidification resulting from HCO3(-) synthesis and thus sustains high HCO3(-) levels inside sperm for capacitation (PubMed:20144758, PubMed:30478045, PubMed:37669933). Provides for proton efflux that compensates for electron charge generated by NADPH oxidase activity either in the extracellular or phagosomal compartments, thus enabling the production of high levels of bactericidal reactive oxygen species during the respiratory burst (PubMed:20037153, PubMed:30478045). Opens when the pH of airway surface liquid exceeds 7 and contributes to respiratory epithelial acid secretion to maintain pH in the mucosa (PubMed:20548053). {ECO:0000269|PubMed:16554753, ECO:0000269|PubMed:20037153, ECO:0000269|PubMed:20144758, ECO:0000269|PubMed:20548053, ECO:0000269|PubMed:22020278, ECO:0000269|PubMed:27859356, ECO:0000269|PubMed:30478045, ECO:0000269|PubMed:37669933}. |
Q96EB6 | SIRT1 | S169 | ochoa | NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)] | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:22918831, PubMed:24415752, PubMed:24824780, PubMed:29681526, PubMed:29765047, PubMed:30409912). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:14976264, PubMed:14980222, PubMed:15152190). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491, PubMed:22542455). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14976264, PubMed:14980222, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17283066, PubMed:17620057, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis (PubMed:20817729, PubMed:29765047). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis (PubMed:23142079). Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:16998810, PubMed:17334224, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Promotes DNA double-strand breaks by mediating deacetylation of SIRT6 (PubMed:32538779). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER) (PubMed:32034146). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication: deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219). Deacetylates NDC80/HEC1 (PubMed:30409912). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating protein delactylation, depropionylation and decrotonylation (PubMed:28497810, PubMed:38512451). Mediates depropionylation of Osterix (SP7) (By similarity). Catalyzes decrotonylation of histones; it however does not represent a major histone decrotonylase (PubMed:28497810). Mediates protein delactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:14976264, ECO:0000269|PubMed:14980222, ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:15152190, ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:16166628, ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:16998810, ECO:0000269|PubMed:17283066, ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:17334224, ECO:0000269|PubMed:17505061, ECO:0000269|PubMed:17612497, ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18203716, ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18687677, ECO:0000269|PubMed:19188449, ECO:0000269|PubMed:19220062, ECO:0000269|PubMed:19364925, ECO:0000269|PubMed:19690166, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20097625, ECO:0000269|PubMed:20100829, ECO:0000269|PubMed:20203304, ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20620956, ECO:0000269|PubMed:20670893, ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:20955178, ECO:0000269|PubMed:21149730, ECO:0000269|PubMed:21245319, ECO:0000269|PubMed:21471201, ECO:0000269|PubMed:21504832, ECO:0000269|PubMed:21555002, ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21701047, ECO:0000269|PubMed:21775285, ECO:0000269|PubMed:21807113, ECO:0000269|PubMed:21841822, ECO:0000269|PubMed:21890893, ECO:0000269|PubMed:21947282, ECO:0000269|PubMed:22274616, ECO:0000269|PubMed:22542455, ECO:0000269|PubMed:22918831, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:38512451}.; FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. {ECO:0000269|PubMed:20975832}.; FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. {ECO:0000269|PubMed:18329615}. |
Q96EB6 | SIRT1 | S172 | psp | NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)] | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:22918831, PubMed:24415752, PubMed:24824780, PubMed:29681526, PubMed:29765047, PubMed:30409912). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:14976264, PubMed:14980222, PubMed:15152190). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491, PubMed:22542455). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14976264, PubMed:14980222, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17283066, PubMed:17620057, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis (PubMed:20817729, PubMed:29765047). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis (PubMed:23142079). Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:16998810, PubMed:17334224, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Promotes DNA double-strand breaks by mediating deacetylation of SIRT6 (PubMed:32538779). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER) (PubMed:32034146). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication: deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219). Deacetylates NDC80/HEC1 (PubMed:30409912). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating protein delactylation, depropionylation and decrotonylation (PubMed:28497810, PubMed:38512451). Mediates depropionylation of Osterix (SP7) (By similarity). Catalyzes decrotonylation of histones; it however does not represent a major histone decrotonylase (PubMed:28497810). Mediates protein delactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:14976264, ECO:0000269|PubMed:14980222, ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:15152190, ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:16166628, ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:16998810, ECO:0000269|PubMed:17283066, ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:17334224, ECO:0000269|PubMed:17505061, ECO:0000269|PubMed:17612497, ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18203716, ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18687677, ECO:0000269|PubMed:19188449, ECO:0000269|PubMed:19220062, ECO:0000269|PubMed:19364925, ECO:0000269|PubMed:19690166, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20097625, ECO:0000269|PubMed:20100829, ECO:0000269|PubMed:20203304, ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20620956, ECO:0000269|PubMed:20670893, ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:20955178, ECO:0000269|PubMed:21149730, ECO:0000269|PubMed:21245319, ECO:0000269|PubMed:21471201, ECO:0000269|PubMed:21504832, ECO:0000269|PubMed:21555002, ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21701047, ECO:0000269|PubMed:21775285, ECO:0000269|PubMed:21807113, ECO:0000269|PubMed:21841822, ECO:0000269|PubMed:21890893, ECO:0000269|PubMed:21947282, ECO:0000269|PubMed:22274616, ECO:0000269|PubMed:22542455, ECO:0000269|PubMed:22918831, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:38512451}.; FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. {ECO:0000269|PubMed:20975832}.; FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. {ECO:0000269|PubMed:18329615}. |
Q96EY4 | TMA16 | S97 | ochoa | Translation machinery-associated protein 16 | Involved in the biogenesis of the 60S ribosomal subunit in the nucleus. {ECO:0000269|PubMed:32669547}. |
Q96FC9 | DDX11 | Y202 | ochoa | ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) | DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}. |
Q96GA3 | LTV1 | S182 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96JG6 | VPS50 | S242 | ochoa | Syndetin (Coiled-coil domain-containing protein 132) (EARP/GARPII complex subunit VPS50) | Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane. Within the EARP complex, required to tether the complex to recycling endosomes. Not involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:25799061}. |
Q96JG6 | VPS50 | S541 | ochoa | Syndetin (Coiled-coil domain-containing protein 132) (EARP/GARPII complex subunit VPS50) | Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane. Within the EARP complex, required to tether the complex to recycling endosomes. Not involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:25799061}. |
Q96JM2 | ZNF462 | S2144 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96K49 | TMEM87B | S480 | ochoa | Transmembrane protein 87B | May be involved in retrograde transport from endosomes to the trans-Golgi network (TGN). {ECO:0000269|PubMed:26157166}. |
Q96KC8 | DNAJC1 | S430 | ochoa | DnaJ homolog subfamily C member 1 (DnaJ protein homolog MTJ1) | May modulate protein synthesis. {ECO:0000250}. |
Q96NE9 | FRMD6 | S349 | ochoa | FERM domain-containing protein 6 (Willin) | None |
Q96NY8 | NECTIN4 | S446 | ochoa | Nectin-4 (Ig superfamily receptor LNIR) (Nectin cell adhesion molecule 4) (Poliovirus receptor-related protein 4) [Cleaved into: Processed poliovirus receptor-related protein 4] | Seems to be involved in cell adhesion through trans-homophilic and -heterophilic interactions, the latter including specifically interactions with NECTIN1. Does not act as receptor for alpha-herpesvirus entry into cells.; FUNCTION: (Microbial infection) Acts as a receptor for measles virus. {ECO:0000269|PubMed:22048310, ECO:0000269|PubMed:23202587}. |
Q96PZ0 | PUS7 | S36 | ochoa | Pseudouridylate synthase 7 homolog (EC 5.4.99.-) | Pseudouridylate synthase that catalyzes pseudouridylation of RNAs (PubMed:28073919, PubMed:29628141, PubMed:30778726, PubMed:31477916, PubMed:34718722, PubMed:35051350). Acts as a regulator of protein synthesis in embryonic stem cells by mediating pseudouridylation of RNA fragments derived from tRNAs (tRFs): pseudouridylated tRFs inhibit translation by targeting the translation initiation complex (PubMed:29628141). Also catalyzes pseudouridylation of mRNAs: mediates pseudouridylation of mRNAs with the consensus sequence 5'-UGUAG-3' (PubMed:28073919, PubMed:31477916, PubMed:35051350). Acts as a regulator of pre-mRNA splicing by mediating pseudouridylation of pre-mRNAs at locations associated with alternatively spliced regions (PubMed:35051350). Pseudouridylation of pre-mRNAs near splice sites directly regulates mRNA splicing and mRNA 3'-end processing (PubMed:35051350). In addition to mRNAs and tRNAs, binds other types of RNAs, such as snRNAs, Y RNAs and vault RNAs, suggesting that it can catalyze pseudouridylation of many RNA types (PubMed:29628141). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:29628141, ECO:0000269|PubMed:30778726, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:34718722, ECO:0000269|PubMed:35051350}. |
Q96PZ0 | PUS7 | S90 | ochoa | Pseudouridylate synthase 7 homolog (EC 5.4.99.-) | Pseudouridylate synthase that catalyzes pseudouridylation of RNAs (PubMed:28073919, PubMed:29628141, PubMed:30778726, PubMed:31477916, PubMed:34718722, PubMed:35051350). Acts as a regulator of protein synthesis in embryonic stem cells by mediating pseudouridylation of RNA fragments derived from tRNAs (tRFs): pseudouridylated tRFs inhibit translation by targeting the translation initiation complex (PubMed:29628141). Also catalyzes pseudouridylation of mRNAs: mediates pseudouridylation of mRNAs with the consensus sequence 5'-UGUAG-3' (PubMed:28073919, PubMed:31477916, PubMed:35051350). Acts as a regulator of pre-mRNA splicing by mediating pseudouridylation of pre-mRNAs at locations associated with alternatively spliced regions (PubMed:35051350). Pseudouridylation of pre-mRNAs near splice sites directly regulates mRNA splicing and mRNA 3'-end processing (PubMed:35051350). In addition to mRNAs and tRNAs, binds other types of RNAs, such as snRNAs, Y RNAs and vault RNAs, suggesting that it can catalyze pseudouridylation of many RNA types (PubMed:29628141). {ECO:0000269|PubMed:28073919, ECO:0000269|PubMed:29628141, ECO:0000269|PubMed:30778726, ECO:0000269|PubMed:31477916, ECO:0000269|PubMed:34718722, ECO:0000269|PubMed:35051350}. |
Q96Q07 | BTBD9 | S577 | ochoa | BTB/POZ domain-containing protein 9 | None |
Q96RL1 | UIMC1 | S198 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL1 | UIMC1 | S415 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL1 | UIMC1 | S419 | ochoa|psp | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL7 | VPS13A | S849 | ochoa | Intermembrane lipid transfer protein VPS13A (Chorea-acanthocytosis protein) (Chorein) (Vacuolar protein sorting-associated protein 13A) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phospholipids (PubMed:34830155). Required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria (PubMed:30741634). Negatively regulates lipid droplet size and motility (PubMed:30741634). Required for efficient lysosomal protein degradation (PubMed:30709847). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:30709847, ECO:0000269|PubMed:30741634, ECO:0000269|PubMed:34830155}. |
Q96RS6 | NUDCD1 | S270 | ochoa | NudC domain-containing protein 1 (Chronic myelogenous leukemia tumor antigen 66) (Tumor antigen CML66) | None |
Q96ST2 | IWS1 | S449 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96T23 | RSF1 | S429 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S882 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S1187 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S1189 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S1258 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96TC7 | RMDN3 | S225 | ochoa | Regulator of microtubule dynamics protein 3 (RMD-3) (hRMD-3) (Cerebral protein 10) (Protein FAM82A2) (Protein FAM82C) (Protein tyrosine phosphatase-interacting protein 51) (TCPTP-interacting protein 51) | Involved in cellular calcium homeostasis regulation. May participate in differentiation and apoptosis of keratinocytes. Overexpression induces apoptosis. {ECO:0000269|PubMed:16820967, ECO:0000269|PubMed:22131369}. |
Q99459 | CDC5L | Y511 | ochoa | Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) | DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}. |
Q99570 | PIK3R4 | S865 | ochoa | Phosphoinositide 3-kinase regulatory subunit 4 (PI3-kinase regulatory subunit 4) (EC 2.7.11.1) (PI3-kinase p150 subunit) (Phosphoinositide 3-kinase adaptor protein) | Regulatory subunit of the PI3K complex that mediates formation of phosphatidylinositol 3-phosphate; different complex forms are believed to play a role in multiple membrane trafficking pathways: PI3KC3-C1 is involved in initiation of autophagosomes and PI3KC3-C2 in maturation of autophagosomes and endocytosis. Involved in regulation of degradative endocytic trafficking and cytokinesis, probably in the context of PI3KC3-C2 (PubMed:20643123). {ECO:0000269|PubMed:20643123}. |
Q99590 | SCAF11 | S1188 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99590 | SCAF11 | S1189 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99614 | TTC1 | S67 | ochoa | Tetratricopeptide repeat protein 1 (TPR repeat protein 1) | None |
Q99661 | KIF2C | S175 | ochoa | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q99661 | KIF2C | S632 | ochoa|psp | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q99661 | KIF2C | S633 | ochoa|psp | Kinesin-like protein KIF2C (Kinesin-like protein 6) (Mitotic centromere-associated kinesin) (MCAK) | In complex with KIF18B, constitutes the major microtubule plus-end depolymerizing activity in mitotic cells (PubMed:21820309). Regulates the turnover of microtubules at the kinetochore and functions in chromosome segregation during mitosis (PubMed:19060894). Plays a role in chromosome congression and is required for the lateral to end-on conversion of the chromosome-microtubule attachment (PubMed:23891108). {ECO:0000269|PubMed:19060894, ECO:0000269|PubMed:21820309, ECO:0000269|PubMed:23891108}. |
Q9BQ39 | DDX50 | S673 | ochoa | ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) | ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}. |
Q9BQ61 | TRIR | S50 | ochoa | Telomerase RNA component interacting RNase (EC 3.1.13.-) (Exoribonuclease TRIR) | Exoribonuclease that is part of the telomerase RNA 3' end processing complex and which has the ability to cleave all four unpaired RNA nucleotides from the 5' end or 3' end with higher efficiency for purine bases (PubMed:28322335). {ECO:0000269|PubMed:28322335}. |
Q9BQG0 | MYBBP1A | S743 | ochoa | Myb-binding protein 1A | May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1 (PubMed:29065309). {ECO:0000250|UniProtKB:Q7TPV4, ECO:0000269|PubMed:29065309}. |
Q9BRR0 | ZKSCAN3 | S36 | ochoa | Zinc finger protein with KRAB and SCAN domains 3 (Zinc finger and SCAN domain-containing protein 13) (Zinc finger protein 306) (Zinc finger protein 309) (Zinc finger protein 47 homolog) (Zf47) (Zfp-47) | Transcriptional factor that binds to the consensus sequence 5'-[GT][AG][AGT]GGGG-3' and acts as a repressor of autophagy. Specifically represses expression of genes involved in autophagy and lysosome biogenesis/function such as MAP1LC3B, ULK1 or WIPI2. Associates with chromatin at the ITGB4 and VEGF promoters. Also acts as a transcription activator and promotes cancer cell progression and/or migration in various tumors and myelomas. {ECO:0000269|PubMed:18940803, ECO:0000269|PubMed:21057542, ECO:0000269|PubMed:22531714, ECO:0000269|PubMed:23434374}. |
Q9BRR0 | ZKSCAN3 | S37 | ochoa | Zinc finger protein with KRAB and SCAN domains 3 (Zinc finger and SCAN domain-containing protein 13) (Zinc finger protein 306) (Zinc finger protein 309) (Zinc finger protein 47 homolog) (Zf47) (Zfp-47) | Transcriptional factor that binds to the consensus sequence 5'-[GT][AG][AGT]GGGG-3' and acts as a repressor of autophagy. Specifically represses expression of genes involved in autophagy and lysosome biogenesis/function such as MAP1LC3B, ULK1 or WIPI2. Associates with chromatin at the ITGB4 and VEGF promoters. Also acts as a transcription activator and promotes cancer cell progression and/or migration in various tumors and myelomas. {ECO:0000269|PubMed:18940803, ECO:0000269|PubMed:21057542, ECO:0000269|PubMed:22531714, ECO:0000269|PubMed:23434374}. |
Q9BSC4 | NOL10 | S543 | ochoa | Nucleolar protein 10 | None |
Q9BSC4 | NOL10 | S607 | ochoa | Nucleolar protein 10 | None |
Q9BVR0 | HERC2P3 | S315 | ochoa | Putative HERC2-like protein 3 | None |
Q9BW71 | HIRIP3 | S300 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BW71 | HIRIP3 | S301 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BXF3 | CECR2 | S1306 | ochoa | Chromatin remodeling regulator CECR2 (Cat eye syndrome critical region protein 2) | Regulatory subunit of the ATP-dependent CERF-1 and CERF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:15640247, PubMed:22464331, PubMed:26365797, PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The CERF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the CERF-5 ISWI chromatin remodeling complex (PubMed:28801535). Plays a role in various processes during development: required during embryogenesis for neural tube closure and inner ear development. In adults, required for spermatogenesis, via the formation of ISWI-type chromatin complexes (By similarity). In histone-modifying complexes, CECR2 recognizes and binds acylated histones: binds histones that are acetylated and/or butyrylated (PubMed:22464331, PubMed:26365797). May also be involved through its interaction with LRPPRC in the integration of cytoskeletal network with vesicular trafficking, nucleocytosolic shuttling, transcription, chromosome remodeling and cytokinesis (PubMed:11827465). {ECO:0000250|UniProtKB:E9Q2Z1, ECO:0000269|PubMed:11827465, ECO:0000269|PubMed:15640247, ECO:0000269|PubMed:22464331, ECO:0000269|PubMed:26365797, ECO:0000269|PubMed:28801535}. |
Q9BXK5 | BCL2L13 | S426 | ochoa | Bcl-2-like protein 13 (Bcl2-L-13) (Bcl-rambo) (Protein Mil1) | May promote the activation of caspase-3 and apoptosis. |
Q9BXP5 | SRRT | S579 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BXP5 | SRRT | S580 | ochoa | Serrate RNA effector molecule homolog (Arsenite-resistance protein 2) | Acts as a mediator between the cap-binding complex (CBC) and the primary microRNAs (miRNAs) processing machinery during cell proliferation. Contributes to the stability and delivery of capped primary miRNA transcripts to the primary miRNA processing complex containing DGCR8 and DROSHA, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Binds capped RNAs (m7GpppG-capped RNA); however interaction is probably mediated via its interaction with NCBP1/CBP80 component of the CBC complex. Involved in cell cycle progression at S phase. Does not directly confer arsenite resistance but rather modulates arsenic sensitivity. Independently of its activity on miRNAs, necessary and sufficient to promote neural stem cell self-renewal. Does so by directly binding SOX2 promoter and positively regulating its transcription (By similarity). {ECO:0000250, ECO:0000269|PubMed:19632182}. |
Q9BXW6 | OSBPL1A | S509 | ochoa | Oxysterol-binding protein-related protein 1 (ORP-1) (OSBP-related protein 1) | Binds phospholipids; exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate (By similarity). Stabilizes GTP-bound RAB7A on late endosomes/lysosomes and alters functional properties of late endocytic compartments via its interaction with RAB7A (PubMed:16176980). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000250, ECO:0000269|PubMed:16176980, ECO:0000269|PubMed:17428193}. |
Q9BY43 | CHMP4A | S193 | ochoa | Charged multivesicular body protein 4a (Chromatin-modifying protein 4a) (CHMP4a) (SNF7 homolog associated with Alix-2) (SNF7-1) (hSnf-1) (Vacuolar protein sorting-associated protein 32-1) (Vps32-1) (hVps32-1) | Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. When overexpressed, membrane-assembled circular arrays of CHMP4A filaments can promote or stabilize negative curvature and outward budding. Via its interaction with PDCD6IP involved in HIV-1 p6- and p9-dependent virus release. CHMP4A/B/C are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). {ECO:0000269|PubMed:12860994, ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:14583093, ECO:0000269|PubMed:18209100, ECO:0000269|PubMed:22660413}. |
Q9BYV9 | BACH2 | S294 | ochoa | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BYW2 | SETD2 | S1992 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZC7 | ABCA2 | S1331 | ochoa | ATP-binding cassette sub-family A member 2 (EC 7.6.2.-) (ATP-binding cassette transporter 2) (ATP-binding cassette 2) | Probable lipid transporter that modulates cholesterol sequestration in the late endosome/lysosome by regulating the intracellular sphingolipid metabolism, in turn participates in cholesterol homeostasis (Probable) (PubMed:15238223, PubMed:21810484, PubMed:24201375). May alter the transbilayer distribution of ceramide in the intraluminal membrane lipid bilayer, favoring its retention in the outer leaflet that results in increased acid ceramidase activity in the late endosome/lysosome, facilitating ceramide deacylation to sphingosine leading to the sequestration of free cholesterol in lysosomes (PubMed:24201375). In addition regulates amyloid-beta production either by activating a signaling pathway that regulates amyloid precursor protein transcription through the modulation of sphingolipid metabolism or through its role in gamma-secretase processing of APP (PubMed:22086926, PubMed:26510981). May play a role in myelin formation (By similarity). {ECO:0000250|UniProtKB:P41234, ECO:0000269|PubMed:15238223, ECO:0000269|PubMed:21810484, ECO:0000269|PubMed:22086926, ECO:0000269|PubMed:24201375, ECO:0000269|PubMed:26510981, ECO:0000305|PubMed:15999530}. |
Q9BZL6 | PRKD2 | S374 | ochoa | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9BZL6 | PRKD2 | S375 | ochoa | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9C0B1 | FTO | S260 | ochoa | Alpha-ketoglutarate-dependent dioxygenase FTO (Fat mass and obesity-associated protein) (U6 small nuclear RNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (EC 1.14.11.-) (U6 small nuclear RNA N(6)-methyladenosine-demethylase FTO) (EC 1.14.11.-) (mRNA (2'-O-methyladenosine-N(6)-)-demethylase FTO) (m6A(m)-demethylase FTO) (EC 1.14.11.-) (mRNA N(6)-methyladenosine demethylase FTO) (EC 1.14.11.53) (tRNA N1-methyl adenine demethylase FTO) (EC 1.14.11.-) | RNA demethylase that mediates oxidative demethylation of different RNA species, such as mRNAs, tRNAs and snRNAs, and acts as a regulator of fat mass, adipogenesis and energy homeostasis (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:28002401, PubMed:30197295). Specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:22002720, PubMed:25452335, PubMed:26457839, PubMed:26458103, PubMed:30197295). M6A demethylation by FTO affects mRNA expression and stability (PubMed:30197295). Also able to demethylate m6A in U6 small nuclear RNA (snRNA) (PubMed:30197295). Mediates demethylation of N(6),2'-O-dimethyladenosine cap (m6A(m)), by demethylating the N(6)-methyladenosine at the second transcribed position of mRNAs and U6 snRNA (PubMed:28002401, PubMed:30197295). Demethylation of m6A(m) in the 5'-cap by FTO affects mRNA stability by promoting susceptibility to decapping (PubMed:28002401). Also acts as a tRNA demethylase by removing N(1)-methyladenine from various tRNAs (PubMed:30197295). Has no activity towards 1-methylguanine (PubMed:20376003). Has no detectable activity towards double-stranded DNA (PubMed:20376003). Also able to repair alkylated DNA and RNA by oxidative demethylation: demethylates single-stranded RNA containing 3-methyluracil, single-stranded DNA containing 3-methylthymine and has low demethylase activity towards single-stranded DNA containing 1-methyladenine or 3-methylcytosine (PubMed:18775698, PubMed:20376003). Ability to repair alkylated DNA and RNA is however unsure in vivo (PubMed:18775698, PubMed:20376003). Involved in the regulation of fat mass, adipogenesis and body weight, thereby contributing to the regulation of body size and body fat accumulation (PubMed:18775698, PubMed:20376003). Involved in the regulation of thermogenesis and the control of adipocyte differentiation into brown or white fat cells (PubMed:26287746). Regulates activity of the dopaminergic midbrain circuitry via its ability to demethylate m6A in mRNAs (By similarity). Plays an oncogenic role in a number of acute myeloid leukemias by enhancing leukemic oncogene-mediated cell transformation: acts by mediating m6A demethylation of target transcripts such as MYC, CEBPA, ASB2 and RARA, leading to promote their expression (PubMed:28017614, PubMed:29249359). {ECO:0000250|UniProtKB:Q8BGW1, ECO:0000269|PubMed:18775698, ECO:0000269|PubMed:20376003, ECO:0000269|PubMed:22002720, ECO:0000269|PubMed:25452335, ECO:0000269|PubMed:26287746, ECO:0000269|PubMed:26457839, ECO:0000269|PubMed:26458103, ECO:0000269|PubMed:28002401, ECO:0000269|PubMed:28017614, ECO:0000269|PubMed:29249359, ECO:0000269|PubMed:30197295}. |
Q9C0B5 | ZDHHC5 | S569 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0C2 | TNKS1BP1 | S1004 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C9 | UBE2O | S99 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0C9 | UBE2O | S441 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9C0D2 | CEP295 | S2009 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9GZR7 | DDX24 | S92 | ochoa | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
Q9GZR7 | DDX24 | S93 | ochoa | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
Q9GZR7 | DDX24 | S94 | ochoa | ATP-dependent RNA helicase DDX24 (EC 3.6.4.13) (DEAD box protein 24) | ATP-dependent RNA helicase that plays a role in various aspects of RNA metabolism including pre-mRNA splicing and is thereby involved in different biological processes such as cell cycle regulation or innate immunity (PubMed:24204270, PubMed:24980433). Plays an inhibitory role in TP53 transcriptional activity and subsequently in TP53 controlled cell growth arrest and senescence by inhibiting its EP300 mediated acetylation (PubMed:25867071). Negatively regulates cytosolic RNA-mediated innate immune signaling at least in part by affecting RIPK1/IRF7 interactions. Alternatively, possesses antiviral activity by recognizing gammaherpesvirus transcripts in the context of lytic reactivation (PubMed:36298642). Plays an essential role in cell cycle regulation in vascular smooth muscle cells by interacting with and regulating FANCA (Fanconi anemia complementation group A) mRNA (By similarity). {ECO:0000250|UniProtKB:Q9ESV0, ECO:0000269|PubMed:24204270, ECO:0000269|PubMed:24980433, ECO:0000269|PubMed:25867071, ECO:0000269|PubMed:36298642}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 infection by promoting Rev-dependent nuclear export of viral RNAs and their packaging into virus particles (PubMed:24204270). {ECO:0000269|PubMed:18289627, ECO:0000269|PubMed:24204270}. |
Q9GZY6 | LAT2 | Y193 | ochoa|psp | Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) | Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}. |
Q9GZY6 | LAT2 | S196 | ochoa | Linker for activation of T-cells family member 2 (Linker for activation of B-cells) (Membrane-associated adapter molecule) (Non-T-cell activation linker) (Williams-Beuren syndrome chromosomal region 15 protein) (Williams-Beuren syndrome chromosomal region 5 protein) | Involved in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. May also be involved in BCR (B-cell antigen receptor)-mediated signaling in B-cells and FCGR1 (high affinity immunoglobulin gamma Fc receptor I)-mediated signaling in myeloid cells. Couples activation of these receptors and their associated kinases with distal intracellular events through the recruitment of GRB2. {ECO:0000269|PubMed:12486104, ECO:0000269|PubMed:12514734, ECO:0000269|PubMed:15010370}. |
Q9GZZ9 | UBA5 | S358 | ochoa | Ubiquitin-like modifier-activating enzyme 5 (Ubiquitin-activating enzyme 5) (ThiFP1) (UFM1-activating enzyme) (Ubiquitin-activating enzyme E1 domain-containing protein 1) | E1-like enzyme which specifically catalyzes the first step in ufmylation (PubMed:15071506, PubMed:18442052, PubMed:20368332, PubMed:25219498, PubMed:26929408, PubMed:27545674, PubMed:27545681, PubMed:27653677, PubMed:30412706, PubMed:30626644, PubMed:34588452). Activates UFM1 by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a UFM1-E1 thioester and free AMP (PubMed:20368332, PubMed:26929408, PubMed:27653677, PubMed:30412706). Activates UFM1 via a trans-binding mechanism, in which UFM1 interacts with distinct sites in both subunits of the UBA5 homodimer (PubMed:27653677). Trans-binding also promotes stabilization of the UBA5 homodimer, and enhances ATP-binding (PubMed:29295865). Transfer of UFM1 from UBA5 to the E2-like enzyme UFC1 also takes place using a trans mechanism (PubMed:27653677, PubMed:34588452). Ufmylation plays a key role in various processes, such as ribosome recycling, response to DNA damage, interferon response or reticulophagy (also called ER-phagy) (PubMed:30412706, PubMed:32160526, PubMed:35394863). Ufmylation is essential for erythroid differentiation of both megakaryocytes and erythrocytes (By similarity). {ECO:0000250|UniProtKB:Q8VE47, ECO:0000269|PubMed:15071506, ECO:0000269|PubMed:18442052, ECO:0000269|PubMed:20368332, ECO:0000269|PubMed:25219498, ECO:0000269|PubMed:26929408, ECO:0000269|PubMed:27545674, ECO:0000269|PubMed:27545681, ECO:0000269|PubMed:27653677, ECO:0000269|PubMed:29295865, ECO:0000269|PubMed:30412706, ECO:0000269|PubMed:30626644, ECO:0000269|PubMed:32160526, ECO:0000269|PubMed:34588452, ECO:0000269|PubMed:35394863}. |
Q9H063 | MAF1 | S235 | ochoa | Repressor of RNA polymerase III transcription MAF1 homolog | Plays a role in the repression of RNA polymerase III-mediated transcription in response to changing nutritional, environmental and cellular stress conditions to balance the production of highly abundant tRNAs, 5S rRNA, and other small non-coding RNAs with cell growth and maintenance (PubMed:18377933, PubMed:20233713, PubMed:20516213, PubMed:20543138). Also plays a key role in cell fate determination by promoting mesorderm induction and adipocyte differentiation (By similarity). Mechanistically, associates with the RNA polymerase III clamp and thereby impairs its recruitment to the complex made of the promoter DNA, TBP and the initiation factor TFIIIB (PubMed:17505538, PubMed:20887893). When nutrients are available and mTOR kinase is active, MAF1 is hyperphosphorylated and RNA polymerase III is engaged in transcription. Stress-induced MAF1 dephosphorylation results in nuclear localization, increased targeting of gene-bound RNA polymerase III and a decrease in the transcriptional readout (PubMed:26941251). Additionally, may also regulate RNA polymerase I and RNA polymerase II-dependent transcription through its ability to regulate expression of the central initiation factor TBP (PubMed:17499043). {ECO:0000250|UniProtKB:Q9D0U6, ECO:0000269|PubMed:17499043, ECO:0000269|PubMed:17505538, ECO:0000269|PubMed:18377933, ECO:0000269|PubMed:20233713, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20543138, ECO:0000269|PubMed:20887893, ECO:0000269|PubMed:26941251}. |
Q9H063 | MAF1 | S238 | ochoa | Repressor of RNA polymerase III transcription MAF1 homolog | Plays a role in the repression of RNA polymerase III-mediated transcription in response to changing nutritional, environmental and cellular stress conditions to balance the production of highly abundant tRNAs, 5S rRNA, and other small non-coding RNAs with cell growth and maintenance (PubMed:18377933, PubMed:20233713, PubMed:20516213, PubMed:20543138). Also plays a key role in cell fate determination by promoting mesorderm induction and adipocyte differentiation (By similarity). Mechanistically, associates with the RNA polymerase III clamp and thereby impairs its recruitment to the complex made of the promoter DNA, TBP and the initiation factor TFIIIB (PubMed:17505538, PubMed:20887893). When nutrients are available and mTOR kinase is active, MAF1 is hyperphosphorylated and RNA polymerase III is engaged in transcription. Stress-induced MAF1 dephosphorylation results in nuclear localization, increased targeting of gene-bound RNA polymerase III and a decrease in the transcriptional readout (PubMed:26941251). Additionally, may also regulate RNA polymerase I and RNA polymerase II-dependent transcription through its ability to regulate expression of the central initiation factor TBP (PubMed:17499043). {ECO:0000250|UniProtKB:Q9D0U6, ECO:0000269|PubMed:17499043, ECO:0000269|PubMed:17505538, ECO:0000269|PubMed:18377933, ECO:0000269|PubMed:20233713, ECO:0000269|PubMed:20516213, ECO:0000269|PubMed:20543138, ECO:0000269|PubMed:20887893, ECO:0000269|PubMed:26941251}. |
Q9H1A4 | ANAPC1 | S286 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H1J1 | UPF3A | S339 | ochoa | Regulator of nonsense transcripts 3A (Nonsense mRNA reducing factor 3A) (Up-frameshift suppressor 3 homolog A) (hUpf3) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons by associating with the nuclear exon junction complex (EJC) and serving as link between the EJC core and NMD machinery. Recruits UPF2 at the cytoplasmic side of the nuclear envelope and the subsequent formation of an UPF1-UPF2-UPF3 surveillance complex (including UPF1 bound to release factors at the stalled ribosome) is believed to activate NMD. However, UPF3A is shown to be only marginally active in NMD as compared to UPF3B. Binds spliced mRNA upstream of exon-exon junctions. In vitro, weakly stimulates translation. {ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:16601204}. |
Q9H2G2 | SLK | S330 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2G2 | SLK | S571 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2G4 | TSPYL2 | S182 | ochoa | Testis-specific Y-encoded-like protein 2 (TSPY-like protein 2) (Cell division autoantigen 1) (Cutaneous T-cell lymphoma-associated antigen se20-4) (CTCL-associated antigen se20-4) (Differentially-expressed nucleolar TGF-beta1 target protein) (Nuclear protein of 79 kDa) (NP79) | Part of the CASK/TBR1/TSPYL2 transcriptional complex which modulates gene expression in response to neuronal synaptic activity, probably by facilitating nucleosome assembly. May inhibit cell proliferation by inducing p53-dependent CDKN1A expression. {ECO:0000269|PubMed:11395479, ECO:0000269|PubMed:17317670}. |
Q9H2K8 | TAOK3 | S336 | ochoa | Serine/threonine-protein kinase TAO3 (EC 2.7.11.1) (Cutaneous T-cell lymphoma-associated antigen HD-CL-09) (CTCL-associated antigen HD-CL-09) (Dendritic cell-derived protein kinase) (JNK/SAPK-inhibitory kinase) (Jun kinase-inhibitory kinase) (Kinase from chicken homolog A) (hKFC-A) (Thousand and one amino acid protein 3) | Serine/threonine-protein kinase that acts as a regulator of the p38/MAPK14 stress-activated MAPK cascade and of the MAPK8/JNK cascade. In response to DNA damage, involved in the G2/M transition DNA damage checkpoint by activating the p38/MAPK14 stress-activated MAPK cascade, probably by mediating phosphorylation of upstream MAP2K3 and MAP2K6 kinases. Inhibits basal activity of the MAPK8/JNK cascade and diminishes its activation in response to epidermal growth factor (EGF). Positively regulates canonical T cell receptor (TCR) signaling by preventing early PTPN6/SHP1-mediated inactivation of LCK, ensuring sustained TCR signaling that is required for optimal activation and differentiation of T cells (PubMed:30373850). Phosphorylates PTPN6/SHP1 on 'Thr-394', leading to its polyubiquitination and subsequent proteasomal degradation (PubMed:38166031). Required for cell surface expression of metalloprotease ADAM10 on type 1 transitional B cells which is necessary for their NOTCH-mediated development into marginal zone B cells (By similarity). Also required for the NOTCH-mediated terminal differentiation of splenic conventional type 2 dendritic cells (By similarity). Positively regulates osteoblast differentiation by acting as an upstream activator of the JNK pathway (PubMed:32807497). Promotes JNK signaling in hepatocytes and positively regulates hepatocyte lipid storage by inhibiting beta-oxidation and triacylglycerol secretion while enhancing lipid synthesis (PubMed:34634521). Restricts age-associated inflammation by negatively regulating differentiation of macrophages and their production of pro-inflammatory cytokines (By similarity). Plays a role in negatively regulating the abundance of regulatory T cells in white adipose tissue (By similarity). {ECO:0000250|UniProtKB:Q8BYC6, ECO:0000269|PubMed:10559204, ECO:0000269|PubMed:10924369, ECO:0000269|PubMed:17396146, ECO:0000269|PubMed:30373850, ECO:0000269|PubMed:32807497, ECO:0000269|PubMed:34634521, ECO:0000269|PubMed:38166031}. |
Q9H2P0 | ADNP | S891 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H3N1 | TMX1 | T257 | ochoa | Thioredoxin-related transmembrane protein 1 (Protein disulfide-isomerase TMX1) (EC 5.3.4.1) (Thioredoxin domain-containing protein 1) (Transmembrane Trx-related protein) | Thiredoxin domain-containing protein that participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyze dithiol-disulfide exchange reactions (PubMed:11152479, PubMed:37648867). Acts as a key inhibitor of the alternative triglyceride biosynthesis pathway by inhibiting the activity of TMEM68/DIESL at the endoplasmic reticulum, thereby restricting accumulation of triacylglycerol (PubMed:37648867). The alternative triglyceride biosynthesis pathway mediates formation of triacylglycerol from diacylglycerol and membrane phospholipids (PubMed:37648867). Acts as a protein disulfide isomerase by catalyzing formation or reduction of disulfide bonds (PubMed:22228764, PubMed:29932915). Specifically mediates formation of disulfide bonds of transmembrane proteins at the endoplasmic reticulum membrane (PubMed:22228764). Involved in endoplasmic reticulum-associated degradation (ERAD) via its protein disulfide isomerase activity by acting on folding-defective polypeptides at the endoplasmic reticulum membrane (PubMed:29932915). Acts as a negative regulator of platelet aggregation following secretion in the extracellular space (PubMed:30425049). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:27502484, PubMed:31304984). Regulates endoplasmic reticulum-mitochondria Ca(2+) flux (PubMed:27502484). {ECO:0000269|PubMed:11152479, ECO:0000269|PubMed:22228764, ECO:0000269|PubMed:27502484, ECO:0000269|PubMed:29932915, ECO:0000269|PubMed:30425049, ECO:0000269|PubMed:31304984, ECO:0000269|PubMed:37648867}. |
Q9H410 | DSN1 | S58 | ochoa | Kinetochore-associated protein DSN1 homolog | Part of the MIS12 complex which is required for normal chromosome alignment and segregation and kinetochore formation during mitosis. {ECO:0000269|PubMed:15502821, ECO:0000269|PubMed:16585270}. |
Q9H4L5 | OSBPL3 | S323 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H4L7 | SMARCAD1 | S50 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H4L7 | SMARCAD1 | S245 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H501 | ESF1 | S190 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H987 | SYNPO2L | S345 | ochoa | Synaptopodin 2-like protein | Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}. |
Q9HAU0 | PLEKHA5 | S120 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HAU0 | PLEKHA5 | S828 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9HB21 | PLEKHA1 | S166 | ochoa | Pleckstrin homology domain-containing family A member 1 (PH domain-containing family A member 1) (Tandem PH domain-containing protein 1) (TAPP-1) | Binds specifically to phosphatidylinositol 3,4-diphosphate (PtdIns3,4P2), but not to other phosphoinositides. May recruit other proteins to the plasma membrane. {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:11513726, ECO:0000269|PubMed:14516276}. |
Q9HCE3 | ZNF532 | T1136 | ochoa | Zinc finger protein 532 | May be involved in transcriptional regulation. |
Q9HCM1 | RESF1 | S1208 | ochoa | Retroelement silencing factor 1 | Plays a role in the regulation of imprinted gene expression, regulates repressive epigenetic modifications associated with SETDB1. Required for the recruitment or accumulation of SETDB1 to the endogenous retroviruses (ERVs) and maintenance of repressive chromatin configuration, contributing to a subset of the SETDB1-dependent ERV silencing in embryonic stem cells. {ECO:0000250|UniProtKB:Q5DTW7}. |
Q9HCU9 | BRMS1 | S19 | ochoa | Breast cancer metastasis-suppressor 1 | Transcriptional repressor. Down-regulates transcription activation by NF-kappa-B by promoting the deacetylation of RELA at 'Lys-310'. Promotes HDAC1 binding to promoter regions. Down-regulates expression of anti-apoptotic genes that are controlled by NF-kappa-B. Promotes apoptosis in cells that have inadequate adherence to a substrate, a process called anoikis, and may thereby inhibit metastasis. May be a mediator of metastasis suppression in breast carcinoma. {ECO:0000269|PubMed:14581478, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:20830743}. |
Q9NP64 | ZCCHC17 | S170 | ochoa | Zinc finger CCHC domain-containing protein 17 (Nucleolar protein of 40 kDa) (pNO40) (Pnn-interacting nucleolar protein) (Putative S1 RNA-binding domain protein) (PS1D protein) | None |
Q9NP80 | PNPLA8 | S511 | psp | Calcium-independent phospholipase A2-gamma (EC 3.1.1.-) (EC 3.1.1.5) (Intracellular membrane-associated calcium-independent phospholipase A2 gamma) (iPLA2-gamma) (PNPLA-gamma) (Patatin-like phospholipase domain-containing protein 8) (iPLA2-2) | Calcium-independent and membrane-bound phospholipase, that catalyzes the esterolytic cleavage of fatty acids from glycerophospholipids to yield free fatty acids and lysophospholipids, hence regulating membrane physical properties and the release of lipid second messengers and growth factors (PubMed:10744668, PubMed:10833412, PubMed:15695510, PubMed:15908428, PubMed:17213206, PubMed:18171998, PubMed:28442572). Hydrolyzes phosphatidylethanolamine, phosphatidylcholine and probably phosphatidylinositol with a possible preference for the former (PubMed:15695510). Also has a broad substrate specificity in terms of fatty acid moieties, hydrolyzing saturated and mono-unsaturated fatty acids at nearly equal rates from either the sn-1 or sn-2 position in diacyl phosphatidylcholine (PubMed:10744668, PubMed:10833412, PubMed:15695510, PubMed:15908428). However, has a weak activity toward polyunsaturated fatty acids at the sn-2 position, and thereby favors the production of 2-arachidonoyl lysophosphatidylcholine, a key branch point metabolite in eicosanoid signaling (PubMed:15908428). On the other hand, can produce arachidonic acid from the sn-1 position of diacyl phospholipid and from the sn-2 position of arachidonate-containing plasmalogen substrates (PubMed:15908428). Therefore, plays an important role in the mobilization of arachidonic acid in response to cellular stimuli and the generation of lipid second messengers (PubMed:15695510, PubMed:15908428). Can also hydrolyze lysophosphatidylcholine (PubMed:15695510). In the mitochondrial compartment, catalyzes the hydrolysis and release of oxidized aliphatic chains from cardiolipin and integrates mitochondrial bioenergetics and signaling. It is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition (PubMed:28442572). {ECO:0000250|UniProtKB:Q8K1N1, ECO:0000269|PubMed:10744668, ECO:0000269|PubMed:10833412, ECO:0000269|PubMed:15695510, ECO:0000269|PubMed:15908428, ECO:0000269|PubMed:17213206, ECO:0000269|PubMed:18171998, ECO:0000269|PubMed:28442572}. |
Q9NPB8 | GPCPD1 | S175 | ochoa | Glycerophosphocholine phosphodiesterase GPCPD1 (EC 3.1.4.2) (Glycerophosphodiester phosphodiesterase 5) | May be involved in the negative regulation of skeletal muscle differentiation, independently of its glycerophosphocholine phosphodiesterase activity. {ECO:0000250}. |
Q9NQ29 | LUC7L | S342 | ochoa | Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) | May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}. |
Q9NQB0 | TCF7L2 | S35 | ochoa | Transcription factor 7-like 2 (HMG box transcription factor 4) (T-cell-specific transcription factor 4) (T-cell factor 4) (TCF-4) (hTCF-4) | Participates in the Wnt signaling pathway and modulates MYC expression by binding to its promoter in a sequence-specific manner. Acts as a repressor in the absence of CTNNB1, and as activator in its presence. Activates transcription from promoters with several copies of the Tcf motif 5'-CCTTTGATC-3' in the presence of CTNNB1. TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7L2/TCF4 and CTNNB1. Expression of dominant-negative mutants results in cell-cycle arrest in G1. Necessary for the maintenance of the epithelial stem-cell compartment of the small intestine. {ECO:0000269|PubMed:12408868, ECO:0000269|PubMed:12727872, ECO:0000269|PubMed:19443654, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:9727977}. |
Q9NQG1 | MANBAL | S59 | ochoa | Protein MANBAL | None |
Q9NQG5 | RPRD1B | S164 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 1B (Cell cycle-related and expression-elevated protein in tumor) | Interacts with phosphorylated C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and participates in dephosphorylation of the CTD by RPAP2. Transcriptional regulator which enhances expression of CCND1. Promotes binding of RNA polymerase II to the CCDN1 promoter and to the termination region before the poly-A site but decreases its binding after the poly-A site. Prevents RNA polymerase II from reading through the 3' end termination site and may allow it to be recruited back to the promoter through promotion of the formation of a chromatin loop. Also enhances the transcription of a number of other cell cycle-related genes including CDK2, CDK4, CDK6 and cyclin-E but not CDKN1A, CDKN1B or cyclin-A. Promotes cell proliferation. {ECO:0000269|PubMed:22231121, ECO:0000269|PubMed:22264791, ECO:0000269|PubMed:24399136, ECO:0000269|PubMed:24997600}. |
Q9NQW6 | ANLN | S65 | ochoa | Anillin | Required for cytokinesis (PubMed:16040610). Essential for the structural integrity of the cleavage furrow and for completion of cleavage furrow ingression. Plays a role in bleb assembly during metaphase and anaphase of mitosis (PubMed:23870127). May play a significant role in podocyte cell migration (PubMed:24676636). {ECO:0000269|PubMed:10931866, ECO:0000269|PubMed:12479805, ECO:0000269|PubMed:15496454, ECO:0000269|PubMed:16040610, ECO:0000269|PubMed:16357138, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:24676636}. |
Q9NR48 | ASH1L | S1943 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NRL2 | BAZ1A | S714 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NSG2 | FIRRM | S744 | psp | FIGNL1-interacting regulator of recombination and mitosis (FIDGETIN-like-1 interacting protein) (FLIP) (POLO1-associating protein) | Regulates PLK1 kinase activity at kinetochores and promotes faithful chromosome segregation in prometaphase by bridging kinase and phosphatase activities (PubMed:34260926). Phosphorylation of FIRRM by PLK1 negatively regulates its interaction with the phosphatase, PPP1CC, thus creating a negative feedback loop for maintaining proper PLK1 kinase activity during mitosis (PubMed:34260926). In complex with FIGL1 may regulate homologous recombination (PubMed:29608566). {ECO:0000269|PubMed:29608566, ECO:0000269|PubMed:34260926}. |
Q9NTI5 | PDS5B | S1334 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NTI5 | PDS5B | T1337 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NTI5 | PDS5B | S1416 | ochoa | Sister chromatid cohesion protein PDS5 homolog B (Androgen-induced proliferation inhibitor) (Androgen-induced prostate proliferative shutoff-associated protein AS3) | Regulator of sister chromatid cohesion in mitosis which may stabilize cohesin complex association with chromatin. May couple sister chromatid cohesion during mitosis to DNA replication. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Plays a role in androgen-induced proliferative arrest in prostate cells. {ECO:0000269|PubMed:10963680, ECO:0000269|PubMed:15855230, ECO:0000269|PubMed:19696148}. |
Q9NU22 | MDN1 | S4754 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NUW8 | TDP1 | S148 | ochoa | Tyrosyl-DNA phosphodiesterase 1 (Tyr-DNA phosphodiesterase 1) (EC 3.1.4.-) | DNA repair enzyme that can remove a variety of covalent adducts from DNA through hydrolysis of a 3'-phosphodiester bond, giving rise to DNA with a free 3' phosphate. Catalyzes the hydrolysis of dead-end complexes between DNA and the topoisomerase I active site tyrosine residue. Hydrolyzes 3'-phosphoglycolates on protruding 3' ends on DNA double-strand breaks due to DNA damage by radiation and free radicals. Acts on blunt-ended double-strand DNA breaks and on single-stranded DNA. Has low 3'exonuclease activity and can remove a single nucleoside from the 3'end of DNA and RNA molecules with 3'hydroxyl groups. Has no exonuclease activity towards DNA or RNA with a 3'phosphate. {ECO:0000269|PubMed:12023295, ECO:0000269|PubMed:15111055, ECO:0000269|PubMed:15811850, ECO:0000269|PubMed:16141202, ECO:0000269|PubMed:22822062}. |
Q9NVI1 | FANCI | S726 | ochoa | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NVI1 | FANCI | S950 | ochoa | Fanconi anemia group I protein (Protein FACI) | Plays an essential role in the repair of DNA double-strand breaks by homologous recombination and in the repair of interstrand DNA cross-links (ICLs) by promoting FANCD2 monoubiquitination by FANCL and participating in recruitment to DNA repair sites (PubMed:17412408, PubMed:17460694, PubMed:17452773, PubMed:19111657, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (PubMed:19589784). Participates in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:25862789). {ECO:0000250|UniProtKB:B0I564, ECO:0000269|PubMed:17412408, ECO:0000269|PubMed:17452773, ECO:0000269|PubMed:17460694, ECO:0000269|PubMed:19111657, ECO:0000269|PubMed:19589784, ECO:0000269|PubMed:25862789, ECO:0000269|PubMed:36385258}. |
Q9NVR5 | DNAAF2 | S773 | ochoa | Protein kintoun (Dynein assembly factor 2, axonemal) | Required for cytoplasmic pre-assembly of axonemal dyneins, thereby playing a central role in motility in cilia and flagella. Involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment. {ECO:0000255|HAMAP-Rule:MF_03069}. |
Q9NVU7 | SDAD1 | S595 | ochoa | Protein SDA1 homolog (Nucleolar protein 130) (SDA1 domain-containing protein 1) (hSDA) | Required for 60S pre-ribosomal subunits export to the cytoplasm. {ECO:0000250}. |
Q9NW97 | TMEM51 | S127 | ochoa | Transmembrane protein 51 | None |
Q9NW97 | TMEM51 | S143 | ochoa | Transmembrane protein 51 | None |
Q9NWH9 | SLTM | S201 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWQ8 | PAG1 | S288 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NWQ8 | PAG1 | S318 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NWQ8 | PAG1 | S319 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NWV8 | BABAM1 | S20 | ochoa | BRISC and BRCA1-A complex member 1 (Mediator of RAP80 interactions and targeting subunit of 40 kDa) (New component of the BRCA1-A complex) | Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:24075985, PubMed:26195665). In these 2 complexes, it is probably required to maintain the stability of BABAM2 and help the 'Lys-63'-linked deubiquitinase activity mediated by BRCC3/BRCC36 component. The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). {ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749}. |
Q9NX94 | WBP1L | S228 | ochoa | WW domain binding protein 1-like (Outcome predictor in acute leukemia 1) | None |
Q9NY27 | PPP4R2 | S216 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NY72 | SCN3B | S196 | ochoa | Sodium channel regulatory subunit beta-3 | Regulatory subunit of multiple voltage-gated sodium (Nav) channels directly mediating the depolarization of excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na+ ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues. The accessory beta subunits participate in localization and functional modulation of the Nav channels (PubMed:20558140, PubMed:21051419). Modulates the activity of SCN2A/Nav1.2, causing a hyperpolarizing shift in the voltage-dependence of inactivation of the channel and increasing the fraction of channels operating in the fast gating mode (By similarity). Modulates the activity of SCN5A/Nav1.5 (PubMed:20558140, PubMed:21051419, PubMed:24567321, PubMed:31950564). Could also regulate the atypical sodium channel SCN7A/Nav2.1 (PubMed:35301303). Modulates the activity of SCN10A/Nav1.8, regulating its oligomerization and accelerating the recovery from inactivation (PubMed:14975698). {ECO:0000250|UniProtKB:Q9JK00, ECO:0000269|PubMed:14975698, ECO:0000269|PubMed:20558140, ECO:0000269|PubMed:21051419, ECO:0000269|PubMed:24567321, ECO:0000269|PubMed:31950564, ECO:0000269|PubMed:35301303}. |
Q9NYB0 | TERF2IP | S222 | ochoa | Telomeric repeat-binding factor 2-interacting protein 1 (TERF2-interacting telomeric protein 1) (TRF2-interacting telomeric protein 1) (Dopamine receptor-interacting protein 5) (Repressor/activator protein 1 homolog) (RAP1 homolog) (hRap1) | Acts both as a regulator of telomere function and as a transcription regulator. Involved in the regulation of telomere length and protection as a component of the shelterin complex (telosome). In contrast to other components of the shelterin complex, it is dispensible for telomere capping and does not participate in the protection of telomeres against non-homologous end-joining (NHEJ)-mediated repair. Instead, it is required to negatively regulate telomere recombination and is essential for repressing homology-directed repair (HDR), which can affect telomere length. Does not bind DNA directly: recruited to telomeric double-stranded 5'-TTAGGG-3' repeats via its interaction with TERF2. Independently of its function in telomeres, also acts as a transcription regulator: recruited to extratelomeric 5'-TTAGGG-3' sites via its association with TERF2 or other factors, and regulates gene expression. When cytoplasmic, associates with the I-kappa-B-kinase (IKK) complex and acts as a regulator of the NF-kappa-B signaling by promoting IKK-mediated phosphorylation of RELA/p65, leading to activate expression of NF-kappa-B target genes. {ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:19763083}. |
Q9NYD6 | HOXC10 | S115 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYF5 | FAM13B | S796 | ochoa | Protein FAM13B (GAP-like protein N61) | None |
Q9NYF5 | FAM13B | S797 | ochoa | Protein FAM13B (GAP-like protein N61) | None |
Q9NYF8 | BCLAF1 | S183 | ochoa | Bcl-2-associated transcription factor 1 (Btf) (BCLAF1 and THRAP3 family member 1) | Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. {ECO:0000269|PubMed:18794151}. |
Q9NZ53 | PODXL2 | S195 | ochoa | Podocalyxin-like protein 2 (Endoglycan) | Acts as a ligand for vascular selectins. Mediates rapid rolling of leukocytes over vascular surfaces through high affinity divalent cation-dependent interactions with E-, P- and L-selectins. {ECO:0000269|PubMed:18606703}. |
Q9NZ63 | C9orf78 | S101 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9NZT2 | OGFR | S54 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P0T7 | TMEM9 | S137 | ochoa | Proton-transporting V-type ATPase complex assembly regulator TMEM9 (v-ATPase assembly regulator TMEM9) (Dermal papilla-derived protein 4) (Transmembrane protein 9) (Protein TMEM9) | Transmembrane protein that binds to and facilitates the assembly of lysosomal proton-transporting V-type ATPase (v-ATPase), resulting in enhanced lysosomal acidification and trafficking (PubMed:30374053). By bringing the v-ATPase accessory protein ATP6AP2 and the v-ATPase subunit ATP6V0D1 together, allows v-ATPase complex formation and activation (PubMed:30374053). TMEM9-controlled vesicular acidification induces hyperactivation of Wnt/beta-catenin signaling, involved in development, tissue homeostasis and tissue regeneration, through lysosomal degradation of adenomatous polyposis coli/APC (PubMed:30374053, PubMed:32380568). In the liver, involved in hepatic regeneration (PubMed:32380568). {ECO:0000269|PubMed:30374053, ECO:0000269|PubMed:32380568}. |
Q9P270 | SLAIN2 | S134 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P2N5 | RBM27 | S657 | ochoa | RNA-binding protein 27 (RNA-binding motif protein 27) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000269|PubMed:31950173}. |
Q9P2R6 | RERE | S692 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UBB4 | ATXN10 | S448 | ochoa | Ataxin-10 (Brain protein E46 homolog) (Spinocerebellar ataxia type 10 protein) | May play a role in the regulation of cytokinesis (PubMed:21857149, PubMed:25666058). May play a role in signaling by stimulating protein glycosylation. Induces neuritogenesis by activating the Ras-MAP kinase pathway and is necessary for the survival of cerebellar neurons (By similarity). Does not appear to play a major role in ciliogenesis (By similarity). {ECO:0000250|UniProtKB:P28658, ECO:0000250|UniProtKB:Q9ER24, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:25666058}. |
Q9UDY2 | TJP2 | S1012 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY2 | TJP2 | S1068 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UDY2 | TJP2 | S1171 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UEG4 | ZNF629 | S40 | ochoa | Zinc finger protein 629 (Zinc finger protein 65) | May be involved in transcriptional regulation. |
Q9UEW8 | STK39 | S401 | ochoa | STE20/SPS1-related proline-alanine-rich protein kinase (Ste-20-related kinase) (EC 2.7.11.1) (DCHT) (Serine/threonine-protein kinase 39) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:21321328). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:12740379, PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Mediates the inhibition of SLC4A4, SLC26A6 as well as CFTR activities (By similarity). Phosphorylates RELT (By similarity). {ECO:0000250|UniProtKB:Q9Z1W9, ECO:0000269|PubMed:12740379, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:34289367}. |
Q9UEY8 | ADD3 | S461 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UEY8 | ADD3 | S618 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UGP8 | SEC63 | S585 | ochoa | Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) | Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}. |
Q9UHB6 | LIMA1 | S55 | ochoa | LIM domain and actin-binding protein 1 (Epithelial protein lost in neoplasm) | Actin-binding protein involved in actin cytoskeleton regulation and dynamics. Increases the number and size of actin stress fibers and inhibits membrane ruffling. Inhibits actin filament depolymerization. Bundles actin filaments, delays filament nucleation and reduces formation of branched filaments (PubMed:12566430, PubMed:33999101). Acts as a negative regulator of primary cilium formation (PubMed:32496561). Plays a role in cholesterol homeostasis. Influences plasma cholesterol levels through regulation of intestinal cholesterol absorption. May act as a scaffold protein by regulating NPC1L1 transportation, an essential protein for cholesterol absorption, to the plasma membrane by recruiting MYO5B to NPC1L1, and thus facilitates cholesterol uptake (By similarity). {ECO:0000250|UniProtKB:Q9ERG0, ECO:0000269|PubMed:12566430, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:33999101}. |
Q9UHR5 | SAP30BP | S69 | ochoa | SAP30-binding protein (Transcriptional regulator protein HCNGP) | Plays a role in transcriptional repression by promoting histone deacetylase activity, leading to deacetylation of histone H3 (PubMed:21221920). May be involved in the regulation of beta-2-microglobulin genes (By similarity). {ECO:0000250|UniProtKB:Q02614, ECO:0000269|PubMed:21221920}.; FUNCTION: (Microbial infection) Involved in transcriptional repression of HHV-1 genes TK and gC. {ECO:0000269|PubMed:21221920}. |
Q9UHR6 | ZNHIT2 | S149 | ochoa | Zinc finger HIT domain-containing protein 2 (Protein FON) | May act as a bridging factor mediating the interaction between the R2TP/Prefoldin-like (R2TP/PFDL) complex and U5 small nuclear ribonucleoprotein (U5 snRNP) (PubMed:28561026). Required for the interaction of R2TP complex subunit RPAP3 and prefoldin-like subunit URI1 with U5 snRNP proteins EFTUD2 and PRPF8 (PubMed:28561026). May play a role in regulating the composition of the U5 snRNP complex (PubMed:28561026). {ECO:0000269|PubMed:28561026}. |
Q9UHX1 | PUF60 | S428 | ochoa | Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) | DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}. |
Q9UID3 | VPS51 | S640 | ochoa | Vacuolar protein sorting-associated protein 51 homolog (Another new gene 2 protein) (Protein fat-free homolog) | Acts as a component of the GARP complex that is involved in retrograde transport from early and late endosomes to the trans-Golgi network (TGN). The GARP complex is required for the maintenance of protein retrieval from endosomes to the TGN, acid hydrolase sorting, lysosome function, endosomal cholesterol traffic and autophagy. VPS51 participates in retrograde transport of acid hydrolase receptors, likely by promoting tethering and SNARE-dependent fusion of endosome-derived carriers to the TGN (PubMed:20685960). Acts as a component of the EARP complex that is involved in endocytic recycling. The EARP complex associates with Rab4-positive endosomes and promotes recycling of internalized transferrin receptor (TFRC) to the plasma membrane (PubMed:25799061). {ECO:0000269|PubMed:20685960, ECO:0000269|PubMed:25799061}. |
Q9UIQ6 | LNPEP | S73 | ochoa | Leucyl-cystinyl aminopeptidase (Cystinyl aminopeptidase) (EC 3.4.11.3) (Insulin-regulated membrane aminopeptidase) (Insulin-responsive aminopeptidase) (IRAP) (Oxytocinase) (OTase) (Placental leucine aminopeptidase) (P-LAP) [Cleaved into: Leucyl-cystinyl aminopeptidase, pregnancy serum form] | Release of an N-terminal amino acid, cleaves before cysteine, leucine as well as other amino acids. Degrades peptide hormones such as oxytocin, vasopressin and angiotensin III, and plays a role in maintaining homeostasis during pregnancy. May be involved in the inactivation of neuronal peptides in the brain. Cleaves Met-enkephalin and dynorphin. Binds angiotensin IV and may be the angiotensin IV receptor in the brain. {ECO:0000269|PubMed:11389728, ECO:0000269|PubMed:11707427, ECO:0000269|PubMed:1731608}. |
Q9UJV9 | DDX41 | S68 | ochoa | Probable ATP-dependent RNA helicase DDX41 (EC 3.6.4.13) (DEAD box protein 41) (DEAD box protein abstrakt homolog) | Multifunctional protein that participates in many aspects of cellular RNA metabolism. Plays pivotal roles in innate immune sensing and hematopoietic homeostasis (PubMed:34473945). Recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses (PubMed:23222971). Mechanistically, phosphorylation by BTK allows binding to dsDNA leading to interaction with STING1 (PubMed:25704810). Modulates the homeostasis of dsDNA through its ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity (PubMed:35613581). In turn, induces STING1-mediated type I interferon and cytokine responses to DNA and DNA viruses (PubMed:35613581). Selectively modulates the transcription of certain immunity-associated genes by regulating their alternative splicing (PubMed:33650667). Binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, and prevents their accumulation, thereby maintaining genome stability (PubMed:36229594). Also participates in pre-mRNA splicing, translational regulation and snoRNA processing, which is essential for ribosome biogenesis (PubMed:36229594, PubMed:36780110). {ECO:0000250|UniProtKB:Q91VN6, ECO:0000269|PubMed:23222971, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:25920683, ECO:0000269|PubMed:33650667, ECO:0000269|PubMed:34473945, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:36229594, ECO:0000269|PubMed:36780110}. |
Q9UJY4 | GGA2 | S402 | ochoa | ADP-ribosylation factor-binding protein GGA2 (Gamma-adaptin-related protein 2) (Golgi-localized, gamma ear-containing, ARF-binding protein 2) (VHS domain and ear domain of gamma-adaptin) (Vear) | Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (DXXLL) motif (PubMed:10747088). Mediates export of the GPCR receptor ADRA2B to the cell surface (PubMed:27901063). Regulates retrograde transport of phosphorylated form of BACE1 from endosomes to the trans-Golgi network (PubMed:15615712). {ECO:0000269|PubMed:10747088, ECO:0000269|PubMed:15615712, ECO:0000269|PubMed:27901063}. |
Q9UK55 | SERPINA10 | S56 | ochoa | Protein Z-dependent protease inhibitor (PZ-dependent protease inhibitor) (PZI) (Serpin A10) | Inhibits activity of the coagulation protease factor Xa in the presence of PROZ, calcium and phospholipids. Also inhibits factor XIa in the absence of cofactors. {ECO:0000269|PubMed:11049983}. |
Q9UKE5 | TNIK | S996 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKL3 | CASP8AP2 | S942 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKV3 | ACIN1 | S376 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKV3 | ACIN1 | S377 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKX2 | MYH2 | S1134 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKX2 | MYH2 | S1921 | ochoa|psp | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKY1 | ZHX1 | S635 | ochoa | Zinc fingers and homeoboxes protein 1 | Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}. |
Q9UL42 | PNMA2 | S340 | ochoa | Paraneoplastic antigen Ma2 (40 kDa neuronal protein) (Onconeuronal antigen Ma2) (Paraneoplastic neuronal antigen MM2) | None |
Q9UL42 | PNMA2 | S345 | ochoa | Paraneoplastic antigen Ma2 (40 kDa neuronal protein) (Onconeuronal antigen Ma2) (Paraneoplastic neuronal antigen MM2) | None |
Q9ULD4 | BRPF3 | S886 | ochoa | Bromodomain and PHD finger-containing protein 3 | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:26620551, PubMed:26677226). Plays a role in DNA replication initiation by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac), thereby facilitating the activation of replication origins (PubMed:26620551). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:16387653). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:26677226}. |
Q9ULF5 | SLC39A10 | S608 | ochoa | Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) | Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}. |
Q9ULH0 | KIDINS220 | S1486 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9ULL0 | KIAA1210 | S472 | ochoa | Acrosomal protein KIAA1210 | None |
Q9ULL1 | PLEKHG1 | S1295 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULW0 | TPX2 | S285 | ochoa | Targeting protein for Xklp2 (Differentially expressed in cancerous and non-cancerous lung cells 2) (DIL-2) (Hepatocellular carcinoma-associated antigen 519) (Hepatocellular carcinoma-associated antigen 90) (Protein fls353) (Restricted expression proliferation-associated protein 100) (p100) | Spindle assembly factor required for normal assembly of mitotic spindles. Required for normal assembly of microtubules during apoptosis. Required for chromatin and/or kinetochore dependent microtubule nucleation. Mediates AURKA localization to spindle microtubules (PubMed:18663142, PubMed:19208764, PubMed:37728657). Activates AURKA by promoting its autophosphorylation at 'Thr-288' and protects this residue against dephosphorylation (PubMed:18663142, PubMed:19208764). TPX2 is inactivated upon binding to importin-alpha (PubMed:26165940). At the onset of mitosis, GOLGA2 interacts with importin-alpha, liberating TPX2 from importin-alpha, allowing TPX2 to activate AURKA kinase and stimulate local microtubule nucleation (PubMed:26165940). {ECO:0000269|PubMed:18663142, ECO:0000269|PubMed:19208764, ECO:0000269|PubMed:26165940}. |
Q9UNF1 | MAGED2 | S194 | ochoa | Melanoma-associated antigen D2 (11B6) (Breast cancer-associated gene 1 protein) (BCG-1) (Hepatocellular carcinoma-associated protein JCL-1) (MAGE-D2 antigen) | Regulates the expression, localization to the plasma membrane and function of the sodium chloride cotransporters SLC12A1 and SLC12A3, two key components of salt reabsorption in the distal renal tubule. {ECO:0000269|PubMed:27120771}. |
Q9UNN4 | GTF2A1L | S324 | ochoa | TFIIA-alpha and beta-like factor (General transcription factor II A, 1-like factor) | May function as a testis specific transcription factor. Binds DNA in conjunction with GTF2A2 and TBP (the TATA-binding protein) and together with GTF2A2, allows mRNA transcription. {ECO:0000269|PubMed:10364255}. |
Q9UNN5 | FAF1 | S556 | ochoa|psp | FAS-associated factor 1 (hFAF1) (UBX domain-containing protein 12) (UBX domain-containing protein 3A) | Ubiquitin-binding protein (PubMed:19722279). Required for the progression of DNA replication forks by targeting DNA replication licensing factor CDT1 for degradation (PubMed:26842564). Potentiates but cannot initiate FAS-induced apoptosis (By similarity). {ECO:0000250|UniProtKB:P54731, ECO:0000269|PubMed:19722279, ECO:0000269|PubMed:26842564}. |
Q9UNZ2 | NSFL1C | Y95 | ochoa | NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) | Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}. |
Q9UPP1 | PHF8 | S834 | ochoa | Histone lysine demethylase PHF8 (EC 1.14.11.27) (EC 1.14.11.65) (PHD finger protein 8) ([histone H3]-dimethyl-L-lysine(36) demethylase PHF8) ([histone H3]-dimethyl-L-lysine(9) demethylase PHF8) | Histone lysine demethylase with selectivity for the di- and monomethyl states that plays a key role cell cycle progression, rDNA transcription and brain development. Demethylates mono- and dimethylated histone H3 'Lys-9' residue (H3K9Me1 and H3K9Me2), dimethylated H3 'Lys-27' (H3K27Me2) and monomethylated histone H4 'Lys-20' residue (H4K20Me1). Acts as a transcription activator as H3K9Me1, H3K9Me2, H3K27Me2 and H4K20Me1 are epigenetic repressive marks. Involved in cell cycle progression by being required to control G1-S transition. Acts as a coactivator of rDNA transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes. Required for brain development, probably by regulating expression of neuron-specific genes. Only has activity toward H4K20Me1 when nucleosome is used as a substrate and when not histone octamer is used as substrate. May also have weak activity toward dimethylated H3 'Lys-36' (H3K36Me2), however, the relevance of this result remains unsure in vivo. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: has weak activity toward H3K9Me2 in absence of H3K4me3, while it has high activity toward H3K9me2 when binding H3K4me3. Positively modulates transcription of histone demethylase KDM5C, acting synergistically with transcription factor ARX; synergy may be related to enrichment of histone H3K4me3 in regulatory elements. {ECO:0000269|PubMed:19843542, ECO:0000269|PubMed:20023638, ECO:0000269|PubMed:20101266, ECO:0000269|PubMed:20208542, ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:20421419, ECO:0000269|PubMed:20531378, ECO:0000269|PubMed:20548336, ECO:0000269|PubMed:20622853, ECO:0000269|PubMed:20622854, ECO:0000269|PubMed:31691806}. |
Q9UPW8 | UNC13A | S443 | ochoa | Protein unc-13 homolog A (Munc13-1) | Plays a role in vesicle maturation during exocytosis as a target of the diacylglycerol second messenger pathway. Involved in neurotransmitter release by acting in synaptic vesicle priming prior to vesicle fusion and participates in the activity-dependent refilling of readily releasable vesicle pool (RRP). Essential for synaptic vesicle maturation in most excitatory/glutamatergic but not inhibitory/GABA-mediated synapses. Facilitates neuronal dense core vesicles fusion as well as controls the location and efficiency of their synaptic release (By similarity). Also involved in secretory granule priming in insulin secretion. Plays a role in dendrite formation by melanocytes (PubMed:23999003). {ECO:0000250|UniProtKB:Q4KUS2, ECO:0000250|UniProtKB:Q62768, ECO:0000269|PubMed:23999003}. |
Q9UPZ3 | HPS5 | S602 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9Y297 | BTRC | S158 | psp | F-box/WD repeat-containing protein 1A (E3RSIkappaB) (Epididymis tissue protein Li 2a) (F-box and WD repeats protein beta-TrCP) (pIkappaBalpha-E3 receptor subunit) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). Recognizes and binds to phosphorylated target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). SCF(BTRC) mediates the ubiquitination of CTNNB1 and participates in Wnt signaling (PubMed:12077367, PubMed:12820959). SCF(BTRC) mediates the ubiquitination of phosphorylated NFKB1, ATF4, CDC25A, DLG1, FBXO5, PER1, SMAD3, SMAD4, SNAI1 and probably NFKB2 (PubMed:10835356, PubMed:11238952, PubMed:14603323, PubMed:14681206). SCF(BTRC) mediates the ubiquitination of NFKBIA, NFKBIB and NFKBIE; the degradation frees the associated NFKB1 to translocate into the nucleus and to activate transcription (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:9859996). Ubiquitination of NFKBIA occurs at 'Lys-21' and 'Lys-22' (PubMed:10066435). The SCF(FBXW11) complex also regulates NF-kappa-B by mediating ubiquitination of phosphorylated NFKB1: specifically ubiquitinates the p105 form of NFKB1, leading to its degradation (PubMed:10835356, PubMed:11158290, PubMed:14673179). SCF(BTRC) mediates the ubiquitination of CEP68; this is required for centriole separation during mitosis (PubMed:25503564, PubMed:25704143). SCF(BTRC) mediates the ubiquitination and subsequent degradation of nuclear NFE2L1 (By similarity). Has an essential role in the control of the clock-dependent transcription via degradation of phosphorylated PER1 and PER2 (PubMed:15917222). May be involved in ubiquitination and subsequent proteasomal degradation through a DBB1-CUL4 E3 ubiquitin-protein ligase. Required for activation of NFKB-mediated transcription by IL1B, MAP3K14, MAP3K1, IKBKB and TNF. Required for proteolytic processing of GLI3 (PubMed:16371461). Mediates ubiquitination of REST, thereby leading to its proteasomal degradation (PubMed:18354482, PubMed:21258371). SCF(BTRC) mediates the ubiquitination and subsequent proteasomal degradation of KLF4; thereby negatively regulating cell pluripotency maintenance and embryogenesis (By similarity). SCF(BTRC) acts as a regulator of mTORC1 signaling pathway by catalyzing ubiquitination and subsequent proteasomal degradation of phosphorylated DEPTOR, TFE3 and MITF (PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:33110214, PubMed:36608670). SCF(BTRC) directs 'Lys-48'-linked ubiquitination of UBR2 in the T-cell receptor signaling pathway (PubMed:38225265). {ECO:0000250|UniProtKB:Q3ULA2, ECO:0000269|PubMed:10066435, ECO:0000269|PubMed:10497169, ECO:0000269|PubMed:10644755, ECO:0000269|PubMed:10835356, ECO:0000269|PubMed:11158290, ECO:0000269|PubMed:11238952, ECO:0000269|PubMed:11359933, ECO:0000269|PubMed:11994270, ECO:0000269|PubMed:12077367, ECO:0000269|PubMed:12791267, ECO:0000269|PubMed:12820959, ECO:0000269|PubMed:12902344, ECO:0000269|PubMed:14603323, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:14681206, ECO:0000269|PubMed:14988407, ECO:0000269|PubMed:15448698, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16371461, ECO:0000269|PubMed:18354482, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:22087322, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:38225265, ECO:0000269|PubMed:9859996, ECO:0000269|PubMed:9990852}. |
Q9Y2G8 | DNAJC16 | S727 | ochoa | DnaJ homolog subfamily C member 16 (Endoplasmic reticulum DNA J domain-containing protein 8) (ER-resident protein ERdj8) (ERdj8) | Plays an important role in regulating the size of autophagosomes during the formation process. {ECO:0000269|PubMed:32492081}. |
Q9Y2J2 | EPB41L3 | S867 | ochoa | Band 4.1-like protein 3 (4.1B) (Differentially expressed in adenocarcinoma of the lung protein 1) (DAL-1) (Erythrocyte membrane protein band 4.1-like 3) [Cleaved into: Band 4.1-like protein 3, N-terminally processed] | Tumor suppressor that inhibits cell proliferation and promotes apoptosis. Modulates the activity of protein arginine N-methyltransferases, including PRMT3 and PRMT5. {ECO:0000269|PubMed:15334060, ECO:0000269|PubMed:15737618, ECO:0000269|PubMed:16420693, ECO:0000269|PubMed:9892180}. |
Q9Y2K7 | KDM2A | S869 | ochoa | Lysine-specific demethylase 2A (EC 1.14.11.27) (CXXC-type zinc finger protein 8) (F-box and leucine-rich repeat protein 11) (F-box protein FBL7) (F-box protein Lilina) (F-box/LRR-repeat protein 11) (JmjC domain-containing histone demethylation protein 1A) ([Histone-H3]-lysine-36 demethylase 1A) | Histone demethylase that specifically demethylates 'Lys-36' of histone H3, thereby playing a central role in histone code. Preferentially demethylates dimethylated H3 'Lys-36' residue while it has weak or no activity for mono- and tri-methylated H3 'Lys-36'. May also recognize and bind to some phosphorylated proteins and promote their ubiquitination and degradation. Required to maintain the heterochromatic state. Associates with centromeres and represses transcription of small non-coding RNAs that are encoded by the clusters of satellite repeats at the centromere. Required to sustain centromeric integrity and genomic stability, particularly during mitosis. Regulates circadian gene expression by repressing the transcriptional activator activity of CLOCK-BMAL1 heterodimer and RORA in a catalytically-independent manner (PubMed:26037310). {ECO:0000269|PubMed:16362057, ECO:0000269|PubMed:19001877, ECO:0000269|PubMed:26037310, ECO:0000269|PubMed:28262558}. |
Q9Y2L9 | LRCH1 | S365 | ochoa | Leucine-rich repeat and calponin homology domain-containing protein 1 (Calponin homology domain-containing protein 1) (Neuronal protein 81) (NP81) | Acts as a negative regulator of GTPase CDC42 by sequestering CDC42-guanine exchange factor DOCK8. Probably by preventing CDC42 activation, negatively regulates CD4(+) T-cell migration. {ECO:0000269|PubMed:28028151}. |
Q9Y2W1 | THRAP3 | S499 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W1 | THRAP3 | S805 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y3S2 | ZNF330 | S291 | ochoa | Zinc finger protein 330 (Nucleolar autoantigen 36) (Nucleolar cysteine-rich protein) | None |
Q9Y487 | ATP6V0A2 | S157 | ochoa | V-type proton ATPase 116 kDa subunit a 2 (V-ATPase 116 kDa subunit a 2) (Lysosomal H(+)-transporting ATPase V0 subunit a 2) (TJ6) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Essential component of the endosomal pH-sensing machinery (PubMed:16415858). May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (PubMed:18157129). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:16415858, ECO:0000269|PubMed:18157129, ECO:0000269|PubMed:28296633}. |
Q9Y487 | ATP6V0A2 | S704 | ochoa | V-type proton ATPase 116 kDa subunit a 2 (V-ATPase 116 kDa subunit a 2) (Lysosomal H(+)-transporting ATPase V0 subunit a 2) (TJ6) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Essential component of the endosomal pH-sensing machinery (PubMed:16415858). May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (PubMed:18157129). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:16415858, ECO:0000269|PubMed:18157129, ECO:0000269|PubMed:28296633}. |
Q9Y490 | TLN1 | S423 | ochoa | Talin-1 | High molecular weight cytoskeletal protein concentrated at regions of cell-matrix and cell-cell contacts. Involved in connections of major cytoskeletal structures to the plasma membrane. With KANK1 co-organize the assembly of cortical microtubule stabilizing complexes (CMSCs) positioned to control microtubule-actin crosstalk at focal adhesions (FAs) rims. {ECO:0000250|UniProtKB:P26039}. |
Q9Y496 | KIF3A | S383 | ochoa | Kinesin-like protein KIF3A (Microtubule plus end-directed kinesin motor 3A) | Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. {ECO:0000250|UniProtKB:P28741}. |
Q9Y4B5 | MTCL1 | S651 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y520 | PRRC2C | S917 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y520 | PRRC2C | S1502 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y5B9 | SUPT16H | S1015 | ochoa | FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}. |
Q9Y5B9 | SUPT16H | S1017 | ochoa | FACT complex subunit SPT16 (Chromatin-specific transcription elongation factor 140 kDa subunit) (FACT 140 kDa subunit) (FACTp140) (Facilitates chromatin transcription complex subunit SPT16) (hSPT16) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9836642}. |
Q9Y623 | MYH4 | S1132 | ochoa | Myosin-4 (Myosin heavy chain 2b) (MyHC-2b) (Myosin heavy chain 4) (Myosin heavy chain IIb) (MyHC-IIb) (Myosin heavy chain, skeletal muscle, fetal) | Muscle contraction. |
Q9Y6J0 | CABIN1 | S1439 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
U3KPZ7 | LOC127814297 | S602 | ochoa | RNA-binding protein 27 (RNA-binding motif protein 27) | May be involved in the turnover of nuclear polyadenylated (pA+) RNA. {ECO:0000256|ARBA:ARBA00043866}. |
P25205 | MCM3 | S34 | Sugiyama | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P35579 | MYH9 | S1892 | Sugiyama | Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}. |
O60506 | SYNCRIP | S359 | Sugiyama | Heterogeneous nuclear ribonucleoprotein Q (hnRNP Q) (Glycine- and tyrosine-rich RNA-binding protein) (GRY-RBP) (NS1-associated protein 1) (Synaptotagmin-binding, cytoplasmic RNA-interacting protein) | Heterogenous nuclear ribonucleoprotein (hnRNP) implicated in mRNA processing mechanisms. Component of the CRD-mediated complex that promotes MYC mRNA stability. Isoform 1, isoform 2 and isoform 3 are associated in vitro with pre-mRNA, splicing intermediates and mature mRNA protein complexes. Isoform 1 binds to apoB mRNA AU-rich sequences. Isoform 1 is part of the APOB mRNA editosome complex and may modulate the postranscriptional C to U RNA-editing of the APOB mRNA through either by binding to A1CF (APOBEC1 complementation factor), to APOBEC1 or to RNA itself. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. Interacts in vitro preferentially with poly(A) and poly(U) RNA sequences. Isoform 3 may be involved in cytoplasmic vesicle-based mRNA transport through interaction with synaptotagmins. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation; seems not to be essential for GAIT complex function. {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:11134005, ECO:0000269|PubMed:11352648, ECO:0000269|PubMed:11574476, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:23071094}. |
P30304 | CDC25A | S239 | iPTMNet | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31327 | CPS1 | S564 | Sugiyama | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
O75534 | CSDE1 | S598 | Sugiyama | Cold shock domain-containing protein E1 (N-ras upstream gene protein) (Protein UNR) | RNA-binding protein involved in translationally coupled mRNA turnover (PubMed:11051545, PubMed:15314026). Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain (PubMed:11051545, PubMed:15314026). Required for efficient formation of stress granules (PubMed:29395067). {ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:15314026, ECO:0000269|PubMed:29395067}.; FUNCTION: (Microbial infection) Required for internal initiation of translation of human rhinovirus RNA. {ECO:0000269|PubMed:10049359}. |
P20618 | PSMB1 | S151 | Sugiyama | Proteasome subunit beta type-1 (Macropain subunit C5) (Multicatalytic endopeptidase complex subunit C5) (Proteasome component C5) (Proteasome gamma chain) (Proteasome subunit beta-6) (beta-6) | Non-catalytic component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P33240 | CSTF2 | S37 | Sugiyama | Cleavage stimulation factor subunit 2 (CF-1 64 kDa subunit) (Cleavage stimulation factor 64 kDa subunit) (CSTF 64 kDa subunit) (CstF-64) | One of the multiple factors required for polyadenylation and 3'-end cleavage of mammalian pre-mRNAs. This subunit is directly involved in the binding to pre-mRNAs. {ECO:0000269|PubMed:32816001, ECO:0000269|PubMed:9199325}. |
P62942 | FKBP1A | S68 | Sugiyama | Peptidyl-prolyl cis-trans isomerase FKBP1A (PPIase FKBP1A) (EC 5.2.1.8) (12 kDa FK506-binding protein) (12 kDa FKBP) (FKBP-12) (Calstabin-1) (FK506-binding protein 1A) (FKBP-1A) (Immunophilin FKBP12) (Rotamase) | Keeps in an inactive conformation TGFBR1, the TGF-beta type I serine/threonine kinase receptor, preventing TGF-beta receptor activation in absence of ligand. Recruits SMAD7 to ACVR1B which prevents the association of SMAD2 and SMAD3 with the activin receptor complex, thereby blocking the activin signal. May modulate the RYR1 calcium channel activity. PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides. {ECO:0000269|PubMed:16720724, ECO:0000269|PubMed:1696686, ECO:0000269|PubMed:1701173, ECO:0000269|PubMed:9233797}. |
Q07157 | TJP1 | S1360 | Sugiyama | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q92621 | NUP205 | S1857 | Sugiyama | Nuclear pore complex protein Nup205 (205 kDa nucleoporin) (Nucleoporin Nup205) | Plays a role in the nuclear pore complex (NPC) assembly and/or maintenance (PubMed:9348540). May anchor NUP62 and other nucleoporins, but not NUP153 and TPR, to the NPC (PubMed:15229283). In association with TMEM209, may be involved in nuclear transport of various nuclear proteins in addition to MYC (PubMed:22719065). {ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22719065, ECO:0000269|PubMed:9348540}. |
Q9HCC0 | MCCC2 | S523 | Sugiyama | Methylcrotonoyl-CoA carboxylase beta chain, mitochondrial (MCCase subunit beta) (EC 6.4.1.4) (3-methylcrotonyl-CoA carboxylase 2) (3-methylcrotonyl-CoA carboxylase non-biotin-containing subunit) (3-methylcrotonyl-CoA:carbon dioxide ligase subunit beta) | Carboxyltransferase subunit of the 3-methylcrotonyl-CoA carboxylase, an enzyme that catalyzes the conversion of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA, a critical step for leucine and isovaleric acid catabolism. {ECO:0000269|PubMed:17360195}. |
P08708 | RPS17 | Y84 | Sugiyama | Small ribosomal subunit protein eS17 (40S ribosomal protein S17) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:34516797}. |
Q02809 | PLOD1 | S342 | Sugiyama | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 (EC 1.14.11.4) (Lysyl hydroxylase 1) (LH1) | Part of a complex composed of PLOD1, P3H3 and P3H4 that catalyzes hydroxylation of lysine residues in collagen alpha chains and is required for normal assembly and cross-linkling of collagen fibrils (By similarity). Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens (PubMed:10686424, PubMed:15854030, PubMed:8621606). These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links (Probable). {ECO:0000250|UniProtKB:Q9R0E2, ECO:0000269|PubMed:10686424, ECO:0000269|PubMed:15854030, ECO:0000269|PubMed:8621606, ECO:0000305}. |
Q9NW68 | BSDC1 | S232 | Sugiyama | BSD domain-containing protein 1 | None |
O43283 | MAP3K13 | S825 | Sugiyama | Mitogen-activated protein kinase kinase kinase 13 (EC 2.7.11.25) (Leucine zipper-bearing kinase) (Mixed lineage kinase) (MLK) | Activates the JUN N-terminal pathway through activation of the MAP kinase kinase MAP2K7. Acts synergistically with PRDX3 to regulate the activation of NF-kappa-B in the cytosol. This activation is kinase-dependent and involves activating the IKK complex, the IKBKB-containing complex that phosphorylates inhibitors of NF-kappa-B. {ECO:0000269|PubMed:11726277, ECO:0000269|PubMed:12492477, ECO:0000269|PubMed:9353328}. |
O60566 | BUB1B | S220 | Sugiyama | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
P52907 | CAPZA1 | S119 | Sugiyama | F-actin-capping protein subunit alpha-1 (CapZ alpha-1) | F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. May play a role in the formation of epithelial cell junctions (PubMed:22891260). Forms, with CAPZB, the barbed end of the fast growing ends of actin filaments in the dynactin complex and stabilizes dynactin structure. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:A0PFK5, ECO:0000269|PubMed:22891260}. |
Q4G0X9 | CCDC40 | S553 | Sugiyama | Coiled-coil domain-containing protein 40 | Required for assembly of dynein regulatory complex (DRC) and inner dynein arm (IDA) complexes, which are responsible for ciliary beat regulation, thereby playing a central role in motility in cilia and flagella (PubMed:21131974). Probably acts together with CCDC39 to form a molecular ruler that determines the 96 nanometer (nm) repeat length and arrangements of components in cilia and flagella (By similarity). Not required for outer dynein arm complexes assembly. Required for axonemal recruitment of CCDC39 (PubMed:21131974). {ECO:0000250|UniProtKB:A8IQT2, ECO:0000269|PubMed:21131974}. |
P55072 | VCP | Y203 | Sugiyama | Transitional endoplasmic reticulum ATPase (TER ATPase) (EC 3.6.4.6) (15S Mg(2+)-ATPase p97 subunit) (Valosin-containing protein) (VCP) | Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A. Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Mediates the endoplasmic reticulum-associated degradation of CHRNA3 in cortical neurons as part of the STUB1-VCP-UBXN2A complex (PubMed:26265139). Involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for proteasomal degradation (PubMed:26565908). Involved in clearance process by mediating G3BP1 extraction from stress granules (PubMed:29804830, PubMed:34739333). Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites (PubMed:22020440, PubMed:22120668). Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage (PubMed:23042605, PubMed:23042607). Together with SPRTN metalloprotease, involved in the repair of covalent DNA-protein cross-links (DPCs) during DNA synthesis (PubMed:32152270). Involved in interstrand cross-link repair in response to replication stress by mediating unloading of the ubiquitinated CMG helicase complex (By similarity). Mediates extraction of PARP1 trapped to chromatin: recognizes and binds ubiquitinated PARP1 and promotes its removal (PubMed:35013556). Required for cytoplasmic retrotranslocation of stressed/damaged mitochondrial outer-membrane proteins and their subsequent proteasomal degradation (PubMed:16186510, PubMed:21118995). Essential for the maturation of ubiquitin-containing autophagosomes and the clearance of ubiquitinated protein by autophagy (PubMed:20104022, PubMed:27753622). Acts as a negative regulator of type I interferon production by interacting with RIGI: interaction takes place when RIGI is ubiquitinated via 'Lys-63'-linked ubiquitin on its CARD domains, leading to recruit RNF125 and promote ubiquitination and degradation of RIGI (PubMed:26471729). May play a role in the ubiquitin-dependent sorting of membrane proteins to lysosomes where they undergo degradation (PubMed:21822278). May more particularly play a role in caveolins sorting in cells (PubMed:21822278, PubMed:23335559). By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). {ECO:0000250|UniProtKB:P23787, ECO:0000269|PubMed:15456787, ECO:0000269|PubMed:16168377, ECO:0000269|PubMed:16186510, ECO:0000269|PubMed:20104022, ECO:0000269|PubMed:21118995, ECO:0000269|PubMed:21822278, ECO:0000269|PubMed:22020440, ECO:0000269|PubMed:22120668, ECO:0000269|PubMed:22607976, ECO:0000269|PubMed:23042605, ECO:0000269|PubMed:23042607, ECO:0000269|PubMed:23335559, ECO:0000269|PubMed:26265139, ECO:0000269|PubMed:26471729, ECO:0000269|PubMed:26565908, ECO:0000269|PubMed:26692333, ECO:0000269|PubMed:27753622, ECO:0000269|PubMed:29804830, ECO:0000269|PubMed:32152270, ECO:0000269|PubMed:34739333, ECO:0000269|PubMed:35013556}. |
O43852 | CALU | S219 | Sugiyama | Calumenin (Crocalbin) (IEF SSP 9302) | Involved in regulation of vitamin K-dependent carboxylation of multiple N-terminal glutamate residues. Seems to inhibit gamma-carboxylase GGCX. Binds 7 calcium ions with a low affinity (By similarity). {ECO:0000250}. |
P07814 | EPRS1 | S1029 | Sugiyama | Bifunctional glutamate/proline--tRNA ligase (Bifunctional aminoacyl-tRNA synthetase) (Cell proliferation-inducing gene 32 protein) (Glutamatyl-prolyl-tRNA synthetase) [Includes: Glutamate--tRNA ligase (EC 6.1.1.17) (Glutamyl-tRNA synthetase) (GluRS); Proline--tRNA ligase (EC 6.1.1.15) (Prolyl-tRNA synthetase)] | Multifunctional protein which primarily functions within the aminoacyl-tRNA synthetase multienzyme complex, also known as multisynthetase complex. Within the complex it catalyzes the attachment of both L-glutamate and L-proline to their cognate tRNAs in a two-step reaction where the amino acid is first activated by ATP to form a covalent intermediate with AMP. Subsequently, the activated amino acid is transferred to the acceptor end of the cognate tRNA to form L-glutamyl-tRNA(Glu) and L-prolyl-tRNA(Pro) (PubMed:23263184, PubMed:24100331, PubMed:29576217, PubMed:3290852, PubMed:37212275). Upon interferon-gamma stimulation, EPRS1 undergoes phosphorylation, causing its dissociation from the aminoacyl-tRNA synthetase multienzyme complex. It is recruited to form the GAIT complex, which binds to stem loop-containing GAIT elements found in the 3'-UTR of various inflammatory mRNAs, such as ceruloplasmin. The GAIT complex inhibits the translation of these mRNAs, allowing interferon-gamma to redirect the function of EPRS1 from protein synthesis to translation inhibition in specific cell contexts (PubMed:15479637, PubMed:23071094). Furthermore, it can function as a downstream effector in the mTORC1 signaling pathway, by promoting the translocation of SLC27A1 from the cytoplasm to the plasma membrane where it mediates the uptake of long-chain fatty acid by adipocytes. Thereby, EPRS1 also plays a role in fat metabolism and more indirectly influences lifespan (PubMed:28178239). {ECO:0000269|PubMed:15479637, ECO:0000269|PubMed:23071094, ECO:0000269|PubMed:23263184, ECO:0000269|PubMed:24100331, ECO:0000269|PubMed:28178239, ECO:0000269|PubMed:29576217, ECO:0000269|PubMed:3290852, ECO:0000269|PubMed:37212275}. |
Q9BTC0 | DIDO1 | Y1385 | Sugiyama | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
P30281 | CCND3 | S43 | Sugiyama | G1/S-specific cyclin-D3 | Regulatory component of the cyclin D3-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:8114739). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:8114739). Hypophosphorylates RB1 in early G(1) phase (PubMed:8114739). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:8114739). Component of the ternary complex, cyclin D3/CDK4/CDKN1B, required for nuclear translocation and activity of the cyclin D-CDK4 complex (PubMed:16782892). Shows transcriptional coactivator activity with ATF5 independently of CDK4 (PubMed:15358120). {ECO:0000269|PubMed:15358120, ECO:0000269|PubMed:16782892, ECO:0000269|PubMed:8114739}. |
Q92692 | NECTIN2 | Y505 | SIGNOR | Nectin-2 (Herpes virus entry mediator B) (Herpesvirus entry mediator B) (HveB) (Nectin cell adhesion molecule 2) (Poliovirus receptor-related protein 2) (CD antigen CD112) | Modulator of T-cell signaling. Can be either a costimulator of T-cell function, or a coinhibitor, depending on the receptor it binds to. Upon binding to CD226, stimulates T-cell proliferation and cytokine production, including that of IL2, IL5, IL10, IL13, and IFNG. Upon interaction with PVRIG, inhibits T-cell proliferation. These interactions are competitive (PubMed:26755705). Probable cell adhesion protein (PubMed:9657005). {ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:9657005}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1 (HHV-1) mutant Rid1, herpes simplex virus 1 (HHV-2) and pseudorabies virus (PRV). {ECO:0000269|PubMed:11602758, ECO:0000269|PubMed:9657005}. |
O60231 | DHX16 | S112 | Sugiyama | Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) | Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}. |
Q7KZ85 | SUPT6H | S73 | Sugiyama | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q13526 | PIN1 | S108 | Sugiyama | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) (Peptidyl-prolyl cis-trans isomerase Pin1) (PPIase Pin1) (Rotamase Pin1) | Peptidyl-prolyl cis/trans isomerase (PPIase) that binds to and isomerizes specific phosphorylated Ser/Thr-Pro (pSer/Thr-Pro) motifs (PubMed:21497122, PubMed:23623683, PubMed:29686383). By inducing conformational changes in a subset of phosphorylated proteins, acts as a molecular switch in multiple cellular processes (PubMed:21497122, PubMed:22033920, PubMed:23623683). Displays a preference for acidic residues located N-terminally to the proline bond to be isomerized. Regulates mitosis presumably by interacting with NIMA and attenuating its mitosis-promoting activity. Down-regulates kinase activity of BTK (PubMed:16644721). Can transactivate multiple oncogenes and induce centrosome amplification, chromosome instability and cell transformation. Required for the efficient dephosphorylation and recycling of RAF1 after mitogen activation (PubMed:15664191). Binds and targets PML and BCL6 for degradation in a phosphorylation-dependent manner (PubMed:17828269). Acts as a regulator of JNK cascade by binding to phosphorylated FBXW7, disrupting FBXW7 dimerization and promoting FBXW7 autoubiquitination and degradation: degradation of FBXW7 leads to subsequent stabilization of JUN (PubMed:22608923). May facilitate the ubiquitination and proteasomal degradation of RBBP8/CtIP through CUL3/KLHL15 E3 ubiquitin-protein ligase complex, hence favors DNA double-strand repair through error-prone non-homologous end joining (NHEJ) over error-free, RBBP8-mediated homologous recombination (HR) (PubMed:23623683, PubMed:27561354). Upon IL33-induced lung inflammation, catalyzes cis-trans isomerization of phosphorylated IRAK3/IRAK-M, inducing IRAK3 stabilization, nuclear translocation and expression of pro-inflammatory genes in dendritic cells (PubMed:29686383). Catalyzes cis-trans isomerization of phosphorylated phosphoglycerate kinase PGK1 under hypoxic conditions to promote its binding to the TOM complex and targeting to the mitochondrion (PubMed:26942675). {ECO:0000269|PubMed:15664191, ECO:0000269|PubMed:16644721, ECO:0000269|PubMed:17828269, ECO:0000269|PubMed:21497122, ECO:0000269|PubMed:22033920, ECO:0000269|PubMed:22608923, ECO:0000269|PubMed:23623683, ECO:0000269|PubMed:26942675, ECO:0000269|PubMed:27561354, ECO:0000269|PubMed:29686383}. |
P51957 | NEK4 | S766 | Sugiyama | Serine/threonine-protein kinase Nek4 (EC 2.7.11.1) (Never in mitosis A-related kinase 4) (NimA-related protein kinase 4) (Serine/threonine-protein kinase 2) (Serine/threonine-protein kinase NRK2) | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage. {ECO:0000250|UniProtKB:Q9Z1J2, ECO:0000269|PubMed:22851694}. |
P57059 | SIK1 | S463 | Sugiyama | Serine/threonine-protein kinase SIK1 (EC 2.7.11.1) (Salt-inducible kinase 1) (SIK-1) (Serine/threonine-protein kinase SNF1-like kinase 1) (Serine/threonine-protein kinase SNF1LK) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling (PubMed:29211348). Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1 (By similarity). {ECO:0000250|UniProtKB:Q60670, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:16306228, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:19622832, ECO:0000269|PubMed:29211348}. |
Q04837 | SSBP1 | S79 | Sugiyama | Single-stranded DNA-binding protein, mitochondrial (Mt-SSB) (MtSSB) (PWP1-interacting protein 17) | Binds preferentially and cooperatively to pyrimidine rich single-stranded DNA (ss-DNA) (PubMed:21953457, PubMed:23290262, PubMed:31550240). In vitro, required to maintain the copy number of mitochondrial DNA (mtDNA) and plays a crucial role during mtDNA replication by stimulating the activity of the replisome components POLG and TWNK at the replication fork (PubMed:12975372, PubMed:15167897, PubMed:21953457, PubMed:26446790, PubMed:31550240). Promotes the activity of the gamma complex polymerase POLG, largely by organizing the template DNA and eliminating secondary structures to favor ss-DNA conformations that facilitate POLG activity (PubMed:21953457, PubMed:26446790, PubMed:31550240). In addition it is able to promote the 5'-3' unwinding activity of the mtDNA helicase TWNK (PubMed:12975372). May also function in mtDNA repair (PubMed:23290262). {ECO:0000269|PubMed:12975372, ECO:0000269|PubMed:15167897, ECO:0000269|PubMed:21953457, ECO:0000269|PubMed:23290262, ECO:0000269|PubMed:26446790, ECO:0000269|PubMed:31550240}. |
Q9C0C2 | TNKS1BP1 | S1631 | Sugiyama | 182 kDa tankyrase-1-binding protein | None |
Q08881 | ITK | S204 | Sugiyama | Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}. |
Q13043 | STK4 | T329 | Sugiyama | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
Q96IZ0 | PAWR | S242 | Sugiyama | PRKC apoptosis WT1 regulator protein (Prostate apoptosis response 4 protein) (Par-4) | Pro-apoptotic protein capable of selectively inducing apoptosis in cancer cells, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. Induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-kappa-B transcriptional activity. Inhibits the transcriptional activation and augments the transcriptional repression mediated by WT1. Down-regulates the anti-apoptotic protein BCL2 via its interaction with WT1. Also seems to be a transcriptional repressor by itself. May be directly involved in regulating the amyloid precursor protein (APP) cleavage activity of BACE1. {ECO:0000269|PubMed:11585763}. |
Q5JTZ9 | AARS2 | S466 | Sugiyama | Alanine--tRNA ligase, mitochondrial (EC 6.1.1.7) (Alanyl-tRNA synthetase) (AlaRS) (Protein lactyltransferase AARS2) (EC 6.-.-.-) | Catalyzes the attachment of alanine to tRNA(Ala) in a two-step reaction: alanine is first activated by ATP to form Ala-AMP and then transferred to the acceptor end of tRNA(Ala). Also edits incorrectly charged tRNA(Ala) via its editing domain (PubMed:21549344). In presence of high levels of lactate, also acts as a protein lactyltransferase that mediates lactylation of lysine residues in target proteins, such as CGAS (PubMed:39322678). Acts as an inhibitor of cGAS/STING signaling by catalyzing lactylation of CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:39322678). {ECO:0000269|PubMed:21549344, ECO:0000269|PubMed:39322678}. |
P49792 | RANBP2 | T2679 | Sugiyama | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
Q14C86 | GAPVD1 | S740 | Sugiyama | GTPase-activating protein and VPS9 domain-containing protein 1 (GAPex-5) (Rab5-activating protein 6) | Acts both as a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF), and participates in various processes such as endocytosis, insulin receptor internalization or LC2A4/GLUT4 trafficking. Acts as a GEF for the Ras-related protein RAB31 by exchanging bound GDP for free GTP, leading to regulate LC2A4/GLUT4 trafficking. In the absence of insulin, it maintains RAB31 in an active state and promotes a futile cycle between LC2A4/GLUT4 storage vesicles and early endosomes, retaining LC2A4/GLUT4 inside the cells. Upon insulin stimulation, it is translocated to the plasma membrane, releasing LC2A4/GLUT4 from intracellular storage vesicles. Also involved in EGFR trafficking and degradation, possibly by promoting EGFR ubiquitination and subsequent degradation by the proteasome. Has GEF activity for Rab5 and GAP activity for Ras. {ECO:0000269|PubMed:16410077}. |
P62316 | SNRPD2 | S30 | Sugiyama | Small nuclear ribonucleoprotein Sm D2 (Sm-D2) (snRNP core protein D2) | Plays a role in pre-mRNA splicing as a core component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome (PubMed:11991638, PubMed:18984161, PubMed:19325628, PubMed:23333303, PubMed:25555158, PubMed:26912367, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:32494006). Component of both the pre-catalytic spliceosome B complex and activated spliceosome C complexes (PubMed:11991638, PubMed:28076346, PubMed:28502770, PubMed:28781166). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (PubMed:15146077). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:15146077, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19325628, ECO:0000269|PubMed:23333303, ECO:0000269|PubMed:25555158, ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:32494006}. |
Q96EV2 | RBM33 | S215 | Sugiyama | RNA-binding protein 33 (Proline-rich protein 8) (RNA-binding motif protein 33) | RNA reader protein, which recognizes and binds specific RNAs, thereby regulating RNA metabolic processes, such as mRNA export, mRNA stability and/or translation (PubMed:35589130, PubMed:37257451). Binds a subset of intronless RNAs containing GC-rich elements, such as NORAD, and promotes their nuclear export by recruiting target RNAs to components of the NXF1-NXT1 RNA export machinery (PubMed:35589130). Specifically recognizes and binds N6-methyladenosine (m6A)-containing mRNAs, promoting their demethylation by ALKBH5 (PubMed:37257451). Acts as an molecular adapter, which (1) promotes ALKBH5 recruitment to m6A-containing transcripts and (2) activates ALKBH5 demethylase activity by recruiting SENP1, leading to ALKBH5 deSUMOylation and subsequent activation (PubMed:37257451). {ECO:0000269|PubMed:35589130, ECO:0000269|PubMed:37257451}. |
Q9Y3T9 | NOC2L | S682 | Sugiyama | Nucleolar complex protein 2 homolog (Protein NOC2 homolog) (NOC2-like protein) (Novel INHAT repressor) | Acts as an inhibitor of histone acetyltransferase activity; prevents acetylation of all core histones by the EP300/p300 histone acetyltransferase at p53/TP53-regulated target promoters in a histone deacetylases (HDAC)-independent manner. Acts as a transcription corepressor of p53/TP53- and TP63-mediated transactivation of the p21/CDKN1A promoter. Involved in the regulation of p53/TP53-dependent apoptosis. Associates together with TP63 isoform TA*-gamma to the p21/CDKN1A promoter. {ECO:0000269|PubMed:16322561, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:20959462}. |
Q6PHR2 | ULK3 | S350 | GPS6|SIGNOR|EPSD|PSP | Serine/threonine-protein kinase ULK3 (EC 2.7.11.1) (Unc-51-like kinase 3) | Serine/threonine protein kinase that acts as a regulator of Sonic hedgehog (SHH) signaling and autophagy. Acts as a negative regulator of SHH signaling in the absence of SHH ligand: interacts with SUFU, thereby inactivating the protein kinase activity and preventing phosphorylation of GLI proteins (GLI1, GLI2 and/or GLI3). Positively regulates SHH signaling in the presence of SHH: dissociates from SUFU, autophosphorylates and mediates phosphorylation of GLI2, activating it and promoting its nuclear translocation. Phosphorylates in vitro GLI2, as well as GLI1 and GLI3, although less efficiently. Also acts as a regulator of autophagy: following cellular senescence, able to induce autophagy. {ECO:0000269|PubMed:19279323, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:20643644}. |
Q8NG66 | NEK11 | S412 | Sugiyama | Serine/threonine-protein kinase Nek11 (EC 2.7.11.1) (Never in mitosis A-related kinase 11) (NimA-related protein kinase 11) | Protein kinase which plays an important role in the G2/M checkpoint response to DNA damage. Controls degradation of CDC25A by directly phosphorylating it on residues whose phosphorylation is required for BTRC-mediated polyubiquitination and degradation. {ECO:0000269|PubMed:12154088, ECO:0000269|PubMed:19734889, ECO:0000269|PubMed:20090422}. |
Q15382 | RHEB | S140 | Sugiyama | GTP-binding protein Rheb (EC 3.6.5.-) (Ras homolog enriched in brain) | Small GTPase that acts as an allosteric activator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12869586, PubMed:12906785, PubMed:15340059, PubMed:15854902, PubMed:16098514, PubMed:20381137, PubMed:22819219, PubMed:24529379, PubMed:29416044, PubMed:32470140, PubMed:33157014, PubMed:25816988). In response to nutrients, growth factors or amino acids, specifically activates the protein kinase activity of MTOR, the catalytic component of the mTORC1 complex: acts by causing a conformational change that allows the alignment of residues in the active site of MTOR, thereby enhancing the phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:29236692, PubMed:33157014). RHEB is also required for localization of the TSC-TBC complex to lysosomal membranes (PubMed:24529379). In response to starvation, RHEB is inactivated by the TSC-TBC complex, preventing activation of mTORC1 (PubMed:24529379, PubMed:33157014). Has low intrinsic GTPase activity (PubMed:15340059). {ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12869586, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:15854902, ECO:0000269|PubMed:16098514, ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29416044, ECO:0000269|PubMed:32470140, ECO:0000269|PubMed:33157014}. |
Q8IWS0 | PHF6 | S346 | Sugiyama | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q9BYP7 | WNK3 | S425 | Sugiyama | Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) | Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}. |
Q92900 | UPF1 | S274 | Sugiyama | Regulator of nonsense transcripts 1 (EC 3.6.4.12) (EC 3.6.4.13) (ATP-dependent helicase RENT1) (Nonsense mRNA reducing factor 1) (NORF1) (Up-frameshift suppressor 1 homolog) (hUpf1) | RNA-dependent helicase required for nonsense-mediated decay (NMD) of aberrant mRNAs containing premature stop codons and modulates the expression level of normal mRNAs (PubMed:11163187, PubMed:16086026, PubMed:18172165, PubMed:21145460, PubMed:21419344, PubMed:24726324). Is recruited to mRNAs upon translation termination and undergoes a cycle of phosphorylation and dephosphorylation; its phosphorylation appears to be a key step in NMD (PubMed:11544179, PubMed:25220460). Recruited by release factors to stalled ribosomes together with the SMG1C protein kinase complex to form the transient SURF (SMG1-UPF1-eRF1-eRF3) complex (PubMed:19417104). In EJC-dependent NMD, the SURF complex associates with the exon junction complex (EJC) (located 50-55 or more nucleotides downstream from the termination codon) through UPF2 and allows the formation of an UPF1-UPF2-UPF3 surveillance complex which is believed to activate NMD (PubMed:21419344). Phosphorylated UPF1 is recognized by EST1B/SMG5, SMG6 and SMG7 which are thought to provide a link to the mRNA degradation machinery involving exonucleolytic and endonucleolytic pathways, and to serve as adapters to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation and allowing the recycling of NMD factors (PubMed:12554878). UPF1 can also activate NMD without UPF2 or UPF3, and in the absence of the NMD-enhancing downstream EJC indicative for alternative NMD pathways (PubMed:18447585). Plays a role in replication-dependent histone mRNA degradation at the end of phase S; the function is independent of UPF2 (PubMed:16086026, PubMed:18172165). For the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed (PubMed:18447585, PubMed:25220460). The ATPase activity of UPF1 is required for disassembly of mRNPs undergoing NMD (PubMed:21145460). Together with UPF2 and dependent on TDRD6, mediates the degradation of mRNA harboring long 3'UTR by inducing the NMD machinery (By similarity). Also capable of unwinding double-stranded DNA and translocating on single-stranded DNA (PubMed:30218034). {ECO:0000250|UniProtKB:Q9EPU0, ECO:0000269|PubMed:11163187, ECO:0000269|PubMed:11544179, ECO:0000269|PubMed:12554878, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:18447585, ECO:0000269|PubMed:19417104, ECO:0000269|PubMed:21145460, ECO:0000269|PubMed:21419344, ECO:0000269|PubMed:24726324, ECO:0000269|PubMed:25220460, ECO:0000269|PubMed:30218034}. |
Q9UIQ6 | LNPEP | S72 | Sugiyama | Leucyl-cystinyl aminopeptidase (Cystinyl aminopeptidase) (EC 3.4.11.3) (Insulin-regulated membrane aminopeptidase) (Insulin-responsive aminopeptidase) (IRAP) (Oxytocinase) (OTase) (Placental leucine aminopeptidase) (P-LAP) [Cleaved into: Leucyl-cystinyl aminopeptidase, pregnancy serum form] | Release of an N-terminal amino acid, cleaves before cysteine, leucine as well as other amino acids. Degrades peptide hormones such as oxytocin, vasopressin and angiotensin III, and plays a role in maintaining homeostasis during pregnancy. May be involved in the inactivation of neuronal peptides in the brain. Cleaves Met-enkephalin and dynorphin. Binds angiotensin IV and may be the angiotensin IV receptor in the brain. {ECO:0000269|PubMed:11389728, ECO:0000269|PubMed:11707427, ECO:0000269|PubMed:1731608}. |
O60927 | PPP1R11 | T88 | Sugiyama | E3 ubiquitin-protein ligase PPP1R11 (EC 2.3.2.27) (Hemochromatosis candidate gene V protein) (HCG V) (Protein phosphatase 1 regulatory subunit 11) (Protein phosphatase inhibitor 3) | Atypical E3 ubiquitin-protein ligase which ubiquitinates TLR2 at 'Lys-754' leading to its degradation by the proteasome. Plays a role in regulating inflammatory cytokine release and gram-positive bacterial clearance by functioning, in part, through the ubiquitination and degradation of TLR2 (PubMed:27805901). Inhibitor of protein phosphatase 1 (PubMed:9843442). {ECO:0000269|PubMed:27805901, ECO:0000269|PubMed:9843442}. |
Q9Y570 | PPME1 | S265 | Sugiyama | Protein phosphatase methylesterase 1 (PME-1) (EC 3.1.1.89) | Demethylates proteins that have been reversibly carboxymethylated. Demethylates PPP2CB (in vitro) and PPP2CA. Binding to PPP2CA displaces the manganese ion and inactivates the enzyme. {ECO:0000269|PubMed:10318862}. |
P56192 | MARS1 | S229 | EPSD|PSP | Methionine--tRNA ligase, cytoplasmic (EC 6.1.1.10) (Methionyl-tRNA synthetase) (MetRS) | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA (PubMed:11714285). Plays a role in the synthesis of ribosomal RNA in the nucleolus (PubMed:10791971). {ECO:0000269|PubMed:10791971, ECO:0000269|PubMed:11714285, ECO:0000269|PubMed:33909043}. |
Q9UBS0 | RPS6KB2 | S54 | Sugiyama | Ribosomal protein S6 kinase beta-2 (S6K-beta-2) (S6K2) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 2) (P70S6K2) (p70-S6K 2) (S6 kinase-related kinase) (SRK) (Serine/threonine-protein kinase 14B) (p70 ribosomal S6 kinase beta) (S6K-beta) (p70 S6 kinase beta) (p70 S6K-beta) (p70 S6KB) (p70-beta) | Phosphorylates specifically ribosomal protein S6 (PubMed:29750193). Seems to act downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression in an alternative pathway regulated by MEAK7 (PubMed:29750193). {ECO:0000269|PubMed:29750193}. |
Q9NUU7 | DDX19A | S59 | Sugiyama | ATP-dependent RNA helicase DDX19A (EC 3.6.4.13) (DDX19-like protein) (DEAD box protein 19A) | ATP-dependent RNA helicase involved in mRNA export from the nucleus. Rather than unwinding RNA duplexes, DDX19 functions as a remodeler of ribonucleoprotein particles, whereby proteins bound to nuclear mRNA are dissociated and replaced by cytoplasmic mRNA binding proteins. {ECO:0000250|UniProtKB:Q9UMR2}. |
Q9UMR2 | DDX19B | S60 | Sugiyama | ATP-dependent RNA helicase DDX19B (EC 3.6.4.13) (DEAD box RNA helicase DEAD5) (DEAD box protein 19B) | ATP-dependent RNA helicase involved in mRNA export from the nucleus (PubMed:10428971). Rather than unwinding RNA duplexes, DDX19B functions as a remodeler of ribonucleoprotein particles, whereby proteins bound to nuclear mRNA are dissociated and replaced by cytoplasmic mRNA binding proteins (PubMed:10428971). {ECO:0000269|PubMed:10428971}. |
P04920 | SLC4A2 | S56 | Sugiyama | Anion exchange protein 2 (AE 2) (Anion exchanger 2) (Non-erythroid band 3-like protein) (BND3L) (Solute carrier family 4 member 2) | Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:15184086, PubMed:34668226). Plays an important role in osteoclast differentiation and function (PubMed:34668226). Regulates bone resorption and calpain-dependent actin cytoskeleton organization in osteoclasts via anion exchange-dependent control of pH (By similarity). Essential for intracellular pH regulation in CD8(+) T-cells upon CD3 stimulation, modulating CD8(+) T-cell responses (By similarity). {ECO:0000250|UniProtKB:P13808, ECO:0000269|PubMed:15184086, ECO:0000269|PubMed:34668226}. |
A0A0B4J203 | None | S62 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
A2RRP1 | NBAS | S475 | ochoa | NBAS subunit of NRZ tethering complex (Neuroblastoma-amplified gene protein) (Neuroblastoma-amplified sequence) | Involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport; the function is proposed to depend on its association in the NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:19369418). Required for normal embryonic development (By similarity). May play a role in the nonsense-mediated decay pathway of mRNAs containing premature stop codons (By similarity). {ECO:0000250|UniProtKB:Q5TYW4, ECO:0000269|PubMed:19369418}. |
A8MPP1 | DDX11L8 | S204 | ochoa | Putative ATP-dependent DNA helicase DDX11-like protein 8 (EC 5.6.2.-) (DEAD/H box protein 11-like 8) | Putative DNA helicase. {ECO:0000305}. |
O14639 | ABLIM1 | S631 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O43663 | PRC1 | S265 | ochoa | Protein regulator of cytokinesis 1 | Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}. |
O43688 | PLPP2 | S268 | ochoa | Phospholipid phosphatase 2 (EC 3.1.3.-) (EC 3.1.3.4) (Lipid phosphate phosphohydrolase 2) (PAP2-gamma) (PAP2-G) (Phosphatidate phosphohydrolase type 2c) (Phosphatidic acid phosphatase 2c) (PAP-2c) (PAP2c) | Magnesium-independent phospholipid phosphatase that catalyzes the dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters including phosphatidate/PA, lysophosphatidate/LPA, sphingosine 1-phosphate/S1P and ceramide 1-phosphate/C1P (PubMed:16467304, PubMed:9607309, PubMed:9705349). Has no apparent extracellular phosphatase activity and therefore most probably acts intracellularly (PubMed:16467304). Also acts on N-oleoyl ethanolamine phosphate/N-(9Z-octadecenoyl)-ethanolamine phosphate, a potential physiological compound (PubMed:9607309). Through dephosphorylation of these bioactive lipid mediators produces new bioactive compounds and may regulate signal transduction in different cellular processes (Probable). Indirectly regulates, for instance, cell cycle G1/S phase transition through its phospholipid phosphatase activity (By similarity). {ECO:0000250|UniProtKB:Q8K593, ECO:0000269|PubMed:16467304, ECO:0000269|PubMed:9607309, ECO:0000269|PubMed:9705349, ECO:0000305|PubMed:16467304}. |
O60293 | ZFC3H1 | S28 | ochoa | Zinc finger C3H1 domain-containing protein (Coiled-coil domain-containing protein 131) (Proline/serine-rich coiled-coil protein 2) | Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters. {ECO:0000269|PubMed:27871484}. |
O60341 | KDM1A | S172 | ochoa | Lysine-specific histone demethylase 1A (EC 1.14.99.66) (BRAF35-HDAC complex protein BHC110) (Flavin-containing amine oxidase domain-containing protein 2) ([histone H3]-dimethyl-L-lysine(4) FAD-dependent demethylase 1A) | Histone demethylase that can demethylate both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context (PubMed:15620353, PubMed:15811342, PubMed:16079794, PubMed:16079795, PubMed:16140033, PubMed:16223729, PubMed:27292636). Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed (PubMed:15620353, PubMed:15811342, PubMed:16079794, PubMed:21300290). Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me (PubMed:15620353, PubMed:20389281, PubMed:21300290, PubMed:23721412). May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity (PubMed:16079794, PubMed:16140033, PubMed:16885027, PubMed:21300290, PubMed:23721412). Also acts as a coactivator of androgen receptor (AR)-dependent transcription, by being recruited to AR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in AR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A (PubMed:16079795). Demethylates di-methylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1 (PubMed:29691401). Demethylates methylated 'Lys-42' and methylated 'Lys-117' of SOX2 (PubMed:29358331). Required for gastrulation during embryogenesis. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (PubMed:16079794, PubMed:16140033). Facilitates epithelial-to-mesenchymal transition by acting as an effector of SNAI1-mediated transcription repression of epithelial markers E-cadherin/CDH1, CDN7 and KRT8 (PubMed:20562920, PubMed:27292636). Required for the maintenance of the silenced state of the SNAI1 target genes E-cadherin/CDH1 and CDN7 (PubMed:20389281). Required for the repression of GIPR expression (PubMed:34655521, PubMed:34906447). {ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:15620353, ECO:0000269|PubMed:15811342, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16079795, ECO:0000269|PubMed:16140033, ECO:0000269|PubMed:16223729, ECO:0000269|PubMed:16885027, ECO:0000269|PubMed:16956976, ECO:0000269|PubMed:17805299, ECO:0000269|PubMed:20228790, ECO:0000269|PubMed:20389281, ECO:0000269|PubMed:20562920, ECO:0000269|PubMed:21300290, ECO:0000269|PubMed:23721412, ECO:0000269|PubMed:27292636, ECO:0000269|PubMed:29358331, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:34655521, ECO:0000269|PubMed:34906447}. |
O75607 | NPM3 | S158 | ochoa | Nucleoplasmin-3 | Plays a role in the regulation of diverse cellular processes such as ribosome biogenesis, chromatin remodeling or protein chaperoning (PubMed:20073534, PubMed:22362753). Modulates the histone chaperone function and the RNA-binding activity of nucleolar phosphoprotein B23/NPM (PubMed:22362753). Efficiently mediates chromatin remodeling when included in a pentamer containing NPM3 and NPM (PubMed:15596447). {ECO:0000269|PubMed:15596447, ECO:0000269|PubMed:20073534, ECO:0000269|PubMed:22362753}. |
O75665 | OFD1 | S943 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75822 | EIF3J | S72 | ochoa | Eukaryotic translation initiation factor 3 subunit J (eIF3j) (Eukaryotic translation initiation factor 3 subunit 1) (eIF-3-alpha) (eIF3 p35) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
O94885 | SASH1 | S387 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O95235 | KIF20A | S244 | psp | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95359 | TACC2 | S2534 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95714 | HERC2 | S2942 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
P02730 | SLC4A1 | S29 | psp | Band 3 anion transport protein (Anion exchange protein 1) (AE 1) (Anion exchanger 1) (Solute carrier family 4 member 1) (CD antigen CD233) | Functions both as a transporter that mediates electroneutral anion exchange across the cell membrane and as a structural protein (PubMed:10926824, PubMed:14734552, PubMed:1538405, PubMed:16227998, PubMed:20151848, PubMed:24121512, PubMed:28387307, PubMed:35835865). Component of the ankyrin-1 complex of the erythrocyte membrane; required for normal flexibility and stability of the erythrocyte membrane and for normal erythrocyte shape via the interactions of its cytoplasmic domain with cytoskeletal proteins, glycolytic enzymes, and hemoglobin (PubMed:1538405, PubMed:20151848, PubMed:35835865). Functions as a transporter that mediates the 1:1 exchange of inorganic anions across the erythrocyte membrane. Mediates chloride-bicarbonate exchange in the kidney, and is required for normal acidification of the urine (PubMed:10926824, PubMed:14734552, PubMed:16227998, PubMed:24121512, PubMed:28387307). {ECO:0000269|PubMed:10926824, ECO:0000269|PubMed:14734552, ECO:0000269|PubMed:1538405, ECO:0000269|PubMed:16227998, ECO:0000269|PubMed:20151848, ECO:0000269|PubMed:24121512, ECO:0000269|PubMed:28387307, ECO:0000269|PubMed:35835865}.; FUNCTION: (Microbial infection) Acts as a receptor for P.falciparum (isolate 3D7) MSP9 and thus, facilitates merozoite invasion of erythrocytes (PubMed:14630931). Acts as a receptor for P.falciparum (isolate 3D7) MSP1 and thus, facilitates merozoite invasion of erythrocytes (PubMed:12692305). {ECO:0000269|PubMed:12692305, ECO:0000269|PubMed:14630931}. |
P04083 | ANXA1 | S27 | ochoa|psp | Annexin A1 (Annexin I) (Annexin-1) (Calpactin II) (Calpactin-2) (Chromobindin-9) (Lipocortin I) (Phospholipase A2 inhibitory protein) (p35) [Cleaved into: Annexin Ac2-26] | Plays important roles in the innate immune response as effector of glucocorticoid-mediated responses and regulator of the inflammatory process. Has anti-inflammatory activity (PubMed:8425544). Plays a role in glucocorticoid-mediated down-regulation of the early phase of the inflammatory response (By similarity). Contributes to the adaptive immune response by enhancing signaling cascades that are triggered by T-cell activation, regulates differentiation and proliferation of activated T-cells (PubMed:17008549). Promotes the differentiation of T-cells into Th1 cells and negatively regulates differentiation into Th2 cells (PubMed:17008549). Has no effect on unstimulated T cells (PubMed:17008549). Negatively regulates hormone exocytosis via activation of the formyl peptide receptors and reorganization of the actin cytoskeleton (PubMed:19625660). Has high affinity for Ca(2+) and can bind up to eight Ca(2+) ions (By similarity). Displays Ca(2+)-dependent binding to phospholipid membranes (PubMed:2532504, PubMed:8557678). Plays a role in the formation of phagocytic cups and phagosomes. Plays a role in phagocytosis by mediating the Ca(2+)-dependent interaction between phagosomes and the actin cytoskeleton (By similarity). {ECO:0000250|UniProtKB:P10107, ECO:0000250|UniProtKB:P19619, ECO:0000269|PubMed:17008549, ECO:0000269|PubMed:19625660, ECO:0000269|PubMed:2532504, ECO:0000269|PubMed:2936963, ECO:0000269|PubMed:8425544, ECO:0000269|PubMed:8557678}.; FUNCTION: [Annexin Ac2-26]: Functions at least in part by activating the formyl peptide receptors and downstream signaling cascades (PubMed:15187149, PubMed:22879591, PubMed:25664854). Promotes chemotaxis of granulocytes and monocytes via activation of the formyl peptide receptors (PubMed:15187149). Promotes rearrangement of the actin cytoskeleton, cell polarization and cell migration (PubMed:15187149). Promotes resolution of inflammation and wound healing (PubMed:25664854). Acts via neutrophil N-formyl peptide receptors to enhance the release of CXCL2 (PubMed:22879591). {ECO:0000269|PubMed:15187149, ECO:0000269|PubMed:22879591, ECO:0000269|PubMed:25664854}. |
P05060 | CHGB | S320 | ochoa | Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] | Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides. |
P06401 | PGR | S400 | ochoa|psp | Progesterone receptor (PR) (Nuclear receptor subfamily 3 group C member 3) | The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Depending on the isoform, progesterone receptor functions as a transcriptional activator or repressor. {ECO:0000269|PubMed:10757795, ECO:0000269|PubMed:1587864, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9407067, ECO:0000305}.; FUNCTION: [Isoform A]: Ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity including repression of its isoform B, MR and ER. Transrepressional activity may involve recruitment of corepressor NCOR2. {ECO:0000269|PubMed:7969170, ECO:0000269|PubMed:8180103, ECO:0000269|PubMed:8264658, ECO:0000305, ECO:0000305|PubMed:10757795}.; FUNCTION: [Isoform B]: Transcriptional activator of several progesteron-dependent promoters in a variety of cell types. Involved in activation of SRC-dependent MAPK signaling on hormone stimulation. {ECO:0000269|PubMed:7969170}.; FUNCTION: [Isoform 4]: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone. |
P08069 | IGF1R | S1278 | psp | Insulin-like growth factor 1 receptor (EC 2.7.10.1) (Insulin-like growth factor I receptor) (IGF-I receptor) (CD antigen CD221) [Cleaved into: Insulin-like growth factor 1 receptor alpha chain; Insulin-like growth factor 1 receptor beta chain] | Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R.; FUNCTION: When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin. |
P11021 | HSPA5 | S632 | ochoa | Endoplasmic reticulum chaperone BiP (EC 3.6.4.10) (78 kDa glucose-regulated protein) (GRP-78) (Binding-immunoglobulin protein) (BiP) (Heat shock protein 70 family protein 5) (HSP70 family protein 5) (Heat shock protein family A member 5) (Immunoglobulin heavy chain-binding protein) | Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen (PubMed:2294010, PubMed:23769672, PubMed:23990668, PubMed:28332555). Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the EIF2AK3/PERK and ERN1/IRE1-mediated unfolded protein response (UPR) (PubMed:11907036, PubMed:1550958, PubMed:19538957, PubMed:36739529). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimerization of ERN1/IRE1, thereby inactivating ERN1/IRE1 (By similarity). Also binds and inactivates EIF2AK3/PERK in unstressed cells (PubMed:11907036). Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP from ERN1/IRE1 and EIF2AK3/PERK, allowing their homodimerization and subsequent activation (PubMed:11907036). Plays an auxiliary role in post-translational transport of small presecretory proteins across endoplasmic reticulum (ER). May function as an allosteric modulator for SEC61 channel-forming translocon complex, likely cooperating with SEC62 to enable the productive insertion of these precursors into SEC61 channel. Appears to specifically regulate translocation of precursors having inhibitory residues in their mature region that weaken channel gating. May also play a role in apoptosis and cell proliferation (PubMed:26045166). {ECO:0000250|UniProtKB:G3I8R9, ECO:0000250|UniProtKB:P20029, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:1550958, ECO:0000269|PubMed:19538957, ECO:0000269|PubMed:2294010, ECO:0000269|PubMed:23769672, ECO:0000269|PubMed:23990668, ECO:0000269|PubMed:26045166, ECO:0000269|PubMed:28332555, ECO:0000269|PubMed:29719251, ECO:0000269|PubMed:36739529}.; FUNCTION: (Microbial infection) Plays an important role in viral binding to the host cell membrane and entry for several flaviruses such as Dengue virus, Zika virus and Japanese encephalitis virus (PubMed:15098107, PubMed:28053106, PubMed:33432092). Acts as a component of the cellular receptor for Dengue virus serotype 2/DENV-2 on human liver cells (PubMed:15098107). {ECO:0000269|PubMed:15098107, ECO:0000269|PubMed:28053106, ECO:0000269|PubMed:33432092}.; FUNCTION: (Microbial infection) Acts as a receptor for CotH proteins expressed by fungi of the order mucorales, the causative agent of mucormycosis, which plays an important role in epithelial cell invasion by the fungi (PubMed:20484814, PubMed:24355926, PubMed:32487760). Acts as a receptor for R.delemar CotH3 in nasal epithelial cells, which may be an early step in rhinoorbital/cerebral mucormycosis (RCM) disease progression (PubMed:32487760). {ECO:0000269|PubMed:20484814, ECO:0000269|PubMed:24355926, ECO:0000269|PubMed:32487760}. |
P12956 | XRCC6 | S27 | ochoa|psp | X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}. |
P18887 | XRCC1 | S421 | ochoa | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19174 | PLCG1 | S539 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (EC 3.1.4.11) (PLC-148) (Phosphoinositide phospholipase C-gamma-1) (Phospholipase C-II) (PLC-II) (Phospholipase C-gamma-1) (PLC-gamma-1) | Mediates the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Plays an important role in the regulation of intracellular signaling cascades. Becomes activated in response to ligand-mediated activation of receptor-type tyrosine kinases, such as PDGFRA, PDGFRB, EGFR, FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Plays a role in actin reorganization and cell migration (PubMed:17229814). Guanine nucleotide exchange factor that binds the GTPase DNM1 and catalyzes the dissociation of GDP, allowing a GTP molecule to bind in its place, therefore enhancing DNM1-dependent endocytosis (By similarity). {ECO:0000250|UniProtKB:P10686, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:37422272}. |
P21860 | ERBB3 | Y1199 | ochoa|psp | Receptor tyrosine-protein kinase erbB-3 (EC 2.7.10.1) (Proto-oncogene-like protein c-ErbB-3) (Tyrosine kinase-type cell surface receptor HER3) | Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins. Binds to neuregulin-1 (NRG1) and is activated by it; ligand-binding increases phosphorylation on tyrosine residues and promotes its association with the p85 subunit of phosphatidylinositol 3-kinase (PubMed:20682778). May also be activated by CSPG5 (PubMed:15358134). Involved in the regulation of myeloid cell differentiation (PubMed:27416908). {ECO:0000269|PubMed:15358134, ECO:0000269|PubMed:20682778, ECO:0000269|PubMed:27416908}. |
P22681 | CBL | S704 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P26358 | DNMT1 | S192 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P35749 | MYH11 | S1756 | ochoa | Myosin-11 (Myosin heavy chain 11) (Myosin heavy chain, smooth muscle isoform) (SMMHC) | Muscle contraction. |
P35968 | KDR | Y1214 | ochoa|psp | Vascular endothelial growth factor receptor 2 (VEGFR-2) (EC 2.7.10.1) (Fetal liver kinase 1) (FLK-1) (Kinase insert domain receptor) (KDR) (Protein-tyrosine kinase receptor flk-1) (CD antigen CD309) | Tyrosine-protein kinase that acts as a cell-surface receptor for VEGFA, VEGFC and VEGFD. Plays an essential role in the regulation of angiogenesis, vascular development, vascular permeability, and embryonic hematopoiesis. Promotes proliferation, survival, migration and differentiation of endothelial cells. Promotes reorganization of the actin cytoskeleton. Isoforms lacking a transmembrane domain, such as isoform 2 and isoform 3, may function as decoy receptors for VEGFA, VEGFC and/or VEGFD. Isoform 2 plays an important role as negative regulator of VEGFA- and VEGFC-mediated lymphangiogenesis by limiting the amount of free VEGFA and/or VEGFC and preventing their binding to FLT4. Modulates FLT1 and FLT4 signaling by forming heterodimers. Binding of vascular growth factors to isoform 1 leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate and the activation of protein kinase C. Mediates activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Mediates phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, reorganization of the actin cytoskeleton and activation of PTK2/FAK1. Required for VEGFA-mediated induction of NOS2 and NOS3, leading to the production of the signaling molecule nitric oxide (NO) by endothelial cells. Phosphorylates PLCG1. Promotes phosphorylation of FYN, NCK1, NOS3, PIK3R1, PTK2/FAK1 and SRC. {ECO:0000269|PubMed:10102632, ECO:0000269|PubMed:10368301, ECO:0000269|PubMed:10600473, ECO:0000269|PubMed:11387210, ECO:0000269|PubMed:12649282, ECO:0000269|PubMed:1417831, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15215251, ECO:0000269|PubMed:15962004, ECO:0000269|PubMed:16966330, ECO:0000269|PubMed:17303569, ECO:0000269|PubMed:18529047, ECO:0000269|PubMed:19668192, ECO:0000269|PubMed:19834490, ECO:0000269|PubMed:20080685, ECO:0000269|PubMed:20224550, ECO:0000269|PubMed:20705758, ECO:0000269|PubMed:21893193, ECO:0000269|PubMed:25825981, ECO:0000269|PubMed:7929439, ECO:0000269|PubMed:9160888, ECO:0000269|PubMed:9804796, ECO:0000269|PubMed:9837777}. |
P38398 | BRCA1 | S889 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P39687 | ANP32A | S204 | psp | Acidic leucine-rich nuclear phosphoprotein 32 family member A (Acidic nuclear phosphoprotein pp32) (pp32) (Leucine-rich acidic nuclear protein) (LANP) (Mapmodulin) (Potent heat-stable protein phosphatase 2A inhibitor I1PP2A) (Putative HLA-DR-associated protein I) (PHAPI) | Multifunctional protein that is involved in the regulation of many processes including tumor suppression, apoptosis, cell cycle progression or transcription (PubMed:10400610, PubMed:11360199, PubMed:16341127, PubMed:18439902). Promotes apoptosis by favouring the activation of caspase-9/CASP9 and allowing apoptosome formation (PubMed:18439902). In addition, plays a role in the modulation of histone acetylation and transcription as part of the INHAT (inhibitor of histone acetyltransferases) complex. Inhibits the histone-acetyltranferase activity of EP300/CREBBP (CREB-binding protein) and EP300/CREBBP-associated factor by histone masking (PubMed:11830591). Preferentially binds to unmodified histone H3 and sterically inhibiting its acetylation and phosphorylation leading to cell growth inhibition (PubMed:16341127). Participates in other biochemical processes such as regulation of mRNA nuclear-to-cytoplasmic translocation and stability by its association with ELAVL1 (Hu-antigen R) (PubMed:18180367). Plays a role in E4F1-mediated transcriptional repression as well as inhibition of protein phosphatase 2A (PubMed:15642345, PubMed:17557114). {ECO:0000269|PubMed:10400610, ECO:0000269|PubMed:11360199, ECO:0000269|PubMed:11830591, ECO:0000269|PubMed:15642345, ECO:0000269|PubMed:16341127, ECO:0000269|PubMed:17557114, ECO:0000269|PubMed:18180367, ECO:0000269|PubMed:18439902}.; FUNCTION: (Microbial infection) Plays an essential role in influenza A, B and C viral genome replication (PubMed:30666459, PubMed:32694517, PubMed:33045004, PubMed:33208942). Mechanistically, mediates the assembly of the viral replicase asymmetric dimers composed of PB1, PB2 and PA via its N-terminal region (PubMed:33208942). Also plays an essential role in foamy virus mRNA export from the nucleus (PubMed:21159877). {ECO:0000269|PubMed:21159877, ECO:0000269|PubMed:30666459, ECO:0000269|PubMed:32694517, ECO:0000269|PubMed:33045004, ECO:0000269|PubMed:33208942}. |
P46087 | NOP2 | S198 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P48436 | SOX9 | S199 | ochoa | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P51532 | SMARCA4 | S1586 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) | ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
P52272 | HNRNPM | S29 | ochoa | Heterogeneous nuclear ribonucleoprotein M (hnRNP M) | Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines. |
P55010 | EIF5 | T207 | psp | Eukaryotic translation initiation factor 5 (eIF-5) | Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon (PubMed:11166181, PubMed:22813744, PubMed:24319994). In this complex, acts as a GTPase-activating protein, by promoting GTP hydrolysis by eIF2G (EIF2S3) (PubMed:11166181). During scanning, interacts with both EIF1 (via its C-terminal domain (CTD)) and EIF1A (via its NTD) (PubMed:22813744). This interaction with EIF1A contributes to the maintenance of EIF1 within the open 43S PIC (PubMed:24319994). When start codon is recognized, EIF5, via its NTD, induces eIF2G (EIF2S3) to hydrolyze the GTP (PubMed:11166181). Start codon recognition also induces a conformational change of the PIC to a closed state (PubMed:22813744). This change increases the affinity of EIF5-CTD for EIF2-beta (EIF2S2), which allows the release, by an indirect mechanism, of EIF1 from the PIC (PubMed:22813744). Finally, EIF5 stabilizes the PIC in its closed conformation (PubMed:22813744). {ECO:0000269|PubMed:11166181, ECO:0000269|PubMed:22813744, ECO:0000269|PubMed:24319994}. |
P82094 | TMF1 | S136 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P82094 | TMF1 | S399 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
Q01082 | SPTBN1 | S2122 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q01167 | FOXK2 | S252 | ochoa | Forkhead box protein K2 (G/T-mismatch specific binding protein) (nGTBP) (Interleukin enhancer-binding factor 1) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:22083952, PubMed:25451922). Together with FOXK1, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Together with FOXK1, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). In addition to the 5'-GTAAACA-3' DNA motif, also binds the 5'-TGANTCA-3' palindromic DNA motif, and co-associates with JUN/AP-1 to activate transcription (PubMed:22083952). Also able to bind to a minimal DNA heteroduplex containing a G/T-mismatch with 5'-TRT[G/T]NB-3' sequence (PubMed:20097901). Binds to NFAT-like motifs (purine-rich) in the IL2 promoter (PubMed:1339390). Positively regulates WNT/beta-catenin signaling by translocating DVL proteins into the nucleus (PubMed:25805136). Also binds to HIV-1 long terminal repeat. May be involved in both positive and negative regulation of important viral and cellular promoter elements (PubMed:1909027). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK2-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:Q3UCQ1, ECO:0000269|PubMed:1339390, ECO:0000269|PubMed:1909027, ECO:0000269|PubMed:20097901, ECO:0000269|PubMed:22083952, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:30664650}. |
Q01804 | OTUD4 | S1031 | ochoa | OTU domain-containing protein 4 (EC 3.4.19.12) (HIV-1-induced protein HIN-1) | Deubiquitinase which hydrolyzes the isopeptide bond between the ubiquitin C-terminus and the lysine epsilon-amino group of the target protein (PubMed:23827681, PubMed:25944111, PubMed:29395066). May negatively regulate inflammatory and pathogen recognition signaling in innate immune response. Upon phosphorylation at Ser-202 and Ser-204 residues, via IL-1 receptor and Toll-like receptor signaling pathway, specifically deubiquitinates 'Lys-63'-polyubiquitinated MYD88 adapter protein triggering down-regulation of NF-kappa-B-dependent transcription of inflammatory mediators (PubMed:29395066). Independently of the catalytic activity, acts as a scaffold for alternative deubiquitinases to assemble specific deubiquitinase-substrate complexes. Associates with USP7 and USP9X deubiquitinases to stabilize alkylation repair enzyme ALKBH3, thereby promoting the repair of alkylated DNA lesions (PubMed:25944111). {ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:25944111, ECO:0000269|PubMed:29395066}. |
Q02410 | APBA1 | S78 | ochoa | Amyloid-beta A4 precursor protein-binding family A member 1 (Adapter protein X11alpha) (Neuron-specific X11 protein) (Neuronal Munc18-1-interacting protein 1) (Mint-1) | Putative function in synaptic vesicle exocytosis by binding to Munc18-1, an essential component of the synaptic vesicle exocytotic machinery. May modulate processing of the amyloid-beta precursor protein (APP) and hence formation of APP-beta. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:B2RUJ5}. |
Q02447 | SP3 | S563 | ochoa|psp | Transcription factor Sp3 (SPR-2) | Transcriptional factor that can act as an activator or repressor depending on isoform and/or post-translational modifications. Binds to GT and GC boxes promoter elements. Competes with SP1 for the GC-box promoters. Weak activator of transcription but can activate a number of genes involved in different processes such as cell-cycle regulation, hormone-induction and house-keeping. {ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11812829, ECO:0000269|PubMed:12419227, ECO:0000269|PubMed:12837748, ECO:0000269|PubMed:15247228, ECO:0000269|PubMed:15494207, ECO:0000269|PubMed:15554904, ECO:0000269|PubMed:16781829, ECO:0000269|PubMed:17548428, ECO:0000269|PubMed:18187045, ECO:0000269|PubMed:18617891, ECO:0000269|PubMed:9278495}. |
Q02952 | AKAP12 | S1674 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q05682 | CALD1 | S153 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q12888 | TP53BP1 | S686 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13416 | ORC2 | S250 | ochoa | Origin recognition complex subunit 2 | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The specific DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. Binds histone H3 and H4 trimethylation marks H3K9me3, H3K20me3 and H4K27me3. Stabilizes LRWD1, by protecting it from ubiquitin-mediated proteasomal degradation. Also stabilizes ORC3. {ECO:0000269|PubMed:22427655, ECO:0000269|PubMed:22935713}. |
Q13428 | TCOF1 | S277 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13459 | MYO9B | S1972 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q14573 | ITPR3 | S2090 | ochoa | Inositol 1,4,5-trisphosphate-gated calcium channel ITPR3 (IP3 receptor isoform 3) (IP3R-3) (InsP3R3) (Type 3 inositol 1,4,5-trisphosphate receptor) (Type 3 InsP3 receptor) | Inositol 1,4,5-trisphosphate-gated calcium channel that, upon 1D-myo-inositol 1,4,5-trisphosphate binding, transports calcium from the endoplasmic reticulum lumen to cytoplasm, thus releasing the intracellular calcium and therefore participates in cellular calcium ion homeostasis (PubMed:32949214, PubMed:37898605, PubMed:8081734, PubMed:8288584). 1D-myo-inositol 1,4,5-trisphosphate binds to the ligand-free channel without altering its global conformation, yielding the low-energy resting state, then progresses through resting-to preactivated transitions to the higher energy preactivated state, which increases affinity for calcium, promoting binding of the low basal cytosolic calcium at the juxtamembrane domain (JD) site, favoring the transition through the ensemble of high-energy intermediate states along the trajectory to the fully-open activated state (PubMed:30013099, PubMed:35301323, PubMed:37898605). Upon opening, releases calcium in the cytosol where it can bind to the low-affinity cytoplasmic domain (CD) site and stabilizes the inhibited state to terminate calcium release (PubMed:30013099, PubMed:35301323, PubMed:37898605). {ECO:0000269|PubMed:30013099, ECO:0000269|PubMed:32949214, ECO:0000269|PubMed:35301323, ECO:0000269|PubMed:37898605, ECO:0000269|PubMed:8081734, ECO:0000269|PubMed:8288584}. |
Q14699 | RFTN1 | S485 | ochoa | Raftlin (Cell migration-inducing gene 2 protein) (Raft-linking protein) | Involved in protein trafficking via association with clathrin and AP2 complex (PubMed:21266579, PubMed:27022195). Upon bacterial lipopolysaccharide stimulation, mediates internalization of TLR4 to endosomes in dendritic cells and macrophages; and internalization of poly(I:C) to TLR3-positive endosomes in myeloid dendritic cells and epithelial cells; resulting in activation of TICAM1-mediated signaling and subsequent IFNB1 production (PubMed:21266579, PubMed:27022195). Involved in T-cell antigen receptor-mediated signaling by regulating tyrosine kinase LCK localization, T-cell dependent antibody production and cytokine secretion (By similarity). May regulate B-cell antigen receptor-mediated signaling (PubMed:12805216). May play a pivotal role in the formation and/or maintenance of lipid rafts (PubMed:12805216). {ECO:0000250|UniProtKB:Q6A0D4, ECO:0000269|PubMed:12805216, ECO:0000269|PubMed:21266579, ECO:0000269|PubMed:27022195}. |
Q147X3 | NAA30 | S188 | ochoa | N-alpha-acetyltransferase 30 (EC 2.3.1.256) (N-acetyltransferase 12) (N-acetyltransferase MAK3 homolog) (NatC catalytic subunit) | Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex (PubMed:19398576, PubMed:37891180). Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate (PubMed:19398576). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}. |
Q14839 | CHD4 | S105 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14847 | LASP1 | S134 | ochoa | LIM and SH3 domain protein 1 (LASP-1) (Metastatic lymph node gene 50 protein) (MLN 50) | Plays an important role in the regulation of dynamic actin-based, cytoskeletal activities. Agonist-dependent changes in LASP1 phosphorylation may also serve to regulate actin-associated ion transport activities, not only in the parietal cell but also in certain other F-actin-rich secretory epithelial cell types (By similarity). {ECO:0000250}. |
Q14966 | ZNF638 | S1158 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15276 | RABEP1 | S374 | ochoa | Rab GTPase-binding effector protein 1 (Rabaptin-4) (Rabaptin-5) (Rabaptin-5alpha) (Renal carcinoma antigen NY-REN-17) | Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. Involved in endocytic membrane fusion and membrane trafficking of recycling endosomes. Involved in KCNH1 channels trafficking to and from the cell membrane (PubMed:22841712). Stimulates RABGEF1 mediated nucleotide exchange on RAB5A. Mediates the traffic of PKD1:PKD2 complex from the endoplasmic reticulum through the Golgi to the cilium (By similarity). {ECO:0000250|UniProtKB:O35551, ECO:0000269|PubMed:10698684, ECO:0000269|PubMed:11452015, ECO:0000269|PubMed:12773381, ECO:0000269|PubMed:22841712, ECO:0000269|PubMed:8521472}. |
Q15326 | ZMYND11 | S419 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q27J81 | INF2 | S1183 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2NKX8 | ERCC6L | S1041 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q4KWH8 | PLCH1 | S464 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}. |
Q5JTH9 | RRP12 | S91 | ochoa | RRP12-like protein | None |
Q5JTV8 | TOR1AIP1 | S169 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5SSJ5 | HP1BP3 | S111 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5TB80 | CEP162 | S21 | ochoa | Centrosomal protein of 162 kDa (Cep162) (Protein QN1 homolog) | Required to promote assembly of the transition zone in primary cilia. Acts by specifically recognizing and binding the axonemal microtubule. Localizes to the distal ends of centrioles before ciliogenesis and directly binds to axonemal microtubule, thereby promoting and restricting transition zone formation specifically at the cilia base. Required to mediate CEP290 association with microtubules. {ECO:0000269|PubMed:23644468}. |
Q5VZ89 | DENND4C | S1606 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5VZK9 | CARMIL1 | S1131 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q6IQ55 | TTBK2 | S786 | ochoa | Tau-tubulin kinase 2 (EC 2.7.11.1) | Serine/threonine kinase that acts as a key regulator of ciliogenesis: controls the initiation of ciliogenesis by binding to the distal end of the basal body and promoting the removal of CCP110, which caps the mother centriole, leading to the recruitment of IFT proteins, which build the ciliary axoneme. Has some substrate preference for proteins that are already phosphorylated on a Tyr residue at the +2 position relative to the phosphorylation site. Able to phosphorylate tau on serines in vitro (PubMed:23141541). Phosphorylates MPHOSPH9 which promotes its ubiquitination and proteasomal degradation, loss of MPHOSPH9 facilitates the removal of the CP110-CEP97 complex (a negative regulator of ciliogenesis) from the mother centrioles, promoting the initiation of ciliogenesis (PubMed:30375385). Required for recruitment of CPLANE2 and INTU to the mother centriole (By similarity). {ECO:0000250|UniProtKB:Q3UVR3, ECO:0000269|PubMed:21548880, ECO:0000269|PubMed:23141541, ECO:0000269|PubMed:30375385}. |
Q6N021 | TET2 | Y1939 | psp | Methylcytosine dioxygenase TET2 (EC 1.14.11.80) | Dioxygenase that catalyzes the conversion of the modified genomic base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and plays a key role in active DNA demethylation. Has a preference for 5-hydroxymethylcytosine in CpG motifs. Also mediates subsequent conversion of 5hmC into 5-formylcytosine (5fC), and conversion of 5fC to 5-carboxylcytosine (5caC). Conversion of 5mC into 5hmC, 5fC and 5caC probably constitutes the first step in cytosine demethylation. Methylation at the C5 position of cytosine bases is an epigenetic modification of the mammalian genome which plays an important role in transcriptional regulation. In addition to its role in DNA demethylation, also involved in the recruitment of the O-GlcNAc transferase OGT to CpG-rich transcription start sites of active genes, thereby promoting histone H2B GlcNAcylation by OGT. {ECO:0000269|PubMed:19483684, ECO:0000269|PubMed:21057493, ECO:0000269|PubMed:21817016, ECO:0000269|PubMed:23222540, ECO:0000269|PubMed:23353889, ECO:0000269|PubMed:24315485, ECO:0000269|PubMed:32518946}. |
Q6NSJ2 | PHLDB3 | T65 | ochoa | Pleckstrin homology-like domain family B member 3 | None |
Q6P0N0 | MIS18BP1 | S175 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6UN15 | FIP1L1 | S62 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6ZU35 | CRACD | S1042 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q7Z2Z1 | TICRR | S1595 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z3K6 | MIER3 | S165 | ochoa | Mesoderm induction early response protein 3 (Mi-er3) | Transcriptional repressor. {ECO:0000250}. |
Q86UW6 | N4BP2 | S132 | psp | NEDD4-binding protein 2 (N4BP2) (EC 3.-.-.-) (BCL-3-binding protein) | Has 5'-polynucleotide kinase and nicking endonuclease activity. May play a role in DNA repair or recombination. {ECO:0000269|PubMed:12730195}. |
Q86YV5 | PRAG1 | S653 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IUW5 | RELL1 | S109 | ochoa | RELT-like protein 1 | Induces activation of MAPK14/p38 cascade, when overexpressed (PubMed:28688764). Induces apoptosis, when overexpressed (PubMed:19969290). {ECO:0000269|PubMed:19969290, ECO:0000269|PubMed:28688764}. |
Q8IW35 | CEP97 | S762 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IZ21 | PHACTR4 | S490 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8NE00 | TMEM104 | S94 | ochoa | Transmembrane protein 104 | None |
Q8NFI3 | ENGASE | S64 | ochoa | Cytosolic endo-beta-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) | Endoglycosidase that releases N-glycans from glycoproteins by cleaving the beta-1,4-glycosidic bond in the N,N'-diacetylchitobiose core. Involved in the processing of free oligosaccharides in the cytosol. {ECO:0000269|PubMed:12114544}. |
Q8TBZ6 | TRMT10A | S318 | ochoa | tRNA methyltransferase 10 homolog A (EC 2.1.1.221) (RNA (guanine-9-)-methyltransferase domain-containing protein 2) (tRNA (guanine(9)-N(1))-methyltransferase TRMT10A) | S-adenosyl-L-methionine-dependent guanine N(1)-methyltransferase that catalyzes the formation of N(1)-methylguanine at position 9 (m1G9) in tRNAs (PubMed:23042678, PubMed:25053765). Probably not able to catalyze formation of N(1)-methyladenine at position 9 (m1A9) in tRNAs (PubMed:23042678). {ECO:0000269|PubMed:23042678, ECO:0000269|PubMed:25053765}. |
Q8TC26 | TMEM163 | S57 | ochoa | Transmembrane protein 163 | Zinc ion transporter that mediates zinc efflux and plays a crucial role in intracellular zinc homeostasis (PubMed:25130899, PubMed:31697912, PubMed:36204728). Binds the divalent cations Zn(2+), Ni(2+), and to a minor extent Cu(2+) (By similarity). Is a functional modulator of P2X purinoceptors, including P2RX1, P2RX3, P2RX4 and P2RX7 (PubMed:32492420). Plays a role in central nervous system development and is required for myelination, and survival and proliferation of oligodendrocytes (PubMed:35455965). {ECO:0000250|UniProtKB:A9CMA6, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:31697912, ECO:0000269|PubMed:32492420, ECO:0000269|PubMed:35455965, ECO:0000269|PubMed:36204728}. |
Q8WWI1 | LMO7 | S1032 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q92692 | NECTIN2 | S405 | ochoa | Nectin-2 (Herpes virus entry mediator B) (Herpesvirus entry mediator B) (HveB) (Nectin cell adhesion molecule 2) (Poliovirus receptor-related protein 2) (CD antigen CD112) | Modulator of T-cell signaling. Can be either a costimulator of T-cell function, or a coinhibitor, depending on the receptor it binds to. Upon binding to CD226, stimulates T-cell proliferation and cytokine production, including that of IL2, IL5, IL10, IL13, and IFNG. Upon interaction with PVRIG, inhibits T-cell proliferation. These interactions are competitive (PubMed:26755705). Probable cell adhesion protein (PubMed:9657005). {ECO:0000269|PubMed:26755705, ECO:0000269|PubMed:9657005}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1 (HHV-1) mutant Rid1, herpes simplex virus 1 (HHV-2) and pseudorabies virus (PRV). {ECO:0000269|PubMed:11602758, ECO:0000269|PubMed:9657005}. |
Q92766 | RREB1 | S1479 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92793 | CREBBP | S1072 | ochoa | CREB-binding protein (Histone lysine acetyltransferase CREBBP) (EC 2.3.1.48) (Protein lactyltransferas CREBBP) (EC 2.3.1.-) (Protein-lysine acetyltransferase CREBBP) (EC 2.3.1.-) | Acetylates histones, giving a specific tag for transcriptional activation (PubMed:21131905, PubMed:24616510). Mediates acetylation of histone H3 at 'Lys-18' and 'Lys-27' (H3K18ac and H3K27ac, respectively) (PubMed:21131905). Also acetylates non-histone proteins, like DDX21, FBL, IRF2, MAFG, NCOA3, POLR1E/PAF53 and FOXO1 (PubMed:10490106, PubMed:11154691, PubMed:12738767, PubMed:12929931, PubMed:24207024, PubMed:28790157, PubMed:30540930, PubMed:35675826, PubMed:9707565). Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers (PubMed:14645221). Acetylates PCNA; acetylation promotes removal of chromatin-bound PCNA and its degradation during nucleotide excision repair (NER) (PubMed:24939902). Acetylates POLR1E/PAF53, leading to decreased association of RNA polymerase I with the rDNA promoter region and coding region (PubMed:24207024). Acetylates DDX21, thereby inhibiting DDX21 helicase activity (PubMed:28790157). Acetylates FBL, preventing methylation of 'Gln-105' of histone H2A (H2AQ104me) (PubMed:30540930). In addition to protein acetyltransferase, can use different acyl-CoA substrates, such as lactoyl-CoA, and is able to mediate protein lactylation (PubMed:38128537). Catalyzes lactylation of MRE11 in response to DNA damage, thereby promoting DNA double-strand breaks (DSBs) via homologous recombination (HR) (PubMed:38128537). Functions as a transcriptional coactivator for SMAD4 in the TGF-beta signaling pathway (PubMed:25514493). {ECO:0000269|PubMed:10490106, ECO:0000269|PubMed:11154691, ECO:0000269|PubMed:12738767, ECO:0000269|PubMed:12929931, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:21131905, ECO:0000269|PubMed:24207024, ECO:0000269|PubMed:24616510, ECO:0000269|PubMed:24939902, ECO:0000269|PubMed:25514493, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:35675826, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9707565}. |
Q92794 | KAT6A | S1001 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q92794 | KAT6A | T1119 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q96A49 | SYAP1 | S273 | ochoa | Synapse-associated protein 1 (BSD domain-containing signal transducer and Akt interactor protein) (BSTA) | Plays a role in adipocyte differentiation by promoting mTORC2-mediated phosphorylation of AKT1 at 'Ser-473' after growth factor stimulation (PubMed:23300339). {ECO:0000269|PubMed:23300339}. |
Q96FC9 | DDX11 | S204 | ochoa | ATP-dependent DNA helicase DDX11 (EC 5.6.2.3) (CHL1-related protein 1) (hCHLR1) (DEAD/H-box protein 11) (DNA 5'-3' helicase DDX11) (Keratinocyte growth factor-regulated gene 2 protein) (KRG-2) | DNA-dependent ATPase and ATP-dependent DNA helicase that participates in various functions in genomic stability, including DNA replication, DNA repair and heterochromatin organization as well as in ribosomal RNA synthesis (PubMed:10648783, PubMed:21854770, PubMed:23797032, PubMed:26089203, PubMed:26503245). Its double-stranded DNA helicase activity requires either a minimal 5'-single-stranded tail length of approximately 15 nt (flap substrates) or 10 nt length single-stranded gapped DNA substrates of a partial duplex DNA structure for helicase loading and translocation along DNA in a 5' to 3' direction (PubMed:10648783, PubMed:18499658, PubMed:22102414). The helicase activity is capable of displacing duplex regions up to 100 bp, which can be extended up to 500 bp by the replication protein A (RPA) or the cohesion CTF18-replication factor C (Ctf18-RFC) complex activities (PubMed:18499658). Also shows ATPase- and helicase activities on substrates that mimic key DNA intermediates of replication, repair and homologous recombination reactions, including forked duplex, anti-parallel G-quadruplex and three-stranded D-loop DNA molecules (PubMed:22102414, PubMed:26503245). Plays a role in DNA double-strand break (DSB) repair at the DNA replication fork during DNA replication recovery from DNA damage (PubMed:23797032). Recruited with TIMELESS factor upon DNA-replication stress response at DNA replication fork to preserve replication fork progression, and hence ensure DNA replication fidelity (PubMed:26503245). Also cooperates with TIMELESS factor during DNA replication to regulate proper sister chromatid cohesion and mitotic chromosome segregation (PubMed:17105772, PubMed:18499658, PubMed:20124417, PubMed:23116066, PubMed:23797032). Stimulates 5'-single-stranded DNA flap endonuclease activity of FEN1 in an ATP- and helicase-independent manner; and hence it may contribute in Okazaki fragment processing at DNA replication fork during lagging strand DNA synthesis (PubMed:18499658). Its ability to function at DNA replication fork is modulated by its binding to long non-coding RNA (lncRNA) cohesion regulator non-coding RNA DDX11-AS1/CONCR, which is able to increase both DDX11 ATPase activity and binding to DNA replicating regions (PubMed:27477908). Also plays a role in heterochromatin organization (PubMed:21854770). Involved in rRNA transcription activation through binding to active hypomethylated rDNA gene loci by recruiting UBTF and the RNA polymerase Pol I transcriptional machinery (PubMed:26089203). Plays a role in embryonic development and prevention of aneuploidy (By similarity). Involved in melanoma cell proliferation and survival (PubMed:23116066). Associates with chromatin at DNA replication fork regions (PubMed:27477908). Binds to single- and double-stranded DNAs (PubMed:18499658, PubMed:22102414, PubMed:9013641). {ECO:0000250|UniProtKB:Q6AXC6, ECO:0000269|PubMed:10648783, ECO:0000269|PubMed:17105772, ECO:0000269|PubMed:18499658, ECO:0000269|PubMed:20124417, ECO:0000269|PubMed:21854770, ECO:0000269|PubMed:22102414, ECO:0000269|PubMed:23116066, ECO:0000269|PubMed:23797032, ECO:0000269|PubMed:26089203, ECO:0000269|PubMed:26503245, ECO:0000269|PubMed:27477908}.; FUNCTION: (Microbial infection) Required for bovine papillomavirus type 1 regulatory protein E2 loading onto mitotic chromosomes during DNA replication for the viral genome to be maintained and segregated. {ECO:0000269|PubMed:17189189}. |
Q96GN5 | CDCA7L | T129 | ochoa | Cell division cycle-associated 7-like protein (Protein JPO2) (Transcription factor RAM2) | Plays a role in transcriptional regulation as a repressor that inhibits monoamine oxidase A (MAOA) activity and gene expression by binding to the promoter. Plays an important oncogenic role in mediating the full transforming effect of MYC in medulloblastoma cells. Involved in apoptotic signaling pathways; May act downstream of P38-kinase and BCL-2, but upstream of CASP3/caspase-3 as well as CCND1/cyclin D1 and E2F1. {ECO:0000269|PubMed:15654081, ECO:0000269|PubMed:15994933, ECO:0000269|PubMed:16829576}. |
Q96MW1 | CCDC43 | S151 | ochoa | Coiled-coil domain-containing protein 43 | None |
Q96NY8 | NECTIN4 | S397 | ochoa | Nectin-4 (Ig superfamily receptor LNIR) (Nectin cell adhesion molecule 4) (Poliovirus receptor-related protein 4) [Cleaved into: Processed poliovirus receptor-related protein 4] | Seems to be involved in cell adhesion through trans-homophilic and -heterophilic interactions, the latter including specifically interactions with NECTIN1. Does not act as receptor for alpha-herpesvirus entry into cells.; FUNCTION: (Microbial infection) Acts as a receptor for measles virus. {ECO:0000269|PubMed:22048310, ECO:0000269|PubMed:23202587}. |
Q96RL1 | UIMC1 | S200 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RS0 | TGS1 | S422 | ochoa | Trimethylguanosine synthase (EC 2.1.1.-) (CLL-associated antigen KW-2) (Cap-specific guanine-N(2) methyltransferase) (Hepatocellular carcinoma-associated antigen 137) (Nuclear receptor coactivator 6-interacting protein) (PRIP-interacting protein with methyltransferase motif) (PIMT) (PIPMT) | Catalyzes the 2 serial methylation steps for the conversion of the 7-monomethylguanosine (m(7)G) caps of snRNAs and snoRNAs to a 2,2,7-trimethylguanosine (m(2,2,7)G) cap structure. The enzyme is specific for guanine, and N7 methylation must precede N2 methylation. Hypermethylation of the m7G cap of U snRNAs leads to their concentration in nuclear foci, their colocalization with coilin and the formation of canonical Cajal bodies (CBs). Plays a role in transcriptional regulation. {ECO:0000269|PubMed:11517327, ECO:0000269|PubMed:11912212, ECO:0000269|PubMed:16687569, ECO:0000269|PubMed:18775984}. |
Q96ST2 | IWS1 | S170 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S196 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S209 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S222 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S235 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S248 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S300 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S377 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q99614 | TTC1 | S69 | ochoa | Tetratricopeptide repeat protein 1 (TPR repeat protein 1) | None |
Q9BUR4 | WRAP53 | S125 | ochoa | Telomerase Cajal body protein 1 (WD repeat-containing protein 79) (WD40 repeat-containing protein antisense to TP53 gene) (WRAP53beta) | RNA chaperone that plays a key role in telomere maintenance and RNA localization to Cajal bodies (PubMed:29695869, PubMed:29804836). Specifically recognizes and binds the Cajal body box (CAB box) present in both small Cajal body RNAs (scaRNAs) and telomerase RNA template component (TERC) (PubMed:19285445, PubMed:20351177, PubMed:29695869, PubMed:29804836). Essential component of the telomerase holoenzyme complex, a ribonucleoprotein complex essential for the replication of chromosome termini that elongates telomeres in most eukaryotes (PubMed:19179534, PubMed:20351177, PubMed:26170453, PubMed:29695869). In the telomerase holoenzyme complex, required to stimulate the catalytic activity of the complex (PubMed:27525486, PubMed:29804836). Acts by specifically binding the CAB box of the TERC RNA and controlling the folding of the CR4/CR5 region of the TERC RNA, a critical step for telomerase activity (PubMed:29804836). In addition, also controls telomerase holoenzyme complex localization to Cajal body (PubMed:22547674). During S phase, required for delivery of TERC to telomeres during S phase and for telomerase activity (PubMed:29804836). In addition to its role in telomere maintenance, also required for Cajal body formation, probably by mediating localization of scaRNAs to Cajal bodies (PubMed:19285445, PubMed:21072240). Also plays a role in DNA repair: phosphorylated by ATM in response to DNA damage and relocalizes to sites of DNA double-strand breaks to promote the repair of DNA double-strand breaks (PubMed:25512560, PubMed:27715493). Acts by recruiting the ubiquitin ligase RNF8 to DNA breaks and promote both homologous recombination (HR) and non-homologous end joining (NHEJ) (PubMed:25512560, PubMed:27715493). {ECO:0000269|PubMed:19179534, ECO:0000269|PubMed:19285445, ECO:0000269|PubMed:20351177, ECO:0000269|PubMed:21072240, ECO:0000269|PubMed:22547674, ECO:0000269|PubMed:25512560, ECO:0000269|PubMed:26170453, ECO:0000269|PubMed:27525486, ECO:0000269|PubMed:27715493, ECO:0000269|PubMed:29695869, ECO:0000269|PubMed:29804836}. |
Q9C0C2 | TNKS1BP1 | S1678 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9H0E9 | BRD8 | S641 | ochoa | Bromodomain-containing protein 8 (Skeletal muscle abundant protein) (Skeletal muscle abundant protein 2) (Thyroid hormone receptor coactivating protein of 120 kDa) (TrCP120) (p120) | May act as a coactivator during transcriptional activation by hormone-activated nuclear receptors (NR). Isoform 2 stimulates transcriptional activation by AR/DHTR, ESR1/NR3A1, RXRA/NR2B1 and THRB/ERBA2. At least isoform 1 and isoform 2 are components of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Component of a SWR1-like complex that specifically mediates the removal of histone H2A.Z/H2AZ1 from the nucleosome. {ECO:0000269|PubMed:10517671, ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:24463511}. |
Q9H4G0 | EPB41L1 | T477 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9NQV5 | PRDM11 | S426 | ochoa | PR domain-containing protein 11 (EC 2.1.1.-) | May be involved in transcription regulation. {ECO:0000269|PubMed:25499759}. |
Q9NRY4 | ARHGAP35 | S1111 | ochoa | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NUY8 | TBC1D23 | S567 | ochoa | TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) | Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}. |
Q9NV92 | NDFIP2 | S220 | ochoa | NEDD4 family-interacting protein 2 (NEDD4 WW domain-binding protein 5A) (Putative MAPK-activating protein PM04/PM05/PM06/PM07) (Putative NF-kappa-B-activating protein 413) | Activates HECT domain-containing E3 ubiquitin-protein ligases, including ITCH, NEDD4, NEDD4L, SMURF2, WWP1 and WWP2, and consequently modulates the stability of their targets. As a result, may control many cellular processes. Recruits ITCH, NEDD4 and SMURF2 to endosomal membranes. Negatively regulates KCNH2 potassium channel activity by decreasing its cell-surface expression and interfering with channel maturation through recruitment of NEDD4L to the Golgi apparatus and multivesicular body where it mediates KCNH2 degradation (PubMed:26363003). May modulate EGFR signaling. Together with NDFIP1, limits the cytokine signaling and expansion of effector Th2 T-cells by promoting degradation of JAK1, probably by ITCH- and NEDD4L-mediated ubiquitination (By similarity). {ECO:0000250|UniProtKB:Q91ZP6, ECO:0000269|PubMed:12761501, ECO:0000269|PubMed:19343052, ECO:0000269|PubMed:20534535, ECO:0000269|PubMed:26363003}. |
Q9NW68 | BSDC1 | S235 | ochoa | BSD domain-containing protein 1 | None |
Q9P2D1 | CHD7 | S2251 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2D6 | FAM135A | S453 | ochoa | Protein FAM135A | None |
Q9P2I0 | CPSF2 | S660 | ochoa | Cleavage and polyadenylation specificity factor subunit 2 (Cleavage and polyadenylation specificity factor 100 kDa subunit) (CPSF 100 kDa subunit) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. Involved in the histone 3' end pre-mRNA processing. {ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:18688255}. |
Q9UGP8 | SEC63 | S574 | psp | Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) | Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}. |
Q9UGU5 | HMGXB4 | S54 | ochoa | HMG domain-containing protein 4 (HMG box-containing protein 4) (High mobility group protein 2-like 1) (Protein HMGBCG) | Negatively regulates Wnt/beta-catenin signaling during development. {ECO:0000250}. |
Q9UHW9 | SLC12A6 | S147 | ochoa | Solute carrier family 12 member 6 (Electroneutral potassium-chloride cotransporter 3) (K-Cl cotransporter 3) | [Isoform 1]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10600773, PubMed:11551954, PubMed:16048901, PubMed:18566107, PubMed:19665974, PubMed:21628467, PubMed:27485015). May contribute to cell volume homeostasis in single cells (PubMed:16048901, PubMed:27485015). {ECO:0000269|PubMed:10600773, ECO:0000269|PubMed:11551954, ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:18566107, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21628467, ECO:0000269|PubMed:27485015, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 2]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901, PubMed:33199848, PubMed:34031912). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:33199848, ECO:0000269|PubMed:34031912, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 3]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 4]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 5]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 6]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}. |
Q9UII2 | ATP5IF1 | S63 | ochoa|psp | ATPase inhibitor, mitochondrial (ATP synthase F1 subunit epsilon) (Inhibitor of F(1)F(o)-ATPase) (IF(1)) (IF1) | Endogenous F(1)F(o)-ATPase inhibitor limiting ATP depletion when the mitochondrial membrane potential falls below a threshold and the F(1)F(o)-ATP synthase starts hydrolyzing ATP to pump protons out of the mitochondrial matrix. Required to avoid the consumption of cellular ATP when the F(1)F(o)-ATP synthase enzyme acts as an ATP hydrolase. Indirectly acts as a regulator of heme synthesis in erythroid tissues: regulates heme synthesis by modulating the mitochondrial pH and redox potential, allowing FECH to efficiently catalyze the incorporation of iron into protoporphyrin IX to produce heme. {ECO:0000269|PubMed:12110673, ECO:0000269|PubMed:15528193, ECO:0000269|PubMed:19559621, ECO:0000269|PubMed:23135403}. |
Q9UJK0 | TSR3 | S241 | ochoa | 18S rRNA aminocarboxypropyltransferase (EC 2.5.1.157) (20S S rRNA accumulation protein 3 homolog) (HsTsr3) | Aminocarboxypropyltransferase that catalyzes the aminocarboxypropyl transfer on pseudouridine at position 1248 (Psi1248) in 18S rRNA (Probable). It constitutes the last step in biosynthesis of the hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) conserved in eukaryotic 18S rRNA (Probable). {ECO:0000305|PubMed:27084949}. |
Q9ULF5 | SLC39A10 | S610 | ochoa | Zinc transporter ZIP10 (Solute carrier family 39 member 10) (Zrt- and Irt-like protein 10) (ZIP-10) | Zinc-influx transporter (PubMed:17359283, PubMed:27274087, PubMed:30520657). When associated with SLC39A6, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial-to-mesenchymal transition (EMT) (PubMed:23186163). SLC39A10-SLC39A6 heterodimers play also an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis (PubMed:32797246). Plays an important for both mature B-cell maintenance and humoral immune responses (By similarity). When associated with SLC39A10, the heterodimer controls NCAM1 phosphorylation and integration into focal adhesion complexes during EMT (By similarity). {ECO:0000250|UniProtKB:Q6P5F6, ECO:0000269|PubMed:17359283, ECO:0000269|PubMed:23186163, ECO:0000269|PubMed:27274087, ECO:0000269|PubMed:30520657, ECO:0000269|PubMed:32797246}. |
Q9ULH0 | KIDINS220 | S1488 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9UNY4 | TTF2 | S364 | ochoa | Transcription termination factor 2 (EC 3.6.4.-) (Lodestar homolog) (RNA polymerase II termination factor) (Transcription release factor 2) (F2) (HuF2) | DsDNA-dependent ATPase which acts as a transcription termination factor by coupling ATP hydrolysis with removal of RNA polymerase II from the DNA template. May contribute to mitotic transcription repression. May also be involved in pre-mRNA splicing. {ECO:0000269|PubMed:10455150, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:15125840, ECO:0000269|PubMed:9748214}. |
Q9UPV0 | CEP164 | S226 | ochoa | Centrosomal protein of 164 kDa (Cep164) | Plays a role in microtubule organization and/or maintenance for the formation of primary cilia (PC), a microtubule-based structure that protrudes from the surface of epithelial cells. Plays a critical role in G2/M checkpoint and nuclear divisions. A key player in the DNA damage-activated ATR/ATM signaling cascade since it is required for the proper phosphorylation of H2AX, RPA, CHEK2 and CHEK1. Plays a critical role in chromosome segregation, acting as a mediator required for the maintenance of genomic stability through modulation of MDC1, RPA and CHEK1. {ECO:0000269|PubMed:17954613, ECO:0000269|PubMed:18283122, ECO:0000269|PubMed:23348840}. |
Q9Y243 | AKT3 | S123 | ochoa | RAC-gamma serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase Akt-3) (Protein kinase B gamma) (PKB gamma) (RAC-PK-gamma) (STK-2) | AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial for the viability of malignant glioma cells. AKT3 isoform may also be the key molecule in up-regulation and down-regulation of MMP13 via IL13. Required for the coordination of mitochondrial biogenesis with growth factor-induced increases in cellular energy demands. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis. {ECO:0000269|PubMed:18524868, ECO:0000269|PubMed:21191416}. |
Q9Y450 | HBS1L | S64 | ochoa | HBS1-like protein (EC 3.6.5.-) (ERFS) | GTPase component of the Pelota-HBS1L complex, a complex that recognizes stalled ribosomes and triggers the No-Go Decay (NGD) pathway (PubMed:21448132, PubMed:23667253, PubMed:27863242). The Pelota-HBS1L complex recognizes ribosomes stalled at the 3' end of an mRNA and engages stalled ribosomes by destabilizing mRNA in the mRNA channel (PubMed:27863242). Following mRNA extraction from stalled ribosomes by the SKI complex, the Pelota-HBS1L complex promotes recruitment of ABCE1, which drives the disassembly of stalled ribosomes, followed by degradation of damaged mRNAs as part of the NGD pathway (PubMed:21448132, PubMed:32006463). {ECO:0000269|PubMed:21448132, ECO:0000269|PubMed:23667253, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:32006463}. |
Q9Y496 | KIF3A | S386 | ochoa | Kinesin-like protein KIF3A (Microtubule plus end-directed kinesin motor 3A) | Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. {ECO:0000250|UniProtKB:P28741}. |
Q9Y4L1 | HYOU1 | S634 | ochoa | Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) | Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}. |
Q9Y520 | PRRC2C | S633 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
O75821 | EIF3G | S28 | Sugiyama | Eukaryotic translation initiation factor 3 subunit G (eIF3g) (Eukaryotic translation initiation factor 3 RNA-binding subunit) (eIF-3 RNA-binding subunit) (Eukaryotic translation initiation factor 3 subunit 4) (eIF-3-delta) (eIF3 p42) (eIF3 p44) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). This subunit can bind 18S rRNA. {ECO:0000255|HAMAP-Rule:MF_03006, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P26373 | RPL13 | S181 | Sugiyama | Large ribosomal subunit protein eL13 (60S ribosomal protein L13) (Breast basic conserved protein 1) | Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:31630789, PubMed:32669547). The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules (Probable). The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain (Probable). The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (Probable). As part of the LSU, it is probably required for its formation and the maturation of rRNAs (PubMed:31630789). Plays a role in bone development (PubMed:31630789). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:31630789, ECO:0000269|PubMed:32669547}. |
O43293 | DAPK3 | S371 | Sugiyama | Death-associated protein kinase 3 (DAP kinase 3) (EC 2.7.11.1) (DAP-like kinase) (Dlk) (MYPT1 kinase) (Zipper-interacting protein kinase) (ZIP-kinase) | Serine/threonine kinase which is involved in the regulation of apoptosis, autophagy, transcription, translation and actin cytoskeleton reorganization. Involved in the regulation of smooth muscle contraction. Regulates both type I (caspase-dependent) apoptotic and type II (caspase-independent) autophagic cell deaths signal, depending on the cellular setting. Involved in regulation of starvation-induced autophagy. Regulates myosin phosphorylation in both smooth muscle and non-muscle cells. In smooth muscle, regulates myosin either directly by phosphorylating MYL12B and MYL9 or through inhibition of smooth muscle myosin phosphatase (SMPP1M) via phosphorylation of PPP1R12A; the inhibition of SMPP1M functions to enhance muscle responsiveness to Ca(2+) and promote a contractile state. Phosphorylates MYL12B in non-muscle cells leading to reorganization of actin cytoskeleton. Isoform 2 can phosphorylate myosin, PPP1R12A and MYL12B. Overexpression leads to condensation of actin stress fibers into thick bundles. Involved in actin filament focal adhesion dynamics. The function in both reorganization of actin cytoskeleton and focal adhesion dissolution is modulated by RhoD. Positively regulates canonical Wnt/beta-catenin signaling through interaction with NLK and TCF7L2. Phosphorylates RPL13A on 'Ser-77' upon interferon-gamma activation which is causing RPL13A release from the ribosome, RPL13A association with the GAIT complex and its subsequent involvement in transcript-selective translation inhibition. Enhances transcription from AR-responsive promoters in a hormone- and kinase-dependent manner. Involved in regulation of cell cycle progression and cell proliferation. May be a tumor suppressor. {ECO:0000269|PubMed:10356987, ECO:0000269|PubMed:11384979, ECO:0000269|PubMed:11781833, ECO:0000269|PubMed:12917339, ECO:0000269|PubMed:15096528, ECO:0000269|PubMed:15367680, ECO:0000269|PubMed:16219639, ECO:0000269|PubMed:17126281, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18084323, ECO:0000269|PubMed:18995835, ECO:0000269|PubMed:21169990, ECO:0000269|PubMed:21408167, ECO:0000269|PubMed:21454679, ECO:0000269|PubMed:21487036, ECO:0000269|PubMed:23454120, ECO:0000269|PubMed:38009294}. |
O95747 | OXSR1 | S355 | Sugiyama | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
Q9H307 | PNN | S347 | Sugiyama | Pinin (140 kDa nuclear and cell adhesion-related phosphoprotein) (Desmosome-associated protein) (Domain-rich serine protein) (DRS protein) (DRSP) (Melanoma metastasis clone A protein) (Nuclear protein SDK3) (SR-like protein) | Transcriptional activator binding to the E-box 1 core sequence of the E-cadherin promoter gene; the core-binding sequence is 5'CAGGTG-3'. Capable of reversing CTBP1-mediated transcription repression. Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Participates in the regulation of alternative pre-mRNA splicing. Associates to spliced mRNA within 60 nt upstream of the 5'-splice sites. Component of the PSAP complex which binds RNA in a sequence-independent manner and is proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets. Involved in the establishment and maintenance of epithelia cell-cell adhesion. Potential tumor suppressor for renal cell carcinoma. {ECO:0000269|PubMed:12051732, ECO:0000269|PubMed:14517304, ECO:0000269|PubMed:15542832, ECO:0000269|PubMed:15735603, ECO:0000269|PubMed:22388736}. |
Q9NY27 | PPP4R2 | S311 | Sugiyama | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NY27 | PPP4R2 | S315 | Sugiyama | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q13043 | STK4 | S327 | SIGNOR|EPSD|Sugiyama | Serine/threonine-protein kinase 4 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 1) (MST-1) (STE20-like kinase MST1) (Serine/threonine-protein kinase Krs-2) [Cleaved into: Serine/threonine-protein kinase 4 37kDa subunit (MST1/N); Serine/threonine-protein kinase 4 18kDa subunit (MST1/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation. Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation (By similarity). Phosphorylates 'Ser-14' of histone H2B (H2BS14ph) during apoptosis. Phosphorylates FOXO3 upon oxidative stress, which results in its nuclear translocation and cell death initiation. Phosphorylates MOBKL1A, MOBKL1B and RASSF2. Phosphorylates TNNI3 (cardiac Tn-I) and alters its binding affinity to TNNC1 (cardiac Tn-C) and TNNT2 (cardiac Tn-T). Phosphorylates FOXO1 on 'Ser-212' and regulates its activation and stimulates transcription of PMAIP1 in a FOXO1-dependent manner. Phosphorylates SIRT1 and inhibits SIRT1-mediated p53/TP53 deacetylation, thereby promoting p53/TP53 dependent transcription and apoptosis upon DNA damage. Acts as an inhibitor of PKB/AKT1. Phosphorylates AR on 'Ser-650' and suppresses its activity by intersecting with PKB/AKT1 signaling and antagonizing formation of AR-chromatin complexes. {ECO:0000250|UniProtKB:Q9JI11, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:11517310, ECO:0000269|PubMed:12757711, ECO:0000269|PubMed:15109305, ECO:0000269|PubMed:16510573, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:17932490, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18986304, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:21212262, ECO:0000269|PubMed:21245099, ECO:0000269|PubMed:21512132, ECO:0000269|PubMed:8702870, ECO:0000269|PubMed:8816758}. |
P55036 | PSMD4 | S242 | Sugiyama | 26S proteasome non-ATPase regulatory subunit 4 (26S proteasome regulatory subunit RPN10) (26S proteasome regulatory subunit S5A) (Antisecretory factor 1) (AF) (ASF) (Multiubiquitin chain-binding protein) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMD4 acts as an ubiquitin receptor subunit through ubiquitin-interacting motifs and selects ubiquitin-conjugates for destruction. Displays a preferred selectivity for longer polyubiquitin chains. {ECO:0000269|PubMed:1317798, ECO:0000269|PubMed:15826667}. |
Q13547 | HDAC1 | S434 | Sugiyama | Histone deacetylase 1 (HD1) (EC 3.5.1.98) (Protein deacetylase HDAC1) (EC 3.5.1.-) (Protein deacylase HDAC1) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:16762839, PubMed:17704056, PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:16762839, PubMed:17704056). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:16762839, PubMed:17704056). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). As part of the SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Also functions as a deacetylase for non-histone targets, such as NR1D2, RELA, SP1, SP3, STAT3 and TSHZ3 (PubMed:12837748, PubMed:16285960, PubMed:16478997, PubMed:17996965, PubMed:19343227). Deacetylates SP proteins, SP1 and SP3, and regulates their function (PubMed:12837748, PubMed:16478997). Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons (PubMed:19081374). Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation (PubMed:19081374). Deacetylates TSHZ3 and regulates its transcriptional repressor activity (PubMed:19343227). Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B (PubMed:17000776). Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity (PubMed:17996965). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer (By similarity). Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation (By similarity). In addition to protein deacetylase activity, also has protein-lysine deacylase activity: acts as a protein decrotonylase and delactylase by mediating decrotonylation ((2E)-butenoyl) and delactylation (lactoyl) of histones, respectively (PubMed:28497810, PubMed:35044827). {ECO:0000250|UniProtKB:O09106, ECO:0000269|PubMed:12837748, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17996965, ECO:0000269|PubMed:19081374, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:35044827}. |
O00221 | NFKBIE | S157 | ochoa | NF-kappa-B inhibitor epsilon (NF-kappa-BIE) (I-kappa-B-epsilon) (IkB-E) (IkB-epsilon) (IkappaBepsilon) | Sequesters NF-kappa-B transcription factor complexes in the cytoplasm, thereby inhibiting their activity (PubMed:9315679). Sequestered complexes include NFKB1-RELA (p50-p65) and NFKB1-REL (p50-c-Rel) complexes (PubMed:9135156, PubMed:9315679). Limits B-cell activation in response to pathogens, and also plays an important role in B-cell development (By similarity). {ECO:0000250|UniProtKB:O54910, ECO:0000269|PubMed:9135156, ECO:0000269|PubMed:9315679}. |
O60678 | PRMT3 | S25 | ochoa | Protein arginine N-methyltransferase 3 (EC 2.1.1.319) (Heterogeneous nuclear ribonucleoprotein methyltransferase-like protein 3) | Protein-arginine N-methyltransferase that catalyzes both the monomethylation and asymmetric dimethylation of the guanidino nitrogens of arginine residues in target proteins, and therefore falls into the group of type I methyltransferases (PubMed:22795084, PubMed:23445220, PubMed:25728001, PubMed:31378783, PubMed:33495566, PubMed:39513743). Catalyzes the asymmetric arginine dimethylation at multiple sites in the Arg/Gly-rich region of small ribosomal subunit protein uS5/RPS2 (PubMed:22795084). Also appears to methylate other ribosomal proteins (By similarity). May regulate retinoic acid synthesis and signaling by inhibiting ALDH1A1 retinal dehydrogenase activity (PubMed:33495566). Contributes to methylation of histone H4 'Arg-3', a specific tag for epigenetic transcriptional activation (PubMed:25728001, PubMed:31378783, PubMed:39513743). Mediates asymmetric arginine dimethylation of histone H4 'Arg-3' (H4R3me2a) in the promoter region of miRNA miR-3648, to promote its transcription and osteogenesis (PubMed:31378783). {ECO:0000250|UniProtKB:Q922H1, ECO:0000269|PubMed:22795084, ECO:0000269|PubMed:23445220, ECO:0000269|PubMed:25728001, ECO:0000269|PubMed:31378783, ECO:0000269|PubMed:33495566, ECO:0000269|PubMed:39513743}. |
O75381 | PEX14 | S335 | ochoa | Peroxisomal membrane protein PEX14 (PTS1 receptor-docking protein) (Peroxin-14) (Peroxisomal membrane anchor protein PEX14) | Component of the PEX13-PEX14 docking complex, a translocon channel that specifically mediates the import of peroxisomal cargo proteins bound to PEX5 receptor (PubMed:24235149, PubMed:28765278, PubMed:9653144). The PEX13-PEX14 docking complex forms a large import pore which can be opened to a diameter of about 9 nm (By similarity). Mechanistically, PEX5 receptor along with cargo proteins associates with the PEX14 subunit of the PEX13-PEX14 docking complex in the cytosol, leading to the insertion of the receptor into the organelle membrane with the concomitant translocation of the cargo into the peroxisome matrix (PubMed:24235149, PubMed:28765278). Plays a key role for peroxisome movement through a direct interaction with tubulin (PubMed:21525035). {ECO:0000250|UniProtKB:P53112, ECO:0000269|PubMed:21525035, ECO:0000269|PubMed:24235149, ECO:0000269|PubMed:28765278, ECO:0000269|PubMed:9653144}. |
O95425 | SVIL | S65 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
P04920 | SLC4A2 | S132 | ochoa | Anion exchange protein 2 (AE 2) (Anion exchanger 2) (Non-erythroid band 3-like protein) (BND3L) (Solute carrier family 4 member 2) | Sodium-independent anion exchanger which mediates the electroneutral exchange of chloride for bicarbonate ions across the cell membrane (PubMed:15184086, PubMed:34668226). Plays an important role in osteoclast differentiation and function (PubMed:34668226). Regulates bone resorption and calpain-dependent actin cytoskeleton organization in osteoclasts via anion exchange-dependent control of pH (By similarity). Essential for intracellular pH regulation in CD8(+) T-cells upon CD3 stimulation, modulating CD8(+) T-cell responses (By similarity). {ECO:0000250|UniProtKB:P13808, ECO:0000269|PubMed:15184086, ECO:0000269|PubMed:34668226}. |
P06732 | CKM | S24 | ochoa | Creatine kinase M-type (EC 2.7.3.2) (Creatine kinase M chain) (Creatine phosphokinase M-type) (CPK-M) (M-CK) | Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. {ECO:0000250|UniProtKB:P00563}. |
P07910 | HNRNPC | S241 | ochoa | Heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1/C2) | Binds pre-mRNA and nucleates the assembly of 40S hnRNP particles (PubMed:8264621). Interacts with poly-U tracts in the 3'-UTR or 5'-UTR of mRNA and modulates the stability and the level of translation of bound mRNA molecules (PubMed:12509468, PubMed:16010978, PubMed:7567451, PubMed:8264621). Single HNRNPC tetramers bind 230-240 nucleotides. Trimers of HNRNPC tetramers bind 700 nucleotides (PubMed:8264621). May play a role in the early steps of spliceosome assembly and pre-mRNA splicing. N6-methyladenosine (m6A) has been shown to alter the local structure in mRNAs and long non-coding RNAs (lncRNAs) via a mechanism named 'm(6)A-switch', facilitating binding of HNRNPC, leading to regulation of mRNA splicing (PubMed:25719671). {ECO:0000269|PubMed:12509468, ECO:0000269|PubMed:16010978, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:7567451, ECO:0000269|PubMed:8264621}. |
P18858 | LIG1 | S76 | ochoa|psp | DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) | DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}. |
P34932 | HSPA4 | S556 | ochoa | Heat shock 70 kDa protein 4 (HSP70RY) (Heat shock 70-related protein APG-2) (Heat shock protein family H member 2) | None |
P35222 | CTNNB1 | S60 | psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35251 | RFC1 | S1106 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P36402 | TCF7 | S37 | ochoa | Transcription factor 7 (TCF-7) (T-cell-specific transcription factor 1) (T-cell factor 1) (TCF-1) | Transcriptional activator involved in T-cell lymphocyte differentiation. Necessary for the survival of CD4(+) CD8(+) immature thymocytes. Isoforms lacking the N-terminal CTNNB1 binding domain cannot fulfill this role. Binds to the T-lymphocyte-specific enhancer element (5'-WWCAAAG-3') found in the promoter of the CD3E gene. Represses expression of the T-cell receptor gamma gene in alpha-beta T-cell lineages (By similarity). Required for the development of natural killer receptor-positive lymphoid tissue inducer T-cells (By similarity). TLE1, TLE2, TLE3 and TLE4 repress transactivation mediated by TCF7 and CTNNB1. May also act as feedback transcriptional repressor of CTNNB1 and TCF7L2 target genes. {ECO:0000250|UniProtKB:Q00417}. |
P46821 | MAP1B | S339 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48634 | PRRC2A | S361 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48634 | PRRC2A | S1328 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P55081 | MFAP1 | S81 | ochoa | Microfibrillar-associated protein 1 (Spliceosome B complex protein MFAP1) | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:28781166}. |
P55265 | ADAR | S599 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P68104 | EEF1A1 | S175 | ochoa | Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) | Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}. |
Q07021 | C1QBP | S205 | ochoa | Complement component 1 Q subcomponent-binding protein, mitochondrial (ASF/SF2-associated protein p32) (Glycoprotein gC1qBP) (C1qBP) (Hyaluronan-binding protein 1) (Mitochondrial matrix protein p32) (gC1q-R protein) (p33) (SF2AP32) | Multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing (PubMed:10022843, PubMed:10479529, PubMed:10722602, PubMed:11086025, PubMed:11859136, PubMed:15243141, PubMed:16140380, PubMed:16177118, PubMed:17881511, PubMed:18676636, PubMed:19004836, PubMed:19164550, PubMed:20810993, PubMed:21536856, PubMed:21544310, PubMed:22700724, PubMed:28942965, PubMed:8662673, PubMed:8710908, PubMed:9461517). At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades (PubMed:10479529, PubMed:11859136, PubMed:8662673, PubMed:8710908). Putative receptor for C1q; specifically binds to the globular 'heads' of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93 (PubMed:20810993, PubMed:8195709). In complex with cytokeratin-1/KRT1 is a high affinity receptor for kininogen-1/HMWK (PubMed:21544310). Can also bind other plasma proteins, such as coagulation factor XII leading to its autoactivation. May function to bind initially fluid kininogen-1 to the cell membrane. The secreted form may enhance both extrinsic and intrinsic coagulation pathways. It is postulated that the cell surface form requires docking with transmembrane proteins for downstream signaling which might be specific for a cell-type or response. By acting as C1q receptor is involved in chemotaxis of immature dendritic cells and neutrophils and is proposed to signal through CD209/DC-SIGN on immature dendritic cells, through integrin alpha-4/beta-1 during trophoblast invasion of the decidua, and through integrin beta-1 during endothelial cell adhesion and spreading (PubMed:16140380, PubMed:22700724, PubMed:9461517). Signaling involved in inhibition of innate immune response is implicating the PI3K-AKT/PKB pathway (PubMed:16177118). Required for protein synthesis in mitochondria (PubMed:28942965). In mitochondrial translation may be involved in formation of functional 55S mitoribosomes; the function seems to involve its RNA-binding activity (By similarity). Acts as a RNA modification reader, which specifically recognizes and binds mitochondrial RNAs modified by C5-methylcytosine (m5C) in response to stress, and promotes recruitment of the mitochondrial degradosome complex, leading to their degradation (PubMed:39019044). May be involved in the nucleolar ribosome maturation process; the function may involve the exchange of FBL for RRP1 in the association with pre-ribosome particles (By similarity). Involved in regulation of RNA splicing by inhibiting the RNA-binding capacity of SRSF1 and its phosphorylation (PubMed:10022843, PubMed:21536856). Is required for the nuclear translocation of splicing factor U2AF1L4 (By similarity). Involved in regulation of CDKN2A- and HRK-mediated apoptosis. Stabilizes mitochondrial CDKN2A isoform smARF (PubMed:17486078). May be involved in regulation of FOXC1 transcriptional activity and NFY/CCAAT-binding factor complex-mediated transcription (PubMed:15243141, PubMed:18676636). May play a role in antibacterial defense as it can bind to cell surface hyaluronan and inhibit Streptococcus pneumoniae hyaluronate lyase (PubMed:19004836). May be involved in modulation of the immune response; ligation by HCV core protein is resulting in suppression of interleukin-12 production in monocyte-derived dendritic cells (PubMed:11086025, PubMed:17881511). Involved in regulation of antiviral response by inhibiting RIGI- and IFIH1-mediated signaling pathways probably involving its association with MAVS after viral infection (PubMed:19164550). Acts as a regulator of DNA repair via homologous recombination by inhibiting the activity of MRE11: interacts with unphosphorylated MRE11 and RAD50 in absence of DNA damage, preventing formation and activity of the MRN complex. Following DNA damage, dissociates from phosphorylated MRE11, allowing formation of the MRN complex (PubMed:31353207). {ECO:0000250|UniProtKB:O35658, ECO:0000269|PubMed:10022843, ECO:0000269|PubMed:10479529, ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:11086025, ECO:0000269|PubMed:11859136, ECO:0000269|PubMed:15243141, ECO:0000269|PubMed:16140380, ECO:0000269|PubMed:16177118, ECO:0000269|PubMed:17486078, ECO:0000269|PubMed:17881511, ECO:0000269|PubMed:18676636, ECO:0000269|PubMed:19004836, ECO:0000269|PubMed:19164550, ECO:0000269|PubMed:20810993, ECO:0000269|PubMed:21536856, ECO:0000269|PubMed:21544310, ECO:0000269|PubMed:22700724, ECO:0000269|PubMed:28942965, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:39019044, ECO:0000269|PubMed:8195709, ECO:0000269|PubMed:8662673, ECO:0000269|PubMed:8710908, ECO:0000269|PubMed:9461517}.; FUNCTION: (Microbial infection) Involved in HIV-1 replication, presumably by contributing to splicing of viral RNA. {ECO:0000269|PubMed:12833064}.; FUNCTION: (Microbial infection) In infection processes acts as an attachment site for microbial proteins, including Listeria monocytogenes internalin B (InlB) and Staphylococcus aureus protein A. {ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:10747014, ECO:0000269|PubMed:12411480}.; FUNCTION: (Microbial infection) Involved in replication of Rubella virus. {ECO:0000269|PubMed:12034482}. |
Q12873 | CHD3 | S328 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q13029 | PRDM2 | S1265 | ochoa | PR domain zinc finger protein 2 (EC 2.1.1.355) (GATA-3-binding protein G3B) (Lysine N-methyltransferase 8) (MTB-ZF) (MTE-binding protein) (PR domain-containing protein 2) (Retinoblastoma protein-interacting zinc finger protein) (Zinc finger protein RIZ) | S-adenosyl-L-methionine-dependent histone methyltransferase that specifically methylates 'Lys-9' of histone H3. May function as a DNA-binding transcription factor. Binds to the macrophage-specific TPA-responsive element (MTE) of the HMOX1 (heme oxygenase 1) gene and may act as a transcriptional activator of this gene. {ECO:0000269|PubMed:14633678}. |
Q13188 | STK3 | S316 | ochoa|psp | Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}. |
Q13501 | SQSTM1 | S332 | ochoa|psp | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13895 | BYSL | S55 | ochoa | Bystin | Required for processing of 20S pre-rRNA precursor and biogenesis of 40S ribosomal subunits. May be required for trophinin-dependent regulation of cell adhesion during implantation of human embryos. {ECO:0000269|PubMed:17360433, ECO:0000269|PubMed:17381424}. |
Q14151 | SAFB2 | S262 | ochoa | Scaffold attachment factor B2 (SAF-B2) | Binds to scaffold/matrix attachment region (S/MAR) DNA. Can function as an estrogen receptor corepressor and can also inhibit cell proliferation. |
Q14207 | NPAT | S381 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14694 | USP10 | S576 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14839 | CHD4 | S103 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14966 | ZNF638 | S1697 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15398 | DLGAP5 | S789 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15424 | SAFB | S263 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q5VTE0 | EEF1A1P5 | S175 | ochoa | Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) | This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}. |
Q6PJT7 | ZC3H14 | S421 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q8IWC1 | MAP7D3 | S751 | ochoa | MAP7 domain-containing protein 3 | Promotes the assembly and stability of microtubules. {ECO:0000269|PubMed:22142902, ECO:0000269|PubMed:24927501}. |
Q8IXW5 | RPAP2 | S414 | ochoa | Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2 (EC 3.1.3.16) (RNA polymerase II-associated protein 2) | Protein phosphatase that displays CTD phosphatase activity and regulates transcription of snRNA genes. Recognizes and binds phosphorylated 'Ser-7' of the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and mediates dephosphorylation of 'Ser-5' of the CTD, thereby promoting transcription of snRNA genes (PubMed:17643375, PubMed:22137580, PubMed:24997600). Downstream of EIF2AK3/PERK, dephosphorylates ERN1, a sensor for the endoplasmic reticulum unfolded protein response (UPR), to abort failed ER-stress adaptation and trigger apoptosis (PubMed:30118681). {ECO:0000269|PubMed:17643375, ECO:0000269|PubMed:22137580, ECO:0000269|PubMed:24997600, ECO:0000269|PubMed:30118681}. |
Q8N1G0 | ZNF687 | S1184 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N344 | MIER2 | S141 | ochoa | Mesoderm induction early response protein 2 (Mi-er2) | Transcriptional repressor. {ECO:0000250}. |
Q8N8J7 | FAM241A | S56 | ochoa | Uncharacterized protein FAM241A | None |
Q8NDI1 | EHBP1 | S369 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8TCN5 | ZNF507 | S427 | ochoa | Zinc finger protein 507 | May be involved in transcriptional regulation. |
Q92794 | KAT6A | S473 | ochoa | Histone acetyltransferase KAT6A (EC 2.3.1.48) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 3) (MYST-3) (Monocytic leukemia zinc finger protein) (Runt-related transcription factor-binding protein 2) (Zinc finger protein 220) | Histone acetyltransferase that acetylates lysine residues in histone H3 and histone H4 (in vitro). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. May act as a transcriptional coactivator for RUNX1 and RUNX2. Acetylates p53/TP53 at 'Lys-120' and 'Lys-382' and controls its transcriptional activity via association with PML. {ECO:0000269|PubMed:11742995, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:12771199, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:17925393, ECO:0000269|PubMed:23431171}. |
Q96F63 | CCDC97 | S257 | ochoa | Coiled-coil domain-containing protein 97 | May play a role pre-mRNA splicing through the association with the splicing factor SF3B complex which is involved in branch-site recognition. {ECO:0000269|PubMed:26344197}. |
Q96JJ7 | TMX3 | S433 | ochoa | Protein disulfide-isomerase TMX3 (EC 5.3.4.1) (Thioredoxin domain-containing protein 10) (Thioredoxin-related transmembrane protein 3) | Probable disulfide isomerase, which participates in the folding of proteins containing disulfide bonds. May act as a dithiol oxidase (PubMed:15623505). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:31304984). {ECO:0000269|PubMed:15623505, ECO:0000269|PubMed:31304984}. |
Q96S99 | PLEKHF1 | S227 | ochoa | Pleckstrin homology domain-containing family F member 1 (PH domain-containing family F member 1) (Lysosome-associated apoptosis-inducing protein containing PH and FYVE domains) (Apoptosis-inducing protein) (PH and FYVE domain-containing protein 1) (Phafin-1) (Zinc finger FYVE domain-containing protein 15) | May induce apoptosis through the lysosomal-mitochondrial pathway. Translocates to the lysosome initiating the permeabilization of lysosomal membrane (LMP) and resulting in the release of CTSD and CTSL to the cytoplasm. Triggers the caspase-independent apoptosis by altering mitochondrial membrane permeabilization (MMP) resulting in the release of PDCD8. {ECO:0000269|PubMed:16188880}. |
Q96SB4 | SRPK1 | S51 | ochoa|psp | SRSF protein kinase 1 (EC 2.7.11.1) (SFRS protein kinase 1) (Serine/arginine-rich protein-specific kinase 1) (SR-protein-specific kinase 1) | Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activities, such as chromatin reorganization in somatic and sperm cells and cell cycle progression. Isoform 2 phosphorylates SFRS2, ZRSR2, LBR and PRM1. Isoform 2 phosphorylates SRSF1 using a directional (C-terminal to N-terminal) and a dual-track mechanism incorporating both processive phosphorylation (in which the kinase stays attached to the substrate after each round of phosphorylation) and distributive phosphorylation steps (in which the kinase and substrate dissociate after each phosphorylation event). The RS domain of SRSF1 binds first to a docking groove in the large lobe of the kinase domain of SRPK1. This induces certain structural changes in SRPK1 and/or RRM2 domain of SRSF1, allowing RRM2 to bind the kinase and initiate phosphorylation. The cycles continue for several phosphorylation steps in a processive manner (steps 1-8) until the last few phosphorylation steps (approximately steps 9-12). During that time, a mechanical stress induces the unfolding of the beta-4 motif in RRM2, which then docks at the docking groove of SRPK1. This also signals RRM2 to begin to dissociate, which facilitates SRSF1 dissociation after phosphorylation is completed. Isoform 2 can mediate hepatitis B virus (HBV) core protein phosphorylation. It plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles. Isoform 1 and isoform 2 can induce splicing of exon 10 in MAPT/TAU. The ratio of isoform 1/isoform 2 plays a decisive role in determining cell fate in K-562 leukaemic cell line: isoform 2 favors proliferation where as isoform 1 favors differentiation. {ECO:0000269|PubMed:10049757, ECO:0000269|PubMed:10390541, ECO:0000269|PubMed:11509566, ECO:0000269|PubMed:12134018, ECO:0000269|PubMed:14555757, ECO:0000269|PubMed:15034300, ECO:0000269|PubMed:16122776, ECO:0000269|PubMed:16209947, ECO:0000269|PubMed:18155240, ECO:0000269|PubMed:18687337, ECO:0000269|PubMed:19240134, ECO:0000269|PubMed:19477182, ECO:0000269|PubMed:19886675, ECO:0000269|PubMed:20708644, ECO:0000269|PubMed:8208298, ECO:0000269|PubMed:9237760}. |
Q9H147 | DNTTIP1 | S161 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 1 (Terminal deoxynucleotidyltransferase-interacting factor 1) (TdIF1) (TdT-interacting factor 1) | Increases DNTT terminal deoxynucleotidyltransferase activity (in vitro) (PubMed:11473582). Also acts as a transcriptional regulator, binding to the consensus sequence 5'-GNTGCATG-3' following an AT-tract. Associates with RAB20 promoter and positively regulates its transcription. Binds DNA and nucleosomes; may recruit HDAC1 complexes to nucleosomes or naked DNA. {ECO:0000269|PubMed:11473582, ECO:0000269|PubMed:23874396, ECO:0000305|PubMed:25653165}. |
Q9H3N1 | TMX1 | S253 | ochoa | Thioredoxin-related transmembrane protein 1 (Protein disulfide-isomerase TMX1) (EC 5.3.4.1) (Thioredoxin domain-containing protein 1) (Transmembrane Trx-related protein) | Thiredoxin domain-containing protein that participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyze dithiol-disulfide exchange reactions (PubMed:11152479, PubMed:37648867). Acts as a key inhibitor of the alternative triglyceride biosynthesis pathway by inhibiting the activity of TMEM68/DIESL at the endoplasmic reticulum, thereby restricting accumulation of triacylglycerol (PubMed:37648867). The alternative triglyceride biosynthesis pathway mediates formation of triacylglycerol from diacylglycerol and membrane phospholipids (PubMed:37648867). Acts as a protein disulfide isomerase by catalyzing formation or reduction of disulfide bonds (PubMed:22228764, PubMed:29932915). Specifically mediates formation of disulfide bonds of transmembrane proteins at the endoplasmic reticulum membrane (PubMed:22228764). Involved in endoplasmic reticulum-associated degradation (ERAD) via its protein disulfide isomerase activity by acting on folding-defective polypeptides at the endoplasmic reticulum membrane (PubMed:29932915). Acts as a negative regulator of platelet aggregation following secretion in the extracellular space (PubMed:30425049). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:27502484, PubMed:31304984). Regulates endoplasmic reticulum-mitochondria Ca(2+) flux (PubMed:27502484). {ECO:0000269|PubMed:11152479, ECO:0000269|PubMed:22228764, ECO:0000269|PubMed:27502484, ECO:0000269|PubMed:29932915, ECO:0000269|PubMed:30425049, ECO:0000269|PubMed:31304984, ECO:0000269|PubMed:37648867}. |
Q9HB96 | FANCE | S194 | ochoa | Fanconi anemia group E protein (Protein FACE) | As part of the Fanconi anemia (FA) complex functions in DNA cross-links repair. Required for the nuclear accumulation of FANCC and provides a critical bridge between the FA complex and FANCD2. {ECO:0000269|PubMed:12093742, ECO:0000269|PubMed:17296736}. |
Q9NRR4 | DROSHA | S373 | ochoa | Ribonuclease 3 (EC 3.1.26.3) (Protein Drosha) (Ribonuclease III) (RNase III) (p241) | Ribonuclease III double-stranded (ds) RNA-specific endoribonuclease that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DROSHA cleaves the 3' and 5' strands of a stem-loop in pri-miRNAs (processing center 11 bp from the dsRNA-ssRNA junction) to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs. Involved also in pre-rRNA processing. Cleaves double-strand RNA and does not cleave single-strand RNA. Involved in the formation of GW bodies. Plays a role in growth homeostasis in response to autophagy in motor neurons (By similarity). {ECO:0000250|UniProtKB:Q5HZJ0, ECO:0000269|PubMed:10948199, ECO:0000269|PubMed:14508493, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15565168, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q9NSY0 | NRBP2 | S26 | ochoa | Nuclear receptor-binding protein 2 (Transformation-related gene 16 protein) (TRG-16) | May regulate apoptosis of neural progenitor cells during their differentiation. {ECO:0000250}. |
Q9NU22 | MDN1 | S4752 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NU22 | MDN1 | S5015 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NU22 | MDN1 | T5017 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9NZN5 | ARHGEF12 | T732 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9UD71 | PPP1R1B | S137 | psp | Protein phosphatase 1 regulatory subunit 1B (DARPP-32) (Dopamine- and cAMP-regulated neuronal phosphoprotein) | Inhibitor of protein-phosphatase 1. |
Q9UDY2 | TJP2 | S948 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UN30 | SCML1 | S176 | ochoa | Sex comb on midleg-like protein 1 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. May be involved in spermatogenesis during sexual maturation (By similarity). {ECO:0000250}. |
Q9UQ35 | SRRM2 | S1245 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9Y2G8 | DNAJC16 | S725 | ochoa | DnaJ homolog subfamily C member 16 (Endoplasmic reticulum DNA J domain-containing protein 8) (ER-resident protein ERdj8) (ERdj8) | Plays an important role in regulating the size of autophagosomes during the formation process. {ECO:0000269|PubMed:32492081}. |
Q9Y3B9 | RRP15 | S85 | ochoa | RRP15-like protein (Ribosomal RNA-processing protein 15) | None |
Q9Y4L1 | HYOU1 | S461 | ochoa | Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) | Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}. |
Q9Y520 | PRRC2C | S1248 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q12874 | SF3A3 | S483 | Sugiyama | Splicing factor 3A subunit 3 (SF3a60) (Spliceosome-associated protein 61) (SAP 61) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310, PubMed:8022796). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:8022796}. |
Q00987 | MDM2 | S176 | PSP | E3 ubiquitin-protein ligase Mdm2 (EC 2.3.2.27) (Double minute 2 protein) (Hdm2) (Oncoprotein Mdm2) (RING-type E3 ubiquitin transferase Mdm2) (p53-binding protein Mdm2) | E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome (PubMed:29681526). Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as a ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also a component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and SNAI1 and promotes them to proteasomal degradation (PubMed:12821780, PubMed:15053880, PubMed:15195100, PubMed:15632057, PubMed:16337594, PubMed:17290220, PubMed:19098711, PubMed:19219073, PubMed:19837670, PubMed:19965871, PubMed:20173098, PubMed:20385133, PubMed:20858735, PubMed:22128911). Ubiquitinates DCX, leading to DCX degradation and reduction of the dendritic spine density of olfactory bulb granule cells (By similarity). Ubiquitinates DLG4, leading to proteasomal degradation of DLG4 which is required for AMPA receptor endocytosis (By similarity). Negatively regulates NDUFS1, leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis (PubMed:30879903). Binds NDUFS1 leading to its cytosolic retention rather than mitochondrial localization resulting in decreased supercomplex assembly (interactions between complex I and complex III), decreased complex I activity, ROS production, and apoptosis (PubMed:30879903). {ECO:0000250|UniProtKB:P23804, ECO:0000269|PubMed:12821780, ECO:0000269|PubMed:15053880, ECO:0000269|PubMed:15195100, ECO:0000269|PubMed:15632057, ECO:0000269|PubMed:16337594, ECO:0000269|PubMed:17290220, ECO:0000269|PubMed:19098711, ECO:0000269|PubMed:19219073, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:20173098, ECO:0000269|PubMed:20385133, ECO:0000269|PubMed:20858735, ECO:0000269|PubMed:22128911, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:30879903}. |
Q13144 | EIF2B5 | S535 | ELM | Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
O75496 | GMNN | S184 | PSP | Geminin | Inhibits DNA replication by preventing the incorporation of MCM complex into pre-replication complex (pre-RC) (PubMed:14993212, PubMed:20129055, PubMed:24064211, PubMed:9635433). It is degraded during the mitotic phase of the cell cycle (PubMed:14993212, PubMed:24064211, PubMed:9635433). Its destruction at the metaphase-anaphase transition permits replication in the succeeding cell cycle (PubMed:14993212, PubMed:24064211, PubMed:9635433). Inhibits histone acetyltransferase activity of KAT7/HBO1 in a CDT1-dependent manner, inhibiting histone H4 acetylation and DNA replication licensing (PubMed:20129055). Inhibits the transcriptional activity of a subset of Hox proteins, enrolling them in cell proliferative control (PubMed:22615398). {ECO:0000269|PubMed:14993212, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:22615398, ECO:0000269|PubMed:24064211, ECO:0000269|PubMed:9635433}. |
Q9UK32 | RPS6KA6 | S45 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
A0A075B6Q4 | None | S24 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000256|ARBA:ARBA00043887}. |
A2RRP1 | NBAS | Y477 | ochoa | NBAS subunit of NRZ tethering complex (Neuroblastoma-amplified gene protein) (Neuroblastoma-amplified sequence) | Involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport; the function is proposed to depend on its association in the NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:19369418). Required for normal embryonic development (By similarity). May play a role in the nonsense-mediated decay pathway of mRNAs containing premature stop codons (By similarity). {ECO:0000250|UniProtKB:Q5TYW4, ECO:0000269|PubMed:19369418}. |
A7KAX9 | ARHGAP32 | S44 | ochoa | Rho GTPase-activating protein 32 (Brain-specific Rho GTPase-activating protein) (GAB-associated Cdc42/Rac GTPase-activating protein) (GC-GAP) (GTPase regulator interacting with TrkA) (Rho-type GTPase-activating protein 32) (Rho/Cdc42/Rac GTPase-activating protein RICS) (RhoGAP involved in the beta-catenin-N-cadherin and NMDA receptor signaling) (p200RhoGAP) (p250GAP) | GTPase-activating protein (GAP) promoting GTP hydrolysis on RHOA, CDC42 and RAC1 small GTPases. May be involved in the differentiation of neuronal cells during the formation of neurite extensions. Involved in NMDA receptor activity-dependent actin reorganization in dendritic spines. May mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. Isoform 2 has higher GAP activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:12446789, ECO:0000269|PubMed:12454018, ECO:0000269|PubMed:12531901, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:12819203, ECO:0000269|PubMed:12857875, ECO:0000269|PubMed:17663722}. |
B5ME19 | EIF3CL | S181 | ochoa | Eukaryotic translation initiation factor 3 subunit C-like protein | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}. |
E9PAV3 | NACA | T2037 | ochoa | Nascent polypeptide-associated complex subunit alpha, muscle-specific form (Alpha-NAC, muscle-specific form) (skNAC) | Cardiac- and muscle-specific transcription factor. May act to regulate the expression of genes involved in the development of myotubes. Plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration. Involved in the organized assembly of thick and thin filaments of myofibril sarcomeres (By similarity). {ECO:0000250|UniProtKB:P70670}. |
H3BQZ7 | HNRNPUL2-BSCL2 | S168 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | None |
H3BQZ7 | HNRNPUL2-BSCL2 | T244 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 | None |
O00299 | CLIC1 | S163 | ochoa | Chloride intracellular channel protein 1 (Chloride channel ABP) (Glutaredoxin-like oxidoreductase CLIC1) (EC 1.8.-.-) (Glutathione-dependent dehydroascorbate reductase CLIC1) (EC 1.8.5.1) (Nuclear chloride ion channel 27) (NCC27) (Regulatory nuclear chloride ion channel protein) (hRNCC) | In the soluble state, catalyzes glutaredoxin-like thiol disulfide exchange reactions with reduced glutathione as electron donor. Reduces selenite and dehydroascorbate and may act as an antioxidant during oxidative stress response (PubMed:25581026, PubMed:37759794). Can insert into membranes and form voltage-dependent multi-ion conductive channels. Membrane insertion seems to be redox-regulated and may occur only under oxidizing conditions. Involved in regulation of the cell cycle. {ECO:0000269|PubMed:10834939, ECO:0000269|PubMed:10874038, ECO:0000269|PubMed:11195932, ECO:0000269|PubMed:11551966, ECO:0000269|PubMed:11940526, ECO:0000269|PubMed:11978800, ECO:0000269|PubMed:14613939, ECO:0000269|PubMed:16339885, ECO:0000269|PubMed:25581026, ECO:0000269|PubMed:37759794, ECO:0000269|PubMed:9139710}. |
O00461 | GOLIM4 | S364 | ochoa | Golgi integral membrane protein 4 (Golgi integral membrane protein, cis) (GIMPc) (Golgi phosphoprotein 4) (Golgi-localized phosphoprotein of 130 kDa) (Golgi phosphoprotein of 130 kDa) | Plays a role in endosome to Golgi protein trafficking; mediates protein transport along the late endosome-bypass pathway from the early endosome to the Golgi. {ECO:0000269|PubMed:15331763}. |
O14646 | CHD1 | Y1068 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14967 | CLGN | S573 | ochoa | Calmegin | Functions during spermatogenesis as a chaperone for a range of client proteins that are important for sperm adhesion onto the egg zona pellucida and for subsequent penetration of the zona pellucida. Required for normal sperm migration from the uterus into the oviduct. Required for normal male fertility. Binds calcium ions (By similarity). {ECO:0000250}. |
O15042 | U2SURP | S800 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15061 | SYNM | S829 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15213 | WDR46 | S149 | ochoa | WD repeat-containing protein 46 (WD repeat-containing protein BING4) | Scaffold component of the nucleolar structure. Required for localization of DDX21 and NCL to the granular compartment of the nucleolus (PubMed:23848194). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:23848194, ECO:0000269|PubMed:34516797}. |
O43379 | WDR62 | T814 | ochoa | WD repeat-containing protein 62 | Required for cerebral cortical development. Plays a role in neuronal proliferation and migration (PubMed:20729831, PubMed:20890278). Plays a role in mother-centriole-dependent centriole duplication; the function also seems to involve CEP152, CDK5RAP2 and CEP63 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). {ECO:0000269|PubMed:20729831, ECO:0000269|PubMed:20890278, ECO:0000269|PubMed:26297806}. |
O43395 | PRPF3 | S131 | ochoa | U4/U6 small nuclear ribonucleoprotein Prp3 (Pre-mRNA-splicing factor 3) (hPrp3) (U4/U6 snRNP 90 kDa protein) | Plays a role in pre-mRNA splicing as component of the U4/U6-U5 tri-snRNP complex that is involved in spliceosome assembly, and as component of the precatalytic spliceosome (spliceosome B complex). {ECO:0000269|PubMed:26912367, ECO:0000269|PubMed:28781166, ECO:0000305|PubMed:20595234}. |
O43719 | HTATSF1 | S607 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O43719 | HTATSF1 | S713 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O60237 | PPP1R12B | S694 | ochoa | Protein phosphatase 1 regulatory subunit 12B (Myosin phosphatase-targeting subunit 2) (Myosin phosphatase target subunit 2) | Regulates myosin phosphatase activity. Augments Ca(2+) sensitivity of the contractile apparatus. {ECO:0000269|PubMed:11067852, ECO:0000269|PubMed:9570949}. |
O60678 | PRMT3 | S27 | ochoa | Protein arginine N-methyltransferase 3 (EC 2.1.1.319) (Heterogeneous nuclear ribonucleoprotein methyltransferase-like protein 3) | Protein-arginine N-methyltransferase that catalyzes both the monomethylation and asymmetric dimethylation of the guanidino nitrogens of arginine residues in target proteins, and therefore falls into the group of type I methyltransferases (PubMed:22795084, PubMed:23445220, PubMed:25728001, PubMed:31378783, PubMed:33495566, PubMed:39513743). Catalyzes the asymmetric arginine dimethylation at multiple sites in the Arg/Gly-rich region of small ribosomal subunit protein uS5/RPS2 (PubMed:22795084). Also appears to methylate other ribosomal proteins (By similarity). May regulate retinoic acid synthesis and signaling by inhibiting ALDH1A1 retinal dehydrogenase activity (PubMed:33495566). Contributes to methylation of histone H4 'Arg-3', a specific tag for epigenetic transcriptional activation (PubMed:25728001, PubMed:31378783, PubMed:39513743). Mediates asymmetric arginine dimethylation of histone H4 'Arg-3' (H4R3me2a) in the promoter region of miRNA miR-3648, to promote its transcription and osteogenesis (PubMed:31378783). {ECO:0000250|UniProtKB:Q922H1, ECO:0000269|PubMed:22795084, ECO:0000269|PubMed:23445220, ECO:0000269|PubMed:25728001, ECO:0000269|PubMed:31378783, ECO:0000269|PubMed:33495566, ECO:0000269|PubMed:39513743}. |
O75121 | MFAP3L | S349 | ochoa | Microfibrillar-associated protein 3-like (Testis development protein NYD-SP9) | May participate in the nuclear signaling of EGFR and MAPK1/ERK2. May a have a role in metastasis. {ECO:0000269|PubMed:24735981}. |
O75152 | ZC3H11A | S116 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75153 | CLUH | S670 | ochoa | Clustered mitochondria protein homolog | mRNA-binding protein involved in proper cytoplasmic distribution of mitochondria. Specifically binds mRNAs of nuclear-encoded mitochondrial proteins in the cytoplasm and regulates transport or translation of these transcripts close to mitochondria, playing a role in mitochondrial biogenesis. {ECO:0000255|HAMAP-Rule:MF_03013, ECO:0000269|PubMed:25349259}. |
O75691 | UTP20 | S1734 | ochoa | Small subunit processome component 20 homolog (Down-regulated in metastasis protein) (Novel nucleolar protein 73) (NNP73) (Protein Key-1A6) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in 18S pre-rRNA processing. Associates with U3 snoRNA. {ECO:0000269|PubMed:17498821, ECO:0000269|PubMed:34516797}. |
O95453 | PARN | S583 | ochoa | Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) | 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}. |
O95747 | OXSR1 | S347 | ochoa | Serine/threonine-protein kinase OSR1 (EC 2.7.11.1) (Oxidative stress-responsive 1 protein) | Effector serine/threonine-protein kinase component of the WNK-SPAK/OSR1 kinase cascade, which is involved in various processes, such as ion transport, response to hypertonic stress and blood pressure (PubMed:16669787, PubMed:18270262, PubMed:21321328, PubMed:34289367). Specifically recognizes and binds proteins with a RFXV motif (PubMed:16669787, PubMed:17721439, PubMed:21321328). Acts downstream of WNK kinases (WNK1, WNK2, WNK3 or WNK4): following activation by WNK kinases, catalyzes phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:17721439). Mediates regulatory volume increase in response to hyperosmotic stress by catalyzing phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1 and SLC12A6/KCC3 downstream of WNK1 and WNK3 kinases (PubMed:16669787, PubMed:21321328). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A5/KCC2 and SLC12A6/KCC3 inhibit their activity, blocking ion efflux (PubMed:16669787, PubMed:19665974, PubMed:21321328). Acts as a regulator of NaCl reabsorption in the distal nephron by mediating phosphorylation and activation of the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney downstream of WNK4 (PubMed:18270262). Also acts as a regulator of angiogenesis in endothelial cells downstream of WNK1 (PubMed:23386621, PubMed:25362046). Acts as an activator of inward rectifier potassium channels KCNJ2/Kir2.1 and KCNJ4/Kir2.3 downstream of WNK1: recognizes and binds the RXFXV/I variant motif on KCNJ2/Kir2.1 and KCNJ4/Kir2.3 and regulates their localization to the cell membrane without mediating their phosphorylation (PubMed:29581290). Phosphorylates RELL1, RELL2 and RELT (PubMed:16389068, PubMed:28688764). Phosphorylates PAK1 (PubMed:14707132). Phosphorylates PLSCR1 in the presence of RELT (PubMed:22052202). {ECO:0000269|PubMed:14707132, ECO:0000269|PubMed:16389068, ECO:0000269|PubMed:16669787, ECO:0000269|PubMed:17721439, ECO:0000269|PubMed:18270262, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21321328, ECO:0000269|PubMed:22052202, ECO:0000269|PubMed:23386621, ECO:0000269|PubMed:25362046, ECO:0000269|PubMed:28688764, ECO:0000269|PubMed:29581290, ECO:0000269|PubMed:34289367}. |
P05060 | CHGB | T271 | ochoa | Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] | Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides. |
P07197 | NEFM | S511 | ochoa | Neurofilament medium polypeptide (NF-M) (160 kDa neurofilament protein) (Neurofilament 3) (Neurofilament triplet M protein) | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity). {ECO:0000250|UniProtKB:P08553}. |
P07237 | P4HB | S331 | ochoa|psp | Protein disulfide-isomerase (PDI) (EC 5.3.4.1) (Cellular thyroid hormone-binding protein) (Prolyl 4-hydroxylase subunit beta) (p55) | This multifunctional protein catalyzes the formation, breakage and rearrangement of disulfide bonds. At the cell surface, seems to act as a reductase that cleaves disulfide bonds of proteins attached to the cell. May therefore cause structural modifications of exofacial proteins. Inside the cell, seems to form/rearrange disulfide bonds of nascent proteins. At high concentrations and following phosphorylation by FAM20C, functions as a chaperone that inhibits aggregation of misfolded proteins (PubMed:32149426). At low concentrations, facilitates aggregation (anti-chaperone activity). May be involved with other chaperones in the structural modification of the TG precursor in hormone biogenesis. Also acts as a structural subunit of various enzymes such as prolyl 4-hydroxylase and microsomal triacylglycerol transfer protein MTTP. Receptor for LGALS9; the interaction retains P4HB at the cell surface of Th2 T helper cells, increasing disulfide reductase activity at the plasma membrane, altering the plasma membrane redox state and enhancing cell migration (PubMed:21670307). {ECO:0000269|PubMed:10636893, ECO:0000269|PubMed:12485997, ECO:0000269|PubMed:21670307, ECO:0000269|PubMed:32149426}. |
P07900 | HSP90AA1 | S252 | ochoa | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P10645 | CHGA | S333 | ochoa|psp | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P11137 | MAP2 | S1347 | ochoa | Microtubule-associated protein 2 (MAP-2) | The exact function of MAP2 is unknown but MAPs may stabilize the microtubules against depolymerization. They also seem to have a stiffening effect on microtubules. |
P11388 | TOP2A | S1115 | ochoa | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P14317 | HCLS1 | Y378 | psp | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14317 | HCLS1 | Y397 | psp | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14625 | HSP90B1 | S306 | ochoa | Endoplasmin (EC 3.6.4.-) (94 kDa glucose-regulated protein) (GRP-94) (Heat shock protein 90 kDa beta member 1) (Heat shock protein family C member 4) (Tumor rejection antigen 1) (gp96 homolog) | ATP-dependent chaperone involved in the processing of proteins in the endoplasmic reticulum, regulating their transport (PubMed:23572575, PubMed:39509507). Together with MESD, acts as a modulator of the Wnt pathway by promoting the folding of LRP6, a coreceptor of the canonical Wnt pathway (PubMed:23572575, PubMed:39509507). When associated with CNPY3, required for proper folding of Toll-like receptors (PubMed:11584270). Promotes folding and trafficking of TLR4 to the cell surface (PubMed:11584270). May participate in the unfolding of cytosolic leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1 to facilitate their translocation into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) and secretion; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:11584270, ECO:0000269|PubMed:23572575, ECO:0000269|PubMed:32272059, ECO:0000269|PubMed:39509507}. |
P15170 | GSPT1 | S28 | ochoa | Eukaryotic peptide chain release factor GTP-binding subunit ERF3A (Eukaryotic peptide chain release factor subunit 3a) (eRF3a) (EC 3.6.5.-) (G1 to S phase transition protein 1 homolog) | GTPase component of the eRF1-eRF3-GTP ternary complex, a ternary complex that mediates translation termination in response to the termination codons UAA, UAG and UGA (PubMed:15987998, PubMed:19417105, PubMed:2511002, PubMed:27863242). GSPT1/ERF3A mediates ETF1/ERF1 delivery to stop codons: The eRF1-eRF3-GTP complex binds to a stop codon in the ribosomal A-site (PubMed:27863242). GTP hydrolysis by GSPT1/ERF3A induces a conformational change that leads to its dissociation, permitting ETF1/ERF1 to accommodate fully in the A-site (PubMed:16777602, PubMed:27863242). Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons (PubMed:24486019). Required for SHFL-mediated translation termination which inhibits programmed ribosomal frameshifting (-1PRF) of mRNA from viruses and cellular genes (PubMed:30682371). {ECO:0000269|PubMed:15987998, ECO:0000269|PubMed:16777602, ECO:0000269|PubMed:19417105, ECO:0000269|PubMed:24486019, ECO:0000269|PubMed:2511002, ECO:0000269|PubMed:27863242, ECO:0000269|PubMed:30682371}. |
P17029 | ZKSCAN1 | S284 | ochoa | Zinc finger protein with KRAB and SCAN domains 1 (Zinc finger protein 139) (Zinc finger protein 36) (Zinc finger protein KOX18) | May be involved in transcriptional regulation. |
P18887 | XRCC1 | S518 | psp | DNA repair protein XRCC1 (X-ray repair cross-complementing protein 1) | Scaffold protein involved in DNA single-strand break repair by mediating the assembly of DNA break repair protein complexes (PubMed:11163244, PubMed:28002403). Negatively regulates ADP-ribosyltransferase activity of PARP1 during base-excision repair in order to prevent excessive PARP1 activity (PubMed:28002403, PubMed:34102106, PubMed:34811483). Recognizes and binds poly-ADP-ribose chains: specifically binds auto-poly-ADP-ribosylated PARP1, limiting its activity (PubMed:14500814, PubMed:34102106, PubMed:34811483). {ECO:0000269|PubMed:11163244, ECO:0000269|PubMed:14500814, ECO:0000269|PubMed:28002403, ECO:0000269|PubMed:34102106, ECO:0000269|PubMed:34811483}. |
P19022 | CDH2 | Y785 | ochoa | Cadherin-2 (CDw325) (Neural cadherin) (N-cadherin) (CD antigen CD325) | Calcium-dependent cell adhesion protein; preferentially mediates homotypic cell-cell adhesion by dimerization with a CDH2 chain from another cell. Cadherins may thus contribute to the sorting of heterogeneous cell types. Acts as a regulator of neural stem cells quiescence by mediating anchorage of neural stem cells to ependymocytes in the adult subependymal zone: upon cleavage by MMP24, CDH2-mediated anchorage is affected, leading to modulate neural stem cell quiescence. Plays a role in cell-to-cell junction formation between pancreatic beta cells and neural crest stem (NCS) cells, promoting the formation of processes by NCS cells (By similarity). Required for proper neurite branching. Required for pre- and postsynaptic organization (By similarity). CDH2 may be involved in neuronal recognition mechanism. In hippocampal neurons, may regulate dendritic spine density. {ECO:0000250|UniProtKB:P10288, ECO:0000250|UniProtKB:P15116, ECO:0000269|PubMed:31585109}. |
P19338 | NCL | S34 | ochoa|psp | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P19338 | NCL | S41 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P19338 | NCL | S42 | ochoa | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P20810 | CAST | S366 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P27824 | CANX | S554 | ochoa|psp | Calnexin (IP90) (Major histocompatibility complex class I antigen-binding protein p88) (p90) | Calcium-binding protein that interacts with newly synthesized monoglucosylated glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at the synapse. |
P30307 | CDC25C | S198 | psp | M-phase inducer phosphatase 3 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25C) | Functions as a dosage-dependent inducer in mitotic control. Tyrosine protein phosphatase required for progression of the cell cycle (PubMed:8119945). When phosphorylated, highly effective in activating G2 cells into prophase (PubMed:8119945). Directly dephosphorylates CDK1 and activates its kinase activity (PubMed:8119945). {ECO:0000269|PubMed:8119945}. |
P33241 | LSP1 | S141 | ochoa | Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) | May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}. |
P35610 | SOAT1 | S33 | ochoa | Sterol O-acyltransferase 1 (EC 2.3.1.26) (Acyl-coenzyme A:cholesterol acyltransferase 1) (ACAT-1) (Cholesterol acyltransferase 1) | Catalyzes the formation of fatty acid-cholesterol esters, which are less soluble in membranes than cholesterol (PubMed:16154994, PubMed:16647063, PubMed:32433613, PubMed:32433614, PubMed:32944968, PubMed:9020103). Plays a role in lipoprotein assembly and dietary cholesterol absorption (PubMed:16154994, PubMed:9020103). Preferentially utilizes oleoyl-CoA ((9Z)-octadecenoyl-CoA) as a substrate: shows a higher activity towards an acyl-CoA substrate with a double bond at the delta-9 position (9Z) than towards saturated acyl-CoA or an unsaturated acyl-CoA with a double bond at the delta-7 (7Z) or delta-11 (11Z) positions (PubMed:11294643, PubMed:32433614). {ECO:0000269|PubMed:11294643, ECO:0000269|PubMed:16154994, ECO:0000269|PubMed:16647063, ECO:0000269|PubMed:32433613, ECO:0000269|PubMed:32433614, ECO:0000269|PubMed:32944968, ECO:0000269|PubMed:9020103}. |
P35659 | DEK | S251 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P43243 | MATR3 | S748 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P46087 | NOP2 | T195 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P46821 | MAP1B | S965 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48426 | PIP4K2A | S304 | psp | Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha (EC 2.7.1.149) (1-phosphatidylinositol 5-phosphate 4-kinase 2-alpha) (Diphosphoinositide kinase 2-alpha) (PIP5KIII) (Phosphatidylinositol 5-Phosphate 4-Kinase) (PI5P4Kalpha) (Phosphatidylinositol 5-phosphate 4-kinase type II alpha) (PI(5)P 4-kinase type II alpha) (PIP4KII-alpha) (PtdIns(4)P-5-kinase B isoform) (PtdIns(4)P-5-kinase C isoform) (PtdIns(5)P-4-kinase isoform 2-alpha) | Catalyzes the phosphorylation of phosphatidylinositol 5-phosphate (PtdIns5P) on the fourth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) (PubMed:23326584, PubMed:9367159). Has both ATP- and GTP-dependent kinase activities (PubMed:26774281). May exert its function by regulating the levels of PtdIns5P, which functions in the cytosol by increasing AKT activity and in the nucleus signals through ING2 (PubMed:18364242). May regulate the pool of cytosolic PtdIns5P in response to the activation of tyrosine phosphorylation (By similarity). Required for lysosome-peroxisome membrane contacts and intracellular cholesterol transport through modulating peroxisomal PtdIns(4,5)P2 level (PubMed:29353240). In collaboration with PIP4K2B, has a role in mediating autophagy in times of nutrient stress (By similarity). Required for autophagosome-lysosome fusion and the regulation of cellular lipid metabolism (PubMed:31091439). May be involved in thrombopoiesis, and the terminal maturation of megakaryocytes and regulation of their size (By similarity). Negatively regulates insulin signaling through a catalytic-independent mechanism (PubMed:31091439). PIP4Ks interact with PIP5Ks and suppress PIP5K-mediated PtdIns(4,5)P2 synthesis and insulin-dependent conversion to PtdIns(3,4,5)P3 (PubMed:31091439). {ECO:0000250|UniProtKB:O70172, ECO:0000250|UniProtKB:Q9R0I8, ECO:0000269|PubMed:18364242, ECO:0000269|PubMed:23326584, ECO:0000269|PubMed:26774281, ECO:0000269|PubMed:29353240, ECO:0000269|PubMed:31091439, ECO:0000269|PubMed:9367159}. |
P48681 | NES | S578 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49006 | MARCKSL1 | S135 | ochoa | MARCKS-related protein (MARCKS-like protein 1) (Macrophage myristoylated alanine-rich C kinase substrate) (Mac-MARCKS) (MacMARCKS) | Controls cell movement by regulating actin cytoskeleton homeostasis and filopodium and lamellipodium formation (PubMed:22751924). When unphosphorylated, induces cell migration (By similarity). When phosphorylated by MAPK8, induces actin bundles formation and stabilization, thereby reducing actin plasticity, hence restricting cell movement, including neuronal migration (By similarity). May be involved in coupling the protein kinase C and calmodulin signal transduction systems (By similarity). {ECO:0000250|UniProtKB:P28667, ECO:0000269|PubMed:22751924}. |
P49321 | NASP | S480 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P52566 | ARHGDIB | S20 | ochoa|psp | Rho GDP-dissociation inhibitor 2 (Rho GDI 2) (Ly-GDI) (Rho-GDI beta) | Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them (PubMed:7512369, PubMed:8356058). Regulates reorganization of the actin cytoskeleton mediated by Rho family members (PubMed:8262133). {ECO:0000269|PubMed:7512369, ECO:0000269|PubMed:8262133, ECO:0000269|PubMed:8356058}. |
P52655 | GTF2A1 | S321 | psp | Transcription initiation factor IIA subunit 1 (General transcription factor IIA subunit 1) (TFIIAL) (Transcription initiation factor TFIIA 42 kDa subunit) (TFIIA-42) [Cleaved into: Transcription initiation factor IIA alpha chain (TFIIA p35 subunit); Transcription initiation factor IIA beta chain (TFIIA p19 subunit)] | TFIIA is a component of the transcription machinery of RNA polymerase II and plays an important role in transcriptional activation. TFIIA in a complex with TBP mediates transcriptional activity. {ECO:0000269|PubMed:11030333, ECO:0000269|PubMed:16537915}. |
P52756 | RBM5 | S72 | ochoa | RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) | Component of the spliceosome A complex. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). Regulates alternative splicing of a number of mRNAs. May modulate splice site pairing after recruitment of the U1 and U2 snRNPs to the 5' and 3' splice sites of the intron. May both positively and negatively regulate apoptosis by regulating the alternative splicing of several genes involved in this process, including FAS and CASP2/caspase-2. In the case of FAS, promotes exclusion of exon 6 thereby producing a soluble form of FAS that inhibits apoptosis. In the case of CASP2/caspase-2, promotes exclusion of exon 9 thereby producing a catalytically active form of CASP2/Caspase-2 that induces apoptosis. {ECO:0000269|PubMed:10949932, ECO:0000269|PubMed:12207175, ECO:0000269|PubMed:12581154, ECO:0000269|PubMed:15192330, ECO:0000269|PubMed:16585163, ECO:0000269|PubMed:18840686, ECO:0000269|PubMed:18851835, ECO:0000269|PubMed:21256132}. |
P78352 | DLG4 | S73 | psp | Disks large homolog 4 (Postsynaptic density protein 95) (PSD-95) (Synapse-associated protein 90) (SAP-90) (SAP90) | Postsynaptic scaffolding protein that plays a critical role in synaptogenesis and synaptic plasticity by providing a platform for the postsynaptic clustering of crucial synaptic proteins. Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B. Also regulates AMPA-type glutamate receptor (AMPAR) immobilization at postsynaptic density keeping the channels in an activated state in the presence of glutamate and preventing synaptic depression (By similarity). Under basal conditions, cooperates with FYN to stabilize palmitoyltransferase ZDHHC5 at the synaptic membrane through FYN-mediated phosphorylation of ZDHHC5 and its subsequent inhibition of association with endocytic proteins (PubMed:26334723). {ECO:0000250|UniProtKB:Q62108, ECO:0000269|PubMed:26334723}. |
Q02790 | FKBP4 | S430 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02790 | FKBP4 | S431 | ochoa | Peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4) (EC 5.2.1.8) (51 kDa FK506-binding protein) (FKBP51) (52 kDa FK506-binding protein) (52 kDa FKBP) (FKBP-52) (59 kDa immunophilin) (p59) (FK506-binding protein 4) (FKBP-4) (FKBP59) (HSP-binding immunophilin) (HBI) (Immunophilin FKBP52) (Rotamase) [Cleaved into: Peptidyl-prolyl cis-trans isomerase FKBP4, N-terminally processed] | Immunophilin protein with PPIase and co-chaperone activities. Component of steroid receptors heterocomplexes through interaction with heat-shock protein 90 (HSP90). May play a role in the intracellular trafficking of heterooligomeric forms of steroid hormone receptors between cytoplasm and nuclear compartments. The isomerase activity controls neuronal growth cones via regulation of TRPC1 channel opening. Also acts as a regulator of microtubule dynamics by inhibiting MAPT/TAU ability to promote microtubule assembly. May have a protective role against oxidative stress in mitochondria. {ECO:0000269|PubMed:1279700, ECO:0000269|PubMed:1376003, ECO:0000269|PubMed:19945390, ECO:0000269|PubMed:21730050, ECO:0000269|PubMed:2378870}. |
Q02952 | AKAP12 | S280 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S569 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S787 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03164 | KMT2A | S1277 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q05682 | CALD1 | Y160 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q07021 | C1QBP | S201 | ochoa | Complement component 1 Q subcomponent-binding protein, mitochondrial (ASF/SF2-associated protein p32) (Glycoprotein gC1qBP) (C1qBP) (Hyaluronan-binding protein 1) (Mitochondrial matrix protein p32) (gC1q-R protein) (p33) (SF2AP32) | Multifunctional and multicompartmental protein involved in inflammation and infection processes, ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, transcriptional regulation and pre-mRNA splicing (PubMed:10022843, PubMed:10479529, PubMed:10722602, PubMed:11086025, PubMed:11859136, PubMed:15243141, PubMed:16140380, PubMed:16177118, PubMed:17881511, PubMed:18676636, PubMed:19004836, PubMed:19164550, PubMed:20810993, PubMed:21536856, PubMed:21544310, PubMed:22700724, PubMed:28942965, PubMed:8662673, PubMed:8710908, PubMed:9461517). At the cell surface is thought to act as an endothelial receptor for plasma proteins of the complement and kallikrein-kinin cascades (PubMed:10479529, PubMed:11859136, PubMed:8662673, PubMed:8710908). Putative receptor for C1q; specifically binds to the globular 'heads' of C1q thus inhibiting C1; may perform the receptor function through a complex with C1qR/CD93 (PubMed:20810993, PubMed:8195709). In complex with cytokeratin-1/KRT1 is a high affinity receptor for kininogen-1/HMWK (PubMed:21544310). Can also bind other plasma proteins, such as coagulation factor XII leading to its autoactivation. May function to bind initially fluid kininogen-1 to the cell membrane. The secreted form may enhance both extrinsic and intrinsic coagulation pathways. It is postulated that the cell surface form requires docking with transmembrane proteins for downstream signaling which might be specific for a cell-type or response. By acting as C1q receptor is involved in chemotaxis of immature dendritic cells and neutrophils and is proposed to signal through CD209/DC-SIGN on immature dendritic cells, through integrin alpha-4/beta-1 during trophoblast invasion of the decidua, and through integrin beta-1 during endothelial cell adhesion and spreading (PubMed:16140380, PubMed:22700724, PubMed:9461517). Signaling involved in inhibition of innate immune response is implicating the PI3K-AKT/PKB pathway (PubMed:16177118). Required for protein synthesis in mitochondria (PubMed:28942965). In mitochondrial translation may be involved in formation of functional 55S mitoribosomes; the function seems to involve its RNA-binding activity (By similarity). Acts as a RNA modification reader, which specifically recognizes and binds mitochondrial RNAs modified by C5-methylcytosine (m5C) in response to stress, and promotes recruitment of the mitochondrial degradosome complex, leading to their degradation (PubMed:39019044). May be involved in the nucleolar ribosome maturation process; the function may involve the exchange of FBL for RRP1 in the association with pre-ribosome particles (By similarity). Involved in regulation of RNA splicing by inhibiting the RNA-binding capacity of SRSF1 and its phosphorylation (PubMed:10022843, PubMed:21536856). Is required for the nuclear translocation of splicing factor U2AF1L4 (By similarity). Involved in regulation of CDKN2A- and HRK-mediated apoptosis. Stabilizes mitochondrial CDKN2A isoform smARF (PubMed:17486078). May be involved in regulation of FOXC1 transcriptional activity and NFY/CCAAT-binding factor complex-mediated transcription (PubMed:15243141, PubMed:18676636). May play a role in antibacterial defense as it can bind to cell surface hyaluronan and inhibit Streptococcus pneumoniae hyaluronate lyase (PubMed:19004836). May be involved in modulation of the immune response; ligation by HCV core protein is resulting in suppression of interleukin-12 production in monocyte-derived dendritic cells (PubMed:11086025, PubMed:17881511). Involved in regulation of antiviral response by inhibiting RIGI- and IFIH1-mediated signaling pathways probably involving its association with MAVS after viral infection (PubMed:19164550). Acts as a regulator of DNA repair via homologous recombination by inhibiting the activity of MRE11: interacts with unphosphorylated MRE11 and RAD50 in absence of DNA damage, preventing formation and activity of the MRN complex. Following DNA damage, dissociates from phosphorylated MRE11, allowing formation of the MRN complex (PubMed:31353207). {ECO:0000250|UniProtKB:O35658, ECO:0000269|PubMed:10022843, ECO:0000269|PubMed:10479529, ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:11086025, ECO:0000269|PubMed:11859136, ECO:0000269|PubMed:15243141, ECO:0000269|PubMed:16140380, ECO:0000269|PubMed:16177118, ECO:0000269|PubMed:17486078, ECO:0000269|PubMed:17881511, ECO:0000269|PubMed:18676636, ECO:0000269|PubMed:19004836, ECO:0000269|PubMed:19164550, ECO:0000269|PubMed:20810993, ECO:0000269|PubMed:21536856, ECO:0000269|PubMed:21544310, ECO:0000269|PubMed:22700724, ECO:0000269|PubMed:28942965, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:39019044, ECO:0000269|PubMed:8195709, ECO:0000269|PubMed:8662673, ECO:0000269|PubMed:8710908, ECO:0000269|PubMed:9461517}.; FUNCTION: (Microbial infection) Involved in HIV-1 replication, presumably by contributing to splicing of viral RNA. {ECO:0000269|PubMed:12833064}.; FUNCTION: (Microbial infection) In infection processes acts as an attachment site for microbial proteins, including Listeria monocytogenes internalin B (InlB) and Staphylococcus aureus protein A. {ECO:0000269|PubMed:10722602, ECO:0000269|PubMed:10747014, ECO:0000269|PubMed:12411480}.; FUNCTION: (Microbial infection) Involved in replication of Rubella virus. {ECO:0000269|PubMed:12034482}. |
Q08499 | PDE4D | S754 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q12802 | AKAP13 | S391 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12873 | CHD3 | S88 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q12873 | CHD3 | S1251 | ochoa | Chromodomain-helicase-DNA-binding protein 3 (CHD-3) (EC 3.6.4.-) (ATP-dependent helicase CHD3) (Mi-2 autoantigen 240 kDa protein) (Mi2-alpha) (Zinc finger helicase) (hZFH) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666, PubMed:30397230, PubMed:9804427). Involved in transcriptional repression as part of the NuRD complex (PubMed:27068747). Required for anchoring centrosomal pericentrin in both interphase and mitosis, for spindle organization and centrosome integrity (PubMed:17626165). {ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:27068747, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:30397230, ECO:0000269|PubMed:9804427}. |
Q12874 | SF3A3 | S369 | ochoa | Splicing factor 3A subunit 3 (SF3a60) (Spliceosome-associated protein 61) (SAP 61) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310, PubMed:8022796). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:8022796}. |
Q12888 | TP53BP1 | S818 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S1050 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12906 | ILF3 | S62 | ochoa | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12912 | IRAG2 | S444 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q13094 | LCP2 | Y145 | psp | Lymphocyte cytosolic protein 2 (SH2 domain-containing leukocyte protein of 76 kDa) (SLP-76 tyrosine phosphoprotein) (SLP76) | Adapter protein primarily involved in signaling pathways within T-cells, as well as other immune cells such as platelets, mast cells, and natural killer (NK) cells (PubMed:11313406, PubMed:33159816). Plays a crucial role for transducing signal from the T-cell receptor (TCR) after antigen recognition leading to T-cell activation. Mechanistically, once phosphorylated by the kinase ZAP70, mediates interactions with the guanine-nucleotide exchange factor VAV1, the adapter protein NCK and the kinase ITK (PubMed:8673706, PubMed:8702662). In turn, stimulates the activation of PKC-theta/PRKCQ and NF-kappa-B transcriptional activity in response to CD3 and CD28 costimulation (PubMed:11313406). Also plays an essential role in AGER-induced signaling pathways including p38 MAPK and ERK1/2 activation leading to cytokine release and pro-inflammatory responses (PubMed:33436632). {ECO:0000269|PubMed:11313406, ECO:0000269|PubMed:33436632, ECO:0000269|PubMed:8673706, ECO:0000269|PubMed:8702662}. |
Q13144 | EIF2B5 | S469 | psp | Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
Q13188 | STK3 | S323 | ochoa | Serine/threonine-protein kinase 3 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 2) (MST-2) (STE20-like kinase MST2) (Serine/threonine-protein kinase Krs-1) [Cleaved into: Serine/threonine-protein kinase 3 36kDa subunit (MST2/N); Serine/threonine-protein kinase 3 20kDa subunit (MST2/C)] | Stress-activated, pro-apoptotic kinase which, following caspase-cleavage, enters the nucleus and induces chromatin condensation followed by internucleosomal DNA fragmentation (PubMed:11278283, PubMed:8566796, PubMed:8816758). Key component of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714, PubMed:29063833, PubMed:30622739). Phosphorylation of YAP1 by LATS2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:15688006, PubMed:16930133, PubMed:23972470, PubMed:28087714). STK3/MST2 and STK4/MST1 are required to repress proliferation of mature hepatocytes, to prevent activation of facultative adult liver stem cells (oval cells), and to inhibit tumor formation. Phosphorylates NKX2-1 (By similarity). Phosphorylates NEK2 and plays a role in centrosome disjunction by regulating the localization of NEK2 to centrosome, and its ability to phosphorylate CROCC and CEP250 (PubMed:21076410, PubMed:21723128). In conjunction with SAV1, activates the transcriptional activity of ESR1 through the modulation of its phosphorylation (PubMed:21104395). Positively regulates RAF1 activation via suppression of the inhibitory phosphorylation of RAF1 on 'Ser-259' (PubMed:20212043). Phosphorylates MOBKL1A and RASSF2 (PubMed:19525978). Phosphorylates MOBKL1B on 'Thr-74'. Acts cooperatively with MOBKL1B to activate STK38 (PubMed:18328708, PubMed:18362890). {ECO:0000250|UniProtKB:Q9JI10, ECO:0000269|PubMed:11278283, ECO:0000269|PubMed:15688006, ECO:0000269|PubMed:16930133, ECO:0000269|PubMed:18328708, ECO:0000269|PubMed:18362890, ECO:0000269|PubMed:19525978, ECO:0000269|PubMed:20212043, ECO:0000269|PubMed:21076410, ECO:0000269|PubMed:21104395, ECO:0000269|PubMed:21723128, ECO:0000269|PubMed:23972470, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:29063833, ECO:0000269|PubMed:30622739, ECO:0000269|PubMed:8566796, ECO:0000269|PubMed:8816758}. |
Q13257 | MAD2L1 | S178 | psp | Mitotic spindle assembly checkpoint protein MAD2A (HsMAD2) (Mitotic arrest deficient 2-like protein 1) (MAD2-like protein 1) | Component of the spindle-assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate (PubMed:15024386, PubMed:29162720). In the closed conformation (C-MAD2) forms a heterotetrameric complex with MAD1L1 at unattached kinetochores during prometaphase, the complex recruits open conformation molecules of MAD2L1 (O-MAD2) and then promotes the conversion of O-MAD2 to C-MAD2 (PubMed:29162720). Required for the execution of the mitotic checkpoint which monitors the process of kinetochore-spindle attachment and inhibits the activity of the anaphase promoting complex by sequestering CDC20 until all chromosomes are aligned at the metaphase plate (PubMed:10700282, PubMed:11804586, PubMed:15024386). {ECO:0000269|PubMed:10700282, ECO:0000269|PubMed:11804586, ECO:0000269|PubMed:15024386, ECO:0000269|PubMed:29162720}. |
Q13428 | TCOF1 | S279 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S777 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13501 | SQSTM1 | S328 | ochoa | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13568 | IRF5 | S158 | psp | Interferon regulatory factor 5 (IRF-5) | Transcription factor that plays a critical role in innate immunity by activating expression of type I interferon (IFN) IFNA and INFB and inflammatory cytokines downstream of endolysosomal toll-like receptors TLR7, TLR8 and TLR9 (PubMed:11303025, PubMed:15695821, PubMed:22412986, PubMed:25326418, PubMed:32433612). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (By similarity). Can efficiently activate both the IFN-beta (IFNB) and the IFN-alpha (IFNA) genes and mediate their induction downstream of the TLR-activated, MyD88-dependent pathway (By similarity). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000250|UniProtKB:P56477, ECO:0000269|PubMed:11303025, ECO:0000269|PubMed:15695821, ECO:0000269|PubMed:22412986, ECO:0000269|PubMed:25326418, ECO:0000269|PubMed:32433612, ECO:0000269|PubMed:33440148}. |
Q13765 | NACA | T174 | psp | Nascent polypeptide-associated complex subunit alpha (NAC-alpha) (Alpha-NAC) (allergen Hom s 2) | Prevents inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). Binds to nascent polypeptide chains as they emerge from the ribosome and blocks their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. Also reduces the inherent affinity of ribosomes for protein translocation sites in the ER membrane (M sites). May act as a specific coactivator for JUN, binding to DNA and stabilizing the interaction of JUN homodimers with target gene promoters. {ECO:0000269|PubMed:10982809, ECO:0000269|PubMed:15784678, ECO:0000269|PubMed:9877153}. |
Q14008 | CKAP5 | S845 | ochoa | Cytoskeleton-associated protein 5 (Colonic and hepatic tumor overexpressed gene protein) (Ch-TOG) | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Acts as a processive microtubule polymerase. Promotes cytoplasmic microtubule nucleation and elongation. Plays a major role in organizing spindle poles. In spindle formation protects kinetochore microtubules from depolymerization by KIF2C and has an essential role in centrosomal microtubule assembly independently of KIF2C activity. Contributes to centrosome integrity. Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:23532825). Enhances the strength of NDC80 complex-mediated kinetochore-tip microtubule attachments (PubMed:27156448). {ECO:0000269|PubMed:12569123, ECO:0000269|PubMed:18809577, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:21646404, ECO:0000269|PubMed:23532825, ECO:0000269|PubMed:27156448, ECO:0000269|PubMed:9570755}. |
Q14160 | SCRIB | S688 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14160 | SCRIB | T689 | ochoa | Protein scribble homolog (Scribble) (hScrib) (Protein LAP4) | Scaffold protein involved in different aspects of polarized cell differentiation regulating epithelial and neuronal morphogenesis and T-cell polarization (PubMed:15182672, PubMed:16344308, PubMed:16965391, PubMed:18641685, PubMed:18716323, PubMed:19041750, PubMed:27380321). Via its interaction with CRTAM, required for the late phase polarization of a subset of CD4+ T-cells, which in turn regulates TCR-mediated proliferation and IFNG and IL22 production (By similarity). Plays a role in cell directional movement, cell orientation, cell sheet organization and Golgi complex polarization at the cell migration front (By similarity). Promotes epithelial cell layer barrier function via maintaining cell-cell adhesion (By similarity). Most probably functions in the establishment of apico-basal cell polarity (PubMed:16344308, PubMed:19041750). May function in cell proliferation regulating progression from G1 to S phase and as a positive regulator of apoptosis for instance during acinar morphogenesis of the mammary epithelium (PubMed:16965391, PubMed:19041750). May regulate cell invasion via MAPK-mediated cell migration and adhesion (PubMed:18641685, PubMed:18716323). May play a role in exocytosis and in the targeting of synaptic vesicles to synapses (PubMed:15182672). Functions as an activator of Rac GTPase activity (PubMed:15182672). {ECO:0000250|UniProtKB:A0A8P0N4K0, ECO:0000250|UniProtKB:Q80U72, ECO:0000269|PubMed:15182672, ECO:0000269|PubMed:16344308, ECO:0000269|PubMed:16965391, ECO:0000269|PubMed:18641685, ECO:0000269|PubMed:18716323, ECO:0000269|PubMed:19041750, ECO:0000269|PubMed:27380321}. |
Q14515 | SPARCL1 | S59 | ochoa | SPARC-like protein 1 (High endothelial venule protein) (Hevin) (MAST 9) | None |
Q14515 | SPARCL1 | T60 | ochoa | SPARC-like protein 1 (High endothelial venule protein) (Hevin) (MAST 9) | None |
Q14789 | GOLGB1 | S2589 | ochoa | Golgin subfamily B member 1 (372 kDa Golgi complex-associated protein) (GCP372) (Giantin) (Macrogolgin) | May participate in forming intercisternal cross-bridges of the Golgi complex. |
Q147X3 | NAA30 | S55 | ochoa | N-alpha-acetyltransferase 30 (EC 2.3.1.256) (N-acetyltransferase 12) (N-acetyltransferase MAK3 homolog) (NatC catalytic subunit) | Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex (PubMed:19398576, PubMed:37891180). Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate (PubMed:19398576). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}. |
Q15052 | ARHGEF6 | S703 | ochoa | Rho guanine nucleotide exchange factor 6 (Alpha-Pix) (COOL-2) (PAK-interacting exchange factor alpha) (Rac/Cdc42 guanine nucleotide exchange factor 6) | Acts as a RAC1 guanine nucleotide exchange factor (GEF). |
Q15054 | POLD3 | S269 | ochoa | DNA polymerase delta subunit 3 (DNA polymerase delta subunit C) (DNA polymerase delta subunit p66) (DNA polymerase delta subunit p68) | Accessory component of both the DNA polymerase delta complex and the DNA polymerase zeta complex (PubMed:17317665, PubMed:22801543, PubMed:24449906). As a component of the trimeric and tetrameric DNA polymerase delta complexes (Pol-delta3 and Pol-delta4, respectively), plays a role in high fidelity genome replication, including in lagging strand synthesis, and repair. Required for optimal Pol-delta activity. Stabilizes the Pol-delta complex and plays a major role in Pol-delta stimulation by PCNA (PubMed:10219083, PubMed:10852724, PubMed:11595739, PubMed:16510448, PubMed:24035200). Pol-delta3 and Pol-delta4 are characterized by the absence or the presence of POLD4. They exhibit differences in catalytic activity. Most notably, Pol-delta3 shows higher proofreading activity than Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may also be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation. In this context, POLD3, along with PCNA and RFC1-replication factor C complex, is required to recruit POLD1, the catalytic subunit of the polymerase delta complex, to DNA damage sites (PubMed:20227374). Under conditions of DNA replication stress, required for the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine or abasic sites performed by Pol-delta4, independently of DNA polymerase zeta (REV3L) or eta (POLH). Facilitates abasic site bypass by DNA polymerase delta by promoting extension from the nucleotide inserted opposite the lesion (PubMed:19074196, PubMed:25628356, PubMed:27185888). Also involved in TLS, as a component of the tetrameric DNA polymerase zeta complex. Along with POLD2, dramatically increases the efficiency and processivity of DNA synthesis of the DNA polymerase zeta complex compared to the minimal zeta complex, consisting of only REV3L and REV7 (PubMed:24449906). {ECO:0000269|PubMed:10219083, ECO:0000269|PubMed:10852724, ECO:0000269|PubMed:11595739, ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:24449906, ECO:0000269|PubMed:25628356, ECO:0000269|PubMed:27185888, ECO:0000269|PubMed:38099988}. |
Q15326 | ZMYND11 | S420 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q15361 | TTF1 | S472 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q15651 | HMGN3 | S78 | ochoa | High mobility group nucleosome-binding domain-containing protein 3 (Thyroid receptor-interacting protein 7) (TR-interacting protein 7) (TRIP-7) | Binds to nucleosomes, regulating chromatin structure and consequently, chromatin-dependent processes such as transcription, DNA replication and DNA repair. Affects both insulin and glucagon levels and modulates the expression of pancreatic genes involved in insulin secretion. Regulates the expression of the glucose transporter SLC2A2 by binding specifically to its promoter region and recruiting PDX1 and additional transcription factors. Regulates the expression of SLC6A9, a glycine transporter which regulates the glycine concentration in synaptic junctions in the central nervous system, by binding to its transcription start site. May play a role in ocular development and astrocyte function (By similarity). {ECO:0000250}. |
Q15910 | EZH2 | S408 | ochoa | Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) | Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}. |
Q16666 | IFI16 | S575 | ochoa | Gamma-interferon-inducible protein 16 (Ifi-16) (Interferon-inducible myeloid differentiation transcriptional activator) | Binds double-stranded DNA. Binds preferentially to supercoiled DNA and cruciform DNA structures. Seems to be involved in transcriptional regulation. May function as a transcriptional repressor. Could have a role in the regulation of hematopoietic differentiation through activation of unknown target genes. Controls cellular proliferation by modulating the functions of cell cycle regulatory factors including p53/TP53 and the retinoblastoma protein. May be involved in TP53-mediated transcriptional activation by enhancing TP53 sequence-specific DNA binding and modulating TP53 phosphorylation status. Seems to be involved in energy-level-dependent activation of the ATM/ AMPK/TP53 pathway coupled to regulation of autophagy. May be involved in regulation of TP53-mediated cell death also involving BRCA1. May be involved in the senescence of prostate epithelial cells. Involved in innate immune response by recognizing viral dsDNA in the cytosol and probably in the nucleus. After binding to viral DNA in the cytoplasm recruits TMEM173/STING and mediates the induction of IFN-beta. Has anti-inflammatory activity and inhibits the activation of the AIM2 inflammasome, probably via association with AIM2. Proposed to bind viral DNA in the nucleus, such as of Kaposi's sarcoma-associated herpesvirus, and to induce the formation of nuclear caspase-1-activating inflammasome formation via association with PYCARD. Inhibits replication of herpesviruses such as human cytomegalovirus (HCMV) probably by interfering with promoter recruitment of members of the Sp1 family of transcription factors. Necessary to activate the IRF3 signaling cascade during human herpes simplex virus 1 (HHV-1) infection and promotes the assembly of heterochromatin on herpesviral DNA and inhibition of viral immediate-early gene expression and replication. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer. {ECO:0000269|PubMed:11146555, ECO:0000269|PubMed:12894224, ECO:0000269|PubMed:14654789, ECO:0000269|PubMed:20890285, ECO:0000269|PubMed:21573174, ECO:0000269|PubMed:21575908, ECO:0000269|PubMed:22046441, ECO:0000269|PubMed:22291595, ECO:0000269|PubMed:23027953, ECO:0000269|PubMed:24198334, ECO:0000269|PubMed:24413532, ECO:0000269|PubMed:9642285}.; FUNCTION: [Isoform IFI16-beta]: Isoform that specifically inhibits the AIM2 inflammasome (PubMed:30104205). Binds double-stranded DNA (dsDNA) in the cytoplasm, impeding its detection by AIM2 (PubMed:30104205). Also prevents the interaction between AIM2 and PYCARD/ASC via its interaction with AIM2, thereby inhibiting assembly of the AIM2 inflammasome (PubMed:30104205). This isoform also weakly induce production of type I interferon-beta (IFNB1) via its interaction with STING1 (PubMed:30104205). {ECO:0000269|PubMed:30104205}. |
Q16790 | CA9 | S102 | ochoa | Carbonic anhydrase 9 (EC 4.2.1.1) (Carbonate dehydratase IX) (Carbonic anhydrase IX) (CA-IX) (CAIX) (Membrane antigen MN) (P54/58N) (Renal cell carcinoma-associated antigen G250) (RCC-associated antigen G250) (pMW1) | Catalyzes the interconversion between carbon dioxide and water and the dissociated ions of carbonic acid (i.e. bicarbonate and hydrogen ions). {ECO:0000269|PubMed:17314045, ECO:0000269|PubMed:17705204, ECO:0000269|PubMed:18703501, ECO:0000269|PubMed:19186056, ECO:0000269|PubMed:19206230, ECO:0000269|PubMed:19805286}. |
Q1KMD3 | HNRNPUL2 | S168 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) | None |
Q1KMD3 | HNRNPUL2 | T244 | ochoa | Heterogeneous nuclear ribonucleoprotein U-like protein 2 (Scaffold-attachment factor A2) (SAF-A2) | None |
Q32MZ4 | LRRFIP1 | S613 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q32MZ4 | LRRFIP1 | S618 | ochoa | Leucine-rich repeat flightless-interacting protein 1 (LRR FLII-interacting protein 1) (GC-binding factor 2) (TAR RNA-interacting protein) | Transcriptional repressor which preferentially binds to the GC-rich consensus sequence (5'-AGCCCCCGGCG-3') and may regulate expression of TNF, EGFR and PDGFA. May control smooth muscle cells proliferation following artery injury through PDGFA repression. May also bind double-stranded RNA. Positively regulates Toll-like receptor (TLR) signaling in response to agonist probably by competing with the negative FLII regulator for MYD88-binding. {ECO:0000269|PubMed:10364563, ECO:0000269|PubMed:14522076, ECO:0000269|PubMed:16199883, ECO:0000269|PubMed:19265123, ECO:0000269|PubMed:9705290}. |
Q3T8J9 | GON4L | S1339 | ochoa | GON-4-like protein (GON-4 homolog) | Has transcriptional repressor activity, probably as part of a complex with YY1, SIN3A and HDAC1. Required for B cell lymphopoiesis. {ECO:0000250|UniProtKB:Q9DB00}. |
Q4ZHG4 | FNDC1 | S548 | ochoa | Fibronectin type III domain-containing protein 1 (Activation-associated cDNA protein) (Expressed in synovial lining protein) | May be an activator of G protein signaling. {ECO:0000250}. |
Q53H47 | SETMAR | S410 | ochoa | Histone-lysine N-methyltransferase SETMAR (SET domain and mariner transposase fusion protein) (Metnase) [Includes: Histone-lysine N-methyltransferase (EC 2.1.1.357); Transposon Hsmar1 transposase (EC 3.1.-.-)] | Protein derived from the fusion of a methylase with the transposase of an Hsmar1 transposon that plays a role in DNA double-strand break repair, stalled replication fork restart and DNA integration. DNA-binding protein, it is indirectly recruited to sites of DNA damage through protein-protein interactions. Also has kept a sequence-specific DNA-binding activity recognizing the 19-mer core of the 5'-terminal inverted repeats (TIRs) of the Hsmar1 element and displays a DNA nicking and end joining activity (PubMed:16332963, PubMed:16672366, PubMed:17403897, PubMed:17877369, PubMed:18263876, PubMed:20521842, PubMed:22231448, PubMed:24573677). In parallel, has a histone methyltransferase activity and methylates 'Lys-4' and 'Lys-36' of histone H3. Specifically mediates dimethylation of H3 'Lys-36' at sites of DNA double-strand break and may recruit proteins required for efficient DSB repair through non-homologous end-joining (PubMed:16332963, PubMed:21187428, PubMed:22231448). Also regulates replication fork processing, promoting replication fork restart and regulating DNA decatenation through stimulation of the topoisomerase activity of TOP2A (PubMed:18790802, PubMed:20457750). {ECO:0000269|PubMed:16332963, ECO:0000269|PubMed:16672366, ECO:0000269|PubMed:17403897, ECO:0000269|PubMed:17877369, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:20457750, ECO:0000269|PubMed:20521842, ECO:0000269|PubMed:21187428, ECO:0000269|PubMed:22231448, ECO:0000269|PubMed:24573677, ECO:0000303|PubMed:18263876}. |
Q5F1R6 | DNAJC21 | S302 | ochoa | DnaJ homolog subfamily C member 21 (DnaJ homolog subfamily A member 5) (Protein GS3) | May act as a co-chaperone for HSP70. May play a role in ribosomal RNA (rRNA) biogenesis, possibly in the maturation of the 60S subunit. Binds the precursor 45S rRNA. {ECO:0000269|PubMed:27346687}. |
Q5H9L2 | TCEAL5 | S36 | ochoa | Transcription elongation factor A protein-like 5 (TCEA-like protein 5) (Transcription elongation factor S-II protein-like 5) | May be involved in transcriptional regulation. |
Q5H9L2 | TCEAL5 | S142 | ochoa | Transcription elongation factor A protein-like 5 (TCEA-like protein 5) (Transcription elongation factor S-II protein-like 5) | May be involved in transcriptional regulation. |
Q5JRA6 | MIA3 | S189 | ochoa | Transport and Golgi organization protein 1 homolog (TANGO1) (C219-reactive peptide) (D320) (Melanoma inhibitory activity protein 3) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum. This protein is required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers. It may participate in cargo loading of COL7A1 at endoplasmic reticulum exit sites by binding to COPII coat subunits Sec23/24 and guiding SH3-bound COL7A1 into a growing carrier. Does not play a role in global protein secretion and is apparently specific to COL7A1 cargo loading. However, it may participate in secretion of other proteins in cells that do not secrete COL7A1. It is also specifically required for the secretion of lipoproteins by participating in their export from the endoplasmic reticulum (PubMed:19269366, PubMed:27138255). Required for correct assembly of COPII coat components at endoplasmic reticulum exit sites (ERES) and for the localization of SEC16A and membrane-bound ER-resident complexes consisting of MIA2 and PREB/SEC12 to ERES (PubMed:28442536). {ECO:0000269|PubMed:19269366, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:28442536}. |
Q5JRA6 | MIA3 | S1553 | ochoa | Transport and Golgi organization protein 1 homolog (TANGO1) (C219-reactive peptide) (D320) (Melanoma inhibitory activity protein 3) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum. This protein is required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers. It may participate in cargo loading of COL7A1 at endoplasmic reticulum exit sites by binding to COPII coat subunits Sec23/24 and guiding SH3-bound COL7A1 into a growing carrier. Does not play a role in global protein secretion and is apparently specific to COL7A1 cargo loading. However, it may participate in secretion of other proteins in cells that do not secrete COL7A1. It is also specifically required for the secretion of lipoproteins by participating in their export from the endoplasmic reticulum (PubMed:19269366, PubMed:27138255). Required for correct assembly of COPII coat components at endoplasmic reticulum exit sites (ERES) and for the localization of SEC16A and membrane-bound ER-resident complexes consisting of MIA2 and PREB/SEC12 to ERES (PubMed:28442536). {ECO:0000269|PubMed:19269366, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:28442536}. |
Q5MIZ7 | PPP4R3B | T128 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3B (SMEK homolog 2) | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. |
Q5MIZ7 | PPP4R3B | S129 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3B (SMEK homolog 2) | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. |
Q5QJE6 | DNTTIP2 | S148 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5SSJ5 | HP1BP3 | S71 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5SSJ5 | HP1BP3 | S110 | ochoa | Heterochromatin protein 1-binding protein 3 (Protein HP1-BP74) | Component of heterochromatin that maintains heterochromatin integrity during G1/S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity (PubMed:24830416). Mediates chromatin condensation during hypoxia, leading to increased tumor cell viability, radio-resistance, chemo-resistance and self-renewal (PubMed:25100860). {ECO:0000269|PubMed:24830416, ECO:0000269|PubMed:25100860}. |
Q5T200 | ZC3H13 | S151 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T200 | ZC3H13 | S1406 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5UIP0 | RIF1 | S1384 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q63HN8 | RNF213 | S1264 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q63HN8 | RNF213 | S3496 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q641Q2 | WASHC2A | S238 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q66K14 | TBC1D9B | S995 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q6BDS2 | BLTP3A | S944 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6IPX3 | TCEAL6 | S136 | ochoa | Transcription elongation factor A protein-like 6 (TCEA-like protein 6) (Transcription elongation factor S-II protein-like 6) | May be involved in transcriptional regulation. |
Q6P1N0 | CC2D1A | S118 | ochoa | Coiled-coil and C2 domain-containing protein 1A (Akt kinase-interacting protein 1) (Five prime repressor element under dual repression-binding protein 1) (FRE under dual repression-binding protein 1) (Freud-1) (Putative NF-kappa-B-activating protein 023N) | Transcription factor that binds specifically to the DRE (dual repressor element) and represses HTR1A gene transcription in neuronal cells. The combination of calcium and ATP specifically inactivates the binding with FRE. May play a role in the altered regulation of HTR1A associated with anxiety and major depression. Mediates HDAC-independent repression of HTR1A promoter in neuronal cell. Performs essential function in controlling functional maturation of synapses (By similarity). Plays distinct roles depending on its localization. When cytoplasmic, acts as a scaffold protein in the PI3K/PDK1/AKT pathway. Repressor of HTR1A when nuclear. In the centrosome, regulates spindle pole localization of the cohesin subunit SCC1/RAD21, thereby mediating centriole cohesion during mitosis. {ECO:0000250, ECO:0000269|PubMed:20171170}. |
Q6UB99 | ANKRD11 | S1296 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6WCQ1 | MPRIP | S251 | ochoa | Myosin phosphatase Rho-interacting protein (M-RIP) (Rho-interacting protein 3) (RIP3) (p116Rip) | Targets myosin phosphatase to the actin cytoskeleton. Required for the regulation of the actin cytoskeleton by RhoA and ROCK1. Depletion leads to an increased number of stress fibers in smooth muscle cells through stabilization of actin fibers by phosphorylated myosin. Overexpression of MRIP as well as its F-actin-binding region leads to disassembly of stress fibers in neuronal cells. {ECO:0000250|UniProtKB:P97434, ECO:0000269|PubMed:15545284, ECO:0000269|PubMed:16257966}. |
Q7L014 | DDX46 | S199 | ochoa | Probable ATP-dependent RNA helicase DDX46 (EC 3.6.4.13) (DEAD box protein 46) (PRP5 homolog) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310, PubMed:36797247). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, DDX46 plays essential roles during assembly of pre-spliceosome and proofreading of the branch site (PubMed:34822310). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:36797247}. |
Q7L590 | MCM10 | S26 | ochoa | Protein MCM10 homolog (HsMCM10) | Acts as a replication initiation factor that brings together the MCM2-7 helicase and the DNA polymerase alpha/primase complex in order to initiate DNA replication. Additionally, plays a role in preventing DNA damage during replication. Key effector of the RBBP6 and ZBTB38-mediated regulation of DNA-replication and common fragile sites stability; acts as a direct target of transcriptional repression by ZBTB38 (PubMed:24726359). {ECO:0000269|PubMed:11095689, ECO:0000269|PubMed:15136575, ECO:0000269|PubMed:17699597, ECO:0000269|PubMed:19608746, ECO:0000269|PubMed:24726359, ECO:0000269|PubMed:32865517}. |
Q7Z3K6 | MIER3 | S52 | ochoa | Mesoderm induction early response protein 3 (Mi-er3) | Transcriptional repressor. {ECO:0000250}. |
Q86TI0 | TBC1D1 | S275 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86UK7 | ZNF598 | S313 | ochoa | E3 ubiquitin-protein ligase ZNF598 (EC 2.3.2.27) (Zinc finger protein 598) | E3 ubiquitin-protein ligase that plays a key role in the ribosome quality control (RQC), a pathway that takes place when a ribosome has stalled during translation, leading to degradation of nascent peptide chains (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:32099016, PubMed:32579943, PubMed:33581075). ZNF598 is activated when ribosomes are stalled within an mRNA following translation of prematurely polyadenylated mRNAs (PubMed:28065601, PubMed:28132843, PubMed:28685749). Acts as a ribosome collision sensor: specifically recognizes and binds collided di-ribosome, which arises when a trailing ribosome encounters a slower leading ribosome, leading to terminally arrest translation (PubMed:28065601, PubMed:28132843, PubMed:28685749, PubMed:30293783). Following binding to colliding ribosomes, mediates monoubiquitination of 40S ribosomal proteins RPS10/eS10 and RPS3/uS3, and 'Lys-63'-linked polyubiquitination of RPS20/uS10 (PubMed:28065601, PubMed:28132843, PubMed:28685749). Polyubiquitination of RPS20/uS10 promotes recruitment of the RQT (ribosome quality control trigger) complex, which drives the disassembly of stalled ribosomes, followed by degradation of nascent peptides (PubMed:32099016, PubMed:32579943, PubMed:36302773). E3 ubiquitin-protein ligase activity is dependent on the E2 ubiquitin-conjugating enzyme UBE2D3 (PubMed:28685749). Also acts as an adapter that recruits the 4EHP-GYF2 complex to mRNAs (PubMed:22751931, PubMed:32726578). Independently of its role in RQC, may also act as a negative regulator of interferon-stimulated gene (ISG) expression (PubMed:29719242). {ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:28065601, ECO:0000269|PubMed:28132843, ECO:0000269|PubMed:28685749, ECO:0000269|PubMed:29719242, ECO:0000269|PubMed:30293783, ECO:0000269|PubMed:32099016, ECO:0000269|PubMed:32579943, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:33581075, ECO:0000269|PubMed:36302773}.; FUNCTION: (Microbial infection) Required for poxvirus protein synthesis by mediating ubiquitination of RPS10/eS10 and RPS20/uS10 (PubMed:29719242). Poxvirus encoding mRNAs contain unusual 5' poly(A) leaders and ZNF598 is required for their translational efficiency, possibly via its ability to suppress readthrough or sliding on shorter poly(A) tracts (PubMed:29719242). {ECO:0000269|PubMed:29719242}. |
Q86VM9 | ZC3H18 | S74 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q86VM9 | ZC3H18 | S110 | ochoa | Zinc finger CCCH domain-containing protein 18 (Nuclear protein NHN1) | None |
Q8IV38 | ANKMY2 | S403 | ochoa | Ankyrin repeat and MYND domain-containing protein 2 | May be involved in the trafficking of signaling proteins to the cilia. {ECO:0000250}. |
Q8IVT5 | KSR1 | S569 | ochoa | Kinase suppressor of Ras 1 (EC 2.7.11.1) | Part of a multiprotein signaling complex which promotes phosphorylation of Raf family members and activation of downstream MAP kinases (By similarity). Independently of its kinase activity, acts as MAP2K1/MEK1 and MAP2K2/MEK2-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1 or MAP2K2/MEK2, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 and/or MAP2K2/MEK2 (PubMed:29433126). Promotes activation of MAPK1 and/or MAPK3, both in response to EGF and to cAMP (By similarity). Its kinase activity is unsure (By similarity). Some protein kinase activity has been detected in vitro, however the physiological relevance of this activity is unknown (By similarity). {ECO:0000250|UniProtKB:Q61097, ECO:0000269|PubMed:29433126}. |
Q8IW35 | CEP97 | S763 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IWA0 | WDR75 | S779 | ochoa | WD repeat-containing protein 75 (U3 small nucleolar RNA-associated protein 17 homolog) | Ribosome biogenesis factor. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I. {ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q8IWZ8 | SUGP1 | S181 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IZP2 | ST13P4 | S72 | ochoa | Putative protein FAM10A4 (Suppression of tumorigenicity 13 pseudogene 4) | None |
Q8N108 | MIER1 | S52 | ochoa | Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) | Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}. |
Q8N108 | MIER1 | S53 | ochoa | Mesoderm induction early response protein 1 (Early response 1) (Er1) (Mi-er1) (hMi-er1) | Transcriptional repressor regulating the expression of a number of genes including SP1 target genes. Probably functions through recruitment of HDAC1 a histone deacetylase involved in chromatin silencing. {ECO:0000269|PubMed:12482978}. |
Q8N3U4 | STAG2 | S1177 | ochoa | Cohesin subunit SA-2 (SCC3 homolog 2) (Stromal antigen 2) | Component of cohesin complex, a complex required for the cohesion of sister chromatids after DNA replication. The cohesin complex apparently forms a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. The cohesin complex may also play a role in spindle pole assembly during mitosis. {ECO:0000269|PubMed:12034751}. |
Q8N4C6 | NIN | S1193 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N7H5 | PAF1 | S394 | ochoa | RNA polymerase II-associated factor 1 homolog (hPAF1) (Pancreatic differentiation protein 2) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the RNF20/40 E3 ubiquitin-protein ligase complex. Involved in polyadenylation of mRNA precursors. Has oncogenic activity in vivo and in vitro. {ECO:0000269|PubMed:16491129, ECO:0000269|PubMed:19410543, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879, ECO:0000269|PubMed:22419161}. |
Q8N8S7 | ENAH | S477 | ochoa | Protein enabled homolog | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance and lamellipodial and filopodial dynamics in migrating cells. ENAH induces the formation of F-actin rich outgrowths in fibroblasts. Acts synergistically with BAIAP2-alpha and downstream of NTN1 to promote filipodia formation (By similarity). {ECO:0000250, ECO:0000269|PubMed:11696321, ECO:0000269|PubMed:18158903}. |
Q8NAV1 | PRPF38A | S209 | ochoa | Pre-mRNA-splicing factor 38A | Involved in pre-mRNA splicing as a component of the spliceosome. {ECO:0000269|PubMed:26673105, ECO:0000269|PubMed:28781166}. |
Q8NBN3 | TMEM87A | S491 | ochoa | Transmembrane protein 87A (Elkin1) | Potential monoatomic ion channel gated by mechanical force, implicated in normal touch sensitivity through the generation of mechanically activated currents (PubMed:32228863, PubMed:38422143). However, a direct channel activity is debated and an alternative could be that it functions as a chaperone for an unidentified mechanosensitive ion channel (PubMed:32228863, PubMed:36373655). Could also be involved in cell mechanosensitivity regulating cell adhesion and migration (PubMed:32228863). May also be involved in retrograde transport from endosomes to the trans-Golgi network (TGN) (PubMed:26157166). {ECO:0000269|PubMed:26157166, ECO:0000269|PubMed:32228863, ECO:0000269|PubMed:36373655, ECO:0000269|PubMed:38422143}. |
Q8NBR6 | MINDY2 | S233 | ochoa | Ubiquitin carboxyl-terminal hydrolase MINDY-2 (EC 3.4.19.12) (Deubiquitinating enzyme MINDY-2) (Protein FAM63B) | Hydrolase that can remove 'Lys-48'-linked conjugated ubiquitin from proteins (PubMed:27292798). Binds to polyubiquitin chains of different linkage types, including 'Lys-6', 'Lys-11', 'Lys-29', 'Lys-33', 'Lys-48' and 'Lys-63' (PubMed:28082312). May play a regulatory role at the level of protein turnover (PubMed:27292798). {ECO:0000269|PubMed:27292798, ECO:0000269|PubMed:28082312}. |
Q8NE01 | CNNM3 | S453 | ochoa | Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) | Probable metal transporter. {ECO:0000250}. |
Q8NEZ4 | KMT2C | S89 | ochoa | Histone-lysine N-methyltransferase 2C (Lysine N-methyltransferase 2C) (EC 2.1.1.364) (Homologous to ALR protein) (Myeloid/lymphoid or mixed-lineage leukemia protein 3) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) (PubMed:25561738). Part of chromatin remodeling machinery predominantly forms H3K4me1 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:22266653, PubMed:24081332, PubMed:25561738). Likely plays a redundant role with KMT2D in enriching H3K4me1 mark on primed and active enhancer elements (PubMed:24081332). {ECO:0000269|PubMed:22266653, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q8NFG4 | FLCN | S302 | ochoa | Folliculin (BHD skin lesion fibrofolliculoma protein) (Birt-Hogg-Dube syndrome protein) | Multi-functional protein, involved in both the cellular response to amino acid availability and in the regulation of glycolysis (PubMed:17028174, PubMed:18663353, PubMed:21209915, PubMed:24081491, PubMed:24095279, PubMed:31672913, PubMed:31704029, PubMed:32612235, PubMed:34381247, PubMed:36103527, PubMed:37079666). GTPase-activating protein that plays a key role in the cellular response to amino acid availability through regulation of the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:21209915, PubMed:24081491, PubMed:24095279, PubMed:24448649, PubMed:31672913, PubMed:31704029, PubMed:32612235, PubMed:36103527, PubMed:37079666). Activates mTORC1 by acting as a GTPase-activating protein: specifically stimulates GTP hydrolysis by RagC/RRAGC or RagD/RRAGD, promoting the conversion to the GDP-bound state of RagC/RRAGC or RagD/RRAGD, and thereby activating the kinase activity of mTORC1 (PubMed:24095279, PubMed:31672913, PubMed:31704029, PubMed:32612235, PubMed:37079666). The GTPase-activating activity is inhibited during starvation and activated in presence of nutrients (PubMed:31672913, PubMed:32612235). Acts as a key component for non-canonical mTORC1-dependent control of the MiT/TFE factors TFEB and TFE3, while it is not involved in mTORC1-dependent phosphorylation of canonical RPS6KB1/S6K1 and EIF4EBP1/4E-BP1 (PubMed:21209915, PubMed:24081491, PubMed:31672913, PubMed:32612235). In low-amino acid conditions, the lysosomal folliculin complex (LFC) is formed on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, inactivates mTORC1 and maximizes nuclear translocation of TFEB and TFE3 (PubMed:31672913). Upon amino acid restimulation, RagA/RRAGA (or RagB/RRAGB) nucleotide exchange promotes disassembly of the LFC complex and liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent cytoplasmic retention of TFEB and TFE3 (PubMed:31672913). Indirectly acts as a positive regulator of Wnt signaling by promoting mTOR-dependent cytoplasmic retention of MiT/TFE factor TFE3 (PubMed:31272105). Required for the exit of hematopoietic stem cell from pluripotency by promoting mTOR-dependent cytoplasmic retention of TFE3, thereby increasing Wnt signaling (PubMed:30733432). Acts as an inhibitor of browning of adipose tissue by regulating mTOR-dependent cytoplasmic retention of TFE3 (By similarity). Involved in the control of embryonic stem cells differentiation; together with LAMTOR1 it is necessary to recruit and activate RagC/RRAGC and RagD/RRAGD at the lysosomes, and to induce exit of embryonic stem cells from pluripotency via non-canonical, mTOR-independent TFE3 inactivation (By similarity). In response to flow stress, regulates STK11/LKB1 accumulation and mTORC1 activation through primary cilia: may act by recruiting STK11/LKB1 to primary cilia for activation of AMPK resided at basal bodies, causing mTORC1 down-regulation (PubMed:27072130). Together with FNIP1 and/or FNIP2, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). Required for starvation-induced perinuclear clustering of lysosomes by promoting association of RILP with its effector RAB34 (PubMed:27113757). Regulates glycolysis by binding to lactate dehydrogenase LDHA, acting as an uncompetitive inhibitor (PubMed:34381247). {ECO:0000250|UniProtKB:Q8QZS3, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:21209915, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:24095279, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27072130, ECO:0000269|PubMed:27113757, ECO:0000269|PubMed:30733432, ECO:0000269|PubMed:31272105, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:31704029, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34381247, ECO:0000269|PubMed:36103527, ECO:0000269|PubMed:37079666}. |
Q8NI27 | THOC2 | S1230 | ochoa | THO complex subunit 2 (Tho2) (hTREX120) | Component of the THO subcomplex of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and which specifically associates with spliced mRNA and not with unspliced pre-mRNA (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for efficient export of polyadenylated RNA and spliced mRNA (PubMed:23222130). The THOC1-THOC2-THOC3 core complex alone is sufficient to bind export factor NXF1-NXT1 and promote ATPase activity of DDX39B; in the complex THOC2 is the only component that directly interacts with DDX39B (PubMed:33191911). TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region near the 5' end of the mRNA where it functions in mRNA export to the cytoplasm via the TAP/NXF1 pathway (PubMed:15833825, PubMed:15998806, PubMed:17190602). Required for NXF1 localization to the nuclear rim (PubMed:22893130). THOC2 (and probably the THO complex) is involved in releasing mRNA from nuclear speckle domains. {ECO:0000269|PubMed:11979277, ECO:0000269|PubMed:15833825, ECO:0000269|PubMed:15998806, ECO:0000269|PubMed:17190602, ECO:0000269|PubMed:22893130, ECO:0000269|PubMed:23222130, ECO:0000269|PubMed:33191911}.; FUNCTION: (Microbial infection) The TREX complex is essential for the export of Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs and infectious virus production. {ECO:0000269|PubMed:18974867}. |
Q8TAQ2 | SMARCC2 | S841 | ochoa | SWI/SNF complex subunit SMARCC2 (BRG1-associated factor 170) (BAF170) (SWI/SNF complex 170 kDa subunit) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily C member 2) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:11018012). Can stimulate the ATPase activity of the catalytic subunit of these complexes (PubMed:10078207). May be required for CoREST dependent repression of neuronal specific gene promoters in non-neuronal cells (PubMed:12192000). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Critical regulator of myeloid differentiation, controlling granulocytopoiesis and the expression of genes involved in neutrophil granule formation (By similarity). {ECO:0000250|UniProtKB:Q6PDG5, ECO:0000269|PubMed:10078207, ECO:0000269|PubMed:11018012, ECO:0000269|PubMed:12192000, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q8TE59 | ADAMTS19 | S119 | ochoa | A disintegrin and metalloproteinase with thrombospondin motifs 19 (ADAM-TS 19) (ADAM-TS19) (ADAMTS-19) (EC 3.4.24.-) | None |
Q8TEQ6 | GEMIN5 | S1416 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8TEW0 | PARD3 | S958 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TF01 | PNISR | S304 | ochoa | Arginine/serine-rich protein PNISR (PNN-interacting serine/arginine-rich protein) (SR-related protein) (SR-rich protein) (Serine/arginine-rich-splicing regulatory protein 130) (SRrp130) (Splicing factor, arginine/serine-rich 130) (Splicing factor, arginine/serine-rich 18) | None |
Q8WVC0 | LEO1 | S271 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q8WWN8 | ARAP3 | Y1403 | psp | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (Centaurin-delta-3) (Cnt-d3) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency. Acts on ARF6, RAC1, RHOA and CDC42. Plays a role in the internalization of anthrax toxin. {ECO:0000269|PubMed:11804589, ECO:0000269|PubMed:15569923}. |
Q8WWN8 | ARAP3 | Y1408 | psp | Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 (Centaurin-delta-3) (Cnt-d3) | Phosphatidylinositol 3,4,5-trisphosphate-dependent GTPase-activating protein that modulates actin cytoskeleton remodeling by regulating ARF and RHO family members. Is activated by phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) binding. Can be activated by phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4,5)P2) binding, albeit with lower efficiency. Acts on ARF6, RAC1, RHOA and CDC42. Plays a role in the internalization of anthrax toxin. {ECO:0000269|PubMed:11804589, ECO:0000269|PubMed:15569923}. |
Q8WWQ0 | PHIP | S1296 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q92560 | BAP1 | S384 | ochoa | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92574 | TSC1 | S483 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92574 | TSC1 | S487 | ochoa|psp | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92625 | ANKS1A | S677 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92766 | RREB1 | S1592 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92890 | UFD1 | S217 | ochoa | Ubiquitin recognition factor in ER-associated degradation protein 1 (Ubiquitin fusion degradation protein 1) (UB fusion protein 1) | Essential component of the ubiquitin-dependent proteolytic pathway which degrades ubiquitin fusion proteins. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. It may be involved in the development of some ectoderm-derived structures (By similarity). Acts as a negative regulator of type I interferon production via the complex formed with VCP and NPLOC4, which binds to RIGI and recruits RNF125 to promote ubiquitination and degradation of RIGI (PubMed:26471729). {ECO:0000250|UniProtKB:Q9ES53, ECO:0000269|PubMed:26471729}. |
Q969E4 | TCEAL3 | S30 | ochoa | Transcription elongation factor A protein-like 3 (TCEA-like protein 3) (Transcription elongation factor S-II protein-like 3) | May be involved in transcriptional regulation. |
Q969E4 | TCEAL3 | S136 | ochoa | Transcription elongation factor A protein-like 3 (TCEA-like protein 3) (Transcription elongation factor S-II protein-like 3) | May be involved in transcriptional regulation. |
Q969G3 | SMARCE1 | S353 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily E member 1 (BRG1-associated factor 57) (BAF57) | Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Required for the coactivation of estrogen responsive promoters by SWI/SNF complexes and the SRC/p160 family of histone acetyltransferases (HATs). Also specifically interacts with the CoREST corepressor resulting in repression of neuronal specific gene promoters in non-neuronal cells. {ECO:0000250|UniProtKB:O54941, ECO:0000303|PubMed:12672490, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
Q96BN8 | OTULIN | S76 | ochoa | Ubiquitin thioesterase otulin (EC 3.4.19.12) (Deubiquitinating enzyme otulin) (OTU domain-containing deubiquitinase with linear linkage specificity) (Ubiquitin thioesterase Gumby) | Deubiquitinase that specifically removes linear ('Met-1'-linked) polyubiquitin chains to substrates and acts as a regulator of angiogenesis and innate immune response (PubMed:23708998, PubMed:23746843, PubMed:23806334, PubMed:23827681, PubMed:24726323, PubMed:24726327, PubMed:26997266, PubMed:27523608, PubMed:27559085, PubMed:28919039, PubMed:30804083, PubMed:35170849, PubMed:35587511, PubMed:38630025, PubMed:38652464). Required during angiogenesis, craniofacial and neuronal development by regulating the canonical Wnt signaling together with the LUBAC complex (PubMed:23708998). Acts as a negative regulator of NF-kappa-B by regulating the activity of the LUBAC complex (PubMed:23746843, PubMed:23806334). OTULIN function is mainly restricted to homeostasis of the LUBAC complex: acts by removing 'Met-1'-linked autoubiquitination of the LUBAC complex, thereby preventing inactivation of the LUBAC complex (PubMed:26670046). Acts as a key negative regulator of inflammation by restricting spontaneous inflammation and maintaining immune homeostasis (PubMed:27523608). In myeloid cell, required to prevent unwarranted secretion of cytokines leading to inflammation and autoimmunity by restricting linear polyubiquitin formation (PubMed:27523608). Plays a role in innate immune response by restricting linear polyubiquitin formation on LUBAC complex in response to NOD2 stimulation, probably to limit NOD2-dependent pro-inflammatory signaling (PubMed:23806334). {ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:23746843, ECO:0000269|PubMed:23806334, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:24726323, ECO:0000269|PubMed:24726327, ECO:0000269|PubMed:26670046, ECO:0000269|PubMed:26997266, ECO:0000269|PubMed:27523608, ECO:0000269|PubMed:27559085, ECO:0000269|PubMed:28919039, ECO:0000269|PubMed:30804083, ECO:0000269|PubMed:35170849, ECO:0000269|PubMed:35587511, ECO:0000269|PubMed:38630025, ECO:0000269|PubMed:38652464}. |
Q96BT3 | CENPT | S343 | ochoa | Centromere protein T (CENP-T) (Interphase centromere complex protein 22) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Part of a nucleosome-associated complex that binds specifically to histone H3-containing nucleosomes at the centromere, as opposed to nucleosomes containing CENPA. Component of the heterotetrameric CENP-T-W-S-X complex that binds and supercoils DNA, and plays an important role in kinetochore assembly. CENPT has a fundamental role in kinetochore assembly and function. It is one of the inner kinetochore proteins, with most further proteins binding downstream. Required for normal chromosome organization and normal progress through mitosis. {ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:21529714, ECO:0000269|PubMed:21695110}. |
Q96D96 | HVCN1 | S63 | ochoa | Voltage-gated hydrogen channel 1 (Hydrogen voltage-gated channel 1) (HV1) (Voltage sensor domain-only protein) | Voltage-gated proton-selective channel that conducts outward proton currents in response to intracellular acidification. Lacks a canonical ion-channel pore domain and mediates proton permeability via its voltage sensor domain (PubMed:16554753, PubMed:20037153, PubMed:20548053, PubMed:22020278, PubMed:27859356, PubMed:30478045, PubMed:37669933). Appears to play a dominant role in regulation of CO2/HCO3(-)/H(+) equilibrium in sperm flagellum. Prevents the acidification resulting from HCO3(-) synthesis and thus sustains high HCO3(-) levels inside sperm for capacitation (PubMed:20144758, PubMed:30478045, PubMed:37669933). Provides for proton efflux that compensates for electron charge generated by NADPH oxidase activity either in the extracellular or phagosomal compartments, thus enabling the production of high levels of bactericidal reactive oxygen species during the respiratory burst (PubMed:20037153, PubMed:30478045). Opens when the pH of airway surface liquid exceeds 7 and contributes to respiratory epithelial acid secretion to maintain pH in the mucosa (PubMed:20548053). {ECO:0000269|PubMed:16554753, ECO:0000269|PubMed:20037153, ECO:0000269|PubMed:20144758, ECO:0000269|PubMed:20548053, ECO:0000269|PubMed:22020278, ECO:0000269|PubMed:27859356, ECO:0000269|PubMed:30478045, ECO:0000269|PubMed:37669933}. |
Q96EK9 | KTI12 | S184 | ochoa | Protein KTI12 homolog | None |
Q96F63 | CCDC97 | S264 | ochoa | Coiled-coil domain-containing protein 97 | May play a role pre-mRNA splicing through the association with the splicing factor SF3B complex which is involved in branch-site recognition. {ECO:0000269|PubMed:26344197}. |
Q96GA3 | LTV1 | S200 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96N46 | TTC14 | S734 | ochoa | Tetratricopeptide repeat protein 14 (TPR repeat protein 14) | None |
Q96PN7 | TRERF1 | S975 | ochoa | Transcriptional-regulating factor 1 (Breast cancer anti-estrogen resistance 2) (Transcriptional-regulating protein 132) (Zinc finger protein rapa) (Zinc finger transcription factor TReP-132) | Binds DNA and activates transcription of CYP11A1. Interaction with CREBBP and EP300 results in a synergistic transcriptional activation of CYP11A1. {ECO:0000269|PubMed:11349124, ECO:0000269|PubMed:16371131}. |
Q96PY5 | FMNL2 | S406 | ochoa | Formin-like protein 2 (Formin homology 2 domain-containing protein 2) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}. |
Q96T88 | UHRF1 | S639 | ochoa|psp | E3 ubiquitin-protein ligase UHRF1 (EC 2.3.2.27) (Inverted CCAAT box-binding protein of 90 kDa) (Nuclear protein 95) (Nuclear zinc finger protein Np95) (HuNp95) (hNp95) (RING finger protein 106) (RING-type E3 ubiquitin transferase UHRF1) (Transcription factor ICBP90) (Ubiquitin-like PHD and RING finger domain-containing protein 1) (hUHRF1) (Ubiquitin-like-containing PHD and RING finger domains protein 1) | Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. Plays a role in DNA repair by cooperating with UHRF2 to ensure recruitment of FANCD2 to interstrand cross-links (ICLs) leading to FANCD2 activation. Acts as a critical player of proper spindle architecture by catalyzing the 'Lys-63'-linked ubiquitination of KIF11, thereby controlling KIF11 localization on the spindle (PubMed:37728657). {ECO:0000269|PubMed:10646863, ECO:0000269|PubMed:15009091, ECO:0000269|PubMed:15361834, ECO:0000269|PubMed:17673620, ECO:0000269|PubMed:17967883, ECO:0000269|PubMed:19056828, ECO:0000269|PubMed:21745816, ECO:0000269|PubMed:21777816, ECO:0000269|PubMed:22945642, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:37728657}. |
Q99459 | CDC5L | T510 | ochoa | Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) | DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}. |
Q99547 | MPHOSPH6 | S110 | ochoa | M-phase phosphoprotein 6 | RNA-binding protein that associates with the RNA exosome complex. Involved in the 3'-processing of the 7S pre-RNA to the mature 5.8S rRNA and play a role in recruiting the RNA exosome complex to pre-rRNA; this function may include C1D. {ECO:0000269|PubMed:17412707, ECO:0000269|PubMed:26166824}. |
Q99613 | EIF3C | S181 | ochoa | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q99986 | VRK1 | S376 | ochoa|psp | Serine/threonine-protein kinase VRK1 (EC 2.7.11.1) (Vaccinia-related kinase 1) | Serine/threonine kinase involved in the regulation of key cellular processes including the cell cycle, nuclear condensation, transcription regulation, and DNA damage response (PubMed:14645249, PubMed:18617507, PubMed:19103756, PubMed:33076429). Controls chromatin organization and remodeling by mediating phosphorylation of histone H3 on 'Thr-4' and histone H2AX (H2aXT4ph) (PubMed:31527692, PubMed:37179361). It also phosphorylates KAT5 in response to DNA damage, promoting KAT5 association with chromatin and histone acetyltransferase activity (PubMed:33076429). Is involved in the regulation of cell cycle progression of neural progenitors, and is required for proper cortical neuronal migration (By similarity). Is involved in neurite elongation and branching in motor neurons, and has an essential role in Cajal bodies assembly, acting through COIL phosphorylation and the control of coilin degradation (PubMed:21920476, PubMed:31090908, PubMed:31527692). Involved in Golgi disassembly during the cell cycle: following phosphorylation by PLK3 during mitosis, it is required to induce Golgi fragmentation (PubMed:19103756). Phosphorylates BANF1: disrupts its ability to bind DNA, reduces its binding to LEM domain-containing proteins and causes its relocalization from the nucleus to the cytoplasm (PubMed:16495336). Phosphorylates TP53BP1 and p53/TP53 on 'Thr-18', preventing the interaction between p53/TP53 and MDM2 (PubMed:10951572, PubMed:31527692). Phosphorylates ATF2 which activates its transcriptional activity (PubMed:15105425). Phosphorylates JUN (PubMed:31527692). {ECO:0000250|UniProtKB:Q80X41, ECO:0000269|PubMed:10951572, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:15105425, ECO:0000269|PubMed:16495336, ECO:0000269|PubMed:18617507, ECO:0000269|PubMed:19103756, ECO:0000269|PubMed:21920476, ECO:0000269|PubMed:31090908, ECO:0000269|PubMed:31527692, ECO:0000269|PubMed:33076429, ECO:0000269|PubMed:37179361}. |
Q9BSC4 | NOL10 | S547 | ochoa | Nucleolar protein 10 | None |
Q9BSC4 | NOL10 | S548 | ochoa | Nucleolar protein 10 | None |
Q9BVS4 | RIOK2 | S362 | ochoa | Serine/threonine-protein kinase RIO2 (EC 2.7.11.1) (RIO kinase 2) | Serine/threonine-protein kinase involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in export of the 40S pre-ribosome particles (pre-40S) from the nucleus to the cytoplasm. Its kinase activity is required for the release of NOB1, PNO1 and LTV1 from the late pre-40S and the processing of 18S-E pre-rRNA to the mature 18S rRNA (PubMed:19564402). Regulates the timing of the metaphase-anaphase transition during mitotic progression, and its phosphorylation, most likely by PLK1, regulates this function (PubMed:21880710). {ECO:0000269|PubMed:16037817, ECO:0000269|PubMed:19564402, ECO:0000269|PubMed:21880710}. |
Q9BWT7 | CARD10 | S20 | ochoa | Caspase recruitment domain-containing protein 10 (CARD-containing MAGUK protein 3) (Carma 3) | Scaffold protein that plays an important role in mediating the activation of NF-kappa-B via BCL10 or EGFR. {ECO:0000269|PubMed:27991920}. |
Q9H2J4 | PDCL3 | S43 | ochoa | Phosducin-like protein 3 (HTPHLP) (PhPL3) (Viral IAP-associated factor 1) (VIAF-1) | Acts as a chaperone for the angiogenic VEGF receptor KDR/VEGFR2, increasing its abundance by inhibiting its ubiquitination and degradation (PubMed:23792958, PubMed:26059764). Inhibits the folding activity of the chaperonin-containing T-complex (CCT) which leads to inhibition of cytoskeletal actin folding (PubMed:17429077). Acts as a chaperone during heat shock alongside HSP90 and HSP40/70 chaperone complexes (By similarity). Modulates the activation of caspases during apoptosis (PubMed:15371430). {ECO:0000250|UniProtKB:Q4KLJ8, ECO:0000269|PubMed:15371430, ECO:0000269|PubMed:17429077, ECO:0000269|PubMed:23792958, ECO:0000269|PubMed:26059764}. |
Q9H2P0 | ADNP | S889 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H3N1 | TMX1 | S247 | ochoa | Thioredoxin-related transmembrane protein 1 (Protein disulfide-isomerase TMX1) (EC 5.3.4.1) (Thioredoxin domain-containing protein 1) (Transmembrane Trx-related protein) | Thiredoxin domain-containing protein that participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyze dithiol-disulfide exchange reactions (PubMed:11152479, PubMed:37648867). Acts as a key inhibitor of the alternative triglyceride biosynthesis pathway by inhibiting the activity of TMEM68/DIESL at the endoplasmic reticulum, thereby restricting accumulation of triacylglycerol (PubMed:37648867). The alternative triglyceride biosynthesis pathway mediates formation of triacylglycerol from diacylglycerol and membrane phospholipids (PubMed:37648867). Acts as a protein disulfide isomerase by catalyzing formation or reduction of disulfide bonds (PubMed:22228764, PubMed:29932915). Specifically mediates formation of disulfide bonds of transmembrane proteins at the endoplasmic reticulum membrane (PubMed:22228764). Involved in endoplasmic reticulum-associated degradation (ERAD) via its protein disulfide isomerase activity by acting on folding-defective polypeptides at the endoplasmic reticulum membrane (PubMed:29932915). Acts as a negative regulator of platelet aggregation following secretion in the extracellular space (PubMed:30425049). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:27502484, PubMed:31304984). Regulates endoplasmic reticulum-mitochondria Ca(2+) flux (PubMed:27502484). {ECO:0000269|PubMed:11152479, ECO:0000269|PubMed:22228764, ECO:0000269|PubMed:27502484, ECO:0000269|PubMed:29932915, ECO:0000269|PubMed:30425049, ECO:0000269|PubMed:31304984, ECO:0000269|PubMed:37648867}. |
Q9H501 | ESF1 | S296 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H501 | ESF1 | S823 | ochoa | ESF1 homolog (ABT1-associated protein) | May constitute a novel regulatory system for basal transcription. Negatively regulates ABT1 (By similarity). {ECO:0000250}. |
Q9H7L9 | SUDS3 | S32 | ochoa | Sin3 histone deacetylase corepressor complex component SDS3 (45 kDa Sin3-associated polypeptide) (Suppressor of defective silencing 3 protein homolog) | Regulatory protein which represses transcription and augments histone deacetylase activity of HDAC1. May have a potential role in tumor suppressor pathways through regulation of apoptosis. May function in the assembly and/or enzymatic activity of the mSin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes. {ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:21239494}. |
Q9H7P9 | PLEKHG2 | S610 | ochoa | Pleckstrin homology domain-containing family G member 2 (PH domain-containing family G member 2) | May be a transforming oncogene with exchange activity for CDC42 (By similarity). May be a guanine-nucleotide exchange factor (GEF) for RAC1 and CDC42. Activated by the binding to subunits beta and gamma of the heterotrimeric guanine nucleotide-binding protein (G protein) (PubMed:18045877). Involved in the regulation of actin polymerization (PubMed:26573021). {ECO:0000250|UniProtKB:Q6KAU7, ECO:0000269|PubMed:18045877, ECO:0000269|PubMed:26573021}. |
Q9H8E8 | KAT14 | S428 | ochoa | Cysteine-rich protein 2-binding protein (CSRP2-binding protein) (ADA2A-containing complex subunit 2) (ATAC2) (CRP2-binding partner) (CRP2BP) (Lysine acetyltransferase 14) | Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. May function as a scaffold for the ATAC complex to promote ATAC complex stability. Has also weak histone acetyltransferase activity toward histone H4. Required for the normal progression through G1 and G2/M phases of the cell cycle. {ECO:0000269|PubMed:19103755}. |
Q9HAS0 | C17orf75 | S24 | ochoa | Protein Njmu-R1 | As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). May have a role in spermatogenesis. {ECO:0000269|PubMed:29426865}. |
Q9HAW4 | CLSPN | S225 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HCG8 | CWC22 | S39 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCK1 | ZDBF2 | T103 | ochoa | DBF4-type zinc finger-containing protein 2 | None |
Q9NS69 | TOMM22 | T43 | ochoa | Mitochondrial import receptor subunit TOM22 homolog (hTom22) (1C9-2) (Translocase of outer membrane 22 kDa subunit homolog) | Central receptor component of the translocase of the outer membrane of mitochondria (TOM complex) responsible for the recognition and translocation of cytosolically synthesized mitochondrial preproteins. Together with the peripheral receptor TOM20 functions as the transit peptide receptor and facilitates the movement of preproteins into the translocation pore (PubMed:10982837). Required for the translocation across the mitochondrial outer membrane of cytochrome P450 monooxygenases (By similarity). {ECO:0000250|UniProtKB:Q75Q41, ECO:0000269|PubMed:10982837}. |
Q9NSI6 | BRWD1 | S1289 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NUY8 | TBC1D23 | S568 | ochoa | TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) | Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}. |
Q9NVR5 | DNAAF2 | S787 | ochoa | Protein kintoun (Dynein assembly factor 2, axonemal) | Required for cytoplasmic pre-assembly of axonemal dyneins, thereby playing a central role in motility in cilia and flagella. Involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment. {ECO:0000255|HAMAP-Rule:MF_03069}. |
Q9NVU0 | POLR3E | S162 | ochoa | DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}. |
Q9NVU0 | POLR3E | S522 | ochoa | DNA-directed RNA polymerase III subunit RPC5 (RNA polymerase III subunit C5) (DNA-directed RNA polymerase III 80 kDa polypeptide) | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (PubMed:12391170, PubMed:20413673, PubMed:35637192). Specific peripheric component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci. Assembles with POLR3D/RPC4 forming a subcomplex that binds the Pol III core. Enables recruitment of Pol III at transcription initiation site and drives transcription initiation from both type 2 and type 3 DNA promoters. Required for efficient transcription termination and reinitiation (By similarity) (PubMed:12391170, PubMed:20413673, PubMed:35637192). Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway (PubMed:19609254, PubMed:19631370). {ECO:0000250|UniProtKB:P36121, ECO:0000269|PubMed:12391170, ECO:0000269|PubMed:19609254, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20413673, ECO:0000269|PubMed:35637192}. |
Q9NWH9 | SLTM | S139 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWH9 | SLTM | S144 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9NWQ8 | PAG1 | S282 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NWV8 | BABAM1 | T27 | ochoa | BRISC and BRCA1-A complex member 1 (Mediator of RAP80 interactions and targeting subunit of 40 kDa) (New component of the BRCA1-A complex) | Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:24075985, PubMed:26195665). In these 2 complexes, it is probably required to maintain the stability of BABAM2 and help the 'Lys-63'-linked deubiquitinase activity mediated by BRCC3/BRCC36 component. The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). {ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749}. |
Q9NZ63 | C9orf78 | S24 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9NZ63 | C9orf78 | S103 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9P1Y5 | CAMSAP3 | S877 | ochoa | Calmodulin-regulated spectrin-associated protein 3 (Protein Nezha) | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19041755, PubMed:23169647). Specifically recognizes growing microtubule minus-ends and autonomously decorates and stabilizes microtubule lattice formed by microtubule minus-end polymerization (PubMed:24486153). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153). In addition, it also reduces the velocity of microtubule polymerization (PubMed:24486153). Required for the biogenesis and the maintenance of zonula adherens by anchoring the minus-end of microtubules to zonula adherens and by recruiting the kinesin KIFC3 to those junctional sites (PubMed:19041755). Required for orienting the apical-to-basal polarity of microtubules in epithelial cells: acts by tethering non-centrosomal microtubules to the apical cortex, leading to their longitudinal orientation (PubMed:26715742, PubMed:27802168). Plays a key role in early embryos, which lack centrosomes: accumulates at the microtubule bridges that connect pairs of cells and enables the formation of a non-centrosomal microtubule-organizing center that directs intracellular transport in the early embryo (By similarity). Couples non-centrosomal microtubules with actin: interaction with MACF1 at the minus ends of non-centrosomal microtubules, tethers the microtubules to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). Plays a key role in the generation of non-centrosomal microtubules by accumulating in the pericentrosomal region and cooperating with KATNA1 to release non-centrosomal microtubules from the centrosome (PubMed:28386021). Through the microtubule cytoskeleton, also regulates the organization of cellular organelles including the Golgi and the early endosomes (PubMed:28089391). Through interaction with AKAP9, involved in translocation of Golgi vesicles in epithelial cells, where microtubules are mainly non-centrosomal (PubMed:28089391). Plays an important role in motile cilia function by facilitatating proper orientation of basal bodies and formation of central microtubule pairs in motile cilia (By similarity). {ECO:0000250|UniProtKB:Q80VC9, ECO:0000269|PubMed:19041755, ECO:0000269|PubMed:23169647, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:26715742, ECO:0000269|PubMed:27693509, ECO:0000269|PubMed:27802168, ECO:0000269|PubMed:28089391, ECO:0000269|PubMed:28386021}. |
Q9P291 | ARMCX1 | S44 | ochoa | Armadillo repeat-containing X-linked protein 1 (ARM protein lost in epithelial cancers on chromosome X 1) (Protein ALEX1) | Regulates mitochondrial transport during axon regeneration. Increases the proportion of motile mitochondria by recruiting stationary mitochondria into the motile pool. Enhances mitochondria movement and neurite growth in both adult axons and embryonic neurons. Promotes neuronal survival and axon regeneration after nerve injury. May link mitochondria to the Trak1-kinesin motor complex via its interaction with MIRO1. {ECO:0000250|UniProtKB:Q9CX83}. |
Q9P2G1 | ANKIB1 | S1053 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9UBW5 | BIN2 | S331 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UGN5 | PARP2 | S226 | ochoa | Poly [ADP-ribose] polymerase 2 (PARP-2) (hPARP-2) (EC 2.4.2.30) (ADP-ribosyltransferase diphtheria toxin-like 2) (ARTD2) (DNA ADP-ribosyltransferase PARP2) (EC 2.4.2.-) (NAD(+) ADP-ribosyltransferase 2) (ADPRT-2) (Poly[ADP-ribose] synthase 2) (pADPRT-2) (Protein poly-ADP-ribosyltransferase PARP2) (EC 2.4.2.-) | Poly-ADP-ribosyltransferase that mediates poly-ADP-ribosylation of proteins and plays a key role in DNA repair (PubMed:10364231, PubMed:25043379, PubMed:27471034, PubMed:30104678, PubMed:32028527, PubMed:32939087, PubMed:34108479, PubMed:34486521, PubMed:34874266). Mediates glutamate, aspartate or serine ADP-ribosylation of proteins: the ADP-D-ribosyl group of NAD(+) is transferred to the acceptor carboxyl group of target residues and further ADP-ribosyl groups are transferred to the 2'-position of the terminal adenosine moiety, building up a polymer with an average chain length of 20-30 units (PubMed:25043379, PubMed:30104678, PubMed:30321391). Serine ADP-ribosylation of proteins constitutes the primary form of ADP-ribosylation of proteins in response to DNA damage (PubMed:32939087). Mediates glutamate and aspartate ADP-ribosylation of target proteins in absence of HPF1 (PubMed:25043379). Following interaction with HPF1, catalyzes serine ADP-ribosylation of target proteins; HPF1 conferring serine specificity by completing the PARP2 active site (PubMed:28190768, PubMed:32028527, PubMed:34108479, PubMed:34486521, PubMed:34874266). PARP2 initiates the repair of double-strand DNA breaks: recognizes and binds DNA breaks within chromatin and recruits HPF1, licensing serine ADP-ribosylation of target proteins, such as histones, thereby promoting decompaction of chromatin and the recruitment of repair factors leading to the reparation of DNA strand breaks (PubMed:10364231, PubMed:32939087, PubMed:34108479). HPF1 initiates serine ADP-ribosylation but restricts the polymerase activity of PARP2 in order to limit the length of poly-ADP-ribose chains (PubMed:34732825, PubMed:34795260). Specifically mediates formation of branched poly-ADP-ribosylation (PubMed:30104678). Branched poly-ADP-ribose chains are specifically recognized by some factors, such as APLF (PubMed:30104678). In addition to proteins, also able to ADP-ribosylate DNA: preferentially acts on 5'-terminal phosphates at DNA strand breaks termini in nicked duplex (PubMed:27471034, PubMed:29361132). {ECO:0000269|PubMed:10364231, ECO:0000269|PubMed:25043379, ECO:0000269|PubMed:27471034, ECO:0000269|PubMed:28190768, ECO:0000269|PubMed:29361132, ECO:0000269|PubMed:30104678, ECO:0000269|PubMed:30321391, ECO:0000269|PubMed:32028527, ECO:0000269|PubMed:32939087, ECO:0000269|PubMed:34108479, ECO:0000269|PubMed:34486521, ECO:0000269|PubMed:34732825, ECO:0000269|PubMed:34795260, ECO:0000269|PubMed:34874266}. |
Q9UKA8 | RCAN3 | T211 | ochoa | Calcipressin-3 (Down syndrome candidate region 1-like protein 2) (Myocyte-enriched calcineurin-interacting protein 3) (MCIP3) (Regulator of calcineurin 3) | Inhibits calcineurin-dependent transcriptional responses by binding to the catalytic domain of calcineurin A. Could play a role during central nervous system development (By similarity). {ECO:0000250}. |
Q9UKV3 | ACIN1 | S295 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKV3 | ACIN1 | S1161 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9UKW4 | VAV3 | S213 | ochoa | Guanine nucleotide exchange factor VAV3 (VAV-3) | Exchange factor for GTP-binding proteins RhoA, RhoG and, to a lesser extent, Rac1. Binds physically to the nucleotide-free states of those GTPases. Plays an important role in angiogenesis. Its recruitment by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly (By similarity). May be important for integrin-mediated signaling, at least in some cell types. In osteoclasts, along with SYK tyrosine kinase, required for signaling through integrin alpha-v/beta-1 (ITAGV-ITGB1), a crucial event for osteoclast proper cytoskeleton organization and function. This signaling pathway involves RAC1, but not RHO, activation. Necessary for proper wound healing. In the course of wound healing, required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Responsible for integrin beta-2 (ITGB2)-mediated macrophage adhesion and, to a lesser extent, contributes to beta-3 (ITGB3)-mediated adhesion. Does not affect integrin beta-1 (ITGB1)-mediated adhesion (By similarity). {ECO:0000250}. |
Q9UKY1 | ZHX1 | S640 | ochoa | Zinc fingers and homeoboxes protein 1 | Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}. |
Q9ULR0 | ISY1 | T218 | ochoa | Pre-mRNA-splicing factor ISY1 homolog | Component of the spliceosome C complex required for the selective processing of microRNAs during embryonic stem cell differentiation (By similarity). Required for the biogenesis of all miRNAs from the pri-miR-17-92 primary transcript except miR-92a (By similarity). Only required for the biogenesis of miR-290 and miR-96 from the pri-miR-290-295 and pri-miR-96-183 primary transcripts, respectively (By similarity). Required during the transition of embryonic stem cells (ESCs) from the naive to primed state (By similarity). By enhancing miRNA biogenesis, promotes exit of ESCs from the naive state to an intermediate state of poised pluripotency, which precedes transition to the primed state (By similarity). Involved in pre-mRNA splicing as component of the spliceosome. {ECO:0000250|UniProtKB:Q69ZQ2, ECO:0000269|PubMed:29301961, ECO:0000305|PubMed:11991638, ECO:0000305|PubMed:25599396}. |
Q9UNX4 | WDR3 | S726 | ochoa | WD repeat-containing protein 3 | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:34516797}. |
Q9UPN9 | TRIM33 | S1105 | ochoa | E3 ubiquitin-protein ligase TRIM33 (EC 2.3.2.27) (Ectodermin homolog) (RET-fused gene 7 protein) (Protein Rfg7) (RING-type E3 ubiquitin transferase TRIM33) (Transcription intermediary factor 1-gamma) (TIF1-gamma) (Tripartite motif-containing protein 33) | Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor (By similarity). Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade). {ECO:0000250, ECO:0000269|PubMed:10022127, ECO:0000269|PubMed:15820681, ECO:0000269|PubMed:16751102, ECO:0000269|PubMed:19135894}. |
Q9UPY3 | DICER1 | S1868 | ochoa | Endoribonuclease Dicer (EC 3.1.26.3) (Helicase with RNase motif) (Helicase MOI) | Double-stranded RNA (dsRNA) endoribonuclease playing a central role in short dsRNA-mediated post-transcriptional gene silencing. Cleaves naturally occurring long dsRNAs and short hairpin pre-microRNAs (miRNA) into fragments of twenty-one to twenty-three nucleotides with 3' overhang of two nucleotides, producing respectively short interfering RNAs (siRNA) and mature microRNAs. SiRNAs and miRNAs serve as guide to direct the RNA-induced silencing complex (RISC) to complementary RNAs to degrade them or prevent their translation. Gene silencing mediated by siRNAs, also called RNA interference, controls the elimination of transcripts from mobile and repetitive DNA elements of the genome but also the degradation of exogenous RNA of viral origin for instance. The miRNA pathway on the other side is a mean to specifically regulate the expression of target genes. {ECO:0000269|PubMed:15242644, ECO:0000269|PubMed:15973356, ECO:0000269|PubMed:16142218, ECO:0000269|PubMed:16271387, ECO:0000269|PubMed:16289642, ECO:0000269|PubMed:16357216, ECO:0000269|PubMed:16424907, ECO:0000269|PubMed:17452327, ECO:0000269|PubMed:18178619}. |
Q9Y2W1 | THRAP3 | T806 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W1 | THRAP3 | S877 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y2W2 | WBP11 | S353 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y3S2 | ZNF330 | T293 | ochoa | Zinc finger protein 330 (Nucleolar autoantigen 36) (Nucleolar cysteine-rich protein) | None |
Q9Y3S2 | ZNF330 | S295 | ochoa | Zinc finger protein 330 (Nucleolar autoantigen 36) (Nucleolar cysteine-rich protein) | None |
Q9Y4W2 | LAS1L | S612 | ochoa | Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) | Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}. |
Q9Y6J0 | CABIN1 | S1442 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
Q9Y6X4 | FAM169A | S398 | ochoa | Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) | None |
P35579 | MYH9 | T1745 | Sugiyama | Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}. |
P21127 | CDK11B | S277 | Sugiyama | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
Q9UQ88 | CDK11A | S265 | Sugiyama | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q9Y2B0 | CNPY2 | S153 | Sugiyama | Protein canopy homolog 2 (MIR-interacting saposin-like protein) (Putative secreted protein Zsig9) (Transmembrane protein 4) | Positive regulator of neurite outgrowth by stabilizing myosin regulatory light chain (MRLC). It prevents MIR-mediated MRLC ubiquitination and its subsequent proteasomal degradation. |
Q13428 | TCOF1 | T102 | Sugiyama | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
O95218 | ZRANB2 | Y167 | Sugiyama | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
P12956 | XRCC6 | Y30 | Sugiyama | X-ray repair cross-complementing protein 6 (EC 3.6.4.-) (EC 4.2.99.-) (5'-deoxyribose-5-phosphate lyase Ku70) (5'-dRP lyase Ku70) (70 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 1) (ATP-dependent DNA helicase II 70 kDa subunit) (CTC box-binding factor 75 kDa subunit) (CTC75) (CTCBF) (DNA repair protein XRCC6) (Lupus Ku autoantigen protein p70) (Ku70) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 6) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:11493912, PubMed:12145306, PubMed:20493174, PubMed:2466842, PubMed:7957065, PubMed:8621488, PubMed:9742108). Probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). 5'-dRP lyase activity allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Negatively regulates apoptosis by interacting with BAX and sequestering it from the mitochondria (PubMed:15023334). Might have deubiquitination activity, acting on BAX (PubMed:18362350). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:15023334, ECO:0000269|PubMed:18362350, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:20493174, ECO:0000269|PubMed:2466842, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488, ECO:0000269|PubMed:9742108}. |
P08575 | PTPRC | S1001 | SIGNOR | Receptor-type tyrosine-protein phosphatase C (EC 3.1.3.48) (Leukocyte common antigen) (L-CA) (T200) (CD antigen CD45) | Protein tyrosine-protein phosphatase required for T-cell activation through the antigen receptor (PubMed:35767951). Acts as a positive regulator of T-cell coactivation upon binding to DPP4. The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one. Upon T-cell activation, recruits and dephosphorylates SKAP1 and FYN. Dephosphorylates LYN, and thereby modulates LYN activity (By similarity). Interacts with CLEC10A at antigen presenting cell-T cell contact; CLEC10A on immature dendritic cells recognizes Tn antigen-carrying PTPRC/CD45 receptor on effector T cells and modulates T cell activation threshold to limit autoreactivity. {ECO:0000250, ECO:0000269|PubMed:11909961, ECO:0000269|PubMed:16998493, ECO:0000269|PubMed:2845400, ECO:0000269|PubMed:35767951}.; FUNCTION: (Microbial infection) Acts as a receptor for human cytomegalovirus protein UL11 and mediates binding of UL11 to T-cells, leading to reduced induction of tyrosine phosphorylation of multiple signaling proteins upon T-cell receptor stimulation and impaired T-cell proliferation. {ECO:0000269|PubMed:22174689}. |
P23443 | RPS6KB1 | S75 | Sugiyama | Ribosomal protein S6 kinase beta-1 (S6K-beta-1) (S6K1) (EC 2.7.11.1) (70 kDa ribosomal protein S6 kinase 1) (P70S6K1) (p70-S6K 1) (Ribosomal protein S6 kinase I) (Serine/threonine-protein kinase 14A) (p70 ribosomal S6 kinase alpha) (p70 S6 kinase alpha) (p70 S6K-alpha) (p70 S6KA) | Serine/threonine-protein kinase that acts downstream of mTOR signaling in response to growth factors and nutrients to promote cell proliferation, cell growth and cell cycle progression (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Regulates protein synthesis through phosphorylation of EIF4B, RPS6 and EEF2K, and contributes to cell survival by repressing the pro-apoptotic function of BAD (PubMed:11500364, PubMed:12801526, PubMed:14673156, PubMed:15071500, PubMed:15341740, PubMed:16286006, PubMed:17052453, PubMed:17053147, PubMed:17936702, PubMed:18952604, PubMed:19085255, PubMed:19720745, PubMed:19935711, PubMed:19995915, PubMed:22017876, PubMed:23429703, PubMed:28178239). Under conditions of nutrient depletion, the inactive form associates with the EIF3 translation initiation complex (PubMed:16286006). Upon mitogenic stimulation, phosphorylation by the mechanistic target of rapamycin complex 1 (mTORC1) leads to dissociation from the EIF3 complex and activation (PubMed:16286006). The active form then phosphorylates and activates several substrates in the pre-initiation complex, including the EIF2B complex and the cap-binding complex component EIF4B (PubMed:16286006). Also controls translation initiation by phosphorylating a negative regulator of EIF4A, PDCD4, targeting it for ubiquitination and subsequent proteolysis (PubMed:17053147). Promotes initiation of the pioneer round of protein synthesis by phosphorylating POLDIP3/SKAR (PubMed:15341740). In response to IGF1, activates translation elongation by phosphorylating EEF2 kinase (EEF2K), which leads to its inhibition and thus activation of EEF2 (PubMed:11500364). Also plays a role in feedback regulation of mTORC2 by mTORC1 by phosphorylating MAPKAP1/SIN1, MTOR and RICTOR, resulting in the inhibition of mTORC2 and AKT1 signaling (PubMed:15899889, PubMed:19720745, PubMed:19935711, PubMed:19995915). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic protein BAD and suppressing its pro-apoptotic function (By similarity). Phosphorylates mitochondrial URI1 leading to dissociation of a URI1-PPP1CC complex (PubMed:17936702). The free mitochondrial PPP1CC can then dephosphorylate RPS6KB1 at Thr-412, which is proposed to be a negative feedback mechanism for the RPS6KB1 anti-apoptotic function (PubMed:17936702). Mediates TNF-alpha-induced insulin resistance by phosphorylating IRS1 at multiple serine residues, resulting in accelerated degradation of IRS1 (PubMed:18952604). In cells lacking functional TSC1-2 complex, constitutively phosphorylates and inhibits GSK3B (PubMed:17052453). May be involved in cytoskeletal rearrangement through binding to neurabin (By similarity). Phosphorylates and activates the pyrimidine biosynthesis enzyme CAD, downstream of MTOR (PubMed:23429703). Following activation by mTORC1, phosphorylates EPRS and thereby plays a key role in fatty acid uptake by adipocytes and also most probably in interferon-gamma-induced translation inhibition (PubMed:28178239). {ECO:0000250|UniProtKB:P67999, ECO:0000250|UniProtKB:Q8BSK8, ECO:0000269|PubMed:11500364, ECO:0000269|PubMed:12801526, ECO:0000269|PubMed:14673156, ECO:0000269|PubMed:15071500, ECO:0000269|PubMed:15341740, ECO:0000269|PubMed:15899889, ECO:0000269|PubMed:16286006, ECO:0000269|PubMed:17052453, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:17936702, ECO:0000269|PubMed:18952604, ECO:0000269|PubMed:19085255, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:23429703, ECO:0000269|PubMed:28178239}. |
Q9H4A5 | GOLPH3L | S27 | Sugiyama | Golgi phosphoprotein 3-like (GPP34-related protein) | Phosphatidylinositol-4-phosphate-binding protein that may antagonize the action of GOLPH3 which is required for the process of vesicle budding at the Golgi and anterograde transport to the plasma membrane. {ECO:0000269|PubMed:23345592}. |
Q96EA4 | SPDL1 | Y223 | Sugiyama | Protein Spindly (hSpindly) (Arsenite-related gene 1 protein) (Coiled-coil domain-containing protein 99) (Rhabdomyosarcoma antigen MU-RMS-40.4A) (Spindle apparatus coiled-coil domain-containing protein 1) | Required for the localization of dynein and dynactin to the mitotic kintochore. Dynein is believed to control the initial lateral interaction between the kinetochore and spindle microtubules and to facilitate the subsequent formation of end-on kinetochore-microtubule attachments mediated by the NDC80 complex. Also required for correct spindle orientation. Does not appear to be required for the removal of spindle assembly checkpoint (SAC) proteins from the kinetochore upon bipolar spindle attachment (PubMed:17576797, PubMed:19468067). Acts as an adapter protein linking the dynein motor complex to various cargos and converts dynein from a non-processive to a highly processive motor in the presence of dynactin. Facilitates the interaction between dynein and dynactin and activates dynein processivity (the ability to move along a microtubule for a long distance without falling off the track) (PubMed:25035494). Plays a role in cell migration (PubMed:30258100). {ECO:0000255|HAMAP-Rule:MF_03041, ECO:0000269|PubMed:17576797, ECO:0000269|PubMed:19468067, ECO:0000269|PubMed:25035494, ECO:0000269|PubMed:30258100}. |
Q7KZ85 | SUPT6H | S78 | Sugiyama | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q9NY27 | PPP4R2 | T314 | Sugiyama | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q14C86 | GAPVD1 | S742 | Sugiyama | GTPase-activating protein and VPS9 domain-containing protein 1 (GAPex-5) (Rab5-activating protein 6) | Acts both as a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF), and participates in various processes such as endocytosis, insulin receptor internalization or LC2A4/GLUT4 trafficking. Acts as a GEF for the Ras-related protein RAB31 by exchanging bound GDP for free GTP, leading to regulate LC2A4/GLUT4 trafficking. In the absence of insulin, it maintains RAB31 in an active state and promotes a futile cycle between LC2A4/GLUT4 storage vesicles and early endosomes, retaining LC2A4/GLUT4 inside the cells. Upon insulin stimulation, it is translocated to the plasma membrane, releasing LC2A4/GLUT4 from intracellular storage vesicles. Also involved in EGFR trafficking and degradation, possibly by promoting EGFR ubiquitination and subsequent degradation by the proteasome. Has GEF activity for Rab5 and GAP activity for Ras. {ECO:0000269|PubMed:16410077}. |
Q92851 | CASP10 | S216 | Sugiyama | Caspase-10 (CASP-10) (EC 3.4.22.63) (Apoptotic protease Mch-4) (FAS-associated death domain protein interleukin-1B-converting enzyme 2) (FLICE2) (ICE-like apoptotic protease 4) [Cleaved into: Caspase-10 subunit p23/17; Caspase-10 subunit p12] | Involved in the activation cascade of caspases responsible for apoptosis execution. Recruited to both Fas- and TNFR-1 receptors in a FADD dependent manner. May participate in the granzyme B apoptotic pathways. Cleaves and activates effector caspases CASP3, CASP4, CASP6, CASP7, CASP8 and CASP9. Hydrolyzes the small- molecule substrates, Tyr-Val-Ala-Asp-|-AMC and Asp-Glu-Val-Asp-|-AMC. {ECO:0000269|PubMed:11717445, ECO:0000269|PubMed:16916640}.; FUNCTION: Isoform 7 can enhance NF-kappaB activity but promotes only slight apoptosis. {ECO:0000269|PubMed:17822854}.; FUNCTION: Isoform C is proteolytically inactive. {ECO:0000269|PubMed:11717445}. |
A0A0C4DFX4 | None | S2194 | ochoa | Snf2 related CREBBP activator protein | None |
O14647 | CHD2 | Y1068 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O15234 | CASC3 | S117 | ochoa | Protein CASC3 (Cancer susceptibility candidate gene 3 protein) (Metastatic lymph node gene 51 protein) (MLN 51) (Protein barentsz) (Btz) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:28502770, PubMed:29301961). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Stimulates the ATPase and RNA-helicase activities of EIF4A3. Plays a role in the stress response by participating in cytoplasmic stress granules assembly and by favoring cell recovery following stress. Component of the dendritic ribonucleoprotein particles (RNPs) in hippocampal neurons. May play a role in mRNA transport. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Binds poly(G) and poly(U) RNA homomer. {ECO:0000269|PubMed:17375189, ECO:0000269|PubMed:17652158, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961}. |
O15417 | TNRC18 | S2128 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O43719 | HTATSF1 | S714 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O75410 | TACC1 | S147 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O95210 | STBD1 | S211 | ochoa|psp | Starch-binding domain-containing protein 1 (Genethonin-1) (Glycophagy cargo receptor STBD1) | Acts as a cargo receptor for glycogen. Delivers its cargo to an autophagic pathway called glycophagy, resulting in the transport of glycogen to lysosomes. {ECO:0000269|PubMed:20810658, ECO:0000269|PubMed:21893048, ECO:0000269|PubMed:24837458}. |
P04004 | VTN | S130 | ochoa | Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] | Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity. |
P04626 | ERBB2 | S1078 | ochoa | Receptor tyrosine-protein kinase erbB-2 (EC 2.7.10.1) (Metastatic lymph node gene 19 protein) (MLN 19) (Proto-oncogene Neu) (Proto-oncogene c-ErbB-2) (Tyrosine kinase-type cell surface receptor HER2) (p185erbB2) (CD antigen CD340) | Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization. {ECO:0000305}.; FUNCTION: In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth. {ECO:0000269|PubMed:10358079, ECO:0000269|PubMed:15380516, ECO:0000269|PubMed:21555369}. |
P06748 | NPM1 | S139 | ochoa | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07951 | TPM2 | S63 | ochoa | Tropomyosin beta chain (Beta-tropomyosin) (Tropomyosin-2) | Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. The non-muscle isoform may have a role in agonist-mediated receptor internalization. {ECO:0000250|UniProtKB:P58774, ECO:0000250|UniProtKB:P58775}. |
P08172 | CHRM2 | S288 | psp | Muscarinic acetylcholine receptor M2 | The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is adenylate cyclase inhibition. Signaling promotes phospholipase C activity, leading to the release of inositol trisphosphate (IP3); this then triggers calcium ion release into the cytosol. {ECO:0000269|PubMed:24256733, ECO:0000269|PubMed:3443095}. |
P10645 | CHGA | S113 | ochoa|psp | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P11277 | SPTB | S2105 | ochoa | Spectrin beta chain, erythrocytic (Beta-I spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P20042 | EIF2S2 | S105 | ochoa | Eukaryotic translation initiation factor 2 subunit 2 (Eukaryotic translation initiation factor 2 subunit beta) (eIF2-beta) | Component of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA (PubMed:31836389). This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF2B (By similarity). {ECO:0000250|UniProtKB:P05198, ECO:0000269|PubMed:31836389}. |
P26038 | MSN | S407 | ochoa | Moesin (Membrane-organizing extension spike protein) | Ezrin-radixin-moesin (ERM) family protein that connects the actin cytoskeleton to the plasma membrane and thereby regulates the structure and function of specific domains of the cell cortex. Tethers actin filaments by oscillating between a resting and an activated state providing transient interactions between moesin and the actin cytoskeleton (PubMed:10212266). Once phosphorylated on its C-terminal threonine, moesin is activated leading to interaction with F-actin and cytoskeletal rearrangement (PubMed:10212266). These rearrangements regulate many cellular processes, including cell shape determination, membrane transport, and signal transduction (PubMed:12387735, PubMed:15039356). The role of moesin is particularly important in immunity acting on both T and B-cells homeostasis and self-tolerance, regulating lymphocyte egress from lymphoid organs (PubMed:9298994, PubMed:9616160). Modulates phagolysosomal biogenesis in macrophages (By similarity). Also participates in immunologic synapse formation (PubMed:27405666). {ECO:0000250|UniProtKB:P26041, ECO:0000269|PubMed:10212266, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:15039356, ECO:0000269|PubMed:27405666, ECO:0000269|PubMed:9298994, ECO:0000269|PubMed:9616160}. |
P30566 | ADSL | S289 | ochoa | Adenylosuccinate lyase (ADSL) (ASL) (EC 4.3.2.2) (Adenylosuccinase) (ASase) | Catalyzes two non-sequential steps in de novo AMP synthesis: converts (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate. {ECO:0000269|PubMed:10888601}. |
P31749 | AKT1 | S126 | ochoa | RAC-alpha serine/threonine-protein kinase (EC 2.7.11.1) (Protein kinase B) (PKB) (Protein kinase B alpha) (PKB alpha) (Proto-oncogene c-Akt) (RAC-PK-alpha) | AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis (PubMed:11882383, PubMed:15526160, PubMed:15861136, PubMed:21432781, PubMed:21620960, PubMed:31204173). This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960, PubMed:29343641, PubMed:31204173). Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported (PubMed:11882383, PubMed:15526160, PubMed:21432781, PubMed:21620960). AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the SLC2A4/GLUT4 glucose transporter to the cell surface (By similarity). Phosphorylation of PTPN1 at 'Ser-50' negatively modulates its phosphatase activity preventing dephosphorylation of the insulin receptor and the attenuation of insulin signaling (By similarity). Phosphorylation of TBC1D4 triggers the binding of this effector to inhibitory 14-3-3 proteins, which is required for insulin-stimulated glucose transport (PubMed:11994271). AKT also regulates the storage of glucose in the form of glycogen by phosphorylating GSK3A at 'Ser-21' and GSK3B at 'Ser-9', resulting in inhibition of its kinase activity (By similarity). Phosphorylation of GSK3 isoforms by AKT is also thought to be one mechanism by which cell proliferation is driven (By similarity). AKT also regulates cell survival via the phosphorylation of MAP3K5 (apoptosis signal-related kinase) (PubMed:11154276). Phosphorylation of 'Ser-83' decreases MAP3K5 kinase activity stimulated by oxidative stress and thereby prevents apoptosis (PubMed:11154276). AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 at 'Ser-939' and 'Thr-1462', thereby activating the mTORC1 signaling pathway, and leading to both phosphorylation of 4E-BP1 and in activation of RPS6KB1 (PubMed:12150915, PubMed:12172553). Also regulates the mTORC1 signaling pathway by catalyzing phosphorylation of CASTOR1 and DEPDC5 (PubMed:31548394, PubMed:33594058). AKT plays a role as key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Part of a positive feedback loop of mTORC2 signaling by mediating phosphorylation of MAPKAP1/SIN1, promoting mTORC2 activation (By similarity). AKT is involved in the phosphorylation of members of the FOXO factors (Forkhead family of transcription factors), leading to binding of 14-3-3 proteins and cytoplasmic localization (PubMed:10358075). In particular, FOXO1 is phosphorylated at 'Thr-24', 'Ser-256' and 'Ser-319' (PubMed:10358075). FOXO3 and FOXO4 are phosphorylated on equivalent sites (PubMed:10358075). AKT has an important role in the regulation of NF-kappa-B-dependent gene transcription and positively regulates the activity of CREB1 (cyclic AMP (cAMP)-response element binding protein) (PubMed:9829964). The phosphorylation of CREB1 induces the binding of accessory proteins that are necessary for the transcription of pro-survival genes such as BCL2 and MCL1 (PubMed:9829964). AKT phosphorylates 'Ser-454' on ATP citrate lyase (ACLY), thereby potentially regulating ACLY activity and fatty acid synthesis (By similarity). Activates the 3B isoform of cyclic nucleotide phosphodiesterase (PDE3B) via phosphorylation of 'Ser-273', resulting in reduced cyclic AMP levels and inhibition of lipolysis (By similarity). Phosphorylates PIKFYVE on 'Ser-318', which results in increased PI(3)P-5 activity (By similarity). The Rho GTPase-activating protein DLC1 is another substrate and its phosphorylation is implicated in the regulation cell proliferation and cell growth (By similarity). Signals downstream of phosphatidylinositol 3-kinase (PI(3)K) to mediate the effects of various growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin and insulin-like growth factor 1 (IGF1) (PubMed:12176338, PubMed:12964941). AKT mediates the antiapoptotic effects of IGF1 (By similarity). Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly (PubMed:19934221). May be involved in the regulation of the placental development (By similarity). Phosphorylates STK4/MST1 at 'Thr-120' and 'Thr-387' leading to inhibition of its: kinase activity, nuclear translocation, autophosphorylation and ability to phosphorylate FOXO3 (PubMed:17726016). Phosphorylates STK3/MST2 at 'Thr-117' and 'Thr-384' leading to inhibition of its: cleavage, kinase activity, autophosphorylation at Thr-180, binding to RASSF1 and nuclear translocation (PubMed:20086174). Phosphorylates SRPK2 and enhances its kinase activity towards SRSF2 and ACIN1 and promotes its nuclear translocation (PubMed:19592491). Phosphorylates RAF1 at 'Ser-259' and negatively regulates its activity (PubMed:10576742). Phosphorylation of BAD stimulates its pro-apoptotic activity (PubMed:10926925). Phosphorylates KAT6A at 'Thr-369' and this phosphorylation inhibits the interaction of KAT6A with PML and negatively regulates its acetylation activity towards p53/TP53 (PubMed:23431171). Phosphorylates palladin (PALLD), modulating cytoskeletal organization and cell motility (PubMed:20471940). Phosphorylates prohibitin (PHB), playing an important role in cell metabolism and proliferation (PubMed:18507042). Phosphorylates CDKN1A, for which phosphorylation at 'Thr-145' induces its release from CDK2 and cytoplasmic relocalization (PubMed:16982699). These recent findings indicate that the AKT1 isoform has a more specific role in cell motility and proliferation (PubMed:16139227). Phosphorylates CLK2 thereby controlling cell survival to ionizing radiation (PubMed:20682768). Phosphorylates PCK1 at 'Ser-90', reducing the binding affinity of PCK1 to oxaloacetate and changing PCK1 into an atypical protein kinase activity using GTP as donor (PubMed:32322062). Also acts as an activator of TMEM175 potassium channel activity in response to growth factors: forms the lysoK(GF) complex together with TMEM175 and acts by promoting TMEM175 channel activation, independently of its protein kinase activity (PubMed:32228865). Acts as a regulator of mitochondrial calcium uptake by mediating phosphorylation of MICU1 in the mitochondrial intermembrane space, impairing MICU1 maturation (PubMed:30504268). Acts as an inhibitor of tRNA methylation by mediating phosphorylation of the N-terminus of METTL1, thereby inhibiting METTL1 methyltransferase activity (PubMed:15861136). In response to LPAR1 receptor pathway activation, phosphorylates Rabin8/RAB3IP which alters its activity and phosphorylates WDR44 which induces WDR44 binding to Rab11, thereby switching Rab11 vesicular function from preciliary trafficking to endocytic recycling (PubMed:31204173). {ECO:0000250|UniProtKB:P31750, ECO:0000250|UniProtKB:P47196, ECO:0000269|PubMed:10358075, ECO:0000269|PubMed:10576742, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11154276, ECO:0000269|PubMed:11994271, ECO:0000269|PubMed:12150915, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12176338, ECO:0000269|PubMed:12964941, ECO:0000269|PubMed:15861136, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:16982699, ECO:0000269|PubMed:17726016, ECO:0000269|PubMed:18507042, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:19934221, ECO:0000269|PubMed:20086174, ECO:0000269|PubMed:20471940, ECO:0000269|PubMed:20682768, ECO:0000269|PubMed:23431171, ECO:0000269|PubMed:30504268, ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:32228865, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:33594058, ECO:0000269|PubMed:9829964, ECO:0000303|PubMed:11882383, ECO:0000303|PubMed:15526160, ECO:0000303|PubMed:21432781, ECO:0000303|PubMed:21620960}. |
P42858 | HTT | S459 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P42858 | HTT | S2651 | ochoa | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P46821 | MAP1B | S343 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P50552 | VASP | S305 | ochoa | Vasodilator-stimulated phosphoprotein (VASP) | Ena/VASP proteins are actin-associated proteins involved in a range of processes dependent on cytoskeleton remodeling and cell polarity such as axon guidance, lamellipodial and filopodial dynamics, platelet activation and cell migration. VASP promotes actin filament elongation. It protects the barbed end of growing actin filaments against capping and increases the rate of actin polymerization in the presence of capping protein. VASP stimulates actin filament elongation by promoting the transfer of profilin-bound actin monomers onto the barbed end of growing actin filaments. Plays a role in actin-based mobility of Listeria monocytogenes in host cells. Regulates actin dynamics in platelets and plays an important role in regulating platelet aggregation. {ECO:0000269|PubMed:10087267, ECO:0000269|PubMed:10438535, ECO:0000269|PubMed:15939738, ECO:0000269|PubMed:17082196, ECO:0000269|PubMed:18559661}. |
P52746 | ZNF142 | S960 | ochoa | Zinc finger protein 142 | May be involved in transcriptional regulation. {ECO:0000305}. |
P54296 | MYOM2 | S91 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P60484 | PTEN | S362 | psp | Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (EC 3.1.3.16) (EC 3.1.3.48) (EC 3.1.3.67) (Inositol polyphosphate 3-phosphatase) (EC 3.1.3.-) (Mutated in multiple advanced cancers 1) (Phosphatase and tensin homolog) | Dual-specificity protein phosphatase, dephosphorylating tyrosine-, serine- and threonine-phosphorylated proteins (PubMed:9187108, PubMed:9256433, PubMed:9616126). Also functions as a lipid phosphatase, removing the phosphate in the D3 position of the inositol ring of PtdIns(3,4,5)P3/phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4)P2/phosphatidylinositol 3,4-diphosphate and PtdIns3P/phosphatidylinositol 3-phosphate with a preference for PtdIns(3,4,5)P3 (PubMed:16824732, PubMed:26504226, PubMed:9593664, PubMed:9811831). Furthermore, this enzyme can also act as a cytosolic inositol 3-phosphatase acting on Ins(1,3,4,5,6)P5/inositol 1,3,4,5,6 pentakisphosphate and possibly Ins(1,3,4,5)P4/1D-myo-inositol 1,3,4,5-tetrakisphosphate (PubMed:11418101, PubMed:15979280). Antagonizes the PI3K-AKT/PKB signaling pathway by dephosphorylating phosphoinositides and thereby modulating cell cycle progression and cell survival (PubMed:31492966, PubMed:37279284). The unphosphorylated form cooperates with MAGI2 to suppress AKT1 activation (PubMed:11707428). In motile cells, suppresses the formation of lateral pseudopods and thereby promotes cell polarization and directed movement (PubMed:22279049). Dephosphorylates tyrosine-phosphorylated focal adhesion kinase and inhibits cell migration and integrin-mediated cell spreading and focal adhesion formation (PubMed:22279049). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces PTEN phosphorylation which changes its binding preference from the p85 regulatory subunit of the PI3K kinase complex to DLC1 and results in translocation of the PTEN-DLC1 complex to the posterior of migrating cells to promote RHOA activation (PubMed:26166433). Meanwhile, TNS3 switches binding preference from DLC1 to p85 and the TNS3-p85 complex translocates to the leading edge of migrating cells to activate RAC1 activation (PubMed:26166433). Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Involved in the regulation of synaptic function in excitatory hippocampal synapses. Recruited to the postsynaptic membrane upon NMDA receptor activation, is required for the modulation of synaptic activity during plasticity. Enhancement of lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses, activity required for NMDA receptor-dependent long-term depression (LTD) (By similarity). May be a negative regulator of insulin signaling and glucose metabolism in adipose tissue. The nuclear monoubiquitinated form possesses greater apoptotic potential, whereas the cytoplasmic nonubiquitinated form induces less tumor suppressive ability (PubMed:10468583, PubMed:18716620). {ECO:0000250|UniProtKB:O08586, ECO:0000250|UniProtKB:O54857, ECO:0000269|PubMed:10468583, ECO:0000269|PubMed:11418101, ECO:0000269|PubMed:11707428, ECO:0000269|PubMed:15979280, ECO:0000269|PubMed:16824732, ECO:0000269|PubMed:18716620, ECO:0000269|PubMed:22279049, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26504226, ECO:0000269|PubMed:31492966, ECO:0000269|PubMed:37279284, ECO:0000269|PubMed:9187108, ECO:0000269|PubMed:9256433, ECO:0000269|PubMed:9593664, ECO:0000269|PubMed:9616126, ECO:0000269|PubMed:9811831}.; FUNCTION: [Isoform alpha]: Functional kinase, like isoform 1 it antagonizes the PI3K-AKT/PKB signaling pathway. Plays a role in mitochondrial energetic metabolism by promoting COX activity and ATP production, via collaboration with isoform 1 in increasing protein levels of PINK1. {ECO:0000269|PubMed:23744781}. |
P78559 | MAP1A | S121 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P84157 | MXRA7 | S127 | ochoa | Matrix-remodeling-associated protein 7 | None |
P84157 | MXRA7 | Y143 | ochoa | Matrix-remodeling-associated protein 7 | None |
Q01082 | SPTBN1 | S2303 | ochoa | Spectrin beta chain, non-erythrocytic 1 (Beta-II spectrin) (Fodrin beta chain) (Spectrin, non-erythroid beta chain 1) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. Plays a critical role in central nervous system development and function. {ECO:0000269|PubMed:34211179}. |
Q01968 | OCRL | S716 | ochoa | Inositol polyphosphate 5-phosphatase OCRL (EC 3.1.3.36) (EC 3.1.3.56) (Inositol polyphosphate 5-phosphatase OCRL-1) (OCRL-1) (Lowe oculocerebrorenal syndrome protein) (Phosphatidylinositol 3,4,5-triphosphate 5-phosphatase) (EC 3.1.3.86) | Catalyzes the hydrolysis of the 5-position phosphate of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol-3,4,5-bisphosphate (PtdIns(3,4,5)P3), with the greatest catalytic activity towards PtdIns(4,5)P2 (PubMed:10764818, PubMed:15474001, PubMed:7761412, PubMed:9430698). Able also to hydrolyze the 5-phosphate of inositol 1,4,5-trisphosphate and of inositol 1,3,4,5-tetrakisphosphate (PubMed:25869668, PubMed:7761412). Regulates traffic in the endosomal pathway by regulating the specific pool of phosphatidylinositol 4,5-bisphosphate that is associated with endosomes (PubMed:21971085). Involved in primary cilia assembly (PubMed:22228094, PubMed:22543976). Acts as a regulator of phagocytosis, hydrolyzing PtdIns(4,5)P2 to promote phagosome closure, through attenuation of PI3K signaling (PubMed:22072788). {ECO:0000269|PubMed:10764818, ECO:0000269|PubMed:15474001, ECO:0000269|PubMed:21971085, ECO:0000269|PubMed:22072788, ECO:0000269|PubMed:22228094, ECO:0000269|PubMed:22543976, ECO:0000269|PubMed:25869668, ECO:0000269|PubMed:7761412, ECO:0000269|PubMed:9430698}. |
Q02952 | AKAP12 | S392 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02952 | AKAP12 | S917 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q05682 | CALD1 | S252 | ochoa | Caldesmon (CDM) | Actin- and myosin-binding protein implicated in the regulation of actomyosin interactions in smooth muscle and nonmuscle cells (could act as a bridge between myosin and actin filaments). Stimulates actin binding of tropomyosin which increases the stabilization of actin filament structure. In muscle tissues, inhibits the actomyosin ATPase by binding to F-actin. This inhibition is attenuated by calcium-calmodulin and is potentiated by tropomyosin. Interacts with actin, myosin, two molecules of tropomyosin and with calmodulin. Also plays an essential role during cellular mitosis and receptor capping. Involved in Schwann cell migration during peripheral nerve regeneration (By similarity). {ECO:0000250, ECO:0000269|PubMed:8227296}. |
Q08AE8 | SPIRE1 | S479 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q12789 | GTF3C1 | S1080 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12872 | SFSWAP | S618 | ochoa | Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) | Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}. |
Q13459 | MYO9B | S2004 | ochoa | Unconventional myosin-IXb (Unconventional myosin-9b) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Binds actin with high affinity both in the absence and presence of ATP and its mechanochemical activity is inhibited by calcium ions (PubMed:9490638). Also acts as a GTPase activator for RHOA (PubMed:26529257, PubMed:9490638). Plays a role in the regulation of cell migration via its role as RHOA GTPase activator. This is regulated by its interaction with the SLIT2 receptor ROBO1; interaction with ROBO1 impairs interaction with RHOA and subsequent activation of RHOA GTPase activity, and thereby leads to increased levels of active, GTP-bound RHOA (PubMed:26529257). {ECO:0000269|PubMed:26529257, ECO:0000269|PubMed:9490638}. |
Q13464 | ROCK1 | S479 | ochoa | Rho-associated protein kinase 1 (EC 2.7.11.1) (Renal carcinoma antigen NY-REN-35) (Rho-associated, coiled-coil-containing protein kinase 1) (Rho-associated, coiled-coil-containing protein kinase I) (ROCK-I) (p160 ROCK-1) (p160ROCK) | Protein kinase which is a key regulator of the actin cytoskeleton and cell polarity (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:8617235, PubMed:9722579). Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A (PubMed:10436159, PubMed:10652353, PubMed:11018042, PubMed:11283607, PubMed:17158456, PubMed:18573880, PubMed:19131646, PubMed:23093407, PubMed:23355470, PubMed:8617235, PubMed:9722579). Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing (PubMed:18694941). Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress (PubMed:19036714). Acts as a suppressor of inflammatory cell migration by regulating PTEN phosphorylation and stability (By similarity). Acts as a negative regulator of VEGF-induced angiogenic endothelial cell activation (PubMed:19181962). Required for centrosome positioning and centrosome-dependent exit from mitosis (By similarity). Plays a role in terminal erythroid differentiation (PubMed:21072057). Inhibits podocyte motility via regulation of actin cytoskeletal dynamics and phosphorylation of CFL1 (By similarity). Promotes keratinocyte terminal differentiation (PubMed:19997641). Involved in osteoblast compaction through the fibronectin fibrillogenesis cell-mediated matrix assembly process, essential for osteoblast mineralization (By similarity). May regulate closure of the eyelids and ventral body wall by inducing the assembly of actomyosin bundles (By similarity). {ECO:0000250|UniProtKB:P70335, ECO:0000250|UniProtKB:Q8MIT6, ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:10652353, ECO:0000269|PubMed:11018042, ECO:0000269|PubMed:11283607, ECO:0000269|PubMed:17158456, ECO:0000269|PubMed:18573880, ECO:0000269|PubMed:18694941, ECO:0000269|PubMed:19036714, ECO:0000269|PubMed:19131646, ECO:0000269|PubMed:19181962, ECO:0000269|PubMed:19997641, ECO:0000269|PubMed:21072057, ECO:0000269|PubMed:23093407, ECO:0000269|PubMed:23355470, ECO:0000269|PubMed:8617235, ECO:0000269|PubMed:9722579}. |
Q15003 | NCAPH | S201 | ochoa | Condensin complex subunit 2 (Barren homolog protein 1) (Chromosome-associated protein H) (hCAP-H) (Non-SMC condensin I complex subunit H) (XCAP-H homolog) | Regulatory subunit of the condensin complex, a complex required for conversion of interphase chromatin into mitotic-like condense chromosomes. The condensin complex probably introduces positive supercoils into relaxed DNA in the presence of type I topoisomerases and converts nicked DNA into positive knotted forms in the presence of type II topoisomerases (PubMed:11136719). Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:11136719, ECO:0000269|PubMed:27737959}. |
Q15061 | WDR43 | S658 | ochoa | WD repeat-containing protein 43 (U3 small nucleolar RNA-associated protein 5 homolog) | Ribosome biogenesis factor that coordinates hyperactive transcription and ribogenesis (PubMed:17699751). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. Required for optimal pre-ribosomal RNA transcription by RNA polymerase I (PubMed:17699751, PubMed:34516797). Essential for stem cell pluripotency and embryonic development. In the nucleoplasm, recruited by promoter-associated/nascent transcripts and transcription to active promoters where it facilitates releases of elongation factor P-TEFb and paused RNA polymerase II to allow transcription elongation and maintain high-level expression of its targets genes (By similarity). {ECO:0000250|UniProtKB:Q6ZQL4, ECO:0000269|PubMed:17699751, ECO:0000269|PubMed:34516797}. |
Q15326 | ZMYND11 | S383 | ochoa | Zinc finger MYND domain-containing protein 11 (Adenovirus 5 E1A-binding protein) (Bone morphogenetic protein receptor-associated molecule 1) (Protein BS69) | Chromatin reader that specifically recognizes and binds histone H3.3 trimethylated at 'Lys-36' (H3.3K36me3) and regulates RNA polymerase II elongation. Does not bind other histone H3 subtypes (H3.1 or H3.2) (By similarity). Colocalizes with highly expressed genes and functions as a transcription corepressor by modulating RNA polymerase II at the elongation stage. Binds non-specifically to dsDNA (PubMed:24675531). Acts as a tumor-suppressor by repressing a transcriptional program essential for tumor cell growth. {ECO:0000250|UniProtKB:Q8R5C8, ECO:0000269|PubMed:10734313, ECO:0000269|PubMed:16565076, ECO:0000269|PubMed:24675531}.; FUNCTION: (Microbial infection) Inhibits Epstein-Barr virus EBNA2-mediated transcriptional activation and host cell proliferation, through direct interaction. {ECO:0000269|PubMed:26845565}. |
Q16643 | DBN1 | S274 | ochoa | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q5JRA6 | MIA3 | S186 | ochoa | Transport and Golgi organization protein 1 homolog (TANGO1) (C219-reactive peptide) (D320) (Melanoma inhibitory activity protein 3) | Plays a role in the transport of cargos that are too large to fit into COPII-coated vesicles and require specific mechanisms to be incorporated into membrane-bound carriers and exported from the endoplasmic reticulum. This protein is required for collagen VII (COL7A1) secretion by loading COL7A1 into transport carriers. It may participate in cargo loading of COL7A1 at endoplasmic reticulum exit sites by binding to COPII coat subunits Sec23/24 and guiding SH3-bound COL7A1 into a growing carrier. Does not play a role in global protein secretion and is apparently specific to COL7A1 cargo loading. However, it may participate in secretion of other proteins in cells that do not secrete COL7A1. It is also specifically required for the secretion of lipoproteins by participating in their export from the endoplasmic reticulum (PubMed:19269366, PubMed:27138255). Required for correct assembly of COPII coat components at endoplasmic reticulum exit sites (ERES) and for the localization of SEC16A and membrane-bound ER-resident complexes consisting of MIA2 and PREB/SEC12 to ERES (PubMed:28442536). {ECO:0000269|PubMed:19269366, ECO:0000269|PubMed:27138255, ECO:0000269|PubMed:28442536}. |
Q5JSZ5 | PRRC2B | S999 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5JTV8 | TOR1AIP1 | S230 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5JTV8 | TOR1AIP1 | S231 | ochoa | Torsin-1A-interacting protein 1 (Lamin-associated protein 1B) (LAP1B) | Required for nuclear membrane integrity. Induces TOR1A and TOR1B ATPase activity and is required for their location on the nuclear membrane. Binds to A- and B-type lamins. Possible role in membrane attachment and assembly of the nuclear lamina. {ECO:0000269|PubMed:23569223}. |
Q5T200 | ZC3H13 | S1438 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q63HN8 | RNF213 | S67 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q6PCB8 | EMB | S306 | ochoa | Embigin | Plays a role in the outgrowth of motoneurons and in the formation of neuromuscular junctions. Following muscle denervation, promotes nerve terminal sprouting and the formation of additional acetylcholine receptor clusters at synaptic sites without affecting terminal Schwann cell number or morphology. Delays the retraction of terminal sprouts following re-innervation of denervated endplates. May play a role in targeting the monocarboxylate transporters SLC16A1, SLC16A6 and SLC16A7 to the cell membrane (By similarity). {ECO:0000250|UniProtKB:O88775}. |
Q6VMQ6 | ATF7IP | S508 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6ZRS2 | SRCAP | S2371 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q7L014 | DDX46 | S928 | ochoa | Probable ATP-dependent RNA helicase DDX46 (EC 3.6.4.13) (DEAD box protein 46) (PRP5 homolog) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310, PubMed:36797247). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, DDX46 plays essential roles during assembly of pre-spliceosome and proofreading of the branch site (PubMed:34822310). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:36797247}. |
Q7Z401 | DENND4A | S1196 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q86SQ0 | PHLDB2 | S501 | ochoa | Pleckstrin homology-like domain family B member 2 (Protein LL5-beta) | Seems to be involved in the assembly of the postsynaptic apparatus. May play a role in acetyl-choline receptor (AChR) aggregation in the postsynaptic membrane (By similarity). {ECO:0000250, ECO:0000269|PubMed:12376540}. |
Q86UL3 | GPAT4 | S100 | ochoa | Glycerol-3-phosphate acyltransferase 4 (EC 2.3.1.15) (1-acylglycerol-3-phosphate O-acyltransferase 6) (1-AGP acyltransferase 6) (1-AGPAT 6) (Acyl-CoA:glycerol-3-phosphate acyltransferase 4) (Lysophosphatidic acid acyltransferase zeta) (LPAAT-zeta) (Testis spermatogenesis apoptosis-related protein 7) (TSARG7) | Converts glycerol-3-phosphate to 1-acyl-sn-glycerol-3-phosphate (lysophosphatidic acid or LPA) by incorporating an acyl moiety at the sn-1 position of the glycerol backbone (PubMed:18238778). Active against both saturated and unsaturated long-chain fatty acyl-CoAs (PubMed:18238778). Protects cells against lipotoxicity (PubMed:30846318). {ECO:0000269|PubMed:18238778, ECO:0000269|PubMed:30846318}. |
Q86UU1 | PHLDB1 | T694 | ochoa | Pleckstrin homology-like domain family B member 1 (Protein LL5-alpha) | None |
Q86XP3 | DDX42 | Y90 | ochoa | ATP-dependent RNA helicase DDX42 (EC 3.6.4.13) (DEAD box protein 42) (RNA helicase-like protein) (RHELP) (RNA helicase-related protein) (RNAHP) (SF3b DEAD box protein) (Splicing factor 3B-associated 125 kDa protein) (SF3b125) | ATP-dependent RNA helicase that binds to partially double-stranded RNAs (dsRNAs) in order to unwind RNA secondary structures (PubMed:16397294). Unwinding is promoted in the presence of single-strand binding proteins (PubMed:16397294). Also mediates RNA duplex formation thereby displacing the single-strand RNA binding protein (PubMed:16397294). ATP and ADP modulate its activity: ATP binding and hydrolysis by DDX42 triggers RNA strand separation, whereas the ADP-bound form of the protein triggers annealing of complementary RNA strands (PubMed:16397294). Required for assembly of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs: DDX42 associates transiently with the SF3B subcomplex of the 17S U2 SnRNP complex and is released after fulfilling its role in the assembly of 17S U2 SnRNP (PubMed:12234937, PubMed:36797247). Involved in the survival of cells by interacting with TP53BP2 and thereby counteracting the apoptosis-stimulating activity of TP53BP2 (PubMed:19377511). Relocalizes TP53BP2 to the cytoplasm (PubMed:19377511). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:16397294, ECO:0000269|PubMed:19377511, ECO:0000269|PubMed:36797247}. |
Q8NEM2 | SHCBP1 | S574 | ochoa | SHC SH2 domain-binding protein 1 | May play a role in signaling pathways governing cellular proliferation, cell growth and differentiation. May be a component of a novel signaling pathway downstream of Shc. Acts as a positive regulator of FGF signaling in neural progenitor cells. {ECO:0000250|UniProtKB:Q9Z179}. |
Q8TDJ6 | DMXL2 | S2123 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TEV9 | SMCR8 | S414 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8WUM9 | SLC20A1 | S335 | ochoa | Sodium-dependent phosphate transporter 1 (Gibbon ape leukemia virus receptor 1) (GLVR-1) (Leukemia virus receptor 1 homolog) (Phosphate transporter 1) (PiT-1) (Solute carrier family 20 member 1) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:11009570, PubMed:16790504, PubMed:17494632, PubMed:19726692, PubMed:7929240, PubMed:8041748). May play a role in extracellular matrix and cartilage calcification as well as in vascular calcification (PubMed:11009570). Essential for cell proliferation but this function is independent of its phosphate transporter activity (PubMed:19726692). {ECO:0000269|PubMed:11009570, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:19726692, ECO:0000269|PubMed:7929240, ECO:0000269|PubMed:8041748}.; FUNCTION: (Microbial infection) May function as a retroviral receptor as it confers human cells susceptibility to infection to Gibbon Ape Leukemia Virus (GaLV), Simian sarcoma-associated virus (SSAV) and Feline leukemia virus subgroup B (FeLV-B) as well as 10A1 murine leukemia virus (10A1 MLV). {ECO:0000269|PubMed:12097582, ECO:0000269|PubMed:1309898, ECO:0000269|PubMed:2078500, ECO:0000269|PubMed:7966619}. |
Q8WYP5 | AHCTF1 | S1533 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q96EB6 | SIRT1 | S174 | ochoa | NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)] | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:22918831, PubMed:24415752, PubMed:24824780, PubMed:29681526, PubMed:29765047, PubMed:30409912). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:14976264, PubMed:14980222, PubMed:15152190). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491, PubMed:22542455). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14976264, PubMed:14980222, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17283066, PubMed:17620057, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis (PubMed:20817729, PubMed:29765047). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis (PubMed:23142079). Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:16998810, PubMed:17334224, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Promotes DNA double-strand breaks by mediating deacetylation of SIRT6 (PubMed:32538779). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER) (PubMed:32034146). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication: deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219). Deacetylates NDC80/HEC1 (PubMed:30409912). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating protein delactylation, depropionylation and decrotonylation (PubMed:28497810, PubMed:38512451). Mediates depropionylation of Osterix (SP7) (By similarity). Catalyzes decrotonylation of histones; it however does not represent a major histone decrotonylase (PubMed:28497810). Mediates protein delactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:14976264, ECO:0000269|PubMed:14980222, ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:15152190, ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:16166628, ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:16998810, ECO:0000269|PubMed:17283066, ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:17334224, ECO:0000269|PubMed:17505061, ECO:0000269|PubMed:17612497, ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18203716, ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18687677, ECO:0000269|PubMed:19188449, ECO:0000269|PubMed:19220062, ECO:0000269|PubMed:19364925, ECO:0000269|PubMed:19690166, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20097625, ECO:0000269|PubMed:20100829, ECO:0000269|PubMed:20203304, ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20620956, ECO:0000269|PubMed:20670893, ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:20955178, ECO:0000269|PubMed:21149730, ECO:0000269|PubMed:21245319, ECO:0000269|PubMed:21471201, ECO:0000269|PubMed:21504832, ECO:0000269|PubMed:21555002, ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21701047, ECO:0000269|PubMed:21775285, ECO:0000269|PubMed:21807113, ECO:0000269|PubMed:21841822, ECO:0000269|PubMed:21890893, ECO:0000269|PubMed:21947282, ECO:0000269|PubMed:22274616, ECO:0000269|PubMed:22542455, ECO:0000269|PubMed:22918831, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:38512451}.; FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. {ECO:0000269|PubMed:20975832}.; FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. {ECO:0000269|PubMed:18329615}. |
Q96GE4 | CEP95 | S419 | ochoa | Centrosomal protein of 95 kDa (Cep95) (Coiled-coil domain-containing protein 45) | None |
Q96JJ7 | TMX3 | S434 | ochoa | Protein disulfide-isomerase TMX3 (EC 5.3.4.1) (Thioredoxin domain-containing protein 10) (Thioredoxin-related transmembrane protein 3) | Probable disulfide isomerase, which participates in the folding of proteins containing disulfide bonds. May act as a dithiol oxidase (PubMed:15623505). Acts as a regulator of endoplasmic reticulum-mitochondria contact sites via its ability to regulate redox signals (PubMed:31304984). {ECO:0000269|PubMed:15623505, ECO:0000269|PubMed:31304984}. |
Q96KC8 | DNAJC1 | S492 | ochoa | DnaJ homolog subfamily C member 1 (DnaJ protein homolog MTJ1) | May modulate protein synthesis. {ECO:0000250}. |
Q96RG2 | PASK | S1273 | ochoa | PAS domain-containing serine/threonine-protein kinase (PAS-kinase) (PASKIN) (hPASK) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in alpha cells; however such data require additional evidences. May play a role in regulation of protein translation by phosphorylating EEF1A1, leading to increase translation efficiency. May also participate in respiratory regulation. {ECO:0000269|PubMed:16275910, ECO:0000269|PubMed:17052199, ECO:0000269|PubMed:17595531, ECO:0000269|PubMed:20943661, ECO:0000269|PubMed:21181396, ECO:0000269|PubMed:21418524}. |
Q96RL1 | UIMC1 | S402 | ochoa|psp | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96T23 | RSF1 | S540 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q99700 | ATXN2 | S478 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q9BVS4 | RIOK2 | S370 | ochoa | Serine/threonine-protein kinase RIO2 (EC 2.7.11.1) (RIO kinase 2) | Serine/threonine-protein kinase involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in export of the 40S pre-ribosome particles (pre-40S) from the nucleus to the cytoplasm. Its kinase activity is required for the release of NOB1, PNO1 and LTV1 from the late pre-40S and the processing of 18S-E pre-rRNA to the mature 18S rRNA (PubMed:19564402). Regulates the timing of the metaphase-anaphase transition during mitotic progression, and its phosphorylation, most likely by PLK1, regulates this function (PubMed:21880710). {ECO:0000269|PubMed:16037817, ECO:0000269|PubMed:19564402, ECO:0000269|PubMed:21880710}. |
Q9BXY0 | MAK16 | S229 | ochoa | Protein MAK16 homolog (NNP78) (Protein RBM13) | None |
Q9BYV8 | CEP41 | S96 | ochoa | Centrosomal protein of 41 kDa (Cep41) (Testis-specific gene A14 protein) | Required during ciliogenesis for tubulin glutamylation in cilium. Probably acts by participating in the transport of TTLL6, a tubulin polyglutamylase, between the basal body and the cilium. {ECO:0000269|PubMed:22246503}. |
Q9BZ29 | DOCK9 | S167 | ochoa | Dedicator of cytokinesis protein 9 (Cdc42 guanine nucleotide exchange factor zizimin-1) (Zizimin-1) | Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation. {ECO:0000269|PubMed:12172552, ECO:0000269|PubMed:19745154}. |
Q9BZE4 | GTPBP4 | Y466 | ochoa | GTP-binding protein 4 (Chronic renal failure gene protein) (GTP-binding protein NGB) (Nucleolar GTP-binding protein 1) | Involved in the biogenesis of the 60S ribosomal subunit (PubMed:32669547). Acts as a TP53 repressor, preventing TP53 stabilization and cell cycle arrest (PubMed:20308539). {ECO:0000269|PubMed:20308539, ECO:0000269|PubMed:32669547}. |
Q9H089 | LSG1 | S333 | ochoa | Large subunit GTPase 1 homolog (hLsg1) (EC 3.6.5.-) | Functions as a GTPase (PubMed:16209721). May act by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm during the 60S ribosomal subunit maturation (PubMed:31148378). {ECO:0000269|PubMed:16209721, ECO:0000269|PubMed:31148378}. |
Q9H4I2 | ZHX3 | S899 | ochoa | Zinc fingers and homeoboxes protein 3 (Triple homeobox protein 1) (Zinc finger and homeodomain protein 3) | Acts as a transcriptional repressor. Involved in the early stages of mesenchymal stem cell (MSC) osteogenic differentiation. Is a regulator of podocyte gene expression during primary glomerula disease. Binds to promoter DNA. {ECO:0000269|PubMed:12659632, ECO:0000269|PubMed:21174497}. |
Q9H4L7 | SMARCAD1 | S247 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H6Z4 | RANBP3 | S241 | ochoa | Ran-binding protein 3 (RanBP3) | Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran-dependent manner. Negative regulator of TGF-beta signaling through interaction with the R-SMAD proteins, SMAD2 and SMAD3, and mediating their nuclear export. {ECO:0000269|PubMed:11425870, ECO:0000269|PubMed:11571268, ECO:0000269|PubMed:11932251, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:9637251}. |
Q9H9B1 | EHMT1 | S38 | ochoa | Histone-lysine N-methyltransferase EHMT1 (EC 2.1.1.-) (EC 2.1.1.367) (Euchromatic histone-lysine N-methyltransferase 1) (Eu-HMTase1) (G9a-like protein 1) (GLP) (GLP1) (Histone H3-K9 methyltransferase 5) (H3-K9-HMTase 5) (Lysine N-methyltransferase 1D) | Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. H3K9me represents a specific tag for epigenetic transcriptional repression by recruiting HP1 proteins to methylated histones. Also weakly methylates 'Lys-27' of histone H3 (H3K27me). Also required for DNA methylation, the histone methyltransferase activity is not required for DNA methylation, suggesting that these 2 activities function independently. Probably targeted to histone H3 by different DNA-binding proteins like E2F6, MGA, MAX and/or DP1. During G0 phase, it probably contributes to silencing of MYC- and E2F-responsive genes, suggesting a role in G0/G1 transition in cell cycle. In addition to the histone methyltransferase activity, also methylates non-histone proteins: mediates dimethylation of 'Lys-373' of p53/TP53. Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with probable chromatin reader BAZ2B (By similarity). {ECO:0000250|UniProtKB:Q5DW34, ECO:0000269|PubMed:12004135, ECO:0000269|PubMed:20118233}. |
Q9NR30 | DDX21 | S38 | ochoa | Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) | RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}. |
Q9UDY2 | TJP2 | S952 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UEE5 | STK17A | S348 | ochoa | Serine/threonine-protein kinase 17A (EC 2.7.11.1) (DAP kinase-related apoptosis-inducing protein kinase 1) | Acts as a positive regulator of apoptosis. Also acts as a regulator of cellular reactive oxygen species. {ECO:0000269|PubMed:21489989, ECO:0000269|PubMed:9786912}. |
Q9Y2F5 | ICE1 | S1249 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y496 | KIF3A | S388 | ochoa | Kinesin-like protein KIF3A (Microtubule plus end-directed kinesin motor 3A) | Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. {ECO:0000250|UniProtKB:P28741}. |
P19338 | NCL | S595 | Sugiyama | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
Q04637 | EIF4G1 | S1440 | Sugiyama | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q9NQ29 | LUC7L | S181 | Sugiyama | Putative RNA-binding protein Luc7-like 1 (Putative SR protein LUC7B1) (SR+89) | May bind to RNA via its Arg/Ser-rich domain. {ECO:0000269|PubMed:11170747}. |
Q12906 | ILF3 | S36 | Sugiyama | Interleukin enhancer-binding factor 3 (Double-stranded RNA-binding protein 76) (DRBP76) (M-phase phosphoprotein 4) (MPP4) (Nuclear factor associated with dsRNA) (NFAR) (Nuclear factor of activated T-cells 90 kDa) (NF-AT-90) (Translational control protein 80) (TCP80) | RNA-binding protein that plays an essential role in the biogenesis of circular RNAs (circRNAs) which are produced by back-splicing circularization of pre-mRNAs. Within the nucleus, promotes circRNAs processing by stabilizing the regulatory elements residing in the flanking introns of the circularized exons. Plays thereby a role in the back-splicing of a subset of circRNAs (PubMed:28625552). As a consequence, participates in a wide range of transcriptional and post-transcriptional processes. Binds to poly-U elements and AU-rich elements (AREs) in the 3'-UTR of target mRNAs (PubMed:14731398). Upon viral infection, ILF3 accumulates in the cytoplasm and participates in the innate antiviral response (PubMed:21123651, PubMed:34110282). Mechanistically, ILF3 becomes phosphorylated and activated by the double-stranded RNA-activated protein kinase/PKR which releases ILF3 from cellular mature circRNAs. In turn, unbound ILF3 molecules are able to interact with and thus inhibit viral mRNAs (PubMed:21123651, PubMed:28625552). {ECO:0000269|PubMed:14731398, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:28625552, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q15349 | RPS6KA2 | S44 | Sugiyama | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-1640170 | Cell Cycle | 4.231060e-13 | 12.374 |
R-HSA-69278 | Cell Cycle, Mitotic | 1.787015e-11 | 10.748 |
R-HSA-8953854 | Metabolism of RNA | 2.559009e-11 | 10.592 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 5.703532e-10 | 9.244 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 5.217852e-08 | 7.283 |
R-HSA-72172 | mRNA Splicing | 6.011582e-08 | 7.221 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 3.675510e-06 | 5.435 |
R-HSA-69620 | Cell Cycle Checkpoints | 3.645531e-06 | 5.438 |
R-HSA-68877 | Mitotic Prometaphase | 1.997698e-05 | 4.699 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 2.506768e-05 | 4.601 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 3.162739e-05 | 4.500 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 4.560732e-05 | 4.341 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 6.275976e-05 | 4.202 |
R-HSA-141424 | Amplification of signal from the kinetochores | 7.493068e-05 | 4.125 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 7.493068e-05 | 4.125 |
R-HSA-9856651 | MITF-M-dependent gene expression | 1.128858e-04 | 3.947 |
R-HSA-68882 | Mitotic Anaphase | 1.315295e-04 | 3.881 |
R-HSA-68886 | M Phase | 1.343558e-04 | 3.872 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 1.412617e-04 | 3.850 |
R-HSA-2467813 | Separation of Sister Chromatids | 1.487453e-04 | 3.828 |
R-HSA-69275 | G2/M Transition | 1.609780e-04 | 3.793 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 1.777474e-04 | 3.750 |
R-HSA-453274 | Mitotic G2-G2/M phases | 1.873181e-04 | 3.727 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 1.836982e-04 | 3.736 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 2.368299e-04 | 3.626 |
R-HSA-69242 | S Phase | 2.382199e-04 | 3.623 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 3.302173e-04 | 3.481 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 3.581146e-04 | 3.446 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 3.819708e-04 | 3.418 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 3.754409e-04 | 3.425 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 4.023312e-04 | 3.395 |
R-HSA-9700206 | Signaling by ALK in cancer | 4.023312e-04 | 3.395 |
R-HSA-3247509 | Chromatin modifying enzymes | 4.399950e-04 | 3.357 |
R-HSA-75153 | Apoptotic execution phase | 5.115377e-04 | 3.291 |
R-HSA-4839726 | Chromatin organization | 5.317968e-04 | 3.274 |
R-HSA-156711 | Polo-like kinase mediated events | 5.470217e-04 | 3.262 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 5.859115e-04 | 3.232 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 6.826620e-04 | 3.166 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 9.061429e-04 | 3.043 |
R-HSA-212165 | Epigenetic regulation of gene expression | 1.044335e-03 | 2.981 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 1.154486e-03 | 2.938 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 1.225635e-03 | 2.912 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 1.265355e-03 | 2.898 |
R-HSA-373755 | Semaphorin interactions | 1.434742e-03 | 2.843 |
R-HSA-3371556 | Cellular response to heat stress | 1.634623e-03 | 2.787 |
R-HSA-69190 | DNA strand elongation | 2.342402e-03 | 2.630 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 2.350294e-03 | 2.629 |
R-HSA-9018519 | Estrogen-dependent gene expression | 2.693401e-03 | 2.570 |
R-HSA-176187 | Activation of ATR in response to replication stress | 2.739691e-03 | 2.562 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 2.774449e-03 | 2.557 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 3.089097e-03 | 2.510 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 3.121343e-03 | 2.506 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 3.384311e-03 | 2.471 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 3.384311e-03 | 2.471 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 4.243975e-03 | 2.372 |
R-HSA-446728 | Cell junction organization | 4.675635e-03 | 2.330 |
R-HSA-73894 | DNA Repair | 5.369771e-03 | 2.270 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 5.638988e-03 | 2.249 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 5.572735e-03 | 2.254 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 5.892325e-03 | 2.230 |
R-HSA-69481 | G2/M Checkpoints | 6.196845e-03 | 2.208 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 6.191043e-03 | 2.208 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 6.483475e-03 | 2.188 |
R-HSA-68962 | Activation of the pre-replicative complex | 6.532250e-03 | 2.185 |
R-HSA-5693538 | Homology Directed Repair | 6.948587e-03 | 2.158 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 7.183877e-03 | 2.144 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 8.110272e-03 | 2.091 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 7.974682e-03 | 2.098 |
R-HSA-421270 | Cell-cell junction organization | 7.976610e-03 | 2.098 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 8.110272e-03 | 2.091 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 7.903182e-03 | 2.102 |
R-HSA-1500931 | Cell-Cell communication | 7.751729e-03 | 2.111 |
R-HSA-8939211 | ESR-mediated signaling | 7.592015e-03 | 2.120 |
R-HSA-1538133 | G0 and Early G1 | 8.628699e-03 | 2.064 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 8.781731e-03 | 2.056 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 9.068274e-03 | 2.042 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 9.857794e-03 | 2.006 |
R-HSA-418990 | Adherens junctions interactions | 1.038979e-02 | 1.983 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 1.072794e-02 | 1.969 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 1.142275e-02 | 1.942 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 1.142907e-02 | 1.942 |
R-HSA-400685 | Sema4D in semaphorin signaling | 1.165293e-02 | 1.934 |
R-HSA-1169408 | ISG15 antiviral mechanism | 1.264354e-02 | 1.898 |
R-HSA-180746 | Nuclear import of Rev protein | 1.264467e-02 | 1.898 |
R-HSA-176417 | Phosphorylation of Emi1 | 1.270729e-02 | 1.896 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 1.317382e-02 | 1.880 |
R-HSA-381183 | ATF6 (ATF6-alpha) activates chaperone genes | 1.317382e-02 | 1.880 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 1.424088e-02 | 1.846 |
R-HSA-72649 | Translation initiation complex formation | 1.352594e-02 | 1.869 |
R-HSA-69239 | Synthesis of DNA | 1.398268e-02 | 1.854 |
R-HSA-2428933 | SHC-related events triggered by IGF1R | 1.628730e-02 | 1.788 |
R-HSA-69091 | Polymerase switching | 1.628730e-02 | 1.788 |
R-HSA-69109 | Leading Strand Synthesis | 1.628730e-02 | 1.788 |
R-HSA-1358803 | Downregulation of ERBB2:ERBB3 signaling | 1.628730e-02 | 1.788 |
R-HSA-5693606 | DNA Double Strand Break Response | 1.630264e-02 | 1.788 |
R-HSA-202403 | TCR signaling | 1.691247e-02 | 1.772 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 1.810955e-02 | 1.742 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 1.785587e-02 | 1.748 |
R-HSA-73886 | Chromosome Maintenance | 1.779605e-02 | 1.750 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 1.936311e-02 | 1.713 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 1.810955e-02 | 1.742 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 1.895877e-02 | 1.722 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 2.432124e-02 | 1.614 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 2.432124e-02 | 1.614 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 2.432124e-02 | 1.614 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 2.432124e-02 | 1.614 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 2.432124e-02 | 1.614 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 2.432124e-02 | 1.614 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 2.432124e-02 | 1.614 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 2.432124e-02 | 1.614 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 2.432124e-02 | 1.614 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 2.432124e-02 | 1.614 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 2.432124e-02 | 1.614 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 2.275597e-02 | 1.643 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 2.275597e-02 | 1.643 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 2.380375e-02 | 1.623 |
R-HSA-69186 | Lagging Strand Synthesis | 2.101074e-02 | 1.678 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 2.419906e-02 | 1.616 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 2.239327e-02 | 1.650 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 2.514284e-02 | 1.600 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 2.514284e-02 | 1.600 |
R-HSA-191859 | snRNP Assembly | 2.106990e-02 | 1.676 |
R-HSA-194441 | Metabolism of non-coding RNA | 2.106990e-02 | 1.676 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 2.683638e-02 | 1.571 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 2.586694e-02 | 1.587 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 2.068399e-02 | 1.684 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 2.461644e-02 | 1.609 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 2.461644e-02 | 1.609 |
R-HSA-1227986 | Signaling by ERBB2 | 2.288229e-02 | 1.641 |
R-HSA-202433 | Generation of second messenger molecules | 2.441897e-02 | 1.612 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 2.419906e-02 | 1.616 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 2.151997e-02 | 1.667 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 2.693158e-02 | 1.570 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 1.988611e-02 | 1.701 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 2.693158e-02 | 1.570 |
R-HSA-5633007 | Regulation of TP53 Activity | 2.345074e-02 | 1.630 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 2.441897e-02 | 1.612 |
R-HSA-3214841 | PKMTs methylate histone lysines | 2.693158e-02 | 1.570 |
R-HSA-381033 | ATF6 (ATF6-alpha) activates chaperones | 1.982596e-02 | 1.703 |
R-HSA-69206 | G1/S Transition | 2.357276e-02 | 1.628 |
R-HSA-9675108 | Nervous system development | 2.031794e-02 | 1.692 |
R-HSA-201556 | Signaling by ALK | 2.207210e-02 | 1.656 |
R-HSA-72613 | Eukaryotic Translation Initiation | 2.701130e-02 | 1.568 |
R-HSA-72737 | Cap-dependent Translation Initiation | 2.701130e-02 | 1.568 |
R-HSA-166208 | mTORC1-mediated signalling | 2.768301e-02 | 1.558 |
R-HSA-6807070 | PTEN Regulation | 2.804944e-02 | 1.552 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 2.804944e-02 | 1.552 |
R-HSA-69183 | Processive synthesis on the lagging strand | 2.823153e-02 | 1.549 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 2.823153e-02 | 1.549 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 2.823153e-02 | 1.549 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 2.823153e-02 | 1.549 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 3.129617e-02 | 1.505 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 3.129617e-02 | 1.505 |
R-HSA-390522 | Striated Muscle Contraction | 3.471060e-02 | 1.460 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 3.471060e-02 | 1.460 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 3.097097e-02 | 1.509 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 3.129617e-02 | 1.505 |
R-HSA-9930044 | Nuclear RNA decay | 3.129617e-02 | 1.505 |
R-HSA-165159 | MTOR signalling | 3.247187e-02 | 1.488 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 3.471060e-02 | 1.460 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 3.247882e-02 | 1.488 |
R-HSA-73887 | Death Receptor Signaling | 3.247882e-02 | 1.488 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 3.556588e-02 | 1.449 |
R-HSA-429947 | Deadenylation of mRNA | 3.556588e-02 | 1.449 |
R-HSA-450520 | HuR (ELAVL1) binds and stabilizes mRNA | 3.607462e-02 | 1.443 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 3.607462e-02 | 1.443 |
R-HSA-176974 | Unwinding of DNA | 3.607462e-02 | 1.443 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 3.655540e-02 | 1.437 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 3.721647e-02 | 1.429 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 4.394046e-02 | 1.357 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 3.846558e-02 | 1.415 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 3.846558e-02 | 1.415 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 4.212842e-02 | 1.375 |
R-HSA-774815 | Nucleosome assembly | 4.212842e-02 | 1.375 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 4.212842e-02 | 1.375 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 3.997578e-02 | 1.398 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 3.997578e-02 | 1.398 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 4.145061e-02 | 1.382 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 3.997578e-02 | 1.398 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 4.391688e-02 | 1.357 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 3.846558e-02 | 1.415 |
R-HSA-74160 | Gene expression (Transcription) | 4.309405e-02 | 1.366 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 3.835631e-02 | 1.416 |
R-HSA-193648 | NRAGE signals death through JNK | 4.077474e-02 | 1.390 |
R-HSA-381070 | IRE1alpha activates chaperones | 4.324289e-02 | 1.364 |
R-HSA-9679506 | SARS-CoV Infections | 4.361969e-02 | 1.360 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 4.427893e-02 | 1.354 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 4.427893e-02 | 1.354 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 4.427893e-02 | 1.354 |
R-HSA-2028269 | Signaling by Hippo | 4.427893e-02 | 1.354 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 4.470330e-02 | 1.350 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 4.571933e-02 | 1.340 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 4.571933e-02 | 1.340 |
R-HSA-109581 | Apoptosis | 4.605445e-02 | 1.337 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 4.721440e-02 | 1.326 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 4.745014e-02 | 1.324 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 5.064632e-02 | 1.295 |
R-HSA-9818035 | NFE2L2 regulating ER-stress associated genes | 5.064632e-02 | 1.295 |
R-HSA-1306955 | GRB7 events in ERBB2 signaling | 5.064632e-02 | 1.295 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 5.258471e-02 | 1.279 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 5.055671e-02 | 1.296 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 5.055671e-02 | 1.296 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 5.055671e-02 | 1.296 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 5.428348e-02 | 1.265 |
R-HSA-453276 | Regulation of mitotic cell cycle | 5.060546e-02 | 1.296 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 5.060546e-02 | 1.296 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 5.389564e-02 | 1.268 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 4.965690e-02 | 1.304 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 5.064632e-02 | 1.295 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 5.060546e-02 | 1.296 |
R-HSA-69306 | DNA Replication | 5.524777e-02 | 1.258 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 5.347440e-02 | 1.272 |
R-HSA-5358508 | Mismatch Repair | 5.055671e-02 | 1.296 |
R-HSA-211163 | AKT-mediated inactivation of FOXO1A | 5.064632e-02 | 1.295 |
R-HSA-72312 | rRNA processing | 5.285850e-02 | 1.277 |
R-HSA-193670 | p75NTR negatively regulates cell cycle via SC1 | 5.064632e-02 | 1.295 |
R-HSA-422475 | Axon guidance | 4.861113e-02 | 1.313 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 5.055671e-02 | 1.296 |
R-HSA-69052 | Switching of origins to a post-replicative state | 5.732209e-02 | 1.242 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 6.016500e-02 | 1.221 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 6.081033e-02 | 1.216 |
R-HSA-6784531 | tRNA processing in the nucleus | 6.199513e-02 | 1.208 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 6.247710e-02 | 1.204 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 6.449127e-02 | 1.190 |
R-HSA-9823730 | Formation of definitive endoderm | 6.449127e-02 | 1.190 |
R-HSA-3371568 | Attenuation phase | 6.525594e-02 | 1.185 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 6.525594e-02 | 1.185 |
R-HSA-9818026 | NFE2L2 regulating inflammation associated genes | 6.633826e-02 | 1.178 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 6.633826e-02 | 1.178 |
R-HSA-420597 | Nectin/Necl trans heterodimerization | 6.633826e-02 | 1.178 |
R-HSA-8957275 | Post-translational protein phosphorylation | 6.645120e-02 | 1.177 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 6.682126e-02 | 1.175 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 6.682126e-02 | 1.175 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 6.682126e-02 | 1.175 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 6.682126e-02 | 1.175 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 8.339882e-02 | 1.079 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 7.209616e-02 | 1.142 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 7.209616e-02 | 1.142 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 7.209616e-02 | 1.142 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 7.213525e-02 | 1.142 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 7.213525e-02 | 1.142 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 7.213525e-02 | 1.142 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 8.199232e-02 | 1.086 |
R-HSA-72187 | mRNA 3'-end processing | 7.132104e-02 | 1.147 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 7.132104e-02 | 1.147 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 7.627390e-02 | 1.118 |
R-HSA-1221632 | Meiotic synapsis | 7.627390e-02 | 1.118 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 7.627390e-02 | 1.118 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 7.209616e-02 | 1.142 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 7.712057e-02 | 1.113 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 7.059135e-02 | 1.151 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 8.289648e-02 | 1.081 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 7.617056e-02 | 1.118 |
R-HSA-194138 | Signaling by VEGF | 8.151154e-02 | 1.089 |
R-HSA-4641265 | Repression of WNT target genes | 7.209616e-02 | 1.142 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 7.209616e-02 | 1.142 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 8.060223e-02 | 1.094 |
R-HSA-6811555 | PI5P Regulates TP53 Acetylation | 8.289648e-02 | 1.081 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 8.339882e-02 | 1.079 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 7.937776e-02 | 1.100 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 7.178368e-02 | 1.144 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 8.339882e-02 | 1.079 |
R-HSA-416482 | G alpha (12/13) signalling events | 7.653492e-02 | 1.116 |
R-HSA-9842663 | Signaling by LTK | 7.209616e-02 | 1.142 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 7.332269e-02 | 1.135 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 7.059135e-02 | 1.151 |
R-HSA-9679191 | Potential therapeutics for SARS | 8.372141e-02 | 1.077 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 8.339882e-02 | 1.079 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 7.213525e-02 | 1.142 |
R-HSA-5357801 | Programmed Cell Death | 8.673543e-02 | 1.062 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 8.675074e-02 | 1.062 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 8.676816e-02 | 1.062 |
R-HSA-9012852 | Signaling by NOTCH3 | 8.676816e-02 | 1.062 |
R-HSA-3214815 | HDACs deacetylate histones | 8.676816e-02 | 1.062 |
R-HSA-350054 | Notch-HLH transcription pathway | 8.872955e-02 | 1.052 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 8.872955e-02 | 1.052 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 9.230774e-02 | 1.035 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 9.230774e-02 | 1.035 |
R-HSA-177929 | Signaling by EGFR | 9.230774e-02 | 1.035 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 9.401238e-02 | 1.027 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 9.401238e-02 | 1.027 |
R-HSA-69166 | Removal of the Flap Intermediate | 9.434318e-02 | 1.025 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 9.434318e-02 | 1.025 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 9.434318e-02 | 1.025 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 1.125154e-01 | 0.949 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 1.125154e-01 | 0.949 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 1.125154e-01 | 0.949 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 1.125154e-01 | 0.949 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 1.125154e-01 | 0.949 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 1.125154e-01 | 0.949 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 1.125154e-01 | 0.949 |
R-HSA-9645722 | Defective Intrinsic Pathway for Apoptosis Due to p14ARF Loss of Function | 1.125154e-01 | 0.949 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 1.125154e-01 | 0.949 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 1.016171e-01 | 0.993 |
R-HSA-72731 | Recycling of eIF2:GDP | 1.208021e-01 | 0.918 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 1.190124e-01 | 0.924 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 9.765575e-02 | 1.010 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 1.094289e-01 | 0.961 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 1.175694e-01 | 0.930 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 1.160809e-01 | 0.935 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 1.095664e-01 | 0.960 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 1.267754e-01 | 0.897 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 1.199431e-01 | 0.921 |
R-HSA-180786 | Extension of Telomeres | 1.100775e-01 | 0.958 |
R-HSA-69002 | DNA Replication Pre-Initiation | 1.141390e-01 | 0.943 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 1.219621e-01 | 0.914 |
R-HSA-3371511 | HSF1 activation | 1.175694e-01 | 0.930 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 1.042229e-01 | 0.982 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 1.163772e-01 | 0.934 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 1.163772e-01 | 0.934 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 1.163772e-01 | 0.934 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 1.163772e-01 | 0.934 |
R-HSA-426486 | Small interfering RNA (siRNA) biogenesis | 1.016171e-01 | 0.993 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 1.267754e-01 | 0.897 |
R-HSA-69473 | G2/M DNA damage checkpoint | 1.219621e-01 | 0.914 |
R-HSA-162587 | HIV Life Cycle | 1.074319e-01 | 0.969 |
R-HSA-1266695 | Interleukin-7 signaling | 1.166948e-01 | 0.933 |
R-HSA-9013694 | Signaling by NOTCH4 | 1.219621e-01 | 0.914 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 1.160809e-01 | 0.935 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 1.125154e-01 | 0.949 |
R-HSA-199920 | CREB phosphorylation | 1.016171e-01 | 0.993 |
R-HSA-5689901 | Metalloprotease DUBs | 1.267754e-01 | 0.897 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 1.228605e-01 | 0.911 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 1.228605e-01 | 0.911 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 1.172455e-01 | 0.931 |
R-HSA-8876725 | Protein methylation | 1.063958e-01 | 0.973 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 1.094289e-01 | 0.961 |
R-HSA-3214842 | HDMs demethylate histones | 1.166948e-01 | 0.933 |
R-HSA-447115 | Interleukin-12 family signaling | 1.254543e-01 | 0.902 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 1.163772e-01 | 0.934 |
R-HSA-446353 | Cell-extracellular matrix interactions | 1.063958e-01 | 0.973 |
R-HSA-9818749 | Regulation of NFE2L2 gene expression | 1.016171e-01 | 0.993 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 1.069827e-01 | 0.971 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 1.190124e-01 | 0.924 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 1.208021e-01 | 0.918 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 1.063958e-01 | 0.973 |
R-HSA-9694516 | SARS-CoV-2 Infection | 1.208501e-01 | 0.918 |
R-HSA-380287 | Centrosome maturation | 1.279975e-01 | 0.893 |
R-HSA-8852135 | Protein ubiquitination | 1.279975e-01 | 0.893 |
R-HSA-1483249 | Inositol phosphate metabolism | 1.284978e-01 | 0.891 |
R-HSA-162909 | Host Interactions of HIV factors | 1.287434e-01 | 0.890 |
R-HSA-9766229 | Degradation of CDH1 | 1.293093e-01 | 0.888 |
R-HSA-73893 | DNA Damage Bypass | 1.293093e-01 | 0.888 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 1.321500e-01 | 0.879 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 1.321500e-01 | 0.879 |
R-HSA-2262752 | Cellular responses to stress | 1.331785e-01 | 0.876 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 1.341847e-01 | 0.872 |
R-HSA-9020591 | Interleukin-12 signaling | 1.341847e-01 | 0.872 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 1.372068e-01 | 0.863 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 1.372068e-01 | 0.863 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 1.372068e-01 | 0.863 |
R-HSA-444257 | RSK activation | 1.407808e-01 | 0.851 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 1.407808e-01 | 0.851 |
R-HSA-9839383 | TGFBR3 PTM regulation | 1.407808e-01 | 0.851 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 1.436184e-01 | 0.843 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 1.436184e-01 | 0.843 |
R-HSA-9842860 | Regulation of endogenous retroelements | 1.437434e-01 | 0.842 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 1.437990e-01 | 0.842 |
R-HSA-3371571 | HSF1-dependent transactivation | 1.448149e-01 | 0.839 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 1.457648e-01 | 0.836 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 1.457648e-01 | 0.836 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 1.457648e-01 | 0.836 |
R-HSA-73864 | RNA Polymerase I Transcription | 1.470042e-01 | 0.833 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 1.528120e-01 | 0.816 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 1.528120e-01 | 0.816 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 1.528718e-01 | 0.816 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 1.528718e-01 | 0.816 |
R-HSA-68949 | Orc1 removal from chromatin | 1.528718e-01 | 0.816 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 1.528718e-01 | 0.816 |
R-HSA-5688426 | Deubiquitination | 1.541092e-01 | 0.812 |
R-HSA-5674404 | PTEN Loss of Function in Cancer | 1.639373e-01 | 0.785 |
R-HSA-5619050 | Defective SLC4A1 causes hereditary spherocytosis type 4 (HSP4), distal renal tu... | 1.639373e-01 | 0.785 |
R-HSA-5619039 | Defective SLC12A6 causes agenesis of the corpus callosum, with peripheral neurop... | 1.639373e-01 | 0.785 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 1.639373e-01 | 0.785 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 2.123827e-01 | 0.673 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 1.613973e-01 | 0.792 |
R-HSA-164843 | 2-LTR circle formation | 1.825106e-01 | 0.739 |
R-HSA-9034864 | Activated NTRK3 signals through RAS | 2.039943e-01 | 0.690 |
R-HSA-2514853 | Condensation of Prometaphase Chromosomes | 2.257346e-01 | 0.646 |
R-HSA-9026519 | Activated NTRK2 signals through RAS | 2.257346e-01 | 0.646 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 2.257346e-01 | 0.646 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 1.742522e-01 | 0.759 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 2.194850e-01 | 0.659 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 2.060903e-01 | 0.686 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 1.611228e-01 | 0.793 |
R-HSA-5696400 | Dual Incision in GG-NER | 2.309676e-01 | 0.636 |
R-HSA-8854518 | AURKA Activation by TPX2 | 1.579101e-01 | 0.802 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 2.125766e-01 | 0.672 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 2.125766e-01 | 0.672 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 2.231947e-01 | 0.651 |
R-HSA-9764561 | Regulation of CDH1 Function | 1.959258e-01 | 0.708 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 1.704182e-01 | 0.768 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 2.041296e-01 | 0.690 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 1.590476e-01 | 0.798 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 2.306279e-01 | 0.637 |
R-HSA-162592 | Integration of provirus | 2.257346e-01 | 0.646 |
R-HSA-9762292 | Regulation of CDH11 function | 1.825106e-01 | 0.739 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 2.257346e-01 | 0.646 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 1.939599e-01 | 0.712 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 1.939599e-01 | 0.712 |
R-HSA-1257604 | PIP3 activates AKT signaling | 1.913852e-01 | 0.718 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 1.673014e-01 | 0.777 |
R-HSA-209560 | NF-kB is activated and signals survival | 2.257346e-01 | 0.646 |
R-HSA-110320 | Translesion Synthesis by POLH | 1.742522e-01 | 0.759 |
R-HSA-9754189 | Germ layer formation at gastrulation | 1.742522e-01 | 0.759 |
R-HSA-9843745 | Adipogenesis | 1.745724e-01 | 0.758 |
R-HSA-68867 | Assembly of the pre-replicative complex | 1.676483e-01 | 0.776 |
R-HSA-9832991 | Formation of the posterior neural plate | 2.039943e-01 | 0.690 |
R-HSA-6807004 | Negative regulation of MET activity | 1.890383e-01 | 0.723 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 1.704182e-01 | 0.768 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 1.855106e-01 | 0.732 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 1.888540e-01 | 0.724 |
R-HSA-2424491 | DAP12 signaling | 1.704182e-01 | 0.768 |
R-HSA-9020558 | Interleukin-2 signaling | 2.039943e-01 | 0.690 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 2.156527e-01 | 0.666 |
R-HSA-9020956 | Interleukin-27 signaling | 1.825106e-01 | 0.739 |
R-HSA-1500620 | Meiosis | 1.962130e-01 | 0.707 |
R-HSA-162906 | HIV Infection | 1.610024e-01 | 0.793 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 1.639373e-01 | 0.785 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 2.123827e-01 | 0.673 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 2.123827e-01 | 0.673 |
R-HSA-194306 | Neurophilin interactions with VEGF and VEGFR | 2.123827e-01 | 0.673 |
R-HSA-75102 | C6 deamination of adenosine | 2.123827e-01 | 0.673 |
R-HSA-9818028 | NFE2L2 regulates pentose phosphate pathway genes | 2.257346e-01 | 0.646 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 1.598134e-01 | 0.796 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 1.742522e-01 | 0.759 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 1.590476e-01 | 0.798 |
R-HSA-1980145 | Signaling by NOTCH2 | 2.309676e-01 | 0.636 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 2.143002e-01 | 0.669 |
R-HSA-397795 | G-protein beta:gamma signalling | 2.060903e-01 | 0.686 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 2.060903e-01 | 0.686 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 2.318519e-01 | 0.635 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 1.613973e-01 | 0.792 |
R-HSA-9793380 | Formation of paraxial mesoderm | 2.332372e-01 | 0.632 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 1.613973e-01 | 0.792 |
R-HSA-68875 | Mitotic Prophase | 1.829743e-01 | 0.738 |
R-HSA-445355 | Smooth Muscle Contraction | 1.611228e-01 | 0.793 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 2.164883e-01 | 0.665 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 2.194850e-01 | 0.659 |
R-HSA-8953897 | Cellular responses to stimuli | 2.283023e-01 | 0.641 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 2.041296e-01 | 0.690 |
R-HSA-9758941 | Gastrulation | 2.042577e-01 | 0.690 |
R-HSA-211000 | Gene Silencing by RNA | 1.792313e-01 | 0.747 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 2.041296e-01 | 0.690 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 2.051848e-01 | 0.688 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 2.125766e-01 | 0.672 |
R-HSA-8866907 | Activation of the TFAP2 (AP-2) family of transcription factors | 1.613973e-01 | 0.792 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 1.825106e-01 | 0.739 |
R-HSA-425381 | Bicarbonate transporters | 2.039943e-01 | 0.690 |
R-HSA-428540 | Activation of RAC1 | 2.257346e-01 | 0.646 |
R-HSA-2682334 | EPH-Ephrin signaling | 1.612485e-01 | 0.793 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 1.622438e-01 | 0.790 |
R-HSA-1834941 | STING mediated induction of host immune responses | 1.742522e-01 | 0.759 |
R-HSA-8874177 | ATF6B (ATF6-beta) activates chaperones | 2.123827e-01 | 0.673 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 1.613973e-01 | 0.792 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 1.613973e-01 | 0.792 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 1.613973e-01 | 0.792 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 2.039943e-01 | 0.690 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 1.666456e-01 | 0.778 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 1.959258e-01 | 0.708 |
R-HSA-3214858 | RMTs methylate histone arginines | 2.021261e-01 | 0.694 |
R-HSA-1236394 | Signaling by ERBB4 | 2.220285e-01 | 0.654 |
R-HSA-9671555 | Signaling by PDGFR in disease | 2.194850e-01 | 0.659 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 2.039943e-01 | 0.690 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 1.730815e-01 | 0.762 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 1.869701e-01 | 0.728 |
R-HSA-6803529 | FGFR2 alternative splicing | 2.350646e-01 | 0.629 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 2.350646e-01 | 0.629 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 2.350646e-01 | 0.629 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 2.350646e-01 | 0.629 |
R-HSA-1980143 | Signaling by NOTCH1 | 2.393376e-01 | 0.621 |
R-HSA-167021 | PLC-gamma1 signalling | 2.580237e-01 | 0.588 |
R-HSA-9034793 | Activated NTRK3 signals through PLCG1 | 2.580237e-01 | 0.588 |
R-HSA-209563 | Axonal growth stimulation | 2.580237e-01 | 0.588 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 2.580237e-01 | 0.588 |
R-HSA-9909438 | 3-Methylcrotonyl-CoA carboxylase deficiency | 2.580237e-01 | 0.588 |
R-HSA-9026527 | Activated NTRK2 signals through PLCG1 | 3.010224e-01 | 0.521 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 3.010224e-01 | 0.521 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 3.415318e-01 | 0.467 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 2.476300e-01 | 0.606 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 2.476300e-01 | 0.606 |
R-HSA-3000484 | Scavenging by Class F Receptors | 2.476300e-01 | 0.606 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 3.796958e-01 | 0.421 |
R-HSA-8985586 | SLIT2:ROBO1 increases RHOA activity | 3.796958e-01 | 0.421 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 2.695895e-01 | 0.569 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 2.915324e-01 | 0.535 |
R-HSA-177539 | Autointegration results in viral DNA circles | 4.156499e-01 | 0.381 |
R-HSA-69478 | G2/M DNA replication checkpoint | 4.156499e-01 | 0.381 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 4.156499e-01 | 0.381 |
R-HSA-3595174 | Defective CHST14 causes EDS, musculocontractural type | 4.156499e-01 | 0.381 |
R-HSA-3595172 | Defective CHST3 causes SEDCJD | 4.156499e-01 | 0.381 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 3.133869e-01 | 0.504 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 3.133869e-01 | 0.504 |
R-HSA-176412 | Phosphorylation of the APC/C | 3.350897e-01 | 0.475 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 3.350897e-01 | 0.475 |
R-HSA-428890 | Role of ABL in ROBO-SLIT signaling | 4.495222e-01 | 0.347 |
R-HSA-8948747 | Regulation of PTEN localization | 4.495222e-01 | 0.347 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 4.495222e-01 | 0.347 |
R-HSA-3595177 | Defective CHSY1 causes TPBS | 4.495222e-01 | 0.347 |
R-HSA-420029 | Tight junction interactions | 2.827705e-01 | 0.549 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 3.565850e-01 | 0.448 |
R-HSA-8853659 | RET signaling | 2.565314e-01 | 0.591 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 2.565314e-01 | 0.591 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 3.150289e-01 | 0.502 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 3.150289e-01 | 0.502 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 3.150289e-01 | 0.502 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 3.778240e-01 | 0.423 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 4.814329e-01 | 0.317 |
R-HSA-167287 | HIV elongation arrest and recovery | 3.311977e-01 | 0.480 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 3.311977e-01 | 0.480 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 2.526694e-01 | 0.597 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 2.526694e-01 | 0.597 |
R-HSA-912631 | Regulation of signaling by CBL | 4.193694e-01 | 0.377 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 4.193694e-01 | 0.377 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 3.011679e-01 | 0.521 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 3.011679e-01 | 0.521 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 3.029656e-01 | 0.519 |
R-HSA-5654704 | SHC-mediated cascade:FGFR3 | 4.594524e-01 | 0.338 |
R-HSA-6782135 | Dual incision in TC-NER | 3.591776e-01 | 0.445 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 3.016528e-01 | 0.520 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 4.025972e-01 | 0.395 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 4.788813e-01 | 0.320 |
R-HSA-5654719 | SHC-mediated cascade:FGFR4 | 4.788813e-01 | 0.320 |
R-HSA-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 4.788813e-01 | 0.320 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 4.158570e-01 | 0.381 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 3.240468e-01 | 0.489 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 3.240468e-01 | 0.489 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 4.406188e-01 | 0.356 |
R-HSA-74158 | RNA Polymerase III Transcription | 2.565314e-01 | 0.591 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 3.902928e-01 | 0.409 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 2.695895e-01 | 0.569 |
R-HSA-5689603 | UCH proteinases | 3.863223e-01 | 0.413 |
R-HSA-9948299 | Ribosome-associated quality control | 4.456697e-01 | 0.351 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 2.988763e-01 | 0.525 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 4.399115e-01 | 0.357 |
R-HSA-157579 | Telomere Maintenance | 3.189819e-01 | 0.496 |
R-HSA-354192 | Integrin signaling | 4.113332e-01 | 0.386 |
R-HSA-5693537 | Resolution of D-Loop Structures | 4.270519e-01 | 0.370 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 4.460657e-01 | 0.351 |
R-HSA-5696398 | Nucleotide Excision Repair | 2.681283e-01 | 0.572 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 2.667437e-01 | 0.574 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 4.113332e-01 | 0.386 |
R-HSA-8983432 | Interleukin-15 signaling | 2.476300e-01 | 0.606 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 2.695895e-01 | 0.569 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 3.122273e-01 | 0.506 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 4.270519e-01 | 0.370 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 3.565850e-01 | 0.448 |
R-HSA-6804757 | Regulation of TP53 Degradation | 2.565314e-01 | 0.591 |
R-HSA-191650 | Regulation of gap junction activity | 3.010224e-01 | 0.521 |
R-HSA-418890 | Role of second messengers in netrin-1 signaling | 2.476300e-01 | 0.606 |
R-HSA-9027284 | Erythropoietin activates RAS | 3.133869e-01 | 0.504 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 3.133869e-01 | 0.504 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 3.565850e-01 | 0.448 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 3.332279e-01 | 0.477 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 2.524250e-01 | 0.598 |
R-HSA-1059683 | Interleukin-6 signaling | 2.695895e-01 | 0.569 |
R-HSA-6794361 | Neurexins and neuroligins | 2.897251e-01 | 0.538 |
R-HSA-6802957 | Oncogenic MAPK signaling | 4.799173e-01 | 0.319 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 3.415318e-01 | 0.467 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 3.796958e-01 | 0.421 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 2.915324e-01 | 0.535 |
R-HSA-444473 | Formyl peptide receptors bind formyl peptides and many other ligands | 4.814329e-01 | 0.317 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 2.559301e-01 | 0.592 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 3.634700e-01 | 0.440 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 2.927448e-01 | 0.534 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 2.958163e-01 | 0.529 |
R-HSA-8984722 | Interleukin-35 Signalling | 2.476300e-01 | 0.606 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 4.748704e-01 | 0.323 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 2.695895e-01 | 0.569 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 3.133869e-01 | 0.504 |
R-HSA-9006925 | Intracellular signaling by second messengers | 2.574317e-01 | 0.589 |
R-HSA-5250992 | Toxicity of botulinum toxin type E (botE) | 3.796958e-01 | 0.421 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 3.796958e-01 | 0.421 |
R-HSA-5250981 | Toxicity of botulinum toxin type F (botF) | 4.156499e-01 | 0.381 |
R-HSA-5250955 | Toxicity of botulinum toxin type D (botD) | 4.156499e-01 | 0.381 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 2.751537e-01 | 0.560 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 4.406188e-01 | 0.356 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 4.555872e-01 | 0.341 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 2.526694e-01 | 0.597 |
R-HSA-525793 | Myogenesis | 2.988763e-01 | 0.525 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 4.270519e-01 | 0.370 |
R-HSA-9907900 | Proteasome assembly | 3.759292e-01 | 0.425 |
R-HSA-72766 | Translation | 3.633931e-01 | 0.440 |
R-HSA-193639 | p75NTR signals via NF-kB | 3.133869e-01 | 0.504 |
R-HSA-8985947 | Interleukin-9 signaling | 4.814329e-01 | 0.317 |
R-HSA-2428924 | IGF1R signaling cascade | 4.290793e-01 | 0.367 |
R-HSA-389356 | Co-stimulation by CD28 | 2.448839e-01 | 0.611 |
R-HSA-6794362 | Protein-protein interactions at synapses | 3.216440e-01 | 0.493 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 2.580237e-01 | 0.588 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 3.010224e-01 | 0.521 |
R-HSA-5624138 | Trafficking of myristoylated proteins to the cilium | 3.415318e-01 | 0.467 |
R-HSA-8866376 | Reelin signalling pathway | 3.415318e-01 | 0.467 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 3.415318e-01 | 0.467 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 3.796958e-01 | 0.421 |
R-HSA-434313 | Intracellular metabolism of fatty acids regulates insulin secretion | 4.156499e-01 | 0.381 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 2.667437e-01 | 0.574 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 3.350897e-01 | 0.475 |
R-HSA-114516 | Disinhibition of SNARE formation | 4.495222e-01 | 0.347 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 2.827705e-01 | 0.549 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 2.827705e-01 | 0.549 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 3.987644e-01 | 0.399 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 4.426199e-01 | 0.354 |
R-HSA-9909396 | Circadian clock | 3.904170e-01 | 0.408 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 3.090850e-01 | 0.510 |
R-HSA-5617833 | Cilium Assembly | 2.713550e-01 | 0.566 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 4.814329e-01 | 0.317 |
R-HSA-983189 | Kinesins | 3.825411e-01 | 0.417 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 4.576872e-01 | 0.339 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 3.491589e-01 | 0.457 |
R-HSA-390648 | Muscarinic acetylcholine receptors | 3.415318e-01 | 0.467 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 3.350897e-01 | 0.475 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 2.783631e-01 | 0.555 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 3.235895e-01 | 0.490 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 4.025972e-01 | 0.395 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 4.681021e-01 | 0.330 |
R-HSA-3214847 | HATs acetylate histones | 4.839290e-01 | 0.315 |
R-HSA-9612973 | Autophagy | 4.651490e-01 | 0.332 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 4.580199e-01 | 0.339 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 4.421623e-01 | 0.354 |
R-HSA-381042 | PERK regulates gene expression | 4.580199e-01 | 0.339 |
R-HSA-9006335 | Signaling by Erythropoietin | 3.473538e-01 | 0.459 |
R-HSA-114604 | GPVI-mediated activation cascade | 4.732357e-01 | 0.325 |
R-HSA-5654738 | Signaling by FGFR2 | 2.751537e-01 | 0.560 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 2.580237e-01 | 0.588 |
R-HSA-195399 | VEGF binds to VEGFR leading to receptor dimerization | 3.796958e-01 | 0.421 |
R-HSA-1483152 | Hydrolysis of LPE | 4.156499e-01 | 0.381 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 4.156499e-01 | 0.381 |
R-HSA-8964041 | LDL remodeling | 4.495222e-01 | 0.347 |
R-HSA-8847453 | Synthesis of PIPs in the nucleus | 4.495222e-01 | 0.347 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 4.814329e-01 | 0.317 |
R-HSA-2172127 | DAP12 interactions | 3.759292e-01 | 0.425 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 4.594524e-01 | 0.338 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 2.738899e-01 | 0.562 |
R-HSA-5689880 | Ub-specific processing proteases | 4.755914e-01 | 0.323 |
R-HSA-2559583 | Cellular Senescence | 3.047093e-01 | 0.516 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 2.559278e-01 | 0.592 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 2.966733e-01 | 0.528 |
R-HSA-73884 | Base Excision Repair | 2.430177e-01 | 0.614 |
R-HSA-1266738 | Developmental Biology | 2.728818e-01 | 0.564 |
R-HSA-162582 | Signal Transduction | 3.217096e-01 | 0.493 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 3.473538e-01 | 0.459 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 3.634700e-01 | 0.440 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 4.580199e-01 | 0.339 |
R-HSA-190236 | Signaling by FGFR | 4.745235e-01 | 0.324 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 4.365154e-01 | 0.360 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 4.158570e-01 | 0.381 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 4.058678e-01 | 0.392 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 3.046333e-01 | 0.516 |
R-HSA-389948 | Co-inhibition by PD-1 | 4.346523e-01 | 0.362 |
R-HSA-5654743 | Signaling by FGFR4 | 3.625494e-01 | 0.441 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 4.580199e-01 | 0.339 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 4.346523e-01 | 0.362 |
R-HSA-73857 | RNA Polymerase II Transcription | 4.059453e-01 | 0.392 |
R-HSA-9931295 | PD-L1(CD274) glycosylation and translocation to plasma membrane | 4.594524e-01 | 0.338 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 4.788813e-01 | 0.320 |
R-HSA-5654741 | Signaling by FGFR3 | 3.892834e-01 | 0.410 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 3.565850e-01 | 0.448 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 2.988763e-01 | 0.525 |
R-HSA-3928664 | Ephrin signaling | 3.987644e-01 | 0.399 |
R-HSA-1474165 | Reproduction | 2.599053e-01 | 0.585 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 2.800707e-01 | 0.553 |
R-HSA-447038 | NrCAM interactions | 3.415318e-01 | 0.467 |
R-HSA-194313 | VEGF ligand-receptor interactions | 3.796958e-01 | 0.421 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 3.796958e-01 | 0.421 |
R-HSA-9796292 | Formation of axial mesoderm | 2.695895e-01 | 0.569 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 4.156499e-01 | 0.381 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 2.508299e-01 | 0.601 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 4.495222e-01 | 0.347 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 4.495222e-01 | 0.347 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 3.150289e-01 | 0.502 |
R-HSA-425986 | Sodium/Proton exchangers | 4.814329e-01 | 0.317 |
R-HSA-1234174 | Cellular response to hypoxia | 2.725283e-01 | 0.565 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 3.795209e-01 | 0.421 |
R-HSA-399719 | Trafficking of AMPA receptors | 3.795209e-01 | 0.421 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 3.235895e-01 | 0.490 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 4.788813e-01 | 0.320 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 4.426199e-01 | 0.354 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 4.058678e-01 | 0.392 |
R-HSA-9707616 | Heme signaling | 2.428957e-01 | 0.615 |
R-HSA-9682385 | FLT3 signaling in disease | 4.732357e-01 | 0.325 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 2.667437e-01 | 0.574 |
R-HSA-8863678 | Neurodegenerative Diseases | 2.667437e-01 | 0.574 |
R-HSA-8848021 | Signaling by PTK6 | 4.174926e-01 | 0.379 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 4.174926e-01 | 0.379 |
R-HSA-9645723 | Diseases of programmed cell death | 3.597131e-01 | 0.444 |
R-HSA-9830364 | Formation of the nephric duct | 2.827705e-01 | 0.549 |
R-HSA-75157 | FasL/ CD95L signaling | 2.580237e-01 | 0.588 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 3.796958e-01 | 0.421 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 3.796958e-01 | 0.421 |
R-HSA-8866423 | VLDL assembly | 4.156499e-01 | 0.381 |
R-HSA-9823739 | Formation of the anterior neural plate | 3.133869e-01 | 0.504 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 3.133869e-01 | 0.504 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 3.133869e-01 | 0.504 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 3.987644e-01 | 0.399 |
R-HSA-389513 | Co-inhibition by CTLA4 | 4.396076e-01 | 0.357 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 3.444004e-01 | 0.463 |
R-HSA-9833482 | PKR-mediated signaling | 4.282323e-01 | 0.368 |
R-HSA-376176 | Signaling by ROBO receptors | 3.499235e-01 | 0.456 |
R-HSA-168255 | Influenza Infection | 4.029045e-01 | 0.395 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 3.150289e-01 | 0.502 |
R-HSA-9007101 | Rab regulation of trafficking | 3.819415e-01 | 0.418 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 4.650747e-01 | 0.332 |
R-HSA-1483255 | PI Metabolism | 3.630154e-01 | 0.440 |
R-HSA-75158 | TRAIL signaling | 3.796958e-01 | 0.421 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 3.350897e-01 | 0.475 |
R-HSA-373760 | L1CAM interactions | 3.736024e-01 | 0.428 |
R-HSA-9614085 | FOXO-mediated transcription | 4.839290e-01 | 0.315 |
R-HSA-9659379 | Sensory processing of sound | 2.660657e-01 | 0.575 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 4.594524e-01 | 0.338 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 3.541474e-01 | 0.451 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 4.799173e-01 | 0.319 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 4.156499e-01 | 0.381 |
R-HSA-2892245 | POU5F1 (OCT4), SOX2, NANOG repress genes related to differentiation | 4.495222e-01 | 0.347 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 2.826220e-01 | 0.549 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 4.113332e-01 | 0.386 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 4.495222e-01 | 0.347 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 4.377891e-01 | 0.359 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 3.350897e-01 | 0.475 |
R-HSA-449836 | Other interleukin signaling | 4.193694e-01 | 0.377 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 4.113332e-01 | 0.386 |
R-HSA-9827857 | Specification of primordial germ cells | 3.778240e-01 | 0.423 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 2.695895e-01 | 0.569 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 3.090850e-01 | 0.510 |
R-HSA-9020933 | Interleukin-23 signaling | 4.814329e-01 | 0.317 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 2.725283e-01 | 0.565 |
R-HSA-373753 | Nephrin family interactions | 4.396076e-01 | 0.357 |
R-HSA-186712 | Regulation of beta-cell development | 3.708588e-01 | 0.431 |
R-HSA-168316 | Assembly of Viral Components at the Budding Site | 3.415318e-01 | 0.467 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 4.426199e-01 | 0.354 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 3.987644e-01 | 0.399 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 4.861390e-01 | 0.313 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 4.882531e-01 | 0.311 |
R-HSA-9678108 | SARS-CoV-1 Infection | 4.897588e-01 | 0.310 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 4.900975e-01 | 0.310 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 4.900975e-01 | 0.310 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 4.973212e-01 | 0.303 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 4.978759e-01 | 0.303 |
R-HSA-8964038 | LDL clearance | 4.978759e-01 | 0.303 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 4.978759e-01 | 0.303 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 4.978759e-01 | 0.303 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 5.002121e-01 | 0.301 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 5.061403e-01 | 0.296 |
R-HSA-170984 | ARMS-mediated activation | 5.114956e-01 | 0.291 |
R-HSA-9020958 | Interleukin-21 signaling | 5.114956e-01 | 0.291 |
R-HSA-9700645 | ALK mutants bind TKIs | 5.114956e-01 | 0.291 |
R-HSA-2025928 | Calcineurin activates NFAT | 5.114956e-01 | 0.291 |
R-HSA-5250968 | Toxicity of botulinum toxin type A (botA) | 5.114956e-01 | 0.291 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 5.114956e-01 | 0.291 |
R-HSA-193697 | p75NTR regulates axonogenesis | 5.114956e-01 | 0.291 |
R-HSA-75072 | mRNA Editing | 5.114956e-01 | 0.291 |
R-HSA-112411 | MAPK1 (ERK2) activation | 5.114956e-01 | 0.291 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 5.114956e-01 | 0.291 |
R-HSA-163680 | AMPK inhibits chREBP transcriptional activation activity | 5.114956e-01 | 0.291 |
R-HSA-9840373 | Cellular response to mitochondrial stress | 5.114956e-01 | 0.291 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 5.114956e-01 | 0.291 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 5.114956e-01 | 0.291 |
R-HSA-418889 | Caspase activation via Dependence Receptors in the absence of ligand | 5.114956e-01 | 0.291 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 5.118408e-01 | 0.291 |
R-HSA-912526 | Interleukin receptor SHC signaling | 5.164213e-01 | 0.287 |
R-HSA-167160 | RNA Pol II CTD phosphorylation and interaction with CE during HIV infection | 5.164213e-01 | 0.287 |
R-HSA-77075 | RNA Pol II CTD phosphorylation and interaction with CE | 5.164213e-01 | 0.287 |
R-HSA-8943723 | Regulation of PTEN mRNA translation | 5.164213e-01 | 0.287 |
R-HSA-9830674 | Formation of the ureteric bud | 5.164213e-01 | 0.287 |
R-HSA-392451 | G beta:gamma signalling through PI3Kgamma | 5.164213e-01 | 0.287 |
R-HSA-199991 | Membrane Trafficking | 5.175316e-01 | 0.286 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 5.176409e-01 | 0.286 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 5.176409e-01 | 0.286 |
R-HSA-69541 | Stabilization of p53 | 5.176409e-01 | 0.286 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 5.176409e-01 | 0.286 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 5.193994e-01 | 0.284 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 5.202240e-01 | 0.284 |
R-HSA-5683057 | MAPK family signaling cascades | 5.209174e-01 | 0.283 |
R-HSA-9734767 | Developmental Cell Lineages | 5.223013e-01 | 0.282 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 5.301531e-01 | 0.276 |
R-HSA-5654736 | Signaling by FGFR1 | 5.308110e-01 | 0.275 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 5.319891e-01 | 0.274 |
R-HSA-167169 | HIV Transcription Elongation | 5.319891e-01 | 0.274 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 5.319891e-01 | 0.274 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 5.319891e-01 | 0.274 |
R-HSA-9646399 | Aggrephagy | 5.319891e-01 | 0.274 |
R-HSA-5654688 | SHC-mediated cascade:FGFR1 | 5.345058e-01 | 0.272 |
R-HSA-6783589 | Interleukin-6 family signaling | 5.345058e-01 | 0.272 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 5.345058e-01 | 0.272 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 5.372007e-01 | 0.270 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 5.387885e-01 | 0.269 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 5.398172e-01 | 0.268 |
R-HSA-68952 | DNA replication initiation | 5.398172e-01 | 0.268 |
R-HSA-451308 | Activation of Ca-permeable Kainate Receptor | 5.398172e-01 | 0.268 |
R-HSA-5221030 | TET1,2,3 and TDG demethylate DNA | 5.398172e-01 | 0.268 |
R-HSA-74749 | Signal attenuation | 5.398172e-01 | 0.268 |
R-HSA-9948001 | CASP4 inflammasome assembly | 5.398172e-01 | 0.268 |
R-HSA-9664873 | Pexophagy | 5.398172e-01 | 0.268 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 5.398172e-01 | 0.268 |
R-HSA-110056 | MAPK3 (ERK1) activation | 5.398172e-01 | 0.268 |
R-HSA-1300642 | Sperm Motility And Taxes | 5.398172e-01 | 0.268 |
R-HSA-5689877 | Josephin domain DUBs | 5.398172e-01 | 0.268 |
R-HSA-9683686 | Maturation of spike protein | 5.398172e-01 | 0.268 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 5.460938e-01 | 0.263 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 5.460938e-01 | 0.263 |
R-HSA-9694548 | Maturation of spike protein | 5.460938e-01 | 0.263 |
R-HSA-9607240 | FLT3 Signaling | 5.460938e-01 | 0.263 |
R-HSA-9620244 | Long-term potentiation | 5.521204e-01 | 0.258 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 5.521204e-01 | 0.258 |
R-HSA-1280218 | Adaptive Immune System | 5.533764e-01 | 0.257 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 5.548592e-01 | 0.256 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 5.555244e-01 | 0.255 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 5.565632e-01 | 0.254 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 5.571021e-01 | 0.254 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 5.592460e-01 | 0.252 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 5.599470e-01 | 0.252 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 5.599470e-01 | 0.252 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 5.599470e-01 | 0.252 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 5.599470e-01 | 0.252 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 5.599470e-01 | 0.252 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 5.648797e-01 | 0.248 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 5.664984e-01 | 0.247 |
R-HSA-451306 | Ionotropic activity of kainate receptors | 5.664984e-01 | 0.247 |
R-HSA-192905 | vRNP Assembly | 5.664984e-01 | 0.247 |
R-HSA-8963888 | Chylomicron assembly | 5.664984e-01 | 0.247 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 5.664984e-01 | 0.247 |
R-HSA-5682910 | LGI-ADAM interactions | 5.664984e-01 | 0.247 |
R-HSA-210990 | PECAM1 interactions | 5.664984e-01 | 0.247 |
R-HSA-9635465 | Suppression of apoptosis | 5.664984e-01 | 0.247 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 5.664984e-01 | 0.247 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 5.692589e-01 | 0.245 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 5.692589e-01 | 0.245 |
R-HSA-70635 | Urea cycle | 5.692589e-01 | 0.245 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 5.692589e-01 | 0.245 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 5.692589e-01 | 0.245 |
R-HSA-2132295 | MHC class II antigen presentation | 5.720004e-01 | 0.243 |
R-HSA-5673001 | RAF/MAP kinase cascade | 5.732940e-01 | 0.242 |
R-HSA-72306 | tRNA processing | 5.738649e-01 | 0.241 |
R-HSA-5654699 | SHC-mediated cascade:FGFR2 | 5.859173e-01 | 0.232 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 5.859173e-01 | 0.232 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 5.859173e-01 | 0.232 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 5.859173e-01 | 0.232 |
R-HSA-9710421 | Defective pyroptosis | 5.868710e-01 | 0.231 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 5.868710e-01 | 0.231 |
R-HSA-8854214 | TBC/RABGAPs | 5.868710e-01 | 0.231 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 5.868710e-01 | 0.231 |
R-HSA-2022923 | DS-GAG biosynthesis | 5.916342e-01 | 0.228 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 5.916342e-01 | 0.228 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 5.916342e-01 | 0.228 |
R-HSA-113501 | Inhibition of replication initiation of damaged DNA by RB1/E2F1 | 5.916342e-01 | 0.228 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 5.916342e-01 | 0.228 |
R-HSA-1236977 | Endosomal/Vacuolar pathway | 5.916342e-01 | 0.228 |
R-HSA-433692 | Proton-coupled monocarboxylate transport | 5.916342e-01 | 0.228 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 5.961820e-01 | 0.225 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 5.961820e-01 | 0.225 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 5.961820e-01 | 0.225 |
R-HSA-3928662 | EPHB-mediated forward signaling | 5.999307e-01 | 0.222 |
R-HSA-373752 | Netrin-1 signaling | 5.999307e-01 | 0.222 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 6.002834e-01 | 0.222 |
R-HSA-1632852 | Macroautophagy | 6.002834e-01 | 0.222 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 6.013236e-01 | 0.221 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 6.020936e-01 | 0.220 |
R-HSA-113418 | Formation of the Early Elongation Complex | 6.020936e-01 | 0.220 |
R-HSA-171319 | Telomere Extension By Telomerase | 6.020936e-01 | 0.220 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 6.020936e-01 | 0.220 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 6.042387e-01 | 0.219 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 6.109374e-01 | 0.214 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 6.127161e-01 | 0.213 |
R-HSA-6783310 | Fanconi Anemia Pathway | 6.127161e-01 | 0.213 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 6.127161e-01 | 0.213 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 6.127161e-01 | 0.213 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 6.127161e-01 | 0.213 |
R-HSA-9824272 | Somitogenesis | 6.127161e-01 | 0.213 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 6.129401e-01 | 0.213 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 6.147983e-01 | 0.211 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 6.153140e-01 | 0.211 |
R-HSA-3656237 | Defective EXT2 causes exostoses 2 | 6.153140e-01 | 0.211 |
R-HSA-3656253 | Defective EXT1 causes exostoses 1, TRPS2 and CHDS | 6.153140e-01 | 0.211 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 6.153140e-01 | 0.211 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 6.153140e-01 | 0.211 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 6.153140e-01 | 0.211 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 6.153140e-01 | 0.211 |
R-HSA-8866427 | VLDLR internalisation and degradation | 6.153140e-01 | 0.211 |
R-HSA-877312 | Regulation of IFNG signaling | 6.153140e-01 | 0.211 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 6.153140e-01 | 0.211 |
R-HSA-209543 | p75NTR recruits signalling complexes | 6.153140e-01 | 0.211 |
R-HSA-8851805 | MET activates RAS signaling | 6.153140e-01 | 0.211 |
R-HSA-1679131 | Trafficking and processing of endosomal TLR | 6.153140e-01 | 0.211 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 6.153140e-01 | 0.211 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 6.153140e-01 | 0.211 |
R-HSA-9005895 | Pervasive developmental disorders | 6.153140e-01 | 0.211 |
R-HSA-9697154 | Disorders of Nervous System Development | 6.153140e-01 | 0.211 |
R-HSA-1247673 | Erythrocytes take up oxygen and release carbon dioxide | 6.153140e-01 | 0.211 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 6.153140e-01 | 0.211 |
R-HSA-9615710 | Late endosomal microautophagy | 6.177876e-01 | 0.209 |
R-HSA-72086 | mRNA Capping | 6.177876e-01 | 0.209 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 6.177876e-01 | 0.209 |
R-HSA-180024 | DARPP-32 events | 6.177876e-01 | 0.209 |
R-HSA-5334118 | DNA methylation | 6.177876e-01 | 0.209 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 6.177876e-01 | 0.209 |
R-HSA-210745 | Regulation of gene expression in beta cells | 6.177876e-01 | 0.209 |
R-HSA-913531 | Interferon Signaling | 6.188918e-01 | 0.208 |
R-HSA-9839373 | Signaling by TGFBR3 | 6.252239e-01 | 0.204 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 6.253150e-01 | 0.204 |
R-HSA-397014 | Muscle contraction | 6.275058e-01 | 0.202 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 6.330010e-01 | 0.199 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 6.330010e-01 | 0.199 |
R-HSA-9008059 | Interleukin-37 signaling | 6.330010e-01 | 0.199 |
R-HSA-114452 | Activation of BH3-only proteins | 6.330010e-01 | 0.199 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 6.349182e-01 | 0.197 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 6.374517e-01 | 0.196 |
R-HSA-437239 | Recycling pathway of L1 | 6.374517e-01 | 0.196 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 6.376220e-01 | 0.195 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 6.376220e-01 | 0.195 |
R-HSA-6788467 | IL-6-type cytokine receptor ligand interactions | 6.376220e-01 | 0.195 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 6.376220e-01 | 0.195 |
R-HSA-1475029 | Reversible hydration of carbon dioxide | 6.376220e-01 | 0.195 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 6.376220e-01 | 0.195 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 6.376220e-01 | 0.195 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 6.414270e-01 | 0.193 |
R-HSA-9711123 | Cellular response to chemical stress | 6.470852e-01 | 0.189 |
R-HSA-182971 | EGFR downregulation | 6.477367e-01 | 0.189 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 6.477367e-01 | 0.189 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 6.477367e-01 | 0.189 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 6.493306e-01 | 0.188 |
R-HSA-5620924 | Intraflagellar transport | 6.493974e-01 | 0.187 |
R-HSA-9031628 | NGF-stimulated transcription | 6.493974e-01 | 0.187 |
R-HSA-9634597 | GPER1 signaling | 6.493974e-01 | 0.187 |
R-HSA-70171 | Glycolysis | 6.495588e-01 | 0.187 |
R-HSA-9830369 | Kidney development | 6.542032e-01 | 0.184 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 6.571392e-01 | 0.182 |
R-HSA-166520 | Signaling by NTRKs | 6.576998e-01 | 0.182 |
R-HSA-5654227 | Phospholipase C-mediated cascade; FGFR3 | 6.586376e-01 | 0.181 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 6.586376e-01 | 0.181 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 6.586376e-01 | 0.181 |
R-HSA-1170546 | Prolactin receptor signaling | 6.586376e-01 | 0.181 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 6.586376e-01 | 0.181 |
R-HSA-9686114 | Non-canonical inflammasome activation | 6.586376e-01 | 0.181 |
R-HSA-1483115 | Hydrolysis of LPC | 6.586376e-01 | 0.181 |
R-HSA-9856872 | Malate-aspartate shuttle | 6.586376e-01 | 0.181 |
R-HSA-1433559 | Regulation of KIT signaling | 6.586376e-01 | 0.181 |
R-HSA-435354 | Zinc transporters | 6.586376e-01 | 0.181 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 6.586376e-01 | 0.181 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 6.610601e-01 | 0.180 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 6.610601e-01 | 0.180 |
R-HSA-4791275 | Signaling by WNT in cancer | 6.619990e-01 | 0.179 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 6.619990e-01 | 0.179 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 6.619990e-01 | 0.179 |
R-HSA-167172 | Transcription of the HIV genome | 6.642724e-01 | 0.178 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 6.643671e-01 | 0.178 |
R-HSA-5658442 | Regulation of RAS by GAPs | 6.724392e-01 | 0.172 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 6.757930e-01 | 0.170 |
R-HSA-180336 | SHC1 events in EGFR signaling | 6.784356e-01 | 0.168 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 6.784356e-01 | 0.168 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 6.784356e-01 | 0.168 |
R-HSA-73780 | RNA Polymerase III Chain Elongation | 6.784356e-01 | 0.168 |
R-HSA-5654228 | Phospholipase C-mediated cascade; FGFR4 | 6.784356e-01 | 0.168 |
R-HSA-110312 | Translesion synthesis by REV1 | 6.784356e-01 | 0.168 |
R-HSA-1295596 | Spry regulation of FGF signaling | 6.784356e-01 | 0.168 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 6.784356e-01 | 0.168 |
R-HSA-196780 | Biotin transport and metabolism | 6.784356e-01 | 0.168 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 6.784356e-01 | 0.168 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 6.784356e-01 | 0.168 |
R-HSA-416700 | Other semaphorin interactions | 6.784356e-01 | 0.168 |
R-HSA-418885 | DCC mediated attractive signaling | 6.784356e-01 | 0.168 |
R-HSA-73942 | DNA Damage Reversal | 6.784356e-01 | 0.168 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 6.845475e-01 | 0.165 |
R-HSA-9663891 | Selective autophagy | 6.864538e-01 | 0.163 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 6.891253e-01 | 0.162 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 6.891253e-01 | 0.162 |
R-HSA-1482788 | Acyl chain remodelling of PC | 6.891253e-01 | 0.162 |
R-HSA-5223345 | Miscellaneous transport and binding events | 6.891253e-01 | 0.162 |
R-HSA-5632684 | Hedgehog 'on' state | 6.932662e-01 | 0.159 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 6.943480e-01 | 0.158 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 6.943480e-01 | 0.158 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 6.943480e-01 | 0.158 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 6.965187e-01 | 0.157 |
R-HSA-5656121 | Translesion synthesis by POLI | 6.970866e-01 | 0.157 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 6.970866e-01 | 0.157 |
R-HSA-5083625 | Defective GALNT3 causes HFTC | 6.970866e-01 | 0.157 |
R-HSA-5083636 | Defective GALNT12 causes CRCS1 | 6.970866e-01 | 0.157 |
R-HSA-169893 | Prolonged ERK activation events | 6.970866e-01 | 0.157 |
R-HSA-9706369 | Negative regulation of FLT3 | 6.970866e-01 | 0.157 |
R-HSA-5635838 | Activation of SMO | 6.970866e-01 | 0.157 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 6.970866e-01 | 0.157 |
R-HSA-9678110 | Attachment and Entry | 6.970866e-01 | 0.157 |
R-HSA-168268 | Virus Assembly and Release | 6.970866e-01 | 0.157 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 7.020029e-01 | 0.154 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 7.020029e-01 | 0.154 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 7.020029e-01 | 0.154 |
R-HSA-203615 | eNOS activation | 7.020029e-01 | 0.154 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 7.020029e-01 | 0.154 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 7.020029e-01 | 0.154 |
R-HSA-5205647 | Mitophagy | 7.020029e-01 | 0.154 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 7.020029e-01 | 0.154 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 7.025242e-01 | 0.153 |
R-HSA-202424 | Downstream TCR signaling | 7.032732e-01 | 0.153 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 7.048795e-01 | 0.152 |
R-HSA-5358351 | Signaling by Hedgehog | 7.057769e-01 | 0.151 |
R-HSA-195721 | Signaling by WNT | 7.085461e-01 | 0.150 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 7.114439e-01 | 0.148 |
R-HSA-4086398 | Ca2+ pathway | 7.115788e-01 | 0.148 |
R-HSA-2559585 | Oncogene Induced Senescence | 7.144337e-01 | 0.146 |
R-HSA-187687 | Signalling to ERKs | 7.144337e-01 | 0.146 |
R-HSA-1482839 | Acyl chain remodelling of PE | 7.144337e-01 | 0.146 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 7.144337e-01 | 0.146 |
R-HSA-169911 | Regulation of Apoptosis | 7.144337e-01 | 0.146 |
R-HSA-1250347 | SHC1 events in ERBB4 signaling | 7.146568e-01 | 0.146 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 7.146568e-01 | 0.146 |
R-HSA-5655862 | Translesion synthesis by POLK | 7.146568e-01 | 0.146 |
R-HSA-3560783 | Defective B4GALT7 causes EDS, progeroid type | 7.146568e-01 | 0.146 |
R-HSA-4420332 | Defective B3GALT6 causes EDSP2 and SEMDJL1 | 7.146568e-01 | 0.146 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 7.146568e-01 | 0.146 |
R-HSA-9675151 | Disorders of Developmental Biology | 7.146568e-01 | 0.146 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 7.146568e-01 | 0.146 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 7.151312e-01 | 0.146 |
R-HSA-212300 | PRC2 methylates histones and DNA | 7.264262e-01 | 0.139 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 7.264262e-01 | 0.139 |
R-HSA-69205 | G1/S-Specific Transcription | 7.264262e-01 | 0.139 |
R-HSA-156842 | Eukaryotic Translation Elongation | 7.273062e-01 | 0.138 |
R-HSA-5654219 | Phospholipase C-mediated cascade: FGFR1 | 7.312089e-01 | 0.136 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 7.312089e-01 | 0.136 |
R-HSA-3560801 | Defective B3GAT3 causes JDSSDHD | 7.312089e-01 | 0.136 |
R-HSA-5083632 | Defective C1GALT1C1 causes TNPS | 7.312089e-01 | 0.136 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 7.312089e-01 | 0.136 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 7.312089e-01 | 0.136 |
R-HSA-1660517 | Synthesis of PIPs at the late endosome membrane | 7.312089e-01 | 0.136 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 7.312089e-01 | 0.136 |
R-HSA-9824446 | Viral Infection Pathways | 7.314677e-01 | 0.136 |
R-HSA-9006936 | Signaling by TGFB family members | 7.342184e-01 | 0.134 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 7.348040e-01 | 0.134 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 7.348040e-01 | 0.134 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 7.379894e-01 | 0.132 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 7.379894e-01 | 0.132 |
R-HSA-4641258 | Degradation of DVL | 7.379894e-01 | 0.132 |
R-HSA-4641257 | Degradation of AXIN | 7.379894e-01 | 0.132 |
R-HSA-5689896 | Ovarian tumor domain proteases | 7.379894e-01 | 0.132 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 7.379894e-01 | 0.132 |
R-HSA-114608 | Platelet degranulation | 7.422517e-01 | 0.129 |
R-HSA-9694635 | Translation of Structural Proteins | 7.457729e-01 | 0.127 |
R-HSA-73980 | RNA Polymerase III Transcription Termination | 7.468018e-01 | 0.127 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 7.468018e-01 | 0.127 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 7.468018e-01 | 0.127 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 7.468018e-01 | 0.127 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 7.468018e-01 | 0.127 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 7.468018e-01 | 0.127 |
R-HSA-180292 | GAB1 signalosome | 7.468018e-01 | 0.127 |
R-HSA-111471 | Apoptotic factor-mediated response | 7.468018e-01 | 0.127 |
R-HSA-210993 | Tie2 Signaling | 7.468018e-01 | 0.127 |
R-HSA-2871796 | FCERI mediated MAPK activation | 7.485044e-01 | 0.126 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 7.486201e-01 | 0.126 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 7.491327e-01 | 0.125 |
R-HSA-8964043 | Plasma lipoprotein clearance | 7.598659e-01 | 0.119 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 7.598659e-01 | 0.119 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 7.598659e-01 | 0.119 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 7.614910e-01 | 0.118 |
R-HSA-8851708 | Signaling by FGFR2 IIIa TM | 7.614910e-01 | 0.118 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 7.614910e-01 | 0.118 |
R-HSA-9834899 | Specification of the neural plate border | 7.614910e-01 | 0.118 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 7.614910e-01 | 0.118 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 7.614910e-01 | 0.118 |
R-HSA-844456 | The NLRP3 inflammasome | 7.614910e-01 | 0.118 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 7.614910e-01 | 0.118 |
R-HSA-1480926 | O2/CO2 exchange in erythrocytes | 7.614910e-01 | 0.118 |
R-HSA-1237112 | Methionine salvage pathway | 7.614910e-01 | 0.118 |
R-HSA-1237044 | Erythrocytes take up carbon dioxide and release oxygen | 7.614910e-01 | 0.118 |
R-HSA-9694631 | Maturation of nucleoprotein | 7.614910e-01 | 0.118 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 7.614910e-01 | 0.118 |
R-HSA-6807878 | COPI-mediated anterograde transport | 7.641789e-01 | 0.117 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 7.641789e-01 | 0.117 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 7.693243e-01 | 0.114 |
R-HSA-6806834 | Signaling by MET | 7.693243e-01 | 0.114 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 7.701991e-01 | 0.113 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 7.701991e-01 | 0.113 |
R-HSA-451927 | Interleukin-2 family signaling | 7.701991e-01 | 0.113 |
R-HSA-379724 | tRNA Aminoacylation | 7.709099e-01 | 0.113 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 7.744956e-01 | 0.111 |
R-HSA-5654221 | Phospholipase C-mediated cascade; FGFR2 | 7.753288e-01 | 0.111 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 7.753288e-01 | 0.111 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 7.753288e-01 | 0.111 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 7.753288e-01 | 0.111 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 7.753288e-01 | 0.111 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 7.753288e-01 | 0.111 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 7.753288e-01 | 0.111 |
R-HSA-71288 | Creatine metabolism | 7.753288e-01 | 0.111 |
R-HSA-445144 | Signal transduction by L1 | 7.753288e-01 | 0.111 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 7.792821e-01 | 0.108 |
R-HSA-450294 | MAP kinase activation | 7.792821e-01 | 0.108 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 7.801426e-01 | 0.108 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 7.801426e-01 | 0.108 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 7.840526e-01 | 0.106 |
R-HSA-212436 | Generic Transcription Pathway | 7.870024e-01 | 0.104 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 7.874007e-01 | 0.104 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 7.874007e-01 | 0.104 |
R-HSA-167044 | Signalling to RAS | 7.883646e-01 | 0.103 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 7.883646e-01 | 0.103 |
R-HSA-198753 | ERK/MAPK targets | 7.883646e-01 | 0.103 |
R-HSA-210991 | Basigin interactions | 7.883646e-01 | 0.103 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 7.897067e-01 | 0.103 |
R-HSA-167161 | HIV Transcription Initiation | 7.897067e-01 | 0.103 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 7.897067e-01 | 0.103 |
R-HSA-9656223 | Signaling by RAF1 mutants | 7.897067e-01 | 0.103 |
R-HSA-5674135 | MAP2K and MAPK activation | 7.897067e-01 | 0.103 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 7.897067e-01 | 0.103 |
R-HSA-6811438 | Intra-Golgi traffic | 7.897067e-01 | 0.103 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 7.897067e-01 | 0.103 |
R-HSA-5610787 | Hedgehog 'off' state | 7.908630e-01 | 0.102 |
R-HSA-382556 | ABC-family proteins mediated transport | 7.908630e-01 | 0.102 |
R-HSA-70326 | Glucose metabolism | 7.926305e-01 | 0.101 |
R-HSA-449147 | Signaling by Interleukins | 7.947456e-01 | 0.100 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 7.952700e-01 | 0.099 |
R-HSA-9020702 | Interleukin-1 signaling | 7.971528e-01 | 0.098 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 7.980227e-01 | 0.098 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 7.989020e-01 | 0.098 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 7.989020e-01 | 0.098 |
R-HSA-73928 | Depyrimidination | 7.989020e-01 | 0.098 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 7.989020e-01 | 0.098 |
R-HSA-2022870 | CS-GAG biosynthesis | 8.006448e-01 | 0.097 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 8.006448e-01 | 0.097 |
R-HSA-9694614 | Attachment and Entry | 8.006448e-01 | 0.097 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 8.032929e-01 | 0.095 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 8.061753e-01 | 0.094 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 8.072917e-01 | 0.093 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 8.077390e-01 | 0.093 |
R-HSA-1433557 | Signaling by SCF-KIT | 8.077390e-01 | 0.093 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 8.122131e-01 | 0.090 |
R-HSA-168799 | Neurotoxicity of clostridium toxins | 8.122131e-01 | 0.090 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 8.122131e-01 | 0.090 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 8.122131e-01 | 0.090 |
R-HSA-69231 | Cyclin D associated events in G1 | 8.162285e-01 | 0.088 |
R-HSA-69236 | G1 Phase | 8.162285e-01 | 0.088 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 8.162285e-01 | 0.088 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 8.174290e-01 | 0.088 |
R-HSA-9610379 | HCMV Late Events | 8.185931e-01 | 0.087 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 8.208328e-01 | 0.086 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 8.208328e-01 | 0.086 |
R-HSA-9833110 | RSV-host interactions | 8.208328e-01 | 0.086 |
R-HSA-977068 | Termination of O-glycan biosynthesis | 8.231108e-01 | 0.085 |
R-HSA-8854691 | Interleukin-20 family signaling | 8.231108e-01 | 0.085 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 8.231108e-01 | 0.085 |
R-HSA-1369062 | ABC transporters in lipid homeostasis | 8.231108e-01 | 0.085 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 8.231108e-01 | 0.085 |
R-HSA-9937008 | Mitochondrial mRNA modification | 8.231108e-01 | 0.085 |
R-HSA-3000170 | Syndecan interactions | 8.231108e-01 | 0.085 |
R-HSA-438064 | Post NMDA receptor activation events | 8.237688e-01 | 0.084 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 8.243809e-01 | 0.084 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 8.243809e-01 | 0.084 |
R-HSA-1489509 | DAG and IP3 signaling | 8.243809e-01 | 0.084 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 8.255144e-01 | 0.083 |
R-HSA-156902 | Peptide chain elongation | 8.297643e-01 | 0.081 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 8.322067e-01 | 0.080 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 8.322067e-01 | 0.080 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 8.322067e-01 | 0.080 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 8.322067e-01 | 0.080 |
R-HSA-6802949 | Signaling by RAS mutants | 8.322067e-01 | 0.080 |
R-HSA-9675135 | Diseases of DNA repair | 8.322067e-01 | 0.080 |
R-HSA-9821993 | Replacement of protamines by nucleosomes in the male pronucleus | 8.333767e-01 | 0.079 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 8.333767e-01 | 0.079 |
R-HSA-9836573 | Mitochondrial RNA degradation | 8.333767e-01 | 0.079 |
R-HSA-8963898 | Plasma lipoprotein assembly | 8.333767e-01 | 0.079 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 8.351673e-01 | 0.078 |
R-HSA-1236974 | ER-Phagosome pathway | 8.355893e-01 | 0.078 |
R-HSA-1236975 | Antigen processing-Cross presentation | 8.422338e-01 | 0.075 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 8.430473e-01 | 0.074 |
R-HSA-1482801 | Acyl chain remodelling of PS | 8.430473e-01 | 0.074 |
R-HSA-9839394 | TGFBR3 expression | 8.430473e-01 | 0.074 |
R-HSA-1187000 | Fertilization | 8.430473e-01 | 0.074 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 8.430473e-01 | 0.074 |
R-HSA-448424 | Interleukin-17 signaling | 8.437746e-01 | 0.074 |
R-HSA-5653656 | Vesicle-mediated transport | 8.460265e-01 | 0.073 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 8.467397e-01 | 0.072 |
R-HSA-425410 | Metal ion SLC transporters | 8.469203e-01 | 0.072 |
R-HSA-157118 | Signaling by NOTCH | 8.492639e-01 | 0.071 |
R-HSA-3295583 | TRP channels | 8.521573e-01 | 0.069 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 8.521573e-01 | 0.069 |
R-HSA-9845614 | Sphingolipid catabolism | 8.521573e-01 | 0.069 |
R-HSA-9865118 | Diseases of branched-chain amino acid catabolism | 8.521573e-01 | 0.069 |
R-HSA-1855183 | Synthesis of IP2, IP, and Ins in the cytosol | 8.521573e-01 | 0.069 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 8.521573e-01 | 0.069 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 8.572450e-01 | 0.067 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 8.604512e-01 | 0.065 |
R-HSA-9748787 | Azathioprine ADME | 8.604512e-01 | 0.065 |
R-HSA-171306 | Packaging Of Telomere Ends | 8.607390e-01 | 0.065 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 8.607390e-01 | 0.065 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 8.607390e-01 | 0.065 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 8.607390e-01 | 0.065 |
R-HSA-264876 | Insulin processing | 8.607390e-01 | 0.065 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 8.607390e-01 | 0.065 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 8.607390e-01 | 0.065 |
R-HSA-9828806 | Maturation of hRSV A proteins | 8.607390e-01 | 0.065 |
R-HSA-5619102 | SLC transporter disorders | 8.608863e-01 | 0.065 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 8.612315e-01 | 0.065 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 8.622637e-01 | 0.064 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 8.659784e-01 | 0.062 |
R-HSA-1226099 | Signaling by FGFR in disease | 8.667597e-01 | 0.062 |
R-HSA-912446 | Meiotic recombination | 8.667981e-01 | 0.062 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 8.667981e-01 | 0.062 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 8.671308e-01 | 0.062 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 8.688230e-01 | 0.061 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 8.688230e-01 | 0.061 |
R-HSA-77387 | Insulin receptor recycling | 8.688230e-01 | 0.061 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 8.688230e-01 | 0.061 |
R-HSA-622312 | Inflammasomes | 8.688230e-01 | 0.061 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 8.688230e-01 | 0.061 |
R-HSA-5620971 | Pyroptosis | 8.688230e-01 | 0.061 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 8.688230e-01 | 0.061 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 8.718495e-01 | 0.060 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 8.720193e-01 | 0.059 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 8.728398e-01 | 0.059 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 8.728790e-01 | 0.059 |
R-HSA-6798695 | Neutrophil degranulation | 8.764163e-01 | 0.057 |
R-HSA-72764 | Eukaryotic Translation Termination | 8.764230e-01 | 0.057 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 8.764383e-01 | 0.057 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 8.764383e-01 | 0.057 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 8.764383e-01 | 0.057 |
R-HSA-418360 | Platelet calcium homeostasis | 8.764383e-01 | 0.057 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 8.787033e-01 | 0.056 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 8.800631e-01 | 0.055 |
R-HSA-446652 | Interleukin-1 family signaling | 8.800631e-01 | 0.055 |
R-HSA-909733 | Interferon alpha/beta signaling | 8.827411e-01 | 0.054 |
R-HSA-112311 | Neurotransmitter clearance | 8.836119e-01 | 0.054 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 8.842803e-01 | 0.053 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 8.867114e-01 | 0.052 |
R-HSA-5619084 | ABC transporter disorders | 8.867114e-01 | 0.052 |
R-HSA-4086400 | PCP/CE pathway | 8.867114e-01 | 0.052 |
R-HSA-216083 | Integrin cell surface interactions | 8.867114e-01 | 0.052 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 8.893050e-01 | 0.051 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 8.893050e-01 | 0.051 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 8.893050e-01 | 0.051 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 8.896191e-01 | 0.051 |
R-HSA-162588 | Budding and maturation of HIV virion | 8.903694e-01 | 0.050 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 8.903694e-01 | 0.050 |
R-HSA-5694530 | Cargo concentration in the ER | 8.903694e-01 | 0.050 |
R-HSA-186763 | Downstream signal transduction | 8.903694e-01 | 0.050 |
R-HSA-8963693 | Aspartate and asparagine metabolism | 8.903694e-01 | 0.050 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 8.903694e-01 | 0.050 |
R-HSA-2129379 | Molecules associated with elastic fibres | 8.903694e-01 | 0.050 |
R-HSA-1592230 | Mitochondrial biogenesis | 8.904286e-01 | 0.050 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 8.912632e-01 | 0.050 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 8.967349e-01 | 0.047 |
R-HSA-1483166 | Synthesis of PA | 8.996173e-01 | 0.046 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 9.027312e-01 | 0.044 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 9.027312e-01 | 0.044 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 9.027312e-01 | 0.044 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 9.027312e-01 | 0.044 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 9.027312e-01 | 0.044 |
R-HSA-5675482 | Regulation of necroptotic cell death | 9.027312e-01 | 0.044 |
R-HSA-9733709 | Cardiogenesis | 9.027312e-01 | 0.044 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 9.042936e-01 | 0.044 |
R-HSA-9664407 | Parasite infection | 9.060700e-01 | 0.043 |
R-HSA-9664417 | Leishmania phagocytosis | 9.060700e-01 | 0.043 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 9.060700e-01 | 0.043 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 9.078727e-01 | 0.042 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 9.078727e-01 | 0.042 |
R-HSA-2024101 | CS/DS degradation | 9.083797e-01 | 0.042 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 9.083797e-01 | 0.042 |
R-HSA-9033241 | Peroxisomal protein import | 9.087657e-01 | 0.042 |
R-HSA-8951664 | Neddylation | 9.091710e-01 | 0.041 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 9.115857e-01 | 0.040 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 9.115857e-01 | 0.040 |
R-HSA-351202 | Metabolism of polyamines | 9.130416e-01 | 0.040 |
R-HSA-1971475 | Glycosaminoglycan-protein linkage region biosynthesis | 9.137005e-01 | 0.039 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 9.137005e-01 | 0.039 |
R-HSA-5673000 | RAF activation | 9.137005e-01 | 0.039 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 9.137005e-01 | 0.039 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 9.137005e-01 | 0.039 |
R-HSA-901042 | Calnexin/calreticulin cycle | 9.137005e-01 | 0.039 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 9.171290e-01 | 0.038 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 9.176197e-01 | 0.037 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 9.180730e-01 | 0.037 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 9.187126e-01 | 0.037 |
R-HSA-917977 | Transferrin endocytosis and recycling | 9.187126e-01 | 0.037 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 9.187126e-01 | 0.037 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 9.210352e-01 | 0.036 |
R-HSA-5619115 | Disorders of transmembrane transporters | 9.220529e-01 | 0.035 |
R-HSA-2022928 | HS-GAG biosynthesis | 9.234338e-01 | 0.035 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 9.234338e-01 | 0.035 |
R-HSA-1839126 | FGFR2 mutant receptor activation | 9.234338e-01 | 0.035 |
R-HSA-8941326 | RUNX2 regulates bone development | 9.234338e-01 | 0.035 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 9.241312e-01 | 0.034 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 9.270067e-01 | 0.033 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 9.278812e-01 | 0.033 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 9.278812e-01 | 0.033 |
R-HSA-110331 | Cleavage of the damaged purine | 9.278812e-01 | 0.033 |
R-HSA-196757 | Metabolism of folate and pterines | 9.278812e-01 | 0.033 |
R-HSA-74751 | Insulin receptor signalling cascade | 9.283331e-01 | 0.032 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 9.297837e-01 | 0.032 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 9.320704e-01 | 0.031 |
R-HSA-73927 | Depurination | 9.320704e-01 | 0.031 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 9.320704e-01 | 0.031 |
R-HSA-1566948 | Elastic fibre formation | 9.320704e-01 | 0.031 |
R-HSA-452723 | Transcriptional regulation of pluripotent stem cells | 9.320704e-01 | 0.031 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 9.324649e-01 | 0.030 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 9.324649e-01 | 0.030 |
R-HSA-112310 | Neurotransmitter release cycle | 9.343754e-01 | 0.029 |
R-HSA-1483257 | Phospholipid metabolism | 9.358855e-01 | 0.029 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 9.360166e-01 | 0.029 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 9.371421e-01 | 0.028 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 9.397337e-01 | 0.027 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 9.397337e-01 | 0.027 |
R-HSA-5260271 | Diseases of Immune System | 9.397337e-01 | 0.027 |
R-HSA-379726 | Mitochondrial tRNA aminoacylation | 9.397337e-01 | 0.027 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 9.410591e-01 | 0.026 |
R-HSA-5218859 | Regulated Necrosis | 9.410591e-01 | 0.026 |
R-HSA-74752 | Signaling by Insulin receptor | 9.423550e-01 | 0.026 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 9.423550e-01 | 0.026 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 9.432351e-01 | 0.025 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 9.432351e-01 | 0.025 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 9.465333e-01 | 0.024 |
R-HSA-3000480 | Scavenging by Class A Receptors | 9.465333e-01 | 0.024 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 9.465333e-01 | 0.024 |
R-HSA-9683701 | Translation of Structural Proteins | 9.465333e-01 | 0.024 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 9.465868e-01 | 0.024 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 9.491619e-01 | 0.023 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 9.491619e-01 | 0.023 |
R-HSA-8978934 | Metabolism of cofactors | 9.491619e-01 | 0.023 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 9.496400e-01 | 0.022 |
R-HSA-9711097 | Cellular response to starvation | 9.505975e-01 | 0.022 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 9.525664e-01 | 0.021 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 9.525664e-01 | 0.021 |
R-HSA-597592 | Post-translational protein modification | 9.544852e-01 | 0.020 |
R-HSA-5683826 | Surfactant metabolism | 9.553229e-01 | 0.020 |
R-HSA-375280 | Amine ligand-binding receptors | 9.553229e-01 | 0.020 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 9.561952e-01 | 0.019 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 9.563935e-01 | 0.019 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 9.563935e-01 | 0.019 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 9.583254e-01 | 0.018 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 9.603651e-01 | 0.018 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 9.603651e-01 | 0.018 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 9.603651e-01 | 0.018 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 9.614037e-01 | 0.017 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 9.614037e-01 | 0.017 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 9.622916e-01 | 0.017 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 9.626688e-01 | 0.017 |
R-HSA-2408557 | Selenocysteine synthesis | 9.629035e-01 | 0.016 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 9.648387e-01 | 0.016 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 9.658941e-01 | 0.015 |
R-HSA-192823 | Viral mRNA Translation | 9.660840e-01 | 0.015 |
R-HSA-157858 | Gap junction trafficking and regulation | 9.668827e-01 | 0.015 |
R-HSA-168898 | Toll-like Receptor Cascades | 9.668931e-01 | 0.015 |
R-HSA-111885 | Opioid Signalling | 9.675760e-01 | 0.014 |
R-HSA-109704 | PI3K Cascade | 9.688079e-01 | 0.014 |
R-HSA-70895 | Branched-chain amino acid catabolism | 9.706214e-01 | 0.013 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 9.706214e-01 | 0.013 |
R-HSA-9609690 | HCMV Early Events | 9.721842e-01 | 0.012 |
R-HSA-8956320 | Nucleotide biosynthesis | 9.739383e-01 | 0.011 |
R-HSA-2672351 | Stimuli-sensing channels | 9.741509e-01 | 0.011 |
R-HSA-1989781 | PPARA activates gene expression | 9.768454e-01 | 0.010 |
R-HSA-1793185 | Chondroitin sulfate/dermatan sulfate metabolism | 9.768812e-01 | 0.010 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 9.775064e-01 | 0.010 |
R-HSA-5578775 | Ion homeostasis | 9.782257e-01 | 0.010 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 9.782257e-01 | 0.010 |
R-HSA-75893 | TNF signaling | 9.782257e-01 | 0.010 |
R-HSA-390466 | Chaperonin-mediated protein folding | 9.783928e-01 | 0.009 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 9.786114e-01 | 0.009 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 9.794471e-01 | 0.009 |
R-HSA-112399 | IRS-mediated signalling | 9.794920e-01 | 0.009 |
R-HSA-5621480 | Dectin-2 family | 9.794920e-01 | 0.009 |
R-HSA-9609646 | HCMV Infection | 9.800975e-01 | 0.009 |
R-HSA-877300 | Interferon gamma signaling | 9.802509e-01 | 0.009 |
R-HSA-1638091 | Heparan sulfate/heparin (HS-GAG) metabolism | 9.818083e-01 | 0.008 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 9.818083e-01 | 0.008 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 9.828665e-01 | 0.008 |
R-HSA-2408522 | Selenoamino acid metabolism | 9.838493e-01 | 0.007 |
R-HSA-112043 | PLC beta mediated events | 9.838632e-01 | 0.007 |
R-HSA-391251 | Protein folding | 9.841217e-01 | 0.007 |
R-HSA-2980736 | Peptide hormone metabolism | 9.844414e-01 | 0.007 |
R-HSA-186797 | Signaling by PDGF | 9.848020e-01 | 0.007 |
R-HSA-1268020 | Mitochondrial protein import | 9.848020e-01 | 0.007 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 9.848998e-01 | 0.007 |
R-HSA-1474290 | Collagen formation | 9.856801e-01 | 0.006 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 9.865190e-01 | 0.006 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 9.871547e-01 | 0.006 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 9.877422e-01 | 0.005 |
R-HSA-112040 | G-protein mediated events | 9.887381e-01 | 0.005 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 9.887381e-01 | 0.005 |
R-HSA-422356 | Regulation of insulin secretion | 9.889531e-01 | 0.005 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 9.892196e-01 | 0.005 |
R-HSA-913709 | O-linked glycosylation of mucins | 9.893935e-01 | 0.005 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 9.895139e-01 | 0.005 |
R-HSA-204005 | COPII-mediated vesicle transport | 9.905922e-01 | 0.004 |
R-HSA-3000178 | ECM proteoglycans | 9.911398e-01 | 0.004 |
R-HSA-9609507 | Protein localization | 9.913577e-01 | 0.004 |
R-HSA-917937 | Iron uptake and transport | 9.930298e-01 | 0.003 |
R-HSA-1474228 | Degradation of the extracellular matrix | 9.930508e-01 | 0.003 |
R-HSA-9824443 | Parasitic Infection Pathways | 9.931796e-01 | 0.003 |
R-HSA-9658195 | Leishmania infection | 9.931796e-01 | 0.003 |
R-HSA-6783783 | Interleukin-10 signaling | 9.941779e-01 | 0.003 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 9.941779e-01 | 0.003 |
R-HSA-194068 | Bile acid and bile salt metabolism | 9.944160e-01 | 0.002 |
R-HSA-168256 | Immune System | 9.944395e-01 | 0.002 |
R-HSA-163685 | Integration of energy metabolism | 9.945412e-01 | 0.002 |
R-HSA-977225 | Amyloid fiber formation | 9.951370e-01 | 0.002 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 9.961483e-01 | 0.002 |
R-HSA-418555 | G alpha (s) signalling events | 9.963373e-01 | 0.002 |
R-HSA-112315 | Transmission across Chemical Synapses | 9.964758e-01 | 0.002 |
R-HSA-1614635 | Sulfur amino acid metabolism | 9.966076e-01 | 0.001 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 9.970164e-01 | 0.001 |
R-HSA-109582 | Hemostasis | 9.970320e-01 | 0.001 |
R-HSA-5663205 | Infectious disease | 9.973110e-01 | 0.001 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 9.973811e-01 | 0.001 |
R-HSA-168249 | Innate Immune System | 9.974525e-01 | 0.001 |
R-HSA-9717207 | Sensory perception of sweet, bitter, and umami (glutamate) taste | 9.974881e-01 | 0.001 |
R-HSA-392499 | Metabolism of proteins | 9.976507e-01 | 0.001 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 9.979738e-01 | 0.001 |
R-HSA-3781865 | Diseases of glycosylation | 9.979947e-01 | 0.001 |
R-HSA-9837999 | Mitochondrial protein degradation | 9.980240e-01 | 0.001 |
R-HSA-5389840 | Mitochondrial translation elongation | 9.983499e-01 | 0.001 |
R-HSA-983712 | Ion channel transport | 9.984141e-01 | 0.001 |
R-HSA-5576891 | Cardiac conduction | 9.985339e-01 | 0.001 |
R-HSA-9717189 | Sensory perception of taste | 9.985339e-01 | 0.001 |
R-HSA-5173105 | O-linked glycosylation | 9.989968e-01 | 0.000 |
R-HSA-418346 | Platelet homeostasis | 9.991480e-01 | 0.000 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 9.992136e-01 | 0.000 |
R-HSA-9664433 | Leishmania parasite growth and survival | 9.992136e-01 | 0.000 |
R-HSA-6803157 | Antimicrobial peptides | 9.993693e-01 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 9.994733e-01 | 0.000 |
R-HSA-1474244 | Extracellular matrix organization | 9.996320e-01 | 0.000 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 9.996936e-01 | 0.000 |
R-HSA-6809371 | Formation of the cornified envelope | 9.997442e-01 | 0.000 |
R-HSA-977606 | Regulation of Complement cascade | 9.997591e-01 | 0.000 |
R-HSA-5368287 | Mitochondrial translation | 9.999081e-01 | 0.000 |
R-HSA-1643685 | Disease | 9.999090e-01 | 0.000 |
R-HSA-112316 | Neuronal System | 9.999097e-01 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 9.999097e-01 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 9.999329e-01 | 0.000 |
R-HSA-375276 | Peptide ligand-binding receptors | 9.999398e-01 | 0.000 |
R-HSA-166658 | Complement cascade | 9.999433e-01 | 0.000 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 9.999593e-01 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 9.999734e-01 | 0.000 |
R-HSA-428157 | Sphingolipid metabolism | 9.999740e-01 | 0.000 |
R-HSA-8957322 | Metabolism of steroids | 9.999905e-01 | 0.000 |
R-HSA-9748784 | Drug ADME | 9.999906e-01 | 0.000 |
R-HSA-611105 | Respiratory electron transport | 9.999927e-01 | 0.000 |
R-HSA-416476 | G alpha (q) signalling events | 9.999937e-01 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 9.999950e-01 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 9.999952e-01 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 9.999962e-01 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 9.999986e-01 | 0.000 |
R-HSA-6805567 | Keratinization | 9.999987e-01 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 9.999996e-01 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 9.999998e-01 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 9.999998e-01 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 9.999998e-01 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 9.999998e-01 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 9.999999e-01 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 1.000000e+00 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 1.000000e+00 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000e+00 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 1.000000e+00 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 1.000000e+00 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000e+00 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000e+00 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000e+00 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000e+00 | -0.000 |
R-HSA-1430728 | Metabolism | 1.000000e+00 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000e+00 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
COT |
0.882 | 0.260 | 2 | 0.866 |
CLK3 |
0.879 | 0.252 | 1 | 0.855 |
BMPR1B |
0.876 | 0.410 | 1 | 0.854 |
MOS |
0.875 | 0.289 | 1 | 0.925 |
CDC7 |
0.872 | 0.182 | 1 | 0.919 |
FAM20C |
0.871 | 0.319 | 2 | 0.751 |
DSTYK |
0.868 | 0.202 | 2 | 0.891 |
GRK1 |
0.866 | 0.239 | -2 | 0.791 |
BMPR1A |
0.865 | 0.412 | 1 | 0.849 |
TGFBR1 |
0.863 | 0.320 | -2 | 0.903 |
GRK7 |
0.863 | 0.297 | 1 | 0.771 |
PIM3 |
0.862 | 0.080 | -3 | 0.819 |
ALK2 |
0.861 | 0.376 | -2 | 0.906 |
GRK6 |
0.861 | 0.221 | 1 | 0.845 |
CAMK2G |
0.860 | 0.090 | 2 | 0.843 |
IKKA |
0.860 | 0.204 | -2 | 0.742 |
PRPK |
0.860 | -0.051 | -1 | 0.854 |
IKKB |
0.859 | 0.050 | -2 | 0.743 |
ACVR2B |
0.859 | 0.325 | -2 | 0.896 |
BMPR2 |
0.858 | 0.113 | -2 | 0.909 |
RAF1 |
0.856 | -0.019 | 1 | 0.823 |
ACVR2A |
0.856 | 0.289 | -2 | 0.891 |
GCN2 |
0.855 | -0.034 | 2 | 0.789 |
ALK4 |
0.853 | 0.228 | -2 | 0.916 |
NEK6 |
0.853 | 0.054 | -2 | 0.903 |
CK2A2 |
0.853 | 0.362 | 1 | 0.803 |
ATR |
0.853 | 0.003 | 1 | 0.818 |
CAMK1B |
0.852 | -0.032 | -3 | 0.847 |
GRK5 |
0.852 | 0.025 | -3 | 0.843 |
MTOR |
0.852 | -0.076 | 1 | 0.763 |
NDR2 |
0.851 | -0.001 | -3 | 0.813 |
KIS |
0.851 | 0.101 | 1 | 0.708 |
TGFBR2 |
0.851 | 0.077 | -2 | 0.902 |
PIM1 |
0.851 | 0.076 | -3 | 0.770 |
CDKL1 |
0.851 | 0.010 | -3 | 0.791 |
ATM |
0.850 | 0.101 | 1 | 0.768 |
GRK4 |
0.850 | 0.100 | -2 | 0.850 |
CAMK2B |
0.849 | 0.147 | 2 | 0.835 |
TBK1 |
0.849 | -0.067 | 1 | 0.697 |
NLK |
0.848 | -0.049 | 1 | 0.823 |
NEK7 |
0.848 | -0.020 | -3 | 0.809 |
PDHK4 |
0.847 | -0.250 | 1 | 0.832 |
LATS1 |
0.847 | 0.120 | -3 | 0.832 |
IKKE |
0.847 | -0.063 | 1 | 0.693 |
SRPK1 |
0.847 | 0.051 | -3 | 0.745 |
ERK5 |
0.846 | -0.023 | 1 | 0.797 |
SKMLCK |
0.846 | -0.006 | -2 | 0.840 |
MLK1 |
0.846 | -0.034 | 2 | 0.802 |
PLK1 |
0.846 | 0.117 | -2 | 0.871 |
RSK2 |
0.845 | 0.021 | -3 | 0.760 |
PKN3 |
0.845 | -0.027 | -3 | 0.804 |
ULK2 |
0.845 | -0.150 | 2 | 0.766 |
PLK3 |
0.844 | 0.159 | 2 | 0.784 |
NIK |
0.843 | -0.131 | -3 | 0.857 |
CAMLCK |
0.842 | -0.059 | -2 | 0.837 |
MAPKAPK2 |
0.842 | 0.053 | -3 | 0.709 |
CLK2 |
0.841 | 0.144 | -3 | 0.748 |
PRKD1 |
0.841 | -0.031 | -3 | 0.782 |
DAPK2 |
0.841 | -0.074 | -3 | 0.843 |
PDHK1 |
0.840 | -0.244 | 1 | 0.812 |
CAMK2A |
0.840 | 0.078 | 2 | 0.838 |
CHAK2 |
0.840 | -0.056 | -1 | 0.841 |
LATS2 |
0.840 | -0.022 | -5 | 0.651 |
HUNK |
0.839 | -0.113 | 2 | 0.798 |
ICK |
0.839 | -0.008 | -3 | 0.817 |
CDK1 |
0.839 | 0.088 | 1 | 0.655 |
CK2A1 |
0.839 | 0.304 | 1 | 0.778 |
CDKL5 |
0.839 | -0.020 | -3 | 0.776 |
SRPK2 |
0.839 | 0.050 | -3 | 0.672 |
HIPK4 |
0.838 | -0.010 | 1 | 0.786 |
DLK |
0.838 | -0.106 | 1 | 0.801 |
JNK3 |
0.838 | 0.089 | 1 | 0.672 |
NUAK2 |
0.837 | -0.080 | -3 | 0.821 |
NDR1 |
0.837 | -0.088 | -3 | 0.809 |
CDK8 |
0.837 | 0.036 | 1 | 0.680 |
PKCD |
0.837 | -0.020 | 2 | 0.780 |
MST4 |
0.837 | -0.075 | 2 | 0.845 |
TLK2 |
0.837 | 0.098 | 1 | 0.761 |
MARK4 |
0.837 | -0.077 | 4 | 0.835 |
MLK3 |
0.837 | 0.005 | 2 | 0.736 |
CAMK2D |
0.836 | -0.058 | -3 | 0.798 |
P90RSK |
0.836 | -0.039 | -3 | 0.764 |
ULK1 |
0.836 | -0.155 | -3 | 0.794 |
PKR |
0.836 | -0.024 | 1 | 0.817 |
SRPK3 |
0.835 | 0.028 | -3 | 0.724 |
PRKD2 |
0.835 | -0.021 | -3 | 0.742 |
JNK2 |
0.835 | 0.083 | 1 | 0.635 |
ANKRD3 |
0.835 | -0.130 | 1 | 0.818 |
P70S6KB |
0.835 | -0.042 | -3 | 0.778 |
MLK4 |
0.835 | 0.048 | 2 | 0.714 |
GRK2 |
0.834 | 0.039 | -2 | 0.743 |
PLK2 |
0.834 | 0.234 | -3 | 0.888 |
RSK4 |
0.834 | 0.040 | -3 | 0.732 |
RIPK3 |
0.834 | -0.202 | 3 | 0.700 |
CLK4 |
0.833 | 0.042 | -3 | 0.761 |
WNK1 |
0.833 | -0.168 | -2 | 0.840 |
TSSK2 |
0.833 | -0.075 | -5 | 0.713 |
DYRK2 |
0.833 | 0.033 | 1 | 0.709 |
RSK3 |
0.832 | -0.049 | -3 | 0.759 |
MEK1 |
0.832 | -0.102 | 2 | 0.829 |
AMPKA1 |
0.831 | -0.115 | -3 | 0.820 |
NEK9 |
0.831 | -0.204 | 2 | 0.813 |
TTBK2 |
0.831 | -0.138 | 2 | 0.683 |
BRAF |
0.831 | 0.041 | -4 | 0.818 |
PKN2 |
0.830 | -0.123 | -3 | 0.808 |
MAPKAPK3 |
0.830 | -0.081 | -3 | 0.740 |
BCKDK |
0.830 | -0.190 | -1 | 0.785 |
CDK5 |
0.829 | 0.043 | 1 | 0.713 |
YSK4 |
0.829 | -0.100 | 1 | 0.739 |
CLK1 |
0.828 | 0.039 | -3 | 0.738 |
AURC |
0.828 | -0.009 | -2 | 0.643 |
PKACG |
0.828 | -0.066 | -2 | 0.721 |
CDK19 |
0.827 | 0.020 | 1 | 0.644 |
PRKX |
0.827 | 0.075 | -3 | 0.668 |
MASTL |
0.827 | -0.352 | -2 | 0.802 |
P38G |
0.827 | 0.063 | 1 | 0.568 |
MLK2 |
0.827 | -0.209 | 2 | 0.799 |
TSSK1 |
0.827 | -0.083 | -3 | 0.837 |
MSK2 |
0.827 | -0.039 | -3 | 0.725 |
DNAPK |
0.827 | 0.021 | 1 | 0.677 |
P38B |
0.826 | 0.052 | 1 | 0.647 |
P38A |
0.826 | 0.026 | 1 | 0.710 |
PKACB |
0.826 | 0.024 | -2 | 0.660 |
TLK1 |
0.826 | 0.023 | -2 | 0.899 |
WNK3 |
0.826 | -0.314 | 1 | 0.777 |
PRP4 |
0.825 | 0.028 | -3 | 0.751 |
PAK1 |
0.825 | -0.067 | -2 | 0.753 |
GRK3 |
0.825 | 0.059 | -2 | 0.708 |
PASK |
0.825 | 0.047 | -3 | 0.831 |
MSK1 |
0.825 | -0.001 | -3 | 0.728 |
AURA |
0.825 | 0.014 | -2 | 0.620 |
VRK2 |
0.824 | -0.316 | 1 | 0.850 |
PERK |
0.824 | -0.059 | -2 | 0.895 |
ERK1 |
0.823 | 0.035 | 1 | 0.636 |
CDK3 |
0.823 | 0.073 | 1 | 0.599 |
AMPKA2 |
0.823 | -0.116 | -3 | 0.790 |
HIPK2 |
0.822 | 0.053 | 1 | 0.630 |
CHK1 |
0.822 | -0.065 | -3 | 0.799 |
IRE2 |
0.822 | -0.110 | 2 | 0.729 |
GSK3A |
0.822 | 0.070 | 4 | 0.484 |
P38D |
0.821 | 0.079 | 1 | 0.593 |
IRE1 |
0.821 | -0.185 | 1 | 0.760 |
GAK |
0.821 | 0.077 | 1 | 0.844 |
MEKK3 |
0.821 | -0.108 | 1 | 0.762 |
CDK2 |
0.821 | -0.001 | 1 | 0.724 |
CDK13 |
0.821 | -0.016 | 1 | 0.668 |
NIM1 |
0.820 | -0.177 | 3 | 0.754 |
CDK18 |
0.820 | 0.017 | 1 | 0.628 |
MEKK2 |
0.820 | -0.061 | 2 | 0.783 |
PINK1 |
0.820 | -0.074 | 1 | 0.815 |
CAMK4 |
0.820 | -0.174 | -3 | 0.792 |
PKCB |
0.820 | -0.076 | 2 | 0.727 |
SMG1 |
0.820 | -0.095 | 1 | 0.766 |
RIPK1 |
0.820 | -0.326 | 1 | 0.773 |
QSK |
0.819 | -0.081 | 4 | 0.807 |
PRKD3 |
0.819 | -0.077 | -3 | 0.729 |
HIPK1 |
0.819 | 0.012 | 1 | 0.725 |
DRAK1 |
0.819 | -0.079 | 1 | 0.748 |
PIM2 |
0.819 | -0.024 | -3 | 0.731 |
DYRK4 |
0.819 | 0.051 | 1 | 0.645 |
ERK2 |
0.818 | -0.005 | 1 | 0.676 |
MYLK4 |
0.818 | -0.071 | -2 | 0.751 |
CDK7 |
0.818 | -0.047 | 1 | 0.696 |
TAO3 |
0.818 | -0.023 | 1 | 0.761 |
PKCA |
0.818 | -0.087 | 2 | 0.719 |
AURB |
0.818 | -0.044 | -2 | 0.640 |
NUAK1 |
0.818 | -0.112 | -3 | 0.772 |
MARK2 |
0.817 | -0.062 | 4 | 0.728 |
HRI |
0.817 | -0.156 | -2 | 0.899 |
CK1E |
0.817 | -0.023 | -3 | 0.570 |
MEKK1 |
0.817 | -0.146 | 1 | 0.771 |
CDK17 |
0.817 | 0.014 | 1 | 0.576 |
PKCG |
0.817 | -0.108 | 2 | 0.725 |
SIK |
0.816 | -0.076 | -3 | 0.741 |
JNK1 |
0.816 | 0.061 | 1 | 0.631 |
MARK3 |
0.816 | -0.066 | 4 | 0.765 |
PAK3 |
0.816 | -0.155 | -2 | 0.750 |
AKT2 |
0.815 | -0.025 | -3 | 0.682 |
NEK2 |
0.815 | -0.216 | 2 | 0.785 |
DYRK1A |
0.814 | -0.007 | 1 | 0.743 |
NEK5 |
0.814 | -0.158 | 1 | 0.791 |
DCAMKL1 |
0.814 | -0.073 | -3 | 0.766 |
ZAK |
0.814 | -0.163 | 1 | 0.737 |
BRSK1 |
0.814 | -0.098 | -3 | 0.768 |
PKCH |
0.814 | -0.118 | 2 | 0.709 |
SGK3 |
0.813 | -0.064 | -3 | 0.735 |
MEK5 |
0.813 | -0.303 | 2 | 0.806 |
CHAK1 |
0.813 | -0.209 | 2 | 0.727 |
PAK2 |
0.813 | -0.136 | -2 | 0.738 |
MNK2 |
0.813 | -0.128 | -2 | 0.765 |
MELK |
0.813 | -0.170 | -3 | 0.770 |
MST2 |
0.813 | 0.004 | 1 | 0.775 |
PLK4 |
0.812 | -0.136 | 2 | 0.614 |
CK1D |
0.812 | -0.012 | -3 | 0.513 |
PKCZ |
0.811 | -0.148 | 2 | 0.756 |
CDK12 |
0.811 | -0.025 | 1 | 0.638 |
GSK3B |
0.811 | -0.011 | 4 | 0.473 |
QIK |
0.811 | -0.227 | -3 | 0.797 |
DYRK1B |
0.811 | 0.005 | 1 | 0.672 |
PAK6 |
0.810 | -0.061 | -2 | 0.676 |
MNK1 |
0.810 | -0.114 | -2 | 0.773 |
MARK1 |
0.810 | -0.103 | 4 | 0.786 |
NEK8 |
0.810 | -0.128 | 2 | 0.794 |
CAMKK1 |
0.810 | -0.136 | -2 | 0.746 |
PKG2 |
0.809 | -0.076 | -2 | 0.656 |
DAPK3 |
0.809 | -0.011 | -3 | 0.783 |
MST3 |
0.809 | -0.136 | 2 | 0.817 |
CDK16 |
0.809 | 0.023 | 1 | 0.596 |
SMMLCK |
0.808 | -0.107 | -3 | 0.796 |
CAMK1G |
0.808 | -0.110 | -3 | 0.743 |
EEF2K |
0.808 | -0.031 | 3 | 0.805 |
PHKG1 |
0.808 | -0.183 | -3 | 0.794 |
TAK1 |
0.807 | -0.044 | 1 | 0.790 |
PKACA |
0.807 | -0.008 | -2 | 0.610 |
DYRK3 |
0.807 | -0.007 | 1 | 0.724 |
HIPK3 |
0.805 | -0.049 | 1 | 0.712 |
MPSK1 |
0.805 | -0.097 | 1 | 0.771 |
DCAMKL2 |
0.805 | -0.112 | -3 | 0.791 |
CDK9 |
0.805 | -0.070 | 1 | 0.672 |
ALPHAK3 |
0.805 | 0.169 | -1 | 0.801 |
MAPKAPK5 |
0.805 | -0.165 | -3 | 0.688 |
GCK |
0.804 | -0.088 | 1 | 0.761 |
CDK14 |
0.804 | -0.030 | 1 | 0.665 |
CK1A2 |
0.804 | -0.041 | -3 | 0.515 |
CAMK1D |
0.804 | -0.049 | -3 | 0.668 |
TAO2 |
0.804 | -0.160 | 2 | 0.835 |
ERK7 |
0.803 | -0.017 | 2 | 0.533 |
WNK4 |
0.803 | -0.254 | -2 | 0.833 |
CAMKK2 |
0.803 | -0.172 | -2 | 0.739 |
AKT1 |
0.803 | -0.037 | -3 | 0.690 |
TTK |
0.802 | 0.101 | -2 | 0.894 |
TNIK |
0.802 | -0.069 | 3 | 0.822 |
DAPK1 |
0.802 | -0.025 | -3 | 0.768 |
BRSK2 |
0.802 | -0.204 | -3 | 0.779 |
LKB1 |
0.801 | -0.189 | -3 | 0.784 |
CK1G1 |
0.801 | -0.074 | -3 | 0.579 |
PDHK3_TYR |
0.801 | 0.227 | 4 | 0.916 |
SSTK |
0.800 | -0.134 | 4 | 0.795 |
PDK1 |
0.800 | -0.171 | 1 | 0.760 |
MAK |
0.800 | 0.045 | -2 | 0.719 |
P70S6K |
0.799 | -0.102 | -3 | 0.688 |
IRAK4 |
0.799 | -0.269 | 1 | 0.763 |
SNRK |
0.798 | -0.301 | 2 | 0.659 |
CDK10 |
0.798 | -0.022 | 1 | 0.653 |
MINK |
0.798 | -0.148 | 1 | 0.747 |
MST1 |
0.798 | -0.105 | 1 | 0.749 |
TTBK1 |
0.797 | -0.206 | 2 | 0.604 |
NEK11 |
0.797 | -0.302 | 1 | 0.747 |
PKCT |
0.797 | -0.143 | 2 | 0.716 |
HGK |
0.796 | -0.160 | 3 | 0.815 |
OSR1 |
0.795 | 0.013 | 2 | 0.776 |
SGK1 |
0.795 | -0.013 | -3 | 0.604 |
MAP2K6_TYR |
0.795 | 0.206 | -1 | 0.887 |
PDHK4_TYR |
0.794 | 0.160 | 2 | 0.874 |
VRK1 |
0.793 | -0.234 | 2 | 0.812 |
LRRK2 |
0.793 | -0.261 | 2 | 0.825 |
PDHK1_TYR |
0.793 | 0.193 | -1 | 0.909 |
CDK6 |
0.793 | -0.019 | 1 | 0.646 |
NEK4 |
0.792 | -0.280 | 1 | 0.747 |
ROCK2 |
0.792 | -0.052 | -3 | 0.761 |
BMPR2_TYR |
0.791 | 0.116 | -1 | 0.891 |
MAP2K4_TYR |
0.791 | 0.088 | -1 | 0.881 |
PHKG2 |
0.791 | -0.184 | -3 | 0.776 |
HPK1 |
0.791 | -0.172 | 1 | 0.743 |
PKCE |
0.790 | -0.093 | 2 | 0.710 |
IRAK1 |
0.790 | -0.348 | -1 | 0.734 |
NEK1 |
0.790 | -0.252 | 1 | 0.760 |
MRCKA |
0.790 | -0.069 | -3 | 0.734 |
MAP3K15 |
0.790 | -0.263 | 1 | 0.720 |
CDK4 |
0.790 | -0.025 | 1 | 0.628 |
AKT3 |
0.789 | -0.031 | -3 | 0.618 |
MRCKB |
0.789 | -0.062 | -3 | 0.719 |
SLK |
0.789 | -0.132 | -2 | 0.696 |
PKCI |
0.789 | -0.167 | 2 | 0.726 |
KHS2 |
0.789 | -0.090 | 1 | 0.748 |
SBK |
0.788 | -0.022 | -3 | 0.567 |
MOK |
0.788 | -0.015 | 1 | 0.734 |
MEK2 |
0.788 | -0.264 | 2 | 0.788 |
KHS1 |
0.788 | -0.133 | 1 | 0.737 |
PAK5 |
0.788 | -0.107 | -2 | 0.613 |
CHK2 |
0.788 | -0.081 | -3 | 0.628 |
TXK |
0.787 | 0.219 | 1 | 0.861 |
MEKK6 |
0.787 | -0.306 | 1 | 0.752 |
LOK |
0.787 | -0.199 | -2 | 0.745 |
EPHA6 |
0.786 | 0.102 | -1 | 0.892 |
DMPK1 |
0.786 | -0.030 | -3 | 0.747 |
BUB1 |
0.786 | -0.072 | -5 | 0.679 |
PBK |
0.785 | -0.091 | 1 | 0.770 |
CAMK1A |
0.785 | -0.081 | -3 | 0.647 |
TESK1_TYR |
0.785 | -0.129 | 3 | 0.859 |
PAK4 |
0.785 | -0.094 | -2 | 0.623 |
MAP2K7_TYR |
0.782 | -0.174 | 2 | 0.851 |
BIKE |
0.782 | -0.009 | 1 | 0.733 |
YSK1 |
0.782 | -0.211 | 2 | 0.786 |
EPHB4 |
0.782 | 0.075 | -1 | 0.860 |
PINK1_TYR |
0.781 | -0.095 | 1 | 0.822 |
EPHA4 |
0.780 | 0.112 | 2 | 0.791 |
PKN1 |
0.780 | -0.138 | -3 | 0.701 |
STK33 |
0.779 | -0.235 | 2 | 0.601 |
BLK |
0.779 | 0.181 | -1 | 0.851 |
PKMYT1_TYR |
0.779 | -0.189 | 3 | 0.820 |
FER |
0.778 | 0.071 | 1 | 0.882 |
YES1 |
0.777 | 0.071 | -1 | 0.836 |
LCK |
0.776 | 0.121 | -1 | 0.837 |
RIPK2 |
0.776 | -0.348 | 1 | 0.696 |
SRMS |
0.775 | 0.090 | 1 | 0.864 |
ABL2 |
0.775 | 0.047 | -1 | 0.819 |
EPHB2 |
0.775 | 0.119 | -1 | 0.847 |
ROCK1 |
0.775 | -0.076 | -3 | 0.730 |
FYN |
0.775 | 0.174 | -1 | 0.815 |
YANK3 |
0.775 | -0.080 | 2 | 0.405 |
INSRR |
0.774 | 0.033 | 3 | 0.704 |
HASPIN |
0.774 | -0.092 | -1 | 0.676 |
MYO3A |
0.774 | -0.133 | 1 | 0.741 |
CRIK |
0.774 | -0.062 | -3 | 0.686 |
RET |
0.773 | -0.137 | 1 | 0.764 |
MYO3B |
0.773 | -0.157 | 2 | 0.799 |
ASK1 |
0.772 | -0.240 | 1 | 0.713 |
CK1A |
0.772 | -0.041 | -3 | 0.431 |
FGR |
0.772 | -0.022 | 1 | 0.830 |
EPHB1 |
0.771 | 0.035 | 1 | 0.846 |
HCK |
0.771 | 0.029 | -1 | 0.831 |
LIMK2_TYR |
0.771 | -0.192 | -3 | 0.846 |
EPHB3 |
0.770 | 0.036 | -1 | 0.843 |
CSF1R |
0.770 | -0.063 | 3 | 0.739 |
ITK |
0.768 | 0.010 | -1 | 0.796 |
NEK3 |
0.768 | -0.317 | 1 | 0.712 |
TYRO3 |
0.768 | -0.153 | 3 | 0.749 |
ABL1 |
0.767 | -0.022 | -1 | 0.808 |
JAK3 |
0.767 | -0.074 | 1 | 0.749 |
TYK2 |
0.767 | -0.224 | 1 | 0.763 |
SYK |
0.767 | 0.175 | -1 | 0.826 |
STLK3 |
0.766 | -0.177 | 1 | 0.706 |
MST1R |
0.766 | -0.213 | 3 | 0.761 |
ROS1 |
0.766 | -0.168 | 3 | 0.716 |
LIMK1_TYR |
0.766 | -0.294 | 2 | 0.837 |
PTK2 |
0.765 | 0.126 | -1 | 0.835 |
JAK2 |
0.765 | -0.190 | 1 | 0.757 |
TAO1 |
0.765 | -0.203 | 1 | 0.680 |
FGFR2 |
0.765 | -0.074 | 3 | 0.756 |
KIT |
0.765 | -0.060 | 3 | 0.744 |
AAK1 |
0.764 | 0.019 | 1 | 0.635 |
EPHA5 |
0.764 | 0.105 | 2 | 0.782 |
TEC |
0.763 | 0.011 | -1 | 0.733 |
EPHA7 |
0.763 | 0.023 | 2 | 0.786 |
BMX |
0.763 | 0.005 | -1 | 0.723 |
PKG1 |
0.763 | -0.114 | -2 | 0.571 |
DDR1 |
0.763 | -0.225 | 4 | 0.823 |
FLT1 |
0.762 | -0.003 | -1 | 0.878 |
FLT3 |
0.762 | -0.087 | 3 | 0.739 |
MET |
0.761 | -0.045 | 3 | 0.733 |
MERTK |
0.761 | -0.043 | 3 | 0.729 |
LYN |
0.760 | 0.038 | 3 | 0.666 |
EGFR |
0.760 | 0.041 | 1 | 0.644 |
EPHA8 |
0.760 | 0.061 | -1 | 0.836 |
KDR |
0.760 | -0.109 | 3 | 0.704 |
FRK |
0.759 | 0.012 | -1 | 0.858 |
EPHA3 |
0.758 | -0.057 | 2 | 0.760 |
TNK2 |
0.758 | -0.153 | 3 | 0.706 |
FGFR3 |
0.757 | -0.049 | 3 | 0.729 |
PDGFRB |
0.757 | -0.178 | 3 | 0.752 |
SRC |
0.757 | 0.045 | -1 | 0.809 |
CK1G3 |
0.757 | -0.039 | -3 | 0.386 |
ERBB2 |
0.756 | -0.087 | 1 | 0.732 |
FGFR1 |
0.755 | -0.154 | 3 | 0.722 |
BTK |
0.755 | -0.127 | -1 | 0.748 |
PTK6 |
0.755 | -0.110 | -1 | 0.715 |
TEK |
0.754 | -0.171 | 3 | 0.685 |
NTRK1 |
0.754 | -0.115 | -1 | 0.821 |
FGFR4 |
0.753 | 0.020 | -1 | 0.798 |
NEK10_TYR |
0.753 | -0.176 | 1 | 0.646 |
LTK |
0.753 | -0.123 | 3 | 0.691 |
AXL |
0.752 | -0.176 | 3 | 0.729 |
MATK |
0.752 | -0.055 | -1 | 0.755 |
ALK |
0.751 | -0.146 | 3 | 0.667 |
PTK2B |
0.751 | -0.046 | -1 | 0.766 |
INSR |
0.750 | -0.111 | 3 | 0.677 |
EPHA2 |
0.750 | 0.039 | -1 | 0.811 |
CSK |
0.749 | -0.047 | 2 | 0.783 |
JAK1 |
0.749 | -0.186 | 1 | 0.696 |
TNNI3K_TYR |
0.749 | -0.187 | 1 | 0.773 |
FLT4 |
0.749 | -0.143 | 3 | 0.705 |
WEE1_TYR |
0.748 | -0.158 | -1 | 0.733 |
NTRK3 |
0.748 | -0.087 | -1 | 0.774 |
NTRK2 |
0.747 | -0.167 | 3 | 0.709 |
EPHA1 |
0.747 | -0.146 | 3 | 0.705 |
ERBB4 |
0.746 | 0.022 | 1 | 0.682 |
TNK1 |
0.745 | -0.264 | 3 | 0.730 |
CK1G2 |
0.745 | -0.022 | -3 | 0.487 |
PDGFRA |
0.744 | -0.316 | 3 | 0.749 |
IGF1R |
0.742 | -0.051 | 3 | 0.622 |
DDR2 |
0.742 | -0.135 | 3 | 0.689 |
YANK2 |
0.741 | -0.104 | 2 | 0.425 |
ZAP70 |
0.732 | 0.007 | -1 | 0.727 |
MUSK |
0.725 | -0.191 | 1 | 0.631 |
FES |
0.724 | -0.113 | -1 | 0.699 |