Motif 608 (n=396)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A4UGR9 | XIRP2 | S3241 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
A6H8Y1 | BDP1 | S420 | ochoa | Transcription factor TFIIIB component B'' homolog (Transcription factor IIIB 150) (TFIIIB150) (Transcription factor-like nuclear regulator) | General activator of RNA polymerase III transcription. Requires for transcription from all three types of polymerase III promoters. Requires for transcription of genes with internal promoter elements and with promoter elements upstream of the initiation site. {ECO:0000269|PubMed:11040218}. |
E9PCH4 | None | S694 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
I3L4J1 | None | S119 | ochoa | vesicle-fusing ATPase (EC 3.6.4.6) | (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}. |
O00401 | WASL | S432 | ochoa | Actin nucleation-promoting factor WASL (Neural Wiskott-Aldrich syndrome protein) (N-WASP) | Regulates actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex (PubMed:16767080, PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Involved in various processes, such as mitosis and cytokinesis, via its role in the regulation of actin polymerization (PubMed:19366662, PubMed:19487689, PubMed:22847007, PubMed:22921828, PubMed:9422512). Together with CDC42, involved in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia (PubMed:9422512). In addition to its role in the cytoplasm, also plays a role in the nucleus by regulating gene transcription, probably by promoting nuclear actin polymerization (PubMed:16767080). Binds to HSF1/HSTF1 and forms a complex on heat shock promoter elements (HSE) that negatively regulates HSP90 expression (By similarity). Plays a role in dendrite spine morphogenesis (By similarity). Decreasing levels of DNMBP (using antisense RNA) alters apical junction morphology in cultured enterocytes, junctions curve instead of being nearly linear (PubMed:19767742). {ECO:0000250|UniProtKB:Q91YD9, ECO:0000269|PubMed:16767080, ECO:0000269|PubMed:19366662, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:22847007, ECO:0000269|PubMed:22921828, ECO:0000269|PubMed:9422512}. |
O00472 | ELL2 | S420 | ochoa | RNA polymerase II elongation factor ELL2 | Elongation factor component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968). Plays a role in immunoglobulin secretion in plasma cells: directs efficient alternative mRNA processing, influencing both proximal poly(A) site choice and exon skipping, as well as immunoglobulin heavy chain (IgH) alternative processing. Probably acts by regulating histone modifications accompanying transition from membrane-specific to secretory IgH mRNA expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23251033}. |
O00505 | KPNA3 | S56 | ochoa | Importin subunit alpha-4 (Importin alpha Q2) (Qip2) (Karyopherin subunit alpha-3) (SRP1-gamma) | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1. Binds specifically and directly to substrates containing either a simple or bipartite NLS motif. Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. In vitro, mediates the nuclear import of human cytomegalovirus UL84 by recognizing a non-classical NLS. Recognizes NLSs of influenza A virus nucleoprotein probably through ARM repeats 7-9. |
O00566 | MPHOSPH10 | S163 | ochoa | U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10) | Component of the 60-80S U3 small nucleolar ribonucleoprotein (U3 snoRNP). Required for the early cleavages during pre-18S ribosomal RNA processing (PubMed:12655004). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12655004, ECO:0000269|PubMed:34516797}. |
O00566 | MPHOSPH10 | S167 | ochoa | U3 small nucleolar ribonucleoprotein protein MPP10 (M phase phosphoprotein 10) | Component of the 60-80S U3 small nucleolar ribonucleoprotein (U3 snoRNP). Required for the early cleavages during pre-18S ribosomal RNA processing (PubMed:12655004). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12655004, ECO:0000269|PubMed:34516797}. |
O14646 | CHD1 | S1580 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14647 | CHD2 | S208 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O15034 | RIMBP2 | S704 | ochoa | RIMS-binding protein 2 (RIM-BP2) | Plays a role in the synaptic transmission as bifunctional linker that interacts simultaneously with RIMS1, RIMS2, CACNA1D and CACNA1B. {ECO:0000250}. |
O43670 | ZNF207 | S104 | psp | BUB3-interacting and GLEBS motif-containing protein ZNF207 (BuGZ) (hBuGZ) (Zinc finger protein 207) | Kinetochore- and microtubule-binding protein that plays a key role in spindle assembly (PubMed:24462186, PubMed:24462187, PubMed:26388440). ZNF207/BuGZ is mainly composed of disordered low-complexity regions and undergoes phase transition or coacervation to form temperature-dependent liquid droplets. Coacervation promotes microtubule bundling and concentrates tubulin, promoting microtubule polymerization and assembly of spindle and spindle matrix by concentrating its building blocks (PubMed:26388440). Also acts as a regulator of mitotic chromosome alignment by mediating the stability and kinetochore loading of BUB3 (PubMed:24462186, PubMed:24462187). Mechanisms by which BUB3 is protected are unclear: according to a first report, ZNF207/BuGZ may act by blocking ubiquitination and proteasomal degradation of BUB3 (PubMed:24462186). According to another report, the stabilization is independent of the proteasome (PubMed:24462187). {ECO:0000269|PubMed:24462186, ECO:0000269|PubMed:24462187, ECO:0000269|PubMed:26388440}. |
O43815 | STRN | S239 | ochoa | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
O43896 | KIF1C | S674 | ochoa | Kinesin-like protein KIF1C | Motor required for the retrograde transport of Golgi vesicles to the endoplasmic reticulum. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:9685376}. |
O60583 | CCNT2 | S707 | ochoa | Cyclin-T2 (CycT2) | Regulatory subunit of the cyclin-dependent kinase pair (CDK9/cyclin T) complex, also called positive transcription elongation factor B (P-TEFB), which is proposed to facilitate the transition from abortive to production elongation by phosphorylating the CTD (carboxy-terminal domain) of the large subunit of RNA polymerase II (RNAP II) (PubMed:15563843, PubMed:9499409). The activity of this complex is regulated by binding with 7SK snRNA (PubMed:11713533). Plays a role during muscle differentiation; P-TEFB complex interacts with MYOD1; this tripartite complex promotes the transcriptional activity of MYOD1 through its CDK9-mediated phosphorylation and binds the chromatin of promoters and enhancers of muscle-specific genes; this event correlates with hyperphosphorylation of the CTD domain of RNA pol II (By similarity). In addition, enhances MYOD1-dependent transcription through interaction with PKN1 (PubMed:16331689). Involved in early embryo development (By similarity). {ECO:0000250|UniProtKB:Q7TQK0, ECO:0000269|PubMed:11713533, ECO:0000269|PubMed:15563843, ECO:0000269|PubMed:16331689, ECO:0000269|PubMed:9499409}.; FUNCTION: (Microbial infection) Promotes transcriptional activation of early and late herpes simplex virus 1/HHV-1 promoters. {ECO:0000269|PubMed:21509660}. |
O60841 | EIF5B | Y134 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60841 | EIF5B | S589 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60841 | EIF5B | S591 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O60934 | NBN | S518 | ochoa | Nibrin (Cell cycle regulatory protein p95) (Nijmegen breakage syndrome protein 1) (hNbs1) | Component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:10888888, PubMed:15616588, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:23115235, PubMed:28216226, PubMed:28867292, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:19759395, PubMed:28867292, PubMed:9705271). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:19759395, PubMed:9705271). The MRN complex possesses single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity, which are provided by MRE11, to initiate end resection, which is required for single-strand invasion and recombination (PubMed:19759395, PubMed:28867292, PubMed:9705271). Within the MRN complex, NBN acts as a protein-protein adapter, which specifically recognizes and binds phosphorylated proteins, promoting their recruitment to DNA damage sites (PubMed:12419185, PubMed:15616588, PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890, PubMed:19759395, PubMed:19804756, PubMed:23762398, PubMed:24534091, PubMed:27814491, PubMed:27889449, PubMed:33836577). Recruits MRE11 and RAD50 components of the MRN complex to DSBs in response to DNA damage (PubMed:12419185, PubMed:18411307, PubMed:18583988, PubMed:18678890, PubMed:24534091, PubMed:26438602). Promotes the recruitment of PI3/PI4-kinase family members ATM, ATR, and probably DNA-PKcs to the DNA damage sites, activating their functions (PubMed:15064416, PubMed:15616588, PubMed:15790808, PubMed:16622404, PubMed:22464731, PubMed:30952868, PubMed:35076389). Mediates the recruitment of phosphorylated RBBP8/CtIP to DSBs, leading to cooperation between the MRN complex and RBBP8/CtIP to initiate end resection (PubMed:19759395, PubMed:27814491, PubMed:27889449, PubMed:33836577). RBBP8/CtIP specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). The MRN complex is also required for the processing of R-loops (PubMed:31537797). NBN also functions in telomere length maintenance via its interaction with TERF2: interaction with TERF2 during G1 phase preventing recruitment of DCLRE1B/Apollo to telomeres (PubMed:10888888, PubMed:28216226). NBN also promotes DNA repair choice at dysfunctional telomeres: NBN phosphorylation by CDK2 promotes non-homologous end joining repair at telomeres, while unphosphorylated NBN promotes microhomology-mediated end-joining (MMEJ) repair (PubMed:28216226). Enhances AKT1 phosphorylation possibly by association with the mTORC2 complex (PubMed:23762398). {ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:12419185, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15616588, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:19804756, ECO:0000269|PubMed:22464731, ECO:0000269|PubMed:23115235, ECO:0000269|PubMed:23762398, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26438602, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:33836577, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:9705271}. |
O75152 | ZC3H11A | S338 | ochoa | Zinc finger CCCH domain-containing protein 11A | Through its association with TREX complex components, may participate in the export and post-transcriptional coordination of selected mRNA transcripts, including those required to maintain the metabolic processes in embryonic cells (PubMed:22928037, PubMed:37356722). Binds RNA (PubMed:29610341, PubMed:37356722). {ECO:0000269|PubMed:22928037, ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}.; FUNCTION: (Microbial infection) Plays a role in efficient growth of several nuclear-replicating viruses such as HIV-1, influenza virus or herpes simplex virus 1/HHV-1. Required for efficient viral mRNA export (PubMed:29610341). May be required for proper polyadenylation of adenovirus type 5/HAdV-5 capsid mRNA (PubMed:37356722). {ECO:0000269|PubMed:29610341, ECO:0000269|PubMed:37356722}. |
O75494 | SRSF10 | S107 | ochoa | Serine/arginine-rich splicing factor 10 (40 kDa SR-repressor protein) (SRrp40) (FUS-interacting serine-arginine-rich protein 1) (Splicing factor SRp38) (Splicing factor, arginine/serine-rich 13A) (TLS-associated protein with Ser-Arg repeats) (TASR) (TLS-associated protein with SR repeats) (TLS-associated serine-arginine protein) (TLS-associated SR protein) | Splicing factor that in its dephosphorylated form acts as a general repressor of pre-mRNA splicing (PubMed:11684676, PubMed:12419250, PubMed:14765198). Seems to interfere with the U1 snRNP 5'-splice recognition of SNRNP70 (PubMed:14765198). Required for splicing repression in M-phase cells and after heat shock (PubMed:14765198). Also acts as a splicing factor that specifically promotes exon skipping during alternative splicing (PubMed:26876937). Interaction with YTHDC1, a RNA-binding protein that recognizes and binds N6-methyladenosine (m6A)-containing RNAs, prevents SRSF10 from binding to its mRNA-binding sites close to m6A-containing regions, leading to inhibit exon skipping during alternative splicing (PubMed:26876937). May be involved in regulation of alternative splicing in neurons, with isoform 1 acting as a positive and isoform 3 as a negative regulator (PubMed:12419250). {ECO:0000269|PubMed:11684676, ECO:0000269|PubMed:12419250, ECO:0000269|PubMed:14765198, ECO:0000269|PubMed:26876937}. |
O75530 | EED | S25 | ochoa | Polycomb protein EED (hEED) (Embryonic ectoderm development protein) (WD protein associating with integrin cytoplasmic tails 1) (WAIT-1) | Polycomb group (PcG) protein. Component of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' and 'Lys-27' of histone H3, leading to transcriptional repression of the affected target gene. Also recognizes 'Lys-26' trimethylated histone H1 with the effect of inhibiting PRC2 complex methyltransferase activity on nucleosomal histone H3 'Lys-27', whereas H3 'Lys-27' recognition has the opposite effect, enabling the propagation of this repressive mark. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1 and CDKN2A. {ECO:0000269|PubMed:10581039, ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:20974918, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:9584199}. |
O75717 | WDHD1 | S350 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O75717 | WDHD1 | S1035 | ochoa | WD repeat and HMG-box DNA-binding protein 1 (Acidic nucleoplasmic DNA-binding protein 1) (And-1) | Core replisome component that acts as a replication initiation factor. Binds directly to the CMG complex and functions as a hub to recruit additional proteins to the replication fork. {ECO:0000269|PubMed:19805216, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
O94880 | PHF14 | Y23 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94880 | PHF14 | S598 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94973 | AP2A2 | S622 | ochoa | AP-2 complex subunit alpha-2 (100 kDa coated vesicle protein C) (Adaptor protein complex AP-2 subunit alpha-2) (Adaptor-related protein complex 2 subunit alpha-2) (Alpha-adaptin C) (Alpha2-adaptin) (Clathrin assembly protein complex 2 alpha-C large chain) (Huntingtin yeast partner J) (Huntingtin-interacting protein 9) (HIP-9) (Huntingtin-interacting protein J) (Plasma membrane adaptor HA2/AP2 adaptin alpha C subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:12960147, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
O94992 | HEXIM1 | S233 | ochoa|psp | Protein HEXIM1 (Cardiac lineage protein 1) (Estrogen down-regulated gene 1 protein) (Hexamethylene bis-acetamide-inducible protein 1) (Menage a quatre protein 1) | Transcriptional regulator which functions as a general RNA polymerase II transcription inhibitor (PubMed:14580347, PubMed:15201869, PubMed:15713661). Core component of the 7SK RNP complex: in cooperation with 7SK snRNA sequesters P-TEFb in a large inactive 7SK snRNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:12832472, PubMed:14580347, PubMed:15201869, PubMed:15713661). May also regulate NF-kappa-B, ESR1, NR3C1 and CIITA-dependent transcriptional activity (PubMed:15940264, PubMed:15941832, PubMed:17088550). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:12581153, ECO:0000269|PubMed:12832472, ECO:0000269|PubMed:14580347, ECO:0000269|PubMed:15201869, ECO:0000269|PubMed:15713661, ECO:0000269|PubMed:15940264, ECO:0000269|PubMed:15941832, ECO:0000269|PubMed:17088550, ECO:0000269|PubMed:28712728}. |
O95232 | LUC7L3 | S395 | ochoa | Luc7-like protein 3 (Cisplatin resistance-associated-overexpressed protein) (Luc7A) (Okadaic acid-inducible phosphoprotein OA48-18) (cAMP regulatory element-associated protein 1) (CRE-associated protein 1) (CREAP-1) | Binds cAMP regulatory element DNA sequence. May play a role in RNA splicing. {ECO:0000269|PubMed:16462885}. |
O95905 | ECD | S503 | psp | Protein ecdysoneless homolog (Human suppressor of GCR two) (hSGT1) | Regulator of p53/TP53 stability and function. Inhibits MDM2-mediated degradation of p53/TP53 possibly by cooperating in part with TXNIP (PubMed:16849563, PubMed:23880345). May be involved transcriptional regulation. In vitro has intrinsic transactivation activity enhanced by EP300. May be a transcriptional activator required for the expression of glycolytic genes (PubMed:19919181, PubMed:9928932). Involved in regulation of cell cycle progression. Proposed to disrupt Rb-E2F binding leading to transcriptional activation of E2F proteins (PubMed:19640839). The cell cycle -regulating function may depend on its RUVBL1-mediated association with the R2TP complex (PubMed:26711270). May play a role in regulation of pre-mRNA splicing (PubMed:24722212). Participates together with DDX39A in mRNA nuclear export (PubMed:33941617). {ECO:0000269|PubMed:16849563, ECO:0000269|PubMed:19640839, ECO:0000269|PubMed:19919181, ECO:0000269|PubMed:23880345, ECO:0000269|PubMed:26711270, ECO:0000269|PubMed:33941617, ECO:0000305|PubMed:24722212, ECO:0000305|PubMed:9928932}. |
P05408 | SCG5 | S108 | ochoa | Neuroendocrine protein 7B2 (Pituitary polypeptide) (Secretogranin V) (Secretogranin-5) (Secretory granule endocrine protein I) [Cleaved into: N-terminal peptide; C-terminal peptide] | Acts as a molecular chaperone for PCSK2/PC2, preventing its premature activation in the regulated secretory pathway. Binds to inactive PCSK2 in the endoplasmic reticulum and facilitates its transport from there to later compartments of the secretory pathway where it is proteolytically matured and activated. Also required for cleavage of PCSK2 but does not appear to be involved in its folding. Plays a role in regulating pituitary hormone secretion. The C-terminal peptide inhibits PCSK2 in vitro. {ECO:0000269|PubMed:7913882}. |
P10276 | RARA | S219 | psp | Retinoic acid receptor alpha (RAR-alpha) (Nuclear receptor subfamily 1 group B member 1) | Receptor for retinoic acid (PubMed:16417524, PubMed:19850744, PubMed:20215566, PubMed:21152046, PubMed:37478846). Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes (PubMed:21152046, PubMed:28167758, PubMed:37478846). The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (PubMed:19398580, PubMed:28167758). In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone deacetylation, chromatin condensation and transcriptional suppression (PubMed:16417524). On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation (PubMed:19850744, PubMed:20215566, PubMed:37478846, PubMed:9267036). Formation of a complex with histone deacetylases might lead to inhibition of RARE DNA element binding and to transcriptional repression (PubMed:28167758). Transcriptional activation and RARE DNA element binding might be supported by the transcription factor KLF2 (PubMed:28167758). RARA plays an essential role in the regulation of retinoic acid-induced germ cell development during spermatogenesis (By similarity). Has a role in the survival of early spermatocytes at the beginning prophase of meiosis (By similarity). In Sertoli cells, may promote the survival and development of early meiotic prophase spermatocytes (By similarity). In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). Together with RXRA, positively regulates microRNA-10a expression, thereby inhibiting the GATA6/VCAM1 signaling response to pulsatile shear stress in vascular endothelial cells (PubMed:28167758). In association with HDAC3, HDAC5 and HDAC7 corepressors, plays a role in the repression of microRNA-10a and thereby promotes the inflammatory response (PubMed:28167758). {ECO:0000250|UniProtKB:P11416, ECO:0000269|PubMed:16417524, ECO:0000269|PubMed:19398580, ECO:0000269|PubMed:19850744, ECO:0000269|PubMed:20215566, ECO:0000269|PubMed:21152046, ECO:0000269|PubMed:28167758, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9267036}. |
P11388 | TOP2A | S1337 | ochoa|psp | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P11717 | IGF2R | S2401 | ochoa | Cation-independent mannose-6-phosphate receptor (CI Man-6-P receptor) (CI-MPR) (M6PR) (300 kDa mannose 6-phosphate receptor) (MPR 300) (Insulin-like growth factor 2 receptor) (Insulin-like growth factor II receptor) (IGF-II receptor) (M6P/IGF2 receptor) (M6P/IGF2R) (CD antigen CD222) | Mediates the transport of phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to lysosomes (PubMed:18817523, PubMed:2963003). Lysosomal enzymes bearing phosphomannosyl residues bind specifically to mannose-6-phosphate receptors in the Golgi apparatus and the resulting receptor-ligand complex is transported to an acidic prelysosomal compartment where the low pH mediates the dissociation of the complex (PubMed:18817523, PubMed:2963003). The receptor is then recycled back to the Golgi for another round of trafficking through its binding to the retromer (PubMed:18817523). This receptor also binds IGF2 (PubMed:18046459). Acts as a positive regulator of T-cell coactivation by binding DPP4 (PubMed:10900005). {ECO:0000269|PubMed:10900005, ECO:0000269|PubMed:18046459, ECO:0000269|PubMed:18817523, ECO:0000269|PubMed:2963003}. |
P15923 | TCF3 | S529 | ochoa | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P16284 | PECAM1 | S647 | ochoa | Platelet endothelial cell adhesion molecule (PECAM-1) (EndoCAM) (GPIIA') (PECA1) (CD antigen CD31) | Cell adhesion molecule which is required for leukocyte transendothelial migration (TEM) under most inflammatory conditions (PubMed:17580308, PubMed:19342684). Tyr-690 plays a critical role in TEM and is required for efficient trafficking of PECAM1 to and from the lateral border recycling compartment (LBRC) and is also essential for the LBRC membrane to be targeted around migrating leukocytes (PubMed:19342684). Trans-homophilic interaction may play a role in endothelial cell-cell adhesion via cell junctions (PubMed:27958302). Heterophilic interaction with CD177 plays a role in transendothelial migration of neutrophils (PubMed:17580308). Homophilic ligation of PECAM1 prevents macrophage-mediated phagocytosis of neighboring viable leukocytes by transmitting a detachment signal (PubMed:12110892). Promotes macrophage-mediated phagocytosis of apoptotic leukocytes by tethering them to the phagocytic cells; PECAM1-mediated detachment signal appears to be disabled in apoptotic leukocytes (PubMed:12110892). Modulates bradykinin receptor BDKRB2 activation (PubMed:18672896). Regulates bradykinin- and hyperosmotic shock-induced ERK1/2 activation in endothelial cells (PubMed:18672896). Induces susceptibility to atherosclerosis (By similarity). {ECO:0000250|UniProtKB:Q08481, ECO:0000269|PubMed:12110892, ECO:0000269|PubMed:17580308, ECO:0000269|PubMed:18672896, ECO:0000269|PubMed:19342684, ECO:0000269|PubMed:27958302}.; FUNCTION: [Isoform Delta15]: Does not protect against apoptosis. {ECO:0000269|PubMed:18388311}. |
P23497 | SP100 | S223 | ochoa | Nuclear autoantigen Sp-100 (Nuclear dot-associated Sp100 protein) (Speckled 100 kDa) | Together with PML, this tumor suppressor is a major constituent of the PML bodies, a subnuclear organelle involved in a large number of physiological processes including cell growth, differentiation and apoptosis. Functions as a transcriptional coactivator of ETS1 and ETS2 according to PubMed:11909962. Under certain conditions, it may also act as a corepressor of ETS1 preventing its binding to DNA according to PubMed:15247905. Through the regulation of ETS1 it may play a role in angiogenesis, controlling endothelial cell motility and invasion. Through interaction with the MRN complex it may be involved in the regulation of telomeres lengthening. May also regulate TP53-mediated transcription and through CASP8AP2, regulate FAS-mediated apoptosis. Also plays a role in infection by viruses, including human cytomegalovirus and Epstein-Barr virus, through mechanisms that may involve chromatin and/or transcriptional regulation. {ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:14647468, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000269|PubMed:15767676, ECO:0000269|PubMed:16177824, ECO:0000269|PubMed:17245429, ECO:0000269|PubMed:21274506, ECO:0000269|PubMed:21880768}. |
P24001 | IL32 | S133 | ochoa | Interleukin-32 (IL-32) (Natural killer cells protein 4) (Tumor necrosis factor alpha-inducing factor) | Cytokine that may play a role in innate and adaptive immune responses. It induces various cytokines such as TNFA/TNF-alpha and IL8. It activates typical cytokine signal pathways of NF-kappa-B and p38 MAPK. {ECO:0000269|PubMed:15664165}. |
P24534 | EEF1B2 | S90 | ochoa | Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) | Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}. |
P25054 | APC | S1863 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P30260 | CDC27 | S426 | ochoa|psp | Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
P30291 | WEE1 | S444 | psp | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P35659 | DEK | S301 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P39023 | RPL3 | S304 | ochoa | Large ribosomal subunit protein uL3 (60S ribosomal protein L3) (HIV-1 TAR RNA-binding protein B) (TARBP-B) | Component of the large ribosomal subunit (PubMed:12962325, PubMed:23636399, PubMed:32669547, PubMed:35674491). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:12962325, PubMed:23636399, PubMed:32669547). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547, ECO:0000305|PubMed:12962325}. |
P45973 | CBX5 | S92 | ochoa|psp | Chromobox protein homolog 5 (Antigen p25) (Heterochromatin protein 1 homolog alpha) (HP1 alpha) | Component of heterochromatin that recognizes and binds histone H3 tails methylated at 'Lys-9' (H3K9me), leading to epigenetic repression. In contrast, it is excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph) (PubMed:19783980). May contribute to the association of heterochromatin with the inner nuclear membrane by interactions with the lamin-B receptor (LBR) (PubMed:19783980). Involved in the formation of kinetochore through interaction with the MIS12 complex subunit NSL1 (PubMed:19783980, PubMed:20231385). Required for the formation of the inner centromere (PubMed:20231385). {ECO:0000269|PubMed:19783980, ECO:0000269|PubMed:20231385}. |
P46013 | MKI67 | S166 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46013 | MKI67 | S853 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46100 | ATRX | S108 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46100 | ATRX | S1203 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P46459 | NSF | S106 | ochoa | Vesicle-fusing ATPase (EC 3.6.4.6) (N-ethylmaleimide-sensitive fusion protein) (NEM-sensitive fusion protein) (Vesicular-fusion protein NSF) | Required for vesicle-mediated transport. Catalyzes the fusion of transport vesicles within the Golgi cisternae. Is also required for transport from the endoplasmic reticulum to the Golgi stack. Seems to function as a fusion protein required for the delivery of cargo proteins to all compartments of the Golgi stack independent of vesicle origin. Interaction with AMPAR subunit GRIA2 leads to influence GRIA2 membrane cycling (By similarity). {ECO:0000250}. |
P48551 | IFNAR2 | Y316 | psp | Interferon alpha/beta receptor 2 (IFN-R-2) (IFN-alpha binding protein) (IFN-alpha/beta receptor 2) (Interferon alpha binding protein) (Type I interferon receptor 2) | Together with IFNAR1, forms the heterodimeric receptor for type I interferons (including interferons alpha, beta, epsilon, omega and kappa) (PubMed:10049744, PubMed:10556041, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Type I interferon binding activates the JAK-STAT signaling cascade, resulting in transcriptional activation or repression of interferon-regulated genes that encode the effectors of the interferon response (PubMed:10049744, PubMed:17517919, PubMed:21854986, PubMed:26424569, PubMed:28165510, PubMed:32972995, PubMed:7665574, PubMed:7759950, PubMed:8181059, PubMed:8798579, PubMed:8969169). Mechanistically, type I interferon-binding brings the IFNAR1 and IFNAR2 subunits into close proximity with one another, driving their associated Janus kinases (JAKs) (TYK2 bound to IFNAR1 and JAK1 bound to IFNAR2) to cross-phosphorylate one another (PubMed:10556041, PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). The activated kinases phosphorylate specific tyrosine residues on the intracellular domains of IFNAR1 and IFNAR2, forming docking sites for the STAT transcription factors (STAT1, STAT2 and STAT) (PubMed:11682488, PubMed:12105218, PubMed:21854986, PubMed:32972995). STAT proteins are then phosphorylated by the JAKs, promoting their translocation into the nucleus to regulate expression of interferon-regulated genes (PubMed:12105218, PubMed:28165510, PubMed:9121453). {ECO:0000269|PubMed:10049744, ECO:0000269|PubMed:10556041, ECO:0000269|PubMed:11682488, ECO:0000269|PubMed:12105218, ECO:0000269|PubMed:17517919, ECO:0000269|PubMed:21854986, ECO:0000269|PubMed:26424569, ECO:0000269|PubMed:28165510, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:7665574, ECO:0000269|PubMed:7759950, ECO:0000269|PubMed:8181059, ECO:0000269|PubMed:8798579, ECO:0000269|PubMed:8969169, ECO:0000269|PubMed:9121453}.; FUNCTION: [Isoform 3]: Potent inhibitor of type I IFN receptor activity. {ECO:0000269|PubMed:7759950}. |
P49768 | PSEN1 | S319 | ochoa|psp | Presenilin-1 (PS-1) (EC 3.4.23.-) (Protein S182) [Cleaved into: Presenilin-1 NTF subunit; Presenilin-1 CTF subunit; Presenilin-1 CTF12 (PS1-CTF12)] | Catalytic subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) (PubMed:10206644, PubMed:10545183, PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:12679784, PubMed:12740439, PubMed:15274632, PubMed:20460383, PubMed:25043039, PubMed:26280335, PubMed:28269784, PubMed:30598546, PubMed:30630874). Requires the presence of the other members of the gamma-secretase complex for protease activity (PubMed:15274632, PubMed:25043039, PubMed:26280335, PubMed:30598546, PubMed:30630874). Plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels (PubMed:10593990, PubMed:10811883, PubMed:10899933, PubMed:9738936). Stimulates cell-cell adhesion via its interaction with CDH1; this stabilizes the complexes between CDH1 (E-cadherin) and its interaction partners CTNNB1 (beta-catenin), CTNND1 and JUP (gamma-catenin) (PubMed:11953314). Under conditions of apoptosis or calcium influx, cleaves CDH1 (PubMed:11953314). This promotes the disassembly of the complexes between CDH1 and CTNND1, JUP and CTNNB1, increases the pool of cytoplasmic CTNNB1, and thereby negatively regulates Wnt signaling (PubMed:11953314, PubMed:9738936). Required for normal embryonic brain and skeleton development, and for normal angiogenesis (By similarity). Mediates the proteolytic cleavage of EphB2/CTF1 into EphB2/CTF2 (PubMed:17428795, PubMed:28269784). The holoprotein functions as a calcium-leak channel that allows the passive movement of calcium from endoplasmic reticulum to cytosol and is therefore involved in calcium homeostasis (PubMed:16959576, PubMed:25394380). Involved in the regulation of neurite outgrowth (PubMed:15004326, PubMed:20460383). Is a regulator of presynaptic facilitation, spike transmission and synaptic vesicles replenishment in a process that depends on gamma-secretase activity. It acts through the control of SYT7 presynaptic expression (By similarity). {ECO:0000250|UniProtKB:P49769, ECO:0000269|PubMed:10206644, ECO:0000269|PubMed:10545183, ECO:0000269|PubMed:10593990, ECO:0000269|PubMed:10811883, ECO:0000269|PubMed:10899933, ECO:0000269|PubMed:11953314, ECO:0000269|PubMed:12679784, ECO:0000269|PubMed:12740439, ECO:0000269|PubMed:15004326, ECO:0000269|PubMed:15274632, ECO:0000269|PubMed:15341515, ECO:0000269|PubMed:16305624, ECO:0000269|PubMed:16959576, ECO:0000269|PubMed:17428795, ECO:0000269|PubMed:20460383, ECO:0000269|PubMed:25043039, ECO:0000269|PubMed:25394380, ECO:0000269|PubMed:26280335, ECO:0000269|PubMed:28269784, ECO:0000269|PubMed:30598546, ECO:0000269|PubMed:30630874, ECO:0000269|PubMed:9738936}. |
P52735 | VAV2 | S91 | ochoa | Guanine nucleotide exchange factor VAV2 (VAV-2) | Guanine nucleotide exchange factor for the Rho family of Ras-related GTPases. Plays an important role in angiogenesis. Its recruitment by phosphorylated EPHA2 is critical for EFNA1-induced RAC1 GTPase activation and vascular endothelial cell migration and assembly (By similarity). {ECO:0000250}. |
P54132 | BLM | S149 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P57103 | SLC8A3 | S382 | ochoa | Sodium/calcium exchanger 3 (Na(+)/Ca(2+)-exchange protein 3) (Solute carrier family 8 member 3) | Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells, both in muscle and in brain. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A3 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels rapidly return to baseline. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In neurons, contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory (By similarity). Required for normal oligodendrocyte differentiation and for normal myelination (PubMed:21959935). Mediates Ca(2+) efflux from mitochondria and contributes to mitochondrial Ca(2+) ion homeostasis (By similarity). {ECO:0000250|UniProtKB:S4R2P9, ECO:0000269|PubMed:21959935}. |
P60709 | ACTB | S344 | ochoa | Actin, cytoplasmic 1 (EC 3.6.4.-) (Beta-actin) [Cleaved into: Actin, cytoplasmic 1, N-terminally processed] | Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells (PubMed:25255767, PubMed:29581253). Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction (PubMed:29581253). In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA (PubMed:29925947). Plays a role in the assembly of the gamma-tubulin ring complex (gTuRC), which regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments (PubMed:39321809, PubMed:38609661). Part of the ACTR1A/ACTB filament around which the dynactin complex is built (By similarity). The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). {ECO:0000250|UniProtKB:Q6QAQ1, ECO:0000269|PubMed:25255767, ECO:0000269|PubMed:29581253, ECO:0000269|PubMed:29925947, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809}. |
P63261 | ACTG1 | S344 | ochoa | Actin, cytoplasmic 2 (EC 3.6.4.-) (Gamma-actin) [Cleaved into: Actin, cytoplasmic 2, N-terminally processed] | Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. May play a role in the repair of noise-induced stereocilia gaps thereby maintains hearing sensitivity following loud noise damage (By similarity). {ECO:0000250|UniProtKB:P63260, ECO:0000305|PubMed:29581253}. |
P68104 | EEF1A1 | S396 | ochoa|psp | Elongation factor 1-alpha 1 (EF-1-alpha-1) (EC 3.6.5.-) (Elongation factor Tu) (EF-Tu) (Eukaryotic elongation factor 1 A-1) (eEF1A-1) (Leukocyte receptor cluster member 7) | Translation elongation factor that catalyzes the GTP-dependent binding of aminoacyl-tRNA (aa-tRNA) to the A-site of ribosomes during the elongation phase of protein synthesis (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). Base pairing between the mRNA codon and the aa-tRNA anticodon promotes GTP hydrolysis, releasing the aa-tRNA from EEF1A1 and allowing its accommodation into the ribosome (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623, PubMed:36638793). The growing protein chain is subsequently transferred from the P-site peptidyl tRNA to the A-site aa-tRNA, extending it by one amino acid through ribosome-catalyzed peptide bond formation (PubMed:26593721, PubMed:26651998, PubMed:36123449, PubMed:36264623). Also plays a role in the positive regulation of IFNG transcription in T-helper 1 cells as part of an IFNG promoter-binding complex with TXK and PARP1 (PubMed:17177976). Also plays a role in cytoskeleton organization by promoting actin bundling (By similarity). {ECO:0000250|UniProtKB:P68105, ECO:0000269|PubMed:17177976, ECO:0000269|PubMed:26593721, ECO:0000269|PubMed:26651998, ECO:0000269|PubMed:36123449, ECO:0000269|PubMed:36264623, ECO:0000269|PubMed:36638793}.; FUNCTION: (Microbial infection) Required for the translation of viral proteins and viral replication during human coronavirus SARS-CoV-2 infection. {ECO:0000269|PubMed:33495306}. |
Q01831 | XPC | S94 | ochoa|psp | DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}. |
Q04724 | TLE1 | S244 | ochoa | Transducin-like enhancer protein 1 (E(Sp1) homolog) (Enhancer of split groucho-like protein 1) (ESG1) | Transcriptional corepressor that binds to a number of transcription factors. Inhibits NF-kappa-B-regulated gene expression. Inhibits the transcriptional activation mediated by FOXA2, and by CTNNB1 and TCF family members in Wnt signaling. Enhances FOXG1/BF-1- and HES1-mediated transcriptional repression (By similarity). The effects of full-length TLE family members may be modulated by association with dominant-negative AES. Unusual function as coactivator for ESRRG. {ECO:0000250|UniProtKB:Q62440, ECO:0000269|PubMed:10660609}. |
Q05513 | PRKCZ | S223 | ochoa | Protein kinase C zeta type (EC 2.7.11.13) (nPKC-zeta) | Calcium- and diacylglycerol-independent serine/threonine-protein kinase that functions in phosphatidylinositol 3-kinase (PI3K) pathway and mitogen-activated protein (MAP) kinase cascade, and is involved in NF-kappa-B activation, mitogenic signaling, cell proliferation, cell polarity, inflammatory response and maintenance of long-term potentiation (LTP). Upon lipopolysaccharide (LPS) treatment in macrophages, or following mitogenic stimuli, functions downstream of PI3K to activate MAP2K1/MEK1-MAPK1/ERK2 signaling cascade independently of RAF1 activation. Required for insulin-dependent activation of AKT3, but may function as an adapter rather than a direct activator. Upon insulin treatment may act as a downstream effector of PI3K and contribute to the activation of translocation of the glucose transporter SLC2A4/GLUT4 and subsequent glucose transport in adipocytes. In EGF-induced cells, binds and activates MAP2K5/MEK5-MAPK7/ERK5 independently of its kinase activity and can activate JUN promoter through MEF2C. Through binding with SQSTM1/p62, functions in interleukin-1 signaling and activation of NF-kappa-B with the specific adapters RIPK1 and TRAF6. Participates in TNF-dependent transactivation of NF-kappa-B by phosphorylating and activating IKBKB kinase, which in turn leads to the degradation of NF-kappa-B inhibitors. In migrating astrocytes, forms a cytoplasmic complex with PARD6A and is recruited by CDC42 to function in the establishment of cell polarity along with the microtubule motor and dynein. In association with FEZ1, stimulates neuronal differentiation in PC12 cells. In the inflammatory response, is required for the T-helper 2 (Th2) differentiation process, including interleukin production, efficient activation of JAK1 and the subsequent phosphorylation and nuclear translocation of STAT6. May be involved in development of allergic airway inflammation (asthma), a process dependent on Th2 immune response. In the NF-kappa-B-mediated inflammatory response, can relieve SETD6-dependent repression of NF-kappa-B target genes by phosphorylating the RELA subunit at 'Ser-311'. Phosphorylates VAMP2 in vitro (PubMed:17313651). Phosphorylates and activates LRRK1, which phosphorylates RAB proteins involved in intracellular trafficking (PubMed:36040231). {ECO:0000269|PubMed:11035106, ECO:0000269|PubMed:12162751, ECO:0000269|PubMed:15084291, ECO:0000269|PubMed:15324659, ECO:0000269|PubMed:17313651, ECO:0000269|PubMed:36040231, ECO:0000269|PubMed:9447975}.; FUNCTION: [Isoform 2]: Involved in late synaptic long term potention phase in CA1 hippocampal cells and long term memory maintenance. {ECO:0000250|UniProtKB:Q02956}. |
Q08945 | SSRP1 | Y438 | ochoa | FACT complex subunit SSRP1 (Chromatin-specific transcription elongation factor 80 kDa subunit) (Facilitates chromatin transcription complex 80 kDa subunit) (FACT 80 kDa subunit) (FACTp80) (Facilitates chromatin transcription complex subunit SSRP1) (Recombination signal sequence recognition protein 1) (Structure-specific recognition protein 1) (hSSRP1) (T160) | Component of the FACT complex, a general chromatin factor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes that require DNA as a template such as mRNA elongation, DNA replication and DNA repair. During transcription elongation the FACT complex acts as a histone chaperone that both destabilizes and restores nucleosomal structure. It facilitates the passage of RNA polymerase II and transcription by promoting the dissociation of one histone H2A-H2B dimer from the nucleosome, then subsequently promotes the reestablishment of the nucleosome following the passage of RNA polymerase II. The FACT complex is probably also involved in phosphorylation of 'Ser-392' of p53/TP53 via its association with CK2 (casein kinase II). Binds specifically to double-stranded DNA and at low levels to DNA modified by the antitumor agent cisplatin. May potentiate cisplatin-induced cell death by blocking replication and repair of modified DNA. Also acts as a transcriptional coactivator for p63/TP63. {ECO:0000269|PubMed:10912001, ECO:0000269|PubMed:11239457, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12934006, ECO:0000269|PubMed:16713563, ECO:0000269|PubMed:9489704, ECO:0000269|PubMed:9566881, ECO:0000269|PubMed:9836642}. |
Q08AE8 | SPIRE1 | S676 | ochoa | Protein spire homolog 1 (Spir-1) | Acts as an actin nucleation factor, remains associated with the slow-growing pointed end of the new filament (PubMed:11747823, PubMed:21620703). Involved in intracellular vesicle transport along actin fibers, providing a novel link between actin cytoskeleton dynamics and intracellular transport (PubMed:11747823). Required for asymmetric spindle positioning and asymmetric cell division during meiosis (PubMed:21620703). Required for normal formation of the cleavage furrow and for polar body extrusion during female germ cell meiosis (PubMed:21620703). Also acts in the nucleus: together with FMN2, promotes assembly of nuclear actin filaments in response to DNA damage in order to facilitate movement of chromatin and repair factors after DNA damage (PubMed:26287480). In addition, promotes innate immune signaling downstream of dsRNA sensing (PubMed:35148361). Mechanistically, contributes to IRF3 phosphorylation and activation downstream of MAVS and upstream of TBK1 (PubMed:35148361). {ECO:0000269|PubMed:11747823, ECO:0000269|PubMed:21620703, ECO:0000269|PubMed:26287480, ECO:0000269|PubMed:35148361}. |
Q0JRZ9 | FCHO2 | S304 | ochoa | F-BAR domain only protein 2 | Functions in an early step of clathrin-mediated endocytosis. Has both a membrane binding/bending activity and the ability to recruit proteins essential to the formation of functional clathrin-coated pits. Has a lipid-binding activity with a preference for membranes enriched in phosphatidylserine and phosphoinositides (Pi(4,5) biphosphate) like the plasma membrane. Its membrane-bending activity might be important for the subsequent action of clathrin and adaptors in the formation of clathrin-coated vesicles. Involved in adaptor protein complex AP-2-dependent endocytosis of the transferrin receptor, it also functions in the AP-2-independent endocytosis of the LDL receptor. {ECO:0000269|PubMed:17540576, ECO:0000269|PubMed:20448150, ECO:0000269|PubMed:21762413, ECO:0000269|PubMed:22323290}. |
Q12802 | AKAP13 | S391 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12830 | BPTF | S601 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13185 | CBX3 | S93 | ochoa|psp | Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) | Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}. |
Q13206 | DDX10 | S780 | ochoa | Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) | Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}. |
Q13480 | GAB1 | S208 | ochoa | GRB2-associated-binding protein 1 (GRB2-associated binder 1) (Growth factor receptor bound protein 2-associated protein 1) | Adapter protein that plays a role in intracellular signaling cascades triggered by activated receptor-type kinases. Plays a role in FGFR1 signaling. Probably involved in signaling by the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR). Involved in the MET/HGF-signaling pathway (PubMed:29408807). {ECO:0000269|PubMed:29408807}. |
Q14161 | GIT2 | S415 | ochoa | ARF GTPase-activating protein GIT2 (ARF GAP GIT2) (Cool-interacting tyrosine-phosphorylated protein 2) (CAT-2) (CAT2) (G protein-coupled receptor kinase-interactor 2) (GRK-interacting protein 2) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. {ECO:0000269|PubMed:10896954}. |
Q14493 | SLBP | S247 | ochoa | Histone RNA hairpin-binding protein (Histone stem-loop-binding protein) | RNA-binding protein involved in the histone pre-mRNA processing (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Binds the stem-loop structure of replication-dependent histone pre-mRNAs and contributes to efficient 3'-end processing by stabilizing the complex between histone pre-mRNA and U7 small nuclear ribonucleoprotein (snRNP), via the histone downstream element (HDE) (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Plays an important role in targeting mature histone mRNA from the nucleus to the cytoplasm and to the translation machinery (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Stabilizes mature histone mRNA and could be involved in cell-cycle regulation of histone gene expression (PubMed:12588979, PubMed:19155325, PubMed:8957003, PubMed:9049306). Involved in the mechanism by which growing oocytes accumulate histone proteins that support early embryogenesis (By similarity). Binds to the 5' side of the stem-loop structure of histone pre-mRNAs (By similarity). {ECO:0000250|UniProtKB:P97440, ECO:0000269|PubMed:12588979, ECO:0000269|PubMed:19155325, ECO:0000269|PubMed:8957003, ECO:0000269|PubMed:9049306}. |
Q14966 | ZNF638 | S1913 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14CW9 | ATXN7L3 | S131 | ochoa | Ataxin-7-like protein 3 (SAGA-associated factor 11 homolog) | Component of the transcription regulatory histone acetylation (HAT) complex SAGA, a multiprotein complex that activates transcription by remodeling chromatin and mediating histone acetylation and deubiquitination. Within the SAGA complex, participates in a subcomplex that specifically deubiquitinates both histones H2A and H2B (PubMed:18206972, PubMed:21746879). The SAGA complex is recruited to specific gene promoters by activators such as MYC, where it is required for transcription. Required for nuclear receptor-mediated transactivation. Within the complex, it is required to recruit USP22 and ENY2 into the SAGA complex (PubMed:18206972). Regulates H2B monoubiquitination (H2Bub1) levels. Affects subcellular distribution of ENY2, USP22 and ATXN7L3B (PubMed:27601583). {ECO:0000255|HAMAP-Rule:MF_03047, ECO:0000269|PubMed:18206972, ECO:0000269|PubMed:21746879, ECO:0000269|PubMed:27601583}. |
Q15057 | ACAP2 | S379 | ochoa | Arf-GAP with coiled-coil, ANK repeat and PH domain-containing protein 2 (Centaurin-beta-2) (Cnt-b2) | GTPase-activating protein (GAP) for ADP ribosylation factor 6 (ARF6). Doesn't show GAP activity for RAB35 (PubMed:30905672). {ECO:0000269|PubMed:11062263, ECO:0000269|PubMed:30905672}. |
Q15652 | JMJD1C | S373 | ochoa | Probable JmjC domain-containing histone demethylation protein 2C (EC 1.14.11.-) (Jumonji domain-containing protein 1C) (Thyroid receptor-interacting protein 8) (TR-interacting protein 8) (TRIP-8) | Probable histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May be involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes (By similarity). {ECO:0000250}. |
Q15751 | HERC1 | S1328 | ochoa | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q2LD37 | BLTP1 | S4894 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2NKX8 | ERCC6L | S1028 | ochoa | DNA excision repair protein ERCC-6-like (EC 3.6.4.12) (ATP-dependent helicase ERCC6-like) (PLK1-interacting checkpoint helicase) (Tumor antigen BJ-HCC-15) | DNA helicase that acts as a tension sensor that associates with catenated DNA which is stretched under tension until it is resolved during anaphase (PubMed:17218258, PubMed:23973328). Functions as ATP-dependent DNA translocase (PubMed:23973328, PubMed:28977671). Can promote Holliday junction branch migration (in vitro) (PubMed:23973328). {ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:23973328, ECO:0000269|PubMed:28977671}. |
Q53GL0 | PLEKHO1 | S221 | ochoa | Pleckstrin homology domain-containing family O member 1 (PH domain-containing family O member 1) (C-Jun-binding protein) (JBP) (Casein kinase 2-interacting protein 1) (CK2-interacting protein 1) (CKIP-1) (Osteoclast maturation-associated gene 120 protein) | Plays a role in the regulation of the actin cytoskeleton through its interactions with actin capping protein (CP). May function to target CK2 to the plasma membrane thereby serving as an adapter to facilitate the phosphorylation of CP by protein kinase 2 (CK2). Appears to target ATM to the plasma membrane. Appears to also inhibit tumor cell growth by inhibiting AKT-mediated cell-survival. Also implicated in PI3K-regulated muscle differentiation, the regulation of AP-1 activity (plasma membrane bound AP-1 regulator that translocates to the nucleus) and the promotion of apoptosis induced by tumor necrosis factor TNF. When bound to PKB, it inhibits it probably by decreasing PKB level of phosphorylation. {ECO:0000269|PubMed:14729969, ECO:0000269|PubMed:15706351, ECO:0000269|PubMed:15831458, ECO:0000269|PubMed:16325375, ECO:0000269|PubMed:16987810, ECO:0000269|PubMed:17197158, ECO:0000269|PubMed:17942896}. |
Q58WW2 | DCAF6 | S649 | ochoa | DDB1- and CUL4-associated factor 6 (Androgen receptor complex-associated protein) (ARCAP) (IQ motif and WD repeat-containing protein 1) (Nuclear receptor interaction protein) (NRIP) | Ligand-dependent coactivator of nuclear receptors. Enhance transcriptional activity of the nuclear receptors NR3C1 and AR. May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:15784617, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240}. |
Q5S007 | LRRK2 | S860 | psp | Leucine-rich repeat serine/threonine-protein kinase 2 (EC 2.7.11.1) (EC 3.6.5.-) (Dardarin) | Serine/threonine-protein kinase which phosphorylates a broad range of proteins involved in multiple processes such as neuronal plasticity, innate immunity, autophagy, and vesicle trafficking (PubMed:17114044, PubMed:20949042, PubMed:21850687, PubMed:22012985, PubMed:23395371, PubMed:24687852, PubMed:25201882, PubMed:26014385, PubMed:26824392, PubMed:27830463, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Is a key regulator of RAB GTPases by regulating the GTP/GDP exchange and interaction partners of RABs through phosphorylation (PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421). Phosphorylates RAB3A, RAB3B, RAB3C, RAB3D, RAB5A, RAB5B, RAB5C, RAB8A, RAB8B, RAB10, RAB12, RAB29, RAB35, and RAB43 (PubMed:23395371, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29127255, PubMed:29212815, PubMed:30398148, PubMed:30635421, PubMed:38127736). Regulates the RAB3IP-catalyzed GDP/GTP exchange for RAB8A through the phosphorylation of 'Thr-72' on RAB8A (PubMed:26824392). Inhibits the interaction between RAB8A and GDI1 and/or GDI2 by phosphorylating 'Thr-72' on RAB8A (PubMed:26824392). Regulates primary ciliogenesis through phosphorylation of RAB8A and RAB10, which promotes SHH signaling in the brain (PubMed:29125462, PubMed:30398148). Together with RAB29, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose-6-phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:23395371). Regulates neuronal process morphology in the intact central nervous system (CNS) (PubMed:17114044). Plays a role in synaptic vesicle trafficking (PubMed:24687852). Plays an important role in recruiting SEC16A to endoplasmic reticulum exit sites (ERES) and in regulating ER to Golgi vesicle-mediated transport and ERES organization (PubMed:25201882). Positively regulates autophagy through a calcium-dependent activation of the CaMKK/AMPK signaling pathway (PubMed:22012985). The process involves activation of nicotinic acid adenine dinucleotide phosphate (NAADP) receptors, increase in lysosomal pH, and calcium release from lysosomes (PubMed:22012985). Phosphorylates PRDX3 (PubMed:21850687). By phosphorylating APP on 'Thr-743', which promotes the production and the nuclear translocation of the APP intracellular domain (AICD), regulates dopaminergic neuron apoptosis (PubMed:28720718). Acts as a positive regulator of innate immunity by mediating phosphorylation of RIPK2 downstream of NOD1 and NOD2, thereby enhancing RIPK2 activation (PubMed:27830463). Independent of its kinase activity, inhibits the proteasomal degradation of MAPT, thus promoting MAPT oligomerization and secretion (PubMed:26014385). In addition, has GTPase activity via its Roc domain which regulates LRRK2 kinase activity (PubMed:18230735, PubMed:26824392, PubMed:28720718, PubMed:29125462, PubMed:29212815). Recruited by RAB29/RAB7L1 to overloaded lysosomes where it phosphorylates and stabilizes RAB8A and RAB10 which promote lysosomal content release and suppress lysosomal enlargement through the EHBP1 and EHBP1L1 effector proteins (PubMed:30209220, PubMed:38227290). {ECO:0000269|PubMed:17114044, ECO:0000269|PubMed:18230735, ECO:0000269|PubMed:20949042, ECO:0000269|PubMed:21850687, ECO:0000269|PubMed:22012985, ECO:0000269|PubMed:23395371, ECO:0000269|PubMed:24687852, ECO:0000269|PubMed:25201882, ECO:0000269|PubMed:26014385, ECO:0000269|PubMed:26824392, ECO:0000269|PubMed:27830463, ECO:0000269|PubMed:28720718, ECO:0000269|PubMed:29125462, ECO:0000269|PubMed:29127255, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:30209220, ECO:0000269|PubMed:30398148, ECO:0000269|PubMed:30635421, ECO:0000269|PubMed:38127736, ECO:0000269|PubMed:38227290}. |
Q5TH69 | ARFGEF3 | S632 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 3 (ARFGEF family member 3) | Participates in the regulation of systemic glucose homeostasis, where it negatively regulates insulin granule biogenesis in pancreatic islet beta cells (By similarity). Also regulates glucagon granule production in pancreatic alpha cells (By similarity). Inhibits nuclear translocation of the transcriptional coregulator PHB2 and may enhance estrogen receptor alpha (ESR1) transcriptional activity in breast cancer cells (PubMed:19496786). {ECO:0000250|UniProtKB:Q3UGY8, ECO:0000269|PubMed:19496786}. |
Q5TKA1 | LIN9 | S207 | ochoa | Protein lin-9 homolog (HuLin-9) (hLin-9) (Beta subunit-associated regulator of apoptosis) (TUDOR gene similar protein) (Type I interferon receptor beta chain-associated protein) (pRB-associated protein) | Acts as a tumor suppressor. Inhibits DNA synthesis. Its ability to inhibit oncogenic transformation is mediated through its association with RB1. Plays a role in the expression of genes required for the G1/S transition. {ECO:0000269|PubMed:15538385, ECO:0000269|PubMed:16730350}. |
Q5VTE0 | EEF1A1P5 | S396 | ochoa | Putative elongation factor 1-alpha-like 3 (EF-1-alpha-like 3) (Eukaryotic elongation factor 1 A-like 3) (eEF1A-like 3) (Eukaryotic translation elongation factor 1 alpha-1 pseudogene 5) | This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. {ECO:0000250}. |
Q5VUA4 | ZNF318 | S173 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q5VUA4 | ZNF318 | S665 | ochoa | Zinc finger protein 318 (Endocrine regulatory protein) | [Isoform 2]: Acts as a transcriptional corepressor for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}.; FUNCTION: [Isoform 1]: Acts as a transcriptional coactivator for AR-mediated transactivation function. May act as a transcriptional regulator during spermatogenesis and, in particular, during meiotic division. {ECO:0000250|UniProtKB:Q99PP2}. |
Q641Q2 | WASHC2A | S614 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q6KC79 | NIPBL | S1090 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6PD62 | CTR9 | S1015 | ochoa | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6PD62 | CTR9 | S1017 | ochoa | RNA polymerase-associated protein CTR9 homolog (SH2 domain-binding protein 1) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Required for mono- and trimethylation on histone H3 'Lys-4' (H3K4me3) and dimethylation on histone H3 'Lys-79' (H3K4me3). Required for Hox gene transcription. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of the SET1 complex. Involved in transcriptional regulation of IL6-responsive genes and in JAK-STAT pathway; may regulate DNA-association of STAT3 (By similarity). {ECO:0000250|UniProtKB:Q62018, ECO:0000269|PubMed:16024656, ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879}. |
Q6UB99 | ANKRD11 | S832 | ochoa | Ankyrin repeat domain-containing protein 11 (Ankyrin repeat-containing cofactor 1) | Chromatin regulator which modulates histone acetylation and gene expression in neural precursor cells (By similarity). May recruit histone deacetylases (HDACs) to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation (PubMed:15184363). Has a role in proliferation and development of cortical neural precursors (PubMed:25556659). May also regulate bone homeostasis (By similarity). {ECO:0000250|UniProtKB:E9Q4F7, ECO:0000269|PubMed:15184363, ECO:0000269|PubMed:25556659}. |
Q6ZMW3 | EML6 | S1284 | ochoa | Echinoderm microtubule-associated protein-like 6 (EMAP-6) (Echinoderm microtubule-associated protein-like 5-like) | May modify the assembly dynamics of microtubules, such that microtubules are slightly longer, but more dynamic. {ECO:0000250}. |
Q6ZV73 | FGD6 | S1195 | ochoa | FYVE, RhoGEF and PH domain-containing protein 6 (Zinc finger FYVE domain-containing protein 24) | May activate CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. May play a role in regulating the actin cytoskeleton and cell shape (By similarity). {ECO:0000250}. |
Q709C8 | VPS13C | S1398 | ochoa | Intermembrane lipid transfer protein VPS13C (Vacuolar protein sorting-associated protein 13C) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Necessary for proper mitochondrial function and maintenance of mitochondrial transmembrane potential (PubMed:26942284). Involved in the regulation of PINK1/PRKN-mediated mitophagy in response to mitochondrial depolarization (PubMed:26942284). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:26942284}. |
Q70CQ2 | USP34 | S1461 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q71F23 | CENPU | S229 | ochoa | Centromere protein U (CENP-U) (Centromere protein of 50 kDa) (CENP-50) (Interphase centromere complex protein 24) (KSHV latent nuclear antigen-interacting protein 1) (MLF1-interacting protein) (Polo-box-interacting protein 1) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. Plays an important role in the correct PLK1 localization to the mitotic kinetochores. A scaffold protein responsible for the initial recruitment and maintenance of the kinetochore PLK1 population until its degradation. Involved in transcriptional repression. {ECO:0000269|PubMed:12941884, ECO:0000269|PubMed:16716197, ECO:0000269|PubMed:17081991}. |
Q76FK4 | NOL8 | S296 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76FK4 | NOL8 | S361 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q76FK4 | NOL8 | S837 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q7L014 | DDX46 | S199 | ochoa | Probable ATP-dependent RNA helicase DDX46 (EC 3.6.4.13) (DEAD box protein 46) (PRP5 homolog) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:12234937, PubMed:32494006, PubMed:34822310, PubMed:36797247). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, DDX46 plays essential roles during assembly of pre-spliceosome and proofreading of the branch site (PubMed:34822310). {ECO:0000269|PubMed:12234937, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:36797247}. |
Q7L8S5 | OTUD6A | S71 | psp | OTU domain-containing protein 6A (EC 3.4.19.12) (DUBA-2) | Deubiquitinating enzyme that hydrolyzes 'Lys-27'-, 'Lys-29'- and 'Lys-33'-linked polyubiquitin chains. Also able to hydrolyze 'Lys-11'-linked ubiquitin chains. {ECO:0000269|PubMed:23827681}. |
Q7Z333 | SETX | S1017 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z4S6 | KIF21A | S1298 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z4V5 | HDGFL2 | S232 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z5K2 | WAPL | S459 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z6Z7 | HUWE1 | S3263 | ochoa | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q86T24 | ZBTB33 | T186 | ochoa | Transcriptional regulator Kaiso (Zinc finger and BTB domain-containing protein 33) | Transcriptional regulator with bimodal DNA-binding specificity. Binds to methylated CpG dinucleotides in the consensus sequence 5'-CGCG-3' and also binds to the non-methylated consensus sequence 5'-CTGCNA-3' also known as the consensus kaiso binding site (KBS). Recruits the N-CoR repressor complex to promote histone deacetylation and the formation of repressive chromatin structures in target gene promoters. May contribute to the repression of target genes of the Wnt signaling pathway. May also activate transcription of a subset of target genes by the recruitment of CTNND2. Represses expression of MMP7 in conjunction with transcriptional corepressors CBFA2T3, CBFA2T2 and RUNX1T1 (PubMed:23251453). {ECO:0000269|PubMed:11445535, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:15548582, ECO:0000269|PubMed:15817151, ECO:0000269|PubMed:16354688, ECO:0000269|PubMed:23251453}. |
Q86TV6 | TTC7B | S160 | ochoa | Tetratricopeptide repeat protein 7B (TPR repeat protein 7B) (Tetratricopeptide repeat protein 7-like-1) (TPR repeat protein 7-like-1) | Component of a complex required to localize phosphatidylinositol 4-kinase (PI4K) to the plasma membrane. The complex acts as a regulator of phosphatidylinositol 4-phosphate (PtdIns(4)P) synthesis. In the complex, plays a central role in bridging PI4KA to EFR3B and HYCC1, via direct interactions (PubMed:26571211). {ECO:0000269|PubMed:23229899, ECO:0000269|PubMed:26571211}. |
Q8IV48 | ERI1 | S56 | ochoa | 3'-5' exoribonuclease 1 (EC 3.1.13.1) (3'-5' exonuclease ERI1) (Eri-1 homolog) (Histone mRNA 3'-end-specific exoribonuclease) (Histone mRNA 3'-exonuclease 1) (Protein 3'hExo) (HEXO) | RNA exonuclease that binds to the 3'-end of histone mRNAs and degrades them, suggesting that it plays an essential role in histone mRNA decay after replication (PubMed:14536070, PubMed:16912046, PubMed:17135487, PubMed:37352860). A 2' and 3'-hydroxyl groups at the last nucleotide of the histone 3'-end is required for efficient 3'-end histone mRNA exonuclease activity and degradation of RNA substrates (PubMed:14536070, PubMed:16912046, PubMed:17135487). Also able to degrade the 3'-overhangs of short interfering RNAs (siRNAs) in vitro, suggesting a possible role as regulator of RNA interference (RNAi) (PubMed:14961122). Required for binding the 5'-ACCCA-3' sequence present in stem-loop structure (PubMed:14536070, PubMed:16912046). Able to bind other mRNAs (PubMed:14536070, PubMed:16912046). Required for 5.8S rRNA 3'-end processing (PubMed:37352860). Also binds to 5.8s ribosomal RNA (By similarity). Binds with high affinity to the stem-loop structure of replication-dependent histone pre-mRNAs (PubMed:14536070, PubMed:16912046, PubMed:17135487). In vitro, does not have sequence specificity (PubMed:17135487). In vitro, has weak DNA exonuclease activity (PubMed:17135487). In vitro, shows biphasic kinetics such that there is rapid hydrolysis of the last three unpaired RNA nucleotides in the 39 flanking sequence followed by a much slower cleavage through the stem that occurs over a longer incubation period in the order of hours (PubMed:17135487). ERI1-mediated RNA metabolism plays a key role in chondrogenesis (PubMed:37352860). {ECO:0000250|UniProtKB:Q7TMF2, ECO:0000269|PubMed:14536070, ECO:0000269|PubMed:14961122, ECO:0000269|PubMed:16912046, ECO:0000269|PubMed:17135487, ECO:0000269|PubMed:37352860}. |
Q8IVG5 | SAMD9L | S79 | ochoa | Sterile alpha motif domain-containing protein 9-like (SAM domain-containing protein 9-like) | May be involved in endosome fusion. Mediates down-regulation of growth factor signaling via internalization of growth factor receptors. {ECO:0000250|UniProtKB:Q69Z37}. |
Q8IVH8 | MAP4K3 | S295 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 3 (EC 2.7.11.1) (Germinal center kinase-related protein kinase) (GLK) (MAPK/ERK kinase kinase kinase 3) (MEK kinase kinase 3) (MEKKK 3) | Serine/threonine kinase that plays a role in the response to environmental stress. Appears to act upstream of the JUN N-terminal pathway (PubMed:9275185). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:9275185}. |
Q8IWZ3 | ANKHD1 | S1593 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8N7H5 | PAF1 | S456 | ochoa | RNA polymerase II-associated factor 1 homolog (hPAF1) (Pancreatic differentiation protein 2) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the RNF20/40 E3 ubiquitin-protein ligase complex. Involved in polyadenylation of mRNA precursors. Has oncogenic activity in vivo and in vitro. {ECO:0000269|PubMed:16491129, ECO:0000269|PubMed:19410543, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879, ECO:0000269|PubMed:22419161}. |
Q8NFC6 | BOD1L1 | S870 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8TBB1 | LNX1 | S238 | ochoa | E3 ubiquitin-protein ligase LNX (EC 2.3.2.27) (Ligand of Numb-protein X 1) (Numb-binding protein 1) (PDZ domain-containing RING finger protein 2) (RING-type E3 ubiquitin transferase LNX) | E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of NUMB. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Mediates ubiquitination of isoform p66 and isoform p72 of NUMB, but not that of isoform p71 or isoform p65. {ECO:0000250|UniProtKB:O70263}.; FUNCTION: Isoform 2 provides an endocytic scaffold for IGSF5/JAM4. {ECO:0000250|UniProtKB:O70263}. |
Q8TDD1 | DDX54 | S782 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TEU7 | RAPGEF6 | S644 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TEW0 | PARD3 | S852 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8TEY7 | USP33 | S377 | ochoa | Ubiquitin carboxyl-terminal hydrolase 33 (EC 3.4.19.12) (Deubiquitinating enzyme 33) (Ubiquitin thioesterase 33) (Ubiquitin-specific-processing protease 33) (VHL-interacting deubiquitinating enzyme 1) (hVDU1) | Deubiquitinating enzyme involved in various processes such as centrosome duplication, cellular migration and beta-2 adrenergic receptor/ADRB2 recycling. Involved in regulation of centrosome duplication by mediating deubiquitination of CCP110 in S and G2/M phase, leading to stabilize CCP110 during the period which centrioles duplicate and elongate. Involved in cell migration via its interaction with intracellular domain of ROBO1, leading to regulate the Slit signaling. Plays a role in commissural axon guidance cross the ventral midline of the neural tube in a Slit-dependent manner, possibly by mediating the deubiquitination of ROBO1. Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination of beta-arrestins (ARRB1 and ARRB2) and beta-2 adrenergic receptor (ADRB2). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, leading to beta-arrestins deubiquitination and disengagement from ADRB2. This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Mediates deubiquitination of both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains. {ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:19363159, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:23486064}. |
Q8TF76 | HASPIN | S58 | ochoa | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8TF76 | HASPIN | S60 | ochoa | Serine/threonine-protein kinase haspin (EC 2.7.11.1) (Germ cell-specific gene 2 protein) (H-haspin) (Haploid germ cell-specific nuclear protein kinase) | Serine/threonine-protein kinase that phosphorylates histone H3 at 'Thr-3' (H3T3ph) during mitosis. May act through H3T3ph to both position and modulate activation of AURKB and other components of the chromosomal passenger complex (CPC) at centromeres to ensure proper chromatid cohesion, metaphase alignment and normal progression through the cell cycle. {ECO:0000269|PubMed:11228240, ECO:0000269|PubMed:15681610, ECO:0000269|PubMed:17084365, ECO:0000269|PubMed:20705812, ECO:0000269|PubMed:20929775}. |
Q8WVC0 | LEO1 | S91 | psp | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q8WWK9 | CKAP2 | S534 | ochoa | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q92541 | RTF1 | S650 | ochoa | RNA polymerase-associated protein RTF1 homolog | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Binds single-stranded DNA. Required for maximal induction of heat-shock genes. Required for the trimethylation of histone H3 'Lys-4' (H3K4me3) on genes involved in stem cell pluripotency; this function is synergistic with CXXC1 indicative for an involvement of a SET1 complex (By similarity). {ECO:0000250, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:20178742}. |
Q92545 | TMEM131 | S1551 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92903 | CDS1 | S35 | ochoa | Phosphatidate cytidylyltransferase 1 (EC 2.7.7.41) (CDP-DAG synthase 1) (CDP-DG synthase 1) (CDP-diacylglycerol synthase 1) (CDS 1) (CDP-diglyceride pyrophosphorylase 1) (CDP-diglyceride synthase 1) (CTP:phosphatidate cytidylyltransferase 1) | Catalyzes the conversion of phosphatidic acid (PA) to CDP-diacylglycerol (CDP-DAG), an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PubMed:25375833, PubMed:9407135). Exhibits almost no acyl chain preference for PA, showing no discrimination for the sn-1/sn-2 acyl chain composition of PAs (PubMed:25375833). Plays an important role in regulating the growth of lipid droplets which are storage organelles at the center of lipid and energy homeostasis (PubMed:26946540, PubMed:31548309). Positively regulates the differentiation and development of adipocytes (By similarity). {ECO:0000250|UniProtKB:P98191, ECO:0000269|PubMed:25375833, ECO:0000269|PubMed:26946540, ECO:0000269|PubMed:31548309, ECO:0000269|PubMed:9407135}. |
Q92918 | MAP4K1 | S376 | ochoa | Mitogen-activated protein kinase kinase kinase kinase 1 (EC 2.7.11.1) (Hematopoietic progenitor kinase) (MAPK/ERK kinase kinase kinase 1) (MEK kinase kinase 1) (MEKKK 1) | Serine/threonine-protein kinase, which plays a role in the response to environmental stress (PubMed:24362026). Appears to act upstream of the JUN N-terminal pathway (PubMed:8824585). Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). May play a role in hematopoietic lineage decisions and growth regulation (PubMed:24362026, PubMed:8824585). Together with CLNK, it enhances CD3-triggered activation of T-cells and subsequent IL2 production (By similarity). {ECO:0000250|UniProtKB:P70218, ECO:0000269|PubMed:24362026, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:8824585}. |
Q969V6 | MRTFA | S114 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96CB8 | INTS12 | S46 | ochoa | Integrator complex subunit 12 (Int12) (PHD finger protein 22) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:38570683). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:38570683}. |
Q96DX4 | RSPRY1 | S50 | ochoa | RING finger and SPRY domain-containing protein 1 | None |
Q96EZ8 | MCRS1 | S282 | ochoa | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96GA3 | LTV1 | S188 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96GX5 | MASTL | S551 | ochoa | Serine/threonine-protein kinase greatwall (GW) (GWL) (hGWL) (EC 2.7.11.1) (Microtubule-associated serine/threonine-protein kinase-like) (MAST-L) | Serine/threonine kinase that plays a key role in M phase by acting as a regulator of mitosis entry and maintenance (PubMed:19680222). Acts by promoting the inactivation of protein phosphatase 2A (PP2A) during M phase: does not directly inhibit PP2A but acts by mediating phosphorylation and subsequent activation of ARPP19 and ENSA at 'Ser-62' and 'Ser-67', respectively (PubMed:38123684). ARPP19 and ENSA are phosphatase inhibitors that specifically inhibit the PPP2R2D (PR55-delta) subunit of PP2A. Inactivation of PP2A during M phase is essential to keep cyclin-B1-CDK1 activity high (PubMed:20818157). Following DNA damage, it is also involved in checkpoint recovery by being inhibited. Phosphorylates histone protein in vitro; however such activity is unsure in vivo. May be involved in megakaryocyte differentiation. {ECO:0000269|PubMed:12890928, ECO:0000269|PubMed:19680222, ECO:0000269|PubMed:19793917, ECO:0000269|PubMed:20538976, ECO:0000269|PubMed:20818157, ECO:0000269|PubMed:38123684}. |
Q96J84 | KIRREL1 | S573 | psp | Kin of IRRE-like protein 1 (Kin of irregular chiasm-like protein 1) (Nephrin-like protein 1) | Required for proper function of the glomerular filtration barrier. It is involved in the maintenance of a stable podocyte architecture with interdigitating foot processes connected by specialized cell-cell junctions, known as the slit diaphragm (PubMed:31472902). It is a signaling protein that needs the presence of TEC kinases to fully trans-activate the transcription factor AP-1 (By similarity). {ECO:0000250, ECO:0000269|PubMed:31472902}. |
Q96JQ0 | DCHS1 | S3035 | ochoa | Protocadherin-16 (Cadherin-19) (Cadherin-25) (Fibroblast cadherin-1) (Protein dachsous homolog 1) | Calcium-dependent cell-adhesion protein. Mediates functions in neuroprogenitor cell proliferation and differentiation. In the heart, has a critical role for proper morphogenesis of the mitral valve, acting in the regulation of cell migration involved in valve formation (PubMed:26258302). {ECO:0000269|PubMed:26258302}. |
Q96K76 | USP47 | S897 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96NE9 | FRMD6 | S349 | ochoa | FERM domain-containing protein 6 (Willin) | None |
Q96S99 | PLEKHF1 | S243 | ochoa | Pleckstrin homology domain-containing family F member 1 (PH domain-containing family F member 1) (Lysosome-associated apoptosis-inducing protein containing PH and FYVE domains) (Apoptosis-inducing protein) (PH and FYVE domain-containing protein 1) (Phafin-1) (Zinc finger FYVE domain-containing protein 15) | May induce apoptosis through the lysosomal-mitochondrial pathway. Translocates to the lysosome initiating the permeabilization of lysosomal membrane (LMP) and resulting in the release of CTSD and CTSL to the cytoplasm. Triggers the caspase-independent apoptosis by altering mitochondrial membrane permeabilization (MMP) resulting in the release of PDCD8. {ECO:0000269|PubMed:16188880}. |
Q99081 | TCF12 | S535 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99442 | SEC62 | S335 | ochoa | Translocation protein SEC62 (Translocation protein 1) (TP-1) (hTP-1) | Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. {ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}. |
Q99590 | SCAF11 | S400 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q9BXL7 | CARD11 | S593 | ochoa | Caspase recruitment domain-containing protein 11 (CARD-containing MAGUK protein 1) (Carma 1) | Adapter protein that plays a key role in adaptive immune response by transducing the activation of NF-kappa-B downstream of T-cell receptor (TCR) and B-cell receptor (BCR) engagement (PubMed:11278692, PubMed:11356195, PubMed:12356734). Transduces signals downstream TCR or BCR activation via the formation of a multiprotein complex together with BCL10 and MALT1 that induces NF-kappa-B and MAP kinase p38 (MAPK11, MAPK12, MAPK13 and/or MAPK14) pathways (PubMed:11356195). Upon activation in response to TCR or BCR triggering, CARD11 homooligomerizes to form a nucleating helical template that recruits BCL10 via CARD-CARD interaction, thereby promoting polymerization of BCL10 and subsequent recruitment of MALT1: this leads to I-kappa-B kinase (IKK) phosphorylation and degradation, and release of NF-kappa-B proteins for nuclear translocation (PubMed:24074955). Its binding to DPP4 induces T-cell proliferation and NF-kappa-B activation in a T-cell receptor/CD3-dependent manner (PubMed:17287217). Promotes linear ubiquitination of BCL10 by promoting the targeting of BCL10 to RNF31/HOIP (PubMed:27777308). Stimulates the phosphorylation of BCL10 (PubMed:11356195). Also activates the TORC1 signaling pathway (PubMed:28628108). {ECO:0000269|PubMed:11278692, ECO:0000269|PubMed:11356195, ECO:0000269|PubMed:12356734, ECO:0000269|PubMed:17287217, ECO:0000269|PubMed:24074955, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28628108}. |
Q9BZF1 | OSBPL8 | S799 | ochoa | Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}. |
Q9C0C2 | TNKS1BP1 | S836 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9C0C2 | TNKS1BP1 | S920 | ochoa | 182 kDa tankyrase-1-binding protein | None |
Q9H0G5 | NSRP1 | S27 | ochoa | Nuclear speckle splicing regulatory protein 1 (Coiled-coil domain-containing protein 55) (Nuclear speckle-related protein 70) (NSrp70) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. {ECO:0000269|PubMed:21296756}. |
Q9H1Y3 | OPN3 | S380 | psp | Opsin-3 (Encephalopsin) (Panopsin) | G-protein coupled receptor which selectively activates G proteins via ultraviolet A (UVA) light-mediated activation in the skin (PubMed:28842328, PubMed:31097585, PubMed:31380578). Binds both 11-cis retinal and all-trans retinal (PubMed:31097585). Regulates melanogenesis in melanocytes via inhibition of alpha-MSH-induced MC1R-mediated cAMP signaling, modulation of calcium flux, regulation of CAMK2 phosphorylation, and subsequently phosphorylation of CREB, p38, ERK and MITF in response to blue light (PubMed:28842328, PubMed:31097585). Plays a role in melanocyte survival through regulation of intracellular calcium levels and subsequent BCL2/RAF1 signaling (PubMed:31730232). Additionally regulates apoptosis via cytochrome c release and subsequent activation of the caspase cascade (PubMed:31730232). Required for TYR and DCT blue light-induced complex formation in melanocytes (PubMed:28842328). Involved in keratinocyte differentiation in response to blue-light (PubMed:30168605). Required for the UVA-mediated induction of calcium and mitogen-activated protein kinase signaling resulting in the expression of MMP1, MMP2, MMP3, MMP9 and TIMP1 in dermal fibroblasts (PubMed:31380578). Plays a role in light-mediated glucose uptake, mitochondrial respiration and fatty acid metabolism in brown adipocyte tissues (By similarity). May be involved in photorelaxation of airway smooth muscle cells, via blue-light dependent GPCR signaling pathways (By similarity). {ECO:0000250|UniProtKB:Q9WUK7, ECO:0000269|PubMed:28842328, ECO:0000269|PubMed:30168605, ECO:0000269|PubMed:31097585, ECO:0000269|PubMed:31380578, ECO:0000269|PubMed:31730232}. |
Q9H582 | ZNF644 | S253 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H6K1 | ILRUN | S222 | ochoa | Protein ILRUN (Inflammation and lipid regulator with UBA-like and NBR1-like domains protein) | Negative regulator of innate antiviral response. Blocks IRF3-dependent cytokine production such as IFNA, IFNB and TNF (PubMed:29802199). Interacts with IRF3 and inhibits IRF3 recruitment to type I IFN promoter sequences while also reducing nuclear levels of the coactivators EP300 and CREBBP (PubMed:29802199). {ECO:0000269|PubMed:29802199}. |
Q9H814 | PHAX | S340 | ochoa | Phosphorylated adapter RNA export protein (RNA U small nuclear RNA export adapter protein) | A phosphoprotein adapter involved in the XPO1-mediated U snRNA export from the nucleus (PubMed:39011894). Bridge components required for U snRNA export, the cap binding complex (CBC)-bound snRNA on the one hand and the GTPase Ran in its active GTP-bound form together with the export receptor XPO1 on the other. Its phosphorylation in the nucleus is required for U snRNA export complex assembly and export, while its dephosphorylation in the cytoplasm causes export complex disassembly. It is recycled back to the nucleus via the importin alpha/beta heterodimeric import receptor. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Its compartmentalized phosphorylation cycle may also contribute to the directionality of export. Binds strongly to m7G-capped U1 and U5 small nuclear RNAs (snRNAs) in a sequence-unspecific manner and phosphorylation-independent manner (By similarity). Also plays a role in the biogenesis of U3 small nucleolar RNA (snoRNA). Involved in the U3 snoRNA transport from nucleoplasm to Cajal bodies. Binds strongly to m7G-capped U3, U8 and U13 precursor snoRNAs and weakly to trimethylated (TMG)-capped U3, U8 and U13 snoRNAs. Also binds to telomerase RNA. {ECO:0000250, ECO:0000269|PubMed:15574332, ECO:0000269|PubMed:15574333}. |
Q9HAP2 | MLXIP | S27 | ochoa | MLX-interacting protein (Class E basic helix-loop-helix protein 36) (bHLHe36) (Transcriptional activator MondoA) | Binds DNA as a heterodimer with MLX and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000250|UniProtKB:Q2VPU4, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9HB20 | PLEKHA3 | S244 | ochoa | Pleckstrin homology domain-containing family A member 3 (PH domain-containing family A member 3) (Phosphatidylinositol-four-phosphate adapter protein 1) (FAPP-1) (Phosphoinositol 4-phosphate adapter protein 1) | Plays a role in regulation of vesicular cargo transport from the trans-Golgi network (TGN) to the plasma membrane (PubMed:15107860). Regulates Golgi phosphatidylinositol 4-phosphate (PtdIns(4)P) levels and activates the PtdIns(4)P phosphatase activity of SACM1L when it binds PtdIns(4)P in 'trans' configuration (PubMed:30659099). Binds preferentially to PtdIns(4)P (PubMed:11001876, PubMed:15107860). Negatively regulates APOB secretion from hepatocytes (PubMed:30659099). {ECO:0000269|PubMed:11001876, ECO:0000269|PubMed:15107860, ECO:0000269|PubMed:30659099}. |
Q9HC77 | CPAP | S759 | ochoa | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCK1 | ZDBF2 | S952 | ochoa | DBF4-type zinc finger-containing protein 2 | None |
Q9HCK8 | CHD8 | S1679 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9NRL2 | BAZ1A | S1339 | ochoa | Bromodomain adjacent to zinc finger domain protein 1A (ATP-dependent chromatin-remodeling protein) (ATP-utilizing chromatin assembly and remodeling factor 1) (hACF1) (CHRAC subunit ACF1) (Williams syndrome transcription factor-related chromatin-remodeling factor 180) (WCRF180) (hWALp1) | Regulatory subunit of the ATP-dependent ACF-1 and ACF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and slide edge- and center-positioned histone octamers away from their original location on the DNA template to facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:17099699, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template in an ATP-dependent manner (PubMed:14759371, PubMed:17099699, PubMed:28801535). The ACF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the ACF-5 ISWI chromatin remodeling complex (PubMed:28801535). Has a role in sensing the length of DNA which flank nucleosomes, which modulates the nucleosome spacing activity of the ACF-5 ISWI chromatin remodeling complex (PubMed:17099699). Involved in DNA replication and together with SMARCA5/SNF2H is required for replication of pericentric heterochromatin in S-phase (PubMed:12434153). May have a role in nuclear receptor-mediated transcription repression (PubMed:17519354). {ECO:0000269|PubMed:12434153, ECO:0000269|PubMed:14759371, ECO:0000269|PubMed:17099699, ECO:0000269|PubMed:17519354, ECO:0000269|PubMed:28801535}. |
Q9NRZ9 | HELLS | S515 | ochoa | Lymphoid-specific helicase (EC 3.6.4.-) (Proliferation-associated SNF2-like protein) (SWI/SNF2-related matrix-associated actin-dependent regulator of chromatin subfamily A member 6) | Plays an essential role in normal development and survival. Involved in regulation of the expansion or survival of lymphoid cells. Required for de novo or maintenance DNA methylation. May control silencing of the imprinted CDKN1C gene through DNA methylation. May play a role in formation and organization of heterochromatin, implying a functional role in the regulation of transcription and mitosis (By similarity). {ECO:0000250|UniProtKB:Q60848}. |
Q9NS91 | RAD18 | S322 | ochoa | E3 ubiquitin-protein ligase RAD18 (EC 2.3.2.27) (Postreplication repair protein RAD18) (hHR18) (hRAD18) (RING finger protein 73) (RING-type E3 ubiquitin transferase RAD18) | E3 ubiquitin-protein ligase involved in postreplication repair of UV-damaged DNA. Postreplication repair functions in gap-filling of a daughter strand on replication of damaged DNA. Associates to the E2 ubiquitin conjugating enzyme UBE2B to form the UBE2B-RAD18 ubiquitin ligase complex involved in mono-ubiquitination of DNA-associated PCNA on 'Lys-164'. Has ssDNA binding activity. {ECO:0000269|PubMed:17108083, ECO:0000269|PubMed:21659603}. |
Q9NUL3 | STAU2 | S194 | ochoa | Double-stranded RNA-binding protein Staufen homolog 2 | RNA-binding protein required for the microtubule-dependent transport of neuronal RNA from the cell body to the dendrite. As protein synthesis occurs within the dendrite, the localization of specific mRNAs to dendrites may be a prerequisite for neurite outgrowth and plasticity at sites distant from the cell body (By similarity). {ECO:0000250|UniProtKB:Q68SB1}. |
Q9NUY8 | TBC1D23 | S520 | ochoa | TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) | Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}. |
Q9NYV6 | RRN3 | S170 | ochoa|psp | RNA polymerase I-specific transcription initiation factor RRN3 (Transcription initiation factor IA) (TIF-IA) | Required for efficient transcription initiation by RNA polymerase I (Pol I). Required for the formation of the competent pre-initiation complex (PIC). {ECO:0000250, ECO:0000269|PubMed:10758157, ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11265758, ECO:0000269|PubMed:15805466}. |
Q9NZJ0 | DTL | S186 | ochoa | Denticleless protein homolog (DDB1- and CUL4-associated factor 2) (Lethal(2) denticleless protein homolog) (Retinoic acid-regulated nuclear matrix-associated protein) | Substrate-specific adapter of a DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complex required for cell cycle control, DNA damage response and translesion DNA synthesis. The DCX(DTL) complex, also named CRL4(CDT2) complex, mediates the polyubiquitination and subsequent degradation of CDT1, CDKN1A/p21(CIP1), FBH1, KMT5A and SDE2 (PubMed:16861906, PubMed:16949367, PubMed:16964240, PubMed:17085480, PubMed:18703516, PubMed:18794347, PubMed:18794348, PubMed:19332548, PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613, PubMed:27906959). CDT1 degradation in response to DNA damage is necessary to ensure proper cell cycle regulation of DNA replication (PubMed:16861906, PubMed:16949367, PubMed:17085480). CDKN1A/p21(CIP1) degradation during S phase or following UV irradiation is essential to control replication licensing (PubMed:18794348, PubMed:19332548). KMT5A degradation is also important for a proper regulation of mechanisms such as TGF-beta signaling, cell cycle progression, DNA repair and cell migration (PubMed:23478445). Most substrates require their interaction with PCNA for their polyubiquitination: substrates interact with PCNA via their PIP-box, and those containing the 'K+4' motif in the PIP box, recruit the DCX(DTL) complex, leading to their degradation. In undamaged proliferating cells, the DCX(DTL) complex also promotes the 'Lys-164' monoubiquitination of PCNA, thereby being involved in PCNA-dependent translesion DNA synthesis (PubMed:20129063, PubMed:23478441, PubMed:23478445, PubMed:23677613). The DDB1-CUL4A-DTL E3 ligase complex regulates the circadian clock function by mediating the ubiquitination and degradation of CRY1 (PubMed:26431207). {ECO:0000269|PubMed:16861906, ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:17085480, ECO:0000269|PubMed:18703516, ECO:0000269|PubMed:18794347, ECO:0000269|PubMed:18794348, ECO:0000269|PubMed:19332548, ECO:0000269|PubMed:20129063, ECO:0000269|PubMed:23478441, ECO:0000269|PubMed:23478445, ECO:0000269|PubMed:23677613, ECO:0000269|PubMed:26431207, ECO:0000269|PubMed:27906959}. |
Q9P289 | STK26 | S282 | ochoa | Serine/threonine-protein kinase 26 (EC 2.7.11.1) (MST3 and SOK1-related kinase) (Mammalian STE20-like protein kinase 4) (MST-4) (STE20-like kinase MST4) (Serine/threonine-protein kinase MASK) | Serine/threonine-protein kinase that acts as a mediator of cell growth (PubMed:11641781, PubMed:17360971). Modulates apoptosis (PubMed:11641781, PubMed:17360971). In association with STK24 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Phosphorylates ATG4B at 'Ser-383', thereby increasing autophagic flux (PubMed:29232556). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:11641781, ECO:0000269|PubMed:17360971, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:27807006, ECO:0000269|PubMed:29232556}. |
Q9UBR4 | LHX3 | S234 | psp | LIM/homeobox protein Lhx3 (LIM homeobox protein 3) | Transcription factor. Recognizes and binds to the consensus sequence motif 5'-AATTAATTA-3' in the regulatory elements of target genes, such as glycoprotein hormones alpha chain CGA and visual system homeobox CHX10, positively modulating transcription; transcription can be co-activated by LDB2. Synergistically enhances transcription from the prolactin promoter in cooperation with POU1F1/Pit-1 (By similarity). Required for the establishment of the specialized cells of the pituitary gland and the nervous system (PubMed:21149718). Involved in the development of interneurons and motor neurons in cooperation with LDB1 and ISL1 (By similarity). {ECO:0000250|UniProtKB:P50481, ECO:0000269|PubMed:21149718}. |
Q9UH62 | ARMCX3 | S53 | ochoa | Armadillo repeat-containing X-linked protein 3 (ARM protein lost in epithelial cancers on chromosome X 3) (Protein ALEX3) | Regulates mitochondrial aggregation and transport in axons in living neurons. May link mitochondria to the TRAK2-kinesin motor complex via its interaction with Miro and TRAK2. Mitochondrial distribution and dynamics is regulated through ARMCX3 protein degradation, which is promoted by PCK and negatively regulated by WNT1. Enhances the SOX10-mediated transactivation of the neuronal acetylcholine receptor subunit alpha-3 and beta-4 subunit gene promoters. {ECO:0000250|UniProtKB:Q8BHS6}. |
Q9UKJ3 | GPATCH8 | S349 | ochoa | G patch domain-containing protein 8 | None |
Q9ULD6 | INTU | S43 | ochoa | Protein inturned (Inturned planar cell polarity effector homolog) (PDZ domain-containing protein 6) | Plays a key role in ciliogenesis and embryonic development. Regulator of cilia formation by controlling the organization of the apical actin cytoskeleton and the positioning of the basal bodies at the apical cell surface, which in turn is essential for the normal orientation of elongating ciliary microtubules. Plays a key role in definition of cell polarity via its role in ciliogenesis but not via conversion extension. Has an indirect effect on hedgehog signaling (By similarity). Proposed to function as core component of the CPLANE (ciliogenesis and planar polarity effectors) complex involved in the recruitment of peripheral IFT-A proteins to basal bodies (PubMed:27158779). Required for recruitment of CPLANE2 to the mother centriole (By similarity). Binds phosphatidylinositol 3-phosphate with highest affinity, followed by phosphatidylinositol 4-phosphate and phosphatidylinositol 5-phosphate (By similarity). {ECO:0000250|UniProtKB:Q059U7, ECO:0000250|UniProtKB:Q2I0E5, ECO:0000305|PubMed:27158779}. |
Q9UN37 | VPS4A | S95 | ochoa | Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) | Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}. |
Q9UPQ0 | LIMCH1 | S875 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9Y2D8 | SSX2IP | S306 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2U8 | LEMD3 | S253 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2W2 | WBP11 | S353 | ochoa | WW domain-binding protein 11 (WBP-11) (Npw38-binding protein) (NpwBP) (SH3 domain-binding protein SNP70) (Splicing factor that interacts with PQBP-1 and PP1) | Activates pre-mRNA splicing. May inhibit PP1 phosphatase activity. {ECO:0000269|PubMed:10593949, ECO:0000269|PubMed:11375989, ECO:0000269|PubMed:14640981}. |
Q9Y5Q9 | GTF3C3 | S43 | ochoa | General transcription factor 3C polypeptide 3 (Transcription factor IIIC 102 kDa subunit) (TFIIIC 102 kDa subunit) (TFIIIC102) (Transcription factor IIIC subunit gamma) (TF3C-gamma) | Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters. |
Q9Y6E0 | STK24 | S294 | ochoa | Serine/threonine-protein kinase 24 (EC 2.7.11.1) (Mammalian STE20-like protein kinase 3) (MST-3) (STE20-like kinase MST3) [Cleaved into: Serine/threonine-protein kinase 24 36 kDa subunit (Mammalian STE20-like protein kinase 3 N-terminal) (MST3/N); Serine/threonine-protein kinase 24 12 kDa subunit (Mammalian STE20-like protein kinase 3 C-terminal) (MST3/C)] | Serine/threonine-protein kinase that acts on both serine and threonine residues and promotes apoptosis in response to stress stimuli and caspase activation. Mediates oxidative-stress-induced cell death by modulating phosphorylation of JNK1-JNK2 (MAPK8 and MAPK9), p38 (MAPK11, MAPK12, MAPK13 and MAPK14) during oxidative stress. Plays a role in a staurosporine-induced caspase-independent apoptotic pathway by regulating the nuclear translocation of AIFM1 and ENDOG and the DNase activity associated with ENDOG. Phosphorylates STK38L on 'Thr-442' and stimulates its kinase activity. In association with STK26 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Also regulates cellular migration with alteration of PTPN12 activity and PXN phosphorylation: phosphorylates PTPN12 and inhibits its activity and may regulate PXN phosphorylation through PTPN12. May act as a key regulator of axon regeneration in the optic nerve and radial nerve. Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:16314523, ECO:0000269|PubMed:17046825, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:19604147, ECO:0000269|PubMed:19782762, ECO:0000269|PubMed:19855390, ECO:0000269|PubMed:27807006}. |
Q9Y6R1 | SLC4A4 | S219 | ochoa | Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) | Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}. |
Q9Y6W6 | DUSP10 | S230 | psp | Dual specificity protein phosphatase 10 (EC 3.1.3.16) (EC 3.1.3.48) (Mitogen-activated protein kinase phosphatase 5) (MAP kinase phosphatase 5) (MKP-5) | Protein phosphatase involved in the inactivation of MAP kinases. Has a specificity for the MAPK11/MAPK12/MAPK13/MAPK14 subfamily. It preferably dephosphorylates p38. {ECO:0000269|PubMed:10391943, ECO:0000269|PubMed:10597297, ECO:0000269|PubMed:22375048}. |
P26447 | S100A4 | S60 | Sugiyama | Protein S100-A4 (Calvasculin) (Metastasin) (Placental calcium-binding protein) (Protein Mts1) (S100 calcium-binding protein A4) | Calcium-binding protein that plays a role in various cellular processes including motility, angiogenesis, cell differentiation, apoptosis, and autophagy (PubMed:16707441, PubMed:23752197, PubMed:30713770). Increases cell motility and invasiveness by interacting with non-muscle myosin heavy chain (NMMHC) IIA/MYH9 (PubMed:16707441). Mechanistically, promotes filament depolymerization and increases the amount of soluble myosin-IIA, resulting in the formation of stable protrusions facilitating chemotaxis (By similarity). Also modulates the pro-apoptotic function of TP53 by binding to its C-terminal transactivation domain within the nucleus and reducing its protein levels (PubMed:23752197). Within the extracellular space, stimulates cytokine production including granulocyte colony-stimulating factor and CCL24 from T-lymphocytes (By similarity). In addition, stimulates T-lymphocyte chemotaxis by acting as a chemoattractant complex with PGLYRP1 that promotes lymphocyte migration via CCR5 and CXCR3 receptors (PubMed:26654597, PubMed:30713770). {ECO:0000250|UniProtKB:P07091, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:23752197, ECO:0000269|PubMed:26654597, ECO:0000269|PubMed:30713770}. |
P21127 | CDK11B | S277 | Sugiyama | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
Q9UQ88 | CDK11A | S265 | Sugiyama | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q7Z4V5 | HDGFL2 | S301 | Sugiyama | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
P30101 | PDIA3 | S155 | Sugiyama | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
Q9NX58 | LYAR | S32 | Sugiyama | Cell growth-regulating nucleolar protein | Plays a role in the maintenance of the appropriate processing of 47S/45S pre-rRNA to 32S/30S pre-rRNAs and their subsequent processing to produce 18S and 28S rRNAs (PubMed:24495227). Also acts at the level of transcription regulation. Along with PRMT5, binds the gamma-globin (HBG1/HBG2) promoter and represses its expression (PubMed:25092918). In neuroblastoma cells, may also repress the expression of oxidative stress genes, including CHAC1, HMOX1, SLC7A11, ULBP1 and SNORD41 that encodes a small nucleolar RNA (PubMed:28686580). Preferentially binds to a DNA motif containing 5'-GGTTAT-3' (PubMed:25092918). Negatively regulates the antiviral innate immune response by targeting IRF3 and impairing its DNA-binding activity (PubMed:31413131). In addition, inhibits NF-kappa-B-mediated expression of pro-inflammatory cytokines (PubMed:31413131). Stimulates phagocytosis of photoreceptor outer segments by retinal pigment epithelial cells (By similarity). Prevents nucleolin/NCL self-cleavage, maintaining a normal steady-state level of NCL protein in undifferentiated embryonic stem cells (ESCs), which in turn is essential for ESC self-renewal (By similarity). {ECO:0000250|UniProtKB:Q08288, ECO:0000269|PubMed:24495227, ECO:0000269|PubMed:25092918, ECO:0000269|PubMed:28686580, ECO:0000269|PubMed:31413131}. |
Q9UHX1 | PUF60 | S232 | Sugiyama | Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) | DNA- and RNA-binding protein, involved in several nuclear processes such as pre-mRNA splicing, apoptosis and transcription regulation. In association with FUBP1 regulates MYC transcription at the P2 promoter through the core-TFIIH basal transcription factor. Acts as a transcriptional repressor through the core-TFIIH basal transcription factor. Represses FUBP1-induced transcriptional activation but not basal transcription. Decreases ERCC3 helicase activity. Does not repress TFIIH-mediated transcription in xeroderma pigmentosum complementation group B (XPB) cells. Is also involved in pre-mRNA splicing. Promotes splicing of an intron with weak 3'-splice site and pyrimidine tract in a cooperative manner with U2AF2. Involved in apoptosis induction when overexpressed in HeLa cells. Isoform 6 failed to repress MYC transcription and inhibited FIR-induced apoptosis in colorectal cancer. Isoform 6 may contribute to tumor progression by enabling increased MYC expression and greater resistance to apoptosis in tumors than in normal cells. Modulates alternative splicing of several mRNAs. Binds to relaxed DNA of active promoter regions. Binds to the pyrimidine tract and 3'-splice site regions of pre-mRNA; binding is enhanced in presence of U2AF2. Binds to Y5 RNA in association with RO60. Binds to poly(U) RNA. {ECO:0000269|PubMed:10606266, ECO:0000269|PubMed:10882074, ECO:0000269|PubMed:11239393, ECO:0000269|PubMed:16452196, ECO:0000269|PubMed:16628215, ECO:0000269|PubMed:17579712}. |
P09769 | FGR | S130 | Sugiyama | Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}. |
P78371 | CCT2 | S144 | Sugiyama | T-complex protein 1 subunit beta (TCP-1-beta) (EC 3.6.1.-) (CCT-beta) (Chaperonin containing T-complex polypeptide 1 subunit 2) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P08575 | PTPRC | S1001 | SIGNOR | Receptor-type tyrosine-protein phosphatase C (EC 3.1.3.48) (Leukocyte common antigen) (L-CA) (T200) (CD antigen CD45) | Protein tyrosine-protein phosphatase required for T-cell activation through the antigen receptor (PubMed:35767951). Acts as a positive regulator of T-cell coactivation upon binding to DPP4. The first PTPase domain has enzymatic activity, while the second one seems to affect the substrate specificity of the first one. Upon T-cell activation, recruits and dephosphorylates SKAP1 and FYN. Dephosphorylates LYN, and thereby modulates LYN activity (By similarity). Interacts with CLEC10A at antigen presenting cell-T cell contact; CLEC10A on immature dendritic cells recognizes Tn antigen-carrying PTPRC/CD45 receptor on effector T cells and modulates T cell activation threshold to limit autoreactivity. {ECO:0000250, ECO:0000269|PubMed:11909961, ECO:0000269|PubMed:16998493, ECO:0000269|PubMed:2845400, ECO:0000269|PubMed:35767951}.; FUNCTION: (Microbial infection) Acts as a receptor for human cytomegalovirus protein UL11 and mediates binding of UL11 to T-cells, leading to reduced induction of tyrosine phosphorylation of multiple signaling proteins upon T-cell receptor stimulation and impaired T-cell proliferation. {ECO:0000269|PubMed:22174689}. |
Q15906 | VPS72 | S51 | ELM | Vacuolar protein sorting-associated protein 72 homolog (Protein YL-1) (Transcription factor-like 1) | Deposition-and-exchange histone chaperone specific for H2AZ1, specifically chaperones H2AZ1 and deposits it into nucleosomes. As component of the SRCAP complex, mediates the ATP-dependent exchange of histone H2AZ1/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. {ECO:0000269|PubMed:26974126}. |
P41279 | MAP3K8 | S246 | Sugiyama | Mitogen-activated protein kinase kinase kinase 8 (EC 2.7.11.25) (Cancer Osaka thyroid oncogene) (Proto-oncogene c-Cot) (Serine/threonine-protein kinase cot) (Tumor progression locus 2) (TPL-2) | Required for lipopolysaccharide (LPS)-induced, TLR4-mediated activation of the MAPK/ERK pathway in macrophages, thus being critical for production of the pro-inflammatory cytokine TNF-alpha (TNF) during immune responses. Involved in the regulation of T-helper cell differentiation and IFNG expression in T-cells. Involved in mediating host resistance to bacterial infection through negative regulation of type I interferon (IFN) production. In vitro, activates MAPK/ERK pathway in response to IL1 in an IRAK1-independent manner, leading to up-regulation of IL8 and CCL4. Transduces CD40 and TNFRSF1A signals that activate ERK in B-cells and macrophages, and thus may play a role in the regulation of immunoglobulin production. May also play a role in the transduction of TNF signals that activate JNK and NF-kappa-B in some cell types. In adipocytes, activates MAPK/ERK pathway in an IKBKB-dependent manner in response to IL1B and TNF, but not insulin, leading to induction of lipolysis. Plays a role in the cell cycle. Isoform 1 shows some transforming activity, although it is much weaker than that of the activated oncogenic variant. {ECO:0000269|PubMed:11342626, ECO:0000269|PubMed:12667451, ECO:0000269|PubMed:15169888, ECO:0000269|PubMed:16371247, ECO:0000269|PubMed:1833717, ECO:0000269|PubMed:19001140, ECO:0000269|PubMed:19808894}. |
Q9UPT8 | ZC3H4 | S137 | Sugiyama | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q8NEY1 | NAV1 | S377 | Sugiyama | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q7LBC6 | KDM3B | S816 | Sugiyama | Lysine-specific demethylase 3B (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2B) (Jumonji domain-containing protein 1B) (Nuclear protein 5qNCA) ([histone H3]-dimethyl-L-lysine(9) demethylase 3B) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Demethylation of Lys residue generates formaldehyde and succinate. May have tumor suppressor activity. {ECO:0000269|PubMed:16603237}. |
Q9UPT8 | ZC3H4 | S131 | Sugiyama | Zinc finger CCCH domain-containing protein 4 | RNA-binding protein that suppresses transcription of long non-coding RNAs (lncRNAs) (PubMed:33767452, PubMed:33913806). LncRNAs are defined as transcripts more than 200 nucleotides that are not translated into protein (PubMed:33767452, PubMed:33913806). Together with WDR82, part of a transcription termination checkpoint that promotes transcription termination of lncRNAs and their subsequent degradation by the exosome (PubMed:33767452, PubMed:33913806). The transcription termination checkpoint is activated by the inefficiently spliced first exon of lncRNAs (PubMed:33767452). {ECO:0000269|PubMed:33767452, ECO:0000269|PubMed:33913806}. |
Q8WU90 | ZC3H15 | S135 | Sugiyama | Zinc finger CCCH domain-containing protein 15 (DRG family-regulatory protein 1) (Likely ortholog of mouse immediate early response erythropoietin 4) | Protects DRG1 from proteolytic degradation (PubMed:19819225). Stimulates DRG1 GTPase activity likely by increasing the affinity for the potassium ions (PubMed:23711155). {ECO:0000269|PubMed:19819225, ECO:0000269|PubMed:23711155}. |
A0A0B4J1V8 | PPAN-P2RY11 | S240 | ochoa | HCG2039996 (PPAN-P2RY11 readthrough) | None |
A0A0B4J203 | None | S85 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
A0A0B4J203 | None | S87 | ochoa | receptor protein-tyrosine kinase (EC 2.7.10.1) | None |
B5ME19 | EIF3CL | S178 | ochoa | Eukaryotic translation initiation factor 3 subunit C-like protein | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}. |
B5ME19 | EIF3CL | S182 | ochoa | Eukaryotic translation initiation factor 3 subunit C-like protein | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}. |
O00273 | DFFA | S107 | ochoa | DNA fragmentation factor subunit alpha (DNA fragmentation factor 45 kDa subunit) (DFF-45) (Inhibitor of CAD) (ICAD) | Inhibitor of the caspase-activated DNase (DFF40). |
O14523 | C2CD2L | S609 | ochoa | Phospholipid transfer protein C2CD2L (C2 domain-containing protein 2-like) (C2CD2-like) (Transmembrane protein 24) | Lipid-binding protein that transports phosphatidylinositol, the precursor of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), from its site of synthesis in the endoplasmic reticulum to the cell membrane (PubMed:28209843). It thereby maintains the pool of cell membrane phosphoinositides, which are degraded during phospholipase C (PLC) signaling (PubMed:28209843). Plays a key role in the coordination of Ca(2+) and phosphoinositide signaling: localizes to sites of contact between the endoplasmic reticulum and the cell membrane, where it tethers the two bilayers (PubMed:28209843). In response to elevation of cytosolic Ca(2+), it is phosphorylated at its C-terminus and dissociates from the cell membrane, abolishing phosphatidylinositol transport to the cell membrane (PubMed:28209843). Positively regulates insulin secretion in response to glucose: phosphatidylinositol transfer to the cell membrane allows replenishment of PI(4,5)P2 pools and calcium channel opening, priming a new population of insulin granules (PubMed:28209843). {ECO:0000269|PubMed:28209843}. |
O14646 | CHD1 | S216 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14647 | CHD2 | S207 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O14787 | TNPO2 | S355 | ochoa | Transportin-2 (Karyopherin beta-2b) | Probably functions in nuclear protein import as nuclear transport receptor. Serves as receptor for nuclear localization signals (NLS) in cargo substrates. Is thought to mediate docking of the importin/substrate complex to the nuclear pore complex (NPC) through binding to nucleoporin and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism. At the nucleoplasmic side of the NPC, Ran binds to the importin, the importin/substrate complex dissociates and importin is re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus (By similarity). {ECO:0000250}. |
O15061 | SYNM | S1485 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15164 | TRIM24 | S1019 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15438 | ABCC3 | S884 | ochoa | ATP-binding cassette sub-family C member 3 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multispecific organic anion transporter 2) (Multi-specific organic anion transporter D) (MOAT-D) (Multidrug resistance-associated protein 3) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes (PubMed:10359813, PubMed:11581266, PubMed:15083066). Transports glucuronide conjugates such as bilirubin diglucuronide, estradiol-17-beta-o-glucuronide and GSH conjugates such as leukotriene C4 (LTC4) (PubMed:11581266, PubMed:15083066). Transports also various bile salts (taurocholate, glycocholate, taurochenodeoxycholate-3-sulfate, taurolithocholate- 3-sulfate) (By similarity). Does not contribute substantially to bile salt physiology but provides an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes (By similarity). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can confer resistance to various anticancer drugs, methotrexate, tenoposide and etoposide, by decreasing accumulation of these drugs in cells (PubMed:10359813, PubMed:11581266). {ECO:0000250|UniProtKB:O88563, ECO:0000269|PubMed:10359813, ECO:0000269|PubMed:11581266, ECO:0000269|PubMed:15083066, ECO:0000305|PubMed:35307651}. |
O43707 | ACTN4 | S423 | ochoa | Alpha-actinin-4 (Non-muscle alpha-actinin 4) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein (Probable). Probably involved in vesicular trafficking via its association with the CART complex. The CART complex is necessary for efficient transferrin receptor recycling but not for EGFR degradation (PubMed:15772161). Involved in tight junction assembly in epithelial cells probably through interaction with MICALL2. Links MICALL2 to the actin cytoskeleton and recruits it to the tight junctions (By similarity). May also function as a transcriptional coactivator, stimulating transcription mediated by the nuclear hormone receptors PPARG and RARA (PubMed:22351778). Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000250|UniProtKB:P57780, ECO:0000269|PubMed:15772161, ECO:0000269|PubMed:22351778, ECO:0000269|PubMed:22689882, ECO:0000305|PubMed:9508771}. |
O43815 | STRN | S245 | ochoa | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
O60271 | SPAG9 | S347 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60271 | SPAG9 | S391 | ochoa | C-Jun-amino-terminal kinase-interacting protein 4 (JIP-4) (JNK-interacting protein 4) (Cancer/testis antigen 89) (CT89) (Human lung cancer oncogene 6 protein) (HLC-6) (JNK-associated leucine-zipper protein) (JLP) (Mitogen-activated protein kinase 8-interacting protein 4) (Proliferation-inducing protein 6) (Protein highly expressed in testis) (PHET) (Sperm surface protein) (Sperm-associated antigen 9) (Sperm-specific protein) (Sunday driver 1) | The JNK-interacting protein (JIP) group of scaffold proteins selectively mediates JNK signaling by aggregating specific components of the MAPK cascade to form a functional JNK signaling module (PubMed:14743216). Regulates lysosomal positioning by acting as an adapter protein which links PIP4P1-positive lysosomes to the dynein-dynactin complex (PubMed:29146937). Assists PIKFYVE selective functionality in microtubule-based endosome-to-TGN trafficking (By similarity). {ECO:0000250|UniProtKB:Q58A65, ECO:0000269|PubMed:14743216, ECO:0000269|PubMed:29146937}. |
O60307 | MAST3 | S680 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60701 | UGDH | S381 | ochoa | UDP-glucose 6-dehydrogenase (UDP-Glc dehydrogenase) (UDP-GlcDH) (UDPGDH) (EC 1.1.1.22) | Catalyzes the formation of UDP-alpha-D-glucuronate, a constituent of complex glycosaminoglycans (PubMed:21502315, PubMed:21961565, PubMed:22123821, PubMed:23106432, PubMed:25478983, PubMed:27966912, PubMed:30420606, PubMed:30457329). Required for the biosynthesis of chondroitin sulfate and heparan sulfate. Required for embryonic development via its role in the biosynthesis of glycosaminoglycans (By similarity). Required for proper brain and neuronal development (PubMed:32001716). {ECO:0000250|UniProtKB:O70475, ECO:0000269|PubMed:21502315, ECO:0000269|PubMed:21961565, ECO:0000269|PubMed:22123821, ECO:0000269|PubMed:23106432, ECO:0000269|PubMed:25478983, ECO:0000269|PubMed:27966912, ECO:0000269|PubMed:30420606, ECO:0000269|PubMed:30457329, ECO:0000269|PubMed:32001716}. |
O60716 | CTNND1 | S288 | ochoa|psp | Catenin delta-1 (Cadherin-associated Src substrate) (CAS) (p120 catenin) (p120(ctn)) (p120(cas)) | Key regulator of cell-cell adhesion that associates with and regulates the cell adhesion properties of both C-, E- and N-cadherins, being critical for their surface stability (PubMed:14610055, PubMed:20371349). Promotes localization and retention of DSG3 at cell-cell junctions, via its interaction with DSG3 (PubMed:18343367). Beside cell-cell adhesion, regulates gene transcription through several transcription factors including ZBTB33/Kaiso2 and GLIS2, and the activity of Rho family GTPases and downstream cytoskeletal dynamics (PubMed:10207085, PubMed:20371349). Implicated both in cell transformation by SRC and in ligand-induced receptor signaling through the EGF, PDGF, CSF-1 and ERBB2 receptors (PubMed:17344476). {ECO:0000269|PubMed:10207085, ECO:0000269|PubMed:14610055, ECO:0000269|PubMed:17344476, ECO:0000269|PubMed:18343367, ECO:0000269|PubMed:20371349}. |
O60763 | USO1 | S942 | ochoa|psp | General vesicular transport factor p115 (Protein USO1 homolog) (Transcytosis-associated protein) (TAP) (Vesicle-docking protein) | General vesicular transport factor required for intercisternal transport in the Golgi stack; it is required for transcytotic fusion and/or subsequent binding of the vesicles to the target membrane. May well act as a vesicular anchor by interacting with the target membrane and holding the vesicular and target membranes in proximity. {ECO:0000250|UniProtKB:P41542}. |
O60841 | EIF5B | S135 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O75022 | LILRB3 | S530 | ochoa | Leukocyte immunoglobulin-like receptor subfamily B member 3 (LIR-3) (Leukocyte immunoglobulin-like receptor 3) (CD85 antigen-like family member A) (Immunoglobulin-like transcript 5) (ILT-5) (Monocyte inhibitory receptor HL9) (CD antigen CD85a) | May act as receptor for class I MHC antigens. Becomes activated upon coligation of LILRB3 and immune receptors, such as FCGR2B and the B-cell receptor. Down-regulates antigen-induced B-cell activation by recruiting phosphatases to its immunoreceptor tyrosine-based inhibitor motifs (ITIM). {ECO:0000250|UniProtKB:P97484}. |
O75369 | FLNB | S789 | ochoa | Filamin-B (FLN-B) (ABP-278) (ABP-280 homolog) (Actin-binding-like protein) (Beta-filamin) (Filamin homolog 1) (Fh1) (Filamin-3) (Thyroid autoantigen) (Truncated actin-binding protein) (Truncated ABP) | Connects cell membrane constituents to the actin cytoskeleton. May promote orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. Anchors various transmembrane proteins to the actin cytoskeleton. Interaction with FLNA may allow neuroblast migration from the ventricular zone into the cortical plate. Various interactions and localizations of isoforms affect myotube morphology and myogenesis. Isoform 6 accelerates muscle differentiation in vitro. |
O75475 | PSIP1 | S116 | ochoa | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O94880 | PHF14 | Y206 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94880 | PHF14 | S244 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O95071 | UBR5 | S1990 | ochoa | E3 ubiquitin-protein ligase UBR5 (EC 2.3.2.26) (E3 ubiquitin-protein ligase, HECT domain-containing 1) (Hyperplastic discs protein homolog) (hHYD) (Progestin-induced protein) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm and nucleus (PubMed:29033132, PubMed:33208877, PubMed:37478846, PubMed:37478862). Mainly acts as a ubiquitin chain elongator that extends pre-ubiquitinated substrates (PubMed:29033132, PubMed:37409633). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (By similarity). Recognizes type-1 N-degrons, containing positively charged amino acids (Arg, Lys and His) (By similarity). Together with UBR4, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR5 is probably branching multiple 'Lys-48'-linked chains of substrates initially modified with mixed conjugates by UBR4 (PubMed:29033132). Together with ITCH, catalyzes 'Lys-48'-/'Lys-63'-branched ubiquitination of TXNIP, leading to its degradation: UBR5 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by ITCH (PubMed:29378950). Catalytic component of a nuclear protein quality control pathway that mediates ubiquitination and degradation of unpaired transcription factors (i.e. transcription factors that are not assembled into functional multiprotein complexes): specifically recognizes and binds degrons that are not accessible when transcription regulators are associated with their coactivators (PubMed:37478846, PubMed:37478862). Ubiquitinates various unpaired transcription regulator (MYC, SUPT4H1, SUPT5H, CDC20 and MCRS1), as well as ligand-bound nuclear receptors (ESR1, NR1H3, NR3C1, PGR, RARA, RXRA AND VDR) that are not associated with their nuclear receptor coactivators (NCOAs) (PubMed:33208877, PubMed:37478846, PubMed:37478862). Involved in maturation and/or transcriptional regulation of mRNA by mediating polyubiquitination and activation of CDK9 (PubMed:21127351). Also acts as a regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). Regulates DNA topoisomerase II binding protein (TopBP1) in the DNA damage response (PubMed:11714696). Ubiquitinates acetylated PCK1 (PubMed:21726808). Acts as a positive regulator of the canonical Wnt signaling pathway by mediating (1) ubiquitination and stabilization of CTNNB1, and (2) 'Lys-48'-linked ubiquitination and degradation of TLE3 (PubMed:21118991, PubMed:28689657). Promotes disassembly of the mitotic checkpoint complex (MCC) from the APC/C complex by catalyzing ubiquitination of BUB1B, BUB3 and CDC20 (PubMed:35217622). Plays an essential role in extraembryonic development (By similarity). Required for the maintenance of skeletal tissue homeostasis by acting as an inhibitor of hedgehog (HH) signaling (By similarity). {ECO:0000250|UniProtKB:Q80TP3, ECO:0000269|PubMed:11714696, ECO:0000269|PubMed:21118991, ECO:0000269|PubMed:21127351, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:28689657, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:29378950, ECO:0000269|PubMed:33208877, ECO:0000269|PubMed:35217622, ECO:0000269|PubMed:37409633, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:37478862}. |
O95218 | ZRANB2 | S165 | ochoa | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
O95359 | TACC2 | S2533 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95810 | CAVIN2 | S403 | ochoa | Caveolae-associated protein 2 (Cavin-2) (PS-p68) (Phosphatidylserine-binding protein) (Serum deprivation-response protein) | Plays an important role in caveolar biogenesis and morphology. Regulates caveolae morphology by inducing membrane curvature within caveolae (PubMed:19525939). Plays a role in caveola formation in a tissue-specific manner. Required for the formation of caveolae in the lung and fat endothelia but not in the heart endothelia. Negatively regulates the size or stability of CAVIN complexes in the lung endothelial cells. May play a role in targeting PRKCA to caveolae (By similarity). {ECO:0000250|UniProtKB:Q66H98, ECO:0000269|PubMed:19525939}. |
O95835 | LATS1 | S1107 | ochoa | Serine/threonine-protein kinase LATS1 (EC 2.7.11.1) (Large tumor suppressor homolog 1) (WARTS protein kinase) (h-warts) | Negative regulator of YAP1 in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:10518011, PubMed:10831611, PubMed:18158288, PubMed:26437443, PubMed:28068668). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18158288, PubMed:26437443, PubMed:28068668). Phosphorylation of YAP1 by LATS1 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration (PubMed:18158288, PubMed:26437443, PubMed:28068668). Acts as a tumor suppressor which plays a critical role in maintenance of ploidy through its actions in both mitotic progression and the G1 tetraploidy checkpoint (PubMed:15122335, PubMed:19927127). Negatively regulates G2/M transition by down-regulating CDK1 kinase activity (PubMed:9988268). Involved in the control of p53 expression (PubMed:15122335). Affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1 (PubMed:15220930). May also play a role in endocrine function. Plays a role in mammary gland epithelial cell differentiation, both through the Hippo signaling pathway and the intracellular estrogen receptor signaling pathway by promoting the degradation of ESR1 (PubMed:28068668). Acts as an activator of the NLRP3 inflammasome by mediating phosphorylation of 'Ser-265' of NLRP3 following NLRP3 palmitoylation, promoting NLRP3 activation by NEK7 (PubMed:39173637). {ECO:0000269|PubMed:10518011, ECO:0000269|PubMed:10831611, ECO:0000269|PubMed:15122335, ECO:0000269|PubMed:15220930, ECO:0000269|PubMed:18158288, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:26437443, ECO:0000269|PubMed:28068668, ECO:0000269|PubMed:39173637, ECO:0000269|PubMed:9988268}. |
P05067 | APP | S198 | psp | Amyloid-beta precursor protein (APP) (ABPP) (APPI) (Alzheimer disease amyloid A4 protein homolog) (Alzheimer disease amyloid protein) (Amyloid precursor protein) (Amyloid-beta (A4) precursor protein) (Amyloid-beta A4 protein) (Cerebral vascular amyloid peptide) (CVAP) (PreA4) (Protease nexin-II) (PN-II) [Cleaved into: N-APP; Soluble APP-alpha (S-APP-alpha); Soluble APP-beta (S-APP-beta); C99 (Beta-secretase C-terminal fragment) (Beta-CTF); Amyloid-beta protein 42 (Abeta42) (Beta-APP42); Amyloid-beta protein 40 (Abeta40) (Beta-APP40); C83 (Alpha-secretase C-terminal fragment) (Alpha-CTF); P3(42); P3(40); C80; Gamma-secretase C-terminal fragment 59 (Amyloid intracellular domain 59) (AICD-59) (AID(59)) (Gamma-CTF(59)); Gamma-secretase C-terminal fragment 57 (Amyloid intracellular domain 57) (AICD-57) (AID(57)) (Gamma-CTF(57)); Gamma-secretase C-terminal fragment 50 (Amyloid intracellular domain 50) (AICD-50) (AID(50)) (Gamma-CTF(50)); C31] | Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis (PubMed:25122912). Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(o) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1 (By similarity). By acting as a kinesin I membrane receptor, plays a role in axonal anterograde transport of cargo towards synapses in axons (PubMed:17062754, PubMed:23011729). Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1. {ECO:0000250, ECO:0000250|UniProtKB:P12023, ECO:0000269|PubMed:17062754, ECO:0000269|PubMed:23011729, ECO:0000269|PubMed:25122912}.; FUNCTION: Amyloid-beta peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Amyloid-beta peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.; FUNCTION: [Amyloid-beta protein 42]: More effective reductant than amyloid-beta protein 40. May activate mononuclear phagocytes in the brain and elicit inflammatory responses.; FUNCTION: Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain. {ECO:0000250}.; FUNCTION: The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis. |
P06241 | FYN | S186 | ochoa | Tyrosine-protein kinase Fyn (EC 2.7.10.2) (Proto-oncogene Syn) (Proto-oncogene c-Fyn) (Src-like kinase) (SLK) (p59-Fyn) | Non-receptor tyrosine-protein kinase that plays a role in many biological processes including regulation of cell growth and survival, cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, immune response and axon guidance (PubMed:11536198, PubMed:15489916, PubMed:15557120, PubMed:16387660, PubMed:20100835, PubMed:7568038, PubMed:7822789). Inactive FYN is phosphorylated on its C-terminal tail within the catalytic domain (PubMed:15489916). Following activation by PKA, the protein subsequently associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, activation and targeting to focal adhesions (PubMed:15489916). Involved in the regulation of cell adhesion and motility through phosphorylation of CTNNB1 (beta-catenin) and CTNND1 (delta-catenin) (PubMed:17194753). Regulates cytoskeletal remodeling by phosphorylating several proteins including the actin regulator WAS and the microtubule-associated proteins MAP2 and MAPT (PubMed:14707117, PubMed:15536091). Promotes cell survival by phosphorylating AGAP2/PIKE-A and preventing its apoptotic cleavage (PubMed:16841086). Participates in signal transduction pathways that regulate the integrity of the glomerular slit diaphragm (an essential part of the glomerular filter of the kidney) by phosphorylating several slit diaphragm components including NPHS1, KIRREL1 and TRPC6 (PubMed:14761972, PubMed:18258597, PubMed:19179337). Plays a role in neural processes by phosphorylating DPYSL2, a multifunctional adapter protein within the central nervous system, ARHGAP32, a regulator for Rho family GTPases implicated in various neural functions, and SNCA, a small pre-synaptic protein (PubMed:11162638, PubMed:12788081, PubMed:19652227). Involved in reelin signaling by mediating phosphorylation of DAB1 following reelin (RELN)-binding to its receptor (By similarity). Participates in the downstream signaling pathways that lead to T-cell differentiation and proliferation following T-cell receptor (TCR) stimulation (PubMed:22080863). Phosphorylates PTK2B/PYK2 in response to T-cell receptor activation (PubMed:20028775). Also participates in negative feedback regulation of TCR signaling through phosphorylation of PAG1, thereby promoting interaction between PAG1 and CSK and recruitment of CSK to lipid rafts (PubMed:18056706). CSK maintains LCK and FYN in an inactive form (By similarity). Promotes CD28-induced phosphorylation of VAV1 (PubMed:11005864). In mast cells, phosphorylates CLNK after activation of immunoglobulin epsilon receptor signaling (By similarity). Can also promote CD244-mediated NK cell activation (PubMed:15713798). {ECO:0000250|UniProtKB:P39688, ECO:0000269|PubMed:11005864, ECO:0000269|PubMed:11162638, ECO:0000269|PubMed:11536198, ECO:0000269|PubMed:12788081, ECO:0000269|PubMed:14707117, ECO:0000269|PubMed:14761972, ECO:0000269|PubMed:15536091, ECO:0000269|PubMed:15557120, ECO:0000269|PubMed:15713798, ECO:0000269|PubMed:16387660, ECO:0000269|PubMed:16841086, ECO:0000269|PubMed:17194753, ECO:0000269|PubMed:18056706, ECO:0000269|PubMed:18258597, ECO:0000269|PubMed:19179337, ECO:0000269|PubMed:19652227, ECO:0000269|PubMed:20028775, ECO:0000269|PubMed:20100835, ECO:0000269|PubMed:22080863, ECO:0000269|PubMed:7568038, ECO:0000269|PubMed:7822789, ECO:0000303|PubMed:15489916}. |
P07900 | HSP90AA1 | S315 | ochoa | Heat shock protein HSP 90-alpha (EC 3.6.4.10) (Heat shock 86 kDa) (HSP 86) (HSP86) (Heat shock protein family C member 1) (Lipopolysaccharide-associated protein 2) (LAP-2) (LPS-associated protein 2) (Renal carcinoma antigen NY-REN-38) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:11274138, PubMed:12526792, PubMed:15577939, PubMed:15937123, PubMed:27353360, PubMed:29127155). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself (PubMed:29127155). Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels (PubMed:25973397). In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues (PubMed:25973397). Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment (PubMed:25973397). Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:11276205). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Mediates the association of TOMM70 with IRF3 or TBK1 in mitochondrial outer membrane which promotes host antiviral response (PubMed:20628368, PubMed:25609812). {ECO:0000269|PubMed:11274138, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15577939, ECO:0000269|PubMed:15937123, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:29127155, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Seems to interfere with N.meningitidis NadA-mediated invasion of human cells. Decreasing HSP90 levels increases adhesion and entry of E.coli expressing NadA into human Chang cells; increasing its levels leads to decreased adhesion and invasion. {ECO:0000305|PubMed:22066472}. |
P07947 | YES1 | S195 | ochoa | Tyrosine-protein kinase Yes (EC 2.7.10.2) (Proto-oncogene c-Yes) (p61-Yes) | Non-receptor protein tyrosine kinase that is involved in the regulation of cell growth and survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation. Stimulation by receptor tyrosine kinases (RTKs) including EGFR, PDGFR, CSF1R and FGFR leads to recruitment of YES1 to the phosphorylated receptor, and activation and phosphorylation of downstream substrates. Upon EGFR activation, promotes the phosphorylation of PARD3 to favor epithelial tight junction assembly. Participates in the phosphorylation of specific junctional components such as CTNND1 by stimulating the FYN and FER tyrosine kinases at cell-cell contacts. Upon T-cell stimulation by CXCL12, phosphorylates collapsin response mediator protein 2/DPYSL2 and induces T-cell migration. Participates in CD95L/FASLG signaling pathway and mediates AKT-mediated cell migration. Plays a role in cell cycle progression by phosphorylating the cyclin-dependent kinase 4/CDK4 thus regulating the G1 phase. Also involved in G2/M progression and cytokinesis. Catalyzes phosphorylation of organic cation transporter OCT2 which induces its transport activity (PubMed:26979622). {ECO:0000269|PubMed:11901164, ECO:0000269|PubMed:18479465, ECO:0000269|PubMed:19276087, ECO:0000269|PubMed:21566460, ECO:0000269|PubMed:21713032, ECO:0000269|PubMed:26979622}. |
P07948 | LYN | S166 | ochoa | Tyrosine-protein kinase Lyn (EC 2.7.10.2) (Lck/Yes-related novel protein tyrosine kinase) (V-yes-1 Yamaguchi sarcoma viral related oncogene homolog) (p53Lyn) (p56Lyn) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors and plays an important role in the regulation of innate and adaptive immune responses, hematopoiesis, responses to growth factors and cytokines, integrin signaling, but also responses to DNA damage and genotoxic agents. Functions primarily as negative regulator, but can also function as activator, depending on the context. Required for the initiation of the B-cell response, but also for its down-regulation and termination. Plays an important role in the regulation of B-cell differentiation, proliferation, survival and apoptosis, and is important for immune self-tolerance. Acts downstream of several immune receptors, including the B-cell receptor, CD79A, CD79B, CD5, CD19, CD22, FCER1, FCGR2, FCGR1A, TLR2 and TLR4. Plays a role in the inflammatory response to bacterial lipopolysaccharide. Mediates the responses to cytokines and growth factors in hematopoietic progenitors, platelets, erythrocytes, and in mature myeloid cells, such as dendritic cells, neutrophils and eosinophils. Acts downstream of EPOR, KIT, MPL, the chemokine receptor CXCR4, as well as the receptors for IL3, IL5 and CSF2. Plays an important role in integrin signaling. Regulates cell proliferation, survival, differentiation, migration, adhesion, degranulation, and cytokine release. Involved in the regulation of endothelial activation, neutrophil adhesion and transendothelial migration (PubMed:36932076). Down-regulates signaling pathways by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIM), that then serve as binding sites for phosphatases, such as PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1, that modulate signaling by dephosphorylation of kinases and their substrates. Phosphorylates LIME1 in response to CD22 activation. Phosphorylates BTK, CBL, CD5, CD19, CD72, CD79A, CD79B, CSF2RB, DOK1, HCLS1, LILRB3/PIR-B, MS4A2/FCER1B, SYK and TEC. Promotes phosphorylation of SIRPA, PTPN6/SHP-1, PTPN11/SHP-2 and INPP5D/SHIP-1. Mediates phosphorylation of the BCR-ABL fusion protein. Required for rapid phosphorylation of FER in response to FCER1 activation. Mediates KIT phosphorylation. Acts as an effector of EPOR (erythropoietin receptor) in controlling KIT expression and may play a role in erythroid differentiation during the switch between proliferation and maturation. Depending on the context, activates or inhibits several signaling cascades. Regulates phosphatidylinositol 3-kinase activity and AKT1 activation. Regulates activation of the MAP kinase signaling cascade, including activation of MAP2K1/MEK1, MAPK1/ERK2, MAPK3/ERK1, MAPK8/JNK1 and MAPK9/JNK2. Mediates activation of STAT5A and/or STAT5B. Phosphorylates LPXN on 'Tyr-72'. Kinase activity facilitates TLR4-TLR6 heterodimerization and signal initiation. Phosphorylates SCIMP on 'Tyr-107'; this enhances binding of SCIMP to TLR4, promoting the phosphorylation of TLR4, and a selective cytokine response to lipopolysaccharide in macrophages (By similarity). Phosphorylates CLNK (By similarity). Phosphorylates BCAR1/CAS and NEDD9/HEF1 (PubMed:9020138). {ECO:0000250|UniProtKB:P25911, ECO:0000269|PubMed:10574931, ECO:0000269|PubMed:10748115, ECO:0000269|PubMed:10891478, ECO:0000269|PubMed:11435302, ECO:0000269|PubMed:11517336, ECO:0000269|PubMed:11825908, ECO:0000269|PubMed:14726379, ECO:0000269|PubMed:15795233, ECO:0000269|PubMed:16467205, ECO:0000269|PubMed:17640867, ECO:0000269|PubMed:17977829, ECO:0000269|PubMed:18056483, ECO:0000269|PubMed:18070987, ECO:0000269|PubMed:18235045, ECO:0000269|PubMed:18577747, ECO:0000269|PubMed:18802065, ECO:0000269|PubMed:19290919, ECO:0000269|PubMed:20037584, ECO:0000269|PubMed:36122175, ECO:0000269|PubMed:36932076, ECO:0000269|PubMed:7687428, ECO:0000269|PubMed:9020138}. |
P08238 | HSP90AB1 | S307 | ochoa | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P09769 | FGR | S181 | ochoa | Tyrosine-protein kinase Fgr (EC 2.7.10.2) (Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog) (Proto-oncogene c-Fgr) (p55-Fgr) (p58-Fgr) (p58c-Fgr) | Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration. Promotes mast cell degranulation, release of inflammatory cytokines and IgE-mediated anaphylaxis. Acts downstream of receptors that bind the Fc region of immunoglobulins, such as MS4A2/FCER1B, FCGR2A and/or FCGR2B. Acts downstream of ITGB1 and ITGB2, and regulates actin cytoskeleton reorganization, cell spreading and adhesion. Depending on the context, activates or inhibits cellular responses. Functions as a negative regulator of ITGB2 signaling, phagocytosis and SYK activity in monocytes. Required for normal ITGB1 and ITGB2 signaling, normal cell spreading and adhesion in neutrophils and macrophages. Functions as a positive regulator of cell migration and regulates cytoskeleton reorganization via RAC1 activation. Phosphorylates SYK (in vitro) and promotes SYK-dependent activation of AKT1 and MAP kinase signaling. Phosphorylates PLD2 in antigen-stimulated mast cells, leading to PLD2 activation and the production of the signaling molecules lysophosphatidic acid and diacylglycerol. Promotes activation of PIK3R1. Phosphorylates FASLG, and thereby regulates its ubiquitination and subsequent internalization. Phosphorylates ABL1. Promotes phosphorylation of CBL, CTTN, PIK3R1, PTK2/FAK1, PTK2B/PYK2 and VAV2. Phosphorylates HCLS1 that has already been phosphorylated by SYK, but not unphosphorylated HCLS1. Together with CLNK, it acts as a negative regulator of natural killer cell-activating receptors and inhibits interferon-gamma production (By similarity). {ECO:0000250|UniProtKB:P14234, ECO:0000269|PubMed:10739672, ECO:0000269|PubMed:17164290, ECO:0000269|PubMed:1737799, ECO:0000269|PubMed:7519620}. |
P10914 | IRF1 | S221 | psp | Interferon regulatory factor 1 (IRF-1) | Transcriptional regulator which displays a remarkable functional diversity in the regulation of cellular responses (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195, PubMed:32385160). Regulates transcription of IFN and IFN-inducible genes, host response to viral and bacterial infections, regulation of many genes expressed during hematopoiesis, inflammation, immune responses and cell proliferation and differentiation, regulation of the cell cycle and induction of growth arrest and programmed cell death following DNA damage (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Stimulates both innate and acquired immune responses through the activation of specific target genes and can act as a transcriptional activator and repressor regulating target genes by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:21389130, PubMed:22367195). Has an essentail role in IFNG-dependent immunity to mycobacteria (PubMed:36736301). Competes with the transcriptional repressor ZBED2 for binding to a common consensus sequence in gene promoters (PubMed:32385160). Its target genes for transcriptional activation activity include: genes involved in anti-viral response, such as IFN-alpha/beta, RIGI, TNFSF10/TRAIL, ZBP1, OAS1/2, PIAS1/GBP, EIF2AK2/PKR and RSAD2/viperin; antibacterial response, such as GBP2, GBP5 and NOS2/INOS; anti-proliferative response, such as p53/TP53, LOX and CDKN1A; apoptosis, such as BBC3/PUMA, CASP1, CASP7 and CASP8; immune response, such as IL7, IL12A/B and IL15, PTGS2/COX2 and CYBB; DNA damage responses and DNA repair, such as POLQ/POLH; MHC class I expression, such as TAP1, PSMB9/LMP2, PSME1/PA28A, PSME2/PA28B and B2M and MHC class II expression, such as CIITA; metabolic enzymes, such as ACOD1/IRG1 (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Represses genes involved in anti-proliferative response, such as BIRC5/survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 and in immune response, such as FOXP3, IL4, ANXA2 and TLR4 (PubMed:18641303, PubMed:22200613). Stimulates p53/TP53-dependent transcription through enhanced recruitment of EP300 leading to increased acetylation of p53/TP53 (PubMed:15509808, PubMed:18084608). Plays an important role in immune response directly affecting NK maturation and activity, macrophage production of IL12, Th1 development and maturation of CD8+ T-cells (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Also implicated in the differentiation and maturation of dendritic cells and in the suppression of regulatory T (Treg) cells development (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Acts as a tumor suppressor and plays a role not only in antagonism of tumor cell growth but also in stimulating an immune response against tumor cells (PubMed:20049431). {ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:15509808, ECO:0000269|PubMed:17516545, ECO:0000269|PubMed:17942705, ECO:0000269|PubMed:18084608, ECO:0000269|PubMed:18497060, ECO:0000269|PubMed:18641303, ECO:0000269|PubMed:19404407, ECO:0000269|PubMed:19851330, ECO:0000269|PubMed:21389130, ECO:0000269|PubMed:22200613, ECO:0000269|PubMed:22367195, ECO:0000269|PubMed:32385160, ECO:0000269|PubMed:36736301, ECO:0000303|PubMed:11244049, ECO:0000303|PubMed:11846971, ECO:0000303|PubMed:11846974, ECO:0000303|PubMed:16932750, ECO:0000303|PubMed:20049431}. |
P12270 | TPR | S929 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P12814 | ACTN1 | S404 | ochoa | Alpha-actinin-1 (Alpha-actinin cytoskeletal isoform) (F-actin cross-linking protein) (Non-muscle alpha-actinin-1) | F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. Association with IGSF8 regulates the immune synapse formation and is required for efficient T-cell activation (PubMed:22689882). {ECO:0000269|PubMed:22689882}. |
P13010 | XRCC5 | S102 | ochoa | X-ray repair cross-complementing protein 5 (EC 3.6.4.-) (86 kDa subunit of Ku antigen) (ATP-dependent DNA helicase 2 subunit 2) (ATP-dependent DNA helicase II 80 kDa subunit) (CTC box-binding factor 85 kDa subunit) (CTC85) (CTCBF) (DNA repair protein XRCC5) (Ku80) (Ku86) (Lupus Ku autoantigen protein p86) (Nuclear factor IV) (Thyroid-lupus autoantigen) (TLAA) (X-ray repair complementing defective repair in Chinese hamster cells 5 (double-strand-break rejoining)) | Single-stranded DNA-dependent ATP-dependent helicase that plays a key role in DNA non-homologous end joining (NHEJ) by recruiting DNA-PK to DNA (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Required for double-strand break repair and V(D)J recombination (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Also has a role in chromosome translocation (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The DNA helicase II complex binds preferentially to fork-like ends of double-stranded DNA in a cell cycle-dependent manner (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). It works in the 3'-5' direction (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). During NHEJ, the XRCC5-XRRC6 dimer performs the recognition step: it recognizes and binds to the broken ends of the DNA and protects them from further resection (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). Binding to DNA may be mediated by XRCC6 (PubMed:11493912, PubMed:12145306, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer acts as a regulatory subunit of the DNA-dependent protein kinase complex DNA-PK by increasing the affinity of the catalytic subunit PRKDC to DNA by 100-fold (PubMed:11493912, PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer is probably involved in stabilizing broken DNA ends and bringing them together (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The assembly of the DNA-PK complex to DNA ends is required for the NHEJ ligation step (PubMed:12145306, PubMed:20383123, PubMed:7957065, PubMed:8621488). The XRCC5-XRRC6 dimer probably also acts as a 5'-deoxyribose-5-phosphate lyase (5'-dRP lyase), by catalyzing the beta-elimination of the 5' deoxyribose-5-phosphate at an abasic site near double-strand breaks (PubMed:20383123). XRCC5 probably acts as the catalytic subunit of 5'-dRP activity, and allows to 'clean' the termini of abasic sites, a class of nucleotide damage commonly associated with strand breaks, before such broken ends can be joined (PubMed:20383123). The XRCC5-XRRC6 dimer together with APEX1 acts as a negative regulator of transcription (PubMed:8621488). In association with NAA15, the XRCC5-XRRC6 dimer binds to the osteocalcin promoter and activates osteocalcin expression (PubMed:12145306). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000269|PubMed:11493912, ECO:0000269|PubMed:12145306, ECO:0000269|PubMed:20383123, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:7957065, ECO:0000269|PubMed:8621488}. |
P15884 | TCF4 | S528 | ochoa | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P17844 | DDX5 | S402 | ochoa | Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) | Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as a transcriptional repressor in a promoter-specific manner; the function probably involves association with histone deacetylases, such as HDAC1. As component of a large PER complex is involved in the inhibition of 3' transcriptional termination of circadian target genes such as PER1 and NR1D1 and the control of the circadian rhythms. {ECO:0000269|PubMed:12527917, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:15660129, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17960593, ECO:0000269|PubMed:18829551, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:21343338}. |
P19338 | NCL | S184 | ochoa|psp | Nucleolin (Protein C23) | Nucleolin is the major nucleolar protein of growing eukaryotic cells. It is found associated with intranucleolar chromatin and pre-ribosomal particles. It induces chromatin decondensation by binding to histone H1. It is thought to play a role in pre-rRNA transcription and ribosome assembly. May play a role in the process of transcriptional elongation. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. {ECO:0000269|PubMed:10393184}. |
P20823 | HNF1A | S70 | ochoa | Hepatocyte nuclear factor 1-alpha (HNF-1-alpha) (HNF-1A) (Liver-specific transcription factor LF-B1) (LFB1) (Transcription factor 1) (TCF-1) | Transcriptional activator that regulates the tissue specific expression of multiple genes, especially in pancreatic islet cells and in liver (By similarity). Binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:10966642, PubMed:12453420). Activates the transcription of CYP1A2, CYP2E1 and CYP3A11 (By similarity). {ECO:0000250|UniProtKB:P22361, ECO:0000269|PubMed:10966642, ECO:0000269|PubMed:12453420}.; FUNCTION: (Microbial infection) Plays a crucial role for hepatitis B virus gene transcription and DNA replication. Mechanistically, synergistically cooperates with NR5A2 to up-regulate the activity of one of the critical cis-elements in the hepatitis B virus genome enhancer II (ENII). {ECO:0000269|PubMed:14728801, ECO:0000269|PubMed:38018242}. |
P22681 | CBL | S452 | ochoa | E3 ubiquitin-protein ligase CBL (EC 2.3.2.27) (Casitas B-lineage lymphoma proto-oncogene) (Proto-oncogene c-Cbl) (RING finger protein 55) (RING-type E3 ubiquitin transferase CBL) (Signal transduction protein CBL) | E3 ubiquitin-protein ligase that acts as a negative regulator of many signaling pathways by mediating ubiquitination of cell surface receptors (PubMed:10514377, PubMed:11896602, PubMed:14661060, PubMed:14739300, PubMed:15190072, PubMed:17509076, PubMed:18374639, PubMed:19689429, PubMed:21596750, PubMed:28381567). Accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome (PubMed:10514377, PubMed:14661060, PubMed:14739300, PubMed:17094949, PubMed:17509076, PubMed:17974561). Recognizes activated receptor tyrosine kinases, including KIT, FLT1, FGFR1, FGFR2, PDGFRA, PDGFRB, CSF1R, EPHA8 and KDR and mediates their ubiquitination to terminate signaling (PubMed:15190072, PubMed:18374639, PubMed:21596750). Recognizes membrane-bound HCK, SRC and other kinases of the SRC family and mediates their ubiquitination and degradation (PubMed:11896602). Ubiquitinates EGFR and SPRY2 (PubMed:17094949, PubMed:17974561). Ubiquitinates NECTIN1 following association between NECTIN1 and herpes simplex virus 1/HHV-1 envelope glycoprotein D, leading to NECTIN1 removal from cell surface (PubMed:28381567). Participates in signal transduction in hematopoietic cells. Plays an important role in the regulation of osteoblast differentiation and apoptosis (PubMed:15190072, PubMed:18374639). Essential for osteoclastic bone resorption (PubMed:14739300). The 'Tyr-731' phosphorylated form induces the activation and recruitment of phosphatidylinositol 3-kinase to the cell membrane in a signaling pathway that is critical for osteoclast function (PubMed:14739300). May be functionally coupled with the E2 ubiquitin-protein ligase UB2D3. In association with CBLB, required for proper feedback inhibition of ciliary platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway via ubiquitination and internalization of PDGFRA (By similarity). {ECO:0000250|UniProtKB:P22682, ECO:0000269|PubMed:10514377, ECO:0000269|PubMed:11896602, ECO:0000269|PubMed:14661060, ECO:0000269|PubMed:14739300, ECO:0000269|PubMed:15190072, ECO:0000269|PubMed:17094949, ECO:0000269|PubMed:17509076, ECO:0000269|PubMed:17974561, ECO:0000269|PubMed:18374639, ECO:0000269|PubMed:19689429, ECO:0000269|PubMed:21596750, ECO:0000269|PubMed:28381567}. |
P23327 | HRC | S159 | ochoa | Sarcoplasmic reticulum histidine-rich calcium-binding protein | May play a role in the regulation of calcium sequestration or release in the SR of skeletal and cardiac muscle. |
P23588 | EIF4B | S39 | ochoa | Eukaryotic translation initiation factor 4B (eIF-4B) | Required for the binding of mRNA to ribosomes. Functions in close association with EIF4-F and EIF4-A. Binds near the 5'-terminal cap of mRNA in presence of EIF-4F and ATP. Promotes the ATPase activity and the ATP-dependent RNA unwinding activity of both EIF4-A and EIF4-F. |
P23760 | PAX3 | S201 | ochoa|psp | Paired box protein Pax-3 (HuP2) | Transcription factor that may regulate cell proliferation, migration and apoptosis. Involved in neural development and myogenesis. Transcriptional activator of MITF, acting synergistically with SOX10 (PubMed:21965087). {ECO:0000269|PubMed:16951170, ECO:0000269|PubMed:21965087}. |
P25054 | APC | S1861 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26045 | PTPN3 | S419 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P26358 | DNMT1 | S192 | ochoa | DNA (cytosine-5)-methyltransferase 1 (Dnmt1) (EC 2.1.1.37) (CXXC-type zinc finger protein 9) (DNA methyltransferase HsaI) (DNA MTase HsaI) (M.HsaI) (MCMT) | Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306). {ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:18413740, ECO:0000269|PubMed:18754681, ECO:0000269|PubMed:24623306}. |
P27986 | PIK3R1 | S608 | ochoa|psp | Phosphatidylinositol 3-kinase regulatory subunit alpha (PI3-kinase regulatory subunit alpha) (PI3K regulatory subunit alpha) (PtdIns-3-kinase regulatory subunit alpha) (Phosphatidylinositol 3-kinase 85 kDa regulatory subunit alpha) (PI3-kinase subunit p85-alpha) (PtdIns-3-kinase regulatory subunit p85-alpha) | Binds to activated (phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. Plays an important role in signaling in response to FGFR1, FGFR2, FGFR3, FGFR4, KITLG/SCF, KIT, PDGFRA and PDGFRB. Likewise, plays a role in ITGB2 signaling (PubMed:17626883, PubMed:19805105, PubMed:7518429). Modulates the cellular response to ER stress by promoting nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement (PubMed:20348923). {ECO:0000269|PubMed:17626883, ECO:0000269|PubMed:19805105, ECO:0000269|PubMed:20348923, ECO:0000269|PubMed:7518429}. |
P35680 | HNF1B | S75 | ochoa | Hepatocyte nuclear factor 1-beta (HNF-1-beta) (HNF-1B) (Homeoprotein LFB3) (Transcription factor 2) (TCF-2) (Variant hepatic nuclear factor 1) (vHNF1) | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:17924661, PubMed:7900999). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (PubMed:24204001). {ECO:0000250|UniProtKB:Q03365, ECO:0000269|PubMed:17924661, ECO:0000269|PubMed:24204001, ECO:0000269|PubMed:7900999}. |
P35680 | HNF1B | S80 | ochoa | Hepatocyte nuclear factor 1-beta (HNF-1-beta) (HNF-1B) (Homeoprotein LFB3) (Transcription factor 2) (TCF-2) (Variant hepatic nuclear factor 1) (vHNF1) | Transcription factor that binds to the inverted palindrome 5'-GTTAATNATTAAC-3' (PubMed:17924661, PubMed:7900999). Binds to the FPC element in the cAMP regulatory unit of the PLAU gene (By similarity). Transcriptional activity is increased by coactivator PCBD1 (PubMed:24204001). {ECO:0000250|UniProtKB:Q03365, ECO:0000269|PubMed:17924661, ECO:0000269|PubMed:24204001, ECO:0000269|PubMed:7900999}. |
P38646 | HSPA9 | S89 | ochoa | Stress-70 protein, mitochondrial (EC 3.6.4.10) (75 kDa glucose-regulated protein) (GRP-75) (Heat shock 70 kDa protein 9) (Heat shock protein family A member 9) (Mortalin) (MOT) (Peptide-binding protein 74) (PBP74) | Mitochondrial chaperone that plays a key role in mitochondrial protein import, folding, and assembly. Plays an essential role in the protein quality control system, the correct folding of proteins, the re-folding of misfolded proteins, and the targeting of proteins for subsequent degradation. These processes are achieved through cycles of ATP binding, ATP hydrolysis, and ADP release, mediated by co-chaperones (PubMed:18632665, PubMed:25615450, PubMed:28848044, PubMed:30933555, PubMed:31177526). In mitochondria, it associates with the TIM (translocase of the inner membrane) protein complex to assist in the import and folding of mitochondrial proteins (By similarity). Plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis, interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU (PubMed:26702583). Regulates erythropoiesis via stabilization of ISC assembly (PubMed:21123823, PubMed:26702583). Regulates mitochondrial calcium-dependent apoptosis by coupling two calcium channels, ITPR1 and VDAC1, at the mitochondria-associated endoplasmic reticulum (ER) membrane to facilitate calcium transport from the ER lumen to the mitochondria intermembrane space, providing calcium for the downstream calcium channel MCU, which releases it into the mitochondrial matrix (By similarity). Although primarily located in the mitochondria, it is also found in other cellular compartments. In the cytosol, it associates with proteins involved in signaling, apoptosis, or senescence. It may play a role in cell cycle regulation via its interaction with and promotion of degradation of TP53 (PubMed:24625977, PubMed:26634371). May play a role in the control of cell proliferation and cellular aging (By similarity). Protects against reactive oxygen species (ROS) (By similarity). Extracellular HSPA9 plays a cytoprotective role by preventing cell lysis following immune attack by the membrane attack complex by disrupting formation of the complex (PubMed:16091382). {ECO:0000250|UniProtKB:P0CS90, ECO:0000250|UniProtKB:P38647, ECO:0000269|PubMed:16091382, ECO:0000269|PubMed:18632665, ECO:0000269|PubMed:21123823, ECO:0000269|PubMed:24625977, ECO:0000269|PubMed:25615450, ECO:0000269|PubMed:26634371, ECO:0000269|PubMed:26702583, ECO:0000269|PubMed:28848044, ECO:0000269|PubMed:30933555, ECO:0000269|PubMed:31177526}. |
P41236 | PPP1R2 | S77 | ochoa | Protein phosphatase inhibitor 2 (IPP-2) | Inhibitor of protein-phosphatase 1. |
P42566 | EPS15 | S368 | ochoa | Epidermal growth factor receptor substrate 15 (Protein Eps15) (Protein AF-1p) | Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Acts as a clathrin adapter required for post-Golgi trafficking. Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:16903783, ECO:0000269|PubMed:18362181, ECO:0000269|PubMed:19458185, ECO:0000269|PubMed:22648170}. |
P43243 | MATR3 | S211 | ochoa | Matrin-3 | May play a role in transcription or may interact with other nuclear matrix proteins to form the internal fibrogranular network. In association with the SFPQ-NONO heteromer may play a role in nuclear retention of defective RNAs. Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Binds to N6-methyladenosine (m6A)-containing mRNAs and contributes to MYC stability by binding to m6A-containing MYC mRNAs (PubMed:32245947). May bind to specific miRNA hairpins (PubMed:28431233). {ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:32245947}. |
P46821 | MAP1B | S1881 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P47712 | PLA2G4A | S431 | ochoa | Cytosolic phospholipase A2 (cPLA2) (Phospholipase A2 group IVA) [Includes: Phospholipase A2 (EC 3.1.1.4) (Phosphatidylcholine 2-acylhydrolase); Lysophospholipase (EC 3.1.1.5)] | Has primarily calcium-dependent phospholipase and lysophospholipase activities, with a major role in membrane lipid remodeling and biosynthesis of lipid mediators of the inflammatory response (PubMed:10358058, PubMed:14709560, PubMed:16617059, PubMed:17472963, PubMed:18451993, PubMed:27642067, PubMed:7794891, PubMed:8619991, PubMed:8702602, PubMed:9425121). Plays an important role in embryo implantation and parturition through its ability to trigger prostanoid production (By similarity). Preferentially hydrolyzes the ester bond of the fatty acyl group attached at sn-2 position of phospholipids (phospholipase A2 activity) (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:8619991, PubMed:9425121). Selectively hydrolyzes sn-2 arachidonoyl group from membrane phospholipids, providing the precursor for eicosanoid biosynthesis via the cyclooxygenase pathway (PubMed:10358058, PubMed:17472963, PubMed:18451993, PubMed:7794891, PubMed:9425121). In an alternative pathway of eicosanoid biosynthesis, hydrolyzes sn-2 fatty acyl chain of eicosanoid lysophopholipids to release free bioactive eicosanoids (PubMed:27642067). Hydrolyzes the ester bond of the fatty acyl group attached at sn-1 position of phospholipids (phospholipase A1 activity) only if an ether linkage rather than an ester linkage is present at the sn-2 position. This hydrolysis is not stereospecific (PubMed:7794891). Has calcium-independent phospholipase A2 and lysophospholipase activities in the presence of phosphoinositides (PubMed:12672805). Has O-acyltransferase activity. Catalyzes the transfer of fatty acyl chains from phospholipids to a primary hydroxyl group of glycerol (sn-1 or sn-3), potentially contributing to monoacylglycerol synthesis (PubMed:7794891). {ECO:0000250|UniProtKB:P47713, ECO:0000269|PubMed:10358058, ECO:0000269|PubMed:12672805, ECO:0000269|PubMed:14709560, ECO:0000269|PubMed:16617059, ECO:0000269|PubMed:17472963, ECO:0000269|PubMed:18451993, ECO:0000269|PubMed:27642067, ECO:0000269|PubMed:7794891, ECO:0000269|PubMed:8619991, ECO:0000269|PubMed:8702602, ECO:0000269|PubMed:9425121}. |
P49792 | RANBP2 | S1160 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49959 | MRE11 | S688 | ochoa|psp | Double-strand break repair protein MRE11 (EC 3.1.-.-) (Meiotic recombination 11 homolog 1) (MRE11 homolog 1) (Meiotic recombination 11 homolog A) (MRE11 homolog A) | Core component of the MRN complex, which plays a central role in double-strand break (DSB) repair, DNA recombination, maintenance of telomere integrity and meiosis (PubMed:11741547, PubMed:14657032, PubMed:22078559, PubMed:23080121, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:28867292, PubMed:29670289, PubMed:30464262, PubMed:30612738, PubMed:31353207, PubMed:37696958, PubMed:38128537, PubMed:9590181, PubMed:9651580, PubMed:9705271). The MRN complex is involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), an error-free mechanism which primarily occurs during S and G2 phases (PubMed:24316220, PubMed:28867292, PubMed:31353207, PubMed:38128537). The complex (1) mediates the end resection of damaged DNA, which generates proper single-stranded DNA, a key initial steps in HR, and is (2) required for the recruitment of other repair factors and efficient activation of ATM and ATR upon DNA damage (PubMed:24316220, PubMed:27889449, PubMed:28867292, PubMed:36050397, PubMed:38128537). Within the MRN complex, MRE11 possesses both single-strand endonuclease activity and double-strand-specific 3'-5' exonuclease activity (PubMed:11741547, PubMed:22078559, PubMed:24316220, PubMed:26240375, PubMed:27889449, PubMed:29670289, PubMed:31353207, PubMed:36563124, PubMed:9590181, PubMed:9651580, PubMed:9705271). After DSBs, MRE11 is loaded onto DSBs sites and cleaves DNA by cooperating with RBBP8/CtIP to initiate end resection (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 first endonucleolytically cleaves the 5' strand at DNA DSB ends to prevent non-homologous end joining (NHEJ) and licence HR (PubMed:24316220). It then generates a single-stranded DNA gap via 3' to 5' exonucleolytic degradation to create entry sites for EXO1- and DNA2-mediated 5' to 3' long-range resection, which is required for single-strand invasion and recombination (PubMed:24316220, PubMed:28867292). RBBP8/CtIP specifically promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182). MRE11 endonuclease activity is also enhanced by AGER/RAGE (By similarity). The MRN complex is also required for DNA damage signaling via activation of the ATM and ATR kinases: the nuclease activity of MRE11 is not required to activate ATM and ATR (PubMed:14657032, PubMed:15064416, PubMed:15790808, PubMed:16622404). The MRN complex is also required for the processing of R-loops (PubMed:31537797). The MRN complex is involved in the activation of the cGAS-STING pathway induced by DNA damage during tumorigenesis: the MRN complex acts by displacing CGAS from nucleosome sequestration, thereby activating it (By similarity). In telomeres the MRN complex may modulate t-loop formation (PubMed:10888888). {ECO:0000250|UniProtKB:Q61216, ECO:0000269|PubMed:10888888, ECO:0000269|PubMed:11741547, ECO:0000269|PubMed:14657032, ECO:0000269|PubMed:15064416, ECO:0000269|PubMed:15790808, ECO:0000269|PubMed:16622404, ECO:0000269|PubMed:22078559, ECO:0000269|PubMed:23080121, ECO:0000269|PubMed:24316220, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:28867292, ECO:0000269|PubMed:29670289, ECO:0000269|PubMed:30464262, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:31353207, ECO:0000269|PubMed:31537797, ECO:0000269|PubMed:36050397, ECO:0000269|PubMed:36563124, ECO:0000269|PubMed:37696958, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9590181, ECO:0000269|PubMed:9651580, ECO:0000269|PubMed:9705271}.; FUNCTION: MRE11 contains two DNA-binding domains (DBDs), enabling it to bind both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). {ECO:0000305}. |
P50148 | GNAQ | S198 | ochoa | Guanine nucleotide-binding protein G(q) subunit alpha (EC 3.6.5.-) (Guanine nucleotide-binding protein alpha-q) | Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades (PubMed:37991948). The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state (PubMed:37991948). Signaling by an activated GPCR promotes GDP release and GTP binding (PubMed:37991948). The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal (PubMed:37991948). Both GDP release and GTP hydrolysis are modulated by numerous regulatory proteins (PubMed:37991948). Signaling is mediated via phospholipase C-beta-dependent inositol lipid hydrolysis for signal propagation: activates phospholipase C-beta: following GPCR activation, GNAQ activates PLC-beta (PLCB1, PLCB2, PLCB3 or PLCB4), leading to production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:37991948). Required for platelet activation (By similarity). Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity (By similarity). Regulates chemotaxis of BM-derived neutrophils and dendritic cells (in vitro) (By similarity). Transduces FFAR4 signaling in response to long-chain fatty acids (LCFAs) (PubMed:27852822). Together with GNA11, required for heart development (By similarity). {ECO:0000250|UniProtKB:P21279, ECO:0000269|PubMed:27852822, ECO:0000269|PubMed:37991948}. |
P50461 | CSRP3 | S156 | ochoa | Cysteine and glycine-rich protein 3 (Cardiac LIM protein) (Cysteine-rich protein 3) (CRP3) (LIM domain protein, cardiac) (Muscle LIM protein) | Positive regulator of myogenesis. Acts as a cofactor for myogenic bHLH transcription factors such as MYOD1, and probably MYOG and MYF6. Enhances the DNA-binding activity of the MYOD1:TCF3 isoform E47 complex and may promote formation of a functional MYOD1:TCF3 isoform E47:MEF2A complex involved in myogenesis (By similarity). Plays a crucial and specific role in the organization of cytosolic structures in cardiomyocytes. Could play a role in mechanical stretch sensing. May be a scaffold protein that promotes the assembly of interacting proteins at Z-line structures. It is essential for calcineurin anchorage to the Z line. Required for stress-induced calcineurin-NFAT activation (By similarity). The role in regulation of cytoskeleton dynamics by association with CFL2 is reported conflictingly: Shown to enhance CFL2-mediated F-actin depolymerization dependent on the CSRP3:CFL2 molecular ratio, and also shown to reduce the ability of CLF1 and CFL2 to enhance actin depolymerization (PubMed:19752190, PubMed:24934443). Proposed to contribute to the maintenance of muscle cell integrity through an actin-based mechanism. Can directly bind to actin filaments, cross-link actin filaments into bundles without polarity selectivity and protect them from dilution- and cofilin-mediated depolymerization; the function seems to involve its self-association (PubMed:24934443). In vitro can inhibit PKC/PRKCA activity (PubMed:27353086). Proposed to be involved in cardiac stress signaling by down-regulating excessive PKC/PRKCA signaling (By similarity). {ECO:0000250|UniProtKB:P50462, ECO:0000250|UniProtKB:P50463, ECO:0000269|PubMed:19752190, ECO:0000269|PubMed:24934443, ECO:0000269|PubMed:27353086}.; FUNCTION: [Isoform 2]: May play a role in early sarcomere organization. Overexpression in myotubes negatively regulates myotube differentiation. By association with isoform 1 and thus changing the CSRP3 isoform 1:CFL2 stoichiometry is proposed to down-regulate CFL2-mediated F-actin depolymerization. {ECO:0000269|PubMed:24860983}. |
P51608 | MECP2 | S149 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51784 | USP11 | S648 | ochoa | Ubiquitin carboxyl-terminal hydrolase 11 (EC 3.4.19.12) (Deubiquitinating enzyme 11) (Ubiquitin thioesterase 11) (Ubiquitin-specific-processing protease 11) | Protease that can remove conjugated ubiquitin from target proteins and polyubiquitin chains (PubMed:12084015, PubMed:15314155, PubMed:17897950, PubMed:19874889, PubMed:20233726, PubMed:24724799, PubMed:28992046). Inhibits the degradation of target proteins by the proteasome (PubMed:12084015). Cleaves preferentially 'Lys-6' and 'Lys-63'-linked ubiquitin chains. Has lower activity with 'Lys-11' and 'Lys-33'-linked ubiquitin chains, and extremely low activity with 'Lys-27', 'Lys-29' and 'Lys-48'-linked ubiquitin chains (in vitro) (PubMed:24724799). Plays a role in the regulation of pathways leading to NF-kappa-B activation (PubMed:17897950, PubMed:19874889). Plays a role in the regulation of DNA repair after double-stranded DNA breaks (PubMed:15314155, PubMed:20233726). Acts as a chromatin regulator via its association with the Polycomb group (PcG) multiprotein PRC1-like complex; may act by deubiquitinating components of the PRC1-like complex (PubMed:20601937). Promotes cell proliferation by deubiquitinating phosphorylated E2F1 (PubMed:28992046). {ECO:0000269|PubMed:15314155, ECO:0000269|PubMed:17897950, ECO:0000269|PubMed:18408009, ECO:0000269|PubMed:19874889, ECO:0000269|PubMed:20233726, ECO:0000269|PubMed:24724799, ECO:0000269|PubMed:28992046}. |
P54577 | YARS1 | S386 | ochoa | Tyrosine--tRNA ligase, cytoplasmic (EC 6.1.1.1) (Tyrosyl-tRNA synthetase) (TyrRS) [Cleaved into: Tyrosine--tRNA ligase, cytoplasmic, N-terminally processed] | Tyrosine--tRNA ligase that catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr) (Probable) (PubMed:25533949). Also acts as a positive regulator of poly-ADP-ribosylation in the nucleus, independently of its tyrosine--tRNA ligase activity (PubMed:25533949). Activity is switched upon resveratrol-binding: resveratrol strongly inhibits the tyrosine--tRNA ligase activity and promotes relocalization to the nucleus, where YARS1 specifically stimulates the poly-ADP-ribosyltransferase activity of PARP1 (PubMed:25533949). {ECO:0000269|PubMed:25533949, ECO:0000305|PubMed:16429158, ECO:0000305|PubMed:9162081}. |
P55060 | CSE1L | S366 | ochoa | Exportin-2 (Exp2) (Cellular apoptosis susceptibility protein) (Chromosome segregation 1-like protein) (Importin-alpha re-exporter) | Export receptor for importin-alpha. Mediates importin-alpha re-export from the nucleus to the cytoplasm after import substrates (cargos) have been released into the nucleoplasm. In the nucleus binds cooperatively to importin-alpha and to the GTPase Ran in its active GTP-bound form. Docking of this trimeric complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the importin-alpha from the export receptor. CSE1L/XPO2 then return to the nuclear compartment and mediate another round of transport. The directionality of nuclear export is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. {ECO:0000269|PubMed:9323134}. |
P55884 | EIF3B | S307 | ochoa | Eukaryotic translation initiation factor 3 subunit B (eIF3b) (Eukaryotic translation initiation factor 3 subunit 9) (Prt1 homolog) (hPrt1) (eIF-3-eta) (eIF3 p110) (eIF3 p116) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815, PubMed:9388245). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632, PubMed:9388245). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03001, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815, ECO:0000269|PubMed:9388245}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
P78524 | DENND2B | S651 | ochoa | DENN domain-containing protein 2B (HeLa tumor suppression 1) (Suppression of tumorigenicity 5 protein) | [Isoform 1]: May be involved in cytoskeletal organization and tumorogenicity. Seems to be involved in a signaling transduction pathway leading to activation of MAPK1/ERK2. Plays a role in EGFR trafficking from recycling endosomes back to the cell membrane (PubMed:29030480). {ECO:0000269|PubMed:29030480, ECO:0000269|PubMed:9632734}.; FUNCTION: [Isoform 2]: Guanine nucleotide exchange factor (GEF) which may activate RAB9A and RAB9B. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. {ECO:0000269|PubMed:20937701}.; FUNCTION: [Isoform 3]: May block ERK2 activation stimulated by ABL1 (Probable). May alter cell morphology and cell growth (Probable). {ECO:0000305|PubMed:10229203, ECO:0000305|PubMed:9632734}. |
P85037 | FOXK1 | S288 | ochoa | Forkhead box protein K1 (Myocyte nuclear factor) (MNF) | Transcriptional regulator involved in different processes such as glucose metabolism, aerobic glycolysis, muscle cell differentiation and autophagy (By similarity). Recognizes and binds the forkhead DNA sequence motif (5'-GTAAACA-3') and can both act as a transcription activator or repressor, depending on the context (PubMed:17670796). Together with FOXK2, acts as a key regulator of metabolic reprogramming towards aerobic glycolysis, a process in which glucose is converted to lactate in the presence of oxygen (By similarity). Acts by promoting expression of enzymes for glycolysis (such as hexokinase-2 (HK2), phosphofructokinase, pyruvate kinase (PKLR) and lactate dehydrogenase), while suppressing further oxidation of pyruvate in the mitochondria by up-regulating pyruvate dehydrogenase kinases PDK1 and PDK4 (By similarity). Probably plays a role in gluconeogenesis during overnight fasting, when lactate from white adipose tissue and muscle is the main substrate (By similarity). Involved in mTORC1-mediated metabolic reprogramming: in response to mTORC1 signaling, translocates into the nucleus and regulates the expression of genes associated with glycolysis and downstream anabolic pathways, such as HIF1A, thereby regulating glucose metabolism (By similarity). Together with FOXK2, acts as a negative regulator of autophagy in skeletal muscle: in response to starvation, enters the nucleus, binds the promoters of autophagy genes and represses their expression, preventing proteolysis of skeletal muscle proteins (By similarity). Acts as a transcriptional regulator of the myogenic progenitor cell population in skeletal muscle (By similarity). Binds to the upstream enhancer region (CCAC box) of myoglobin (MB) gene, regulating the myogenic progenitor cell population (By similarity). Promotes muscle progenitor cell proliferation by repressing the transcriptional activity of FOXO4, thereby inhibiting myogenic differentiation (By similarity). Involved in remodeling processes of adult muscles that occur in response to physiological stimuli (By similarity). Required to correct temporal orchestration of molecular and cellular events necessary for muscle repair (By similarity). Represses myogenic differentiation by inhibiting MEFC activity (By similarity). Positively regulates Wnt/beta-catenin signaling by translocating DVL into the nucleus (PubMed:25805136). Reduces virus replication, probably by binding the interferon stimulated response element (ISRE) to promote antiviral gene expression (PubMed:25852164). Accessory component of the polycomb repressive deubiquitinase (PR-DUB) complex; recruits the PR-DUB complex to specific FOXK1-bound genes (PubMed:24634419, PubMed:30664650). {ECO:0000250|UniProtKB:P42128, ECO:0000269|PubMed:17670796, ECO:0000269|PubMed:24634419, ECO:0000269|PubMed:25805136, ECO:0000269|PubMed:25852164, ECO:0000269|PubMed:30664650}. |
P98174 | FGD1 | S703 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q00653 | NFKB2 | S707 | psp | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q03111 | MLLT1 | S411 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q04721 | NOTCH2 | S1841 | ochoa | Neurogenic locus notch homolog protein 2 (Notch 2) (hN2) [Cleaved into: Notch 2 extracellular truncation (N2ECD); Notch 2 intracellular domain (N2ICD)] | Functions as a receptor for membrane-bound ligands Jagged-1 (JAG1), Jagged-2 (JAG2) and Delta-1 (DLL1) to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus (PubMed:21378985, PubMed:21378989). Affects the implementation of differentiation, proliferation and apoptotic programs (By similarity). Involved in bone remodeling and homeostasis. In collaboration with RELA/p65 enhances NFATc1 promoter activity and positively regulates RANKL-induced osteoclast differentiation (PubMed:29149593). Positively regulates self-renewal of liver cancer cells (PubMed:25985737). {ECO:0000250|UniProtKB:O35516, ECO:0000269|PubMed:21378985, ECO:0000269|PubMed:21378989, ECO:0000269|PubMed:25985737, ECO:0000269|PubMed:29149593}. |
Q06413 | MEF2C | S98 | ochoa | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q08050 | FOXM1 | S739 | psp | Forkhead box protein M1 (Forkhead-related protein FKHL16) (Hepatocyte nuclear factor 3 forkhead homolog 11) (HFH-11) (HNF-3/fork-head homolog 11) (M-phase phosphoprotein 2) (MPM-2 reactive phosphoprotein 2) (Transcription factor Trident) (Winged-helix factor from INS-1 cells) | Transcription factor regulating the expression of cell cycle genes essential for DNA replication and mitosis (PubMed:19160488, PubMed:20360045). Plays a role in the control of cell proliferation (PubMed:19160488). Also plays a role in DNA break repair, participating in the DNA damage checkpoint response (PubMed:17101782). Promotes transcription of PHB2 (PubMed:33754036). {ECO:0000269|PubMed:17101782, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:20360045, ECO:0000269|PubMed:33754036}. |
Q09666 | AHNAK | S2150 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12872 | SFSWAP | S282 | ochoa | Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) | Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}. |
Q12872 | SFSWAP | S283 | ochoa | Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) | Plays a role as an alternative splicing regulator. Regulate its own expression at the level of RNA processing. Also regulates the splicing of fibronectin and CD45 genes. May act, at least in part, by interaction with other R/S-containing splicing factors. Represses the splicing of MAPT/Tau exon 10. {ECO:0000269|PubMed:8940107}. |
Q12888 | TP53BP1 | S532 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13153 | PAK1 | S174 | ochoa|psp | Serine/threonine-protein kinase PAK 1 (EC 2.7.11.1) (Alpha-PAK) (p21-activated kinase 1) (PAK-1) (p65-PAK) | Protein kinase involved in intracellular signaling pathways downstream of integrins and receptor-type kinases that plays an important role in cytoskeleton dynamics, in cell adhesion, migration, proliferation, apoptosis, mitosis, and in vesicle-mediated transport processes (PubMed:10551809, PubMed:11896197, PubMed:12876277, PubMed:14585966, PubMed:15611088, PubMed:17726028, PubMed:17989089, PubMed:30290153, PubMed:17420447). Can directly phosphorylate BAD and protects cells against apoptosis (By similarity). Activated by interaction with CDC42 and RAC1 (PubMed:8805275, PubMed:9528787). Functions as a GTPase effector that links the Rho-related GTPases CDC42 and RAC1 to the JNK MAP kinase pathway (PubMed:8805275, PubMed:9528787). Phosphorylates and activates MAP2K1, and thereby mediates activation of downstream MAP kinases (By similarity). Involved in the reorganization of the actin cytoskeleton, actin stress fibers and of focal adhesion complexes (PubMed:9032240, PubMed:9395435). Phosphorylates the tubulin chaperone TBCB and thereby plays a role in the regulation of microtubule biogenesis and organization of the tubulin cytoskeleton (PubMed:15831477). Plays a role in the regulation of insulin secretion in response to elevated glucose levels (PubMed:22669945). Part of a ternary complex that contains PAK1, DVL1 and MUSK that is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ) (By similarity). Activity is inhibited in cells undergoing apoptosis, potentially due to binding of CDC2L1 and CDC2L2 (PubMed:12624090). Phosphorylates MYL9/MLC2 (By similarity). Phosphorylates RAF1 at 'Ser-338' and 'Ser-339' resulting in: activation of RAF1, stimulation of RAF1 translocation to mitochondria, phosphorylation of BAD by RAF1, and RAF1 binding to BCL2 (PubMed:11733498). Phosphorylates SNAI1 at 'Ser-246' promoting its transcriptional repressor activity by increasing its accumulation in the nucleus (PubMed:15833848). In podocytes, promotes NR3C2 nuclear localization (By similarity). Required for atypical chemokine receptor ACKR2-induced phosphorylation of LIMK1 and cofilin (CFL1) and for the up-regulation of ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation (PubMed:23633677). In synapses, seems to mediate the regulation of F-actin cluster formation performed by SHANK3, maybe through CFL1 phosphorylation and inactivation (By similarity). Plays a role in RUFY3-mediated facilitating gastric cancer cells migration and invasion (PubMed:25766321). In response to DNA damage, phosphorylates MORC2 which activates its ATPase activity and facilitates chromatin remodeling (PubMed:23260667). In neurons, plays a crucial role in regulating GABA(A) receptor synaptic stability and hence GABAergic inhibitory synaptic transmission through its role in F-actin stabilization (By similarity). In hippocampal neurons, necessary for the formation of dendritic spines and excitatory synapses; this function is dependent on kinase activity and may be exerted by the regulation of actomyosin contractility through the phosphorylation of myosin II regulatory light chain (MLC) (By similarity). Along with GIT1, positively regulates microtubule nucleation during interphase (PubMed:27012601). Phosphorylates FXR1, promoting its localization to stress granules and activity (PubMed:20417602). Phosphorylates ILK on 'Thr-173' and 'Ser-246', promoting nuclear export of ILK (PubMed:17420447). {ECO:0000250|UniProtKB:O88643, ECO:0000250|UniProtKB:P35465, ECO:0000269|PubMed:10551809, ECO:0000269|PubMed:11733498, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:12876277, ECO:0000269|PubMed:14585966, ECO:0000269|PubMed:15611088, ECO:0000269|PubMed:15831477, ECO:0000269|PubMed:15833848, ECO:0000269|PubMed:17420447, ECO:0000269|PubMed:17726028, ECO:0000269|PubMed:17989089, ECO:0000269|PubMed:20417602, ECO:0000269|PubMed:22669945, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:23633677, ECO:0000269|PubMed:25766321, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:30290153, ECO:0000269|PubMed:8805275, ECO:0000269|PubMed:9032240, ECO:0000269|PubMed:9395435, ECO:0000269|PubMed:9528787}. |
Q13206 | DDX10 | S804 | ochoa | Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) | Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}. |
Q13501 | SQSTM1 | S328 | ochoa | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13547 | HDAC1 | S393 | ochoa | Histone deacetylase 1 (HD1) (EC 3.5.1.98) (Protein deacetylase HDAC1) (EC 3.5.1.-) (Protein deacylase HDAC1) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:16762839, PubMed:17704056, PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:16762839, PubMed:17704056). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:16762839, PubMed:17704056). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). As part of the SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Also functions as a deacetylase for non-histone targets, such as NR1D2, RELA, SP1, SP3, STAT3 and TSHZ3 (PubMed:12837748, PubMed:16285960, PubMed:16478997, PubMed:17996965, PubMed:19343227). Deacetylates SP proteins, SP1 and SP3, and regulates their function (PubMed:12837748, PubMed:16478997). Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons (PubMed:19081374). Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation (PubMed:19081374). Deacetylates TSHZ3 and regulates its transcriptional repressor activity (PubMed:19343227). Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B (PubMed:17000776). Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity (PubMed:17996965). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer (By similarity). Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation (By similarity). In addition to protein deacetylase activity, also has protein-lysine deacylase activity: acts as a protein decrotonylase and delactylase by mediating decrotonylation ((2E)-butenoyl) and delactylation (lactoyl) of histones, respectively (PubMed:28497810, PubMed:35044827). {ECO:0000250|UniProtKB:O09106, ECO:0000269|PubMed:12837748, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17996965, ECO:0000269|PubMed:19081374, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:35044827}. |
Q14839 | CHD4 | S309 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q15029 | EFTUD2 | T30 | ochoa | 116 kDa U5 small nuclear ribonucleoprotein component (Elongation factor Tu GTP-binding domain-containing protein 2) (SNU114 homolog) (hSNU114) (U5 snRNP-specific protein, 116 kDa) (U5-116 kDa) | Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes (PubMed:25092792, PubMed:28076346, PubMed:28502770, PubMed:28781166, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30315277, PubMed:30705154). Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome (PubMed:16723661). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:16723661, ECO:0000269|PubMed:25092792, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:30705154, ECO:0000305|PubMed:33509932}. |
Q15047 | SETDB1 | S872 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15361 | TTF1 | S481 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q15653 | NFKBIB | S313 | psp | NF-kappa-B inhibitor beta (NF-kappa-BIB) (I-kappa-B-beta) (IkB-B) (IkB-beta) (IkappaBbeta) (Thyroid receptor-interacting protein 9) (TR-interacting protein 9) (TRIP-9) | Inhibits NF-kappa-B by complexing with and trapping it in the cytoplasm. However, the unphosphorylated form resynthesized after cell stimulation is able to bind NF-kappa-B allowing its transport to the nucleus and protecting it to further NFKBIA-dependent inactivation. Association with inhibitor kappa B-interacting NKIRAS1 and NKIRAS2 prevent its phosphorylation rendering it more resistant to degradation, explaining its slower degradation. |
Q16665 | HIF1A | S551 | psp | Hypoxia-inducible factor 1-alpha (HIF-1-alpha) (HIF1-alpha) (ARNT-interacting protein) (Basic-helix-loop-helix-PAS protein MOP1) (Class E basic helix-loop-helix protein 78) (bHLHe78) (Member of PAS protein 1) (PAS domain-containing protein 8) | Functions as a master transcriptional regulator of the adaptive response to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:18658046, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Under hypoxic conditions, activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia (PubMed:11292861, PubMed:11566883, PubMed:15465032, PubMed:16973622, PubMed:17610843, PubMed:20624928, PubMed:22009797, PubMed:30125331, PubMed:9887100). Plays an essential role in embryonic vascularization, tumor angiogenesis and pathophysiology of ischemic disease (PubMed:22009797). Heterodimerizes with ARNT; heterodimer binds to core DNA sequence 5'-TACGTG-3' within the hypoxia response element (HRE) of target gene promoters (By similarity). Activation requires recruitment of transcriptional coactivators such as CREBBP and EP300 (PubMed:16543236, PubMed:9887100). Activity is enhanced by interaction with NCOA1 and/or NCOA2 (PubMed:10594042). Interaction with redox regulatory protein APEX1 seems to activate CTAD and potentiates activation by NCOA1 and CREBBP (PubMed:10202154, PubMed:10594042). Involved in the axonal distribution and transport of mitochondria in neurons during hypoxia (PubMed:19528298). {ECO:0000250|UniProtKB:Q61221, ECO:0000269|PubMed:10202154, ECO:0000269|PubMed:10594042, ECO:0000269|PubMed:11292861, ECO:0000269|PubMed:11566883, ECO:0000269|PubMed:15465032, ECO:0000269|PubMed:16543236, ECO:0000269|PubMed:16973622, ECO:0000269|PubMed:17610843, ECO:0000269|PubMed:18658046, ECO:0000269|PubMed:19528298, ECO:0000269|PubMed:20624928, ECO:0000269|PubMed:22009797, ECO:0000269|PubMed:30125331, ECO:0000269|PubMed:9887100}.; FUNCTION: (Microbial infection) Upon infection by human coronavirus SARS-CoV-2, is required for induction of glycolysis in monocytes and the consequent pro-inflammatory state (PubMed:32697943). In monocytes, induces expression of ACE2 and cytokines such as IL1B, TNF, IL6, and interferons (PubMed:32697943). Promotes human coronavirus SARS-CoV-2 replication and monocyte inflammatory response (PubMed:32697943). {ECO:0000269|PubMed:32697943}. |
Q5C9Z4 | NOM1 | S321 | ochoa | Nucleolar MIF4G domain-containing protein 1 (SGD1 homolog) | Plays a role in targeting PPP1CA to the nucleolus. {ECO:0000269|PubMed:17965019}. |
Q5JSZ5 | PRRC2B | S1395 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SW79 | CEP170 | S488 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5T200 | ZC3H13 | S1406 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T5X7 | BEND3 | S489 | ochoa | BEN domain-containing protein 3 | Transcriptional repressor which associates with the NoRC (nucleolar remodeling complex) complex and plays a key role in repressing rDNA transcription. The sumoylated form modulates the stability of the NoRC complex component BAZ2A/TIP5 by controlling its USP21-mediated deubiquitination (PubMed:21914818, PubMed:26100909). Binds to unmethylated major satellite DNA and is involved in the recruitment of the Polycomb repressive complex 2 (PRC2) to major satellites (By similarity). Stimulates the ERCC6L translocase and ATPase activities (PubMed:28977671). {ECO:0000250|UniProtKB:Q6PAL0, ECO:0000269|PubMed:21914818, ECO:0000269|PubMed:26100909, ECO:0000269|PubMed:28977671}. |
Q5VTB9 | RNF220 | S390 | ochoa | E3 ubiquitin-protein ligase RNF220 (EC 2.3.2.27) (RING finger protein 220) (RING-type E3 ubiquitin transferase RNF220) | E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of SIN3B (By similarity). Independently of its E3 ligase activity, acts as a CTNNB1 stabilizer through USP7-mediated deubiquitination of CTNNB1 promoting Wnt signaling (PubMed:25266658, PubMed:33964137). Plays a critical role in the regulation of nuclear lamina (PubMed:33964137). {ECO:0000250|UniProtKB:Q6PDX6, ECO:0000269|PubMed:25266658, ECO:0000269|PubMed:33964137}. |
Q5VV41 | ARHGEF16 | S129 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q641Q2 | WASHC2A | S877 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q69YN4 | VIRMA | S584 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q69YN4 | VIRMA | S1464 | ochoa | Protein virilizer homolog | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:24981863, PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs in the 3'-UTR near the stop codon: recruits the catalytic core components METTL3 and METTL14, thereby guiding m6A methylation at specific sites (PubMed:29507755). Required for mRNA polyadenylation via its role in selective m6A methylation: m6A methylation of mRNAs in the 3'-UTR near the stop codon correlating with alternative polyadenylation (APA) (PubMed:29507755). {ECO:0000269|PubMed:24981863, ECO:0000269|PubMed:29507755}. |
Q6FI81 | CIAPIN1 | S209 | ochoa | Anamorsin (Cytokine-induced apoptosis inhibitor 1) (Fe-S cluster assembly protein DRE2 homolog) | Component of the cytosolic iron-sulfur (Fe-S) protein assembly (CIA) machinery required for the maturation of extramitochondrial Fe-S proteins. Part of an electron transfer chain functioning in an early step of cytosolic Fe-S biogenesis, facilitating the de novo assembly of a [4Fe-4S] cluster on the scaffold complex NUBP1-NUBP2. Electrons are transferred to CIAPIN1 from NADPH via the FAD- and FMN-containing protein NDOR1 (PubMed:23596212). NDOR1-CIAPIN1 are also required for the assembly of the diferric tyrosyl radical cofactor of ribonucleotide reductase (RNR), probably by providing electrons for reduction during radical cofactor maturation in the catalytic small subunit (By similarity). Has anti-apoptotic effects in the cell. Involved in negative control of cell death upon cytokine withdrawal. Promotes development of hematopoietic cells (By similarity). {ECO:0000250|UniProtKB:P36152, ECO:0000250|UniProtKB:Q8WTY4, ECO:0000255|HAMAP-Rule:MF_03115, ECO:0000269|PubMed:23596212}. |
Q6NT76 | HMBOX1 | S152 | ochoa | Homeobox-containing protein 1 (Homeobox telomere-binding protein 1) (Telomere-associated homeobox-containing protein 1) | Binds directly to 5'-TTAGGG-3' repeats in telomeric DNA (PubMed:23685356, PubMed:23813958). Associates with the telomerase complex at sites of active telomere processing and positively regulates telomere elongation (PubMed:23685356). Important for TERT binding to chromatin, indicating a role in recruitment of the telomerase complex to telomeres (By similarity). Also plays a role in the alternative lengthening of telomeres (ALT) pathway in telomerase-negative cells where it promotes formation and/or maintenance of ALT-associated promyelocytic leukemia bodies (APBs) (PubMed:23813958). Enhances formation of telomere C-circles in ALT cells, suggesting a possible role in telomere recombination (PubMed:23813958). Might also be involved in the DNA damage response at telomeres (PubMed:23813958). {ECO:0000250|UniProtKB:Q8BJA3, ECO:0000269|PubMed:23685356, ECO:0000269|PubMed:23813958}. |
Q6P0N0 | MIS18BP1 | S1004 | ochoa | Mis18-binding protein 1 (Kinetochore-associated protein KNL-2 homolog) (HsKNL-2) (P243) | Required for recruitment of CENPA to centromeres and normal chromosome segregation during mitosis. {ECO:0000269|PubMed:17199038, ECO:0000269|PubMed:17339379}. |
Q6P2E9 | EDC4 | S875 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6UN15 | FIP1L1 | S85 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6UN15 | FIP1L1 | S87 | ochoa | Pre-mRNA 3'-end-processing factor FIP1 (hFip1) (FIP1-like 1 protein) (Factor interacting with PAP) (Rearranged in hypereosinophilia) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that plays a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. FIP1L1 contributes to poly(A) site recognition and stimulates poly(A) addition. Binds to U-rich RNA sequence elements surrounding the poly(A) site. May act to tether poly(A) polymerase to the CPSF complex. {ECO:0000269|PubMed:14749727}. |
Q6VMQ6 | ATF7IP | S309 | ochoa | Activating transcription factor 7-interacting protein 1 (ATF-interacting protein) (ATF-IP) (ATF7-interacting protein) (ATFa-associated modulator) (hAM) (MBD1-containing chromatin-associated factor 1) (P621) | Recruiter that couples transcriptional factors to general transcription apparatus and thereby modulates transcription regulation and chromatin formation. Can both act as an activator or a repressor depending on the context. Required for HUSH-mediated heterochromatin formation and gene silencing (PubMed:27732843). Mediates MBD1-dependent transcriptional repression, probably by recruiting complexes containing SETDB1 (PubMed:12665582). Stabilizes SETDB1, is required to stimulate histone methyltransferase activity of SETDB1 and facilitates the conversion of dimethylated to trimethylated H3 'Lys-9' (H3K9me3). The complex formed with MBD1 and SETDB1 represses transcription and couples DNA methylation and histone H3 'Lys-9' trimethylation (H3K9me3) (PubMed:14536086, PubMed:27732843). Facilitates telomerase TERT and TERC gene expression by SP1 in cancer cells (PubMed:19106100). {ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:19106100, ECO:0000269|PubMed:27732843}. |
Q6ZUJ8 | PIK3AP1 | S421 | ochoa | Phosphoinositide 3-kinase adapter protein 1 (B-cell adapter for phosphoinositide 3-kinase) (B-cell phosphoinositide 3-kinase adapter protein 1) | Signaling adapter that contributes to B-cell development by linking B-cell receptor (BCR) signaling to the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway. Has a complementary role to the BCR coreceptor CD19, coupling BCR and PI3K activation by providing a docking site for the PI3K subunit PIK3R1. Alternatively, links Toll-like receptor (TLR) signaling to PI3K activation, a process preventing excessive inflammatory cytokine production. Also involved in the activation of PI3K in natural killer cells. May be involved in the survival of mature B-cells via activation of REL. {ECO:0000269|PubMed:15893754}. |
Q7L0J3 | SV2A | S47 | ochoa|psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7L0J3 | SV2A | S81 | psp | Synaptic vesicle glycoprotein 2A | Plays a role in the control of regulated secretion in neural and endocrine cells, enhancing selectively low-frequency neurotransmission. Positively regulates vesicle fusion by maintaining the readily releasable pool of secretory vesicles (By similarity). {ECO:0000250}.; FUNCTION: (Microbial infection) Receptor for the C.botulinum neurotoxin type A2 (BoNT/A, botA); glycosylation is not essential but enhances the interaction (PubMed:29649119). Probably also serves as a receptor for the closely related C.botulinum neurotoxin type A1. {ECO:0000269|PubMed:29649119, ECO:0000305|PubMed:29649119}. |
Q7Z4V5 | HDGFL2 | S370 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z6G8 | ANKS1B | S734 | ochoa | Ankyrin repeat and sterile alpha motif domain-containing protein 1B (Amyloid-beta protein intracellular domain-associated protein 1) (AIDA-1) (E2A-PBX1-associated protein) (EB-1) | Isoform 2 may participate in the regulation of nucleoplasmic coilin protein interactions in neuronal and transformed cells.; FUNCTION: Isoform 3 can regulate global protein synthesis by altering nucleolar numbers. {ECO:0000250, ECO:0000269|PubMed:15347684, ECO:0000269|PubMed:15862129}.; FUNCTION: Isoform 4 may play a role as a modulator of APP processing. Overexpression can down-regulate APP processing. |
Q86US8 | SMG6 | S999 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86WP2 | GPBP1 | S322 | ochoa | Vasculin (GC-rich promoter-binding protein 1) (Vascular wall-linked protein) | Functions as a GC-rich promoter-specific transactivating transcription factor. {ECO:0000250|UniProtKB:Q6NXH3}. |
Q86YS3 | RAB11FIP4 | S320 | ochoa | Rab11 family-interacting protein 4 (FIP4-Rab11) (Rab11-FIP4) (Arfophilin-2) | Acts as a regulator of endocytic traffic by participating in membrane delivery. Required for the abscission step in cytokinesis, possibly by acting as an 'address tag' delivering recycling endosome membranes to the cleavage furrow during late cytokinesis. In case of infection by HCMV (human cytomegalovirus), may participate in egress of the virus out of nucleus; this function is independent of ARF6. {ECO:0000269|PubMed:12470645}. |
Q8IUI4 | SNX29P2 | S191 | ochoa | Putative protein SNX29P2 (RUN domain-containing protein 2C) (Sorting nexin 29 protein pseudogene 2) | None |
Q8IVF5 | TIAM2 | S1565 | ochoa | Rho guanine nucleotide exchange factor TIAM2 (SIF and TIAM1-like exchange factor) (T-lymphoma invasion and metastasis-inducing protein 2) (TIAM-2) | Modulates the activity of RHO-like proteins and connects extracellular signals to cytoskeletal activities. Acts as a GDP-dissociation stimulator protein that stimulates the GDP-GTP exchange activity of RHO-like GTPases and activates them. Mediates extracellular laminin signals to activate Rac1, contributing to neurite growth. Involved in lamellipodial formation and advancement of the growth cone of embryonic hippocampal neurons. Promotes migration of neurons in the cerebral cortex. When overexpressed, induces membrane ruffling accompanied by the accumulation of actin filaments along the altered plasma membrane (By similarity). Activates specifically RAC1, but not CDC42 and RHOA. {ECO:0000250, ECO:0000269|PubMed:10512681}. |
Q8IVT5 | KSR1 | S569 | ochoa | Kinase suppressor of Ras 1 (EC 2.7.11.1) | Part of a multiprotein signaling complex which promotes phosphorylation of Raf family members and activation of downstream MAP kinases (By similarity). Independently of its kinase activity, acts as MAP2K1/MEK1 and MAP2K2/MEK2-dependent allosteric activator of BRAF; upon binding to MAP2K1/MEK1 or MAP2K2/MEK2, dimerizes with BRAF and promotes BRAF-mediated phosphorylation of MAP2K1/MEK1 and/or MAP2K2/MEK2 (PubMed:29433126). Promotes activation of MAPK1 and/or MAPK3, both in response to EGF and to cAMP (By similarity). Its kinase activity is unsure (By similarity). Some protein kinase activity has been detected in vitro, however the physiological relevance of this activity is unknown (By similarity). {ECO:0000250|UniProtKB:Q61097, ECO:0000269|PubMed:29433126}. |
Q8IWU2 | LMTK2 | S899 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IWZ3 | ANKHD1 | S105 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8IX12 | CCAR1 | S685 | ochoa | Cell division cycle and apoptosis regulator protein 1 (Cell cycle and apoptosis regulatory protein 1) (CARP-1) (Death inducer with SAP domain) | Associates with components of the Mediator and p160 coactivator complexes that play a role as intermediaries transducing regulatory signals from upstream transcriptional activator proteins to basal transcription machinery at the core promoter. Recruited to endogenous nuclear receptor target genes in response to the appropriate hormone. Also functions as a p53 coactivator. May thus play an important role in transcriptional regulation (By similarity). May be involved in apoptosis signaling in the presence of the reinoid CD437. Apoptosis induction involves sequestration of 14-3-3 protein(s) and mediated altered expression of multiple cell cycle regulatory genes including MYC, CCNB1 and CDKN1A. Plays a role in cell cycle progression and/or cell proliferation (PubMed:12816952). In association with CALCOCO1 enhances GATA1- and MED1-mediated transcriptional activation from the gamma-globin promoter during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). Can act as a both a coactivator and corepressor of AR-mediated transcription. Contributes to chromatin looping and AR transcription complex assembly by stabilizing AR-GATA2 association on chromatin and facilitating MED1 and RNA polymerase II recruitment to AR-binding sites. May play an important role in the growth and tumorigenesis of prostate cancer cells (PubMed:23887938). {ECO:0000250|UniProtKB:Q8CH18, ECO:0000269|PubMed:12816952, ECO:0000269|PubMed:23887938, ECO:0000269|PubMed:24245781}. |
Q8IYB3 | SRRM1 | S874 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IZA0 | KIAA0319L | S1003 | ochoa | Dyslexia-associated protein KIAA0319-like protein (Adeno-associated virus receptor) (AAVR) | Possible role in axon guidance through interaction with RTN4R. {ECO:0000269|PubMed:20697954}.; FUNCTION: (Microbial infection) Acts as a receptor for adeno-associated virus and is involved in adeno-associated virus infection through endocytosis system. {ECO:0000269|PubMed:26814968}. |
Q8N0S6 | CENPL | S53 | ochoa | Centromere protein L (CENP-L) (Interphase centromere complex protein 33) | Component of the CENPA-CAD (nucleosome distal) complex, a complex recruited to centromeres which is involved in assembly of kinetochore proteins, mitotic progression and chromosome segregation. May be involved in incorporation of newly synthesized CENPA into centromeres via its interaction with the CENPA-NAC complex. {ECO:0000269|PubMed:16716197}. |
Q8N2F6 | ARMC10 | S79 | ochoa | Armadillo repeat-containing protein 10 (Splicing variant involved in hepatocarcinogenesis protein) | May play a role in cell survival and cell growth. May suppress the transcriptional activity of p53/TP53. {ECO:0000269|PubMed:12839973, ECO:0000269|PubMed:17904127}. |
Q8N7H5 | PAF1 | S460 | ochoa | RNA polymerase II-associated factor 1 homolog (hPAF1) (Pancreatic differentiation protein 2) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Connects PAF1C with the RNF20/40 E3 ubiquitin-protein ligase complex. Involved in polyadenylation of mRNA precursors. Has oncogenic activity in vivo and in vitro. {ECO:0000269|PubMed:16491129, ECO:0000269|PubMed:19410543, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742, ECO:0000269|PubMed:20541477, ECO:0000269|PubMed:21329879, ECO:0000269|PubMed:22419161}. |
Q8N9T8 | KRI1 | S163 | ochoa | Protein KRI1 homolog | None |
Q8NBJ9 | SIDT2 | S404 | ochoa | SID1 transmembrane family member 2 | Mediates the translocation of RNA and DNA across the lysosomal membrane during RNA and DNA autophagy (RDA), a process in which RNA or DNA is directly imported into lysosomes in an ATP-dependent manner, and degraded (PubMed:27046251, PubMed:27846365). Involved in the uptake of single-stranded oligonucleotides by living cells, a process called gymnosis (PubMed:28277980). In vitro, mediates the uptake of linear DNA more efficiently than that of circular DNA, but exhibits similar uptake efficacy toward RNA and DNA. Binds long double-stranded RNA (dsRNA) (500 - 700 base pairs), but not dsRNA shorter than 100 bp (By similarity). {ECO:0000250|UniProtKB:Q8CIF6, ECO:0000269|PubMed:27046251, ECO:0000269|PubMed:27846365, ECO:0000269|PubMed:28277980}. |
Q8NCF5 | NFATC2IP | S84 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NE00 | TMEM104 | S90 | ochoa | Transmembrane protein 104 | None |
Q8NEY1 | NAV1 | S387 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NF91 | SYNE1 | S8305 | ochoa | Nesprin-1 (Enaptin) (KASH domain-containing protein 1) (KASH1) (Myocyte nuclear envelope protein 1) (Myne-1) (Nuclear envelope spectrin repeat protein 1) (Synaptic nuclear envelope protein 1) (Syne-1) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning. May be involved in nucleus-centrosome attachment and nuclear migration in neural progenitors implicating LINC complex association with SUN1/2 and probably association with cytoplasmic dynein-dynactin motor complexes; SYNE1 and SYNE2 may act redundantly. Required for centrosome migration to the apical cell surface during early ciliogenesis. May be involved in nuclear remodeling during sperm head formation in spermatogenesis; a probable SUN3:SYNE1/KASH1 LINC complex may tether spermatid nuclei to posterior cytoskeletal structures such as the manchette. {ECO:0000250|UniProtKB:Q6ZWR6, ECO:0000269|PubMed:11792814, ECO:0000269|PubMed:18396275}. |
Q8NFC6 | BOD1L1 | S478 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NG08 | HELB | S1021 | ochoa | DNA helicase B (hDHB) (EC 3.6.4.12) | 5'-3' DNA helicase involved in DNA damage response by acting as an inhibitor of DNA end resection (PubMed:25617833, PubMed:26774285). Recruitment to single-stranded DNA (ssDNA) following DNA damage leads to inhibit the nucleases catalyzing resection, such as EXO1, BLM and DNA2, possibly via the 5'-3' ssDNA translocase activity of HELB (PubMed:26774285). As cells approach S phase, DNA end resection is promoted by the nuclear export of HELB following phosphorylation (PubMed:26774285). Acts independently of TP53BP1 (PubMed:26774285). Unwinds duplex DNA with 5'-3' polarity. Has single-strand DNA-dependent ATPase and DNA helicase activities. Prefers ATP and dATP as substrates (PubMed:12181327). During S phase, may facilitate cellular recovery from replication stress (PubMed:22194613). {ECO:0000269|PubMed:12181327, ECO:0000269|PubMed:22194613, ECO:0000269|PubMed:25617833, ECO:0000269|PubMed:26774285}. |
Q8TC26 | TMEM163 | S55 | ochoa | Transmembrane protein 163 | Zinc ion transporter that mediates zinc efflux and plays a crucial role in intracellular zinc homeostasis (PubMed:25130899, PubMed:31697912, PubMed:36204728). Binds the divalent cations Zn(2+), Ni(2+), and to a minor extent Cu(2+) (By similarity). Is a functional modulator of P2X purinoceptors, including P2RX1, P2RX3, P2RX4 and P2RX7 (PubMed:32492420). Plays a role in central nervous system development and is required for myelination, and survival and proliferation of oligodendrocytes (PubMed:35455965). {ECO:0000250|UniProtKB:A9CMA6, ECO:0000269|PubMed:25130899, ECO:0000269|PubMed:31697912, ECO:0000269|PubMed:32492420, ECO:0000269|PubMed:35455965, ECO:0000269|PubMed:36204728}. |
Q8TD26 | CHD6 | S1069 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8TEQ0 | SNX29 | S344 | ochoa | Sorting nexin-29 (RUN domain-containing protein 2A) | None |
Q8TEW0 | PARD3 | S932 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8WUA2 | PPIL4 | S393 | ochoa | Peptidyl-prolyl cis-trans isomerase-like 4 (PPIase) (EC 5.2.1.8) (Cyclophilin-like protein PPIL4) (Rotamase PPIL4) | PPIases accelerate the folding of proteins. It catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides (By similarity). {ECO:0000250}. |
Q8WVC0 | LEO1 | S88 | psp | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q8WVC0 | LEO1 | S271 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q92614 | MYO18A | S1974 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92614 | MYO18A | S2014 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92766 | RREB1 | S231 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q92769 | HDAC2 | S394 | ochoa|psp | Histone deacetylase 2 (HD2) (EC 3.5.1.98) (Protein deacylase HDAC2) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR (PubMed:12724404). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Component of the SIN3B complex that represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). Also deacetylates non-histone targets: deacetylates TSHZ3, thereby regulating its transcriptional repressor activity (PubMed:19343227). May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation (By similarity). Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A (PubMed:21965678). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:35044827). {ECO:0000250|UniProtKB:P70288, ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:37137925}. |
Q92841 | DDX17 | S479 | ochoa | Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) | As an RNA helicase, unwinds RNA and alters RNA structures through ATP binding and hydrolysis. Involved in multiple cellular processes, including pre-mRNA splicing, alternative splicing, ribosomal RNA processing and miRNA processing, as well as transcription regulation. Regulates the alternative splicing of exons exhibiting specific features (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). For instance, promotes the inclusion of AC-rich alternative exons in CD44 transcripts (PubMed:12138182). This function requires the RNA helicase activity (PubMed:12138182, PubMed:22266867, PubMed:23022728, PubMed:24910439). Affects NFAT5 and histone macro-H2A.1/MACROH2A1 alternative splicing in a CDK9-dependent manner (PubMed:22266867, PubMed:26209609). In NFAT5, promotes the introduction of alternative exon 4, which contains 2 stop codons and may target NFAT5 exon 4-containing transcripts to nonsense-mediated mRNA decay, leading to the down-regulation of NFAT5 protein (PubMed:22266867). Affects splicing of mediators of steroid hormone signaling pathway, including kinases that phosphorylates ESR1, such as CDK2, MAPK1 and GSK3B, and transcriptional regulators, such as CREBBP, MED1, NCOR1 and NCOR2. By affecting GSK3B splicing, participates in ESR1 and AR stabilization (PubMed:24275493). In myoblasts and epithelial cells, cooperates with HNRNPH1 to control the splicing of specific subsets of exons (PubMed:24910439). In addition to binding mature mRNAs, also interacts with certain pri-microRNAs, including MIR663/miR-663a, MIR99B/miR-99b, and MIR6087/miR-6087 (PubMed:25126784). Binds pri-microRNAs on the 3' segment flanking the stem loop via the 5'-[ACG]CAUC[ACU]-3' consensus sequence (PubMed:24581491). Required for the production of subsets of microRNAs, including MIR21 and MIR125B1 (PubMed:24581491, PubMed:27478153). May be involved not only in microRNA primary transcript processing, but also stabilization (By similarity). Participates in MYC down-regulation at high cell density through the production of MYC-targeting microRNAs (PubMed:24581491). Along with DDX5, may be involved in the processing of the 32S intermediate into the mature 28S ribosomal RNA (PubMed:17485482). Promoter-specific transcription regulator, functioning as a coactivator or corepressor depending on the context of the promoter and the transcriptional complex in which it exists (PubMed:15298701). Enhances NFAT5 transcriptional activity (PubMed:22266867). Synergizes with TP53 in the activation of the MDM2 promoter; this activity requires acetylation on lysine residues (PubMed:17226766, PubMed:19995069, PubMed:20663877). May also coactivate MDM2 transcription through a TP53-independent pathway (PubMed:17226766). Coactivates MMP7 transcription (PubMed:17226766). Along with CTNNB1, coactivates MYC, JUN, FOSL1 and cyclin D1/CCND1 transcription (PubMed:17699760). Alone or in combination with DDX5 and/or SRA1 non-coding RNA, plays a critical role in promoting the assembly of proteins required for the formation of the transcription initiation complex and chromatin remodeling leading to coactivation of MYOD1-dependent transcription. This helicase-independent activity is required for skeletal muscle cells to properly differentiate into myotubes (PubMed:17011493, PubMed:24910439). During epithelial-to-mesenchymal transition, coregulates SMAD-dependent transcriptional activity, directly controlling key effectors of differentiation, including miRNAs which in turn directly repress its expression (PubMed:24910439). Plays a role in estrogen and testosterone signaling pathway at several levels. Mediates the use of alternative promoters in estrogen-responsive genes and regulates transcription and splicing of a large number of steroid hormone target genes (PubMed:19995069, PubMed:20406972, PubMed:20663877, PubMed:24275493). Contrary to splicing regulation activity, transcriptional coregulation of the estrogen receptor ESR1 is helicase-independent (PubMed:19718048, PubMed:24275493). Plays a role in innate immunity. Specifically restricts bunyavirus infection, including Rift Valley fever virus (RVFV) or La Crosse virus (LACV), but not vesicular stomatitis virus (VSV), in an interferon- and DROSHA-independent manner (PubMed:25126784). Binds to RVFV RNA, likely via structured viral RNA elements (PubMed:25126784). Promotes mRNA degradation mediated by the antiviral zinc-finger protein ZC3HAV1, in an ATPase-dependent manner (PubMed:18334637). {ECO:0000250|UniProtKB:Q501J6, ECO:0000269|PubMed:12138182, ECO:0000269|PubMed:15298701, ECO:0000269|PubMed:17011493, ECO:0000269|PubMed:17226766, ECO:0000269|PubMed:17485482, ECO:0000269|PubMed:17699760, ECO:0000269|PubMed:18334637, ECO:0000269|PubMed:19718048, ECO:0000269|PubMed:19995069, ECO:0000269|PubMed:20406972, ECO:0000269|PubMed:20663877, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:23022728, ECO:0000269|PubMed:24275493, ECO:0000269|PubMed:24581491, ECO:0000269|PubMed:24910439, ECO:0000269|PubMed:25126784, ECO:0000269|PubMed:26209609, ECO:0000269|PubMed:27478153, ECO:0000305}. |
Q92997 | DVL3 | S125 | ochoa|psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q96AQ6 | PBXIP1 | S146 | ochoa|psp | Pre-B-cell leukemia transcription factor-interacting protein 1 (Hematopoietic PBX-interacting protein) | Regulator of pre-B-cell leukemia transcription factors (BPXs) function. Inhibits the binding of PBX1-HOX complex to DNA and blocks the transcriptional activity of E2A-PBX1. Tethers estrogen receptor-alpha (ESR1) to microtubules and allows them to influence estrogen receptors-alpha signaling. {ECO:0000269|PubMed:10825160, ECO:0000269|PubMed:12360403, ECO:0000269|PubMed:17043237}. |
Q96GA3 | LTV1 | S182 | ochoa | Protein LTV1 homolog | Essential for ribosome biogenesis. {ECO:0000250|UniProtKB:Q5U3J8}. |
Q96HC4 | PDLIM5 | S260 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HP0 | DOCK6 | S407 | ochoa | Dedicator of cytokinesis protein 6 | Acts as a guanine nucleotide exchange factor (GEF) for CDC42 and RAC1 small GTPases. Through its activation of CDC42 and RAC1, may regulate neurite outgrowth (By similarity). {ECO:0000250, ECO:0000269|PubMed:17196961}. |
Q96K76 | USP47 | S940 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96LX8 | ZNF597 | S322 | ochoa | Zinc finger protein 597 | May be involved in transcriptional regulation. |
Q96M96 | FGD4 | S141 | ochoa | FYVE, RhoGEF and PH domain-containing protein 4 (Actin filament-binding protein frabin) (FGD1-related F-actin-binding protein) (Zinc finger FYVE domain-containing protein 6) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. Activates MAPK8 (By similarity). {ECO:0000250, ECO:0000269|PubMed:15133042}. |
Q96SU4 | OSBPL9 | S355 | ochoa | Oxysterol-binding protein-related protein 9 (ORP-9) (OSBP-related protein 9) | Interacts with OSBPL11 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:39106189}. |
Q96T23 | RSF1 | S1187 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T23 | RSF1 | S1189 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96TC7 | RMDN3 | S193 | ochoa | Regulator of microtubule dynamics protein 3 (RMD-3) (hRMD-3) (Cerebral protein 10) (Protein FAM82A2) (Protein FAM82C) (Protein tyrosine phosphatase-interacting protein 51) (TCPTP-interacting protein 51) | Involved in cellular calcium homeostasis regulation. May participate in differentiation and apoptosis of keratinocytes. Overexpression induces apoptosis. {ECO:0000269|PubMed:16820967, ECO:0000269|PubMed:22131369}. |
Q99081 | TCF12 | S534 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99567 | NUP88 | S379 | ochoa | Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88) | Component of nuclear pore complex. {ECO:0000269|PubMed:30543681}. |
Q99613 | EIF3C | S178 | ochoa | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q99613 | EIF3C | S182 | ochoa | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q9BRA0 | NAA38 | S23 | ochoa | N-alpha-acetyltransferase 38, NatC auxiliary subunit (LSM domain-containing protein 1) (Phosphonoformate immuno-associated protein 2) | Auxillary component of the N-terminal acetyltransferase C (NatC) complex which catalyzes acetylation of N-terminal methionine residues (PubMed:19398576, PubMed:37891180). N-terminal acetylation protects proteins from ubiquitination and degradation by the N-end rule pathway (PubMed:37891180). {ECO:0000269|PubMed:19398576, ECO:0000269|PubMed:37891180}. |
Q9BV36 | MLPH | S159 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BXY0 | MAK16 | S229 | ochoa | Protein MAK16 homolog (NNP78) (Protein RBM13) | None |
Q9BZF1 | OSBPL8 | S358 | ochoa | Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}. |
Q9C0D2 | CEP295 | S2009 | ochoa | Centrosomal protein of 295 kDa | Centriole-enriched microtubule-binding protein involved in centriole biogenesis (PubMed:20844083, PubMed:25131205, PubMed:27185865, PubMed:38154379). Essential for the generation of the distal portion of new-born centrioles in a CPAP- and CEP120-mediated elongation dependent manner during the cell cycle S/G2 phase after formation of the initiating cartwheel structure (PubMed:27185865). Required for the recruitment of centriolar proteins, such as POC1B, POC5 and CEP135, into the distal portion of centrioles (PubMed:27185865). Also required for centriole-to-centrosome conversion during mitotic progression, but is dispensable for cartwheel removal or centriole disengagement (PubMed:25131205). Binds to and stabilizes centriolar microtubule (PubMed:27185865). May be involved in ciliogenesis (PubMed:38154379). {ECO:0000269|PubMed:20844083, ECO:0000269|PubMed:25131205, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:32060285, ECO:0000269|PubMed:38154379}. |
Q9GZR1 | SENP6 | S42 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9H165 | BCL11A | S594 | ochoa | BCL11 transcription factor A (B-cell CLL/lymphoma 11A) (B-cell lymphoma/leukemia 11A) (BCL-11A) (COUP-TF-interacting protein 1) (Ecotropic viral integration site 9 protein homolog) (EVI-9) (Zinc finger protein 856) | Transcription factor (PubMed:16704730, PubMed:29606353). Associated with the BAF SWI/SNF chromatin remodeling complex (PubMed:23644491, PubMed:39607926). Binds to the 5'-TGACCA-3' sequence motif in regulatory regions of target genes, including a distal promoter of the HBG1 hemoglobin subunit gamma-1 gene (PubMed:29606353, PubMed:39423807). Involved in regulation of the developmental switch from gamma- to beta-globin, probably via direct repression of HBG1; hence indirectly repressing fetal hemoglobin (HbF) level (PubMed:26375765, PubMed:29606353, PubMed:39423807, PubMed:39607926). Involved in brain development (PubMed:27453576). May play a role in hematopoiesis (By similarity). Essential factor in lymphopoiesis required for B-cell formation in fetal liver (By similarity). May function as a modulator of the transcriptional repression activity of NR2F2 (By similarity). {ECO:0000250|UniProtKB:Q9QYE3, ECO:0000269|PubMed:16704730, ECO:0000269|PubMed:23644491, ECO:0000269|PubMed:29606353, ECO:0000269|PubMed:39423807, ECO:0000269|PubMed:39607926, ECO:0000303|PubMed:26375765, ECO:0000303|PubMed:27453576}. |
Q9H1A4 | ANAPC1 | S699 | ochoa | Anaphase-promoting complex subunit 1 (APC1) (Cyclosome subunit 1) (Mitotic checkpoint regulator) (Testis-specific gene 24 protein) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9H582 | ZNF644 | S820 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9NQ55 | PPAN | S240 | ochoa | Suppressor of SWI4 1 homolog (Ssf-1) (Brix domain-containing protein 3) (Peter Pan homolog) | May have a role in cell growth. |
Q9NUY8 | TBC1D23 | S567 | ochoa | TBC1 domain family member 23 (HCV non-structural protein 4A-transactivated protein 1) | Putative Rab GTPase-activating protein which plays a role in vesicular trafficking (PubMed:28823707). Involved in endosome-to-Golgi trafficking. Acts as a bridging protein by binding simultaneously to golgins, including GOLGA1 and GOLGA4, located at the trans-Golgi, and to the WASH complex, located on endosome-derived vesicles (PubMed:29084197, PubMed:29426865). Together with WDR11 complex facilitates the golgin-mediated capture of vesicles generated using AP-1 (PubMed:29426865). Plays a role in brain development, including in cortical neuron positioning (By similarity). May also be important for neurite outgrowth, possibly through its involvement in membrane trafficking and cargo delivery, 2 processes that are essential for axonal and dendritic growth (By similarity). May act as a general inhibitor of innate immunity signaling, strongly inhibiting multiple TLR and dectin/CLEC7A-signaling pathways. Does not alter initial activation events, but instead affects maintenance of inflammatory gene expression several hours after bacterial lipopolysaccharide (LPS) challenge (By similarity). {ECO:0000250|UniProtKB:Q8K0F1, ECO:0000269|PubMed:28823707, ECO:0000269|PubMed:29084197, ECO:0000269|PubMed:29426865}. |
Q9NWH9 | SLTM | S244 | ochoa | SAFB-like transcription modulator (Modulator of estrogen-induced transcription) | When overexpressed, acts as a general inhibitor of transcription that eventually leads to apoptosis. {ECO:0000250}. |
Q9P260 | RELCH | S20 | ochoa | RAB11-binding protein RELCH (LisH domain and HEAT repeat-containing protein KIAA1468) (RAB11 binding and LisH domain, coiled-coil and HEAT repeat-containing) (RAB11-binding protein containing LisH, coiled-coil, and HEAT repeats) | Regulates intracellular cholesterol distribution from recycling endosomes to the trans-Golgi network through interactions with RAB11 and OSBP (PubMed:29514919). Functions in membrane tethering and promotes OSBP-mediated cholesterol transfer between RAB11-bound recycling endosomes and OSBP-bound Golgi-like membranes (PubMed:29514919). {ECO:0000269|PubMed:29514919}. |
Q9UGP8 | SEC63 | S451 | ochoa | Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) | Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}. |
Q9UIG0 | BAZ1B | S705 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UJ78 | ZMYM5 | S49 | ochoa | Zinc finger MYM-type protein 5 (Zinc finger protein 198-like 1) (Zinc finger protein 237) | Functions as a transcriptional regulator. {ECO:0000269|PubMed:17126306}. |
Q9UJV9 | DDX41 | S68 | ochoa | Probable ATP-dependent RNA helicase DDX41 (EC 3.6.4.13) (DEAD box protein 41) (DEAD box protein abstrakt homolog) | Multifunctional protein that participates in many aspects of cellular RNA metabolism. Plays pivotal roles in innate immune sensing and hematopoietic homeostasis (PubMed:34473945). Recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses (PubMed:23222971). Mechanistically, phosphorylation by BTK allows binding to dsDNA leading to interaction with STING1 (PubMed:25704810). Modulates the homeostasis of dsDNA through its ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity (PubMed:35613581). In turn, induces STING1-mediated type I interferon and cytokine responses to DNA and DNA viruses (PubMed:35613581). Selectively modulates the transcription of certain immunity-associated genes by regulating their alternative splicing (PubMed:33650667). Binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, and prevents their accumulation, thereby maintaining genome stability (PubMed:36229594). Also participates in pre-mRNA splicing, translational regulation and snoRNA processing, which is essential for ribosome biogenesis (PubMed:36229594, PubMed:36780110). {ECO:0000250|UniProtKB:Q91VN6, ECO:0000269|PubMed:23222971, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:25920683, ECO:0000269|PubMed:33650667, ECO:0000269|PubMed:34473945, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:36229594, ECO:0000269|PubMed:36780110}. |
Q9UK61 | TASOR | S670 | ochoa | Protein TASOR (CTCL tumor antigen se89-1) (Retinoblastoma-associated protein RAP140) (Transgene activation suppressor protein) | Component of the HUSH complex, a multiprotein complex that mediates epigenetic repression (PubMed:26022416, PubMed:28581500). The HUSH complex is recruited to genomic loci rich in H3K9me3 and is required to maintain transcriptional silencing by promoting recruitment of SETDB1, a histone methyltransferase that mediates further deposition of H3K9me3, as well as MORC2 (PubMed:26022416, PubMed:28581500). Also represses L1 retrotransposons in collaboration with MORC2 and, probably, SETDB1, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). The HUSH complex is also involved in the silencing of unintegrated retroviral DNA by being recruited by ZNF638: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Plays a crucial role in early embryonic development (By similarity). Involved in the organization of spindle poles and spindle apparatus assembly during zygotic division (By similarity). Plays an important role in maintaining epiblast fitness or potency (By similarity). {ECO:0000250|UniProtKB:Q69ZR9, ECO:0000269|PubMed:26022416, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:30487602}. |
Q9UK97 | FBXO9 | S145 | ochoa | F-box only protein 9 (Cross-immune reaction antigen 1) (Renal carcinoma antigen NY-REN-57) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins and plays a role in several biological processes such as cell cycle, cell proliferation, or maintenance of chromosome stability (PubMed:23263282, PubMed:34480022). Ubiquitinates mTORC1-bound TTI1 and TELO2 when they are phosphorylated by CK2 following growth factor deprivation, leading to their degradation. In contrast, does not mediate ubiquitination of TTI1 and TELO2 when they are part of the mTORC2 complex. As a consequence, mTORC1 is inactivated to restrain cell growth and protein translation, while mTORC2 is the activated due to the relief of feedback inhibition by mTORC1 (PubMed:23263282). Plays a role in maintaining epithelial cell survival by regulating the turn-over of chromatin modulator PRMT4 through ubiquitination and degradation by the proteasomal pathway (PubMed:34480022). Regulates also PPARgamma stability by facilitating PPARgamma/PPARG ubiquitination and thereby plays a role in adipocyte differentiation (By similarity). {ECO:0000250|UniProtKB:Q8BK06, ECO:0000269|PubMed:23263282, ECO:0000269|PubMed:34480022}. |
Q9UKV3 | ACIN1 | S1161 | ochoa | Apoptotic chromatin condensation inducer in the nucleus (Acinus) | Auxiliary component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junction on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. Component of the ASAP complexes which bind RNA in a sequence-independent manner and are proposed to be recruited to the EJC prior to or during the splicing process and to regulate specific excision of introns in specific transcription subsets; ACIN1 confers RNA-binding to the complex. The ASAP complex can inhibit RNA processing during in vitro splicing reactions. The ASAP complex promotes apoptosis and is disassembled after induction of apoptosis. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the activity is different from the established EJC assembly and function. Induces apoptotic chromatin condensation after activation by CASP3. Regulates cyclin A1, but not cyclin A2, expression in leukemia cells. {ECO:0000269|PubMed:10490026, ECO:0000269|PubMed:12665594, ECO:0000269|PubMed:18559500, ECO:0000269|PubMed:22203037, ECO:0000269|PubMed:22388736}. |
Q9ULK5 | VANGL2 | S58 | ochoa | Vang-like protein 2 (Loop-tail protein 1 homolog) (Strabismus 1) (Van Gogh-like protein 2) | Involved in the control of early morphogenesis and patterning of both axial midline structures and the development of neural plate. Plays a role in the regulation of planar cell polarity, particularly in the orientation of stereociliary bundles in the cochlea. Required for polarization and movement of myocardializing cells in the outflow tract and seems to act via RHOA signaling to regulate this process. Required for cell surface localization of FZD3 and FZD6 in the inner ear (By similarity). {ECO:0000250|UniProtKB:Q91ZD4}. |
Q9Y2Q0 | ATP8A1 | S25 | ochoa | Phospholipid-transporting ATPase IA (EC 7.6.2.1) (ATPase class I type 8A member 1) (Chromaffin granule ATPase II) (P4-ATPase flippase complex alpha subunit ATP8A1) | Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids (PubMed:31416931). Phospholipid translocation also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules. In vitro, its ATPase activity is selectively and stereospecifically stimulated by phosphatidylserine (PS) (PubMed:31416931). The flippase complex ATP8A1:TMEM30A seems to play a role in regulation of cell migration probably involving flippase-mediated translocation of phosphatidylethanolamine (PE) at the cell membrane (By similarity). Acts as aminophospholipid translocase at the cell membrane in neuronal cells (By similarity). {ECO:0000250|UniProtKB:P70704, ECO:0000269|PubMed:31416931}. |
Q9Y496 | KIF3A | S386 | ochoa | Kinesin-like protein KIF3A (Microtubule plus end-directed kinesin motor 3A) | Microtubule-based anterograde translocator for membranous organelles. Plus end-directed microtubule sliding activity in vitro. Plays a role in primary cilia formation. Plays a role in centriole cohesion and subdistal appendage organization and function. Regulates the formation of the subdistal appendage via recruitment of DCTN1 to the centriole. Also required for ciliary basal feet formation and microtubule anchoring to mother centriole. {ECO:0000250|UniProtKB:P28741}. |
Q9Y4R8 | TELO2 | S485 | psp | Telomere length regulation protein TEL2 homolog (Protein clk-2 homolog) (hCLK2) | Regulator of the DNA damage response (DDR). Part of the TTT complex that is required to stabilize protein levels of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family proteins. The TTT complex is involved in the cellular resistance to DNA damage stresses, like ionizing radiation (IR), ultraviolet (UV) and mitomycin C (MMC). Together with the TTT complex and HSP90 may participate in the proper folding of newly synthesized PIKKs. Promotes assembly, stabilizes and maintains the activity of mTORC1 and mTORC2 complexes, which regulate cell growth and survival in response to nutrient and hormonal signals. May be involved in telomere length regulation. {ECO:0000269|PubMed:12670948, ECO:0000269|PubMed:20810650}. |
Q9Y4W2 | LAS1L | S238 | ochoa | Ribosomal biogenesis protein LAS1L (Endoribonuclease LAS1L) (EC 3.1.-.-) (Protein LAS1 homolog) | Required for the synthesis of the 60S ribosomal subunit and maturation of the 28S rRNA (PubMed:20647540). Functions as a component of the Five Friends of Methylated CHTOP (5FMC) complex; the 5FMC complex is recruited to ZNF148 by methylated CHTOP, leading to desumoylation of ZNF148 and subsequent transactivation of ZNF148 target genes (PubMed:22872859). Required for the efficient pre-rRNA processing at both ends of internal transcribed spacer 2 (ITS2) (PubMed:22083961). {ECO:0000269|PubMed:20647540, ECO:0000269|PubMed:22083961, ECO:0000269|PubMed:22872859}. |
Q9Y4X4 | KLF12 | S236 | ochoa | Krueppel-like factor 12 (Transcriptional repressor AP-2rep) | Confers strong transcriptional repression to the AP-2-alpha gene. Binds to a regulatory element (A32) in the AP-2-alpha gene promoter. |
Q9Y5T5 | USP16 | S423 | ochoa | Ubiquitin carboxyl-terminal hydrolase 16 (EC 3.4.19.12) (Deubiquitinating enzyme 16) (Ubiquitin thioesterase 16) (Ubiquitin-processing protease UBP-M) (Ubiquitin-specific-processing protease 16) | Specifically deubiquitinates 'Lys-120' of histone H2A (H2AK119Ub), a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator (PubMed:17914355). Deubiquitination of histone H2A is a prerequisite for subsequent phosphorylation at 'Ser-11' of histone H3 (H3S10ph), and is required for chromosome segregation when cells enter into mitosis (PubMed:17914355). In resting B- and T-lymphocytes, phosphorylation by AURKB leads to enhance its activity, thereby maintaining transcription in resting lymphocytes. Regulates Hox gene expression via histone H2A deubiquitination (PubMed:17914355). Prefers nucleosomal substrates (PubMed:17914355). Does not deubiquitinate histone H2B (PubMed:17914355). Also deubiquitinates non-histone proteins, such as ribosomal protein RPS27A: deubiquitination of monoubiquitinated RPS27A promotes maturation of the 40S ribosomal subunit (PubMed:32129764). Also mediates deubiquitination of tektin proteins (TEKT1, TEKT2, TEK3, TEKT4 and TEKT5), promoting their stability. {ECO:0000255|HAMAP-Rule:MF_03062, ECO:0000269|PubMed:17914355, ECO:0000269|PubMed:32129764}. |
Q9Y6D5 | ARFGEF2 | S1499 | ochoa | Brefeldin A-inhibited guanine nucleotide-exchange protein 2 (Brefeldin A-inhibited GEP 2) (ADP-ribosylation factor guanine nucleotide-exchange factor 2) | Promotes guanine-nucleotide exchange on ARF1 and ARF3 and to a lower extent on ARF5 and ARF6. Promotes the activation of ARF1/ARF5/ARF6 through replacement of GDP with GTP. Involved in the regulation of Golgi vesicular transport. Required for the integrity of the endosomal compartment. Involved in trafficking from the trans-Golgi network (TGN) to endosomes and is required for membrane association of the AP-1 complex and GGA1. Seems to be involved in recycling of the transferrin receptor from recycling endosomes to the plasma membrane. Probably is involved in the exit of GABA(A) receptors from the endoplasmic reticulum. Involved in constitutive release of tumor necrosis factor receptor 1 via exosome-like vesicles; the function seems to involve PKA and specifically PRKAR2B. Proposed to act as A kinase-anchoring protein (AKAP) and may mediate crosstalk between Arf and PKA pathways. {ECO:0000269|PubMed:12051703, ECO:0000269|PubMed:12571360, ECO:0000269|PubMed:15385626, ECO:0000269|PubMed:16477018, ECO:0000269|PubMed:17276987, ECO:0000269|PubMed:18625701, ECO:0000269|PubMed:20360857}. |
P08236 | GUSB | S46 | Sugiyama | Beta-glucuronidase (EC 3.2.1.31) (Beta-G1) | Plays an important role in the degradation of dermatan and keratan sulfates. |
P11279 | LAMP1 | S141 | Sugiyama | Lysosome-associated membrane glycoprotein 1 (LAMP-1) (Lysosome-associated membrane protein 1) (CD107 antigen-like family member A) (CD antigen CD107a) | Lysosomal membrane glycoprotein which plays an important role in lysosome biogenesis, lysosomal pH regulation, autophagy and cholesterol homeostasis (PubMed:37390818). Acts as an important regulator of lysosomal lumen pH regulation by acting as a direct inhibitor of the proton channel TMEM175, facilitating lysosomal acidification for optimal hydrolase activity (PubMed:37390818). Also plays an important role in NK-cells cytotoxicity (PubMed:2022921, PubMed:23632890). Mechanistically, participates in cytotoxic granule movement to the cell surface and perforin trafficking to the lytic granule (PubMed:23632890). In addition, protects NK-cells from degranulation-associated damage induced by their own cytotoxic granule content (PubMed:23847195). Presents carbohydrate ligands to selectins (PubMed:7685349). {ECO:0000269|PubMed:2022921, ECO:0000269|PubMed:23632890, ECO:0000269|PubMed:23847195, ECO:0000269|PubMed:37390818, ECO:0000269|PubMed:7685349}.; FUNCTION: (Microbial infection) Acts as a receptor for Lassa virus glycoprotein (PubMed:24970085, PubMed:25972533, PubMed:27605678, PubMed:28448640). Also promotes fusion of the virus with host membrane in less acidic endosomes (PubMed:29295909). {ECO:0000269|PubMed:24970085, ECO:0000269|PubMed:25972533, ECO:0000269|PubMed:27605678, ECO:0000269|PubMed:28448640, ECO:0000269|PubMed:29295909}.; FUNCTION: (Microbial infection) Supports the FURIN-mediated cleavage of mumps virus fusion protein F by interacting with both FURIN and the unprocessed form but not the processed form of the viral protein F. {ECO:0000269|PubMed:32295904}. |
O95218 | ZRANB2 | Y167 | Sugiyama | Zinc finger Ran-binding domain-containing protein 2 (Zinc finger protein 265) (Zinc finger, splicing) | Splice factor required for alternative splicing of TRA2B/SFRS10 transcripts. Binds to ssRNA containing the consensus sequence 5'-AGGUAA-3' (PubMed:21256132). May interfere with constitutive 5'-splice site selection. {ECO:0000269|PubMed:11448987, ECO:0000269|PubMed:21256132}. |
P12830 | CDH1 | S851 | ELM | Cadherin-1 (CAM 120/80) (Epithelial cadherin) (E-cadherin) (Uvomorulin) (CD antigen CD324) [Cleaved into: E-Cad/CTF1; E-Cad/CTF2; E-Cad/CTF3] | Cadherins are calcium-dependent cell adhesion proteins (PubMed:11976333). They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. CDH1 is involved in mechanisms regulating cell-cell adhesions, mobility and proliferation of epithelial cells (PubMed:11976333). Promotes organization of radial actin fiber structure and cellular response to contractile forces, via its interaction with AMOTL2 which facilitates anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane (By similarity). Plays a role in the early stages of desmosome cell-cell junction formation via facilitating the recruitment of DSG2 and DSP to desmosome plaques (PubMed:29999492). Has a potent invasive suppressor role. It is a ligand for integrin alpha-E/beta-7. {ECO:0000250|UniProtKB:F1PAA9, ECO:0000269|PubMed:11976333, ECO:0000269|PubMed:16417575, ECO:0000269|PubMed:29999492}.; FUNCTION: E-Cad/CTF2 promotes non-amyloidogenic degradation of Abeta precursors. Has a strong inhibitory effect on APP C99 and C83 production. {ECO:0000269|PubMed:16417575}.; FUNCTION: (Microbial infection) Serves as a receptor for Listeria monocytogenes; internalin A (InlA) binds to this protein and promotes uptake of the bacteria. {ECO:0000269|PubMed:10406800, ECO:0000269|PubMed:17540170, ECO:0000269|PubMed:8601315}. |
Q7KZ85 | SUPT6H | S73 | Sugiyama | Transcription elongation factor SPT6 (hSPT6) (Histone chaperone suppressor of Ty6) (Tat-cotransactivator 2 protein) (Tat-CT2 protein) | Histone H3-H4 chaperone that plays a key role in the regulation of transcription elongation and mRNA processing. Enhances the transcription elongation by RNA polymerase II (RNAPII) and is also required for the efficient activation of transcriptional elongation by the HIV-1 nuclear transcriptional activator, Tat. Besides chaperoning histones in transcription, acts to transport and splice mRNA by forming a complex with IWS1 and the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2), to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. SUPT6H via its association with SETD1A, regulates both class-switch recombination and somatic hypermutation through formation of H3K4me3 epigenetic marks on activation-induced cytidine deaminase (AICDA) target loci. Promotes the activation of the myogenic gene program by entailing erasure of the repressive H3K27me3 epigenetic mark through stabilization of the chromatin interaction of the H3K27 demethylase KDM6A. {ECO:0000269|PubMed:15060154, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:22316138, ECO:0000269|PubMed:23503590, ECO:0000269|PubMed:9514752}. |
Q14152 | EIF3A | S1262 | Sugiyama | Eukaryotic translation initiation factor 3 subunit A (eIF3a) (Eukaryotic translation initiation factor 3 subunit 10) (eIF-3-theta) (eIF3 p167) (eIF3 p180) (eIF3 p185) | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:11169732, PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773, PubMed:27462815). {ECO:0000255|HAMAP-Rule:MF_03000, ECO:0000269|PubMed:11169732, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}.; FUNCTION: (Microbial infection) Essential for the initiation of translation on type-1 viral ribosomal entry sites (IRESs), like for HCV, PV, EV71 or BEV translation (PubMed:23766293, PubMed:24357634). {ECO:0000269|PubMed:23766293, ECO:0000269|PubMed:24357634}.; FUNCTION: (Microbial infection) In case of FCV infection, plays a role in the ribosomal termination-reinitiation event leading to the translation of VP2 (PubMed:18056426). {ECO:0000269|PubMed:18056426}. |
Q96D15 | RCN3 | S119 | Sugiyama | Reticulocalbin-3 (EF-hand calcium-binding protein RLP49) | Probable molecular chaperone assisting protein biosynthesis and transport in the endoplasmic reticulum (PubMed:16433634, PubMed:28939891). Required for the proper biosynthesis and transport of pulmonary surfactant-associated protein A/SP-A, pulmonary surfactant-associated protein D/SP-D and the lipid transporter ABCA3 (By similarity). By regulating both the proper expression and the degradation through the endoplasmic reticulum-associated protein degradation pathway of these proteins plays a crucial role in pulmonary surfactant homeostasis (By similarity). Has an anti-fibrotic activity by negatively regulating the secretion of type I and type III collagens (PubMed:28939891). This calcium-binding protein also transiently associates with immature PCSK6 and regulates its secretion (PubMed:16433634). {ECO:0000250|UniProtKB:Q8BH97, ECO:0000269|PubMed:16433634, ECO:0000269|PubMed:28939891}. |
P60842 | EIF4A1 | S300 | Sugiyama | Eukaryotic initiation factor 4A-I (eIF-4A-I) (eIF4A-I) (EC 3.6.4.13) (ATP-dependent RNA helicase eIF4A-1) | ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome (PubMed:20156963). In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5'-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. As a result, promotes cell proliferation and growth (PubMed:20156963). {ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291, ECO:0000269|PubMed:20156963}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000012 | 4.918 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.000011 | 4.978 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.000011 | 4.978 |
R-HSA-373753 | Nephrin family interactions | 0.000042 | 4.378 |
R-HSA-1500931 | Cell-Cell communication | 0.000039 | 4.410 |
R-HSA-1640170 | Cell Cycle | 0.000029 | 4.532 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.000057 | 4.241 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.000077 | 4.111 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.000103 | 3.987 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.000103 | 3.987 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.000121 | 3.916 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.000121 | 3.919 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.000140 | 3.854 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.000159 | 3.797 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.000156 | 3.806 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.000189 | 3.724 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.000256 | 3.591 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.000277 | 3.558 |
R-HSA-912631 | Regulation of signaling by CBL | 0.000351 | 3.455 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.000340 | 3.468 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.000343 | 3.465 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.000336 | 3.474 |
R-HSA-210990 | PECAM1 interactions | 0.000431 | 3.365 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.000454 | 3.343 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.000460 | 3.337 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.000530 | 3.275 |
R-HSA-4641265 | Repression of WNT target genes | 0.000708 | 3.150 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.000849 | 3.071 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.000846 | 3.073 |
R-HSA-418990 | Adherens junctions interactions | 0.000948 | 3.023 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.001075 | 2.969 |
R-HSA-1433559 | Regulation of KIT signaling | 0.001092 | 2.962 |
R-HSA-9839394 | TGFBR3 expression | 0.001098 | 2.959 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.000995 | 3.002 |
R-HSA-201556 | Signaling by ALK | 0.001060 | 2.975 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.001156 | 2.937 |
R-HSA-421270 | Cell-cell junction organization | 0.001270 | 2.896 |
R-HSA-525793 | Myogenesis | 0.001262 | 2.899 |
R-HSA-446728 | Cell junction organization | 0.001305 | 2.884 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.001330 | 2.876 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.002258 | 2.646 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.002258 | 2.646 |
R-HSA-75153 | Apoptotic execution phase | 0.002360 | 2.627 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.002360 | 2.627 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.002660 | 2.575 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.002646 | 2.577 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.002648 | 2.577 |
R-HSA-389356 | Co-stimulation by CD28 | 0.002820 | 2.550 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.003176 | 2.498 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.003301 | 2.481 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.003556 | 2.449 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.003616 | 2.442 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.003650 | 2.438 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.004082 | 2.389 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.004082 | 2.389 |
R-HSA-72172 | mRNA Splicing | 0.004041 | 2.394 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.003936 | 2.405 |
R-HSA-8953854 | Metabolism of RNA | 0.004204 | 2.376 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.004208 | 2.376 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.004270 | 2.370 |
R-HSA-72649 | Translation initiation complex formation | 0.004602 | 2.337 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.004453 | 2.351 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.004658 | 2.332 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.005349 | 2.272 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.005286 | 2.277 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.005295 | 2.276 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.005295 | 2.276 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.005044 | 2.297 |
R-HSA-9669938 | Signaling by KIT in disease | 0.005286 | 2.277 |
R-HSA-193648 | NRAGE signals death through JNK | 0.005349 | 2.272 |
R-HSA-9006936 | Signaling by TGFB family members | 0.005019 | 2.299 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.005350 | 2.272 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.005754 | 2.240 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.006181 | 2.209 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.006181 | 2.209 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.006423 | 2.192 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.006423 | 2.192 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 0.006885 | 2.162 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.007312 | 2.136 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.007345 | 2.134 |
R-HSA-1227986 | Signaling by ERBB2 | 0.007102 | 2.149 |
R-HSA-4839726 | Chromatin organization | 0.007348 | 2.134 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.007436 | 2.129 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.007436 | 2.129 |
R-HSA-9005895 | Pervasive developmental disorders | 0.007436 | 2.129 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.007436 | 2.129 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.008253 | 2.083 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.008253 | 2.083 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.008361 | 2.078 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.008361 | 2.078 |
R-HSA-194138 | Signaling by VEGF | 0.008373 | 2.077 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.008935 | 2.049 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.009757 | 2.011 |
R-HSA-193670 | p75NTR negatively regulates cell cycle via SC1 | 0.009757 | 2.011 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.009218 | 2.035 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.010283 | 1.988 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.010462 | 1.980 |
R-HSA-73887 | Death Receptor Signaling | 0.010837 | 1.965 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.010891 | 1.963 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.011803 | 1.928 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.011803 | 1.928 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.013069 | 1.884 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.013248 | 1.878 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.013524 | 1.869 |
R-HSA-1538133 | G0 and Early G1 | 0.014851 | 1.828 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.014851 | 1.828 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.015380 | 1.813 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.016799 | 1.775 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.017373 | 1.760 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.017562 | 1.755 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.016516 | 1.782 |
R-HSA-8852135 | Protein ubiquitination | 0.017412 | 1.759 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.016171 | 1.791 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.017412 | 1.759 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.018341 | 1.737 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.021771 | 1.662 |
R-HSA-432142 | Platelet sensitization by LDL | 0.019503 | 1.710 |
R-HSA-156711 | Polo-like kinase mediated events | 0.019503 | 1.710 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.020925 | 1.679 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.019503 | 1.710 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.020301 | 1.692 |
R-HSA-177929 | Signaling by EGFR | 0.021598 | 1.666 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.019503 | 1.710 |
R-HSA-844456 | The NLRP3 inflammasome | 0.021771 | 1.662 |
R-HSA-9834899 | Specification of the neural plate border | 0.021771 | 1.662 |
R-HSA-74160 | Gene expression (Transcription) | 0.019911 | 1.701 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.021771 | 1.662 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.020301 | 1.692 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.023860 | 1.622 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.024171 | 1.617 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.025426 | 1.595 |
R-HSA-8851907 | MET activates PI3K/AKT signaling | 0.025426 | 1.595 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.025426 | 1.595 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.025426 | 1.595 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.024176 | 1.617 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.024176 | 1.617 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.024176 | 1.617 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.024176 | 1.617 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.027460 | 1.561 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.025627 | 1.591 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.024176 | 1.617 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.027460 | 1.561 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.027460 | 1.561 |
R-HSA-9823730 | Formation of definitive endoderm | 0.024176 | 1.617 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 0.025426 | 1.595 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.028907 | 1.539 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.029375 | 1.532 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.029400 | 1.532 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.029400 | 1.532 |
R-HSA-9028335 | Activated NTRK2 signals through PI3K | 0.030280 | 1.519 |
R-HSA-196025 | Formation of annular gap junctions | 0.030280 | 1.519 |
R-HSA-190873 | Gap junction degradation | 0.035469 | 1.450 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.035469 | 1.450 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.032217 | 1.492 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.031367 | 1.504 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.031367 | 1.504 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.033437 | 1.476 |
R-HSA-373755 | Semaphorin interactions | 0.031705 | 1.499 |
R-HSA-69275 | G2/M Transition | 0.031473 | 1.502 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.033271 | 1.478 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.035469 | 1.450 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.031367 | 1.504 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 0.035469 | 1.450 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.031367 | 1.504 |
R-HSA-429947 | Deadenylation of mRNA | 0.038259 | 1.417 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.038259 | 1.417 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.038259 | 1.417 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.038259 | 1.417 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.038615 | 1.413 |
R-HSA-162582 | Signal Transduction | 0.039138 | 1.407 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.047760 | 1.321 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.047760 | 1.321 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.047760 | 1.321 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.047760 | 1.321 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.047760 | 1.321 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.040974 | 1.387 |
R-HSA-164843 | 2-LTR circle formation | 0.040974 | 1.387 |
R-HSA-390450 | Folding of actin by CCT/TriC | 0.040974 | 1.387 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.046776 | 1.330 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.041480 | 1.382 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.042495 | 1.372 |
R-HSA-774815 | Nucleosome assembly | 0.042495 | 1.372 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.044356 | 1.353 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.046727 | 1.330 |
R-HSA-9664417 | Leishmania phagocytosis | 0.041435 | 1.383 |
R-HSA-9664407 | Parasite infection | 0.041435 | 1.383 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.041435 | 1.383 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.044956 | 1.347 |
R-HSA-68886 | M Phase | 0.041973 | 1.377 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.043443 | 1.362 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 0.040974 | 1.387 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.041546 | 1.381 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.044356 | 1.353 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.047984 | 1.319 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.048319 | 1.316 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.048319 | 1.316 |
R-HSA-9006115 | Signaling by NTRK2 (TRKB) | 0.048319 | 1.316 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.050110 | 1.300 |
R-HSA-73886 | Chromosome Maintenance | 0.050420 | 1.297 |
R-HSA-3371556 | Cellular response to heat stress | 0.050420 | 1.297 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.050581 | 1.296 |
R-HSA-622312 | Inflammasomes | 0.051932 | 1.285 |
R-HSA-9766229 | Degradation of CDH1 | 0.052804 | 1.277 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.052804 | 1.277 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.052857 | 1.277 |
R-HSA-162592 | Integration of provirus | 0.052857 | 1.277 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.052857 | 1.277 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.059202 | 1.228 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.065794 | 1.182 |
R-HSA-389359 | CD28 dependent Vav1 pathway | 0.065794 | 1.182 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.055671 | 1.254 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.055671 | 1.254 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.059536 | 1.225 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.063523 | 1.197 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.063523 | 1.197 |
R-HSA-182971 | EGFR downregulation | 0.063523 | 1.197 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.061828 | 1.209 |
R-HSA-2424491 | DAP12 signaling | 0.059536 | 1.225 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.057374 | 1.241 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.065794 | 1.182 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.059536 | 1.225 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.055671 | 1.254 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.059536 | 1.225 |
R-HSA-422475 | Axon guidance | 0.066944 | 1.174 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.060818 | 1.216 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 0.065794 | 1.182 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.057293 | 1.242 |
R-HSA-162587 | HIV Life Cycle | 0.068634 | 1.163 |
R-HSA-9675108 | Nervous system development | 0.069277 | 1.159 |
R-HSA-9658195 | Leishmania infection | 0.069696 | 1.157 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.069696 | 1.157 |
R-HSA-2206292 | MPS VII - Sly syndrome (Hyaluronan metabolism) | 0.070780 | 1.150 |
R-HSA-5619054 | Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... | 0.070780 | 1.150 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.070780 | 1.150 |
R-HSA-9953080 | MPS VII - Sly syndrome (CS/DS degradation) | 0.070780 | 1.150 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.093244 | 1.030 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.093244 | 1.030 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.093244 | 1.030 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.093244 | 1.030 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.093244 | 1.030 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.093244 | 1.030 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.093244 | 1.030 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.093244 | 1.030 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.093244 | 1.030 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.093244 | 1.030 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.093244 | 1.030 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.079655 | 1.099 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.086896 | 1.061 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.086896 | 1.061 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.071856 | 1.144 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.071856 | 1.144 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.076197 | 1.118 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.076197 | 1.118 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.080650 | 1.093 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.085214 | 1.069 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.087437 | 1.058 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.088969 | 1.051 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.091023 | 1.041 |
R-HSA-6798695 | Neutrophil degranulation | 0.082436 | 1.084 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.076197 | 1.118 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.080336 | 1.095 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.072616 | 1.139 |
R-HSA-418885 | DCC mediated attractive signaling | 0.079655 | 1.099 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.071856 | 1.144 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.071856 | 1.144 |
R-HSA-8875360 | InlB-mediated entry of Listeria monocytogenes into host cell | 0.079655 | 1.099 |
R-HSA-3371511 | HSF1 activation | 0.089885 | 1.046 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.080650 | 1.093 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.079655 | 1.099 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.080650 | 1.093 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.083921 | 1.076 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.072616 | 1.139 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.076197 | 1.118 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.071856 | 1.144 |
R-HSA-191859 | snRNP Assembly | 0.083921 | 1.076 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.083921 | 1.076 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.077104 | 1.113 |
R-HSA-180746 | Nuclear import of Rev protein | 0.080650 | 1.093 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.085214 | 1.069 |
R-HSA-162906 | HIV Infection | 0.085342 | 1.069 |
R-HSA-9682385 | FLT3 signaling in disease | 0.089885 | 1.046 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.087437 | 1.058 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.086896 | 1.061 |
R-HSA-5655291 | Signaling by FGFR4 in disease | 0.072616 | 1.139 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.079655 | 1.099 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.084720 | 1.072 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.086040 | 1.065 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.085214 | 1.069 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.074029 | 1.131 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.071856 | 1.144 |
R-HSA-109582 | Hemostasis | 0.093569 | 1.029 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.094325 | 1.025 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.094325 | 1.025 |
R-HSA-195721 | Signaling by WNT | 0.094618 | 1.024 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.094661 | 1.024 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.096148 | 1.017 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.115167 | 0.939 |
R-HSA-8865999 | MET activates PTPN11 | 0.115167 | 0.939 |
R-HSA-5083630 | Defective LFNG causes SCDO3 | 0.136561 | 0.865 |
R-HSA-9032759 | NTRK2 activates RAC1 | 0.157439 | 0.803 |
R-HSA-9706377 | FLT3 signaling by CBL mutants | 0.157439 | 0.803 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 0.177814 | 0.750 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.177814 | 0.750 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.177814 | 0.750 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.177814 | 0.750 |
R-HSA-9652817 | Signaling by MAPK mutants | 0.177814 | 0.750 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.197697 | 0.704 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.197697 | 0.704 |
R-HSA-1912399 | Pre-NOTCH Processing in the Endoplasmic Reticulum | 0.217100 | 0.663 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.101929 | 0.992 |
R-HSA-9032500 | Activated NTRK2 signals through FYN | 0.236036 | 0.627 |
R-HSA-111995 | phospho-PLA2 pathway | 0.236036 | 0.627 |
R-HSA-77588 | SLBP Dependent Processing of Replication-Dependent Histone Pre-mRNAs | 0.236036 | 0.627 |
R-HSA-8875656 | MET receptor recycling | 0.236036 | 0.627 |
R-HSA-180292 | GAB1 signalosome | 0.109695 | 0.960 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.109695 | 0.960 |
R-HSA-5654710 | PI-3K cascade:FGFR3 | 0.117611 | 0.930 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.117611 | 0.930 |
R-HSA-9634635 | Estrogen-stimulated signaling through PRKCZ | 0.254514 | 0.594 |
R-HSA-201688 | WNT mediated activation of DVL | 0.254514 | 0.594 |
R-HSA-5654720 | PI-3K cascade:FGFR4 | 0.125664 | 0.901 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.125664 | 0.901 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.133845 | 0.873 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.272547 | 0.565 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.272547 | 0.565 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.272547 | 0.565 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.142142 | 0.847 |
R-HSA-5654689 | PI-3K cascade:FGFR1 | 0.150544 | 0.822 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.150544 | 0.822 |
R-HSA-4839744 | Signaling by APC mutants | 0.290145 | 0.537 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.290145 | 0.537 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.290145 | 0.537 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.290145 | 0.537 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.159042 | 0.798 |
R-HSA-5654695 | PI-3K cascade:FGFR2 | 0.176288 | 0.754 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.193809 | 0.713 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.202651 | 0.693 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.202651 | 0.693 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.147542 | 0.831 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.106050 | 0.974 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.229416 | 0.639 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.122120 | 0.913 |
R-HSA-72187 | mRNA 3'-end processing | 0.182930 | 0.738 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.139159 | 0.856 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.189035 | 0.723 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.189035 | 0.723 |
R-HSA-380287 | Centrosome maturation | 0.148017 | 0.830 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.114215 | 0.942 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.283425 | 0.548 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.200224 | 0.698 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.200224 | 0.698 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.184118 | 0.735 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.265408 | 0.576 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.133845 | 0.873 |
R-HSA-3928664 | Ephrin signaling | 0.109695 | 0.960 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.107608 | 0.968 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.175817 | 0.755 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.120011 | 0.921 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.220462 | 0.657 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.265408 | 0.576 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.205224 | 0.688 |
R-HSA-9762292 | Regulation of CDH11 function | 0.272547 | 0.565 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.150544 | 0.822 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.167627 | 0.776 |
R-HSA-437239 | Recycling pathway of L1 | 0.153276 | 0.815 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.245973 | 0.609 |
R-HSA-2465910 | MASTL Facilitates Mitotic Progression | 0.254514 | 0.594 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.229416 | 0.639 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.190338 | 0.720 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.161874 | 0.791 |
R-HSA-5693538 | Homology Directed Repair | 0.224127 | 0.650 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.167627 | 0.776 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.193809 | 0.713 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.147542 | 0.831 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.147542 | 0.831 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.147542 | 0.831 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.198231 | 0.703 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.283425 | 0.548 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.283425 | 0.548 |
R-HSA-8849473 | PTK6 Expression | 0.217100 | 0.663 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.120011 | 0.921 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.238394 | 0.623 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.237440 | 0.624 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.185019 | 0.733 |
R-HSA-391251 | Protein folding | 0.107608 | 0.968 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.177814 | 0.750 |
R-HSA-5250992 | Toxicity of botulinum toxin type E (botE) | 0.177814 | 0.750 |
R-HSA-5250981 | Toxicity of botulinum toxin type F (botF) | 0.197697 | 0.704 |
R-HSA-5250955 | Toxicity of botulinum toxin type D (botD) | 0.197697 | 0.704 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 0.217100 | 0.663 |
R-HSA-5250968 | Toxicity of botulinum toxin type A (botA) | 0.254514 | 0.594 |
R-HSA-140342 | Apoptosis induced DNA fragmentation | 0.272547 | 0.565 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.113959 | 0.943 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.130524 | 0.884 |
R-HSA-6802949 | Signaling by RAS mutants | 0.147542 | 0.831 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.246447 | 0.608 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.120011 | 0.921 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 0.177814 | 0.750 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.197697 | 0.704 |
R-HSA-203641 | NOSTRIN mediated eNOS trafficking | 0.217100 | 0.663 |
R-HSA-419771 | Opsins | 0.217100 | 0.663 |
R-HSA-9927354 | Co-stimulation by ICOS | 0.236036 | 0.627 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.272547 | 0.565 |
R-HSA-192905 | vRNP Assembly | 0.290145 | 0.537 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.193809 | 0.713 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.211538 | 0.675 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.141879 | 0.848 |
R-HSA-68877 | Mitotic Prometaphase | 0.264836 | 0.577 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.153276 | 0.815 |
R-HSA-392518 | Signal amplification | 0.265408 | 0.576 |
R-HSA-6807004 | Negative regulation of MET activity | 0.125664 | 0.901 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.217100 | 0.663 |
R-HSA-198203 | PI3K/AKT activation | 0.272547 | 0.565 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.099539 | 1.002 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.238394 | 0.623 |
R-HSA-912446 | Meiotic recombination | 0.176878 | 0.752 |
R-HSA-3214815 | HDACs deacetylate histones | 0.201399 | 0.696 |
R-HSA-2172127 | DAP12 interactions | 0.136292 | 0.866 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.176288 | 0.754 |
R-HSA-73894 | DNA Repair | 0.144360 | 0.841 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.267646 | 0.572 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.109589 | 0.960 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.109589 | 0.960 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.251558 | 0.599 |
R-HSA-6806834 | Signaling by MET | 0.171064 | 0.767 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.159042 | 0.798 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.197697 | 0.704 |
R-HSA-9839383 | TGFBR3 PTM regulation | 0.236036 | 0.627 |
R-HSA-444473 | Formyl peptide receptors bind formyl peptides and many other ligands | 0.236036 | 0.627 |
R-HSA-428359 | Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RN... | 0.272547 | 0.565 |
R-HSA-210747 | Regulation of gene expression in early pancreatic precursor cells | 0.290145 | 0.537 |
R-HSA-1483226 | Synthesis of PI | 0.290145 | 0.537 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.247389 | 0.607 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.171064 | 0.767 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.153806 | 0.813 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.239503 | 0.621 |
R-HSA-69481 | G2/M Checkpoints | 0.138134 | 0.860 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.263744 | 0.579 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.291186 | 0.536 |
R-HSA-1500620 | Meiosis | 0.195261 | 0.709 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.133845 | 0.873 |
R-HSA-9664873 | Pexophagy | 0.272547 | 0.565 |
R-HSA-186712 | Regulation of beta-cell development | 0.226655 | 0.645 |
R-HSA-5654708 | Downstream signaling of activated FGFR3 | 0.211538 | 0.675 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.147542 | 0.831 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.147542 | 0.831 |
R-HSA-5654716 | Downstream signaling of activated FGFR4 | 0.220462 | 0.657 |
R-HSA-5654696 | Downstream signaling of activated FGFR2 | 0.274419 | 0.562 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.176288 | 0.754 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.176288 | 0.754 |
R-HSA-9733709 | Cardiogenesis | 0.247389 | 0.607 |
R-HSA-373760 | L1CAM interactions | 0.215381 | 0.667 |
R-HSA-5654743 | Signaling by FGFR4 | 0.130782 | 0.883 |
R-HSA-5654687 | Downstream signaling of activated FGFR1 | 0.274419 | 0.562 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.220462 | 0.657 |
R-HSA-983189 | Kinesins | 0.233063 | 0.633 |
R-HSA-68882 | Mitotic Anaphase | 0.128789 | 0.890 |
R-HSA-8939211 | ESR-mediated signaling | 0.103466 | 0.985 |
R-HSA-5654741 | Signaling by FGFR3 | 0.141879 | 0.848 |
R-HSA-445144 | Signal transduction by L1 | 0.125664 | 0.901 |
R-HSA-69242 | S Phase | 0.116111 | 0.935 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.131125 | 0.882 |
R-HSA-114608 | Platelet degranulation | 0.269287 | 0.570 |
R-HSA-3214847 | HATs acetylate histones | 0.135152 | 0.869 |
R-HSA-162909 | Host Interactions of HIV factors | 0.125631 | 0.901 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.200868 | 0.697 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.136561 | 0.865 |
R-HSA-8866376 | Reelin signalling pathway | 0.157439 | 0.803 |
R-HSA-9842640 | Signaling by LTK in cancer | 0.197697 | 0.704 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.236036 | 0.627 |
R-HSA-425381 | Bicarbonate transporters | 0.290145 | 0.537 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.109589 | 0.960 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.114755 | 0.940 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.195193 | 0.710 |
R-HSA-5654736 | Signaling by FGFR1 | 0.207651 | 0.683 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.216057 | 0.665 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.143561 | 0.843 |
R-HSA-68875 | Mitotic Prophase | 0.113711 | 0.944 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.246408 | 0.608 |
R-HSA-1280218 | Adaptive Immune System | 0.184956 | 0.733 |
R-HSA-9020702 | Interleukin-1 signaling | 0.142488 | 0.846 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.157439 | 0.803 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.177814 | 0.750 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.177814 | 0.750 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.177814 | 0.750 |
R-HSA-164944 | Nef and signal transduction | 0.197697 | 0.704 |
R-HSA-448706 | Interleukin-1 processing | 0.254514 | 0.594 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.254514 | 0.594 |
R-HSA-193692 | Regulated proteolysis of p75NTR | 0.254514 | 0.594 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.099539 | 1.002 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.147542 | 0.831 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.173460 | 0.761 |
R-HSA-2559583 | Cellular Senescence | 0.217923 | 0.662 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.182930 | 0.738 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.130524 | 0.884 |
R-HSA-9607240 | FLT3 Signaling | 0.114755 | 0.940 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.109695 | 0.960 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.229416 | 0.639 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.153276 | 0.815 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.258992 | 0.587 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.131550 | 0.881 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.276907 | 0.558 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.131550 | 0.881 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.131550 | 0.881 |
R-HSA-8853659 | RET signaling | 0.283425 | 0.548 |
R-HSA-2029481 | FCGR activation | 0.246408 | 0.608 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.177503 | 0.751 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.181581 | 0.741 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.228539 | 0.641 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.181581 | 0.741 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.228539 | 0.641 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.241925 | 0.616 |
R-HSA-168255 | Influenza Infection | 0.214445 | 0.669 |
R-HSA-446652 | Interleukin-1 family signaling | 0.126844 | 0.897 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.161553 | 0.792 |
R-HSA-8848021 | Signaling by PTK6 | 0.252470 | 0.598 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.252470 | 0.598 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.241925 | 0.616 |
R-HSA-9675135 | Diseases of DNA repair | 0.147542 | 0.831 |
R-HSA-73893 | DNA Damage Bypass | 0.164951 | 0.783 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.150544 | 0.822 |
R-HSA-5655332 | Signaling by FGFR3 in disease | 0.193809 | 0.713 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.245973 | 0.609 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.285277 | 0.545 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.246434 | 0.608 |
R-HSA-5688426 | Deubiquitination | 0.141250 | 0.850 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.194019 | 0.712 |
R-HSA-166520 | Signaling by NTRKs | 0.116111 | 0.935 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.206747 | 0.685 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.121416 | 0.916 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.214736 | 0.668 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.207651 | 0.683 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.171983 | 0.765 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.273914 | 0.562 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.254514 | 0.594 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.127992 | 0.893 |
R-HSA-69205 | G1/S-Specific Transcription | 0.283425 | 0.548 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.121416 | 0.916 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.236036 | 0.627 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.283216 | 0.548 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.193809 | 0.713 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.233063 | 0.633 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.233063 | 0.633 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.233063 | 0.633 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.233063 | 0.633 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.224127 | 0.650 |
R-HSA-109581 | Apoptosis | 0.280220 | 0.553 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.109695 | 0.960 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.167627 | 0.776 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.167627 | 0.776 |
R-HSA-5357801 | Programmed Cell Death | 0.189849 | 0.722 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.200868 | 0.697 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.193809 | 0.713 |
R-HSA-9645723 | Diseases of programmed cell death | 0.215331 | 0.667 |
R-HSA-9758941 | Gastrulation | 0.227699 | 0.643 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.117589 | 0.930 |
R-HSA-9008059 | Interleukin-37 signaling | 0.220462 | 0.657 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.237440 | 0.624 |
R-HSA-449147 | Signaling by Interleukins | 0.116673 | 0.933 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.233063 | 0.633 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.247533 | 0.606 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.292421 | 0.534 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.294623 | 0.531 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.297281 | 0.527 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.300062 | 0.523 |
R-HSA-202131 | Metabolism of nitric oxide: NOS3 activation and regulation | 0.301402 | 0.521 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.301995 | 0.520 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.305132 | 0.516 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.305132 | 0.516 |
R-HSA-157118 | Signaling by NOTCH | 0.306357 | 0.514 |
R-HSA-1234158 | Regulation of gene expression by Hypoxia-inducible Factor | 0.307317 | 0.512 |
R-HSA-1250342 | PI3K events in ERBB4 signaling | 0.307317 | 0.512 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.307317 | 0.512 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.307317 | 0.512 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.307317 | 0.512 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.307317 | 0.512 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.307317 | 0.512 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 0.307317 | 0.512 |
R-HSA-425561 | Sodium/Calcium exchangers | 0.307317 | 0.512 |
R-HSA-428540 | Activation of RAC1 | 0.307317 | 0.512 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 0.310363 | 0.508 |
R-HSA-72766 | Translation | 0.310884 | 0.507 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.311765 | 0.506 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.311765 | 0.506 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.311765 | 0.506 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.318403 | 0.497 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.318403 | 0.497 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.319300 | 0.496 |
R-HSA-3371568 | Attenuation phase | 0.319300 | 0.496 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.320959 | 0.494 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.321926 | 0.492 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.322079 | 0.492 |
R-HSA-2197563 | NOTCH2 intracellular domain regulates transcription | 0.324076 | 0.489 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.324076 | 0.489 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.324076 | 0.489 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.324076 | 0.489 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.324076 | 0.489 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.324076 | 0.489 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.324076 | 0.489 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.324076 | 0.489 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.324076 | 0.489 |
R-HSA-879415 | Advanced glycosylation endproduct receptor signaling | 0.324076 | 0.489 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.324076 | 0.489 |
R-HSA-69109 | Leading Strand Synthesis | 0.324076 | 0.489 |
R-HSA-69091 | Polymerase switching | 0.324076 | 0.489 |
R-HSA-9842663 | Signaling by LTK | 0.324076 | 0.489 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.325723 | 0.487 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.326581 | 0.486 |
R-HSA-418346 | Platelet homeostasis | 0.327412 | 0.485 |
R-HSA-392499 | Metabolism of proteins | 0.329357 | 0.482 |
R-HSA-5689880 | Ub-specific processing proteases | 0.330854 | 0.480 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.331681 | 0.479 |
R-HSA-168256 | Immune System | 0.332657 | 0.478 |
R-HSA-69239 | Synthesis of DNA | 0.332904 | 0.478 |
R-HSA-211000 | Gene Silencing by RNA | 0.332904 | 0.478 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.337087 | 0.472 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.337087 | 0.472 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.337865 | 0.471 |
R-HSA-5689603 | UCH proteinases | 0.338318 | 0.471 |
R-HSA-597592 | Post-translational protein modification | 0.339846 | 0.469 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.340430 | 0.468 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.340430 | 0.468 |
R-HSA-1059683 | Interleukin-6 signaling | 0.340430 | 0.468 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 0.340430 | 0.468 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.343900 | 0.464 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.345929 | 0.461 |
R-HSA-202403 | TCR signaling | 0.349401 | 0.457 |
R-HSA-4086400 | PCP/CE pathway | 0.351579 | 0.454 |
R-HSA-1266738 | Developmental Biology | 0.352755 | 0.453 |
R-HSA-9710421 | Defective pyroptosis | 0.354732 | 0.450 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.356389 | 0.448 |
R-HSA-399956 | CRMPs in Sema3A signaling | 0.356389 | 0.448 |
R-HSA-69166 | Removal of the Flap Intermediate | 0.356389 | 0.448 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.356389 | 0.448 |
R-HSA-1483115 | Hydrolysis of LPC | 0.356389 | 0.448 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.356389 | 0.448 |
R-HSA-173599 | Formation of the active cofactor, UDP-glucuronate | 0.356389 | 0.448 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.356389 | 0.448 |
R-HSA-1482798 | Acyl chain remodeling of CL | 0.356389 | 0.448 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 0.356389 | 0.448 |
R-HSA-9659379 | Sensory processing of sound | 0.358198 | 0.446 |
R-HSA-373752 | Netrin-1 signaling | 0.363493 | 0.440 |
R-HSA-190828 | Gap junction trafficking | 0.363493 | 0.440 |
R-HSA-5654738 | Signaling by FGFR2 | 0.364808 | 0.438 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.364808 | 0.438 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.366256 | 0.436 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.371963 | 0.429 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.371963 | 0.429 |
R-HSA-69183 | Processive synthesis on the lagging strand | 0.371963 | 0.429 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.371963 | 0.429 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.371963 | 0.429 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.371963 | 0.429 |
R-HSA-1295596 | Spry regulation of FGF signaling | 0.371963 | 0.429 |
R-HSA-8876725 | Protein methylation | 0.371963 | 0.429 |
R-HSA-416700 | Other semaphorin interactions | 0.371963 | 0.429 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.372208 | 0.429 |
R-HSA-199991 | Membrane Trafficking | 0.374136 | 0.427 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.377994 | 0.423 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.383257 | 0.417 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.387162 | 0.412 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.387162 | 0.412 |
R-HSA-9664420 | Killing mechanisms | 0.387162 | 0.412 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.387162 | 0.412 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.387162 | 0.412 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.387162 | 0.412 |
R-HSA-9706369 | Negative regulation of FLT3 | 0.387162 | 0.412 |
R-HSA-5635838 | Activation of SMO | 0.387162 | 0.412 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.389491 | 0.410 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.397656 | 0.400 |
R-HSA-9031628 | NGF-stimulated transcription | 0.398053 | 0.400 |
R-HSA-8964616 | G beta:gamma signalling through CDC42 | 0.401993 | 0.396 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.401993 | 0.396 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.401993 | 0.396 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.401993 | 0.396 |
R-HSA-1483148 | Synthesis of PG | 0.401993 | 0.396 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.401993 | 0.396 |
R-HSA-913531 | Interferon Signaling | 0.402368 | 0.395 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.406560 | 0.391 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.412739 | 0.384 |
R-HSA-109704 | PI3K Cascade | 0.415008 | 0.382 |
R-HSA-5655253 | Signaling by FGFR2 in disease | 0.415008 | 0.382 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.416466 | 0.380 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.416466 | 0.380 |
R-HSA-2028269 | Signaling by Hippo | 0.416466 | 0.380 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.416466 | 0.380 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.416466 | 0.380 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 0.416466 | 0.380 |
R-HSA-72312 | rRNA processing | 0.420517 | 0.376 |
R-HSA-9612973 | Autophagy | 0.421575 | 0.375 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.423395 | 0.373 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.423395 | 0.373 |
R-HSA-156902 | Peptide chain elongation | 0.423608 | 0.373 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.430590 | 0.366 |
R-HSA-9831926 | Nephron development | 0.430590 | 0.366 |
R-HSA-2564830 | Cytosolic iron-sulfur cluster assembly | 0.430590 | 0.366 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.430590 | 0.366 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.430590 | 0.366 |
R-HSA-210993 | Tie2 Signaling | 0.430590 | 0.366 |
R-HSA-5358508 | Mismatch Repair | 0.430590 | 0.366 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.431461 | 0.365 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.431720 | 0.365 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.431720 | 0.365 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.439980 | 0.357 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.442817 | 0.354 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.444373 | 0.352 |
R-HSA-449836 | Other interleukin signaling | 0.444373 | 0.352 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 0.444373 | 0.352 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.447089 | 0.350 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.452952 | 0.344 |
R-HSA-168249 | Innate Immune System | 0.456088 | 0.341 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.456301 | 0.341 |
R-HSA-9609523 | Insertion of tail-anchored proteins into the endoplasmic reticulum membrane | 0.457823 | 0.339 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.457823 | 0.339 |
R-HSA-1482922 | Acyl chain remodelling of PI | 0.457823 | 0.339 |
R-HSA-9629569 | Protein hydroxylation | 0.457823 | 0.339 |
R-HSA-1643685 | Disease | 0.459204 | 0.338 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.459870 | 0.337 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.461772 | 0.336 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.464359 | 0.333 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.464359 | 0.333 |
R-HSA-202040 | G-protein activation | 0.470948 | 0.327 |
R-HSA-69186 | Lagging Strand Synthesis | 0.470948 | 0.327 |
R-HSA-198753 | ERK/MAPK targets | 0.470948 | 0.327 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.470948 | 0.327 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.470948 | 0.327 |
R-HSA-1482925 | Acyl chain remodelling of PG | 0.470948 | 0.327 |
R-HSA-112399 | IRS-mediated signalling | 0.472345 | 0.326 |
R-HSA-5621480 | Dectin-2 family | 0.472345 | 0.326 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.472345 | 0.326 |
R-HSA-1474165 | Reproduction | 0.479431 | 0.319 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.483756 | 0.315 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.483756 | 0.315 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.483756 | 0.315 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.483756 | 0.315 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.483756 | 0.315 |
R-HSA-9843745 | Adipogenesis | 0.484669 | 0.315 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.484990 | 0.314 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.486600 | 0.313 |
R-HSA-180786 | Extension of Telomeres | 0.488101 | 0.311 |
R-HSA-157579 | Telomere Maintenance | 0.492721 | 0.307 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.496255 | 0.304 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.496255 | 0.304 |
R-HSA-168799 | Neurotoxicity of clostridium toxins | 0.496255 | 0.304 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.496255 | 0.304 |
R-HSA-8964038 | LDL clearance | 0.496255 | 0.304 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.496255 | 0.304 |
R-HSA-166208 | mTORC1-mediated signalling | 0.496255 | 0.304 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.496609 | 0.304 |
R-HSA-190236 | Signaling by FGFR | 0.498806 | 0.302 |
R-HSA-450294 | MAP kinase activation | 0.503560 | 0.298 |
R-HSA-112043 | PLC beta mediated events | 0.503560 | 0.298 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.503560 | 0.298 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.508453 | 0.294 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.508453 | 0.294 |
R-HSA-982772 | Growth hormone receptor signaling | 0.508453 | 0.294 |
R-HSA-3000170 | Syndecan interactions | 0.508453 | 0.294 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.510051 | 0.292 |
R-HSA-70171 | Glycolysis | 0.510864 | 0.292 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.511175 | 0.291 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.511175 | 0.291 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.511175 | 0.291 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.511175 | 0.291 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.518714 | 0.285 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.518714 | 0.285 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.520355 | 0.284 |
R-HSA-428930 | Thromboxane signalling through TP receptor | 0.520355 | 0.284 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.520355 | 0.284 |
R-HSA-9865881 | Complex III assembly | 0.520355 | 0.284 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.520355 | 0.284 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.520355 | 0.284 |
R-HSA-2428924 | IGF1R signaling cascade | 0.526175 | 0.279 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.526175 | 0.279 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.526698 | 0.278 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.529009 | 0.277 |
R-HSA-6807070 | PTEN Regulation | 0.530783 | 0.275 |
R-HSA-5218921 | VEGFR2 mediated cell proliferation | 0.531970 | 0.274 |
R-HSA-420029 | Tight junction interactions | 0.531970 | 0.274 |
R-HSA-2160916 | Hyaluronan degradation | 0.531970 | 0.274 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.531970 | 0.274 |
R-HSA-3214842 | HDMs demethylate histones | 0.531970 | 0.274 |
R-HSA-1266695 | Interleukin-7 signaling | 0.531970 | 0.274 |
R-HSA-5601884 | PIWI-interacting RNA (piRNA) biogenesis | 0.531970 | 0.274 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.533557 | 0.273 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.533557 | 0.273 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.534513 | 0.272 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.540861 | 0.267 |
R-HSA-5683057 | MAPK family signaling cascades | 0.543146 | 0.265 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.543305 | 0.265 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.543305 | 0.265 |
R-HSA-112040 | G-protein mediated events | 0.548085 | 0.261 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.554365 | 0.256 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.554365 | 0.256 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.554365 | 0.256 |
R-HSA-8949613 | Cristae formation | 0.554365 | 0.256 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.554365 | 0.256 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.555229 | 0.256 |
R-HSA-167172 | Transcription of the HIV genome | 0.555229 | 0.256 |
R-HSA-5218859 | Regulated Necrosis | 0.555229 | 0.256 |
R-HSA-5654732 | Negative regulation of FGFR3 signaling | 0.565159 | 0.248 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.565159 | 0.248 |
R-HSA-5620971 | Pyroptosis | 0.565159 | 0.248 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.565159 | 0.248 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.566487 | 0.247 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.568740 | 0.245 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.569276 | 0.245 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.569276 | 0.245 |
R-HSA-448424 | Interleukin-17 signaling | 0.569276 | 0.245 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.569276 | 0.245 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.575691 | 0.240 |
R-HSA-210745 | Regulation of gene expression in beta cells | 0.575691 | 0.240 |
R-HSA-5654733 | Negative regulation of FGFR4 signaling | 0.575691 | 0.240 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.575691 | 0.240 |
R-HSA-5334118 | DNA methylation | 0.575691 | 0.240 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.575691 | 0.240 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.575691 | 0.240 |
R-HSA-418360 | Platelet calcium homeostasis | 0.575691 | 0.240 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.575691 | 0.240 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.583000 | 0.234 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.583000 | 0.234 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.584682 | 0.233 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.585262 | 0.233 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.585262 | 0.233 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.585262 | 0.233 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.585262 | 0.233 |
R-HSA-456926 | Thrombin signalling through proteinase activated receptors (PARs) | 0.585970 | 0.232 |
R-HSA-2206281 | Mucopolysaccharidoses | 0.585970 | 0.232 |
R-HSA-1474151 | Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation | 0.585970 | 0.232 |
R-HSA-4086398 | Ca2+ pathway | 0.589740 | 0.229 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.590680 | 0.229 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.595999 | 0.225 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.595999 | 0.225 |
R-HSA-186763 | Downstream signal transduction | 0.595999 | 0.225 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.595999 | 0.225 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.596051 | 0.225 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.596399 | 0.224 |
R-HSA-1236394 | Signaling by ERBB4 | 0.596399 | 0.224 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.598202 | 0.223 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.598202 | 0.223 |
R-HSA-69306 | DNA Replication | 0.602792 | 0.220 |
R-HSA-69190 | DNA strand elongation | 0.605787 | 0.218 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.605787 | 0.218 |
R-HSA-9020591 | Interleukin-12 signaling | 0.609474 | 0.215 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.611889 | 0.213 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.615338 | 0.211 |
R-HSA-5654726 | Negative regulation of FGFR1 signaling | 0.615338 | 0.211 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.615338 | 0.211 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.615338 | 0.211 |
R-HSA-9930044 | Nuclear RNA decay | 0.615338 | 0.211 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.615338 | 0.211 |
R-HSA-159418 | Recycling of bile acids and salts | 0.615338 | 0.211 |
R-HSA-9610379 | HCMV Late Events | 0.620833 | 0.207 |
R-HSA-70326 | Glucose metabolism | 0.622215 | 0.206 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.622224 | 0.206 |
R-HSA-216083 | Integrin cell surface interactions | 0.622224 | 0.206 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.624658 | 0.204 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.624658 | 0.204 |
R-HSA-2024101 | CS/DS degradation | 0.624658 | 0.204 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.624658 | 0.204 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.624658 | 0.204 |
R-HSA-189483 | Heme degradation | 0.624658 | 0.204 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.628477 | 0.202 |
R-HSA-877300 | Interferon gamma signaling | 0.629659 | 0.201 |
R-HSA-376176 | Signaling by ROBO receptors | 0.633332 | 0.198 |
R-HSA-5673000 | RAF activation | 0.633753 | 0.198 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.633753 | 0.198 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.633753 | 0.198 |
R-HSA-203615 | eNOS activation | 0.633753 | 0.198 |
R-HSA-5654727 | Negative regulation of FGFR2 signaling | 0.633753 | 0.198 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.633753 | 0.198 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.633753 | 0.198 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.633753 | 0.198 |
R-HSA-2142845 | Hyaluronan metabolism | 0.633753 | 0.198 |
R-HSA-5205647 | Mitophagy | 0.633753 | 0.198 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.634650 | 0.197 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.642628 | 0.192 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.642628 | 0.192 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.642628 | 0.192 |
R-HSA-2262752 | Cellular responses to stress | 0.643739 | 0.191 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.644363 | 0.191 |
R-HSA-8953897 | Cellular responses to stimuli | 0.644550 | 0.191 |
R-HSA-5663205 | Infectious disease | 0.645023 | 0.190 |
R-HSA-5653656 | Vesicle-mediated transport | 0.647129 | 0.189 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.651288 | 0.186 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.651288 | 0.186 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.651288 | 0.186 |
R-HSA-9679506 | SARS-CoV Infections | 0.654374 | 0.184 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.658541 | 0.181 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.658541 | 0.181 |
R-HSA-4641258 | Degradation of DVL | 0.659739 | 0.181 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.659739 | 0.181 |
R-HSA-5619102 | SLC transporter disorders | 0.663628 | 0.178 |
R-HSA-69206 | G1/S Transition | 0.666331 | 0.176 |
R-HSA-8875878 | MET promotes cell motility | 0.667986 | 0.175 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.667986 | 0.175 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.667986 | 0.175 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.676034 | 0.170 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.676034 | 0.170 |
R-HSA-69541 | Stabilization of p53 | 0.676034 | 0.170 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.676034 | 0.170 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.676034 | 0.170 |
R-HSA-9648002 | RAS processing | 0.676034 | 0.170 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.676034 | 0.170 |
R-HSA-447115 | Interleukin-12 family signaling | 0.681166 | 0.167 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.682170 | 0.166 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.683886 | 0.165 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.683886 | 0.165 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.683886 | 0.165 |
R-HSA-167169 | HIV Transcription Elongation | 0.683886 | 0.165 |
R-HSA-5260271 | Diseases of Immune System | 0.683886 | 0.165 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.683886 | 0.165 |
R-HSA-9646399 | Aggrephagy | 0.683886 | 0.165 |
R-HSA-202433 | Generation of second messenger molecules | 0.683886 | 0.165 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.683886 | 0.165 |
R-HSA-451927 | Interleukin-2 family signaling | 0.683886 | 0.165 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.686628 | 0.163 |
R-HSA-9663891 | Selective autophagy | 0.686628 | 0.163 |
R-HSA-5625886 | Activated PKN1 stimulates transcription of AR (androgen receptor) regulated gene... | 0.691549 | 0.160 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.691549 | 0.160 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.691549 | 0.160 |
R-HSA-9694548 | Maturation of spike protein | 0.691549 | 0.160 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.691549 | 0.160 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.691567 | 0.160 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.691567 | 0.160 |
R-HSA-9734767 | Developmental Cell Lineages | 0.691746 | 0.160 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.697321 | 0.157 |
R-HSA-202424 | Downstream TCR signaling | 0.697321 | 0.157 |
R-HSA-6811438 | Intra-Golgi traffic | 0.699027 | 0.156 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.702553 | 0.153 |
R-HSA-8951664 | Neddylation | 0.702854 | 0.153 |
R-HSA-111996 | Ca-dependent events | 0.706324 | 0.151 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.706324 | 0.151 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.706324 | 0.151 |
R-HSA-165159 | MTOR signalling | 0.706324 | 0.151 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.707710 | 0.150 |
R-HSA-74752 | Signaling by Insulin receptor | 0.712793 | 0.147 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.713444 | 0.147 |
R-HSA-5683826 | Surfactant metabolism | 0.720392 | 0.142 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.720392 | 0.142 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.720392 | 0.142 |
R-HSA-69236 | G1 Phase | 0.720392 | 0.142 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.722736 | 0.141 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.727173 | 0.138 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.727173 | 0.138 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.727173 | 0.138 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.727173 | 0.138 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.727598 | 0.138 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.732387 | 0.135 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.732387 | 0.135 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.733789 | 0.134 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.737105 | 0.132 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.737105 | 0.132 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.741752 | 0.130 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.746329 | 0.127 |
R-HSA-5620924 | Intraflagellar transport | 0.746545 | 0.127 |
R-HSA-425410 | Metal ion SLC transporters | 0.746545 | 0.127 |
R-HSA-9614085 | FOXO-mediated transcription | 0.750836 | 0.124 |
R-HSA-5617833 | Cilium Assembly | 0.752423 | 0.124 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.752692 | 0.123 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.752692 | 0.123 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.752692 | 0.123 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.753891 | 0.123 |
R-HSA-9824446 | Viral Infection Pathways | 0.754396 | 0.122 |
R-HSA-5610787 | Hedgehog 'off' state | 0.755274 | 0.122 |
R-HSA-1474244 | Extracellular matrix organization | 0.756049 | 0.121 |
R-HSA-9748787 | Azathioprine ADME | 0.758691 | 0.120 |
R-HSA-2408557 | Selenocysteine synthesis | 0.759644 | 0.119 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.763946 | 0.117 |
R-HSA-1483255 | PI Metabolism | 0.763946 | 0.117 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.764544 | 0.117 |
R-HSA-192823 | Viral mRNA Translation | 0.768181 | 0.115 |
R-HSA-6794361 | Neurexins and neuroligins | 0.770256 | 0.113 |
R-HSA-9609690 | HCMV Early Events | 0.771570 | 0.113 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.772350 | 0.112 |
R-HSA-111885 | Opioid Signalling | 0.772350 | 0.112 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.775830 | 0.110 |
R-HSA-1221632 | Meiotic synapsis | 0.775830 | 0.110 |
R-HSA-445355 | Smooth Muscle Contraction | 0.775830 | 0.110 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.776454 | 0.110 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.776454 | 0.110 |
R-HSA-9833110 | RSV-host interactions | 0.776454 | 0.110 |
R-HSA-156588 | Glucuronidation | 0.781269 | 0.107 |
R-HSA-1483257 | Phospholipid metabolism | 0.783175 | 0.106 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.786576 | 0.104 |
R-HSA-9753281 | Paracetamol ADME | 0.786576 | 0.104 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.786576 | 0.104 |
R-HSA-1793185 | Chondroitin sulfate/dermatan sulfate metabolism | 0.786576 | 0.104 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.788380 | 0.103 |
R-HSA-9609507 | Protein localization | 0.789182 | 0.103 |
R-HSA-9609646 | HCMV Infection | 0.790326 | 0.102 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.791755 | 0.101 |
R-HSA-5578775 | Ion homeostasis | 0.791755 | 0.101 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.792229 | 0.101 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.792420 | 0.101 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.792431 | 0.101 |
R-HSA-1483166 | Synthesis of PA | 0.796808 | 0.099 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.799742 | 0.097 |
R-HSA-6782135 | Dual incision in TC-NER | 0.801739 | 0.096 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.801739 | 0.096 |
R-HSA-9033241 | Peroxisomal protein import | 0.806551 | 0.093 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.811246 | 0.091 |
R-HSA-379724 | tRNA Aminoacylation | 0.811246 | 0.091 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.817483 | 0.088 |
R-HSA-1268020 | Mitochondrial protein import | 0.820298 | 0.086 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.820298 | 0.086 |
R-HSA-186797 | Signaling by PDGF | 0.820298 | 0.086 |
R-HSA-9707616 | Heme signaling | 0.820298 | 0.086 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.824177 | 0.084 |
R-HSA-6799198 | Complex I biogenesis | 0.824661 | 0.084 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.824661 | 0.084 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.824661 | 0.084 |
R-HSA-5690714 | CD22 mediated BCR regulation | 0.828918 | 0.081 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.828918 | 0.081 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.830650 | 0.081 |
R-HSA-1234174 | Cellular response to hypoxia | 0.833071 | 0.079 |
R-HSA-9711123 | Cellular response to chemical stress | 0.833672 | 0.079 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.839125 | 0.076 |
R-HSA-9830369 | Kidney development | 0.841079 | 0.075 |
R-HSA-72306 | tRNA processing | 0.841555 | 0.075 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.844938 | 0.073 |
R-HSA-212436 | Generic Transcription Pathway | 0.845562 | 0.073 |
R-HSA-2132295 | MHC class II antigen presentation | 0.848800 | 0.071 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.855964 | 0.068 |
R-HSA-8978934 | Metabolism of cofactors | 0.855964 | 0.068 |
R-HSA-5632684 | Hedgehog 'on' state | 0.855964 | 0.068 |
R-HSA-3000178 | ECM proteoglycans | 0.855964 | 0.068 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.855964 | 0.068 |
R-HSA-189445 | Metabolism of porphyrins | 0.855964 | 0.068 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.862876 | 0.064 |
R-HSA-9749641 | Aspirin ADME | 0.862876 | 0.064 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.869457 | 0.061 |
R-HSA-9694635 | Translation of Structural Proteins | 0.875723 | 0.058 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.876573 | 0.057 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.877548 | 0.057 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.878743 | 0.056 |
R-HSA-977225 | Amyloid fiber formation | 0.887370 | 0.052 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.887370 | 0.052 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.892376 | 0.049 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.892778 | 0.049 |
R-HSA-9948299 | Ribosome-associated quality control | 0.893128 | 0.049 |
R-HSA-5358351 | Signaling by Hedgehog | 0.893128 | 0.049 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.897928 | 0.047 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.897928 | 0.047 |
R-HSA-1632852 | Macroautophagy | 0.899225 | 0.046 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.900409 | 0.046 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.902830 | 0.044 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.906852 | 0.042 |
R-HSA-1236974 | ER-Phagosome pathway | 0.909747 | 0.041 |
R-HSA-73884 | Base Excision Repair | 0.911942 | 0.040 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.912215 | 0.040 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.918212 | 0.037 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.918212 | 0.037 |
R-HSA-1989781 | PPARA activates gene expression | 0.925135 | 0.034 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.927687 | 0.033 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.928074 | 0.032 |
R-HSA-9711097 | Cellular response to starvation | 0.929502 | 0.032 |
R-HSA-422356 | Regulation of insulin secretion | 0.931164 | 0.031 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.932839 | 0.030 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.934473 | 0.029 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.937524 | 0.028 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.940226 | 0.027 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.943356 | 0.025 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.944855 | 0.025 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.947508 | 0.023 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.951046 | 0.022 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.957955 | 0.019 |
R-HSA-9007101 | Rab regulation of trafficking | 0.959979 | 0.018 |
R-HSA-2980736 | Peptide hormone metabolism | 0.959979 | 0.018 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.961906 | 0.017 |
R-HSA-416476 | G alpha (q) signalling events | 0.970206 | 0.013 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.972003 | 0.012 |
R-HSA-5576891 | Cardiac conduction | 0.973036 | 0.012 |
R-HSA-9909396 | Circadian clock | 0.973693 | 0.012 |
R-HSA-388396 | GPCR downstream signalling | 0.974826 | 0.011 |
R-HSA-163685 | Integration of energy metabolism | 0.976749 | 0.010 |
R-HSA-397014 | Muscle contraction | 0.977781 | 0.010 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.977781 | 0.010 |
R-HSA-9748784 | Drug ADME | 0.980428 | 0.009 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.983951 | 0.007 |
R-HSA-2142753 | Arachidonate metabolism | 0.984726 | 0.007 |
R-HSA-372790 | Signaling by GPCR | 0.991419 | 0.004 |
R-HSA-611105 | Respiratory electron transport | 0.992170 | 0.003 |
R-HSA-418594 | G alpha (i) signalling events | 0.993232 | 0.003 |
R-HSA-3781865 | Diseases of glycosylation | 0.993252 | 0.003 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.993578 | 0.003 |
R-HSA-983712 | Ion channel transport | 0.994038 | 0.003 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.994601 | 0.002 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.997279 | 0.001 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.998018 | 0.001 |
R-HSA-8957322 | Metabolism of steroids | 0.998062 | 0.001 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.998319 | 0.001 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.998751 | 0.001 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999364 | 0.000 |
R-HSA-112316 | Neuronal System | 0.999528 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999611 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999637 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999818 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999868 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999926 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999975 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999981 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999996 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999998 | 0.000 |
R-HSA-382551 | Transport of small molecules | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CDC7 |
0.869 | 0.265 | 1 | 0.925 |
COT |
0.869 | 0.170 | 2 | 0.855 |
FAM20C |
0.866 | 0.252 | 2 | 0.706 |
MOS |
0.865 | 0.317 | 1 | 0.930 |
CLK3 |
0.864 | 0.217 | 1 | 0.793 |
CAMK2G |
0.864 | 0.242 | 2 | 0.870 |
GRK1 |
0.862 | 0.271 | -2 | 0.831 |
CAMK2B |
0.862 | 0.296 | 2 | 0.868 |
CK2A2 |
0.862 | 0.437 | 1 | 0.846 |
GRK6 |
0.860 | 0.304 | 1 | 0.835 |
NDR2 |
0.857 | 0.126 | -3 | 0.838 |
PIM3 |
0.857 | 0.127 | -3 | 0.830 |
CAMK2A |
0.853 | 0.232 | 2 | 0.879 |
IKKB |
0.852 | 0.039 | -2 | 0.785 |
BMPR1B |
0.852 | 0.265 | 1 | 0.842 |
PRPK |
0.851 | -0.016 | -1 | 0.875 |
CK2A1 |
0.851 | 0.390 | 1 | 0.821 |
RSK2 |
0.850 | 0.119 | -3 | 0.769 |
DSTYK |
0.850 | 0.055 | 2 | 0.876 |
CAMK1B |
0.850 | 0.065 | -3 | 0.855 |
IKKA |
0.849 | 0.125 | -2 | 0.771 |
PIM1 |
0.848 | 0.142 | -3 | 0.773 |
ALK2 |
0.848 | 0.307 | -2 | 0.879 |
TGFBR1 |
0.848 | 0.208 | -2 | 0.865 |
RAF1 |
0.847 | -0.044 | 1 | 0.818 |
MAPKAPK2 |
0.846 | 0.136 | -3 | 0.718 |
LATS2 |
0.846 | 0.103 | -5 | 0.754 |
GRK7 |
0.845 | 0.219 | 1 | 0.747 |
GRK5 |
0.845 | 0.080 | -3 | 0.846 |
LATS1 |
0.845 | 0.215 | -3 | 0.862 |
PDHK4 |
0.844 | -0.134 | 1 | 0.816 |
BMPR2 |
0.844 | -0.023 | -2 | 0.931 |
GCN2 |
0.843 | -0.130 | 2 | 0.789 |
GRK4 |
0.843 | 0.094 | -2 | 0.878 |
BMPR1A |
0.843 | 0.280 | 1 | 0.846 |
CAMK2D |
0.843 | 0.086 | -3 | 0.820 |
PLK3 |
0.842 | 0.176 | 2 | 0.806 |
TBK1 |
0.842 | -0.088 | 1 | 0.706 |
MTOR |
0.842 | -0.107 | 1 | 0.735 |
ATM |
0.841 | 0.063 | 1 | 0.722 |
IKKE |
0.841 | -0.069 | 1 | 0.704 |
PRKD1 |
0.840 | 0.038 | -3 | 0.802 |
NDR1 |
0.840 | 0.028 | -3 | 0.828 |
SKMLCK |
0.839 | 0.045 | -2 | 0.883 |
ACVR2B |
0.839 | 0.210 | -2 | 0.887 |
HUNK |
0.839 | -0.011 | 2 | 0.793 |
P90RSK |
0.839 | 0.047 | -3 | 0.770 |
ATR |
0.838 | -0.056 | 1 | 0.772 |
MARK4 |
0.838 | 0.006 | 4 | 0.680 |
RSK4 |
0.838 | 0.120 | -3 | 0.741 |
PKN3 |
0.838 | -0.013 | -3 | 0.813 |
PLK1 |
0.837 | 0.113 | -2 | 0.897 |
ALK4 |
0.837 | 0.117 | -2 | 0.890 |
ACVR2A |
0.837 | 0.170 | -2 | 0.881 |
PDHK1 |
0.837 | -0.147 | 1 | 0.805 |
CDKL1 |
0.837 | -0.016 | -3 | 0.792 |
CLK2 |
0.837 | 0.168 | -3 | 0.749 |
CAMLCK |
0.836 | 0.009 | -2 | 0.888 |
PRKX |
0.835 | 0.175 | -3 | 0.678 |
PRKD2 |
0.835 | 0.046 | -3 | 0.761 |
P70S6KB |
0.835 | 0.045 | -3 | 0.789 |
MSK1 |
0.834 | 0.106 | -3 | 0.731 |
DAPK2 |
0.834 | -0.010 | -3 | 0.857 |
NIK |
0.834 | -0.085 | -3 | 0.873 |
NUAK2 |
0.834 | -0.028 | -3 | 0.830 |
NEK6 |
0.833 | -0.069 | -2 | 0.917 |
TSSK2 |
0.833 | 0.033 | -5 | 0.823 |
RSK3 |
0.833 | 0.013 | -3 | 0.761 |
ERK5 |
0.833 | -0.052 | 1 | 0.733 |
SRPK1 |
0.833 | 0.031 | -3 | 0.744 |
BCKDK |
0.833 | -0.077 | -1 | 0.815 |
ULK2 |
0.832 | -0.214 | 2 | 0.747 |
TGFBR2 |
0.832 | -0.053 | -2 | 0.889 |
MSK2 |
0.832 | 0.044 | -3 | 0.724 |
AMPKA1 |
0.832 | -0.008 | -3 | 0.840 |
MAPKAPK3 |
0.831 | 0.005 | -3 | 0.758 |
NEK7 |
0.831 | -0.158 | -3 | 0.826 |
NLK |
0.831 | -0.133 | 1 | 0.769 |
PKACG |
0.831 | 0.029 | -2 | 0.782 |
KIS |
0.830 | -0.000 | 1 | 0.640 |
WNK1 |
0.829 | -0.088 | -2 | 0.877 |
DNAPK |
0.829 | 0.076 | 1 | 0.639 |
DLK |
0.829 | -0.082 | 1 | 0.785 |
MST4 |
0.829 | -0.070 | 2 | 0.804 |
PKACB |
0.828 | 0.105 | -2 | 0.723 |
PKCD |
0.827 | -0.017 | 2 | 0.755 |
TSSK1 |
0.826 | 0.000 | -3 | 0.862 |
GSK3A |
0.826 | 0.112 | 4 | 0.497 |
PAK1 |
0.826 | 0.021 | -2 | 0.808 |
SRPK2 |
0.826 | 0.027 | -3 | 0.666 |
MLK1 |
0.825 | -0.188 | 2 | 0.778 |
RIPK3 |
0.825 | -0.179 | 3 | 0.673 |
AMPKA2 |
0.825 | -0.010 | -3 | 0.810 |
PLK2 |
0.825 | 0.173 | -3 | 0.823 |
AURC |
0.825 | 0.054 | -2 | 0.707 |
ULK1 |
0.825 | -0.195 | -3 | 0.802 |
CDKL5 |
0.824 | -0.048 | -3 | 0.781 |
BRSK1 |
0.824 | 0.016 | -3 | 0.780 |
AURA |
0.824 | 0.064 | -2 | 0.680 |
PASK |
0.824 | 0.143 | -3 | 0.841 |
ICK |
0.824 | -0.046 | -3 | 0.824 |
CLK4 |
0.824 | 0.054 | -3 | 0.761 |
PKN2 |
0.823 | -0.095 | -3 | 0.821 |
CHAK2 |
0.823 | -0.115 | -1 | 0.863 |
MASTL |
0.823 | -0.268 | -2 | 0.843 |
CAMK4 |
0.822 | -0.063 | -3 | 0.806 |
HIPK4 |
0.822 | -0.064 | 1 | 0.715 |
MEK1 |
0.822 | -0.069 | 2 | 0.822 |
TTBK2 |
0.822 | -0.139 | 2 | 0.680 |
JNK3 |
0.822 | 0.040 | 1 | 0.601 |
MARK3 |
0.822 | 0.015 | 4 | 0.627 |
CHK1 |
0.821 | 0.028 | -3 | 0.821 |
GSK3B |
0.821 | 0.060 | 4 | 0.485 |
ANKRD3 |
0.821 | -0.192 | 1 | 0.798 |
SRPK3 |
0.821 | -0.003 | -3 | 0.715 |
MARK2 |
0.821 | -0.005 | 4 | 0.599 |
QSK |
0.820 | -0.014 | 4 | 0.648 |
GRK2 |
0.820 | 0.007 | -2 | 0.756 |
PKR |
0.820 | -0.075 | 1 | 0.786 |
JNK2 |
0.820 | 0.041 | 1 | 0.564 |
CDK8 |
0.820 | -0.041 | 1 | 0.606 |
MYLK4 |
0.820 | 0.017 | -2 | 0.813 |
WNK3 |
0.820 | -0.284 | 1 | 0.762 |
DYRK2 |
0.820 | 0.002 | 1 | 0.626 |
TLK2 |
0.819 | -0.026 | 1 | 0.732 |
BRAF |
0.818 | 0.022 | -4 | 0.856 |
NIM1 |
0.818 | -0.117 | 3 | 0.744 |
YSK4 |
0.817 | -0.108 | 1 | 0.735 |
MARK1 |
0.817 | 0.004 | 4 | 0.644 |
NEK9 |
0.816 | -0.258 | 2 | 0.786 |
AURB |
0.816 | 0.028 | -2 | 0.704 |
CLK1 |
0.816 | 0.027 | -3 | 0.739 |
SIK |
0.816 | -0.030 | -3 | 0.751 |
DRAK1 |
0.815 | -0.052 | 1 | 0.723 |
PAK3 |
0.815 | -0.069 | -2 | 0.809 |
CDK1 |
0.815 | -0.010 | 1 | 0.575 |
PIM2 |
0.815 | 0.031 | -3 | 0.736 |
DYRK4 |
0.814 | 0.050 | 1 | 0.564 |
PRKD3 |
0.814 | -0.043 | -3 | 0.732 |
RIPK1 |
0.814 | -0.265 | 1 | 0.745 |
PAK2 |
0.813 | -0.049 | -2 | 0.798 |
NUAK1 |
0.813 | -0.086 | -3 | 0.786 |
GRK3 |
0.812 | 0.032 | -2 | 0.713 |
MLK3 |
0.812 | -0.144 | 2 | 0.711 |
PKACA |
0.812 | 0.071 | -2 | 0.674 |
MNK2 |
0.811 | -0.053 | -2 | 0.824 |
QIK |
0.811 | -0.143 | -3 | 0.815 |
MNK1 |
0.811 | -0.021 | -2 | 0.838 |
VRK2 |
0.811 | -0.330 | 1 | 0.816 |
CAMK1G |
0.811 | -0.038 | -3 | 0.748 |
SGK3 |
0.810 | 0.001 | -3 | 0.746 |
MLK2 |
0.810 | -0.278 | 2 | 0.774 |
CDK19 |
0.809 | -0.059 | 1 | 0.566 |
TLK1 |
0.809 | -0.062 | -2 | 0.896 |
CAMK1D |
0.809 | 0.039 | -3 | 0.676 |
PAK6 |
0.809 | -0.008 | -2 | 0.743 |
MELK |
0.809 | -0.112 | -3 | 0.792 |
MLK4 |
0.809 | -0.144 | 2 | 0.695 |
AKT2 |
0.809 | 0.000 | -3 | 0.681 |
MEKK3 |
0.809 | -0.139 | 1 | 0.745 |
BRSK2 |
0.809 | -0.111 | -3 | 0.801 |
DCAMKL1 |
0.808 | -0.029 | -3 | 0.779 |
GAK |
0.808 | 0.053 | 1 | 0.805 |
SMG1 |
0.808 | -0.118 | 1 | 0.715 |
PKCG |
0.807 | -0.112 | 2 | 0.703 |
PKCB |
0.807 | -0.096 | 2 | 0.696 |
PKG2 |
0.807 | -0.014 | -2 | 0.721 |
P38B |
0.807 | -0.017 | 1 | 0.568 |
CDK7 |
0.806 | -0.090 | 1 | 0.624 |
PRP4 |
0.806 | -0.006 | -3 | 0.783 |
PERK |
0.806 | -0.152 | -2 | 0.909 |
CDK13 |
0.806 | -0.071 | 1 | 0.595 |
PKCA |
0.806 | -0.105 | 2 | 0.688 |
P38A |
0.805 | -0.054 | 1 | 0.632 |
IRE1 |
0.805 | -0.261 | 1 | 0.722 |
NEK2 |
0.805 | -0.200 | 2 | 0.753 |
DAPK3 |
0.805 | 0.052 | -3 | 0.792 |
SMMLCK |
0.805 | -0.033 | -3 | 0.803 |
P38G |
0.805 | -0.018 | 1 | 0.489 |
SSTK |
0.804 | -0.023 | 4 | 0.626 |
PLK4 |
0.804 | -0.143 | 2 | 0.614 |
MAPKAPK5 |
0.804 | -0.115 | -3 | 0.690 |
HIPK2 |
0.804 | -0.005 | 1 | 0.546 |
PKCH |
0.803 | -0.131 | 2 | 0.682 |
IRE2 |
0.803 | -0.204 | 2 | 0.691 |
HRI |
0.803 | -0.209 | -2 | 0.915 |
HIPK1 |
0.803 | -0.022 | 1 | 0.643 |
CDK2 |
0.802 | -0.083 | 1 | 0.650 |
CK1E |
0.802 | -0.055 | -3 | 0.524 |
JNK1 |
0.802 | 0.020 | 1 | 0.560 |
DAPK1 |
0.802 | 0.051 | -3 | 0.771 |
CDK5 |
0.802 | -0.072 | 1 | 0.636 |
DCAMKL2 |
0.802 | -0.060 | -3 | 0.805 |
P70S6K |
0.801 | -0.023 | -3 | 0.693 |
MEKK1 |
0.801 | -0.215 | 1 | 0.760 |
DYRK1B |
0.801 | -0.011 | 1 | 0.589 |
DYRK1A |
0.800 | -0.043 | 1 | 0.674 |
TAO3 |
0.799 | -0.114 | 1 | 0.745 |
ERK2 |
0.799 | -0.081 | 1 | 0.598 |
CDK3 |
0.799 | -0.014 | 1 | 0.519 |
CDK18 |
0.799 | -0.061 | 1 | 0.546 |
PKCZ |
0.799 | -0.162 | 2 | 0.726 |
ERK1 |
0.799 | -0.061 | 1 | 0.557 |
MEK5 |
0.799 | -0.351 | 2 | 0.789 |
ZAK |
0.798 | -0.230 | 1 | 0.733 |
MEKK2 |
0.798 | -0.208 | 2 | 0.764 |
CHAK1 |
0.797 | -0.277 | 2 | 0.698 |
SNRK |
0.797 | -0.243 | 2 | 0.656 |
CAMKK1 |
0.797 | -0.137 | -2 | 0.801 |
P38D |
0.797 | -0.002 | 1 | 0.512 |
AKT1 |
0.796 | -0.005 | -3 | 0.697 |
PDHK3_TYR |
0.796 | 0.408 | 4 | 0.771 |
CDK12 |
0.796 | -0.079 | 1 | 0.565 |
PHKG1 |
0.796 | -0.206 | -3 | 0.813 |
CDK17 |
0.796 | -0.064 | 1 | 0.496 |
CDK9 |
0.796 | -0.097 | 1 | 0.597 |
DYRK3 |
0.796 | -0.013 | 1 | 0.643 |
WNK4 |
0.795 | -0.218 | -2 | 0.864 |
PINK1 |
0.795 | -0.247 | 1 | 0.763 |
TTBK1 |
0.795 | -0.162 | 2 | 0.610 |
NEK5 |
0.795 | -0.240 | 1 | 0.760 |
CK1D |
0.795 | -0.047 | -3 | 0.468 |
MST3 |
0.794 | -0.160 | 2 | 0.785 |
CAMKK2 |
0.794 | -0.114 | -2 | 0.794 |
SGK1 |
0.793 | 0.038 | -3 | 0.598 |
MST2 |
0.793 | -0.092 | 1 | 0.764 |
CK1G1 |
0.792 | -0.092 | -3 | 0.536 |
MRCKA |
0.792 | 0.034 | -3 | 0.746 |
SBK |
0.791 | 0.037 | -3 | 0.561 |
GCK |
0.791 | -0.105 | 1 | 0.748 |
TAK1 |
0.790 | -0.109 | 1 | 0.782 |
ALPHAK3 |
0.790 | 0.131 | -1 | 0.823 |
CK1A2 |
0.790 | -0.064 | -3 | 0.467 |
EEF2K |
0.790 | -0.093 | 3 | 0.763 |
TAO2 |
0.790 | -0.186 | 2 | 0.804 |
NEK8 |
0.789 | -0.243 | 2 | 0.769 |
CDK16 |
0.789 | -0.044 | 1 | 0.516 |
LKB1 |
0.789 | -0.162 | -3 | 0.818 |
HIPK3 |
0.788 | -0.090 | 1 | 0.640 |
MPSK1 |
0.788 | -0.128 | 1 | 0.726 |
PAK5 |
0.788 | -0.050 | -2 | 0.680 |
PDHK4_TYR |
0.788 | 0.248 | 2 | 0.875 |
CDK14 |
0.788 | -0.082 | 1 | 0.587 |
PHKG2 |
0.787 | -0.160 | -3 | 0.790 |
PAK4 |
0.787 | -0.032 | -2 | 0.688 |
PKCT |
0.786 | -0.150 | 2 | 0.687 |
MAP2K6_TYR |
0.786 | 0.213 | -1 | 0.904 |
CDK10 |
0.786 | -0.049 | 1 | 0.573 |
CAMK1A |
0.786 | -0.018 | -3 | 0.644 |
NEK11 |
0.786 | -0.302 | 1 | 0.740 |
ROCK2 |
0.785 | 0.017 | -3 | 0.775 |
MRCKB |
0.785 | 0.005 | -3 | 0.728 |
PDK1 |
0.785 | -0.190 | 1 | 0.744 |
IRAK4 |
0.784 | -0.292 | 1 | 0.728 |
ERK7 |
0.784 | -0.057 | 2 | 0.517 |
MST1 |
0.783 | -0.136 | 1 | 0.739 |
AKT3 |
0.783 | -0.002 | -3 | 0.613 |
TNIK |
0.783 | -0.136 | 3 | 0.771 |
DMPK1 |
0.783 | 0.054 | -3 | 0.753 |
PDHK1_TYR |
0.783 | 0.176 | -1 | 0.918 |
MAP2K4_TYR |
0.781 | 0.098 | -1 | 0.899 |
LRRK2 |
0.781 | -0.251 | 2 | 0.804 |
IRAK1 |
0.781 | -0.351 | -1 | 0.759 |
PKCE |
0.781 | -0.092 | 2 | 0.680 |
BMPR2_TYR |
0.780 | 0.088 | -1 | 0.902 |
PKCI |
0.780 | -0.152 | 2 | 0.694 |
HPK1 |
0.780 | -0.147 | 1 | 0.731 |
MINK |
0.780 | -0.212 | 1 | 0.737 |
HGK |
0.779 | -0.200 | 3 | 0.761 |
VRK1 |
0.778 | -0.264 | 2 | 0.782 |
NEK4 |
0.778 | -0.293 | 1 | 0.729 |
CHK2 |
0.777 | -0.074 | -3 | 0.623 |
MEK2 |
0.777 | -0.248 | 2 | 0.769 |
SLK |
0.777 | -0.118 | -2 | 0.751 |
TESK1_TYR |
0.776 | -0.069 | 3 | 0.830 |
MAK |
0.776 | -0.012 | -2 | 0.729 |
MAP2K7_TYR |
0.776 | -0.086 | 2 | 0.843 |
NEK1 |
0.776 | -0.255 | 1 | 0.738 |
MAP3K15 |
0.775 | -0.293 | 1 | 0.713 |
CRIK |
0.775 | 0.029 | -3 | 0.691 |
EPHA6 |
0.775 | 0.063 | -1 | 0.895 |
EPHA4 |
0.775 | 0.128 | 2 | 0.811 |
TTK |
0.774 | -0.047 | -2 | 0.908 |
LOK |
0.774 | -0.188 | -2 | 0.806 |
PKN1 |
0.774 | -0.122 | -3 | 0.707 |
STK33 |
0.774 | -0.199 | 2 | 0.619 |
KHS1 |
0.773 | -0.146 | 1 | 0.727 |
KHS2 |
0.773 | -0.111 | 1 | 0.735 |
PBK |
0.772 | -0.092 | 1 | 0.733 |
MEKK6 |
0.771 | -0.341 | 1 | 0.734 |
RIPK2 |
0.771 | -0.301 | 1 | 0.698 |
CDK4 |
0.771 | -0.089 | 1 | 0.553 |
PINK1_TYR |
0.770 | -0.161 | 1 | 0.799 |
YANK3 |
0.770 | -0.068 | 2 | 0.433 |
EPHB4 |
0.770 | 0.026 | -1 | 0.871 |
CDK6 |
0.770 | -0.103 | 1 | 0.568 |
ROCK1 |
0.769 | -0.011 | -3 | 0.740 |
PKMYT1_TYR |
0.769 | -0.181 | 3 | 0.793 |
OSR1 |
0.769 | -0.137 | 2 | 0.758 |
MOK |
0.769 | -0.052 | 1 | 0.643 |
BIKE |
0.768 | -0.022 | 1 | 0.689 |
TXK |
0.768 | 0.109 | 1 | 0.857 |
YSK1 |
0.768 | -0.233 | 2 | 0.751 |
BUB1 |
0.767 | -0.091 | -5 | 0.760 |
SRMS |
0.765 | 0.051 | 1 | 0.853 |
EPHB2 |
0.764 | 0.073 | -1 | 0.853 |
INSRR |
0.763 | 0.003 | 3 | 0.676 |
FER |
0.763 | -0.041 | 1 | 0.868 |
PKG1 |
0.763 | -0.063 | -2 | 0.642 |
DDR1 |
0.762 | -0.141 | 4 | 0.681 |
EPHB1 |
0.762 | 0.008 | 1 | 0.835 |
RET |
0.761 | -0.180 | 1 | 0.744 |
ASK1 |
0.760 | -0.227 | 1 | 0.711 |
EPHB3 |
0.760 | 0.011 | -1 | 0.852 |
LIMK2_TYR |
0.760 | -0.204 | -3 | 0.878 |
YES1 |
0.758 | -0.066 | -1 | 0.841 |
HASPIN |
0.758 | -0.111 | -1 | 0.678 |
EPHA5 |
0.758 | 0.096 | 2 | 0.803 |
CK1A |
0.757 | -0.070 | -3 | 0.381 |
LIMK1_TYR |
0.756 | -0.304 | 2 | 0.811 |
FGFR2 |
0.756 | -0.103 | 3 | 0.739 |
MST1R |
0.755 | -0.259 | 3 | 0.729 |
JAK3 |
0.755 | -0.128 | 1 | 0.733 |
EPHA7 |
0.755 | 0.003 | 2 | 0.799 |
EPHA3 |
0.754 | -0.028 | 2 | 0.779 |
TYK2 |
0.754 | -0.311 | 1 | 0.748 |
FGR |
0.753 | -0.159 | 1 | 0.803 |
FYN |
0.753 | 0.038 | -1 | 0.813 |
BLK |
0.753 | 0.000 | -1 | 0.845 |
NEK3 |
0.753 | -0.352 | 1 | 0.697 |
ABL2 |
0.752 | -0.130 | -1 | 0.830 |
TYRO3 |
0.752 | -0.267 | 3 | 0.707 |
CSF1R |
0.752 | -0.212 | 3 | 0.700 |
TAO1 |
0.751 | -0.230 | 1 | 0.675 |
FLT1 |
0.751 | -0.029 | -1 | 0.891 |
MYO3A |
0.751 | -0.237 | 1 | 0.724 |
JAK2 |
0.751 | -0.281 | 1 | 0.742 |
MYO3B |
0.751 | -0.243 | 2 | 0.758 |
PTK2 |
0.751 | 0.076 | -1 | 0.836 |
ITK |
0.751 | -0.105 | -1 | 0.811 |
HCK |
0.750 | -0.135 | -1 | 0.835 |
STLK3 |
0.750 | -0.216 | 1 | 0.701 |
LCK |
0.750 | -0.076 | -1 | 0.840 |
ROS1 |
0.749 | -0.298 | 3 | 0.674 |
KIT |
0.749 | -0.146 | 3 | 0.710 |
SYK |
0.749 | 0.103 | -1 | 0.829 |
AAK1 |
0.749 | -0.000 | 1 | 0.584 |
MERTK |
0.748 | -0.113 | 3 | 0.705 |
BMX |
0.747 | -0.064 | -1 | 0.732 |
FGFR3 |
0.747 | -0.086 | 3 | 0.713 |
TEC |
0.747 | -0.091 | -1 | 0.740 |
EPHA8 |
0.746 | -0.011 | -1 | 0.842 |
EGFR |
0.746 | -0.008 | 1 | 0.636 |
TNK2 |
0.746 | -0.177 | 3 | 0.672 |
NTRK1 |
0.746 | -0.130 | -1 | 0.843 |
ABL1 |
0.745 | -0.178 | -1 | 0.820 |
FGFR1 |
0.745 | -0.192 | 3 | 0.697 |
NEK10_TYR |
0.745 | -0.177 | 1 | 0.637 |
CK1G3 |
0.744 | -0.049 | -3 | 0.335 |
FLT3 |
0.744 | -0.224 | 3 | 0.696 |
TEK |
0.744 | -0.200 | 3 | 0.652 |
PDGFRB |
0.744 | -0.255 | 3 | 0.714 |
KDR |
0.744 | -0.191 | 3 | 0.673 |
ERBB2 |
0.744 | -0.148 | 1 | 0.721 |
AXL |
0.743 | -0.196 | 3 | 0.699 |
PTK2B |
0.743 | -0.060 | -1 | 0.773 |
MET |
0.743 | -0.154 | 3 | 0.700 |
DDR2 |
0.742 | -0.064 | 3 | 0.663 |
LTK |
0.742 | -0.161 | 3 | 0.668 |
EPHA2 |
0.741 | 0.008 | -1 | 0.822 |
PTK6 |
0.740 | -0.209 | -1 | 0.748 |
FLT4 |
0.739 | -0.169 | 3 | 0.683 |
BTK |
0.739 | -0.242 | -1 | 0.764 |
LYN |
0.739 | -0.111 | 3 | 0.635 |
FGFR4 |
0.739 | -0.048 | -1 | 0.818 |
FRK |
0.739 | -0.131 | -1 | 0.849 |
ALK |
0.737 | -0.219 | 3 | 0.636 |
INSR |
0.737 | -0.168 | 3 | 0.649 |
EPHA1 |
0.737 | -0.181 | 3 | 0.672 |
CSK |
0.736 | -0.113 | 2 | 0.798 |
SRC |
0.735 | -0.090 | -1 | 0.810 |
TNNI3K_TYR |
0.735 | -0.237 | 1 | 0.750 |
NTRK3 |
0.734 | -0.164 | -1 | 0.797 |
TNK1 |
0.733 | -0.279 | 3 | 0.693 |
NTRK2 |
0.733 | -0.252 | 3 | 0.679 |
JAK1 |
0.733 | -0.264 | 1 | 0.691 |
WEE1_TYR |
0.733 | -0.222 | -1 | 0.766 |
YANK2 |
0.733 | -0.106 | 2 | 0.456 |
PDGFRA |
0.733 | -0.357 | 3 | 0.707 |
MATK |
0.731 | -0.148 | -1 | 0.770 |
ERBB4 |
0.731 | -0.036 | 1 | 0.671 |
IGF1R |
0.730 | -0.108 | 3 | 0.602 |
CK1G2 |
0.728 | -0.050 | -3 | 0.440 |
MUSK |
0.711 | -0.238 | 1 | 0.618 |
FES |
0.709 | -0.168 | -1 | 0.715 |
ZAP70 |
0.706 | -0.066 | -1 | 0.741 |