Motif 588 (n=633)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0A6YYL1 | ST20-MTHFS | S73 | ochoa | 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) | None |
A0A0B4J293 | None | S315 | ochoa | RNF31 protein | None |
A0A0U1RQV5 | None | S18 | ochoa | Eukaryotic translation initiation factor 6 | None |
A0AVT1 | UBA6 | S36 | ochoa | Ubiquitin-like modifier-activating enzyme 6 (Ubiquitin-activating enzyme 6) (EC 6.2.1.45) (Monocyte protein 4) (MOP-4) (Ubiquitin-activating enzyme E1-like protein 2) (E1-L2) | Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP (PubMed:35970836, PubMed:35986001). Specific for ubiquitin, does not activate ubiquitin-like peptides. Also activates UBD/FAT10 conjugation via adenylation of its C-terminal glycine (PubMed:17889673, PubMed:35970836, PubMed:35986001). Differs from UBE1 in its specificity for substrate E2 charging. Does not charge cell cycle E2s, such as CDC34. Essential for embryonic development. Isoform 2 may play a key role in ubiquitin system and may influence spermatogenesis and male fertility. {ECO:0000269|PubMed:15202508, ECO:0000269|PubMed:17597759, ECO:0000269|PubMed:17889673, ECO:0000269|PubMed:35970836, ECO:0000269|PubMed:35986001}. |
A2RU67 | FAM234B | S30 | ochoa | Protein FAM234B | None |
A3KN83 | SBNO1 | S906 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A6NC98 | CCDC88B | S1253 | ochoa | Coiled-coil domain-containing protein 88B (Brain leucine zipper domain-containing protein) (Gipie) (Hook-related protein 3) (HkRP3) | Acts as a positive regulator of T-cell maturation and inflammatory function. Required for several functions of T-cells, in both the CD4(+) and the CD8(+) compartments and this includes expression of cell surface markers of activation, proliferation, and cytokine production in response to specific or non-specific stimulation (By similarity). Enhances NK cell cytotoxicity by positively regulating polarization of microtubule-organizing center (MTOC) to cytotoxic synapse, lytic granule transport along microtubules, and dynein-mediated clustering to MTOC (PubMed:25762780). Interacts with HSPA5 and stabilizes the interaction between HSPA5 and ERN1, leading to suppression of ERN1-induced JNK activation and endoplasmic reticulum stress-induced apoptosis (PubMed:21289099). {ECO:0000250|UniProtKB:Q4QRL3, ECO:0000269|PubMed:21289099, ECO:0000269|PubMed:25762780}. |
E9PCH4 | None | S891 | ochoa | Rap guanine nucleotide exchange factor 6 | None |
O00124 | UBXN8 | S144 | ochoa | UBX domain-containing protein 8 (Reproduction 8 protein) (Rep-8 protein) (UBX domain-containing protein 6) | Involved in endoplasmic reticulum-associated degradation (ERAD) for misfolded lumenal proteins, possibly by tethering VCP to the endoplasmic reticulum membrane. May play a role in reproduction. {ECO:0000269|PubMed:21949850}. |
O00159 | MYO1C | S864 | ochoa | Unconventional myosin-Ic (Myosin I beta) (MMI-beta) (MMIb) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails are presumed to bind to membranous compartments, which would be moved relative to actin filaments. Involved in glucose transporter recycling in response to insulin by regulating movement of intracellular GLUT4-containing vesicles to the plasma membrane. Component of the hair cell's (the sensory cells of the inner ear) adaptation-motor complex. Acts as a mediator of adaptation of mechanoelectrical transduction in stereocilia of vestibular hair cells. Binds phosphoinositides and links the actin cytoskeleton to cellular membranes. {ECO:0000269|PubMed:24636949}.; FUNCTION: [Isoform 3]: Involved in regulation of transcription. Associated with transcriptional active ribosomal genes. Appears to cooperate with the WICH chromatin-remodeling complex to facilitate transcription. Necessary for the formation of the first phosphodiester bond during transcription initiation. {ECO:0000250|UniProtKB:Q9WTI7}. |
O00186 | STXBP3 | S464 | ochoa | Syntaxin-binding protein 3 (Platelet Sec1 protein) (PSP) (Protein unc-18 homolog 3) (Unc18-3) (Protein unc-18 homolog C) (Unc-18C) | Together with STX4 and VAMP2, may play a role in insulin-dependent movement of GLUT4 and in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in adipocytes. {ECO:0000250}. |
O00287 | RFXAP | S241 | ochoa | Regulatory factor X-associated protein (RFX-associated protein) (RFX DNA-binding complex 36 kDa subunit) | Part of the RFX complex that binds to the X-box of MHC II promoters. |
O00763 | ACACB | S1350 | ochoa | Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) | Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism (PubMed:16854592, PubMed:19236960, PubMed:19900410, PubMed:20457939, PubMed:20952656, PubMed:26976583). Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:19236960, PubMed:20457939, PubMed:20952656, PubMed:26976583). Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation (By similarity). Together with its cytosolic isozyme ACACA, which is involved in de novo fatty acid biosynthesis, promotes lipid storage (By similarity). {ECO:0000250|UniProtKB:E9Q4Z2, ECO:0000269|PubMed:16854592, ECO:0000269|PubMed:19236960, ECO:0000269|PubMed:19900410, ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:26976583}. |
O14639 | ABLIM1 | S540 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14646 | CHD1 | S1406 | ochoa | Chromodomain-helicase-DNA-binding protein 1 (CHD-1) (EC 3.6.4.-) (ATP-dependent helicase CHD1) | ATP-dependent chromatin-remodeling factor which functions as substrate recognition component of the transcription regulatory histone acetylation (HAT) complex SAGA. Regulates polymerase II transcription. Also required for efficient transcription by RNA polymerase I, and more specifically the polymerase I transcription termination step. Regulates negatively DNA replication. Not only involved in transcription-related chromatin-remodeling, but also required to maintain a specific chromatin configuration across the genome. Is also associated with histone deacetylase (HDAC) activity (By similarity). Required for the bridging of SNF2, the FACT complex, the PAF complex as well as the U2 snRNP complex to H3K4me3. Functions to modulate the efficiency of pre-mRNA splicing in part through physical bridging of spliceosomal components to H3K4me3 (PubMed:18042460, PubMed:28866611). Required for maintaining open chromatin and pluripotency in embryonic stem cells (By similarity). {ECO:0000250|UniProtKB:P40201, ECO:0000269|PubMed:18042460, ECO:0000269|PubMed:28866611}. |
O14917 | PCDH17 | S1111 | ochoa | Protocadherin-17 (Protocadherin-68) | Potential calcium-dependent cell-adhesion protein. |
O14936 | CASK | S151 | psp | Peripheral plasma membrane protein CASK (hCASK) (EC 2.7.11.1) (Calcium/calmodulin-dependent serine protein kinase) (Protein lin-2 homolog) | Multidomain scaffolding Mg(2+)-independent protein kinase that catalyzes the phosphotransfer from ATP to proteins such as NRXN1, and plays a role in synaptic transmembrane protein anchoring and ion channel trafficking (PubMed:18423203). Contributes to neural development and regulation of gene expression via interaction with the transcription factor TBR1. Binds to cell-surface proteins, including amyloid precursor protein, neurexins and syndecans. May mediate a link between the extracellular matrix and the actin cytoskeleton via its interaction with syndecan and with the actin/spectrin-binding protein 4.1. Component of the LIN-10-LIN-2-LIN-7 complex, which associates with the motor protein KIF17 to transport vesicles containing N-methyl-D-aspartate (NMDA) receptor subunit NR2B along microtubules (By similarity). {ECO:0000250|UniProtKB:O70589, ECO:0000269|PubMed:18423203}. |
O14966 | RAB29 | S177 | ochoa | Ras-related protein Rab-7L1 (Rab-7-like protein 1) (Ras-related protein Rab-29) | The small GTPases Rab are key regulators in vesicle trafficking (PubMed:24788816). Essential for maintaining the integrity of the endosome-trans-Golgi network structure (By similarity). Together with LRRK2, plays a role in the retrograde trafficking pathway for recycling proteins, such as mannose 6 phosphate receptor (M6PR), between lysosomes and the Golgi apparatus in a retromer-dependent manner (PubMed:24788816). Recruits LRRK2 to the Golgi complex and stimulates LRRK2 kinase activity (PubMed:29212815, PubMed:38127736). Stimulates phosphorylation of RAB10 'Thr-73' by LRRK2 (PubMed:38127736). Regulates neuronal process morphology in the intact central nervous system (CNS) (By similarity). May play a role in the formation of typhoid toxin transport intermediates during Salmonella enterica serovar Typhi (S.typhi) epithelial cell infection (PubMed:22042847). {ECO:0000250|UniProtKB:Q63481, ECO:0000269|PubMed:22042847, ECO:0000269|PubMed:24788816, ECO:0000269|PubMed:29212815, ECO:0000269|PubMed:38127736}. |
O15015 | ZNF646 | S38 | ochoa | Zinc finger protein 646 | May be involved in transcriptional regulation. |
O15042 | U2SURP | S175 | ochoa | U2 snRNP-associated SURP motif-containing protein (140 kDa Ser/Arg-rich domain protein) (U2-associated protein SR140) | None |
O15061 | SYNM | S489 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15063 | GARRE1 | S574 | ochoa | Granule associated Rac and RHOG effector protein 1 (GARRE1) | Acts as an effector of RAC1 (PubMed:31871319). Associates with CCR4-NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA-mediated repression, translational repression during translational initiation and general transcription regulation (PubMed:29395067). May also play a role in miRNA silencing machinery (PubMed:29395067). {ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:31871319}. |
O15085 | ARHGEF11 | S216 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15085 | ARHGEF11 | S1300 | ochoa | Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. Involved in neurotrophin-induced neurite outgrowth. {ECO:0000269|PubMed:21670212}. |
O15090 | ZNF536 | S1141 | ochoa | Zinc finger protein 536 | Transcriptional repressor that negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription (PubMed:19398580). Binds and interrupts RARA from binding to retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (PubMed:19398580). Recognizes and binds 2 copies of the core DNA sequence 5'-CCCCCA-3' (PubMed:14621294). {ECO:0000269|PubMed:14621294, ECO:0000269|PubMed:19398580}. |
O15151 | MDM4 | S403 | psp | Protein Mdm4 (Double minute 4 protein) (Mdm2-like p53-binding protein) (Protein Mdmx) (p53-binding protein Mdm4) | Along with MDM2, contributes to TP53 regulation (PubMed:32300648). Inhibits p53/TP53- and TP73/p73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Inhibits degradation of MDM2. Can reverse MDM2-targeted degradation of TP53 while maintaining suppression of TP53 transactivation and apoptotic functions. {ECO:0000269|PubMed:16163388, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:32300648}. |
O15226 | NKRF | S625 | ochoa | NF-kappa-B-repressing factor (NFkB-repressing factor) (NRF) (Protein ITBA4) | Enhances the ATPase activity of DHX15 by acting like a brace that tethers mobile sections of DHX15 together, stabilizing a functional conformation with high RNA affinity of DHX15 (PubMed:12381793). Involved in the constitutive silencing of the interferon beta promoter, independently of the virus-induced signals, and in the inhibition of the basal and cytokine-induced iNOS promoter activity (PubMed:12381793). Also involved in the regulation of IL-8 transcription (PubMed:12381793). May also act as a DNA-binding transcription regulator: interacts with a specific negative regulatory element (NRE) 5'-AATTCCTCTGA-3' to mediate transcriptional repression of certain NK-kappa-B responsive genes (PubMed:10562553). {ECO:0000269|PubMed:10562553, ECO:0000269|PubMed:12381793}. |
O15400 | STX7 | S45 | ochoa | Syntaxin-7 | May be involved in protein trafficking from the plasma membrane to the early endosome (EE) as well as in homotypic fusion of endocytic organelles. Mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. |
O15417 | TNRC18 | S1735 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15438 | ABCC3 | S281 | ochoa | ATP-binding cassette sub-family C member 3 (EC 7.6.2.-) (EC 7.6.2.2) (EC 7.6.2.3) (Canalicular multispecific organic anion transporter 2) (Multi-specific organic anion transporter D) (MOAT-D) (Multidrug resistance-associated protein 3) | ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes (PubMed:10359813, PubMed:11581266, PubMed:15083066). Transports glucuronide conjugates such as bilirubin diglucuronide, estradiol-17-beta-o-glucuronide and GSH conjugates such as leukotriene C4 (LTC4) (PubMed:11581266, PubMed:15083066). Transports also various bile salts (taurocholate, glycocholate, taurochenodeoxycholate-3-sulfate, taurolithocholate- 3-sulfate) (By similarity). Does not contribute substantially to bile salt physiology but provides an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes (By similarity). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can confer resistance to various anticancer drugs, methotrexate, tenoposide and etoposide, by decreasing accumulation of these drugs in cells (PubMed:10359813, PubMed:11581266). {ECO:0000250|UniProtKB:O88563, ECO:0000269|PubMed:10359813, ECO:0000269|PubMed:11581266, ECO:0000269|PubMed:15083066, ECO:0000305|PubMed:35307651}. |
O43164 | PJA2 | S253 | ochoa | E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) | Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}. |
O43164 | PJA2 | S454 | ochoa | E3 ubiquitin-protein ligase Praja-2 (Praja2) (EC 2.3.2.27) (RING finger protein 131) (RING-type E3 ubiquitin transferase Praja-2) | Has E2-dependent E3 ubiquitin-protein ligase activity (PubMed:12036302, PubMed:21423175). Responsible for ubiquitination of cAMP-dependent protein kinase type I and type II-alpha/beta regulatory subunits and for targeting them for proteasomal degradation. Essential for PKA-mediated long-term memory processes (PubMed:21423175). Through the ubiquitination of MFHAS1, positively regulates the TLR2 signaling pathway that leads to the activation of the downstream p38 and JNK MAP kinases and promotes the polarization of macrophages toward the pro-inflammatory M1 phenotype (PubMed:28471450). Plays a role in ciliogenesis by ubiquitinating OFD1 (PubMed:33934390). {ECO:0000269|PubMed:12036302, ECO:0000269|PubMed:21423175, ECO:0000269|PubMed:28471450, ECO:0000269|PubMed:33934390}. |
O43166 | SIPA1L1 | S1700 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43298 | ZBTB43 | S207 | ochoa | Zinc finger and BTB domain-containing protein 43 (Zinc finger and BTB domain-containing protein 22B) (Zinc finger protein 297B) (ZnF-x) | May be involved in transcriptional regulation. |
O43683 | BUB1 | S314 | ochoa|psp | Mitotic checkpoint serine/threonine-protein kinase BUB1 (hBUB1) (EC 2.7.11.1) (BUB1A) | Serine/threonine-protein kinase that performs 2 crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Has a key role in the assembly of checkpoint proteins at the kinetochore, being required for the subsequent localization of CENPF, BUB1B, CENPE and MAD2L1. Required for the kinetochore localization of PLK1. Required for centromeric enrichment of AUKRB in prometaphase. Plays an important role in defining SGO1 localization and thereby affects sister chromatid cohesion. Promotes the centromeric localization of TOP2A (PubMed:35044816). Acts as a substrate for anaphase-promoting complex or cyclosome (APC/C) in complex with its activator CDH1 (APC/C-Cdh1). Necessary for ensuring proper chromosome segregation and binding to BUB3 is essential for this function. Can regulate chromosome segregation in a kinetochore-independent manner. Can phosphorylate BUB3. The BUB1-BUB3 complex plays a role in the inhibition of APC/C when spindle-assembly checkpoint is activated and inhibits the ubiquitin ligase activity of APC/C by phosphorylating its activator CDC20. This complex can also phosphorylate MAD1L1. Kinase activity is essential for inhibition of APC/CCDC20 and for chromosome alignment but does not play a major role in the spindle-assembly checkpoint activity. Mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. {ECO:0000269|PubMed:10198256, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:15525512, ECO:0000269|PubMed:15723797, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:17158872, ECO:0000269|PubMed:19487456, ECO:0000269|PubMed:20739936, ECO:0000269|PubMed:35044816}. |
O43933 | PEX1 | S1181 | ochoa | Peroxisomal ATPase PEX1 (EC 3.6.4.-) (Peroxin-1) (Peroxisome biogenesis disorder protein 1) (Peroxisome biogenesis factor 1) | Component of the PEX1-PEX6 AAA ATPase complex, a protein dislocase complex that mediates the ATP-dependent extraction of the PEX5 receptor from peroxisomal membranes, an essential step for PEX5 recycling (PubMed:11439091, PubMed:16314507, PubMed:16854980, PubMed:21362118, PubMed:29884772). Specifically recognizes PEX5 monoubiquitinated at 'Cys-11', and pulls it out of the peroxisome lumen through the PEX2-PEX10-PEX12 retrotranslocation channel (PubMed:29884772). Extraction by the PEX1-PEX6 AAA ATPase complex is accompanied by unfolding of the TPR repeats and release of bound cargo from PEX5 (PubMed:29884772). {ECO:0000269|PubMed:11439091, ECO:0000269|PubMed:16314507, ECO:0000269|PubMed:16854980, ECO:0000269|PubMed:21362118, ECO:0000269|PubMed:29884772}. |
O60231 | DHX16 | S348 | ochoa | Pre-mRNA-splicing factor ATP-dependent RNA helicase DHX16 (EC 3.6.4.13) (ATP-dependent RNA helicase #3) (DEAH-box protein 16) | Required for pre-mRNA splicing as a component of the spliceosome (PubMed:20423332, PubMed:20841358, PubMed:25296192, PubMed:29360106). Contributes to pre-mRNA splicing after spliceosome formation and prior to the first transesterification reaction. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Also plays a role in innate antiviral response by acting as a pattern recognition receptor sensing splicing signals in viral RNA (PubMed:35263596). Mechanistically, TRIM6 promotes the interaction between unanchored 'Lys-48'-polyubiquitin chains and DHX16, leading to DHX16 interaction with RIGI and ssRNA to amplify RIGI-dependent innate antiviral immune responses (PubMed:35263596). {ECO:0000269|PubMed:20423332, ECO:0000269|PubMed:20841358, ECO:0000269|PubMed:25296192, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:35263596, ECO:0000305|PubMed:33509932}. |
O60292 | SIPA1L3 | S1707 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60303 | KATNIP | S185 | ochoa | Katanin-interacting protein | May influence the stability of microtubules (MT), possibly through interaction with the MT-severing katanin complex. {ECO:0000269|PubMed:26714646}. |
O60361 | NME2P1 | S110 | ochoa | Putative nucleoside diphosphate kinase (NDK) (NDP kinase) (EC 2.7.4.6) | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity). {ECO:0000250}. |
O60732 | MAGEC1 | S102 | ochoa | Melanoma-associated antigen C1 (Cancer/testis antigen 7.1) (CT7.1) (MAGE-C1 antigen) | None |
O60784 | TOM1 | S355 | ochoa | Target of Myb1 membrane trafficking protein (Target of Myb protein 1) | Adapter protein that plays a role in the intracellular membrane trafficking of ubiquitinated proteins, thereby participating in autophagy, ubiquitination-dependent signaling and receptor recycling pathways (PubMed:14563850, PubMed:15047686, PubMed:23023224, PubMed:25588840, PubMed:26320582, PubMed:31371777). Acts as a MYO6/Myosin VI adapter protein that targets MYO6 to endocytic structures (PubMed:23023224). Together with MYO6, required for autophagosomal delivery of endocytic cargo, the maturation of autophagosomes and their fusion with lysosomes (PubMed:23023224). MYO6 links TOM1 with autophagy receptors, such as TAX1BP1; CALCOCO2/NDP52 and OPTN (PubMed:31371777). Binds to polyubiquitinated proteins via its GAT domain (PubMed:14563850). In a complex with TOLLIP, recruits ubiquitin-conjugated proteins onto early endosomes (PubMed:15047686). The Tom1-Tollip complex may regulate endosomal trafficking by linking polyubiquitinated proteins to clathrin (PubMed:14563850, PubMed:15047686). Mediates clathrin recruitment to early endosomes by ZFYVE16 (PubMed:15657082). Modulates binding of TOLLIP to phosphatidylinositol 3-phosphate (PtdIns(3)P) via binding competition; the association with TOLLIP may favor the release of TOLLIP from endosomal membranes, allowing TOLLIP to commit to cargo trafficking (PubMed:26320582). Acts as a phosphatidylinositol 5-phosphate (PtdIns(5)P) effector by binding to PtdIns(5)P, thereby regulating endosomal maturation (PubMed:25588840). PtdIns(5)P-dependent recruitment to signaling endosomes may block endosomal maturation (PubMed:25588840). Also inhibits Toll-like receptor (TLR) signaling and participates in immune receptor recycling (PubMed:15047686, PubMed:26320582). {ECO:0000269|PubMed:14563850, ECO:0000269|PubMed:15047686, ECO:0000269|PubMed:15657082, ECO:0000269|PubMed:23023224, ECO:0000269|PubMed:25588840, ECO:0000269|PubMed:26320582, ECO:0000269|PubMed:31371777}. |
O60930 | RNASEH1 | S76 | ochoa | Ribonuclease H1 (RNase H1) (EC 3.1.26.4) (Ribonuclease H type II) | Endonuclease that specifically degrades the RNA of RNA-DNA hybrids (PubMed:10497183). Plays a role in RNA polymerase II (RNAp II) transcription termination by degrading R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site and behind the elongating RNAp II (PubMed:21700224). {ECO:0000269|PubMed:10497183, ECO:0000269|PubMed:21700224}. |
O75376 | NCOR1 | S1246 | ochoa | Nuclear receptor corepressor 1 (N-CoR) (N-CoR1) | Mediates transcriptional repression by certain nuclear receptors (PubMed:20812024). Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. Participates in the transcriptional repressor activity produced by BCL6. Recruited by ZBTB7A to the androgen response elements/ARE on target genes, negatively regulates androgen receptor signaling and androgen-induced cell proliferation (PubMed:20812024). Mediates the NR1D1-dependent repression and circadian regulation of TSHB expression (By similarity). The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver (By similarity). {ECO:0000250|UniProtKB:Q60974, ECO:0000269|PubMed:14527417, ECO:0000269|PubMed:20812024}. |
O75410 | TACC1 | S94 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75665 | OFD1 | S63 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75665 | OFD1 | S745 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75995 | SASH3 | S97 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O76080 | ZFAND5 | S139 | ochoa | AN1-type zinc finger protein 5 (Zinc finger A20 domain-containing protein 2) (Zinc finger protein 216) | Involved in protein degradation via the ubiquitin-proteasome system. May act by anchoring ubiquitinated proteins to the proteasome. Plays a role in ubiquitin-mediated protein degradation during muscle atrophy. Plays a role in the regulation of NF-kappa-B activation and apoptosis. Inhibits NF-kappa-B activation triggered by overexpression of RIPK1 and TRAF6 but not of RELA. Also inhibits tumor necrosis factor (TNF), IL-1 and TLR4-induced NF-kappa-B activation in a dose-dependent manner. Overexpression sensitizes cells to TNF-induced apoptosis. Is a potent inhibitory factor for osteoclast differentiation. {ECO:0000269|PubMed:14754897}. |
O76094 | SRP72 | S81 | ochoa | Signal recognition particle subunit SRP72 (SRP72) (Signal recognition particle 72 kDa protein) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (PubMed:34020957). The SRP complex interacts with the signal sequence in nascent secretory and membrane proteins and directs them to the membrane of the ER (PubMed:34020957). The SRP complex targets the ribosome-nascent chain complex to the SRP receptor (SR), which is anchored in the ER, where SR compaction and GTPase rearrangement drive cotranslational protein translocation into the ER (PubMed:34020957). Binds the signal recognition particle RNA (7SL RNA) in presence of SRP68 (PubMed:21073748, PubMed:27899666). Can bind 7SL RNA with low affinity (PubMed:21073748, PubMed:27899666). The SRP complex possibly participates in the elongation arrest function (By similarity). {ECO:0000250|UniProtKB:P38688, ECO:0000269|PubMed:21073748, ECO:0000269|PubMed:27899666, ECO:0000269|PubMed:34020957}. |
O94823 | ATP10B | S617 | ochoa | Phospholipid-transporting ATPase VB (EC 7.6.2.1) (ATPase class V type 10B) (P4-ATPase flippase complex alpha subunit ATP10B) | Catalytic component of a P4-ATPase flippase complex, which catalyzes the hydrolysis of ATP coupled to the transport of glucosylceramide (GlcCer) from the outer to the inner leaflet of lysosome membranes. Plays an important role in the maintenance of lysosome membrane integrity and function in cortical neurons. {ECO:0000269|PubMed:32172343}. |
O94880 | PHF14 | S298 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94916 | NFAT5 | S1247 | psp | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O94916 | NFAT5 | S1367 | psp | Nuclear factor of activated T-cells 5 (NF-AT5) (T-cell transcription factor NFAT5) (Tonicity-responsive enhancer-binding protein) (TonE-binding protein) (TonEBP) | Transcription factor involved, among others, in the transcriptional regulation of osmoprotective and inflammatory genes. Binds the DNA consensus sequence 5'-[ACT][AG]TGGAAA[CAT]A[TA][ATC][CA][ATG][GT][GAC][CG][CT]-3' (PubMed:10377394). Mediates the transcriptional response to hypertonicity (PubMed:10051678). Positively regulates the transcription of LCN2 and S100A4 genes; optimal transactivation of these genes requires the presence of DDX5/DDX17 (PubMed:22266867). Also involved in the DNA damage response by preventing formation of R-loops; R-loops are composed of a DNA:RNA hybrid and the associated non-template single-stranded DNA (PubMed:34049076). {ECO:0000269|PubMed:10051678, ECO:0000269|PubMed:10377394, ECO:0000269|PubMed:22266867, ECO:0000269|PubMed:34049076}. |
O94985 | CLSTN1 | S436 | ochoa | Calsyntenin-1 (Alcadein-alpha) (Alc-alpha) (Alzheimer-related cadherin-like protein) (Non-classical cadherin XB31alpha) [Cleaved into: Soluble Alc-alpha (SAlc-alpha); CTF1-alpha (C-terminal fragment 1-alpha)] | Postsynaptic adhesion molecule that binds to presynaptic neurexins to mediate both excitatory and inhibitory synapse formation (By similarity). Promotes synapse development by acting as a cell adhesion molecule at the postsynaptic membrane, which associates with neurexin-alpha at the presynaptic membrane (By similarity). Also functions as a cargo in axonal anterograde transport by acting as a molecular adapter that promotes KLC1 association with vesicles (PubMed:21385839). Complex formation with APBA2 and APP, stabilizes APP metabolism and enhances APBA2-mediated suppression of beta-APP40 secretion, due to the retardation of intracellular APP maturation (PubMed:12972431). {ECO:0000250|UniProtKB:Q99JH7, ECO:0000250|UniProtKB:Q9EPL2, ECO:0000269|PubMed:12972431, ECO:0000269|PubMed:21385839}.; FUNCTION: [Soluble Alc-alpha]: As intracellular fragment AlcICD, suppresses APBB1-dependent transactivation stimulated by APP C-terminal intracellular fragment (AICD), most probably by competing with AICD for APBB1-binding (PubMed:15037614). {ECO:0000305|PubMed:15037614}.; FUNCTION: [CTF1-alpha]: In complex with APBA2 and C99, a C-terminal APP fragment, abolishes C99 interaction with PSEN1 and thus APP C99 cleavage by gamma-secretase, most probably through stabilization of the direct interaction between APBA2 and APP (PubMed:15037614). {ECO:0000305|PubMed:15037614}. |
O95049 | TJP3 | S203 | ochoa | Tight junction protein ZO-3 (Tight junction protein 3) (Zona occludens protein 3) (Zonula occludens protein 3) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:16129888). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Binds and recruits PATJ to tight junctions where it connects and stabilizes apical and lateral components of tight junctions (PubMed:16129888). Promotes cell-cycle progression through the sequestration of cyclin D1 (CCND1) at tight junctions during mitosis which prevents CCND1 degradation during M-phase and enables S-phase transition (PubMed:21411630). With TJP1 and TJP2, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). Contrary to TJP2, TJP3 is dispensable for individual viability, embryonic development, epithelial differentiation, and the establishment of TJs, at least in the laboratory environment (By similarity). {ECO:0000250|UniProtKB:O62683, ECO:0000250|UniProtKB:Q9QXY1, ECO:0000269|PubMed:16129888, ECO:0000269|PubMed:21411630}. |
O95210 | STBD1 | S104 | ochoa | Starch-binding domain-containing protein 1 (Genethonin-1) (Glycophagy cargo receptor STBD1) | Acts as a cargo receptor for glycogen. Delivers its cargo to an autophagic pathway called glycophagy, resulting in the transport of glycogen to lysosomes. {ECO:0000269|PubMed:20810658, ECO:0000269|PubMed:21893048, ECO:0000269|PubMed:24837458}. |
P00367 | GLUD1 | S128 | ochoa | Glutamate dehydrogenase 1, mitochondrial (GDH 1) (EC 1.4.1.3) | Mitochondrial glutamate dehydrogenase that catalyzes the conversion of L-glutamate into alpha-ketoglutarate. Plays a key role in glutamine anaplerosis by producing alpha-ketoglutarate, an important intermediate in the tricarboxylic acid cycle (PubMed:11032875, PubMed:11254391, PubMed:16023112, PubMed:16959573). Plays a role in insulin homeostasis (PubMed:11297618, PubMed:9571255). May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate (By similarity). {ECO:0000250|UniProtKB:P10860, ECO:0000269|PubMed:11032875, ECO:0000269|PubMed:11254391, ECO:0000269|PubMed:11297618, ECO:0000269|PubMed:16023112, ECO:0000269|PubMed:16959573, ECO:0000269|PubMed:9571255}. |
P00740 | F9 | S204 | psp | Coagulation factor IX (EC 3.4.21.22) (Christmas factor) (Plasma thromboplastin component) (PTC) [Cleaved into: Coagulation factor IXa light chain; Coagulation factor IXa heavy chain] | Factor IX is a vitamin K-dependent plasma protein that participates in the intrinsic pathway of blood coagulation by converting factor X to its active form in the presence of Ca(2+) ions, phospholipids, and factor VIIIa. {ECO:0000269|PubMed:1730085, ECO:0000269|PubMed:19846852, ECO:0000269|PubMed:20121197, ECO:0000269|PubMed:20121198, ECO:0000269|PubMed:2592373, ECO:0000269|PubMed:8295821}. |
P01023 | A2M | S928 | ochoa | Alpha-2-macroglobulin (Alpha-2-M) (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 5) | Is able to inhibit all four classes of proteinases by a unique 'trapping' mechanism. This protein has a peptide stretch, called the 'bait region' which contains specific cleavage sites for different proteinases. When a proteinase cleaves the bait region, a conformational change is induced in the protein which traps the proteinase. The entrapped enzyme remains active against low molecular weight substrates (activity against high molecular weight substrates is greatly reduced). Following cleavage in the bait region, a thioester bond is hydrolyzed and mediates the covalent binding of the protein to the proteinase. |
P01042 | KNG1 | S275 | ochoa | Kininogen-1 (Alpha-2-thiol proteinase inhibitor) (Fitzgerald factor) (High molecular weight kininogen) (HMWK) (Williams-Fitzgerald-Flaujeac factor) [Cleaved into: Kininogen-1 heavy chain; T-kinin (Ile-Ser-Bradykinin); Bradykinin (Kallidin I); Lysyl-bradykinin (Kallidin II); Kininogen-1 light chain; Low molecular weight growth-promoting factor] | Kininogens are inhibitors of thiol proteases. HMW-kininogen plays an important role in blood coagulation by helping to position optimally prekallikrein and factor XI next to factor XII; HMW-kininogen inhibits the thrombin- and plasmin-induced aggregation of thrombocytes. LMW-kininogen inhibits the aggregation of thrombocytes. LMW-kininogen is in contrast to HMW-kininogen not involved in blood clotting.; FUNCTION: [Bradykinin]: The active peptide bradykinin is a potent vasodilatator that is released from HMW-kininogen shows a variety of physiological effects: (A) influence in smooth muscle contraction, (B) induction of hypotension, (C) natriuresis and diuresis, (D) decrease in blood glucose level, (E) it is a mediator of inflammation and causes (E1) increase in vascular permeability, (E2) stimulation of nociceptors (4E3) release of other mediators of inflammation (e.g. prostaglandins), (F) it has a cardioprotective effect (directly via bradykinin action, indirectly via endothelium-derived relaxing factor action). {ECO:0000305|PubMed:4322742, ECO:0000305|PubMed:6055465}. |
P01042 | KNG1 | S329 | ochoa | Kininogen-1 (Alpha-2-thiol proteinase inhibitor) (Fitzgerald factor) (High molecular weight kininogen) (HMWK) (Williams-Fitzgerald-Flaujeac factor) [Cleaved into: Kininogen-1 heavy chain; T-kinin (Ile-Ser-Bradykinin); Bradykinin (Kallidin I); Lysyl-bradykinin (Kallidin II); Kininogen-1 light chain; Low molecular weight growth-promoting factor] | Kininogens are inhibitors of thiol proteases. HMW-kininogen plays an important role in blood coagulation by helping to position optimally prekallikrein and factor XI next to factor XII; HMW-kininogen inhibits the thrombin- and plasmin-induced aggregation of thrombocytes. LMW-kininogen inhibits the aggregation of thrombocytes. LMW-kininogen is in contrast to HMW-kininogen not involved in blood clotting.; FUNCTION: [Bradykinin]: The active peptide bradykinin is a potent vasodilatator that is released from HMW-kininogen shows a variety of physiological effects: (A) influence in smooth muscle contraction, (B) induction of hypotension, (C) natriuresis and diuresis, (D) decrease in blood glucose level, (E) it is a mediator of inflammation and causes (E1) increase in vascular permeability, (E2) stimulation of nociceptors (4E3) release of other mediators of inflammation (e.g. prostaglandins), (F) it has a cardioprotective effect (directly via bradykinin action, indirectly via endothelium-derived relaxing factor action). {ECO:0000305|PubMed:4322742, ECO:0000305|PubMed:6055465}. |
P01270 | PTH | S48 | psp | Parathyroid hormone (PTH) (Parathormone) (Parathyrin) | Parathyroid hormone elevates calcium level by dissolving the salts in bone and preventing their renal excretion (PubMed:11604398, PubMed:35932760). Acts by binding to its receptor, PTH1R, activating G protein-coupled receptor signaling (PubMed:18375760, PubMed:35932760). Stimulates [1-14C]-2-deoxy-D-glucose (2DG) transport and glycogen synthesis in osteoblastic cells (PubMed:21076856). {ECO:0000269|PubMed:11604398, ECO:0000269|PubMed:18375760, ECO:0000269|PubMed:21076856, ECO:0000269|PubMed:35932760}. |
P01275 | GCG | S152 | ochoa | Pro-glucagon [Cleaved into: Glicentin; Glicentin-related polypeptide (GRPP); Oxyntomodulin (OXM) (OXY); Glucagon; Glucagon-like peptide 1 (GLP-1) (Incretin hormone); Glucagon-like peptide 1(7-37) (GLP-1(7-37)); Glucagon-like peptide 1(7-36) (GLP-1(7-36)); Glucagon-like peptide 2 (GLP-2)] | [Glucagon]: Plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12626323}.; FUNCTION: [Glucagon-like peptide 1]: Potent stimulator of glucose-dependent insulin release. Also stimulates insulin release in response to IL6 (PubMed:22037645). Plays important roles on gastric motility and the suppression of plasma glucagon levels. May be involved in the suppression of satiety and stimulation of glucose disposal in peripheral tissues, independent of the actions of insulin. Has growth-promoting activities on intestinal epithelium. May also regulate the hypothalamic pituitary axis (HPA) via effects on LH, TSH, CRH, oxytocin, and vasopressin secretion. Increases islet mass through stimulation of islet neogenesis and pancreatic beta cell proliferation. Inhibits beta cell apoptosis (Probable). {ECO:0000269|PubMed:22037645, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Glucagon-like peptide 2]: Stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, from the stomach to the colon is the principal target for GLP-2 action. Plays a key role in nutrient homeostasis, enhancing nutrient assimilation through enhanced gastrointestinal function, as well as increasing nutrient disposal. Stimulates intestinal glucose transport and decreases mucosal permeability. {ECO:0000305|PubMed:10322410, ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744, ECO:0000305|PubMed:14719035}.; FUNCTION: [Oxyntomodulin]: Significantly reduces food intake. Inhibits gastric emptying in humans. Suppression of gastric emptying may lead to increased gastric distension, which may contribute to satiety by causing a sensation of fullness. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}.; FUNCTION: [Glicentin]: May modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life. {ECO:0000305|PubMed:10605628, ECO:0000305|PubMed:12554744}. |
P02549 | SPTA1 | S1363 | ochoa | Spectrin alpha chain, erythrocytic 1 (Erythroid alpha-spectrin) | Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane. |
P02647 | APOA1 | S191 | ochoa | Apolipoprotein A-I (Apo-AI) (ApoA-I) (Apolipoprotein A1) [Cleaved into: Proapolipoprotein A-I (ProapoA-I); Truncated apolipoprotein A-I (Apolipoprotein A-I(1-242))] | Participates in the reverse transport of cholesterol from tissues to the liver for excretion by promoting cholesterol efflux from tissues and by acting as a cofactor for the lecithin cholesterol acyltransferase (LCAT). As part of the SPAP complex, activates spermatozoa motility. {ECO:0000269|PubMed:1909888}. |
P04004 | VTN | S312 | ochoa|psp | Vitronectin (VN) (S-protein) (Serum-spreading factor) (V75) [Cleaved into: Vitronectin V65 subunit; Vitronectin V10 subunit; Somatomedin-B] | Vitronectin is a cell adhesion and spreading factor found in serum and tissues. Vitronectin interact with glycosaminoglycans and proteoglycans. Is recognized by certain members of the integrin family and serves as a cell-to-substrate adhesion molecule. Inhibitor of the membrane-damaging effect of the terminal cytolytic complement pathway.; FUNCTION: Somatomedin-B is a growth hormone-dependent serum factor with protease-inhibiting activity. |
P04275 | VWF | S1517 | psp | von Willebrand factor (vWF) [Cleaved into: von Willebrand antigen 2 (von Willebrand antigen II)] | Important in the maintenance of hemostasis, it promotes adhesion of platelets to the sites of vascular injury by forming a molecular bridge between sub-endothelial collagen matrix and platelet-surface receptor complex GPIb-IX-V. Also acts as a chaperone for coagulation factor VIII, delivering it to the site of injury, stabilizing its heterodimeric structure and protecting it from premature clearance from plasma. |
P04280 | PRB1 | S24 | psp | Basic salivary proline-rich protein 1 (Salivary proline-rich protein) [Cleaved into: Proline-rich peptide II-2; Basic peptide IB-6; Peptide P-H] | None |
P05060 | CHGB | S130 | ochoa | Secretogranin-1 (Chromogranin-B) (CgB) (Secretogranin I) (SgI) [Cleaved into: PE-11; GAWK peptide; CCB peptide] | Secretogranin-1 is a neuroendocrine secretory granule protein, which may be the precursor for other biologically active peptides. |
P05408 | SCG5 | S141 | ochoa | Neuroendocrine protein 7B2 (Pituitary polypeptide) (Secretogranin V) (Secretogranin-5) (Secretory granule endocrine protein I) [Cleaved into: N-terminal peptide; C-terminal peptide] | Acts as a molecular chaperone for PCSK2/PC2, preventing its premature activation in the regulated secretory pathway. Binds to inactive PCSK2 in the endoplasmic reticulum and facilitates its transport from there to later compartments of the secretory pathway where it is proteolytically matured and activated. Also required for cleavage of PCSK2 but does not appear to be involved in its folding. Plays a role in regulating pituitary hormone secretion. The C-terminal peptide inhibits PCSK2 in vitro. {ECO:0000269|PubMed:7913882}. |
P06748 | NPM1 | S254 | ochoa | Nucleophosmin (NPM) (Nucleolar phosphoprotein B23) (Nucleolar protein NO38) (Numatrin) | Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double-stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. May exert a control of APEX1 endonuclease activity within nucleoli devoted to repair AP on rDNA and the removal of oxidized rRNA molecules. In concert with BRCA2, regulates centrosome duplication. Regulates centriole duplication: phosphorylation by PLK2 is able to trigger centriole replication. Negatively regulates the activation of EIF2AK2/PKR and suppresses apoptosis through inhibition of EIF2AK2/PKR autophosphorylation. Antagonizes the inhibitory effect of ATF5 on cell proliferation and relieves ATF5-induced G2/M blockade (PubMed:22528486). In complex with MYC enhances the transcription of MYC target genes (PubMed:25956029). May act as chaperonin or cotransporter in the nucleolar localization of transcription termination factor TTF1 (By similarity). {ECO:0000250|UniProtKB:Q61937, ECO:0000269|PubMed:12882984, ECO:0000269|PubMed:16107701, ECO:0000269|PubMed:17015463, ECO:0000269|PubMed:18809582, ECO:0000269|PubMed:19188445, ECO:0000269|PubMed:20352051, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:22002061, ECO:0000269|PubMed:22528486, ECO:0000269|PubMed:25956029}. |
P07910 | HNRNPC | S260 | ochoa|psp | Heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1/C2) | Binds pre-mRNA and nucleates the assembly of 40S hnRNP particles (PubMed:8264621). Interacts with poly-U tracts in the 3'-UTR or 5'-UTR of mRNA and modulates the stability and the level of translation of bound mRNA molecules (PubMed:12509468, PubMed:16010978, PubMed:7567451, PubMed:8264621). Single HNRNPC tetramers bind 230-240 nucleotides. Trimers of HNRNPC tetramers bind 700 nucleotides (PubMed:8264621). May play a role in the early steps of spliceosome assembly and pre-mRNA splicing. N6-methyladenosine (m6A) has been shown to alter the local structure in mRNAs and long non-coding RNAs (lncRNAs) via a mechanism named 'm(6)A-switch', facilitating binding of HNRNPC, leading to regulation of mRNA splicing (PubMed:25719671). {ECO:0000269|PubMed:12509468, ECO:0000269|PubMed:16010978, ECO:0000269|PubMed:25719671, ECO:0000269|PubMed:7567451, ECO:0000269|PubMed:8264621}. |
P08047 | SP1 | S670 | ochoa|psp | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P08833 | IGFBP1 | S144 | psp | Insulin-like growth factor-binding protein 1 (IBP-1) (IGF-binding protein 1) (IGFBP-1) (Placental protein 12) (PP12) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including cell migration, proliferation, differentiation or apoptosis in a cell-type specific manner (PubMed:11397844, PubMed:15972819). Also plays a positive role in cell migration by interacting with integrin ITGA5:ITGB1 through its RGD motif (PubMed:7504269). Mechanistically, binding to integrins leads to activation of focal adhesion kinase/PTK2 and stimulation of the mitogen-activated protein kinase (MAPK) pathway (PubMed:11397844). Regulates cardiomyocyte apoptosis by suppressing HIF-1alpha/HIF1A ubiquitination and subsequent degradation (By similarity). {ECO:0000250|UniProtKB:P21743, ECO:0000269|PubMed:11397844, ECO:0000269|PubMed:15972819, ECO:0000269|PubMed:3419931, ECO:0000269|PubMed:7504269}. |
P0C0L4 | C4A | S77 | ochoa | Complement C4-A (Acidic complement C4) (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 2) [Cleaved into: Complement C4 beta chain; Complement C4-A alpha chain; C4a anaphylatoxin; Complement C4b-A (Complement C4b-alpha' chain); Complement C4d-A; Complement C4 gamma chain] | Precursor of non-enzymatic components of the classical, lectin and GZMK complement pathways, which consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system. {ECO:0000269|PubMed:12878586, ECO:0000269|PubMed:18204047, ECO:0000269|PubMed:22949645, ECO:0000269|PubMed:2395880, ECO:0000269|PubMed:32769120, ECO:0000269|PubMed:35428691, ECO:0000269|PubMed:39914456, ECO:0000269|PubMed:8538770}.; FUNCTION: [Complement C4b-A]: Non-enzymatic component of C3 and C5 convertases (PubMed:8538770). Generated following cleavage by complement proteases (C1S, MASP2 or GZMK, depending on the complement pathway), it covalently attaches to the surface of pathogens, where it acts as an opsonin that marks the surface of antigens for removal (PubMed:27738201, PubMed:8538770). It then recruits the serine protease complement C2b to form the C3 and C5 convertases, which cleave and activate C3 and C5, respectively, the next components of the complement pathways (PubMed:12878586, PubMed:18204047, PubMed:2387864, PubMed:6906228). Complement C4b-A isotype is responsible for effective binding to form amide bonds with immune aggregates or protein antigens, while complement C4b-B isotype catalyzes the transacylation of the thioester carbonyl group to form ester bonds with carbohydrate antigens (PubMed:8538770). {ECO:0000269|PubMed:12878586, ECO:0000269|PubMed:18204047, ECO:0000269|PubMed:2387864, ECO:0000269|PubMed:27738201, ECO:0000269|PubMed:6906228, ECO:0000269|PubMed:8538770}.; FUNCTION: [C4a anaphylatoxin]: Putative humoral mediator released following cleavage by complement proteases (C1S, MASP2 or GZMK, depending on the complement pathway) (PubMed:6167582). While it is strongly similar to anaphylatoxins, its role is unclear (PubMed:25659340). Was reported to act as a mediator of local inflammatory process; however these effects were probably due to contamination with C3a and/C5a anaphylatoxins in biological assays (PubMed:25659340). {ECO:0000269|PubMed:6167582, ECO:0000303|PubMed:25659340}. |
P0C0L5 | C4B | S77 | ochoa | Complement C4-B (Basic complement C4) (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 3) [Cleaved into: Complement C4 beta chain; Complement C4-B alpha chain; C4a anaphylatoxin; Complement C4b-B; C4d-B; Complement C4 gamma chain] | Precursor of non-enzymatic components of the classical, lectin and GZMK complement pathways, which consist in a cascade of proteins that leads to phagocytosis and breakdown of pathogens and signaling that strengthens the adaptive immune system. {ECO:0000269|PubMed:2395880, ECO:0000269|PubMed:8538770}.; FUNCTION: [Complement C4b-B]: Non-enzymatic component of C3 and C5 convertases (By similarity). Generated following cleavage by complement proteases (C1S, MASP2 or GZMK, depending on the complement pathway), it covalently attaches to the surface of pathogens, where it acts as an opsonin that marks the surface of antigens for removal (By similarity). It then recruits the serine protease complement C2b to form the C3 and C5 convertases, which cleave and activate C3 and C5, respectively, the next components of the complement pathways (PubMed:8538770). Complement C4b-B isotype catalyzes the transacylation of the thioester carbonyl group to form ester bonds with carbohydrate antigens, while C4b-A isotype is responsible for effective binding to form amide bonds with immune aggregates or protein antigens (PubMed:8538770). {ECO:0000250|UniProtKB:P0C0L4, ECO:0000269|PubMed:8538770}.; FUNCTION: [C4a anaphylatoxin]: Putative humoral mediator released following cleavage by complement proteases (C1S, MASP2 or GZMK, depending on the complement pathway). While it is strongly similar to anaphylatoxins, its role is unclear. Was reported to act as a mediator of local inflammatory process; however these effects were probably due to contamination with C3a and/C5a anaphylatoxins in biological assays. {ECO:0000250|UniProtKB:P0C0L4}. |
P0CG40 | SP9 | S376 | ochoa | Transcription factor Sp9 | Transcription factor which plays a key role in limb development. Positively regulates FGF8 expression in the apical ectodermal ridge (AER) and contributes to limb outgrowth in embryos (By similarity). {ECO:0000250}. |
P0DJD0 | RGPD1 | S1725 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S1733 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10070 | GLI2 | S866 | ochoa | Zinc finger protein GLI2 (GLI family zinc finger protein 2) (Tax helper protein) | Functions as a transcription regulator in the hedgehog (Hh) pathway (PubMed:18455992, PubMed:26565916). Functions as a transcriptional activator (PubMed:19878745, PubMed:24311597, PubMed:9557682). May also function as transcriptional repressor (By similarity). Requires STK36 for full transcriptional activator activity. Required for normal embryonic development (PubMed:15994174, PubMed:20685856). {ECO:0000250|UniProtKB:Q0VGT2, ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:18455992, ECO:0000269|PubMed:19878745, ECO:0000269|PubMed:24311597, ECO:0000269|PubMed:26565916, ECO:0000269|PubMed:9557682, ECO:0000305|PubMed:20685856}.; FUNCTION: [Isoform 1]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 2]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 3]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 4]: Involved in the smoothened (SHH) signaling pathway. {ECO:0000269|PubMed:18455992}.; FUNCTION: [Isoform 1]: Acts as a transcriptional activator in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 2]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 3]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 4]: (Microbial infection) Acts as a transcriptional activators in T-cell leukemia virus type 1 (HTLV-1)-infected cells in a Tax-dependent manner. Binds to the DNA sequence 5'-GAACCACCCA-3' which is part of the Tax-responsive element (TRE-2S) regulatory element that augments the Tax-dependent enhancer of HTLV-1 (PubMed:9557682). {ECO:0000269|PubMed:15994174, ECO:0000269|PubMed:9557682}.; FUNCTION: [Isoform 5]: Acts as a transcriptional repressor. {ECO:0000269|PubMed:15994174}. |
P10072 | ZNF875 | S220 | ochoa | Zinc finger protein 875 (Krueppel-related zinc finger protein 1) (Protein HKR1) | May be involved in transcriptional regulation. |
P10451 | SPP1 | S263 | ochoa|psp | Osteopontin (Bone sialoprotein 1) (Nephropontin) (Secreted phosphoprotein 1) (SPP-1) (Urinary stone protein) (Uropontin) | Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction. {ECO:0000250|UniProtKB:P31096}.; FUNCTION: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity. {ECO:0000250|UniProtKB:P10923}. |
P10451 | SPP1 | S291 | psp | Osteopontin (Bone sialoprotein 1) (Nephropontin) (Secreted phosphoprotein 1) (SPP-1) (Urinary stone protein) (Uropontin) | Major non-collagenous bone protein that binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction. {ECO:0000250|UniProtKB:P31096}.; FUNCTION: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I immunity. {ECO:0000250|UniProtKB:P10923}. |
P10645 | CHGA | S53 | ochoa | Chromogranin-A (CgA) (Pituitary secretory protein I) (SP-I) [Cleaved into: Vasostatin-1 (Vasostatin I); Vasostatin-2 (Vasostatin II); EA-92; ES-43; Pancreastatin; SS-18; WA-8; WE-14; LF-19; Catestatin (SL21); AL-11; GV-19; GR-44; ER-37; GE-25; Serpinin-RRG; Serpinin; p-Glu serpinin precursor] | [Pancreastatin]: Strongly inhibits glucose induced insulin release from the pancreas.; FUNCTION: [Catestatin]: Inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist (PubMed:15326220). Displays antibacterial activity against Gram-positive bacteria S.aureus and M.luteus, and Gram-negative bacteria E.coli and P.aeruginosa (PubMed:15723172, PubMed:24723458). Can induce mast cell migration, degranulation and production of cytokines and chemokines (PubMed:21214543). Acts as a potent scavenger of free radicals in vitro (PubMed:24723458). May play a role in the regulation of cardiac function and blood pressure (PubMed:18541522). {ECO:0000269|PubMed:15326220, ECO:0000269|PubMed:15723172, ECO:0000269|PubMed:21214543, ECO:0000269|PubMed:24723458, ECO:0000303|PubMed:18541522}.; FUNCTION: [Serpinin]: Regulates granule biogenesis in endocrine cells by up-regulating the transcription of protease nexin 1 (SERPINE2) via a cAMP-PKA-SP1 pathway. This leads to inhibition of granule protein degradation in the Golgi complex which in turn promotes granule formation. {ECO:0000250|UniProtKB:P26339}. |
P11142 | HSPA8 | S221 | ochoa | Heat shock cognate 71 kDa protein (EC 3.6.4.10) (Heat shock 70 kDa protein 8) (Heat shock protein family A member 8) (Lipopolysaccharide-associated protein 1) (LAP-1) (LPS-associated protein 1) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, chaperone-mediated autophagy, activation of proteolysis of misfolded proteins, formation and dissociation of protein complexes, and antigen presentation. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation (PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661, PubMed:2799391, PubMed:36586411). This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation (PubMed:12526792, PubMed:21148293, PubMed:21150129, PubMed:23018488, PubMed:24732912, PubMed:27916661). The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1 (PubMed:24121476, PubMed:24318877, PubMed:26865365, PubMed:27474739). Plays a critical role in mitochondrial import, delivers preproteins to the mitochondrial import receptor TOMM70 (PubMed:12526792). Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes (PubMed:10722728, PubMed:11276205). Substrate recognition component in chaperone-mediated autophagy (CMA), a selective protein degradation process that mediates degradation of proteins with a -KFERQ motif: HSPA8/HSC70 specifically recognizes and binds cytosolic proteins bearing a -KFERQ motif and promotes their recruitment to the surface of the lysosome where they bind to lysosomal protein LAMP2 (PubMed:11559757, PubMed:2799391, PubMed:36586411). KFERQ motif-containing proteins are eventually transported into the lysosomal lumen where they are degraded (PubMed:11559757, PubMed:2799391, PubMed:36586411). In conjunction with LAMP2, facilitates MHC class II presentation of cytoplasmic antigens by guiding antigens to the lysosomal membrane for interaction with LAMP2 which then elicits MHC class II presentation of peptides to the cell membrane (PubMed:15894275). Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB1 (PubMed:23990462). It is recruited to clathrin-coated vesicles through its interaction with DNAJC6 leading to activation of HSPA8/HSC70 ATPase activity and therefore uncoating of clathrin-coated vesicles (By similarity). {ECO:0000250|UniProtKB:P19120, ECO:0000269|PubMed:10722728, ECO:0000269|PubMed:11276205, ECO:0000269|PubMed:11559757, ECO:0000269|PubMed:12526792, ECO:0000269|PubMed:15894275, ECO:0000269|PubMed:21148293, ECO:0000269|PubMed:21150129, ECO:0000269|PubMed:23018488, ECO:0000269|PubMed:23990462, ECO:0000269|PubMed:24318877, ECO:0000269|PubMed:24732912, ECO:0000269|PubMed:27474739, ECO:0000269|PubMed:27916661, ECO:0000269|PubMed:2799391, ECO:0000269|PubMed:36586411, ECO:0000303|PubMed:24121476, ECO:0000303|PubMed:26865365}. |
P12259 | F5 | S692 | ochoa | Coagulation factor V (Activated protein C cofactor) (Proaccelerin, labile factor) [Cleaved into: Coagulation factor V heavy chain; Coagulation factor V light chain] | Central regulator of hemostasis. It serves as a critical cofactor for the prothrombinase activity of factor Xa that results in the activation of prothrombin to thrombin. |
P12259 | F5 | S1150 | ochoa | Coagulation factor V (Activated protein C cofactor) (Proaccelerin, labile factor) [Cleaved into: Coagulation factor V heavy chain; Coagulation factor V light chain] | Central regulator of hemostasis. It serves as a critical cofactor for the prothrombinase activity of factor Xa that results in the activation of prothrombin to thrombin. |
P12882 | MYH1 | S1288 | ochoa | Myosin-1 (Myosin heavy chain 1) (Myosin heavy chain 2x) (MyHC-2x) (Myosin heavy chain IIx/d) (MyHC-IIx/d) (Myosin heavy chain, skeletal muscle, adult 1) | Required for normal hearing. It plays a role in cochlear amplification of auditory stimuli, likely through the positive regulation of prestin (SLC26A5) activity and outer hair cell (OHC) electromotility. {ECO:0000250|UniProtKB:Q5SX40}. |
P13521 | SCG2 | S432 | ochoa | Secretogranin-2 (Chromogranin-C) (Secretogranin II) (SgII) [Cleaved into: Secretoneurin (SN); Manserin] | Neuroendocrine protein of the granin family that regulates the biogenesis of secretory granules. {ECO:0000269|PubMed:19357184}. |
P13994 | YJU2B | S238 | ochoa | Probable splicing factor YJU2B (Coiled-coil domain-containing protein 130) | May be involved in mRNA splicing. {ECO:0000250|UniProtKB:Q9BW85}. |
P14317 | HCLS1 | S62 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14317 | HCLS1 | S320 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P14859 | POU2F1 | S278 | ochoa | POU domain, class 2, transcription factor 1 (NF-A1) (Octamer-binding protein 1) (Oct-1) (Octamer-binding transcription factor 1) (OTF-1) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and activates the promoters of the genes for some small nuclear RNAs (snRNA) and of genes such as those for histone H2B and immunoglobulins. Modulates transcription transactivation by NR3C1, AR and PGR. {ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:1684878, ECO:0000269|PubMed:7859290}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, POU2F1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and HCFC1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000305|PubMed:12826401}. |
P14921 | ETS1 | S251 | ochoa|psp | Protein C-ets-1 (p54) | Transcription factor (PubMed:10698492, PubMed:11909962). Directly controls the expression of cytokine and chemokine genes in a wide variety of different cellular contexts (PubMed:20378371). May control the differentiation, survival and proliferation of lymphoid cells (PubMed:20378371). May also regulate angiogenesis through regulation of expression of genes controlling endothelial cell migration and invasion (PubMed:15247905, PubMed:15592518). {ECO:0000269|PubMed:10698492, ECO:0000269|PubMed:11909962, ECO:0000269|PubMed:15247905, ECO:0000269|PubMed:15592518, ECO:0000303|PubMed:20378371}.; FUNCTION: [Isoform Ets-1 p27]: Acts as a dominant-negative for isoform c-ETS-1A. {ECO:0000269|PubMed:19377509}. |
P14923 | JUP | S94 | ochoa | Junction plakoglobin (Catenin gamma) (Desmoplakin III) (Desmoplakin-3) | Common junctional plaque protein. The membrane-associated plaques are architectural elements in an important strategic position to influence the arrangement and function of both the cytoskeleton and the cells within the tissue. The presence of plakoglobin in both the desmosomes and in the intermediate junctions suggests that it plays a central role in the structure and function of submembranous plaques. Acts as a substrate for VE-PTP and is required by it to stimulate VE-cadherin function in endothelial cells. Can replace beta-catenin in E-cadherin/catenin adhesion complexes which are proposed to couple cadherins to the actin cytoskeleton (By similarity). {ECO:0000250}. |
P14923 | JUP | S665 | ochoa|psp | Junction plakoglobin (Catenin gamma) (Desmoplakin III) (Desmoplakin-3) | Common junctional plaque protein. The membrane-associated plaques are architectural elements in an important strategic position to influence the arrangement and function of both the cytoskeleton and the cells within the tissue. The presence of plakoglobin in both the desmosomes and in the intermediate junctions suggests that it plays a central role in the structure and function of submembranous plaques. Acts as a substrate for VE-PTP and is required by it to stimulate VE-cadherin function in endothelial cells. Can replace beta-catenin in E-cadherin/catenin adhesion complexes which are proposed to couple cadherins to the actin cytoskeleton (By similarity). {ECO:0000250}. |
P15515 | HTN1 | S21 | psp | Histatin-1 (Hst1) (Histidine-rich protein 1) (Post-PB protein) (PPB) [Cleaved into: His1-(31-57)-peptide (His1 31/57) (His1-(12-38)-peptide) (His1 12/38) (Histatin 2) (Hst2) (Histatin-2)] | Histatins (Hsts) are cationic and histidine-rich secreted peptides mainly synthesized by saliva glands of humans and higher primates (PubMed:3286634, PubMed:3944083). Hsts are considered to be major precursors of the protective proteinaceous structure on tooth surfaces (enamel pellicle). Hsts can be divided into two major groups according to their biological functions: antimicrobial Hsts (e.g. Hst 5/HTN3) and cell-activating Hsts (e.g. Hst 1/HTN1 and Hst 2/HTN1) (PubMed:32225006). Hst 1/HTN1 and Hst 2/HTN1 act in different cell types (epithelium, fibroblasts and endothelium) in oral and non-oral mucosa (PubMed:25903106, PubMed:28542418, PubMed:28751526, PubMed:32225006). {ECO:0000269|PubMed:25903106, ECO:0000269|PubMed:28542418, ECO:0000269|PubMed:28751526, ECO:0000269|PubMed:32225006, ECO:0000269|PubMed:3286634, ECO:0000269|PubMed:3944083}.; FUNCTION: [Histatin-1]: Hst 1 functions primarily as a wound healing factor by activating cell-surface and cell-cell adhesions, cell spreading and migration and it can also stimulate cellular metabolic activity (PubMed:18650243, PubMed:25903106, PubMed:28542418, PubMed:28751526, PubMed:32225006, PubMed:35970844). Hst 1 is internalized in host cells in a stereospecific and energy-dependent process, which is partially mediated by the G protein-coupled receptors (GPCR)-activated endocytosis (PubMed:35970844). Internalized Hst 1 is targeted and released via early endosomes trafficking to the mitochondria, where it significantly enhances mitochondrial energy metabolism (PubMed:32225006, PubMed:35970844). At the mitochondria, Hst 1 increases mitochondria-ER contacts through binding with ER receptor TMEM97, which also stimulates metabolic activity and cell migration and may as well regulate calcium homeostasis of the cell (PubMed:32225006, PubMed:34233061, PubMed:35970844). Also activates the ERK1/2 signaling pathway to promote cell migration, possibly upon interaction with GPRCs at the plasma membrane (PubMed:28751526). Also triggers the RIN2/Rab5/Rac1 signaling cascade which activates endothelial cell adhesion, spreading and migration required for angiogenesis in the oral wound healing process, however the receptor that transduces Hst 1 signal has not yet been identified (PubMed:28751526). Also displays antimicrobial functions against pathogenic yeast Candida albicans, although with less effectiveness than Hst 5 (PubMed:28751526, PubMed:3286634, PubMed:3944083). {ECO:0000269|PubMed:18650243, ECO:0000269|PubMed:25903106, ECO:0000269|PubMed:28542418, ECO:0000269|PubMed:28751526, ECO:0000269|PubMed:32225006, ECO:0000269|PubMed:3286634, ECO:0000269|PubMed:34233061, ECO:0000269|PubMed:35970844, ECO:0000269|PubMed:3944083}.; FUNCTION: [His1-(31-57)-peptide]: Hst 2 consists of the fragment sequence 12-28 of Hst 1. Similar to Hst 1, actively and stereospecifically internalized in host cells and targeted to the mitochondria and the ER and promotes cell metabolic activity (PubMed:18650243, PubMed:32225006). Also activates the ERK1/2 signaling pathway to promote cell migration and wound closure (PubMed:18650243). In contrast with Hst 1, not able to promote cell-substrate and cell-cell adhesion (PubMed:25903106). {ECO:0000269|PubMed:18650243, ECO:0000269|PubMed:25903106, ECO:0000269|PubMed:32225006}. |
P15531 | NME1 | S125 | ochoa | Nucleoside diphosphate kinase A (NDK A) (NDP kinase A) (EC 2.7.4.6) (Granzyme A-activated DNase) (GAAD) (Metastasis inhibition factor nm23) (NM23-H1) (Tumor metastatic process-associated protein) | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination. During GZMA-mediated cell death, works in concert with TREX1. NME1 nicks one strand of DNA and TREX1 removes bases from the free 3' end to enhance DNA damage and prevent DNA end reannealing and rapid repair. {ECO:0000269|PubMed:12628186, ECO:0000269|PubMed:16818237, ECO:0000269|PubMed:8810265}. |
P16284 | PECAM1 | S697 | ochoa | Platelet endothelial cell adhesion molecule (PECAM-1) (EndoCAM) (GPIIA') (PECA1) (CD antigen CD31) | Cell adhesion molecule which is required for leukocyte transendothelial migration (TEM) under most inflammatory conditions (PubMed:17580308, PubMed:19342684). Tyr-690 plays a critical role in TEM and is required for efficient trafficking of PECAM1 to and from the lateral border recycling compartment (LBRC) and is also essential for the LBRC membrane to be targeted around migrating leukocytes (PubMed:19342684). Trans-homophilic interaction may play a role in endothelial cell-cell adhesion via cell junctions (PubMed:27958302). Heterophilic interaction with CD177 plays a role in transendothelial migration of neutrophils (PubMed:17580308). Homophilic ligation of PECAM1 prevents macrophage-mediated phagocytosis of neighboring viable leukocytes by transmitting a detachment signal (PubMed:12110892). Promotes macrophage-mediated phagocytosis of apoptotic leukocytes by tethering them to the phagocytic cells; PECAM1-mediated detachment signal appears to be disabled in apoptotic leukocytes (PubMed:12110892). Modulates bradykinin receptor BDKRB2 activation (PubMed:18672896). Regulates bradykinin- and hyperosmotic shock-induced ERK1/2 activation in endothelial cells (PubMed:18672896). Induces susceptibility to atherosclerosis (By similarity). {ECO:0000250|UniProtKB:Q08481, ECO:0000269|PubMed:12110892, ECO:0000269|PubMed:17580308, ECO:0000269|PubMed:18672896, ECO:0000269|PubMed:19342684, ECO:0000269|PubMed:27958302}.; FUNCTION: [Isoform Delta15]: Does not protect against apoptosis. {ECO:0000269|PubMed:18388311}. |
P16383 | GCFC2 | S217 | ochoa | Intron Large complex component GCFC2 (GC-rich sequence DNA-binding factor) (GC-rich sequence DNA-binding factor 2) (Transcription factor 9) (TCF-9) | Involved in pre-mRNA splicing through regulating spliceosome C complex formation (PubMed:24304693). May play a role during late-stage splicing events and turnover of excised introns (PubMed:24304693). {ECO:0000269|PubMed:24304693}. |
P16591 | FER | S411 | ochoa | Tyrosine-protein kinase Fer (EC 2.7.10.2) (Feline encephalitis virus-related kinase FER) (Fujinami poultry sarcoma/Feline sarcoma-related protein Fer) (Proto-oncogene c-Fer) (Tyrosine kinase 3) (p94-Fer) | Tyrosine-protein kinase that acts downstream of cell surface receptors for growth factors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, lamellipodia formation, cell adhesion, cell migration and chemotaxis. Acts downstream of EGFR, KIT, PDGFRA and PDGFRB. Acts downstream of EGFR to promote activation of NF-kappa-B and cell proliferation. May play a role in the regulation of the mitotic cell cycle. Plays a role in the insulin receptor signaling pathway and in activation of phosphatidylinositol 3-kinase. Acts downstream of the activated FCER1 receptor and plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Plays a role in the regulation of mast cell degranulation. Plays a role in leukocyte recruitment and diapedesis in response to bacterial lipopolysaccharide (LPS). Plays a role in synapse organization, trafficking of synaptic vesicles, the generation of excitatory postsynaptic currents and neuron-neuron synaptic transmission. Plays a role in neuronal cell death after brain damage. Phosphorylates CTTN, CTNND1, PTK2/FAK1, GAB1, PECAM1 and PTPN11. May phosphorylate JUP and PTPN1. Can phosphorylate STAT3, but the biological relevance of this depends on cell type and stimulus. {ECO:0000269|PubMed:12972546, ECO:0000269|PubMed:14517306, ECO:0000269|PubMed:19147545, ECO:0000269|PubMed:19339212, ECO:0000269|PubMed:19738202, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:21518868, ECO:0000269|PubMed:22223638, ECO:0000269|PubMed:7623846, ECO:0000269|PubMed:9722593}. |
P17302 | GJA1 | S314 | ochoa | Gap junction alpha-1 protein (Connexin-43) (Cx43) (Gap junction 43 kDa heart protein) | Gap junction protein that acts as a regulator of bladder capacity. A gap junction consists of a cluster of closely packed pairs of transmembrane channels, the connexons, through which materials of low MW diffuse from one cell to a neighboring cell. May play a critical role in the physiology of hearing by participating in the recycling of potassium to the cochlear endolymph. Negative regulator of bladder functional capacity: acts by enhancing intercellular electrical and chemical transmission, thus sensitizing bladder muscles to cholinergic neural stimuli and causing them to contract (By similarity). May play a role in cell growth inhibition through the regulation of NOV expression and localization. Plays an essential role in gap junction communication in the ventricles (By similarity). {ECO:0000250|UniProtKB:P08050, ECO:0000250|UniProtKB:P23242}. |
P17480 | UBTF | S23 | ochoa | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P18754 | RCC1 | S31 | ochoa | Regulator of chromosome condensation (Cell cycle regulatory protein) (Chromosome condensation protein 1) | Guanine-nucleotide releasing factor that promotes the exchange of Ran-bound GDP by GTP, and thereby plays an important role in RAN-mediated functions in nuclear import and mitosis (PubMed:11336674, PubMed:17435751, PubMed:1944575, PubMed:20668449, PubMed:22215983, PubMed:29042532). Contributes to the generation of high levels of chromosome-associated, GTP-bound RAN, which is important for mitotic spindle assembly and normal progress through mitosis (PubMed:12194828, PubMed:17435751, PubMed:22215983). Via its role in maintaining high levels of GTP-bound RAN in the nucleus, contributes to the release of cargo proteins from importins after nuclear import (PubMed:22215983). Involved in the regulation of onset of chromosome condensation in the S phase (PubMed:3678831). Binds both to the nucleosomes and double-stranded DNA (PubMed:17435751, PubMed:18762580). {ECO:0000269|PubMed:11336674, ECO:0000269|PubMed:12194828, ECO:0000269|PubMed:17435751, ECO:0000269|PubMed:18762580, ECO:0000269|PubMed:1944575, ECO:0000269|PubMed:20668449, ECO:0000269|PubMed:22215983, ECO:0000269|PubMed:29042532, ECO:0000269|PubMed:3678831}. |
P18859 | ATP5PF | S64 | ochoa | ATP synthase peripheral stalk subunit F6, mitochondrial (ATPase subunit F6) (ATP synthase peripheral stalk subunit F6) | Subunit F6, of the mitochondrial membrane ATP synthase complex (F(1)F(0) ATP synthase or Complex V) that produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain (PubMed:37244256). ATP synthase complex consist of a soluble F(1) head domain - the catalytic core - and a membrane F(1) domain - the membrane proton channel (PubMed:37244256). These two domains are linked by a central stalk rotating inside the F(1) region and a stationary peripheral stalk (PubMed:37244256). During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation (Probable). In vivo, can only synthesize ATP although its ATP hydrolase activity can be activated artificially in vitro (By similarity). Part of the complex F(0) domain (PubMed:37244256). Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements (By similarity). {ECO:0000250|UniProtKB:P02721, ECO:0000250|UniProtKB:P19483, ECO:0000269|PubMed:37244256, ECO:0000305|PubMed:37244256}. |
P20265 | POU3F2 | S360 | psp | POU domain, class 3, transcription factor 2 (Brain-specific homeobox/POU domain protein 2) (Brain-2) (Brn-2) (Nervous system-specific octamer-binding transcription factor N-Oct-3) (Octamer-binding protein 7) (Oct-7) (Octamer-binding transcription factor 7) (OTF-7) | Transcription factor that plays a key role in neuronal differentiation (By similarity). Binds preferentially to the recognition sequence which consists of two distinct half-sites, ('GCAT') and ('TAAT'), separated by a non-conserved spacer region of 0, 2, or 3 nucleotides (By similarity). Acts as a transcriptional activator when binding cooperatively with SOX4, SOX11, or SOX12 to gene promoters (By similarity). The combination of three transcription factors, ASCL1, POU3F2/BRN2 and MYT1L, is sufficient to reprogram fibroblasts and other somatic cells into induced neuronal (iN) cells in vitro (By similarity). Acts downstream of ASCL1, accessing chromatin that has been opened by ASCL1, and promotes transcription of neuronal genes (By similarity). {ECO:0000250|UniProtKB:P31360, ECO:0000250|UniProtKB:P56222}. |
P20309 | CHRM3 | S292 | ochoa | Muscarinic acetylcholine receptor M3 | The muscarinic acetylcholine receptor mediates various cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides and modulation of potassium channels through the action of G proteins. Primary transducing effect is Pi turnover. {ECO:0000269|PubMed:7565628}. |
P20340 | RAB6A | S184 | ochoa | Ras-related protein Rab-6A (Rab-6) (EC 3.6.5.2) | The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes (PubMed:25962623). Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:25962623). RAB6A acts as a regulator of COPI-independent retrograde transport from the Golgi apparatus towards the endoplasmic reticulum (ER) (PubMed:25962623). Has a low GTPase activity (PubMed:25962623). Recruits VPS13B to the Golgi membrane (PubMed:25492866). Plays a role in neuron projection development (Probable). {ECO:0000269|PubMed:25492866, ECO:0000269|PubMed:25962623, ECO:0000305|PubMed:25492866}. |
P20929 | NEB | S1836 | ochoa | Nebulin | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin. |
P21127 | CDK11B | S434 | ochoa | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
P22392 | NME2 | S125 | ochoa | Nucleoside diphosphate kinase B (NDK B) (NDP kinase B) (EC 2.7.4.6) (C-myc purine-binding transcription factor PUF) (Histidine protein kinase NDKB) (EC 2.7.13.3) (nm23-H2) | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity). Negatively regulates Rho activity by interacting with AKAP13/LBC (PubMed:15249197). Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (PubMed:19435876, PubMed:8392752). Binds to both single-stranded guanine- and cytosine-rich strands within the nuclease hypersensitive element (NHE) III(1) region of the MYC gene promoter. Does not bind to duplex NHE III(1) (PubMed:19435876). Has G-quadruplex (G4) DNA-binding activity, which is independent of its nucleotide-binding and kinase activity. Binds both folded and unfolded G4 with similar low nanomolar affinities. Stabilizes folded G4s regardless of whether they are prefolded or not (PubMed:25679041). Exhibits histidine protein kinase activity (PubMed:20946858). {ECO:0000250|UniProtKB:P36010, ECO:0000269|PubMed:15249197, ECO:0000269|PubMed:19435876, ECO:0000269|PubMed:20946858, ECO:0000269|PubMed:25679041, ECO:0000269|PubMed:8392752}. |
P23327 | HRC | S96 | ochoa|psp | Sarcoplasmic reticulum histidine-rich calcium-binding protein | May play a role in the regulation of calcium sequestration or release in the SR of skeletal and cardiac muscle. |
P23327 | HRC | S145 | ochoa | Sarcoplasmic reticulum histidine-rich calcium-binding protein | May play a role in the regulation of calcium sequestration or release in the SR of skeletal and cardiac muscle. |
P25205 | MCM3 | S535 | ochoa|psp | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P27348 | YWHAQ | S37 | ochoa | 14-3-3 protein theta (14-3-3 protein T-cell) (14-3-3 protein tau) (Protein HS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
P27816 | MAP4 | S439 | ochoa | Microtubule-associated protein 4 (MAP-4) | Non-neuronal microtubule-associated protein. Promotes microtubule assembly. {ECO:0000269|PubMed:10791892, ECO:0000269|PubMed:34782749}. |
P28290 | ITPRID2 | S111 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28347 | TEAD1 | S61 | ochoa | Transcriptional enhancer factor TEF-1 (NTEF-1) (Protein GT-IIC) (TEA domain family member 1) (TEAD-1) (Transcription factor 13) (TCF-13) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and cooperatively to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription in vivo in a cell-specific manner. The activation function appears to be mediated by a limiting cell-specific transcriptional intermediary factor (TIF). Involved in cardiac development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
P30085 | CMPK1 | S141 | ochoa | UMP-CMP kinase (EC 2.7.4.14) (Deoxycytidylate kinase) (CK) (dCMP kinase) (Nucleoside-diphosphate kinase) (EC 2.7.4.6) (Uridine monophosphate/cytidine monophosphate kinase) (UMP/CMP kinase) (UMP/CMPK) | Catalyzes the phosphorylation of pyrimidine nucleoside monophosphates at the expense of ATP. Plays an important role in de novo pyrimidine nucleotide biosynthesis. Has preference for UMP and CMP as phosphate acceptors. Also displays broad nucleoside diphosphate kinase activity. {ECO:0000255|HAMAP-Rule:MF_03172, ECO:0000269|PubMed:10462544, ECO:0000269|PubMed:11912132, ECO:0000269|PubMed:23416111}. |
P30291 | WEE1 | S444 | psp | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P30566 | ADSL | S334 | ochoa | Adenylosuccinate lyase (ADSL) (ASL) (EC 4.3.2.2) (Adenylosuccinase) (ASase) | Catalyzes two non-sequential steps in de novo AMP synthesis: converts (S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate (SAICAR) to fumarate plus 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide, and thereby also contributes to de novo IMP synthesis, and converts succinyladenosine monophosphate (SAMP) to AMP and fumarate. {ECO:0000269|PubMed:10888601}. |
P31327 | CPS1 | S1159 | ochoa | Carbamoyl-phosphate synthase [ammonia], mitochondrial (EC 6.3.4.16) (Carbamoyl-phosphate synthetase I) (CPSase I) | Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell. |
P31939 | ATIC | S450 | ochoa | Bifunctional purine biosynthesis protein ATIC (AICAR transformylase/inosine monophosphate cyclohydrolase) (ATIC) [Cleaved into: Bifunctional purine biosynthesis protein ATIC, N-terminally processed] [Includes: Phosphoribosylaminoimidazolecarboxamide formyltransferase (EC 2.1.2.3) (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) (AICAR formyltransferase) (AICAR transformylase); Inosine 5'-monophosphate cyclohydrolase (IMP cyclohydrolase) (EC 3.5.4.10) (IMP synthase) (Inosinicase)] | Bifunctional enzyme that catalyzes the last two steps of purine biosynthesis (PubMed:11948179, PubMed:14756554). Acts as a transformylase that incorporates a formyl group to the AMP analog AICAR (5-amino-1-(5-phospho-beta-D-ribosyl)imidazole-4-carboxamide) to produce the intermediate formyl-AICAR (FAICAR) (PubMed:10985775, PubMed:11948179, PubMed:9378707). Can use both 10-formyldihydrofolate and 10-formyltetrahydrofolate as the formyl donor in this reaction (PubMed:10985775). Also catalyzes the cyclization of FAICAR to inosine monophosphate (IMP) (PubMed:11948179, PubMed:14756554). Is able to convert thio-AICAR to 6-mercaptopurine ribonucleotide, an inhibitor of purine biosynthesis used in the treatment of human leukemias (PubMed:10985775). Promotes insulin receptor/INSR autophosphorylation and is involved in INSR internalization (PubMed:25687571). {ECO:0000269|PubMed:10985775, ECO:0000269|PubMed:11948179, ECO:0000269|PubMed:14756554, ECO:0000269|PubMed:25687571, ECO:0000269|PubMed:9378707}. |
P31946 | YWHAB | S39 | ochoa | 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}. |
P31946 | YWHAB | S186 | psp | 14-3-3 protein beta/alpha (Protein 1054) (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein beta/alpha, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negative regulator of osteogenesis. Blocks the nuclear translocation of the phosphorylated form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on cyclin D1 expression resulting in blockage of neuronal apoptosis elicited by SRPK2. Negative regulator of signaling cascades that mediate activation of MAP kinases via AKAP13. {ECO:0000269|PubMed:17717073, ECO:0000269|PubMed:19592491, ECO:0000269|PubMed:21224381}. |
P31947 | SFN | S37 | ochoa | 14-3-3 protein sigma (Epithelial cell marker protein 1) (Stratifin) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binding generally results in the modulation of the activity of the binding partner (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Promotes cytosolic retention of GBP1 GTPase by binding to phosphorylated GBP1, thereby inhibiting the innate immune response (PubMed:37797010). Also acts as a TP53/p53-regulated inhibitor of G2/M progression (PubMed:9659898). When bound to KRT17, regulates protein synthesis and epithelial cell growth by stimulating Akt/mTOR pathway (By similarity). Acts to maintain desmosome cell junction adhesion in epithelial cells via interacting with and sequestering PKP3 to the cytoplasm, thereby restricting its translocation to existing desmosome structures and therefore maintaining desmosome protein homeostasis (PubMed:24124604). Also acts to facilitate PKP3 exchange at desmosome plaques, thereby maintaining keratinocyte intercellular adhesion (PubMed:29678907). May also regulate MDM2 autoubiquitination and degradation and thereby activate p53/TP53 (PubMed:18382127). {ECO:0000250|UniProtKB:O70456, ECO:0000269|PubMed:15731107, ECO:0000269|PubMed:18382127, ECO:0000269|PubMed:22634725, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:28202711, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:37797010, ECO:0000269|PubMed:9659898}. |
P31947 | SFN | S186 | psp | 14-3-3 protein sigma (Epithelial cell marker protein 1) (Stratifin) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Binding generally results in the modulation of the activity of the binding partner (PubMed:15731107, PubMed:22634725, PubMed:28202711, PubMed:37797010). Promotes cytosolic retention of GBP1 GTPase by binding to phosphorylated GBP1, thereby inhibiting the innate immune response (PubMed:37797010). Also acts as a TP53/p53-regulated inhibitor of G2/M progression (PubMed:9659898). When bound to KRT17, regulates protein synthesis and epithelial cell growth by stimulating Akt/mTOR pathway (By similarity). Acts to maintain desmosome cell junction adhesion in epithelial cells via interacting with and sequestering PKP3 to the cytoplasm, thereby restricting its translocation to existing desmosome structures and therefore maintaining desmosome protein homeostasis (PubMed:24124604). Also acts to facilitate PKP3 exchange at desmosome plaques, thereby maintaining keratinocyte intercellular adhesion (PubMed:29678907). May also regulate MDM2 autoubiquitination and degradation and thereby activate p53/TP53 (PubMed:18382127). {ECO:0000250|UniProtKB:O70456, ECO:0000269|PubMed:15731107, ECO:0000269|PubMed:18382127, ECO:0000269|PubMed:22634725, ECO:0000269|PubMed:24124604, ECO:0000269|PubMed:28202711, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:37797010, ECO:0000269|PubMed:9659898}. |
P33241 | LSP1 | S208 | ochoa | Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) | May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}. |
P33981 | TTK | S345 | psp | Dual specificity protein kinase TTK (EC 2.7.12.1) (Phosphotyrosine picked threonine-protein kinase) (PYT) | Involved in mitotic spindle assembly checkpoint signaling, a process that delays anaphase until chromosomes are bioriented on the spindle, and in the repair of incorrect mitotic kinetochore-spindle microtubule attachments (PubMed:18243099, PubMed:28441529, PubMed:29162720). Phosphorylates MAD1L1 to promote the mitotic spindle assembly checkpoint (PubMed:18243099, PubMed:29162720). Phosphorylates CDCA8/Borealin leading to enhanced AURKB activity at the kinetochore (PubMed:18243099). Phosphorylates SKA3 at 'Ser-34' leading to dissociation of the SKA complex from microtubules and destabilization of microtubule-kinetochore attachments (PubMed:28441529). Phosphorylates KNL1, KNTC1 and autophosphorylates (PubMed:28441529). Phosphorylates MCRS1 which enhances recruitment of KIF2A to the minus end of spindle microtubules and promotes chromosome alignment (PubMed:30785839). {ECO:0000269|PubMed:18243099, ECO:0000269|PubMed:28441529, ECO:0000269|PubMed:29162720, ECO:0000269|PubMed:30785839}. |
P33993 | MCM7 | S500 | ochoa | DNA replication licensing factor MCM7 (EC 3.6.4.12) (CDC47 homolog) (P1.1-MCM3) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:25661590, PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232, PubMed:9305914). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for S-phase checkpoint activation upon UV-induced damage. {ECO:0000269|PubMed:15210935, ECO:0000269|PubMed:15538388, ECO:0000269|PubMed:25661590, ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9305914}. |
P35222 | CTNNB1 | S675 | ochoa|psp | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
P35232 | PHB1 | S213 | ochoa | Prohibitin 1 | Protein with pleiotropic attributes mediated in a cell-compartment- and tissue-specific manner, which include the plasma membrane-associated cell signaling functions, mitochondrial chaperone, and transcriptional co-regulator of transcription factors in the nucleus (PubMed:11302691, PubMed:20959514, PubMed:28017329, PubMed:31522117). Plays a role in adipose tissue and glucose homeostasis in a sex-specific manner (By similarity). Contributes to pulmonary vascular remodeling by accelerating proliferation of pulmonary arterial smooth muscle cells (By similarity). {ECO:0000250|UniProtKB:P67778, ECO:0000250|UniProtKB:P67779, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:20959514, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117}.; FUNCTION: In the mitochondria, together with PHB2, forms large ring complexes (prohibitin complexes) in the inner mitochondrial membrane (IMM) and functions as a chaperone protein that stabilizes mitochondrial respiratory enzymes and maintains mitochondrial integrity in the IMM, which is required for mitochondrial morphogenesis, neuronal survival, and normal lifespan (Probable). The prohibitin complex, with DNAJC19, regulates cardiolipin remodeling and the protein turnover of OMA1 in a cardiolipin-binding manner (By similarity). Regulates mitochondrial respiration activity playing a role in cellular aging (PubMed:11302691). The prohibitin complex plays a role of mitophagy receptor involved in targeting mitochondria for autophagic degradation (PubMed:28017329). Involved in mitochondrial-mediated antiviral innate immunity, activates RIG-I-mediated signal transduction and production of IFNB1 and pro-inflammatory cytokine IL6 (PubMed:31522117). {ECO:0000250|UniProtKB:P67778, ECO:0000269|PubMed:11302691, ECO:0000269|PubMed:28017329, ECO:0000269|PubMed:31522117, ECO:0000305}.; FUNCTION: In the nucleus, acts as a transcription coregulator, enhances promoter binding by TP53, a transcription factor it activates, but reduces the promoter binding by E2F1, a transcription factor it represses (PubMed:14500729). Interacts with STAT3 to affect IL17 secretion in T-helper Th17 cells (PubMed:31899195). {ECO:0000269|PubMed:14500729, ECO:0000269|PubMed:31899195}.; FUNCTION: In the plasma membrane, cooperates with CD86 to mediate CD86-signaling in B lymphocytes that regulates the level of IgG1 produced through the activation of distal signaling intermediates (By similarity). Upon CD40 engagement, required to activate NF-kappa-B signaling pathway via phospholipase C and protein kinase C activation (By similarity). {ECO:0000250|UniProtKB:P67778}. |
P35869 | AHR | S36 | psp | Aryl hydrocarbon receptor (Ah receptor) (AhR) (Class E basic helix-loop-helix protein 76) (bHLHe76) | Ligand-activated transcription factor that enables cells to adapt to changing conditions by sensing compounds from the environment, diet, microbiome and cellular metabolism, and which plays important roles in development, immunity and cancer (PubMed:23275542, PubMed:30373764, PubMed:32818467, PubMed:7961644). Upon ligand binding, translocates into the nucleus, where it heterodimerizes with ARNT and induces transcription by binding to xenobiotic response elements (XRE) (PubMed:23275542, PubMed:30373764, PubMed:7961644). Regulates a variety of biological processes, including angiogenesis, hematopoiesis, drug and lipid metabolism, cell motility and immune modulation (PubMed:12213388). Xenobiotics can act as ligands: upon xenobiotic-binding, activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) (PubMed:7961644, PubMed:33193710). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons (PubMed:34521881, PubMed:7961644). Next to xenobiotics, natural ligands derived from plants, microbiota, and endogenous metabolism are potent AHR agonists (PubMed:18076143). Tryptophan (Trp) derivatives constitute an important class of endogenous AHR ligands (PubMed:32818467, PubMed:32866000). Acts as a negative regulator of anti-tumor immunity: indoles and kynurenic acid generated by Trp catabolism act as ligand and activate AHR, thereby promoting AHR-driven cancer cell motility and suppressing adaptive immunity (PubMed:32818467). Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1 (PubMed:28602820). Inhibits PER1 by repressing the CLOCK-BMAL1 heterodimer mediated transcriptional activation of PER1 (PubMed:28602820). The heterodimer ARNT:AHR binds to core DNA sequence 5'-TGCGTG-3' within the dioxin response element (DRE) of target gene promoters and activates their transcription (PubMed:28602820). {ECO:0000269|PubMed:23275542, ECO:0000269|PubMed:28602820, ECO:0000269|PubMed:30373764, ECO:0000269|PubMed:32818467, ECO:0000269|PubMed:32866000, ECO:0000269|PubMed:33193710, ECO:0000269|PubMed:34521881, ECO:0000269|PubMed:7961644, ECO:0000303|PubMed:12213388, ECO:0000303|PubMed:18076143}. |
P36578 | RPL4 | S295 | ochoa | Large ribosomal subunit protein uL4 (60S ribosomal protein L1) (60S ribosomal protein L4) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
P38398 | BRCA1 | S425 | ochoa | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) (RING finger protein 53) (RING-type E3 ubiquitin transferase BRCA1) | E3 ubiquitin-protein ligase that specifically mediates the formation of 'Lys-6'-linked polyubiquitin chains and plays a central role in DNA repair by facilitating cellular responses to DNA damage (PubMed:10500182, PubMed:12887909, PubMed:12890688, PubMed:14976165, PubMed:16818604, PubMed:17525340, PubMed:19261748). It is unclear whether it also mediates the formation of other types of polyubiquitin chains (PubMed:12890688). The BRCA1-BARD1 heterodimer coordinates a diverse range of cellular pathways such as DNA damage repair, ubiquitination and transcriptional regulation to maintain genomic stability (PubMed:12890688, PubMed:14976165, PubMed:20351172). Regulates centrosomal microtubule nucleation (PubMed:18056443). Required for appropriate cell cycle arrests after ionizing irradiation in both the S-phase and the G2 phase of the cell cycle (PubMed:10724175, PubMed:11836499, PubMed:12183412, PubMed:19261748). Required for FANCD2 targeting to sites of DNA damage (PubMed:12887909). Inhibits lipid synthesis by binding to inactive phosphorylated ACACA and preventing its dephosphorylation (PubMed:16326698). Contributes to homologous recombination repair (HRR) via its direct interaction with PALB2, fine-tunes recombinational repair partly through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery at DNA breaks (PubMed:19369211). Component of the BRCA1-RBBP8 complex which regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage via BRCA1-mediated ubiquitination of RBBP8 (PubMed:16818604). Acts as a transcriptional activator (PubMed:20160719). {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:10724175, ECO:0000269|PubMed:11836499, ECO:0000269|PubMed:12183412, ECO:0000269|PubMed:12887909, ECO:0000269|PubMed:12890688, ECO:0000269|PubMed:14976165, ECO:0000269|PubMed:16326698, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:18056443, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:20160719, ECO:0000269|PubMed:20351172}. |
P40926 | MDH2 | S280 | ochoa | Malate dehydrogenase, mitochondrial (EC 1.1.1.37) | None |
P42858 | HTT | S118 | psp | Huntingtin (Huntington disease protein) (HD protein) [Cleaved into: Huntingtin, myristoylated N-terminal fragment] | [Huntingtin]: May play a role in microtubule-mediated transport or vesicle function.; FUNCTION: [Huntingtin, myristoylated N-terminal fragment]: Promotes the formation of autophagic vesicles. {ECO:0000269|PubMed:24459296}. |
P45985 | MAP2K4 | S80 | ochoa|psp | Dual specificity mitogen-activated protein kinase kinase 4 (MAP kinase kinase 4) (MAPKK 4) (EC 2.7.12.2) (JNK-activating kinase 1) (MAPK/ERK kinase 4) (MEK 4) (SAPK/ERK kinase 1) (SEK1) (Stress-activated protein kinase kinase 1) (SAPK kinase 1) (SAPKK-1) (SAPKK1) (c-Jun N-terminal kinase kinase 1) (JNKK) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K7/MKK7, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The phosphorylation of the Thr residue by MAP2K7/MKK7 seems to be the prerequisite for JNK activation at least in response to pro-inflammatory cytokines, while other stimuli activate both MAP2K4/MKK4 and MAP2K7/MKK7 which synergistically phosphorylate JNKs. MAP2K4 is required for maintaining peripheral lymphoid homeostasis. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Whereas MAP2K7/MKK7 exclusively activates JNKs, MAP2K4/MKK4 additionally activates the p38 MAPKs MAPK11, MAPK12, MAPK13 and MAPK14. {ECO:0000269|PubMed:7716521}. |
P46087 | NOP2 | S36 | ochoa | 28S rRNA (cytosine(4447)-C(5))-methyltransferase (EC 2.1.1.-) (Nucleolar protein 1) (Nucleolar protein 2 homolog) (Proliferating-cell nucleolar antigen p120) (Proliferation-associated nucleolar protein p120) | S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (PubMed:26196125). Required for efficient rRNA processing and 60S ribosomal subunit biogenesis (PubMed:24120868, PubMed:36161484). Regulates pre-rRNA processing through non-catalytic complex formation with box C/D snoRNAs and facilitates the recruitment of U3 and U8 snoRNAs to pre-90S ribosomal particles and their stable assembly into snoRNP complexes (PubMed:36161484). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (PubMed:24120868). {ECO:0000269|PubMed:24120868, ECO:0000269|PubMed:26196125, ECO:0000269|PubMed:36161484}. |
P46821 | MAP1B | S1973 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48436 | SOX9 | S64 | psp | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P48454 | PPP3CC | S463 | ochoa | Serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calcineurin, testis-specific catalytic subunit) (Calmodulin-dependent calcineurin A subunit gamma isoform) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals. Dephosphorylates and activates transcription factor NFATC1. Dephosphorylates and inactivates transcription factor ELK1. Dephosphorylates DARPP32. {ECO:0000269|PubMed:19154138}. |
P48681 | NES | S459 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48681 | NES | S814 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49448 | GLUD2 | S128 | ochoa | Glutamate dehydrogenase 2, mitochondrial (GDH 2) (EC 1.4.1.3) | Important for recycling the chief excitatory neurotransmitter, glutamate, during neurotransmission. |
P49792 | RANBP2 | S2526 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49914 | MTHFS | S97 | ochoa | 5-formyltetrahydrofolate cyclo-ligase (EC 6.3.3.2) (5,10-methenyl-tetrahydrofolate synthetase) (MTHFS) (Methenyl-THF synthetase) | Contributes to tetrahydrofolate metabolism. Helps regulate carbon flow through the folate-dependent one-carbon metabolic network that supplies carbon for the biosynthesis of purines, thymidine and amino acids. Catalyzes the irreversible conversion of 5-formyltetrahydrofolate (5-FTHF) to yield 5,10-methenyltetrahydrofolate. {ECO:0000269|PubMed:8522195}. |
P50591 | TNFSF10 | S96 | ochoa | Tumor necrosis factor ligand superfamily member 10 (Apo-2 ligand) (Apo-2L) (TNF-related apoptosis-inducing ligand) (Protein TRAIL) (CD antigen CD253) | Cytokine that binds to TNFRSF10A/TRAILR1, TNFRSF10B/TRAILR2, TNFRSF10C/TRAILR3, TNFRSF10D/TRAILR4 and possibly also to TNFRSF11B/OPG (PubMed:10549288, PubMed:26457518). Induces apoptosis. Its activity may be modulated by binding to the decoy receptors TNFRSF10C/TRAILR3, TNFRSF10D/TRAILR4 and TNFRSF11B/OPG that cannot induce apoptosis. {ECO:0000269|PubMed:10549288, ECO:0000269|PubMed:26457518}. |
P50747 | HLCS | S124 | ochoa | Biotin--protein ligase (EC 6.3.4.-) (Biotin apo-protein ligase) [Includes: Biotin--[methylmalonyl-CoA-carboxytransferase] ligase (EC 6.3.4.9); Biotin--[propionyl-CoA-carboxylase [ATP-hydrolyzing]] ligase (EC 6.3.4.10) (Holocarboxylase synthetase) (HCS); Biotin--[methylcrotonoyl-CoA-carboxylase] ligase (EC 6.3.4.11); Biotin--[acetyl-CoA-carboxylase] ligase (EC 6.3.4.15)] | Biotin--protein ligase catalyzing the biotinylation of the 4 biotin-dependent carboxylases acetyl-CoA-carboxylase, pyruvate carboxylase, propionyl-CoA carboxylase, and methylcrotonyl-CoA carboxylase. {ECO:0000269|PubMed:10590022, ECO:0000269|PubMed:7753853, ECO:0000269|PubMed:7842009}. |
P50851 | LRBA | S994 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51398 | DAP3 | S215 | psp | Small ribosomal subunit protein mS29 (EC 3.6.5.-) (28S ribosomal protein S29, mitochondrial) (MRP-S29) (S29mt) (Death-associated protein 3) (DAP-3) (Ionizing radiation resistance conferring protein) | As a component of the mitochondrial small ribosomal subunit, it plays a role in the translation of mitochondrial mRNAs (PubMed:39701103). Involved in mediating interferon-gamma-induced cell death (PubMed:7499268). Displays GTPase activity in vitro (PubMed:39701103). {ECO:0000269|PubMed:39701103, ECO:0000269|PubMed:7499268}. |
P52179 | MYOM1 | S1177 | ochoa | Myomesin-1 (190 kDa connectin-associated protein) (190 kDa titin-associated protein) (Myomesin family member 1) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P52292 | KPNA2 | S24 | ochoa | Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha) | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:7604027, PubMed:7754385). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA1 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:28991411, ECO:0000269|PubMed:32130408, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7604027, ECO:0000269|PubMed:7754385}. |
P52292 | KPNA2 | S105 | psp | Importin subunit alpha-1 (Karyopherin subunit alpha-2) (RAG cohort protein 1) (SRP1-alpha) | Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1 (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Binds specifically and directly to substrates containing either a simple or bipartite NLS motif (PubMed:28991411, PubMed:32130408, PubMed:7604027, PubMed:7754385). Docking of the importin/substrate complex to the nuclear pore complex (NPC) is mediated by KPNB1 through binding to nucleoporin FxFG repeats and the complex is subsequently translocated through the pore by an energy requiring, Ran-dependent mechanism (PubMed:7604027, PubMed:7754385). At the nucleoplasmic side of the NPC, Ran binds to importin-beta and the three components separate and importin-alpha and -beta are re-exported from the nucleus to the cytoplasm where GTP hydrolysis releases Ran from importin. The directionality of nuclear import is thought to be conferred by an asymmetric distribution of the GTP- and GDP-bound forms of Ran between the cytoplasm and nucleus. Mediator of PR-DUB complex component BAP1 nuclear import; acts redundantly with KPNA1 and Transportin-1/TNPO1 (PubMed:35446349). {ECO:0000269|PubMed:28991411, ECO:0000269|PubMed:32130408, ECO:0000269|PubMed:35446349, ECO:0000269|PubMed:7604027, ECO:0000269|PubMed:7754385}. |
P52701 | MSH6 | S330 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P53350 | PLK1 | S99 | psp | Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) (Polo-like kinase 1) (PLK-1) (Serine/threonine-protein kinase 13) (STPK13) | Serine/threonine-protein kinase that performs several important functions throughout M phase of the cell cycle, including the regulation of centrosome maturation and spindle assembly, the removal of cohesins from chromosome arms, the inactivation of anaphase-promoting complex/cyclosome (APC/C) inhibitors, and the regulation of mitotic exit and cytokinesis (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Polo-like kinase proteins act by binding and phosphorylating proteins that are already phosphorylated on a specific motif recognized by the POLO box domains (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:23455478, PubMed:23509069, PubMed:28512243, PubMed:8991084). Phosphorylates BORA, BUB1B/BUBR1, CCNB1, CDC25C, CEP55, ECT2, ERCC6L, FBXO5/EMI1, FOXM1, KIF20A/MKLP2, CENPU, NEDD1, NINL, NPM1, NUDC, PKMYT1/MYT1, KIZ, MRE11, PPP1R12A/MYPT1, POLQ, PRC1, RACGAP1/CYK4, RAD51, RHNO1, SGO1, STAG2/SA2, TEX14, TOPORS, p73/TP73, TPT1, WEE1 and HNRNPU (PubMed:11202906, PubMed:12207013, PubMed:12447691, PubMed:12524548, PubMed:12738781, PubMed:12852856, PubMed:12939256, PubMed:14532005, PubMed:14734534, PubMed:15070733, PubMed:15148369, PubMed:15469984, PubMed:16198290, PubMed:16247472, PubMed:16980960, PubMed:17081991, PubMed:17218258, PubMed:17351640, PubMed:17376779, PubMed:17617734, PubMed:18174154, PubMed:18331714, PubMed:18418051, PubMed:18477460, PubMed:18521620, PubMed:18615013, PubMed:19160488, PubMed:19351716, PubMed:19468300, PubMed:19468302, PubMed:19473992, PubMed:19509060, PubMed:19597481, PubMed:22325354, PubMed:23455478, PubMed:23509069, PubMed:25986610, PubMed:26811421, PubMed:28512243, PubMed:37440612, PubMed:37674080, PubMed:8991084). Plays a key role in centrosome functions and the assembly of bipolar spindles by phosphorylating KIZ, NEDD1 and NINL (PubMed:16980960, PubMed:19509060). NEDD1 phosphorylation promotes subsequent targeting of the gamma-tubulin ring complex (gTuRC) to the centrosome, an important step for spindle formation (PubMed:19509060). Phosphorylation of NINL component of the centrosome leads to NINL dissociation from other centrosomal proteins (PubMed:12852856). Involved in mitosis exit and cytokinesis by phosphorylating CEP55, ECT2, KIF20A/MKLP2, CENPU, PRC1 and RACGAP1 (PubMed:12939256, PubMed:16247472, PubMed:17351640, PubMed:19468300, PubMed:19468302). Recruited at the central spindle by phosphorylating and docking PRC1 and KIF20A/MKLP2; creates its own docking sites on PRC1 and KIF20A/MKLP2 by mediating phosphorylation of sites subsequently recognized by the POLO box domains (PubMed:12939256, PubMed:17351640). Phosphorylates RACGAP1, thereby creating a docking site for the Rho GTP exchange factor ECT2 that is essential for the cleavage furrow formation (PubMed:19468300, PubMed:19468302). Promotes the central spindle recruitment of ECT2 (PubMed:16247472). Plays a central role in G2/M transition of mitotic cell cycle by phosphorylating CCNB1, CDC25C, FOXM1, CENPU, PKMYT1/MYT1, PPP1R12A/MYPT1 and WEE1 (PubMed:11202906, PubMed:12447691, PubMed:12524548, PubMed:19160488). Part of a regulatory circuit that promotes the activation of CDK1 by phosphorylating the positive regulator CDC25C and inhibiting the negative regulators WEE1 and PKMYT1/MYT1 (PubMed:11202906). Also acts by mediating phosphorylation of cyclin-B1 (CCNB1) on centrosomes in prophase (PubMed:12447691, PubMed:12524548). Phosphorylates FOXM1, a key mitotic transcription regulator, leading to enhance FOXM1 transcriptional activity (PubMed:19160488). Involved in kinetochore functions and sister chromatid cohesion by phosphorylating BUB1B/BUBR1, FBXO5/EMI1 and STAG2/SA2 (PubMed:15148369, PubMed:15469984, PubMed:17376779, PubMed:18331714). PLK1 is high on non-attached kinetochores suggesting a role of PLK1 in kinetochore attachment or in spindle assembly checkpoint (SAC) regulation (PubMed:17617734). Required for kinetochore localization of BUB1B (PubMed:17376779). Regulates the dissociation of cohesin from chromosomes by phosphorylating cohesin subunits such as STAG2/SA2 (By similarity). Phosphorylates SGO1: required for spindle pole localization of isoform 3 of SGO1 and plays a role in regulating its centriole cohesion function (PubMed:18331714). Mediates phosphorylation of FBXO5/EMI1, a negative regulator of the APC/C complex during prophase, leading to FBXO5/EMI1 ubiquitination and degradation by the proteasome (PubMed:15148369, PubMed:15469984). Acts as a negative regulator of p53 family members: phosphorylates TOPORS, leading to inhibit the sumoylation of p53/TP53 and simultaneously enhance the ubiquitination and subsequent degradation of p53/TP53 (PubMed:19473992). Phosphorylates the transactivation domain of the transcription factor p73/TP73, leading to inhibit p73/TP73-mediated transcriptional activation and pro-apoptotic functions. Phosphorylates BORA, and thereby promotes the degradation of BORA (PubMed:18521620). Contributes to the regulation of AURKA function (PubMed:18615013, PubMed:18662541). Also required for recovery after DNA damage checkpoint and entry into mitosis (PubMed:18615013, PubMed:18662541). Phosphorylates MISP, leading to stabilization of cortical and astral microtubule attachments required for proper spindle positioning (PubMed:23509069). Together with MEIKIN, acts as a regulator of kinetochore function during meiosis I: required both for mono-orientation of kinetochores on sister chromosomes and protection of centromeric cohesin from separase-mediated cleavage (By similarity). Phosphorylates CEP68 and is required for its degradation (PubMed:25503564). Regulates nuclear envelope breakdown during prophase by phosphorylating DCTN1 resulting in its localization in the nuclear envelope (PubMed:20679239). Phosphorylates the heat shock transcription factor HSF1, promoting HSF1 nuclear translocation upon heat shock (PubMed:15661742). Phosphorylates HSF1 also in the early mitotic period; this phosphorylation regulates HSF1 localization to the spindle pole, the recruitment of the SCF(BTRC) ubiquitin ligase complex induicing HSF1 degradation, and hence mitotic progression (PubMed:18794143). Regulates mitotic progression by phosphorylating RIOK2 (PubMed:21880710). Through the phosphorylation of DZIP1 regulates the localization during mitosis of the BBSome, a ciliary protein complex involved in cilium biogenesis (PubMed:27979967). Regulates DNA repair during mitosis by mediating phosphorylation of POLQ and RHNO1, thereby promoting POLQ recruitment to DNA damage sites (PubMed:37440612, PubMed:37674080). Phosphorylates ATXN10 which may play a role in the regulation of cytokinesis and may stimulate the proteasome-mediated degradation of ATXN10 (PubMed:21857149). {ECO:0000250|UniProtKB:P70032, ECO:0000250|UniProtKB:Q5F2C3, ECO:0000269|PubMed:11202906, ECO:0000269|PubMed:12207013, ECO:0000269|PubMed:12447691, ECO:0000269|PubMed:12524548, ECO:0000269|PubMed:12738781, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:12939256, ECO:0000269|PubMed:14532005, ECO:0000269|PubMed:14734534, ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:15148369, ECO:0000269|PubMed:15469984, ECO:0000269|PubMed:15661742, ECO:0000269|PubMed:16198290, ECO:0000269|PubMed:16247472, ECO:0000269|PubMed:16980960, ECO:0000269|PubMed:17081991, ECO:0000269|PubMed:17218258, ECO:0000269|PubMed:17351640, ECO:0000269|PubMed:17376779, ECO:0000269|PubMed:17617734, ECO:0000269|PubMed:18174154, ECO:0000269|PubMed:18331714, ECO:0000269|PubMed:18418051, ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:18521620, ECO:0000269|PubMed:18615013, ECO:0000269|PubMed:18662541, ECO:0000269|PubMed:18794143, ECO:0000269|PubMed:19160488, ECO:0000269|PubMed:19351716, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:19468302, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:19509060, ECO:0000269|PubMed:19597481, ECO:0000269|PubMed:20679239, ECO:0000269|PubMed:21857149, ECO:0000269|PubMed:21880710, ECO:0000269|PubMed:22325354, ECO:0000269|PubMed:23455478, ECO:0000269|PubMed:23509069, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25986610, ECO:0000269|PubMed:26811421, ECO:0000269|PubMed:27979967, ECO:0000269|PubMed:37440612, ECO:0000269|PubMed:37674080, ECO:0000269|PubMed:8991084}. |
P54252 | ATXN3 | S335 | psp | Ataxin-3 (EC 3.4.19.12) (Machado-Joseph disease protein 1) (Spinocerebellar ataxia type 3 protein) | Deubiquitinating enzyme involved in protein homeostasis maintenance, transcription, cytoskeleton regulation, myogenesis and degradation of misfolded chaperone substrates (PubMed:12297501, PubMed:16118278, PubMed:17696782, PubMed:23625928, PubMed:28445460, PubMed:33157014). Binds long polyubiquitin chains and trims them, while it has weak or no activity against chains of 4 or less ubiquitins (PubMed:17696782). Involved in degradation of misfolded chaperone substrates via its interaction with STUB1/CHIP: recruited to monoubiquitinated STUB1/CHIP, and restricts the length of ubiquitin chain attached to STUB1/CHIP substrates and preventing further chain extension (By similarity). Interacts with key regulators of transcription and represses transcription: acts as a histone-binding protein that regulates transcription (PubMed:12297501). Acts as a negative regulator of mTORC1 signaling in response to amino acid deprivation by mediating deubiquitination of RHEB, thereby promoting RHEB inactivation by the TSC-TBC complex (PubMed:33157014). Regulates autophagy via the deubiquitination of 'Lys-402' of BECN1 leading to the stabilization of BECN1 (PubMed:28445460). {ECO:0000250|UniProtKB:Q9CVD2, ECO:0000269|PubMed:12297501, ECO:0000269|PubMed:16118278, ECO:0000269|PubMed:17696782, ECO:0000269|PubMed:23625928, ECO:0000269|PubMed:28445460, ECO:0000269|PubMed:33157014}. |
P54652 | HSPA2 | S224 | ochoa | Heat shock-related 70 kDa protein 2 (Heat shock 70 kDa protein 2) (Heat shock protein family A member 2) | Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). Plays a role in spermatogenesis. In association with SHCBP1L may participate in the maintenance of spindle integrity during meiosis in male germ cells (By similarity). {ECO:0000250|UniProtKB:P17156, ECO:0000303|PubMed:26865365}. |
P55201 | BRPF1 | S867 | ochoa | Peregrin (Bromodomain and PHD finger-containing protein 1) (Protein Br140) | Scaffold subunit of various histone acetyltransferase (HAT) complexes, such as the MOZ/MORF and HBO1 complexes, which have a histone H3 acetyltransferase activity (PubMed:16387653, PubMed:24065767, PubMed:27939640). Plays a key role in HBO1 complex by directing KAT7/HBO1 specificity towards histone H3 'Lys-14' acetylation (H3K14ac) (PubMed:24065767). Some HAT complexes preferentially mediate histone H3 'Lys-23' (H3K23ac) acetylation (PubMed:27939640). Positively regulates the transcription of RUNX1 and RUNX2 (PubMed:18794358). {ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:27939640}. |
P55265 | ADAR | S629 | ochoa | Double-stranded RNA-specific adenosine deaminase (DRADA) (EC 3.5.4.37) (136 kDa double-stranded RNA-binding protein) (p136) (Interferon-inducible protein 4) (IFI-4) (K88DSRBP) | Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing (PubMed:12618436, PubMed:7565688, PubMed:7972084). This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins since the translational machinery read the inosine as a guanosine; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication. {ECO:0000269|PubMed:12618436, ECO:0000269|PubMed:15556947, ECO:0000269|PubMed:15858013, ECO:0000269|PubMed:16120648, ECO:0000269|PubMed:16475990, ECO:0000269|PubMed:17079286, ECO:0000269|PubMed:19605474, ECO:0000269|PubMed:19651874, ECO:0000269|PubMed:19710021, ECO:0000269|PubMed:19908260, ECO:0000269|PubMed:21289159, ECO:0000269|PubMed:22278222, ECO:0000269|PubMed:7565688, ECO:0000269|PubMed:7972084}. |
P55268 | LAMB2 | S1548 | ochoa | Laminin subunit beta-2 (Laminin B1s chain) (Laminin-11 subunit beta) (Laminin-14 subunit beta) (Laminin-15 subunit beta) (Laminin-3 subunit beta) (Laminin-4 subunit beta) (Laminin-7 subunit beta) (Laminin-9 subunit beta) (S-laminin subunit beta) (S-LAM beta) | Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. |
P55795 | HNRNPH2 | S90 | ochoa | Heterogeneous nuclear ribonucleoprotein H2 (hnRNP H2) (FTP-3) (Heterogeneous nuclear ribonucleoprotein H') (hnRNP H') [Cleaved into: Heterogeneous nuclear ribonucleoprotein H2, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Binds poly(RG). |
P56270 | MAZ | S361 | ochoa | Myc-associated zinc finger protein (MAZI) (Pur-1) (Purine-binding transcription factor) (Serum amyloid A-activating factor-1) (SAF-1) (Transcription factor Zif87) (ZF87) (Zinc finger protein 801) | Transcriptional regulator, potentially with dual roles in transcription initiation and termination. {ECO:0000303|PubMed:1502157}.; FUNCTION: [Isoform 1]: Binds DNA and functions as a transcriptional activator (PubMed:12270922). Binds to two G/A-rich sites, ME1a1 and ME1a2, within the MYC promoter having greater affinity for the former (PubMed:1502157). Also binds to multiple G/C-rich sites within the promoter of the Sp1 family of transcription factors (PubMed:1502157). {ECO:0000269|PubMed:12270922, ECO:0000269|PubMed:1502157}.; FUNCTION: [Isoform 2]: Binds DNA and functions as a transcriptional activator (PubMed:12270922). Inhibits MAZ isoform 1-mediated transcription (PubMed:12270922). {ECO:0000269|PubMed:12270922}.; FUNCTION: [Isoform 3]: Binds DNA and functions as a transcriptional activator. {ECO:0000269|PubMed:19583771}. |
P56537 | EIF6 | S166 | ochoa | Eukaryotic translation initiation factor 6 (eIF-6) (B(2)GCN homolog) (B4 integrin interactor) (CAB) (p27(BBP)) | Binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit to form the 80S initiation complex in the cytoplasm (PubMed:10085284, PubMed:14654845, PubMed:21536732, PubMed:32669547). Behaves as a stimulatory translation initiation factor downstream insulin/growth factors. Is also involved in ribosome biogenesis. Associates with pre-60S subunits in the nucleus and is involved in its nuclear export. Cytoplasmic release of TIF6 from 60S subunits and nuclear relocalization is promoted by a RACK1 (RACK1)-dependent protein kinase C activity (PubMed:10085284, PubMed:14654845, PubMed:21536732). In tissues responsive to insulin, controls fatty acid synthesis and glycolysis by exerting translational control of adipogenic transcription factors such as CEBPB, CEBPD and ATF4 that have G/C rich or uORF in their 5'UTR. Required for ROS-dependent megakaryocyte maturation and platelets formation, controls the expression of mitochondrial respiratory chain genes involved in reactive oxygen species (ROS) synthesis (By similarity). Involved in miRNA-mediated gene silencing by the RNA-induced silencing complex (RISC). Required for both miRNA-mediated translational repression and miRNA-mediated cleavage of complementary mRNAs by RISC (PubMed:17507929). Modulates cell cycle progression and global translation of pre-B cells, its activation seems to be rate-limiting in tumorigenesis and tumor growth (By similarity). {ECO:0000255|HAMAP-Rule:MF_03132, ECO:0000269|PubMed:10085284, ECO:0000269|PubMed:14654845, ECO:0000269|PubMed:17507929, ECO:0000269|PubMed:21536732, ECO:0000269|PubMed:32669547}. |
P58317 | ZNF121 | S87 | ochoa | Zinc finger protein 121 (Zinc finger protein 20) | May be involved in transcriptional regulation. |
P61925 | PKIA | S35 | ochoa | cAMP-dependent protein kinase inhibitor alpha (PKI-alpha) (cAMP-dependent protein kinase inhibitor, muscle/brain isoform) | Extremely potent competitive inhibitor of cAMP-dependent protein kinase activity, this protein interacts with the catalytic subunit of the enzyme after the cAMP-induced dissociation of its regulatory chains. |
P61981 | YWHAG | S38 | ochoa | 14-3-3 protein gamma (Protein kinase C inhibitor protein 1) (KCIP-1) [Cleaved into: 14-3-3 protein gamma, N-terminally processed] | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:15696159, PubMed:16511572, PubMed:36732624). Binding generally results in the modulation of the activity of the binding partner (PubMed:16511572). Promotes inactivation of WDR24 component of the GATOR2 complex by binding to phosphorylated WDR24 (PubMed:36732624). Participates in the positive regulation of NMDA glutamate receptor activity by promoting the L-glutamate secretion through interaction with BEST1 (PubMed:29121962). Reduces keratinocyte intercellular adhesion, via interacting with PKP1 and sequestering it in the cytoplasm, thereby reducing its incorporation into desmosomes (PubMed:29678907). Plays a role in mitochondrial protein catabolic process (also named MALM) that promotes the degradation of damaged proteins inside mitochondria (PubMed:22532927). {ECO:0000269|PubMed:15696159, ECO:0000269|PubMed:16511572, ECO:0000269|PubMed:22532927, ECO:0000269|PubMed:29121962, ECO:0000269|PubMed:29678907, ECO:0000269|PubMed:36732624}. |
P63104 | YWHAZ | S37 | ochoa | 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}. |
P63104 | YWHAZ | S184 | psp | 14-3-3 protein zeta/delta (Protein kinase C inhibitor protein 1) (KCIP-1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways (PubMed:14578935, PubMed:15071501, PubMed:15644438, PubMed:16376338, PubMed:16959763, PubMed:31024343, PubMed:9360956). Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif (PubMed:35662396). Binding generally results in the modulation of the activity of the binding partner (PubMed:35662396). Promotes cytosolic retention and inactivation of TFEB transcription factor by binding to phosphorylated TFEB (PubMed:35662396). Induces ARHGEF7 activity on RAC1 as well as lamellipodia and membrane ruffle formation (PubMed:16959763). In neurons, regulates spine maturation through the modulation of ARHGEF7 activity (By similarity). {ECO:0000250|UniProtKB:O55043, ECO:0000269|PubMed:14578935, ECO:0000269|PubMed:15071501, ECO:0000269|PubMed:15644438, ECO:0000269|PubMed:16376338, ECO:0000269|PubMed:16959763, ECO:0000269|PubMed:31024343, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:9360956}. |
P78380 | OLR1 | S95 | ochoa | Oxidized low-density lipoprotein receptor 1 (Ox-LDL receptor 1) (C-type lectin domain family 8 member A) (Lectin-like oxidized LDL receptor 1) (LOX-1) (Lectin-like oxLDL receptor 1) (hLOX-1) (Lectin-type oxidized LDL receptor 1) [Cleaved into: Oxidized low-density lipoprotein receptor 1, soluble form] | Receptor that mediates the recognition, internalization and degradation of oxidatively modified low density lipoprotein (oxLDL) by vascular endothelial cells. OxLDL is a marker of atherosclerosis that induces vascular endothelial cell activation and dysfunction, resulting in pro-inflammatory responses, pro-oxidative conditions and apoptosis. Its association with oxLDL induces the activation of NF-kappa-B through an increased production of intracellular reactive oxygen and a variety of pro-atherogenic cellular responses including a reduction of nitric oxide (NO) release, monocyte adhesion and apoptosis. In addition to binding oxLDL, it acts as a receptor for the HSP70 protein involved in antigen cross-presentation to naive T-cells in dendritic cells, thereby participating in cell-mediated antigen cross-presentation. Also involved in inflammatory process, by acting as a leukocyte-adhesion molecule at the vascular interface in endotoxin-induced inflammation. Also acts as a receptor for advanced glycation end (AGE) products, activated platelets, monocytes, apoptotic cells and both Gram-negative and Gram-positive bacteria. {ECO:0000269|PubMed:11821063, ECO:0000269|PubMed:12354387, ECO:0000269|PubMed:9052782}.; FUNCTION: (Microbial infection) May serve as a receptor for adhesin A variant 3 (nadA) of N.meningitidis. {ECO:0000305|PubMed:27302108}. |
P78527 | PRKDC | S2932 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78545 | ELF3 | S254 | ochoa | ETS-related transcription factor Elf-3 (E74-like factor 3) (Epithelial-restricted with serine box) (Epithelium-restricted Ets protein ESX) (Epithelium-specific Ets transcription factor 1) (ESE-1) | Transcriptional activator that binds and transactivates ETS sequences containing the consensus nucleotide core sequence GGA[AT]. Acts synergistically with POU2F3 to transactivate the SPRR2A promoter and with RUNX1 to transactivate the ANGPT1 promoter. Also transactivates collagenase, CCL20, CLND7, FLG, KRT8, NOS2, PTGS2, SPRR2B, TGFBR2 and TGM3 promoters. Represses KRT4 promoter activity. Involved in mediating vascular inflammation. May play an important role in epithelial cell differentiation and tumorigenesis. May be a critical downstream effector of the ERBB2 signaling pathway. May be associated with mammary gland development and involution. Plays an important role in the regulation of transcription with TATA-less promoters in preimplantation embryos, which is essential in preimplantation development (By similarity). {ECO:0000250, ECO:0000269|PubMed:10391676, ECO:0000269|PubMed:10644990, ECO:0000269|PubMed:10773884, ECO:0000269|PubMed:11036073, ECO:0000269|PubMed:11313868, ECO:0000269|PubMed:12414801, ECO:0000269|PubMed:12624109, ECO:0000269|PubMed:12682075, ECO:0000269|PubMed:12713734, ECO:0000269|PubMed:14715662, ECO:0000269|PubMed:14767472, ECO:0000269|PubMed:15075319, ECO:0000269|PubMed:15169914, ECO:0000269|PubMed:15794755, ECO:0000269|PubMed:16307850, ECO:0000269|PubMed:17060315, ECO:0000269|PubMed:9129154, ECO:0000269|PubMed:9234700, ECO:0000269|PubMed:9336459, ECO:0000269|PubMed:9395241, ECO:0000269|PubMed:9417054}. |
P78559 | MAP1A | S1190 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P82094 | TMF1 | S541 | ochoa | TATA element modulatory factor (TMF) (Androgen receptor coactivator 160 kDa protein) (Androgen receptor-associated protein of 160 kDa) | Potential coactivator of the androgen receptor. Mediates STAT3 degradation. May play critical roles in two RAB6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER. This protein binds the HIV-1 TATA element and inhibits transcriptional activation by the TATA-binding protein (TBP). {ECO:0000269|PubMed:10428808, ECO:0000269|PubMed:1409643, ECO:0000269|PubMed:15467733, ECO:0000269|PubMed:17698061}. |
P82987 | ADAMTSL3 | S631 | ochoa | ADAMTS-like protein 3 (ADAMTSL-3) (Punctin-2) | None |
P83731 | RPL24 | S64 | ochoa | Large ribosomal subunit protein eL24 (60S ribosomal protein L24) (60S ribosomal protein L30) | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:32669547}. |
Q02086 | SP2 | S569 | ochoa | Transcription factor Sp2 | Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites. |
Q02388 | COL7A1 | S828 | ochoa | Collagen alpha-1(VII) chain (Long-chain collagen) (LC collagen) | Stratified squamous epithelial basement membrane protein that forms anchoring fibrils which may contribute to epithelial basement membrane organization and adherence by interacting with extracellular matrix (ECM) proteins such as type IV collagen. |
Q02446 | SP4 | S691 | ochoa | Transcription factor Sp4 (SPR-1) | Binds to GT and GC boxes promoters elements. Probable transcriptional activator. |
Q02447 | SP3 | S665 | ochoa | Transcription factor Sp3 (SPR-2) | Transcriptional factor that can act as an activator or repressor depending on isoform and/or post-translational modifications. Binds to GT and GC boxes promoter elements. Competes with SP1 for the GC-box promoters. Weak activator of transcription but can activate a number of genes involved in different processes such as cell-cycle regulation, hormone-induction and house-keeping. {ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11812829, ECO:0000269|PubMed:12419227, ECO:0000269|PubMed:12837748, ECO:0000269|PubMed:15247228, ECO:0000269|PubMed:15494207, ECO:0000269|PubMed:15554904, ECO:0000269|PubMed:16781829, ECO:0000269|PubMed:17548428, ECO:0000269|PubMed:18187045, ECO:0000269|PubMed:18617891, ECO:0000269|PubMed:9278495}. |
Q02952 | AKAP12 | S392 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q02978 | SLC25A11 | S203 | ochoa | Mitochondrial 2-oxoglutarate/malate carrier protein (OGCP) (alpha-oxoglutarate carrier) (Solute carrier family 25 member 11) (SLC25A11) | Catalyzes the transport of 2-oxoglutarate (alpha-oxoglutarate) across the inner mitochondrial membrane in an electroneutral exchange for malate. Can also exchange 2-oxoglutarate for other dicarboxylic acids such as malonate, succinate, maleate and oxaloacetate, although with lower affinity. Contributes to several metabolic processes, including the malate-aspartate shuttle, the oxoglutarate/isocitrate shuttle, in gluconeogenesis from lactate, and in nitrogen metabolism (By similarity). Maintains mitochondrial fusion and fission events, and the organization and morphology of cristae (PubMed:21448454). Involved in the regulation of apoptosis (By similarity). Helps protect from cytotoxic-induced apoptosis by modulating glutathione levels in mitochondria (By similarity). {ECO:0000250|UniProtKB:P22292, ECO:0000250|UniProtKB:P97700, ECO:0000250|UniProtKB:Q9CR62, ECO:0000269|PubMed:21448454}. |
Q03164 | KMT2A | S912 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S982 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03701 | CEBPZ | S41 | ochoa | CCAAT/enhancer-binding protein zeta (CCAAT-box-binding transcription factor) (CBF) (CCAAT-binding factor) | Stimulates transcription from the HSP70 promoter. |
Q07869 | PPARA | S280 | psp | Peroxisome proliferator-activated receptor alpha (PPAR-alpha) (Nuclear receptor subfamily 1 group C member 1) | Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as a transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2. {ECO:0000269|PubMed:10195690, ECO:0000269|PubMed:24043310, ECO:0000269|PubMed:7629123, ECO:0000269|PubMed:7684926, ECO:0000269|PubMed:9556573}. |
Q07960 | ARHGAP1 | S51 | ochoa | Rho GTPase-activating protein 1 (CDC42 GTPase-activating protein) (GTPase-activating protein rhoGAP) (Rho-related small GTPase protein activator) (Rho-type GTPase-activating protein 1) (p50-RhoGAP) | GTPase activator for the Rho, Rac and Cdc42 proteins, converting them to the putatively inactive GDP-bound state. Cdc42 seems to be the preferred substrate. |
Q08209 | PPP3CA | S469 | ochoa | Protein phosphatase 3 catalytic subunit alpha (EC 3.1.3.16) (CAM-PRP catalytic subunit) (Calcineurin A alpha) (Calmodulin-dependent calcineurin A subunit alpha isoform) (CNA alpha) (Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform) | Calcium-dependent, calmodulin-stimulated protein phosphatase which plays an essential role in the transduction of intracellular Ca(2+)-mediated signals (PubMed:15671020, PubMed:18838687, PubMed:19154138, PubMed:23468591, PubMed:30254215). Many of the substrates contain a PxIxIT motif and/or a LxVP motif (PubMed:17498738, PubMed:17502104, PubMed:22343722, PubMed:23468591, PubMed:27974827). In response to increased Ca(2+) levels, dephosphorylates and activates phosphatase SSH1 which results in cofilin dephosphorylation (PubMed:15671020). In response to increased Ca(2+) levels following mitochondrial depolarization, dephosphorylates DNM1L inducing DNM1L translocation to the mitochondrion (PubMed:18838687). Positively regulates the CACNA1B/CAV2.2-mediated Ca(2+) release probability at hippocampal neuronal soma and synaptic terminals (By similarity). Dephosphorylates heat shock protein HSPB1 (By similarity). Dephosphorylates and activates transcription factor NFATC1 (PubMed:19154138). In response to increased Ca(2+) levels, regulates NFAT-mediated transcription probably by dephosphorylating NFAT and promoting its nuclear translocation (PubMed:26248042). Dephosphorylates and inactivates transcription factor ELK1 (PubMed:19154138). Dephosphorylates DARPP32 (PubMed:19154138). May dephosphorylate CRTC2 at 'Ser-171' resulting in CRTC2 dissociation from 14-3-3 proteins (PubMed:30611118). Dephosphorylates transcription factor TFEB at 'Ser-211' following Coxsackievirus B3 infection, promoting nuclear translocation (PubMed:33691586). Required for postnatal development of the nephrogenic zone and superficial glomeruli in the kidneys, cell cycle homeostasis in the nephrogenic zone, and ultimately normal kidney function (By similarity). Plays a role in intracellular AQP2 processing and localization to the apical membrane in the kidney, may thereby be required for efficient kidney filtration (By similarity). Required for secretion of salivary enzymes amylase, peroxidase, lysozyme and sialic acid via formation of secretory vesicles in the submandibular glands (By similarity). Required for calcineurin activity and homosynaptic depotentiation in the hippocampus (By similarity). Required for normal differentiation and survival of keratinocytes and therefore required for epidermis superstructure formation (By similarity). Positively regulates osteoblastic bone formation, via promotion of osteoblast differentiation (By similarity). Positively regulates osteoclast differentiation, potentially via NFATC1 signaling (By similarity). May play a role in skeletal muscle fiber type specification, potentially via NFATC1 signaling (By similarity). Negatively regulates MAP3K14/NIK signaling via inhibition of nuclear translocation of the transcription factors RELA and RELB (By similarity). Required for antigen-specific T-cell proliferation response (By similarity). Dephosphorylates KLHL3, promoting the interaction between KLHL3 and WNK4 and subsequent degradation of WNK4 (PubMed:30718414). Negatively regulates SLC9A1 activity (PubMed:31375679). {ECO:0000250|UniProtKB:P48452, ECO:0000250|UniProtKB:P63328, ECO:0000250|UniProtKB:P63329, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:17498738, ECO:0000269|PubMed:17502104, ECO:0000269|PubMed:18838687, ECO:0000269|PubMed:19154138, ECO:0000269|PubMed:22343722, ECO:0000269|PubMed:23468591, ECO:0000269|PubMed:26248042, ECO:0000269|PubMed:27974827, ECO:0000269|PubMed:30254215, ECO:0000269|PubMed:30611118, ECO:0000269|PubMed:30718414, ECO:0000269|PubMed:31375679, ECO:0000269|PubMed:33691586}. |
Q08431 | MFGE8 | S42 | ochoa | Lactadherin (Breast epithelial antigen BA46) (HMFG) (MFGM) (Milk fat globule-EGF factor 8) (MFG-E8) (SED1) [Cleaved into: Lactadherin short form; Medin] | Plays an important role in the maintenance of intestinal epithelial homeostasis and the promotion of mucosal healing. Promotes VEGF-dependent neovascularization (By similarity). Contributes to phagocytic removal of apoptotic cells in many tissues. Specific ligand for the alpha-v/beta-3 and alpha-v/beta-5 receptors. Also binds to phosphatidylserine-enriched cell surfaces in a receptor-independent manner. Zona pellucida-binding protein which may play a role in gamete interaction. {ECO:0000250, ECO:0000269|PubMed:19204935}.; FUNCTION: [Medin]: Main constituent of aortic medial amyloid. {ECO:0000269|PubMed:19204935}. |
Q08499 | PDE4D | S305 | ochoa | 3',5'-cyclic-AMP phosphodiesterase 4D (EC 3.1.4.53) (DPDE3) (PDE43) (cAMP-specific phosphodiesterase 4D) | Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. {ECO:0000269|PubMed:15260978, ECO:0000269|PubMed:15576036, ECO:0000269|PubMed:9371713}. |
Q09666 | AHNAK | S67 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q09666 | AHNAK | S379 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q0ZGT2 | NEXN | S162 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q12802 | AKAP13 | S1123 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12802 | AKAP13 | S1411 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q12888 | TP53BP1 | S222 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12904 | AIMP1 | S232 | ochoa | Aminoacyl tRNA synthase complex-interacting multifunctional protein 1 (Multisynthase complex auxiliary component p43) [Cleaved into: Endothelial monocyte-activating polypeptide 2 (EMAP-2) (Endothelial monocyte-activating polypeptide II) (EMAP-II) (Small inducible cytokine subfamily E member 1)] | Non-catalytic component of the multisynthase complex. Stimulates the catalytic activity of cytoplasmic arginyl-tRNA synthase (PubMed:10358004). Binds tRNA. Possesses inflammatory cytokine activity (PubMed:11306575). Negatively regulates TGF-beta signaling through stabilization of SMURF2 by binding to SMURF2 and inhibiting its SMAD7-mediated degradation (By similarity). Involved in glucose homeostasis through induction of glucagon secretion at low glucose levels (By similarity). Promotes dermal fibroblast proliferation and wound repair (PubMed:16472771). Regulates KDELR1-mediated retention of HSP90B1/gp96 in the endoplasmic reticulum (By similarity). Plays a role in angiogenesis by inducing endothelial cell migration at low concentrations and endothelian cell apoptosis at high concentrations (PubMed:12237313). Induces maturation of dendritic cells and monocyte cell adhesion (PubMed:11818442). Modulates endothelial cell responses by degrading HIF-1A through interaction with PSMA7 (PubMed:19362550). {ECO:0000250|UniProtKB:P31230, ECO:0000269|PubMed:10358004, ECO:0000269|PubMed:11157763, ECO:0000269|PubMed:11306575, ECO:0000269|PubMed:11818442, ECO:0000269|PubMed:12237313, ECO:0000269|PubMed:19362550}. |
Q12905 | ILF2 | S68 | ochoa | Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) | Chromatin-interacting protein that forms a stable heterodimer with interleukin enhancer-binding factor 3/ILF3 and plays a role in several biological processes including transcription, innate immunity or cell growth (PubMed:18458058, PubMed:31212927). Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus. Together with ILF3, forms an RNA-binding complex that is required for mitotic progression and cytokinesis by regulating the expression of a cluster of mitotic genes. Mechanistically, competes with STAU1/STAU2-mediated mRNA decay (PubMed:32433969). Also plays a role in the inhibition of various viruses including Japanese encephalitis virus or enterovirus 71. {ECO:0000269|PubMed:10574923, ECO:0000269|PubMed:11739746, ECO:0000269|PubMed:18458058, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:31212927, ECO:0000269|PubMed:32433969, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12955 | ANK3 | S1405 | ochoa | Ankyrin-3 (ANK-3) (Ankyrin-G) | Membrane-cytoskeleton linker. May participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments (PubMed:7836469). In skeletal muscle, required for costamere localization of DMD and betaDAG1 (By similarity). Regulates KCNA1 channel activity in function of dietary Mg(2+) levels, and thereby contributes to the regulation of renal Mg(2+) reabsorption (PubMed:23903368). Required for intracellular adhesion and junctional conductance in myocytes, potentially via stabilization of GJA1/CX43 protein abundance and promotion of PKP2, GJA1/CX43, and SCN5A/Nav1.5 localization to cell-cell junctions (By similarity). {ECO:0000250|UniProtKB:G5E8K5, ECO:0000250|UniProtKB:O70511, ECO:0000269|PubMed:23903368, ECO:0000269|PubMed:7836469}.; FUNCTION: [Isoform 5]: May be part of a Golgi-specific membrane cytoskeleton in association with beta-spectrin. {ECO:0000305|PubMed:17974005}. |
Q12983 | BNIP3 | S95 | psp | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 | Apoptosis-inducing protein that can overcome BCL2 suppression. May play a role in repartitioning calcium between the two major intracellular calcium stores in association with BCL2. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. Plays an important role in the calprotectin (S100A8/A9)-induced cell death pathway. {ECO:0000269|PubMed:19935772, ECO:0000269|PubMed:22292033}. |
Q13017 | ARHGAP5 | S1105 | ochoa | Rho GTPase-activating protein 5 (Rho-type GTPase-activating protein 5) (p190-B) | GTPase-activating protein for Rho family members (PubMed:8537347). {ECO:0000269|PubMed:8537347}. |
Q13136 | PPFIA1 | S763 | ochoa | Liprin-alpha-1 (LAR-interacting protein 1) (LIP-1) (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein alpha-1) (PTPRF-interacting protein alpha-1) | May regulate the disassembly of focal adhesions. May localize receptor-like tyrosine phosphatases type 2A at specific sites on the plasma membrane, possibly regulating their interaction with the extracellular environment and their association with substrates. {ECO:0000269|PubMed:7796809}. |
Q13163 | MAP2K5 | S149 | ochoa|psp | Dual specificity mitogen-activated protein kinase kinase 5 (MAP kinase kinase 5) (MAPKK 5) (EC 2.7.12.2) (MAPK/ERK kinase 5) (MEK 5) | Acts as a scaffold for the formation of a ternary MAP3K2/MAP3K3-MAP3K5-MAPK7 signaling complex. Activation of this pathway appears to play a critical role in protecting cells from stress-induced apoptosis, neuronal survival and cardiac development and angiogenesis. As part of the MAPK/ERK signaling pathway, acts as a negative regulator of apoptosis in cardiomyocytes via promotion of STUB1/CHIP-mediated ubiquitination and degradation of ICER-type isoforms of CREM (By similarity). {ECO:0000250|UniProtKB:Q62862, ECO:0000269|PubMed:7759517, ECO:0000269|PubMed:9384584}. |
Q13185 | CBX3 | S145 | ochoa | Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) | Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}. |
Q13201 | MMRN1 | S368 | ochoa | Multimerin-1 (EMILIN-4) (Elastin microfibril interface located protein 4) (Elastin microfibril interfacer 4) (Endothelial cell multimerin) [Cleaved into: Platelet glycoprotein Ia*; 155 kDa platelet multimerin (p-155) (p155)] | Carrier protein for platelet (but not plasma) factor V/Va. Plays a role in the storage and stabilization of factor V in platelets. Upon release following platelet activation, may limit platelet and plasma factor Va-dependent thrombin generation. Ligand for integrin alpha-IIb/beta-3 and integrin alpha-V/beta-3 on activated platelets, and may function as an extracellular matrix or adhesive protein. {ECO:0000269|PubMed:16363244, ECO:0000269|PubMed:19132231, ECO:0000269|PubMed:7629143}. |
Q13257 | MAD2L1 | S178 | psp | Mitotic spindle assembly checkpoint protein MAD2A (HsMAD2) (Mitotic arrest deficient 2-like protein 1) (MAD2-like protein 1) | Component of the spindle-assembly checkpoint that prevents the onset of anaphase until all chromosomes are properly aligned at the metaphase plate (PubMed:15024386, PubMed:29162720). In the closed conformation (C-MAD2) forms a heterotetrameric complex with MAD1L1 at unattached kinetochores during prometaphase, the complex recruits open conformation molecules of MAD2L1 (O-MAD2) and then promotes the conversion of O-MAD2 to C-MAD2 (PubMed:29162720). Required for the execution of the mitotic checkpoint which monitors the process of kinetochore-spindle attachment and inhibits the activity of the anaphase promoting complex by sequestering CDC20 until all chromosomes are aligned at the metaphase plate (PubMed:10700282, PubMed:11804586, PubMed:15024386). {ECO:0000269|PubMed:10700282, ECO:0000269|PubMed:11804586, ECO:0000269|PubMed:15024386, ECO:0000269|PubMed:29162720}. |
Q13308 | PTK7 | S337 | ochoa | Inactive tyrosine-protein kinase 7 (Colon carcinoma kinase 4) (CCK-4) (Protein-tyrosine kinase 7) (Pseudo tyrosine kinase receptor 7) (Tyrosine-protein kinase-like 7) | Inactive tyrosine kinase involved in Wnt signaling pathway. Component of both the non-canonical (also known as the Wnt/planar cell polarity signaling) and the canonical Wnt signaling pathway. Functions in cell adhesion, cell migration, cell polarity, proliferation, actin cytoskeleton reorganization and apoptosis. Has a role in embryogenesis, epithelial tissue organization and angiogenesis. {ECO:0000269|PubMed:18471990, ECO:0000269|PubMed:20558616, ECO:0000269|PubMed:20837484, ECO:0000269|PubMed:21103379, ECO:0000269|PubMed:21132015}. |
Q13330 | MTA1 | S584 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13393 | PLD1 | S610 | psp | Phospholipase D1 (PLD 1) (hPLD1) (EC 3.1.4.4) (Choline phosphatase 1) (Phosphatidylcholine-hydrolyzing phospholipase D1) | Function as phospholipase selective for phosphatidylcholine (PubMed:25936805, PubMed:8530346, PubMed:9582313). Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity). {ECO:0000250|UniProtKB:Q9Z280, ECO:0000269|PubMed:25936805, ECO:0000269|PubMed:8530346, ECO:0000269|PubMed:9582313}. |
Q13415 | ORC1 | S311 | ochoa | Origin recognition complex subunit 1 (Replication control protein 1) | Component of the origin recognition complex (ORC) that binds origins of replication. DNA-binding is ATP-dependent. The DNA sequences that define origins of replication have not been identified yet. ORC is required to assemble the pre-replication complex necessary to initiate DNA replication. |
Q13573 | SNW1 | S402 | ochoa | SNW domain-containing protein 1 (Nuclear protein SkiP) (Nuclear receptor coactivator NCoA-62) (Ski-interacting protein) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Required for the specific splicing of CDKN1A pre-mRNA; the function probably involves the recruitment of U2AF2 to the mRNA. May recruit PPIL1 to the spliceosome. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in transcriptional regulation. Modulates TGF-beta-mediated transcription via association with SMAD proteins, MYOD1-mediated transcription via association with PABPN1, RB1-mediated transcriptional repression, and retinoid-X receptor (RXR)- and vitamin D receptor (VDR)-dependent gene transcription in a cell line-specific manner probably involving coactivators NCOA1 and GRIP1. Is involved in NOTCH1-mediated transcriptional activation. Binds to multimerized forms of Notch intracellular domain (NICD) and is proposed to recruit transcriptional coactivators such as MAML1 to form an intermediate preactivation complex which associates with DNA-bound CBF-1/RBPJ to form a transcriptional activation complex by releasing SNW1 and redundant NOTCH1 NICD. {ECO:0000269|PubMed:10644367, ECO:0000269|PubMed:11278756, ECO:0000269|PubMed:11371506, ECO:0000269|PubMed:11514567, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12840015, ECO:0000269|PubMed:14985122, ECO:0000269|PubMed:15194481, ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:18794151, ECO:0000269|PubMed:19818711, ECO:0000269|PubMed:21245387, ECO:0000269|PubMed:21460037, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:9632709, ECO:0000305|PubMed:33509932}.; FUNCTION: (Microbial infection) Is recruited by HIV-1 Tat to Tat:P-TEFb:TAR RNA complexes and is involved in Tat transcription by recruitment of MYC, MEN1 and TRRAP to the HIV promoter. {ECO:0000269|PubMed:15905409, ECO:0000269|PubMed:19818711}.; FUNCTION: (Microbial infection) Proposed to be involved in transcriptional activation by EBV EBNA2 of CBF-1/RBPJ-repressed promoters. {ECO:0000269|PubMed:10644367}. |
Q13772 | NCOA4 | S554 | ochoa | Nuclear receptor coactivator 4 (NCoA-4) (Androgen receptor coactivator 70 kDa protein) (70 kDa AR-activator) (70 kDa androgen receptor coactivator) (Androgen receptor-associated protein of 70 kDa) (Ferritin cargo receptor NCOA4) (Ret-activating protein ELE1) | Cargo receptor for the autophagic turnover of the iron-binding ferritin complex, playing a central role in iron homeostasis (PubMed:25327288, PubMed:26436293). Acts as an adapter for delivery of ferritin to lysosomes and autophagic degradation of ferritin, a process named ferritinophagy (PubMed:25327288, PubMed:26436293). Targets the iron-binding ferritin complex to autolysosomes following starvation or iron depletion (PubMed:25327288). Ensures efficient erythropoiesis, possibly by regulating hemin-induced erythroid differentiation (PubMed:26436293). In some studies, has been shown to enhance the androgen receptor AR transcriptional activity as well as acting as ligand-independent coactivator of the peroxisome proliferator-activated receptor (PPAR) gamma (PubMed:10347167, PubMed:8643607). Another study shows only weak behavior as a coactivator for the androgen receptor and no alteration of the ligand responsiveness of the AR (PubMed:10517667). Binds to DNA replication origins, binding is not restricted to sites of active transcription and may likely be independent from the nuclear receptor transcriptional coactivator function (PubMed:24910095). May inhibit activation of DNA replication origins, possibly by obstructing DNA unwinding via interaction with the MCM2-7 complex (PubMed:24910095). {ECO:0000269|PubMed:10347167, ECO:0000269|PubMed:10517667, ECO:0000269|PubMed:24910095, ECO:0000269|PubMed:25327288, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:8643607}. |
Q13813 | SPTAN1 | S1413 | ochoa | Spectrin alpha chain, non-erythrocytic 1 (Alpha-II spectrin) (Fodrin alpha chain) (Spectrin, non-erythroid alpha subunit) | Fodrin, which seems to be involved in secretion, interacts with calmodulin in a calcium-dependent manner and is thus candidate for the calcium-dependent movement of the cytoskeleton at the membrane. |
Q14012 | CAMK1 | S324 | ochoa | Calcium/calmodulin-dependent protein kinase type 1 (EC 2.7.11.17) (CaM kinase I) (CaM-KI) (CaM kinase I alpha) (CaMKI-alpha) | Calcium/calmodulin-dependent protein kinase that operates in the calcium-triggered CaMKK-CaMK1 signaling cascade and, upon calcium influx, regulates transcription activators activity, cell cycle, hormone production, cell differentiation, actin filament organization and neurite outgrowth. Recognizes the substrate consensus sequence [MVLIF]-x-R-x(2)-[ST]-x(3)-[MVLIF]. Regulates axonal extension and growth cone motility in hippocampal and cerebellar nerve cells. Upon NMDA receptor-mediated Ca(2+) elevation, promotes dendritic growth in hippocampal neurons and is essential in synapses for full long-term potentiation (LTP) and ERK2-dependent translational activation. Downstream of NMDA receptors, promotes the formation of spines and synapses in hippocampal neurons by phosphorylating ARHGEF7/BETAPIX on 'Ser-694', which results in the enhancement of ARHGEF7 activity and activation of RAC1. Promotes neuronal differentiation and neurite outgrowth by activation and phosphorylation of MARK2 on 'Ser-91', 'Ser-92', 'Ser-93' and 'Ser-294'. Promotes nuclear export of HDAC5 and binding to 14-3-3 by phosphorylation of 'Ser-259' and 'Ser-498' in the regulation of muscle cell differentiation. Regulates NUMB-mediated endocytosis by phosphorylation of NUMB on 'Ser-276' and 'Ser-295'. Involved in the regulation of basal and estrogen-stimulated migration of medulloblastoma cells through ARHGEF7/BETAPIX phosphorylation (By similarity). Is required for proper activation of cyclin-D1/CDK4 complex during G1 progression in diploid fibroblasts. Plays a role in K(+) and ANG2-mediated regulation of the aldosterone synthase (CYP11B2) to produce aldosterone in the adrenal cortex. Phosphorylates EIF4G3/eIF4GII. In vitro phosphorylates CREB1, ATF1, CFTR, MYL9 and SYN1/synapsin I. {ECO:0000250, ECO:0000269|PubMed:11114197, ECO:0000269|PubMed:12193581, ECO:0000269|PubMed:14507913, ECO:0000269|PubMed:14754892, ECO:0000269|PubMed:17056143, ECO:0000269|PubMed:17442826, ECO:0000269|PubMed:18184567, ECO:0000269|PubMed:20181577}. |
Q14191 | WRN | S1099 | ochoa | Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] | Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}. |
Q14191 | WRN | S1400 | ochoa | Bifunctional 3'-5' exonuclease/ATP-dependent helicase WRN (DNA helicase, RecQ-like type 3) (RecQ protein-like 2) (Werner syndrome protein) [Includes: 3'-5' exonuclease (EC 3.1.-.-); ATP-dependent helicase (EC 5.6.2.4) (DNA 3'-5' helicase WRN)] | Multifunctional enzyme that has magnesium and ATP-dependent 3'-5' DNA-helicase activity on partially duplex substrates (PubMed:9224595, PubMed:9288107, PubMed:9611231). Also has 3'->5' exonuclease activity towards double-stranded (ds)DNA with a 5'-overhang (PubMed:11863428). Has no nuclease activity towards single-stranded (ss)DNA or blunt-ended dsDNA (PubMed:11863428). Helicase activity is most efficient with (d)ATP, but (d)CTP will substitute with reduced efficiency; strand displacement is enhanced by single-strand binding-protein (heterotrimeric replication protein A complex, RPA1, RPA2, RPA3) (PubMed:9611231). Binds preferentially to DNA substrates containing alternate secondary structures, such as replication forks and Holliday junctions. May play an important role in the dissociation of joint DNA molecules that can arise as products of homologous recombination, at stalled replication forks or during DNA repair. Alleviates stalling of DNA polymerases at the site of DNA lesions. Plays a role in the formation of DNA replication focal centers; stably associates with foci elements generating binding sites for RP-A (By similarity). Plays a role in double-strand break repair after gamma-irradiation (PubMed:9224595, PubMed:9288107, PubMed:9611231). Unwinds some G-quadruplex DNA (d(CGG)n tracts); unwinding seems to occur in both 5'-3' and 3'-5' direction and requires a short single-stranded tail (PubMed:10212265). d(CGG)n tracts have a propensity to assemble into tetraplex structures; other G-rich substrates from a telomeric or IgG switch sequence are not unwound (PubMed:10212265). Depletion leads to chromosomal breaks and genome instability (PubMed:33199508). {ECO:0000250|UniProtKB:O09053, ECO:0000269|PubMed:10212265, ECO:0000269|PubMed:11863428, ECO:0000269|PubMed:17563354, ECO:0000269|PubMed:18596042, ECO:0000269|PubMed:19283071, ECO:0000269|PubMed:19652551, ECO:0000269|PubMed:21639834, ECO:0000269|PubMed:27063109, ECO:0000269|PubMed:33199508, ECO:0000269|PubMed:9224595, ECO:0000269|PubMed:9288107, ECO:0000269|PubMed:9611231}. |
Q14207 | NPAT | S659 | ochoa | Protein NPAT (Nuclear protein of the ataxia telangiectasia mutated locus) (Nuclear protein of the ATM locus) (p220) | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters. {ECO:0000269|PubMed:10995386, ECO:0000269|PubMed:10995387, ECO:0000269|PubMed:12665581, ECO:0000269|PubMed:12724424, ECO:0000269|PubMed:14585971, ECO:0000269|PubMed:14612403, ECO:0000269|PubMed:15555599, ECO:0000269|PubMed:15988025, ECO:0000269|PubMed:16131487, ECO:0000269|PubMed:17163457, ECO:0000269|PubMed:17826007, ECO:0000269|PubMed:17967892, ECO:0000269|PubMed:17974976, ECO:0000269|PubMed:9472014}. |
Q14511 | NEDD9 | S780 | psp | Enhancer of filamentation 1 (hEF1) (CRK-associated substrate-related protein) (CAS-L) (CasL) (Cas scaffolding protein family member 2) (CASS2) (Neural precursor cell expressed developmentally down-regulated protein 9) (NEDD-9) (Renal carcinoma antigen NY-REN-12) (p105) [Cleaved into: Enhancer of filamentation 1 p55] | Scaffolding protein which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion (PubMed:24574519). As a focal adhesion protein, plays a role in embryonic fibroblast migration (By similarity). May play an important role in integrin beta-1 or B cell antigen receptor (BCR) mediated signaling in B- and T-cells. Integrin beta-1 stimulation leads to recruitment of various proteins including CRKL and SHPTP2 to the tyrosine phosphorylated form (PubMed:9020138). Promotes adhesion and migration of lymphocytes; as a result required for the correct migration of lymphocytes to the spleen and other secondary lymphoid organs (PubMed:17174122). Plays a role in the organization of T-cell F-actin cortical cytoskeleton and the centralization of T-cell receptor microclusters at the immunological synapse (By similarity). Negatively regulates cilia outgrowth in polarized cysts (By similarity). Modulates cilia disassembly via activation of AURKA-mediated phosphorylation of HDAC6 and subsequent deacetylation of alpha-tubulin (PubMed:17604723). Positively regulates RANKL-induced osteoclastogenesis (By similarity). Required for the maintenance of hippocampal dendritic spines in the dentate gyrus and CA1 regions, thereby involved in spatial learning and memory (By similarity). {ECO:0000250|UniProtKB:A0A8I3PDQ1, ECO:0000250|UniProtKB:O35177, ECO:0000269|PubMed:17174122, ECO:0000269|PubMed:17604723, ECO:0000269|PubMed:24574519, ECO:0000269|PubMed:9020138}. |
Q14542 | SLC29A2 | S244 | ochoa | Equilibrative nucleoside transporter 2 (hENT2) (36 kDa nucleolar protein HNP36) (Delayed-early response protein 12) (Equilibrative nitrobenzylmercaptopurine riboside-insensitive nucleoside transporter) (Equilibrative NBMPR-insensitive nucleoside transporter) (Hydrophobic nucleolar protein, 36 kDa) (Nucleoside transporter, ei-type) (Solute carrier family 29 member 2) | Bidirectional uniporter involved in the facilitative transport of nucleosides and nucleobases, and contributes to maintaining their cellular homeostasis (PubMed:10722669, PubMed:12527552, PubMed:12590919, PubMed:16214850, PubMed:21795683, PubMed:9396714, PubMed:9478986). Functions as a Na(+)-independent, passive transporter (PubMed:9478986). Involved in the transport of nucleosides such as inosine, adenosine, uridine, thymidine, cytidine and guanosine (PubMed:10722669, PubMed:12527552, PubMed:12590919, PubMed:16214850, PubMed:21795683, PubMed:9396714, PubMed:9478986). Also able to transport purine nucleobases (hypoxanthine, adenine, guanine) and pyrimidine nucleobases (thymine, uracil) (PubMed:16214850, PubMed:21795683). Involved in nucleoside transport at basolateral membrane of kidney cells, allowing liver absorption of nucleoside metabolites (PubMed:12527552). Mediates apical nucleoside uptake into Sertoli cells, thereby regulating the transport of nucleosides in testis across the blood-testis-barrier (PubMed:23639800). Mediates both the influx and efflux of hypoxanthine in skeletal muscle microvascular endothelial cells to control the amount of intracellular hypoxanthine available for xanthine oxidase-mediated ROS production (By similarity). {ECO:0000250|UniProtKB:O54699, ECO:0000269|PubMed:10722669, ECO:0000269|PubMed:12527552, ECO:0000269|PubMed:12590919, ECO:0000269|PubMed:16214850, ECO:0000269|PubMed:21795683, ECO:0000269|PubMed:23639800, ECO:0000269|PubMed:9396714, ECO:0000269|PubMed:9478986}.; FUNCTION: [Isoform 3]: Non functional nucleoside transporter protein for adenosine or thymidine transport. Does not express on cell membrane. {ECO:0000269|PubMed:12527552}. |
Q14562 | DHX8 | S385 | ochoa | ATP-dependent RNA helicase DHX8 (EC 3.6.4.13) (DEAH box protein 8) (RNA helicase HRH1) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). Facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome (PubMed:8608946). {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:8608946}. |
Q14641 | INSL4 | S90 | ochoa | Early placenta insulin-like peptide (EPIL) (Insulin-like peptide 4) (Placentin) [Cleaved into: Early placenta insulin-like peptide B chain; Early placenta insulin-like peptide A chain] | May play an important role in trophoblast development and in the regulation of bone formation. |
Q14653 | IRF3 | S386 | ochoa|psp | Interferon regulatory factor 3 (IRF-3) | Key transcriptional regulator of type I interferon (IFN)-dependent immune responses which plays a critical role in the innate immune response against DNA and RNA viruses (PubMed:22394562, PubMed:24049179, PubMed:25636800, PubMed:27302953, PubMed:31340999, PubMed:36603579, PubMed:8524823). Regulates the transcription of type I IFN genes (IFN-alpha and IFN-beta) and IFN-stimulated genes (ISG) by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:11846977, PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:32972995, PubMed:36603579, PubMed:8524823). Acts as a more potent activator of the IFN-beta (IFNB) gene than the IFN-alpha (IFNA) gene and plays a critical role in both the early and late phases of the IFNA/B gene induction (PubMed:16846591, PubMed:16979567, PubMed:20049431, PubMed:36603579). Found in an inactive form in the cytoplasm of uninfected cells and following viral infection, double-stranded RNA (dsRNA), or toll-like receptor (TLR) signaling, is phosphorylated by IKBKE and TBK1 kinases (PubMed:22394562, PubMed:25636800, PubMed:27302953, PubMed:36603579). This induces a conformational change, leading to its dimerization and nuclear localization and association with CREB binding protein (CREBBP) to form dsRNA-activated factor 1 (DRAF1), a complex which activates the transcription of the type I IFN and ISG genes (PubMed:16154084, PubMed:27302953, PubMed:33440148, PubMed:36603579). Can activate distinct gene expression programs in macrophages and can induce significant apoptosis in primary macrophages (PubMed:16846591). In response to Sendai virus infection, is recruited by TOMM70:HSP90AA1 to mitochondrion and forms an apoptosis complex TOMM70:HSP90AA1:IRF3:BAX inducing apoptosis (PubMed:25609812). Key transcription factor regulating the IFN response during SARS-CoV-2 infection (PubMed:33440148). {ECO:0000269|PubMed:16154084, ECO:0000269|PubMed:22394562, ECO:0000269|PubMed:24049179, ECO:0000269|PubMed:25609812, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27302953, ECO:0000269|PubMed:31340999, ECO:0000269|PubMed:31413131, ECO:0000269|PubMed:32972995, ECO:0000269|PubMed:33440148, ECO:0000269|PubMed:36603579, ECO:0000269|PubMed:8524823, ECO:0000303|PubMed:11846977, ECO:0000303|PubMed:16846591, ECO:0000303|PubMed:16979567, ECO:0000303|PubMed:20049431}. |
Q14980 | NUMA1 | S1728 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q15121 | PEA15 | S90 | ochoa | Astrocytic phosphoprotein PEA-15 (15 kDa phosphoprotein enriched in astrocytes) (Phosphoprotein enriched in diabetes) (PED) | Blocks Ras-mediated inhibition of integrin activation and modulates the ERK MAP kinase cascade. Inhibits RPS6KA3 activities by retaining it in the cytoplasm (By similarity). Inhibits both TNFRSF6- and TNFRSF1A-mediated CASP8 activity and apoptosis. Regulates glucose transport by controlling both the content of SLC2A1 glucose transporters on the plasma membrane and the insulin-dependent trafficking of SLC2A4 from the cell interior to the surface. {ECO:0000250, ECO:0000269|PubMed:10442631, ECO:0000269|PubMed:9670003}. |
Q15149 | PLEC | S3853 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15334 | LLGL1 | S1041 | ochoa | Lethal(2) giant larvae protein homolog 1 (LLGL) (DLG4) (Hugl-1) (Human homolog to the D-lgl gene protein) | Cortical cytoskeleton protein found in a complex involved in maintaining cell polarity and epithelial integrity. Involved in the regulation of mitotic spindle orientation, proliferation, differentiation and tissue organization of neuroepithelial cells. Involved in axonogenesis through RAB10 activation thereby regulating vesicular membrane trafficking toward the axonal plasma membrane. {ECO:0000269|PubMed:15735678, ECO:0000269|PubMed:16170365}. |
Q15554 | TERF2 | S412 | ochoa | Telomeric repeat-binding factor 2 (TTAGGG repeat-binding factor 2) (Telomeric DNA-binding protein) | Binds the telomeric double-stranded 5'-TTAGGG-3' repeat and plays a central role in telomere maintenance and protection against end-to-end fusion of chromosomes (PubMed:15608617, PubMed:16166375, PubMed:20655466, PubMed:28216226, PubMed:9326950, PubMed:9326951, PubMed:9476899). In addition to its telomeric DNA-binding role, required to recruit a number of factors and enzymes required for telomere protection, including the shelterin complex, TERF2IP/RAP1 and DCLRE1B/Apollo (PubMed:16166375, PubMed:20655466). Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection (PubMed:16166375). Shelterin associates with arrays of double-stranded 5'-TTAGGG-3' repeats added by telomerase and protects chromosome ends; without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways (PubMed:16166375). Together with DCLRE1B/Apollo, plays a key role in telomeric loop (T loop) formation by generating 3' single-stranded overhang at the leading end telomeres: T loops have been proposed to protect chromosome ends from degradation and repair (PubMed:20655466). Required both to recruit DCLRE1B/Apollo to telomeres and activate the exonuclease activity of DCLRE1B/Apollo (PubMed:20655466, PubMed:28216226). Preferentially binds to positive supercoiled DNA (PubMed:15608617, PubMed:20655466). Together with DCLRE1B/Apollo, required to control the amount of DNA topoisomerase (TOP1, TOP2A and TOP2B) needed for telomere replication during fork passage and prevent aberrant telomere topology (PubMed:20655466). Recruits TERF2IP/RAP1 to telomeres, thereby participating in to repressing homology-directed repair (HDR), which can affect telomere length (By similarity). {ECO:0000250|UniProtKB:O35144, ECO:0000269|PubMed:15608617, ECO:0000269|PubMed:16166375, ECO:0000269|PubMed:20655466, ECO:0000269|PubMed:28216226, ECO:0000269|PubMed:9326950, ECO:0000269|PubMed:9326951, ECO:0000269|PubMed:9476899}. |
Q15561 | TEAD4 | S69 | ochoa | Transcriptional enhancer factor TEF-3 (TEA domain family member 4) (TEAD-4) (Transcription factor 13-like 1) (Transcription factor RTEF-1) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds specifically and non-cooperatively to the Sph and GT-IIC 'enhansons' (5'-GTGGAATGT-3') and activates transcription. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q15562 | TEAD2 | S71 | ochoa | Transcriptional enhancer factor TEF-4 (TEA domain family member 2) (TEAD-2) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to the SPH and GT-IIC 'enhansons' (5'-GTGGAATGT-3'). May be involved in the gene regulation of neural development. Binds to the M-CAT motif. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q155Q3 | DIXDC1 | S346 | ochoa | Dixin (Coiled-coil protein DIX1) (Coiled-coil-DIX1) (DIX domain-containing protein 1) | Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2. {ECO:0000269|PubMed:15262978, ECO:0000269|PubMed:21189423}. |
Q15643 | TRIP11 | S595 | ochoa | Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) | Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}. |
Q16473 | TNXA | S139 | ochoa | Putative tenascin-XA (TN-XA) | None |
Q16514 | TAF12 | S51 | ochoa | Transcription initiation factor TFIID subunit 12 (Transcription initiation factor TFIID 20/15 kDa subunits) (TAFII-20/TAFII-15) (TAFII20/TAFII15) | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription (PubMed:33795473). TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) (PubMed:33795473). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (PubMed:33795473). Component of the TATA-binding protein-free TAF complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex (PubMed:10373431, PubMed:7729427, PubMed:8598932, PubMed:8663456, PubMed:9674425, PubMed:9885574). {ECO:0000269|PubMed:10373431, ECO:0000269|PubMed:33795473, ECO:0000269|PubMed:7729427, ECO:0000269|PubMed:8598932, ECO:0000269|PubMed:8663456, ECO:0000269|PubMed:9674425, ECO:0000269|PubMed:9885574}. |
Q16539 | MAPK14 | S326 | ochoa | Mitogen-activated protein kinase 14 (MAP kinase 14) (MAPK 14) (EC 2.7.11.24) (Cytokine suppressive anti-inflammatory drug-binding protein) (CSAID-binding protein) (CSBP) (MAP kinase MXI2) (MAX-interacting protein 2) (Mitogen-activated protein kinase p38 alpha) (MAP kinase p38 alpha) (Stress-activated protein kinase 2a) (SAPK2a) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as pro-inflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1 (PubMed:9687510, PubMed:9792677). RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery (PubMed:9687510, PubMed:9792677). On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2 (PubMed:11154262). MAPK14 also interacts with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53 (PubMed:10747897). In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3 (PubMed:17003045). MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9 (PubMed:19893488). Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors (PubMed:16932740). Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17 (PubMed:20188673). Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A (PubMed:10330143, PubMed:9430721, PubMed:9858528). The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation (PubMed:11333986). Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation (PubMed:20932473). The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression (PubMed:10943842). Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113' (PubMed:15905572). Phosphorylates NLRP1 downstream of MAP3K20/ZAK in response to UV-B irradiation and ribosome collisions, promoting activation of the NLRP1 inflammasome and pyroptosis (PubMed:35857590). {ECO:0000269|PubMed:10330143, ECO:0000269|PubMed:10747897, ECO:0000269|PubMed:10943842, ECO:0000269|PubMed:11154262, ECO:0000269|PubMed:11333986, ECO:0000269|PubMed:15905572, ECO:0000269|PubMed:16932740, ECO:0000269|PubMed:17003045, ECO:0000269|PubMed:17724032, ECO:0000269|PubMed:19893488, ECO:0000269|PubMed:20188673, ECO:0000269|PubMed:20932473, ECO:0000269|PubMed:35857590, ECO:0000269|PubMed:9430721, ECO:0000269|PubMed:9687510, ECO:0000269|PubMed:9792677, ECO:0000269|PubMed:9858528}.; FUNCTION: (Microbial infection) Activated by phosphorylation by M.tuberculosis EsxA in T-cells leading to inhibition of IFN-gamma production; phosphorylation is apparent within 15 minutes and is inhibited by kinase-specific inhibitors SB203580 and siRNA (PubMed:21586573). {ECO:0000269|PubMed:21586573}. |
Q16760 | DGKD | S70 | psp | Diacylglycerol kinase delta (DAG kinase delta) (EC 2.7.1.107) (130 kDa diacylglycerol kinase) (Diglyceride kinase delta) (DGK-delta) | Diacylglycerol kinase that converts diacylglycerol/DAG into phosphatidic acid/phosphatidate/PA and regulates the respective levels of these two bioactive lipids (PubMed:12200442, PubMed:23949095). Thereby, acts as a central switch between the signaling pathways activated by these second messengers with different cellular targets and opposite effects in numerous biological processes (Probable). By controlling the levels of diacylglycerol, regulates for instance the PKC and EGF receptor signaling pathways and plays a crucial role during development (By similarity). May also regulate clathrin-dependent endocytosis (PubMed:17880279). {ECO:0000250|UniProtKB:E9PUQ8, ECO:0000269|PubMed:12200442, ECO:0000269|PubMed:17880279, ECO:0000269|PubMed:23949095, ECO:0000305}. |
Q2KJY2 | KIF26B | S1681 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q2LD37 | BLTP1 | S1436 | ochoa | Bridge-like lipid transfer protein family member 1 (Fragile site-associated protein) | Tube-forming lipid transport protein which provides phosphatidylethanolamine for glycosylphosphatidylinositol (GPI) anchor synthesis in the endoplasmic reticulum (Probable). Plays a role in endosomal trafficking and endosome recycling. Also involved in the actin cytoskeleton and cilia structural dynamics (PubMed:30906834). Acts as a regulator of phagocytosis (PubMed:31540829). {ECO:0000269|PubMed:30906834, ECO:0000269|PubMed:31540829, ECO:0000305|PubMed:35015055, ECO:0000305|PubMed:35491307}. |
Q2M2Z5 | KIZ | S271 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2PPJ7 | RALGAPA2 | S1350 | ochoa | Ral GTPase-activating protein subunit alpha-2 (250 kDa substrate of Akt) (AS250) (p220) | Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB. {ECO:0000250}. |
Q3MIW9 | MUCL3 | S121 | ochoa | Mucin-like protein 3 (Diffuse panbronchiolitis critical region protein 1) | May modulate NF-kappaB signaling and play a role in cell growth. {ECO:0000269|PubMed:29242154}. |
Q3SY56 | SP6 | S298 | ochoa | Transcription factor Sp6 (Krueppel-like factor 14) | Promotes cell proliferation (By similarity). Plays a role in tooth germ growth (By similarity). Plays a role in the control of enamel mineralization. Binds the AMBN promoter (PubMed:32167558). {ECO:0000250|UniProtKB:Q9ESX2, ECO:0000269|PubMed:32167558}. |
Q3V6T2 | CCDC88A | S1427 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q3V6T2 | CCDC88A | S1449 | ochoa | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q4AC94 | C2CD3 | S339 | ochoa | C2 domain-containing protein 3 | Component of the centrioles that acts as a positive regulator of centriole elongation (PubMed:24997988). Promotes assembly of centriolar distal appendage, a structure at the distal end of the mother centriole that acts as an anchor of the cilium, and is required for recruitment of centriolar distal appendages proteins CEP83, SCLT1, CEP89, FBF1 and CEP164. Not required for centriolar satellite integrity or RAB8 activation. Required for primary cilium formation (PubMed:23769972). Required for sonic hedgehog/SHH signaling and for proteolytic processing of GLI3. {ECO:0000269|PubMed:23769972, ECO:0000269|PubMed:24997988}. |
Q4KWH8 | PLCH1 | S1535 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 (EC 3.1.4.11) (Phosphoinositide phospholipase C-eta-1) (Phospholipase C-eta-1) (PLC-eta-1) (Phospholipase C-like protein 3) (PLC-L3) | The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by calcium-activated phosphatidylinositol-specific phospholipase C enzymes. {ECO:0000269|PubMed:15702972}. |
Q4VC05 | BCL7A | S157 | ochoa | B-cell CLL/lymphoma 7 protein family member A | None |
Q53TQ3 | INO80D | S728 | ochoa | INO80 complex subunit D | Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. |
Q56NI9 | ESCO2 | S223 | ochoa | N-acetyltransferase ESCO2 (EC 2.3.1.-) (Establishment factor-like protein 2) (EFO2) (EFO2p) (hEFO2) (Establishment of cohesion 1 homolog 2) (ECO1 homolog 2) | Acetyltransferase required for the establishment of sister chromatid cohesion (PubMed:15821733, PubMed:15958495). Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during the S phase. Acetylates the cohesin component SMC3 (PubMed:21111234). {ECO:0000269|PubMed:15821733, ECO:0000269|PubMed:15958495, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234}. |
Q5BKX6 | SLC45A4 | S485 | ochoa | Solute carrier family 45 member 4 | Proton-associated sucrose transporter. May be able to transport also glucose and fructose. {ECO:0000250|UniProtKB:Q0P5V9}. |
Q5JSZ5 | PRRC2B | S168 | ochoa | Protein PRRC2B (HLA-B-associated transcript 2-like 1) (Proline-rich coiled-coil protein 2B) | None |
Q5SW96 | LDLRAP1 | S186 | ochoa|psp | Low density lipoprotein receptor adapter protein 1 (Autosomal recessive hypercholesterolemia protein) | Adapter protein (clathrin-associated sorting protein (CLASP)) required for efficient endocytosis of the LDL receptor (LDLR) in polarized cells such as hepatocytes and lymphocytes, but not in non-polarized cells (fibroblasts). May be required for LDL binding and internalization but not for receptor clustering in coated pits. May facilitate the endocytosis of LDLR and LDLR-LDL complexes from coated pits by stabilizing the interaction between the receptor and the structural components of the pits. May also be involved in the internalization of other LDLR family members. Binds to phosphoinositides, which regulate clathrin bud assembly at the cell surface. Required for trafficking of LRP2 to the endocytic recycling compartment which is necessary for LRP2 proteolysis, releasing a tail fragment which translocates to the nucleus and mediates transcriptional repression (By similarity). {ECO:0000250|UniProtKB:D3ZAR1, ECO:0000269|PubMed:15728179}. |
Q5T1R4 | HIVEP3 | S805 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T1R4 | HIVEP3 | S811 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5T8A7 | PPP1R26 | S1163 | ochoa | Protein phosphatase 1 regulatory subunit 26 | Inhibits phosphatase activity of protein phosphatase 1 (PP1) complexes. May positively regulate cell proliferation. {ECO:0000269|PubMed:16053918, ECO:0000269|PubMed:19389623}. |
Q5T9A4 | ATAD3B | S120 | ochoa | ATPase family AAA domain-containing protein 3B (AAA-TOB3) | May play a role in a mitochondrial network organization typical for stem cells, characterized by reduced mitochondrial metabolism, low mtDNA copies and fragmentated mitochondrial network. May act by suppressing ATAD3A function, interfering with ATAD3A interaction with matrix nucleoid complexes. {ECO:0000269|PubMed:22664726}. |
Q5TGY3 | AHDC1 | S1191 | ochoa | Transcription factor Gibbin (AT-hook DNA-binding motif-containing protein 1) | Transcription factor required for the proper patterning of the epidermis, which plays a key role in early epithelial morphogenesis (PubMed:35585237). Directly binds promoter and enhancer regions and acts by maintaining local enhancer-promoter chromatin architecture (PubMed:35585237). Interacts with many sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes that wire surface ectoderm stratification (PubMed:35585237). {ECO:0000269|PubMed:35585237}. |
Q5VST9 | OBSCN | S6942 | ochoa | Obscurin (EC 2.7.11.1) (Obscurin-RhoGEF) (Obscurin-myosin light chain kinase) (Obscurin-MLCK) | Structural component of striated muscles which plays a role in myofibrillogenesis. Probably involved in the assembly of myosin into sarcomeric A bands in striated muscle (PubMed:11448995, PubMed:16205939). Has serine/threonine protein kinase activity and phosphorylates N-cadherin CDH2 and sodium/potassium-transporting ATPase subunit ATP1B1 (By similarity). Binds (via the PH domain) strongly to phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and to a lesser extent to phosphatidylinositol 3-phosphate (PtdIns(3)P), phosphatidylinositol 4-phosphate (PtdIns(4)P), phosphatidylinositol 5-phosphate (PtdIns(5)P) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) (PubMed:28826662). {ECO:0000250|UniProtKB:A2AAJ9, ECO:0000269|PubMed:11448995, ECO:0000269|PubMed:16205939, ECO:0000269|PubMed:28826662}. |
Q5VT06 | CEP350 | S2222 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT52 | RPRD2 | S899 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VWN6 | TASOR2 | S1268 | ochoa | Protein TASOR 2 | None |
Q5VZ89 | DENND4C | S1606 | ochoa | DENN domain-containing protein 4C | Guanine nucleotide exchange factor (GEF) activating RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound RAB10 into its active GTP-bound form. Thereby, stimulates SLC2A4/GLUT4 glucose transporter-enriched vesicles delivery to the plasma membrane in response to insulin. {ECO:0000269|PubMed:20937701}. |
Q5XKL5 | BTBD8 | S879 | ochoa | BTB/POZ domain-containing protein 8 (AP2-interacting clathrin-endocytosis) (APache) | Involved in clathrin-mediated endocytosis at the synapse. Plays a role in neuronal development and in synaptic vesicle recycling in mature neurons, a process required for normal synaptic transmission. {ECO:0000250|UniProtKB:Q80TK0}. |
Q641Q2 | WASHC2A | S160 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q658Y4 | FAM91A1 | S355 | ochoa | Protein FAM91A1 | As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1. {ECO:0000269|PubMed:29426865}. |
Q659A1 | ICE2 | S551 | ochoa | Little elongation complex subunit 2 (Interactor of little elongator complex ELL subunit 2) (NMDA receptor-regulated protein 2) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III. {ECO:0000269|PubMed:23932780}. |
Q66K74 | MAP1S | S770 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q6BDS2 | BLTP3A | S944 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6DN14 | MCTP1 | S403 | ochoa | Multiple C2 and transmembrane domain-containing protein 1 | Calcium sensor which is essential for the stabilization of normal baseline neurotransmitter release and for the induction and long-term maintenance of presynaptic homeostatic plasticity. {ECO:0000250|UniProtKB:A1ZBD6}. |
Q6DN90 | IQSEC1 | S109 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6FIF0 | ZFAND6 | S132 | ochoa | AN1-type zinc finger protein 6 (Associated with PRK1 protein) (Zinc finger A20 domain-containing protein 3) | Involved in regulation of TNF-alpha induced NF-kappa-B activation and apoptosis. Involved in modulation of 'Lys-48'-linked polyubiquitination status of TRAF2 and decreases association of TRAF2 with RIPK1. Required for PTS1 target sequence-dependent protein import into peroxisomes and PEX5 stability; may cooperate with PEX6. In vitro involved in PEX5 export from the cytosol to peroxisomes (By similarity). {ECO:0000250, ECO:0000269|PubMed:19285159, ECO:0000269|PubMed:21810480}. |
Q6IQ55 | TTBK2 | S448 | ochoa | Tau-tubulin kinase 2 (EC 2.7.11.1) | Serine/threonine kinase that acts as a key regulator of ciliogenesis: controls the initiation of ciliogenesis by binding to the distal end of the basal body and promoting the removal of CCP110, which caps the mother centriole, leading to the recruitment of IFT proteins, which build the ciliary axoneme. Has some substrate preference for proteins that are already phosphorylated on a Tyr residue at the +2 position relative to the phosphorylation site. Able to phosphorylate tau on serines in vitro (PubMed:23141541). Phosphorylates MPHOSPH9 which promotes its ubiquitination and proteasomal degradation, loss of MPHOSPH9 facilitates the removal of the CP110-CEP97 complex (a negative regulator of ciliogenesis) from the mother centrioles, promoting the initiation of ciliogenesis (PubMed:30375385). Required for recruitment of CPLANE2 and INTU to the mother centriole (By similarity). {ECO:0000250|UniProtKB:Q3UVR3, ECO:0000269|PubMed:21548880, ECO:0000269|PubMed:23141541, ECO:0000269|PubMed:30375385}. |
Q6P4R8 | NFRKB | S339 | ochoa | Nuclear factor related to kappa-B-binding protein (DNA-binding protein R kappa-B) (INO80 complex subunit G) | Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. {ECO:0000269|PubMed:18922472}.; FUNCTION: Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. {ECO:0000269|PubMed:18922472}. |
Q6PJG2 | MIDEAS | S718 | ochoa | Mitotic deacetylase-associated SANT domain protein (ELM2 and SANT domain-containing protein 1) | None |
Q6PJT7 | ZC3H14 | S421 | ochoa | Zinc finger CCCH domain-containing protein 14 (Mammalian suppressor of tau pathology-2) (MSUT-2) (Renal carcinoma antigen NY-REN-37) | RNA-binding protein involved in the biogenesis of circular RNAs (circRNAs), which are produced by back-splicing circularization of pre-mRNAs (PubMed:39461343). Acts by binding to both exon-intron boundary and 3'-UTR of pre-mRNAs to promote circRNA biogenesis through dimerization and the association with the spliceosome (PubMed:39461343). Required for spermatogenesis via involvement in circRNA biogenesis (PubMed:39461343). Regulates the pre-mRNA processing of ATP5MC1; preventing its degradation (PubMed:27563065). Also binds the poly(A) tail of mRNAs; controlling poly(A) length in neuronal cells (PubMed:17630287, PubMed:24671764). {ECO:0000269|PubMed:17630287, ECO:0000269|PubMed:24671764, ECO:0000269|PubMed:27563065, ECO:0000269|PubMed:39461343}. |
Q6R327 | RICTOR | S21 | ochoa|psp | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6UB98 | ANKRD12 | S1079 | ochoa | Ankyrin repeat domain-containing protein 12 (Ankyrin repeat-containing cofactor 2) (GAC-1 protein) | May recruit HDACs to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation. |
Q6YHU6 | THADA | S1031 | ochoa | tRNA (32-2'-O)-methyltransferase regulator THADA (Gene inducing thyroid adenomas protein) (Thyroid adenoma-associated protein) | Together with methyltransferase FTSJ1, methylates the 2'-O-ribose of nucleotides at position 32 of the anticodon loop of substrate tRNAs. {ECO:0000269|PubMed:25404562}. |
Q6ZMI0 | PPP1R21 | S93 | ochoa | Protein phosphatase 1 regulatory subunit 21 (Coiled-coil domain-containing protein 128) (Ferry endosomal RAB5 effector complex subunit 2) (Fy-2) (KLRAQ motif-containing protein 1) | Component of the FERRY complex (Five-subunit Endosomal Rab5 and RNA/ribosome intermediary) (PubMed:37267905, PubMed:37267906). The FERRY complex directly interacts with mRNAs and RAB5A, and functions as a RAB5A effector involved in the localization and the distribution of specific mRNAs most likely by mediating their endosomal transport. The complex recruits mRNAs and ribosomes to early endosomes through direct mRNA-interaction (PubMed:37267905). In the complex, PPP1R21 serves as a binding hub connecting all five complex subunits and mediating the binding to mRNA and early endosomes via RAB5A (PubMed:37267906). Putative regulator of protein phosphatase 1 (PP1) activity (PubMed:19389623). May play a role in the endosomal sorting process or in endosome maturation pathway (Probable) (PubMed:30520571). {ECO:0000269|PubMed:30520571, ECO:0000269|PubMed:37267905, ECO:0000269|PubMed:37267906, ECO:0000305|PubMed:19389623}. |
Q6ZMW3 | EML6 | S1281 | ochoa | Echinoderm microtubule-associated protein-like 6 (EMAP-6) (Echinoderm microtubule-associated protein-like 5-like) | May modify the assembly dynamics of microtubules, such that microtubules are slightly longer, but more dynamic. {ECO:0000250}. |
Q6ZNJ1 | NBEAL2 | S2143 | ochoa | Neurobeachin-like protein 2 | Probably involved in thrombopoiesis. Plays a role in the development or secretion of alpha-granules, that contain several growth factors important for platelet biogenesis. {ECO:0000269|PubMed:21765411, ECO:0000269|PubMed:21765412}. |
Q6ZNL6 | FGD5 | S1221 | ochoa | FYVE, RhoGEF and PH domain-containing protein 5 (Zinc finger FYVE domain-containing protein 23) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Mediates VEGF-induced CDC42 activation. May regulate proangiogenic action of VEGF in vascular endothelial cells, including network formation, directional movement and proliferation. May play a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:22328776}. |
Q6ZS30 | NBEAL1 | S1330 | ochoa | Neurobeachin-like protein 1 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 16 protein) (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 17 protein) | None |
Q6ZUS6 | CCDC149 | S384 | ochoa | Coiled-coil domain-containing protein 149 | None |
Q6ZVM7 | TOM1L2 | S457 | ochoa | TOM1-like protein 2 (Target of Myb-like protein 2) | Acts as a MYO6/Myosin VI adapter protein that targets myosin VI to endocytic structures (PubMed:23023224). May also play a role in recruiting clathrin to endosomes (PubMed:16412388). May regulate growth factor-induced mitogenic signaling (PubMed:16479011). {ECO:0000269|PubMed:16412388, ECO:0000269|PubMed:16479011, ECO:0000269|PubMed:23023224}. |
Q70CQ2 | USP34 | S2407 | ochoa | Ubiquitin carboxyl-terminal hydrolase 34 (EC 3.4.19.12) (Deubiquitinating enzyme 34) (Ubiquitin thioesterase 34) (Ubiquitin-specific-processing protease 34) | Ubiquitin hydrolase that can remove conjugated ubiquitin from AXIN1 and AXIN2, thereby acting as a regulator of Wnt signaling pathway. Acts as an activator of the Wnt signaling pathway downstream of the beta-catenin destruction complex by deubiquitinating and stabilizing AXIN1 and AXIN2, leading to promote nuclear accumulation of AXIN1 and AXIN2 and positively regulate beta-catenin (CTNBB1)-mediated transcription. Recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of poly-ubiquitin precursors as well as that of ubiquitinated proteins. {ECO:0000269|PubMed:21383061}. |
Q70Z35 | PREX2 | S1514 | ochoa | Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2 protein (P-Rex2) (PtdIns(3,4,5)-dependent Rac exchanger 2) (DEP domain-containing protein 2) | Functions as a RAC1 guanine nucleotide exchange factor (GEF), activating Rac proteins by exchanging bound GDP for free GTP. Its activity is synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and the beta gamma subunits of heterotrimeric G protein. Mediates the activation of RAC1 in a PI3K-dependent manner. May be an important mediator of Rac signaling, acting directly downstream of both G protein-coupled receptors and phosphoinositide 3-kinase. {ECO:0000269|PubMed:15304342, ECO:0000269|PubMed:15304343, ECO:0000269|PubMed:15897194}. |
Q71F56 | MED13L | S2083 | ochoa | Mediator of RNA polymerase II transcription subunit 13-like (Mediator complex subunit 13-like) (Thyroid hormone receptor-associated protein 2) (Thyroid hormone receptor-associated protein complex 240 kDa component-like) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. This subunit may specifically regulate transcription of targets of the Wnt signaling pathway and SHH signaling pathway. |
Q75N03 | CBLL1 | S278 | ochoa | E3 ubiquitin-protein ligase Hakai (EC 2.3.2.27) (Casitas B-lineage lymphoma-transforming sequence-like protein 1) (c-Cbl-like protein 1) (RING finger protein 188) (RING-type E3 ubiquitin transferase Hakai) | E3 ubiquitin-protein ligase that mediates ubiquitination of several tyrosine-phosphorylated Src substrates, including CDH1, CTTN and DOK1 (By similarity). Targets CDH1 for endocytosis and degradation (By similarity). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Its function in the WMM complex is unknown (PubMed:29507755). {ECO:0000250|UniProtKB:Q9JIY2, ECO:0000269|PubMed:29507755}. |
Q7L1W4 | LRRC8D | S221 | ochoa | Volume-regulated anion channel subunit LRRC8D (Leucine-rich repeat-containing protein 5) (Leucine-rich repeat-containing protein 8D) (HsLRRC8D) | Non-essential component of the volume-regulated anion channel (VRAC, also named VSOAC channel), an anion channel required to maintain a constant cell volume in response to extracellular or intracellular osmotic changes (PubMed:24790029, PubMed:26530471, PubMed:26824658, PubMed:28193731, PubMed:32415200). The VRAC channel conducts iodide better than chloride and can also conduct organic osmolytes like taurine (PubMed:24790029, PubMed:26824658, PubMed:28193731). Plays a redundant role in the efflux of amino acids, such as aspartate, in response to osmotic stress (PubMed:28193731). LRRC8A and LRRC8D are required for the uptake of the drug cisplatin (PubMed:26530471). Channel activity requires LRRC8A plus at least one other family member (LRRC8B, LRRC8C, LRRC8D or LRRC8E); channel characteristics depend on the precise subunit composition (PubMed:24782309, PubMed:24790029, PubMed:26824658, PubMed:28193731). Also acts as a regulator of glucose-sensing in pancreatic beta cells: VRAC currents, generated in response to hypotonicity- or glucose-induced beta cell swelling, depolarize cells, thereby causing electrical excitation, leading to increase glucose sensitivity and insulin secretion (By similarity). VRAC channels containing LRRC8D inhibit transport of immunoreactive cyclic dinucleotide GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol (PubMed:33171122). Mediates the import of the antibiotic blasticidin-S into the cell (PubMed:24782309). {ECO:0000250|UniProtKB:Q8BGR2, ECO:0000269|PubMed:24782309, ECO:0000269|PubMed:24790029, ECO:0000269|PubMed:26530471, ECO:0000269|PubMed:26824658, ECO:0000269|PubMed:28193731, ECO:0000269|PubMed:32415200, ECO:0000269|PubMed:33171122}. |
Q7L576 | CYFIP1 | S583 | ochoa | Cytoplasmic FMR1-interacting protein 1 (Specifically Rac1-associated protein 1) (Sra-1) (p140sra-1) | Component of the CYFIP1-EIF4E-FMR1 complex which binds to the mRNA cap and mediates translational repression. In the CYFIP1-EIF4E-FMR1 complex this subunit is an adapter between EIF4E and FMR1. Promotes the translation repression activity of FMR1 in brain probably by mediating its association with EIF4E and mRNA (By similarity). Regulates formation of membrane ruffles and lamellipodia. Plays a role in axon outgrowth. Binds to F-actin but not to RNA. Part of the WAVE complex that regulates actin filament reorganization via its interaction with the Arp2/3 complex. Actin remodeling activity is regulated by RAC1. Regulator of epithelial morphogenesis. As component of the WAVE1 complex, required for BDNF-NTRK2 endocytic trafficking and signaling from early endosomes (By similarity). May act as an invasion suppressor in cancers. {ECO:0000250|UniProtKB:Q7TMB8, ECO:0000269|PubMed:16260607, ECO:0000269|PubMed:19524508, ECO:0000269|PubMed:21107423, ECO:0000269|PubMed:9417078}. |
Q7LBE3 | SLC26A9 | S764 | ochoa | Solute carrier family 26 member 9 (Anion transporter/exchanger protein 9) | Ion transporter that can act both as an ion channel and anion exchanger (PubMed:15800055, PubMed:17673510, PubMed:26801567, PubMed:32818062). Mainly acts as a chloride channel, which mediate uncoupled chloride anion transport in an alternate-access mechanism where a saturable binding site is alternately exposed to either one or the other side of the membrane (PubMed:17673510, PubMed:26801567, PubMed:32818062). Also acts as a DIDS- and thiosulfate- sensitive anion exchanger the exchange of chloride for bicarbonate ions across the cell membrane (PubMed:11834742, PubMed:15800055). {ECO:0000269|PubMed:11834742, ECO:0000269|PubMed:15800055, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:26801567, ECO:0000269|PubMed:32818062}. |
Q7Z2T5 | TRMT1L | S612 | ochoa | tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) | Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}. |
Q7Z2W4 | ZC3HAV1 | S114 | ochoa | Zinc finger CCCH-type antiviral protein 1 (ADP-ribosyltransferase diphtheria toxin-like 13) (ARTD13) (Inactive Poly [ADP-ribose] polymerase 13) (PARP13) (Zinc finger CCCH domain-containing protein 2) (Zinc finger antiviral protein) (ZAP) | Antiviral protein which inhibits the replication of viruses by recruiting the cellular RNA degradation machineries to degrade the viral mRNAs. Binds to a ZAP-responsive element (ZRE) present in the target viral mRNA, recruits cellular poly(A)-specific ribonuclease PARN to remove the poly(A) tail, and the 3'-5' exoribonuclease complex exosome to degrade the RNA body from the 3'-end. It also recruits the decapping complex DCP1-DCP2 through RNA helicase p72 (DDX17) to remove the cap structure of the viral mRNA to initiate its degradation from the 5'-end. Its target viruses belong to families which include retroviridae: human immunodeficiency virus type 1 (HIV-1), moloney and murine leukemia virus (MoMLV) and xenotropic MuLV-related virus (XMRV), filoviridae: ebola virus (EBOV) and marburg virus (MARV), togaviridae: sindbis virus (SINV) and Ross river virus (RRV). Specifically targets the multiply spliced but not unspliced or singly spliced HIV-1 mRNAs for degradation. Isoform 1 is a more potent viral inhibitor than isoform 2. Isoform 2 acts as a positive regulator of RIGI signaling resulting in activation of the downstream effector IRF3 leading to the expression of type I IFNs and IFN stimulated genes (ISGs). {ECO:0000269|PubMed:18225958, ECO:0000269|PubMed:21102435, ECO:0000269|PubMed:21876179, ECO:0000269|PubMed:22720057}. |
Q7Z2Z1 | TICRR | S1484 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z333 | SETX | S1345 | ochoa | Probable helicase senataxin (EC 3.6.4.-) (Amyotrophic lateral sclerosis 4 protein) (SEN1 homolog) (Senataxin) | Probable RNA/DNA helicase involved in diverse aspects of RNA metabolism and genomic integrity. Plays a role in transcription regulation by its ability to modulate RNA Polymerase II (Pol II) binding to chromatin and through its interaction with proteins involved in transcription (PubMed:19515850, PubMed:21700224). Contributes to the mRNA splicing efficiency and splice site selection (PubMed:19515850). Required for the resolution of R-loop RNA-DNA hybrid formation at G-rich pause sites located downstream of the poly(A) site, allowing XRN2 recruitment and XRN2-mediated degradation of the downstream cleaved RNA and hence efficient RNA polymerase II (RNAp II) transcription termination (PubMed:19515850, PubMed:21700224, PubMed:26700805). Required for the 3' transcriptional termination of PER1 and CRY2, thus playing an important role in the circadian rhythm regulation (By similarity). Involved in DNA double-strand breaks damage response generated by oxidative stress (PubMed:17562789). In association with RRP45, targets the RNA exosome complex to sites of transcription-induced DNA damage (PubMed:24105744). Plays a role in the development and maturation of germ cells: essential for male meiosis, acting at the interface of transcription and meiotic recombination, and in the process of gene silencing during meiotic sex chromosome inactivation (MSCI) (By similarity). May be involved in telomeric stability through the regulation of telomere repeat-containing RNA (TERRA) transcription (PubMed:21112256). Plays a role in neurite outgrowth in hippocampal cells through FGF8-activated signaling pathways. Inhibits retinoic acid-induced apoptosis (PubMed:21576111). {ECO:0000250|UniProtKB:A2AKX3, ECO:0000269|PubMed:17562789, ECO:0000269|PubMed:19515850, ECO:0000269|PubMed:21112256, ECO:0000269|PubMed:21576111, ECO:0000269|PubMed:21700224, ECO:0000269|PubMed:24105744, ECO:0000269|PubMed:26700805}. |
Q7Z3B3 | KANSL1 | S117 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z3K3 | POGZ | S314 | ochoa | Pogo transposable element with ZNF domain (Suppressor of hairy wing homolog 5) (Zinc finger protein 280E) (Zinc finger protein 635) | Plays a role in mitotic cell cycle progression and is involved in kinetochore assembly and mitotic sister chromatid cohesion. Probably through its association with CBX5 plays a role in mitotic chromosome segregation by regulating aurora kinase B/AURKB activation and AURKB and CBX5 dissociation from chromosome arms (PubMed:20562864). Promotes the repair of DNA double-strand breaks through the homologous recombination pathway (PubMed:26721387). {ECO:0000269|PubMed:20562864, ECO:0000269|PubMed:26721387}. |
Q7Z3T8 | ZFYVE16 | S142 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z3T8 | ZFYVE16 | S193 | ochoa | Zinc finger FYVE domain-containing protein 16 (Endofin) (Endosome-associated FYVE domain protein) | May be involved in regulating membrane trafficking in the endosomal pathway. Overexpression induces endosome aggregation. Required to target TOM1 to endosomes. {ECO:0000269|PubMed:11546807, ECO:0000269|PubMed:14613930}. |
Q7Z4S6 | KIF21A | S710 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z4S6 | KIF21A | S1304 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z6E9 | RBBP6 | S861 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q7Z736 | PLEKHH3 | S76 | ochoa | Pleckstrin homology domain-containing family H member 3 (PH domain-containing family H member 3) | None |
Q86US8 | SMG6 | S267 | ochoa | Telomerase-binding protein EST1A (EC 3.1.-.-) (Ever shorter telomeres 1A) (hEST1A) (Nonsense mediated mRNA decay factor SMG6) (Smg-6 homolog) (hSmg5/7a) | Component of the telomerase ribonucleoprotein (RNP) complex that is essential for the replication of chromosome termini (PubMed:19179534). May have a general role in telomere regulation (PubMed:12676087, PubMed:12699629). Promotes in vitro the ability of TERT to elongate telomeres (PubMed:12676087, PubMed:12699629). Overexpression induces telomere uncapping, chromosomal end-to-end fusions (telomeric DNA persists at the fusion points) and did not perturb TRF2 telomeric localization (PubMed:12676087, PubMed:12699629). Binds to the single-stranded 5'-(GTGTGG)(4)GTGT-3' telomeric DNA, but not to a telomerase RNA template component (TER) (PubMed:12676087, PubMed:12699629). {ECO:0000269|PubMed:12676087, ECO:0000269|PubMed:12699629, ECO:0000269|PubMed:19179534}.; FUNCTION: Plays a role in nonsense-mediated mRNA decay (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Is thought to provide a link to the mRNA degradation machinery as it has endonuclease activity required to initiate NMD, and to serve as an adapter for UPF1 to protein phosphatase 2A (PP2A), thereby triggering UPF1 dephosphorylation (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). Degrades single-stranded RNA (ssRNA), but not ssDNA or dsRNA (PubMed:17053788, PubMed:18974281, PubMed:19060897, PubMed:20930030). {ECO:0000269|PubMed:17053788, ECO:0000269|PubMed:18974281, ECO:0000269|PubMed:19060897, ECO:0000269|PubMed:20930030}. |
Q86UU0 | BCL9L | S424 | ochoa | B-cell CLL/lymphoma 9-like protein (B-cell lymphoma 9-like protein) (BCL9-like protein) (Protein BCL9-2) | Transcriptional regulator that acts as an activator. Promotes beta-catenin transcriptional activity. Plays a role in tumorigenesis. Enhances the neoplastic transforming activity of CTNNB1 (By similarity). {ECO:0000250}. |
Q86V48 | LUZP1 | S467 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q86VY9 | TMEM200A | S471 | ochoa | Transmembrane protein 200A | None |
Q86W56 | PARG | S375 | ochoa | Poly(ADP-ribose) glycohydrolase (EC 3.2.1.143) | Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose) (PubMed:15450800, PubMed:21892188, PubMed:23102699, PubMed:23474714, PubMed:33186521, PubMed:34019811, PubMed:34321462). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers (PubMed:23102699, PubMed:23481255). It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated (PubMed:21892188, PubMed:23474714, PubMed:33186521). Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG (PubMed:23102699, PubMed:34019811). Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress (PubMed:24906880). Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond (PubMed:33186521). Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters (PubMed:23102699). Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5 (PubMed:27257257). Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming (PubMed:27257257). {ECO:0000269|PubMed:15450800, ECO:0000269|PubMed:21892188, ECO:0000269|PubMed:23102699, ECO:0000269|PubMed:23474714, ECO:0000269|PubMed:23481255, ECO:0000269|PubMed:24906880, ECO:0000269|PubMed:27257257, ECO:0000269|PubMed:33186521, ECO:0000269|PubMed:34019811, ECO:0000269|PubMed:34321462}. |
Q86YC2 | PALB2 | S382 | ochoa | Partner and localizer of BRCA2 | Plays a critical role in homologous recombination repair (HRR) through its ability to recruit BRCA2 and RAD51 to DNA breaks (PubMed:16793542, PubMed:19369211, PubMed:19423707, PubMed:22941656, PubMed:24141787, PubMed:28319063). Strongly stimulates the DNA strand-invasion activity of RAD51, stabilizes the nucleoprotein filament against a disruptive BRC3-BRC4 polypeptide and helps RAD51 to overcome the suppressive effect of replication protein A (RPA) (PubMed:20871615). Functionally cooperates with RAD51AP1 in promoting of D-loop formation by RAD51 (PubMed:20871616). Serves as the molecular scaffold in the formation of the BRCA1-PALB2-BRCA2 complex which is essential for homologous recombination (PubMed:19369211). Via its WD repeats is proposed to scaffold a HR complex containing RAD51C and BRCA2 which is thought to play a role in HR-mediated DNA repair (PubMed:24141787). Essential partner of BRCA2 that promotes the localization and stability of BRCA2 (PubMed:16793542). Also enables its recombinational repair and checkpoint functions of BRCA2 (PubMed:16793542). May act by promoting stable association of BRCA2 with nuclear structures, allowing BRCA2 to escape the effects of proteasome-mediated degradation (PubMed:16793542). Binds DNA with high affinity for D loop, which comprises single-stranded, double-stranded and branched DNA structures (PubMed:20871616). May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with BRCA2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity (PubMed:24485656). {ECO:0000269|PubMed:16793542, ECO:0000269|PubMed:19369211, ECO:0000269|PubMed:19423707, ECO:0000269|PubMed:20871615, ECO:0000269|PubMed:20871616, ECO:0000269|PubMed:22941656, ECO:0000269|PubMed:24141787, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:28319063}. |
Q86YR5 | GPSM1 | S413 | ochoa | G-protein-signaling modulator 1 (Activator of G-protein signaling 3) | Guanine nucleotide dissociation inhibitor (GDI) which functions as a receptor-independent activator of heterotrimeric G-protein signaling. Keeps G(i/o) alpha subunit in its GDP-bound form thus uncoupling heterotrimeric G-proteins signaling from G protein-coupled receptors. Controls spindle orientation and asymmetric cell fate of cerebral cortical progenitors. May also be involved in macroautophagy in intestinal cells. May play a role in drug addiction. {ECO:0000269|PubMed:11024022, ECO:0000269|PubMed:12642577}. |
Q8IU60 | DCP2 | S375 | ochoa | m7GpppN-mRNA hydrolase (EC 3.6.1.62) (Nucleoside diphosphate-linked moiety X motif 20) (Nudix motif 20) (mRNA-decapping enzyme 2) (hDpc) | Decapping metalloenzyme that catalyzes the cleavage of the cap structure on mRNAs (PubMed:12218187, PubMed:12417715, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Removes the 7-methyl guanine cap structure from mRNA molecules, yielding a 5'-phosphorylated mRNA fragment and 7m-GDP (PubMed:12486012, PubMed:12923261, PubMed:21070968, PubMed:28002401, PubMed:31875550). Necessary for the degradation of mRNAs, both in normal mRNA turnover and in nonsense-mediated mRNA decay (PubMed:14527413). Plays a role in replication-dependent histone mRNA degradation (PubMed:18172165). Has higher activity towards mRNAs that lack a poly(A) tail (PubMed:21070968). Has no activity towards a cap structure lacking an RNA moiety (PubMed:21070968). The presence of a N(6)-methyladenosine methylation at the second transcribed position of mRNAs (N(6),2'-O-dimethyladenosine cap; m6A(m)) provides resistance to DCP2-mediated decapping (PubMed:28002401). Blocks autophagy in nutrient-rich conditions by repressing the expression of ATG-related genes through degradation of their transcripts (PubMed:26098573). {ECO:0000269|PubMed:12218187, ECO:0000269|PubMed:12417715, ECO:0000269|PubMed:12486012, ECO:0000269|PubMed:12923261, ECO:0000269|PubMed:14527413, ECO:0000269|PubMed:18172165, ECO:0000269|PubMed:21070968, ECO:0000269|PubMed:26098573, ECO:0000269|PubMed:28002401}. |
Q8IUD2 | ERC1 | S55 | ochoa | ELKS/Rab6-interacting/CAST family member 1 (ERC-1) (Rab6-interacting protein 2) | Regulatory subunit of the IKK complex. Probably recruits IkappaBalpha/NFKBIA to the complex. May be involved in the organization of the cytomatrix at the nerve terminals active zone (CAZ) which regulates neurotransmitter release. May be involved in vesicle trafficking at the CAZ. May be involved in Rab-6 regulated endosomes to Golgi transport. {ECO:0000269|PubMed:15218148}. |
Q8IV38 | ANKMY2 | S419 | ochoa | Ankyrin repeat and MYND domain-containing protein 2 | May be involved in the trafficking of signaling proteins to the cilia. {ECO:0000250}. |
Q8IVF2 | AHNAK2 | S693 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S851 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S1181 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S1676 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S2006 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S2336 | ochoa | Protein AHNAK2 | None |
Q8IVF2 | AHNAK2 | S3986 | ochoa | Protein AHNAK2 | None |
Q8IW35 | CEP97 | S752 | ochoa | Centrosomal protein of 97 kDa (Cep97) (Leucine-rich repeat and IQ domain-containing protein 2) | Acts as a key negative regulator of ciliogenesis in collaboration with CCP110 by capping the mother centriole thereby preventing cilia formation (PubMed:17719545, PubMed:30375385). Required for recruitment of CCP110 to the centrosome (PubMed:17719545). {ECO:0000269|PubMed:17719545, ECO:0000269|PubMed:30375385}. |
Q8IXZ3 | SP8 | S400 | ochoa | Transcription factor Sp8 (Specificity protein 8) | Transcription factor which plays a key role in limb development. Positively regulates FGF8 expression in the apical ectodermal ridge (AER) and contributes to limb outgrowth in embryos (By similarity). {ECO:0000250}. |
Q8IYU2 | HACE1 | S385 | ochoa|psp | E3 ubiquitin-protein ligase HACE1 (EC 2.3.2.26) (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1) (HECT-type E3 ubiquitin transferase HACE1) | E3 ubiquitin-protein ligase involved in Golgi membrane fusion and regulation of small GTPases (PubMed:15254018, PubMed:21988917, PubMed:22036506, PubMed:37537642, PubMed:38332367). Acts as a regulator of Golgi membrane dynamics during the cell cycle: recruited to Golgi membrane by Rab proteins and regulates postmitotic Golgi membrane fusion (PubMed:21988917). Acts by mediating ubiquitination during mitotic Golgi disassembly, ubiquitination serving as a signal for Golgi reassembly later, after cell division (PubMed:21988917). Specifically binds GTP-bound RAC1, mediating ubiquitination and subsequent degradation of active RAC1, thereby playing a role in host defense against pathogens (PubMed:22036506, PubMed:37537642, PubMed:38332367). May also act as a transcription regulator via its interaction with RARB (By similarity). {ECO:0000250|UniProtKB:Q3U0D9, ECO:0000269|PubMed:15254018, ECO:0000269|PubMed:21988917, ECO:0000269|PubMed:22036506, ECO:0000269|PubMed:37537642, ECO:0000269|PubMed:38332367}. |
Q8IZR5 | CMTM4 | S199 | ochoa | CKLF-like MARVEL transmembrane domain-containing protein 4 (Chemokine-like factor superfamily member 4) | Acts as a backup for CMTM6 to regulate plasma membrane expression of PD-L1/CD274, an immune inhibitory ligand critical for immune tolerance to self and antitumor immunity. May protect PD-L1/CD274 from being polyubiquitinated and targeted for degradation. {ECO:0000269|PubMed:28813410}. |
Q8N2M8 | CLASRP | S106 | ochoa | CLK4-associating serine/arginine rich protein (Splicing factor, arginine/serine-rich 16) (Suppressor of white-apricot homolog 2) | Probably functions as an alternative splicing regulator. May regulate the mRNA splicing of genes such as CLK1. May act by regulating members of the CLK kinase family (By similarity). {ECO:0000250}. |
Q8N302 | AGGF1 | S171 | ochoa | Angiogenic factor with G patch and FHA domains 1 (Angiogenic factor VG5Q) (hVG5Q) (G patch domain-containing protein 7) (Vasculogenesis gene on 5q protein) | Promotes angiogenesis and the proliferation of endothelial cells. Able to bind to endothelial cells and promote cell proliferation, suggesting that it may act in an autocrine fashion. {ECO:0000269|PubMed:14961121}. |
Q8N3K9 | CMYA5 | S1958 | ochoa | Cardiomyopathy-associated protein 5 (Dystrobrevin-binding protein 2) (Genethonin-3) (Myospryn) (SPRY domain-containing protein 2) (Tripartite motif-containing protein 76) | May serve as an anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) via binding to PRKAR2A (By similarity). May function as a repressor of calcineurin-mediated transcriptional activity. May attenuate calcineurin ability to induce slow-fiber gene program in muscle and may negatively modulate skeletal muscle regeneration (By similarity). Plays a role in the assembly of ryanodine receptor (RYR2) clusters in striated muscle (By similarity). {ECO:0000250, ECO:0000250|UniProtKB:Q70KF4}. |
Q8N4C6 | NIN | S1176 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N4C6 | NIN | S1193 | ochoa | Ninein (hNinein) (Glycogen synthase kinase 3 beta-interacting protein) (GSK3B-interacting protein) | Centrosomal protein required in the positioning and anchorage of the microtubule minus-end in epithelial cells (PubMed:15190203, PubMed:23386061). May also act as a centrosome maturation factor (PubMed:11956314). May play a role in microtubule nucleation, by recruiting the gamma-tubulin ring complex to the centrosome (PubMed:15190203). Overexpression does not perturb nucleation or elongation of microtubules but suppresses release of microtubules (PubMed:15190203). Required for centriole organization and microtubule anchoring at the mother centriole (PubMed:23386061). {ECO:0000269|PubMed:11956314, ECO:0000269|PubMed:15190203, ECO:0000269|PubMed:23386061}. |
Q8N4X5 | AFAP1L2 | S165 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N7W2 | BEND7 | S260 | ochoa | BEN domain-containing protein 7 | None |
Q8N983 | MRPL43 | S93 | ochoa | Large ribosomal subunit protein mL43 (39S ribosomal protein L43, mitochondrial) (L43mt) (MRP-L43) (Mitochondrial ribosomal protein bMRP36a) | None |
Q8N9T8 | KRI1 | S97 | ochoa | Protein KRI1 homolog | None |
Q8NB12 | SMYD1 | S298 | ochoa | Histone-lysine N-methyltransferase SMYD1 (EC 2.1.1.354) (SET and MYND domain-containing protein 1) | Methylates histone H3 at 'Lys-4' (H3K4me), seems able to perform both mono-, di-, and trimethylation. Acts as a transcriptional repressor. Essential for cardiomyocyte differentiation and cardiac morphogenesis. {ECO:0000250|UniProtKB:P97443}. |
Q8NBJ4 | GOLM1 | S309 | ochoa | Golgi membrane protein 1 (Golgi membrane protein GP73) (Golgi phosphoprotein 2) | Unknown. Cellular response protein to viral infection. |
Q8NDI1 | EHBP1 | S245 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NE71 | ABCF1 | S595 | ochoa | ATP-binding cassette sub-family F member 1 (ATP-binding cassette 50) (TNF-alpha-stimulated ABC protein) | Isoform 2 is required for efficient Cap- and IRES-mediated mRNA translation initiation. Isoform 2 is not involved in the ribosome biogenesis. {ECO:0000269|PubMed:19570978}. |
Q8NEL9 | DDHD1 | S85 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NEZ5 | FBXO22 | S128 | ochoa | F-box only protein 22 (F-box protein FBX22p44) | Substrate-recognition component of the SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex that is implicated in the control of various cellular processes such as cell cycle control, transcriptional regulation, DNA damage repair, and apoptosis. Promotes the proteasome-dependent degradation of key sarcomeric proteins, such as alpha-actinin (ACTN2) and filamin-C (FLNC), essential for maintenance of normal contractile function. Acts as a key regulator of histone methylation marks namely H3K9 and H3K36 methylation through the regulation of histone demethylase KDM4A protein levels (PubMed:21768309). In complex with KDM4A, also regulates the abundance of TP53 by targeting methylated TP53 for degradation at the late senescent stage (PubMed:26868148). Under oxidative stress, promotes the ubiquitination and degradation of BACH1. Mechanistically, reactive oxygen species (ROS) covalently modify cysteine residues on the bZIP domain of BACH1, leading to its release from chromatin and making it accessible to FBXO22 (PubMed:39504958). Upon amino acid depletion, mediates 'Lys-27'-linked ubiquitination of MTOR and thereby inhibits substrate recruitment to mTORC1 (PubMed:37979583). Also inhibits SARS-CoV-2 replication by inducing NSP5 degradation (PubMed:39223933). {ECO:0000269|PubMed:21768309, ECO:0000269|PubMed:22972877, ECO:0000269|PubMed:26868148, ECO:0000269|PubMed:37979583, ECO:0000269|PubMed:39223933, ECO:0000269|PubMed:39504958}. |
Q8NFG4 | FLCN | S542 | psp | Folliculin (BHD skin lesion fibrofolliculoma protein) (Birt-Hogg-Dube syndrome protein) | Multi-functional protein, involved in both the cellular response to amino acid availability and in the regulation of glycolysis (PubMed:17028174, PubMed:18663353, PubMed:21209915, PubMed:24081491, PubMed:24095279, PubMed:31672913, PubMed:31704029, PubMed:32612235, PubMed:34381247, PubMed:36103527, PubMed:37079666). GTPase-activating protein that plays a key role in the cellular response to amino acid availability through regulation of the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:21209915, PubMed:24081491, PubMed:24095279, PubMed:24448649, PubMed:31672913, PubMed:31704029, PubMed:32612235, PubMed:36103527, PubMed:37079666). Activates mTORC1 by acting as a GTPase-activating protein: specifically stimulates GTP hydrolysis by RagC/RRAGC or RagD/RRAGD, promoting the conversion to the GDP-bound state of RagC/RRAGC or RagD/RRAGD, and thereby activating the kinase activity of mTORC1 (PubMed:24095279, PubMed:31672913, PubMed:31704029, PubMed:32612235, PubMed:37079666). The GTPase-activating activity is inhibited during starvation and activated in presence of nutrients (PubMed:31672913, PubMed:32612235). Acts as a key component for non-canonical mTORC1-dependent control of the MiT/TFE factors TFEB and TFE3, while it is not involved in mTORC1-dependent phosphorylation of canonical RPS6KB1/S6K1 and EIF4EBP1/4E-BP1 (PubMed:21209915, PubMed:24081491, PubMed:31672913, PubMed:32612235). In low-amino acid conditions, the lysosomal folliculin complex (LFC) is formed on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, inactivates mTORC1 and maximizes nuclear translocation of TFEB and TFE3 (PubMed:31672913). Upon amino acid restimulation, RagA/RRAGA (or RagB/RRAGB) nucleotide exchange promotes disassembly of the LFC complex and liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent cytoplasmic retention of TFEB and TFE3 (PubMed:31672913). Indirectly acts as a positive regulator of Wnt signaling by promoting mTOR-dependent cytoplasmic retention of MiT/TFE factor TFE3 (PubMed:31272105). Required for the exit of hematopoietic stem cell from pluripotency by promoting mTOR-dependent cytoplasmic retention of TFE3, thereby increasing Wnt signaling (PubMed:30733432). Acts as an inhibitor of browning of adipose tissue by regulating mTOR-dependent cytoplasmic retention of TFE3 (By similarity). Involved in the control of embryonic stem cells differentiation; together with LAMTOR1 it is necessary to recruit and activate RagC/RRAGC and RagD/RRAGD at the lysosomes, and to induce exit of embryonic stem cells from pluripotency via non-canonical, mTOR-independent TFE3 inactivation (By similarity). In response to flow stress, regulates STK11/LKB1 accumulation and mTORC1 activation through primary cilia: may act by recruiting STK11/LKB1 to primary cilia for activation of AMPK resided at basal bodies, causing mTORC1 down-regulation (PubMed:27072130). Together with FNIP1 and/or FNIP2, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). Required for starvation-induced perinuclear clustering of lysosomes by promoting association of RILP with its effector RAB34 (PubMed:27113757). Regulates glycolysis by binding to lactate dehydrogenase LDHA, acting as an uncompetitive inhibitor (PubMed:34381247). {ECO:0000250|UniProtKB:Q8QZS3, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:21209915, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:24095279, ECO:0000269|PubMed:24448649, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27072130, ECO:0000269|PubMed:27113757, ECO:0000269|PubMed:30733432, ECO:0000269|PubMed:31272105, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:31704029, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:34381247, ECO:0000269|PubMed:36103527, ECO:0000269|PubMed:37079666}. |
Q8NHV4 | NEDD1 | S108 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8TDM6 | DLG5 | S264 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TDW5 | SYTL5 | S294 | ochoa | Synaptotagmin-like protein 5 | May act as Rab effector protein and play a role in vesicle trafficking. Binds phospholipids. |
Q8TEQ6 | GEMIN5 | S1311 | ochoa | Gem-associated protein 5 (Gemin5) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs (PubMed:16857593, PubMed:18984161, PubMed:20513430, PubMed:33963192). Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP (PubMed:18984161). To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate (PubMed:18984161). Binding of snRNA inside 5Sm ultimately triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. Within the SMN complex, GEMIN5 recognizes and delivers the small nuclear RNAs (snRNAs) to the SMN complex (PubMed:11714716, PubMed:16314521, PubMed:16857593, PubMed:19377484, PubMed:19750007, PubMed:20513430, PubMed:27834343, PubMed:27881600, PubMed:27881601). Binds to the 7-methylguanosine cap of RNA molecules (PubMed:19750007, PubMed:27834343, PubMed:27881600, PubMed:27881601, Ref.27). Binds to the 3'-UTR of SMN1 mRNA and regulates its translation; does not affect mRNA stability (PubMed:25911097). May play a role in the regulation of protein synthesis via its interaction with ribosomes (PubMed:27507887). {ECO:0000269|PubMed:11714716, ECO:0000269|PubMed:16314521, ECO:0000269|PubMed:16857593, ECO:0000269|PubMed:18984161, ECO:0000269|PubMed:19377484, ECO:0000269|PubMed:19750007, ECO:0000269|PubMed:20513430, ECO:0000269|PubMed:25911097, ECO:0000269|PubMed:27507887, ECO:0000269|PubMed:27834343, ECO:0000269|PubMed:27881600, ECO:0000269|PubMed:27881601, ECO:0000269|PubMed:33963192, ECO:0000269|Ref.27}. |
Q8TEU7 | RAPGEF6 | S841 | ochoa | Rap guanine nucleotide exchange factor 6 (PDZ domain-containing guanine nucleotide exchange factor 2) (PDZ-GEF2) (RA-GEF-2) | Guanine nucleotide exchange factor (GEF) for Rap1A, Rap2A and M-Ras GTPases. Does not interact with cAMP. {ECO:0000269|PubMed:11524421, ECO:0000269|PubMed:12581858}. |
Q8TEV9 | SMCR8 | S468 | ochoa | Guanine nucleotide exchange protein SMCR8 (Smith-Magenis syndrome chromosomal region candidate gene 8 protein) | Component of the C9orf72-SMCR8 complex, a complex that has guanine nucleotide exchange factor (GEF) activity and regulates autophagy (PubMed:20562859, PubMed:27103069, PubMed:27193190, PubMed:27559131, PubMed:27617292, PubMed:28195531, PubMed:32303654). In the complex, C9orf72 and SMCR8 probably constitute the catalytic subunits that promote the exchange of GDP to GTP, converting inactive GDP-bound RAB8A and RAB39B into their active GTP-bound form, thereby promoting autophagosome maturation (PubMed:20562859, PubMed:27103069, PubMed:27617292, PubMed:28195531). The C9orf72-SMCR8 complex also acts as a negative regulator of autophagy initiation by interacting with the ULK1/ATG1 kinase complex and inhibiting its protein kinase activity (PubMed:27617292, PubMed:28195531). As part of the C9orf72-SMCR8 complex, stimulates RAB8A and RAB11A GTPase activity in vitro (PubMed:32303654). Acts as a regulator of mTORC1 signaling by promoting phosphorylation of mTORC1 substrates (PubMed:27559131, PubMed:28195531). In addition to its activity in the cytoplasm within the C9orf72-SMCR8 complex, SMCR8 also localizes in the nucleus, where it associates with chromatin and negatively regulates expression of suppresses ULK1 and WIPI2 genes (PubMed:28195531). {ECO:0000269|PubMed:20562859, ECO:0000269|PubMed:27103069, ECO:0000269|PubMed:27193190, ECO:0000269|PubMed:27559131, ECO:0000269|PubMed:27617292, ECO:0000269|PubMed:28195531, ECO:0000269|PubMed:32303654}. |
Q8WUM0 | NUP133 | S475 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WUY3 | PRUNE2 | S622 | ochoa | Protein prune homolog 2 (BNIP2 motif-containing molecule at the C-terminal region 1) | May play an important role in regulating differentiation, survival and aggressiveness of the tumor cells. {ECO:0000269|PubMed:16288218}. |
Q8WWI1 | LMO7 | S545 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWI1 | LMO7 | S709 | ochoa | LIM domain only protein 7 (LMO-7) (F-box only protein 20) (LOMP) | None |
Q8WWK9 | CKAP2 | S364 | ochoa | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q8WWQ0 | PHIP | S1783 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WXE0 | CASKIN2 | S471 | ochoa | Caskin-2 (CASK-interacting protein 2) | None |
Q8WYL5 | SSH1 | S744 | ochoa | Protein phosphatase Slingshot homolog 1 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 1) (SSH-1L) (hSSH-1L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein. {ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12684437, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:14531860, ECO:0000269|PubMed:14645219, ECO:0000269|PubMed:15056216, ECO:0000269|PubMed:15159416, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:15671020, ECO:0000269|PubMed:16230460}. |
Q8WYP5 | AHCTF1 | S1884 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q8WYQ5 | DGCR8 | S385 | ochoa | Microprocessor complex subunit DGCR8 (DiGeorge syndrome critical region 8) | Component of the microprocessor complex that acts as a RNA- and heme-binding protein that is involved in the initial step of microRNA (miRNA) biogenesis. Component of the microprocessor complex that is required to process primary miRNA transcripts (pri-miRNAs) to release precursor miRNA (pre-miRNA) in the nucleus. Within the microprocessor complex, DGCR8 function as a molecular anchor necessary for the recognition of pri-miRNA at dsRNA-ssRNA junction and directs DROSHA to cleave 11 bp away form the junction to release hairpin-shaped pre-miRNAs that are subsequently cut by the cytoplasmic DICER to generate mature miRNAs (PubMed:26027739, PubMed:26748718). The heme-bound DGCR8 dimer binds pri-miRNAs as a cooperative trimer (of dimers) and is active in triggering pri-miRNA cleavage, whereas the heme-free DGCR8 monomer binds pri-miRNAs as a dimer and is much less active. Both double-stranded and single-stranded regions of a pri-miRNA are required for its binding (PubMed:15531877, PubMed:15574589, PubMed:15589161, PubMed:16751099, PubMed:16906129, PubMed:16963499, PubMed:17159994). Specifically recognizes and binds N6-methyladenosine (m6A)-containing pri-miRNAs, a modification required for pri-miRNAs processing (PubMed:25799998). Involved in the silencing of embryonic stem cell self-renewal (By similarity). Also plays a role in DNA repair by promoting the recruitment of RNF168 to RNF8 and MDC1 at DNA double-strand breaks and subsequently the clearance of DNA breaks (PubMed:34188037). {ECO:0000250|UniProtKB:Q9EQM6, ECO:0000269|PubMed:15531877, ECO:0000269|PubMed:15574589, ECO:0000269|PubMed:15589161, ECO:0000269|PubMed:16751099, ECO:0000269|PubMed:16906129, ECO:0000269|PubMed:16963499, ECO:0000269|PubMed:17159994, ECO:0000269|PubMed:25799998, ECO:0000269|PubMed:26027739, ECO:0000269|PubMed:26748718}. |
Q92574 | TSC1 | S270 | ochoa | Hamartin (Tuberous sclerosis 1 protein) | Non-catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12906785, PubMed:15340059, PubMed:24529379, PubMed:28215400). The TSC-TBC complex acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12906785, PubMed:15340059, PubMed:24529379). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12271141, PubMed:24529379, PubMed:28215400, PubMed:33215753). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Within the TSC-TBC complex, TSC1 stabilizes TSC2 and prevents TSC2 self-aggregation (PubMed:10585443, PubMed:28215400). Acts as a tumor suppressor (PubMed:9242607). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also acts as a co-chaperone for HSP90AA1 facilitating HSP90AA1 chaperoning of protein clients such as kinases, TSC2 and glucocorticoid receptor NR3C1 (PubMed:29127155). Increases ATP binding to HSP90AA1 and inhibits HSP90AA1 ATPase activity (PubMed:29127155). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:29127155). Recruits TSC2 to HSP90AA1 and stabilizes TSC2 by preventing the interaction between TSC2 and ubiquitin ligase HERC1 (PubMed:16464865, PubMed:29127155). {ECO:0000250|UniProtKB:Q9Z136, ECO:0000269|PubMed:10585443, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:16464865, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:29127155, ECO:0000269|PubMed:33215753, ECO:0000269|PubMed:9242607}. |
Q92576 | PHF3 | S250 | ochoa | PHD finger protein 3 | None |
Q92609 | TBC1D5 | S700 | ochoa | TBC1 domain family member 5 | May act as a GTPase-activating protein (GAP) for Rab family protein(s). May act as a GAP for RAB7A. Can displace RAB7A and retromer CSC subcomplex from the endosomal membrane to the cytosol; at least retromer displacement seems to require its catalytic activity (PubMed:19531583, PubMed:20923837). Required for retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN); the function seems to require its catalytic activity. Involved in regulation of autophagy (PubMed:22354992). May act as a molecular switch between endosomal and autophagosomal transport and is involved in reprogramming vesicle trafficking upon autophagy induction. Involved in the trafficking of ATG9A upon activation of autophagy. May regulate the recruitment of ATG9A-AP2-containing vesicles to autophagic membranes (PubMed:24603492). {ECO:0000269|PubMed:19531583, ECO:0000269|PubMed:20923837, ECO:0000269|PubMed:22354992, ECO:0000269|PubMed:24603492, ECO:0000305|PubMed:19531583, ECO:0000305|PubMed:22354992, ECO:0000305|PubMed:24603492}. |
Q92615 | LARP4B | S424 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92890 | UFD1 | S209 | ochoa | Ubiquitin recognition factor in ER-associated degradation protein 1 (Ubiquitin fusion degradation protein 1) (UB fusion protein 1) | Essential component of the ubiquitin-dependent proteolytic pathway which degrades ubiquitin fusion proteins. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. It may be involved in the development of some ectoderm-derived structures (By similarity). Acts as a negative regulator of type I interferon production via the complex formed with VCP and NPLOC4, which binds to RIGI and recruits RNF125 to promote ubiquitination and degradation of RIGI (PubMed:26471729). {ECO:0000250|UniProtKB:Q9ES53, ECO:0000269|PubMed:26471729}. |
Q92911 | SLC5A5 | S43 | psp | Sodium/iodide cotransporter (Na(+)/I(-) cotransporter) (Natrium iodide transporter) (Sodium-iodide symporter) (Na(+)/I(-) symporter) (Solute carrier family 5 member 5) | Sodium:iodide symporter that mediates the transport of iodide into the thyroid gland (PubMed:12488351, PubMed:18372236, PubMed:18708479, PubMed:20797386, PubMed:31310151, PubMed:32084174, PubMed:8806637, PubMed:9329364). Can also mediate the transport of chlorate, thiocynate, nitrate and selenocynate (PubMed:12488351). {ECO:0000269|PubMed:12488351, ECO:0000269|PubMed:18372236, ECO:0000269|PubMed:18708479, ECO:0000269|PubMed:20797386, ECO:0000269|PubMed:31310151, ECO:0000269|PubMed:32084174, ECO:0000269|PubMed:8806637, ECO:0000269|PubMed:9329364}. |
Q92953 | KCNB2 | S461 | ochoa | Potassium voltage-gated channel subfamily B member 2 (Voltage-gated potassium channel subunit Kv2.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain and smooth muscle cells. Channels open or close in response to the voltage difference across the membrane, letting potassium ions pass in accordance with their electrochemical gradient. Homotetrameric channels mediate a delayed-rectifier voltage-dependent outward potassium current that display rapid activation and slow inactivation in response to membrane depolarization. Can form functional homotetrameric and heterotetrameric channels that contain variable proportions of KCNB1; channel properties depend on the type of alpha subunits that are part of the channel. Can also form functional heterotetrameric channels with other alpha subunits that are non-conducting when expressed alone, such as KCNS1 and KCNS2, creating a functionally diverse range of channel complexes. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes, making it difficult to assign currents observed in intact tissues to any particular potassium channel family member. Contributes to the delayed-rectifier voltage-gated potassium current in cortical pyramidal neurons and smooth muscle cells. {ECO:0000250|UniProtKB:A6H8H5, ECO:0000250|UniProtKB:Q63099}. |
Q96A22 | C11orf52 | S62 | ochoa | Uncharacterized protein C11orf52 | None |
Q96AJ9 | VTI1A | S96 | ochoa | Vesicle transport through interaction with t-SNAREs homolog 1A (Vesicle transport v-SNARE protein Vti1-like 2) (Vti1-rp2) | V-SNARE that mediates vesicle transport pathways through interactions with t-SNAREs on the target membrane. These interactions are proposed to mediate aspects of the specificity of vesicle trafficking and to promote fusion of the lipid bilayers. Involved in vesicular transport from the late endosomes to the trans-Golgi network. Along with VAMP7, involved in an non-conventional RAB1-dependent traffic route to the cell surface used by KCNIP1 and KCND2. May be involved in increased cytokine secretion associated with cellular senescence. {ECO:0000269|PubMed:18195106, ECO:0000269|PubMed:19138172}. |
Q96AT1 | KIAA1143 | S105 | ochoa | Uncharacterized protein KIAA1143 | None |
Q96CC6 | RHBDF1 | S136 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96EP0 | RNF31 | S840 | ochoa | E3 ubiquitin-protein ligase RNF31 (EC 2.3.2.31) (HOIL-1-interacting protein) (HOIP) (RING finger protein 31) (RING-type E3 ubiquitin transferase RNF31) (Zinc in-between-RING-finger ubiquitin-associated domain protein) | E3 ubiquitin-protein ligase component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation (PubMed:17006537, PubMed:19136968, PubMed:20005846, PubMed:21455173, PubMed:21455180, PubMed:21455181, PubMed:22863777, PubMed:28189684, PubMed:28481331). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways (PubMed:17006537, PubMed:19136968, PubMed:20005846, PubMed:21455173, PubMed:21455180, PubMed:21455181, PubMed:22863777, PubMed:28189684). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation (PubMed:21455173, PubMed:28189684). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex (PubMed:20005846, PubMed:27458237). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria (PubMed:28481331, PubMed:34012115). LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin (PubMed:28481331). Recruited to the surface of bacteria by RNF213, which initiates the bacterial ubiquitin coat (PubMed:34012115). The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation (PubMed:28481331, PubMed:34012115). Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis (PubMed:23708998). RNF31 is required for linear ubiquitination of BCL10, thereby promoting TCR-induced NF-kappa-B activation (PubMed:27777308). Binds polyubiquitin of different linkage types (PubMed:23708998). {ECO:0000269|PubMed:17006537, ECO:0000269|PubMed:19136968, ECO:0000269|PubMed:20005846, ECO:0000269|PubMed:21455173, ECO:0000269|PubMed:21455180, ECO:0000269|PubMed:21455181, ECO:0000269|PubMed:22863777, ECO:0000269|PubMed:23708998, ECO:0000269|PubMed:27458237, ECO:0000269|PubMed:27777308, ECO:0000269|PubMed:28189684, ECO:0000269|PubMed:28481331, ECO:0000269|PubMed:34012115}. |
Q96H79 | ZC3HAV1L | S259 | ochoa | Zinc finger CCCH-type antiviral protein 1-like | None |
Q96HC4 | PDLIM5 | S217 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HC4 | PDLIM5 | S309 | ochoa | PDZ and LIM domain protein 5 (Enigma homolog) (Enigma-like PDZ and LIM domains protein) | May play an important role in the heart development by scaffolding PKC to the Z-disk region. May play a role in the regulation of cardiomyocyte expansion. Isoforms lacking the LIM domains may negatively modulate the scaffolding activity of isoform 1. Overexpression promotes the development of heart hypertrophy. Contributes to the regulation of dendritic spine morphogenesis in neurons. May be required to restrain postsynaptic growth of excitatory synapses. Isoform 1, but not isoform 2, expression favors spine thinning and elongation. {ECO:0000250|UniProtKB:Q62920}. |
Q96HS1 | PGAM5 | S113 | ochoa | Serine/threonine-protein phosphatase PGAM5, mitochondrial (EC 3.1.3.16) (Bcl-XL-binding protein v68) (Phosphoglycerate mutase family member 5) | Mitochondrial serine/threonine phosphatase that dephosphorylates various substrates and thus plays a role in different biological processes including cellular senescence or mitophagy (PubMed:24746696, PubMed:32439975). Modulates cellular senescence by regulating mitochondrial dynamics. Mechanistically, participates in mitochondrial fission through dephosphorylating DNM1L/DRP1 (PubMed:32439975). Additionally, dephosphorylates MFN2 in a stress-sensitive manner and consequently protects it from ubiquitination and degradation to promote mitochondrial network formation (PubMed:37498743). Regulates mitophagy independent of PARKIN by interacting with and dephosphorylating FUNDC1, which interacts with LC3 (PubMed:24746696). Regulates anti-oxidative response by forming a tertiary complex with KEAP1 and NRF2 (PubMed:18387606). Regulates necroptosis by acting as a RIPK3 target and recruiting the RIPK1-RIPK3-MLKL necrosis 'attack' complex to mitochondria (PubMed:22265414). {ECO:0000269|PubMed:18387606, ECO:0000269|PubMed:19590015, ECO:0000269|PubMed:22265414, ECO:0000269|PubMed:24746696, ECO:0000269|PubMed:32439975, ECO:0000269|PubMed:37498743}. |
Q96IZ7 | RSRC1 | S278 | ochoa | Serine/Arginine-related protein 53 (SRrp53) (Arginine/serine-rich coiled-coil protein 1) | Has a role in alternative splicing and transcription regulation (PubMed:29522154). Involved in both constitutive and alternative pre-mRNA splicing. May have a role in the recognition of the 3' splice site during the second step of splicing. {ECO:0000269|PubMed:15798186, ECO:0000269|PubMed:29522154}. |
Q96J92 | WNK4 | S1022 | psp | Serine/threonine-protein kinase WNK4 (EC 2.7.11.1) (Protein kinase lysine-deficient 4) (Protein kinase with no lysine 4) | Serine/threonine-protein kinase component of the WNK4-SPAK/OSR1 kinase cascade, which acts as a key regulator of ion transport in the distal nephron and blood pressure (By similarity). The WNK4-SPAK/OSR1 kinase cascade is composed of WNK4, which mediates phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:16832045). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters, such as SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16832045, PubMed:22989884). Acts as a molecular switch that regulates the balance between renal salt reabsorption and K(+) secretion by modulating the activities of renal transporters and channels, including the Na-Cl cotransporter SLC12A3/NCC and the K(+) channel, KCNJ1/ROMK (By similarity). Regulates NaCl reabsorption in the distal nephron by activating the thiazide-sensitive Na-Cl cotransporter SLC12A3/NCC in distal convoluted tubule cells of kidney: activates SLC12A3/NCC in a OXSR1/OSR1- and STK39/SPAK-dependent process (By similarity). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels (CFTR, KCNJ1/ROMK, SLC4A4, SLC26A9 and TRPV4) by clathrin-dependent endocytosis (By similarity). Also inhibits the activity of the epithelial Na(+) channel (ENaC) SCNN1A, SCNN1B, SCNN1D in a inase-independent mechanism (By similarity). May also phosphorylate NEDD4L (PubMed:20525693). {ECO:0000250|UniProtKB:Q80UE6, ECO:0000269|PubMed:16832045, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:22989884}. |
Q96JM2 | ZNF462 | S1451 | ochoa | Zinc finger protein 462 (Zinc finger PBX1-interacting protein) (ZFPIP) | Zinc finger nuclear factor involved in transcription by regulating chromatin structure and organization (PubMed:20219459, PubMed:21570965). Involved in the pluripotency and differentiation of embryonic stem cells by regulating SOX2, POU5F1/OCT4, and NANOG (PubMed:21570965). By binding PBX1, prevents the heterodimerization of PBX1 and HOXA9 and their binding to DNA (By similarity). Regulates neuronal development and neural cell differentiation (PubMed:21570965). {ECO:0000250|UniProtKB:B1AWL2, ECO:0000269|PubMed:20219459, ECO:0000269|PubMed:21570965}. |
Q96K76 | USP47 | S940 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96KM6 | ZNF512B | S665 | ochoa | Zinc finger protein 512B | Involved in transcriptional regulation by repressing gene expression (PubMed:39460621). Associates with the nucleosome remodeling and histone deacetylase (NuRD) complex, which promotes transcriptional repression by histone deacetylation and nucleosome remodeling (PubMed:39460621). {ECO:0000269|PubMed:39460621}. |
Q96L73 | NSD1 | S760 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96PD2 | DCBLD2 | S618 | ochoa|psp | Discoidin, CUB and LCCL domain-containing protein 2 (CUB, LCCL and coagulation factor V/VIII-homology domains protein 1) (Endothelial and smooth muscle cell-derived neuropilin-like protein) | None |
Q96PE1 | ADGRA2 | S966 | ochoa | Adhesion G protein-coupled receptor A2 (G-protein coupled receptor 124) (Tumor endothelial marker 5) | Endothelial receptor which functions together with RECK to enable brain endothelial cells to selectively respond to Wnt7 signals (WNT7A or WNT7B) (PubMed:28289266, PubMed:30026314). Plays a key role in Wnt7-specific responses, such as endothelial cell sprouting and migration in the forebrain and neural tube, and establishment of the blood-brain barrier (By similarity). Acts as a Wnt7-specific coactivator of canonical Wnt signaling: required to deliver RECK-bound Wnt7 to frizzled by assembling a higher-order RECK-ADGRA2-Fzd-LRP5-LRP6 complex (PubMed:30026314). ADGRA2-tethering function does not rely on its G-protein coupled receptor (GPCR) structure but instead on its combined capacity to interact with RECK extracellularly and recruit the Dishevelled scaffolding protein intracellularly (PubMed:30026314). Binds to the glycosaminoglycans heparin, heparin sulfate, chondroitin sulfate and dermatan sulfate (PubMed:16982628). {ECO:0000250|UniProtKB:Q91ZV8, ECO:0000269|PubMed:16982628, ECO:0000269|PubMed:28289266, ECO:0000269|PubMed:30026314}. |
Q96Q89 | KIF20B | S1658 | ochoa | Kinesin-like protein KIF20B (Cancer/testis antigen 90) (CT90) (Kinesin family member 20B) (Kinesin-related motor interacting with PIN1) (M-phase phosphoprotein 1) (MPP1) | Plus-end-directed motor enzyme that is required for completion of cytokinesis (PubMed:11470801, PubMed:12740395). Required for proper midbody organization and abscission in polarized cortical stem cells. Plays a role in the regulation of neuronal polarization by mediating the transport of specific cargos. Participates in the mobilization of SHTN1 and in the accumulation of PIP3 in the growth cone of primary hippocampal neurons in a tubulin and actin-dependent manner. In the developing telencephalon, cooperates with SHTN1 to promote both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex. Involved in cerebral cortex growth (By similarity). Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000250|UniProtKB:Q80WE4, ECO:0000269|PubMed:11470801, ECO:0000269|PubMed:12740395, ECO:0000269|PubMed:17409436}. |
Q96QE3 | ATAD5 | S1027 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96R06 | SPAG5 | S115 | psp | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RP9 | GFM1 | S91 | ochoa | Elongation factor G, mitochondrial (EF-Gmt) (EC 3.6.5.-) (Elongation factor G 1, mitochondrial) (mEF-G 1) (Elongation factor G1) (hEFG1) | Mitochondrial GTPase that catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Does not mediate the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis. {ECO:0000255|HAMAP-Rule:MF_03061, ECO:0000269|PubMed:19716793}. |
Q96RT1 | ERBIN | S800 | ochoa | Erbin (Densin-180-like protein) (Erbb2-interacting protein) (Protein LAP2) | Acts as an adapter for the receptor ERBB2, in epithelia. By binding the unphosphorylated 'Tyr-1248' of receptor ERBB2, it may contribute to stabilize this unphosphorylated state (PubMed:16203728). Inhibits NOD2-dependent NF-kappa-B signaling and pro-inflammatory cytokine secretion (PubMed:16203728). {ECO:0000269|PubMed:10878805, ECO:0000269|PubMed:16203728}. |
Q96RY7 | IFT140 | S1443 | ochoa | Intraflagellar transport protein 140 homolog (WD and tetratricopeptide repeats protein 2) | Component of the IFT complex A (IFT-A), a complex required for retrograde ciliary transport and entry into cilia of G protein-coupled receptors (GPCRs) (PubMed:20889716, PubMed:22503633). Plays a pivotal role in proper development and function of ciliated cells through its role in ciliogenesis and/or cilium maintenance (PubMed:22503633). Required for the development and maintenance of the outer segments of rod and cone photoreceptor cells. Plays a role in maintenance and the delivery of opsin to the outer segment of photoreceptor cells (By similarity). {ECO:0000250|UniProtKB:E9PY46, ECO:0000269|PubMed:20889716, ECO:0000269|PubMed:22503633, ECO:0000269|PubMed:28724397}. |
Q96SN8 | CDK5RAP2 | S697 | ochoa | CDK5 regulatory subunit-associated protein 2 (CDK5 activator-binding protein C48) (Centrosome-associated protein 215) | Potential regulator of CDK5 activity via its interaction with CDK5R1 (PubMed:15164053). Negative regulator of centriole disengagement (licensing) which maintains centriole engagement and cohesion. Involved in regulation of mitotic spindle orientation (By similarity). Plays a role in the spindle checkpoint activation by acting as a transcriptional regulator of both BUBR1 and MAD2 promoter (PubMed:19282672). Together with EB1/MAPRE1, may promote microtubule polymerization, bundle formation, growth and dynamics at the plus ends (PubMed:18042621, PubMed:17959831, PubMed:19553473). Regulates centrosomal maturation by recruitment of the gamma-tubulin ring complex (gTuRC) onto centrosomes (PubMed:18042621, PubMed:17959831, PubMed:26485573, PubMed:39321809). In complex with PDE4DIP isoform 13/MMG8/SMYLE, MAPRE1 and AKAP9, contributes to microtubules nucleation and extension from the centrosome to the cell periphery (PubMed:29162697). Required for the recruitment of AKAP9 to centrosomes (PubMed:29162697). Plays a role in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q8K389, ECO:0000269|PubMed:15164053, ECO:0000269|PubMed:17959831, ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:19282672, ECO:0000269|PubMed:19553473, ECO:0000269|PubMed:26485573, ECO:0000269|PubMed:29162697, ECO:0000269|PubMed:39321809}. |
Q96T83 | SLC9A7 | S545 | ochoa | Sodium/hydrogen exchanger 7 (Na(+)/H(+) exchanger 7) (NHE-7) (Solute carrier family 9 member 7) | Golgi Na(+), K(+)/(H+) antiporter. Mediates the electoneutral influx of Na(+) or K(+) in exchange for H(+). May contribute to the regulation of Golgi apparatus volume and pH. {ECO:0000269|PubMed:11279194, ECO:0000269|PubMed:30335141}. |
Q99426 | TBCB | S110 | ochoa | Tubulin-folding cofactor B (Cytoskeleton-associated protein 1) (Cytoskeleton-associated protein CKAPI) (Tubulin-specific chaperone B) | Binds to alpha-tubulin folding intermediates after their interaction with cytosolic chaperonin in the pathway leading from newly synthesized tubulin to properly folded heterodimer (PubMed:9265649). Involved in regulation of tubulin heterodimer dissociation. May function as a negative regulator of axonal growth (By similarity). {ECO:0000250|UniProtKB:Q9D1E6, ECO:0000269|PubMed:9265649}. |
Q99459 | CDC5L | S228 | ochoa | Cell division cycle 5-like protein (Cdc5-like protein) (Pombe cdc5-related protein) | DNA-binding protein involved in cell cycle control. May act as a transcription activator. Plays a role in pre-mRNA splicing as core component of precatalytic, catalytic and postcatalytic spliceosomal complexes (PubMed:11991638, PubMed:20176811, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106, PubMed:29361316, PubMed:30705154, PubMed:30728453). Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. The PRP19-CDC5L complex may also play a role in the response to DNA damage (DDR) (PubMed:20176811). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:10570151, ECO:0000269|PubMed:11082045, ECO:0000269|PubMed:11101529, ECO:0000269|PubMed:11544257, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12927788, ECO:0000269|PubMed:18583928, ECO:0000269|PubMed:20176811, ECO:0000269|PubMed:24332808, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:30728453, ECO:0000269|PubMed:9038199, ECO:0000269|PubMed:9468527, ECO:0000269|PubMed:9632794, ECO:0000305|PubMed:33509932}. |
Q99471 | PFDN5 | S56 | ochoa | Prefoldin subunit 5 (Myc modulator 1) (c-Myc-binding protein Mm-1) | Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins. Represses the transcriptional activity of MYC. {ECO:0000269|PubMed:9630229}. |
Q99594 | TEAD3 | S61 | ochoa | Transcriptional enhancer factor TEF-5 (DTEF-1) (TEA domain family member 3) (TEAD-3) | Transcription factor which plays a key role in the Hippo signaling pathway, a pathway involved in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein MST1/MST2, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Acts by mediating gene expression of YAP1 and WWTR1/TAZ, thereby regulating cell proliferation, migration and epithelial mesenchymal transition (EMT) induction. Binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. {ECO:0000269|PubMed:18579750, ECO:0000269|PubMed:19324877}. |
Q99698 | LYST | S2632 | ochoa | Lysosomal-trafficking regulator (Beige homolog) | Adapter protein that regulates and/or fission of intracellular vesicles such as lysosomes (PubMed:11984006, PubMed:25216107). Might regulate trafficking of effectors involved in exocytosis (PubMed:25425525). In cytotoxic T-cells and natural killer (NK) cells, has role in the regulation of size, number and exocytosis of lytic granules (PubMed:26478006). In macrophages and dendritic cells, regulates phagosome maturation by controlling the conversion of early phagosomal compartments into late phagosomes (By similarity). In macrophages and dendritic cells, specifically involved in TLR3- and TLR4-induced production of pro-inflammatory cytokines by regulating the endosomal TLR3- TICAM1/TRIF and TLR4- TICAM1/TRIF signaling pathways (PubMed:27881733). {ECO:0000250|UniProtKB:P97412, ECO:0000269|PubMed:11984006, ECO:0000269|PubMed:25216107, ECO:0000269|PubMed:25425525, ECO:0000269|PubMed:26478006, ECO:0000269|PubMed:27881733}. |
Q99708 | RBBP8 | S593 | ochoa|psp | DNA endonuclease RBBP8 (EC 3.1.-.-) (CtBP-interacting protein) (CtIP) (Retinoblastoma-binding protein 8) (RBBP-8) (Retinoblastoma-interacting protein and myosin-like) (RIM) (Sporulation in the absence of SPO11 protein 2 homolog) (SAE2) | Endonuclease that cooperates with the MRE11-RAD50-NBN (MRN) complex in DNA-end resection, the first step of double-strand break (DSB) repair through the homologous recombination (HR) pathway (PubMed:17965729, PubMed:19202191, PubMed:19759395, PubMed:20064462, PubMed:23273981, PubMed:26721387, PubMed:27814491, PubMed:27889449, PubMed:30787182). HR is restricted to S and G2 phases of the cell cycle and preferentially repairs DSBs resulting from replication fork collapse (PubMed:17965729, PubMed:19202191, PubMed:23273981, PubMed:27814491, PubMed:27889449, PubMed:30787182). Key determinant of DSB repair pathway choice, as it commits cells to HR by preventing classical non-homologous end-joining (NHEJ) (PubMed:19202191). Specifically promotes the endonuclease activity of the MRN complex to clear DNA ends containing protein adducts: recruited to DSBs by NBN following phosphorylation by CDK1, and promotes the endonuclease activity of MRE11 to clear protein-DNA adducts and generate clean double-strand break ends (PubMed:27814491, PubMed:27889449, PubMed:30787182, PubMed:33836577). Functions downstream of the MRN complex and ATM, promotes ATR activation and its recruitment to DSBs in the S/G2 phase facilitating the generation of ssDNA (PubMed:16581787, PubMed:17965729, PubMed:19759395, PubMed:20064462). Component of the BRCA1-RBBP8 complex that regulates CHEK1 activation and controls cell cycle G2/M checkpoints on DNA damage (PubMed:15485915, PubMed:16818604). During immunoglobulin heavy chain class-switch recombination, promotes microhomology-mediated alternative end joining (A-NHEJ) and plays an essential role in chromosomal translocations (By similarity). Binds preferentially to DNA Y-junctions and to DNA substrates with blocked ends and promotes intermolecular DNA bridging (PubMed:30601117). {ECO:0000250|UniProtKB:Q80YR6, ECO:0000269|PubMed:15485915, ECO:0000269|PubMed:16581787, ECO:0000269|PubMed:16818604, ECO:0000269|PubMed:17965729, ECO:0000269|PubMed:19202191, ECO:0000269|PubMed:19759395, ECO:0000269|PubMed:20064462, ECO:0000269|PubMed:23273981, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:27814491, ECO:0000269|PubMed:27889449, ECO:0000269|PubMed:30601117, ECO:0000269|PubMed:30787182, ECO:0000269|PubMed:33836577}. |
Q99741 | CDC6 | S127 | ochoa | Cell division control protein 6 homolog (CDC6-related protein) (Cdc18-related protein) (HsCdc18) (p62(cdc6)) (HsCDC6) | Involved in the initiation of DNA replication. Also participates in checkpoint controls that ensure DNA replication is completed before mitosis is initiated. |
Q9BQ52 | ELAC2 | S217 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BQI7 | PSD2 | S191 | ochoa | PH and SEC7 domain-containing protein 2 (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 C) (Exchange factor for ARF6 C) (Pleckstrin homology and SEC7 domain-containing protein 2) | None |
Q9BRI3 | SLC30A2 | S296 | psp | Proton-coupled zinc antiporter SLC30A2 (Solute carrier family 30 member 2) (Zinc transporter 2) (ZnT-2) | [Isoform 1]: Electroneutral proton-coupled antiporter concentrating zinc ions into a variety of intracellular organelles including endosomes, zymogen granules and mitochondria. Thereby, plays a crucial role in cellular zinc homeostasis to confer upon cells protection against its potential cytotoxicity (PubMed:17065149, PubMed:21289295, PubMed:22733820, PubMed:25657003, PubMed:25808614, PubMed:30893306). Regulates the zinc concentration of milk, through the transport of zinc ions into secretory vesicles of mammary cells (PubMed:19496757). By concentrating zinc ions into lysosomes participates to lysosomal-mediated cell death during early mammary gland involution (PubMed:25808614). {ECO:0000269|PubMed:17065149, ECO:0000269|PubMed:19496757, ECO:0000269|PubMed:21289295, ECO:0000269|PubMed:22733820, ECO:0000269|PubMed:25657003, ECO:0000269|PubMed:25808614, ECO:0000269|PubMed:30893306}.; FUNCTION: [Isoform 2]: Electroneutral proton-coupled antiporter mediating the efflux of zinc ions through the plasma membrane. {ECO:0000269|PubMed:19496757}. |
Q9BSJ6 | PIMREG | S26 | ochoa | Protein PIMREG (CALM-interactor expressed in thymus and spleen) (PICALM-interacting mitotic regulator) (Regulator of chromosome segregation protein 1) | During mitosis, may play a role in the control of metaphase-to-anaphase transition. {ECO:0000269|PubMed:18757745}. |
Q9BSM1 | PCGF1 | S118 | ochoa | Polycomb group RING finger protein 1 (Nervous system Polycomb-1) (NSPc1) (RING finger protein 68) | Component of the Polycomb group (PcG) multiprotein BCOR complex, a complex required to maintain the transcriptionally repressive state of some genes, such as BCL6 and the cyclin-dependent kinase inhibitor, CDKN1A. Transcriptional repressor that may be targeted to the DNA by BCL6; this transcription repressor activity may be related to PKC signaling pathway. Represses CDKN1A expression by binding to its promoter, and this repression is dependent on the retinoic acid response element (RARE element). Promotes cell cycle progression and enhances cell proliferation as well. May have a positive role in tumor cell growth by down-regulating CDKN1A. Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility (PubMed:26151332). Within the PRC1-like complex, regulates RNF2 ubiquitin ligase activity (PubMed:26151332). Regulates the expression of DPPA4 and NANOG in the NT2 embryonic carcinoma cells (PubMed:26687479). {ECO:0000269|PubMed:15620699, ECO:0000269|PubMed:16943429, ECO:0000269|PubMed:17088287, ECO:0000269|PubMed:26151332, ECO:0000269|PubMed:26687479}. |
Q9BSW2 | CRACR2A | S263 | ochoa | EF-hand calcium-binding domain-containing protein 4B (Calcium release-activated calcium channel regulator 2A) (CRAC channel regulator 2A) (Calcium release-activated channel regulator 2A) (Ras-related protein Rab-46) (EC 3.6.5.2) | [Isoform 1]: Ca(2+)-binding protein that plays a key role in store-operated Ca(2+) entry (SOCE) in T-cells by regulating CRAC channel activation. Acts as a cytoplasmic calcium-sensor that facilitates the clustering of ORAI1 and STIM1 at the junctional regions between the plasma membrane and the endoplasmic reticulum upon low Ca(2+) concentration. It thereby regulates CRAC channel activation, including translocation and clustering of ORAI1 and STIM1. Upon increase of cytoplasmic Ca(2+) resulting from opening of CRAC channels, dissociates from ORAI1 and STIM1, thereby destabilizing the ORAI1-STIM1 complex. {ECO:0000269|PubMed:20418871, ECO:0000269|PubMed:27016526}.; FUNCTION: [Isoform 2]: Rab GTPase that mediates the trafficking of Weibel-Palade bodies (WPBs) to microtubule organizing center (MTOC) in endothelial cells in response to acute inflammatory stimuli (PubMed:31092558). During histamine (but not thrombin) stimulation of endothelial cells, the dynein-bound form induces retrograde transport of a subset of WPBs along microtubules to the MTOC in a Ca(2+)-independent manner and its GTPase activity is essential for this function (PubMed:31092558). Ca(2+)-regulated dynein adapter protein that activates dynein-mediated transport and dynein-dynactin motility on microtubules and regulates endosomal trafficking of CD47 (PubMed:30814157). Acts as an intracellular signaling module bridging two important T-cell receptor (TCR) signaling pathways, Ca(2+)-NFAT and JNK, to affect T-cell activation (PubMed:27016526). In resting T-cells, is predominantly localized near TGN network in a GTP-bound form, upon TCR stimulation, localizes at the immunological synapse via interaction with VAV1 to activate downstream Ca(2+)-NFAT and JNK signaling pathways (PubMed:27016526). Plays a role in T-helper 1 (Th1) cell differentiation and T-helper 17 (Th17) cell effector function (PubMed:29987160). Plays a role in store-operated Ca(2+) entry (SOCE) in T-cells by regulating CRAC channel activation (PubMed:27016526). {ECO:0000269|PubMed:27016526, ECO:0000269|PubMed:29987160, ECO:0000269|PubMed:30814157, ECO:0000269|PubMed:31092558}. |
Q9BV29 | CCDC32 | S131 | ochoa | Coiled-coil domain-containing protein 32 | Regulates clathrin-mediated endocytsois of cargos such as transferrin probably through the association and modulation of adaptor protein complex 2 (AP-2) (PubMed:33859415). Has a role in ciliogenesis (By similarity). Required for proper cephalic and left/right axis development (PubMed:32307552). {ECO:0000250|UniProtKB:X1WGV5, ECO:0000269|PubMed:32307552, ECO:0000269|PubMed:33859415}. |
Q9BV35 | SLC25A23 | S409 | ochoa | Mitochondrial adenyl nucleotide antiporter SLC25A23 (Mitochondrial ATP-Mg/Pi carrier protein 2) (Short calcium-binding mitochondrial carrier protein 3) (SCaMC-3) (Solute carrier family 25 member 23) | Electroneutral antiporter that mediates the transport of adenine nucleotides through the inner mitochondrial membrane. Originally identified as an ATP-magnesium/inorganic phosphate antiporter, it also acts as a broad specificity adenyl nucleotide antiporter. By regulating the mitochondrial matrix adenine nucleotide pool could adapt to changing cellular energetic demands and indirectly regulate adenine nucleotide-dependent metabolic pathways (PubMed:15123600). Also acts as a regulator of mitochondrial calcium uptake and can probably transport trace amounts of other divalent metal cations in complex with ATP (PubMed:24430870, PubMed:28695448). In vitro, a low activity is also observed with guanyl and pyrimidine nucleotides (PubMed:15123600). {ECO:0000269|PubMed:15123600, ECO:0000269|PubMed:24430870, ECO:0000269|PubMed:28695448}. |
Q9BW62 | KATNAL1 | S440 | ochoa | Katanin p60 ATPase-containing subunit A-like 1 (Katanin p60 subunit A-like 1) (EC 5.6.1.1) (p60 katanin-like 1) | Regulates microtubule dynamics in Sertoli cells, a process that is essential for spermiogenesis and male fertility. Severs microtubules in an ATP-dependent manner, promoting rapid reorganization of cellular microtubule arrays (By similarity). Has microtubule-severing activity in vitro (PubMed:26929214). {ECO:0000250|UniProtKB:Q8K0T4, ECO:0000269|PubMed:26929214}. |
Q9BWE0 | REPIN1 | S24 | ochoa | DNA-binding protein REPIN1 (60 kDa origin-specific DNA-binding protein) (60 kDa replication initiation region protein) (ATT-binding protein) (DHFR oribeta-binding protein RIP60) (Zinc finger protein 464) | Sequence-specific double-stranded DNA-binding protein (PubMed:10606657, PubMed:11328883, PubMed:2174103, PubMed:2247056, PubMed:8355269). Binds ATT-rich and T-rich DNA sequences and facilitates DNA bending (PubMed:10606657, PubMed:11328883, PubMed:2174103, PubMed:2247056, PubMed:8355269). May regulate the expression of genes involved in cellular fatty acid import, including SCARB1/CD36, and genes involved in lipid droplet formation (By similarity). May regulate the expression of LCN2, and thereby influence iron metabolism and apoptosis-related pathways (By similarity). May regulate the expression of genes involved in glucose transport (By similarity). {ECO:0000250|UniProtKB:Q5U4E2, ECO:0000269|PubMed:10606657, ECO:0000269|PubMed:11328883, ECO:0000269|PubMed:2174103, ECO:0000269|PubMed:2247056, ECO:0000269|PubMed:8355269}. |
Q9BXW9 | FANCD2 | S717 | ochoa|psp | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BXW9 | FANCD2 | S1404 | psp | Fanconi anemia group D2 protein (Protein FACD2) | Required for maintenance of chromosomal stability (PubMed:11239453, PubMed:14517836). Promotes accurate and efficient pairing of homologs during meiosis (PubMed:14517836). Involved in the repair of DNA double-strand breaks, both by homologous recombination and single-strand annealing (PubMed:15671039, PubMed:15650050, PubMed:30335751, PubMed:36385258). The FANCI-FANCD2 complex binds and scans double-stranded DNA (dsDNA) for DNA damage; this complex stalls at DNA junctions between double-stranded DNA and single-stranded DNA (By similarity). May participate in S phase and G2 phase checkpoint activation upon DNA damage (PubMed:15377654). Plays a role in preventing breakage and loss of missegregating chromatin at the end of cell division, particularly after replication stress (PubMed:15454491, PubMed:15661754). Required for the targeting, or stabilization, of BLM to non-centromeric abnormal structures induced by replicative stress (PubMed:15661754, PubMed:19465921). Promotes BRCA2/FANCD1 loading onto damaged chromatin (PubMed:11239454, PubMed:12239151, PubMed:12086603, PubMed:15115758, PubMed:15199141, PubMed:15671039, PubMed:18212739). May also be involved in B-cell immunoglobulin isotype switching. {ECO:0000250|UniProtKB:Q68Y81, ECO:0000269|PubMed:11239453, ECO:0000269|PubMed:11239454, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12239151, ECO:0000269|PubMed:14517836, ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15314022, ECO:0000269|PubMed:15377654, ECO:0000269|PubMed:15454491, ECO:0000269|PubMed:15650050, ECO:0000269|PubMed:15661754, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:19465921, ECO:0000269|PubMed:30335751, ECO:0000269|PubMed:36385258}. |
Q9BY42 | RTF2 | S235 | ochoa | Replication termination factor 2 (RTF2) (Replication termination factor 2 domain-containing protein 1) | Replication termination factor which is a component of the elongating replisome (Probable). Required for ATR pathway signaling upon DNA damage and has a positive activity during DNA replication. Might function to facilitate fork pausing at replication fork barriers like the rDNA. May be globally required to stimulate ATR signaling after the fork stalls or encounters a lesion (Probable). Interacts with nascent DNA (PubMed:29290612). {ECO:0000269|PubMed:29290612, ECO:0000305|PubMed:29290612}. |
Q9BYV9 | BACH2 | S719 | ochoa | Transcription regulator protein BACH2 (BTB and CNC homolog 2) | Transcriptional regulator that acts as a repressor or activator (By similarity). Binds to Maf recognition elements (MARE) (By similarity). Plays an important role in coordinating transcription activation and repression by MAFK (By similarity). Induces apoptosis in response to oxidative stress through repression of the antiapoptotic factor HMOX1 (PubMed:17018862). Positively regulates the nuclear import of actin (By similarity). Is a key regulator of adaptive immunity, crucial for the maintenance of regulatory T-cell function and B-cell maturation (PubMed:28530713). {ECO:0000250|UniProtKB:P97303, ECO:0000269|PubMed:17018862, ECO:0000269|PubMed:28530713}. |
Q9BYW2 | SETD2 | S1263 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZQ8 | NIBAN1 | S615 | ochoa | Protein Niban 1 (Cell growth-inhibiting gene 39 protein) (Protein FAM129A) | Regulates phosphorylation of a number of proteins involved in translation regulation including EIF2A, EIF4EBP1 and RPS6KB1. May be involved in the endoplasmic reticulum stress response (By similarity). {ECO:0000250}. |
Q9C0D0 | PHACTR1 | S177 | ochoa | Phosphatase and actin regulator 1 | Binds actin monomers (G actin) and plays a role in multiple processes including the regulation of actin cytoskeleton dynamics, actin stress fibers formation, cell motility and survival, formation of tubules by endothelial cells, and regulation of PPP1CA activity (PubMed:21798305, PubMed:21939755). Involved in the regulation of cortical neuron migration and dendrite arborization (By similarity). {ECO:0000250|UniProtKB:Q2M3X8, ECO:0000269|PubMed:21798305, ECO:0000269|PubMed:21939755}. |
Q9GZR1 | SENP6 | S919 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9GZV5 | WWTR1 | S307 | ochoa | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9H0A0 | NAT10 | S674 | ochoa | RNA cytidine acetyltransferase (EC 2.3.1.-) (18S rRNA cytosine acetyltransferase) (N-acetyltransferase 10) (N-acetyltransferase-like protein) (hALP) | RNA cytidine acetyltransferase that catalyzes the formation of N(4)-acetylcytidine (ac4C) modification on mRNAs, 18S rRNA and tRNAs (PubMed:25411247, PubMed:25653167, PubMed:30449621, PubMed:35679869). Catalyzes ac4C modification of a broad range of mRNAs, enhancing mRNA stability and translation (PubMed:30449621, PubMed:35679869). mRNA ac4C modification is frequently present within wobble cytidine sites and promotes translation efficiency (PubMed:30449621). Mediates the formation of ac4C at position 1842 in 18S rRNA (PubMed:25411247). May also catalyze the formation of ac4C at position 1337 in 18S rRNA (By similarity). Required for early nucleolar cleavages of precursor rRNA at sites A0, A1 and A2 during 18S rRNA synthesis (PubMed:25411247, PubMed:25653167). Catalyzes the formation of ac4C in serine and leucine tRNAs (By similarity). Requires the tRNA-binding adapter protein THUMPD1 for full tRNA acetyltransferase activity but not for 18S rRNA acetylation (PubMed:25653167). In addition to RNA acetyltransferase activity, also able to acetylate lysine residues of proteins, such as histones, microtubules, p53/TP53 and MDM2, in vitro (PubMed:14592445, PubMed:17631499, PubMed:19303003, PubMed:26882543, PubMed:27993683, PubMed:30165671). The relevance of the protein lysine acetyltransferase activity is however unsure in vivo (PubMed:30449621). Activates telomerase activity by stimulating the transcription of TERT, and may also regulate telomerase function by affecting the balance of telomerase subunit assembly, disassembly, and localization (PubMed:14592445, PubMed:18082603). Involved in the regulation of centrosome duplication by acetylating CENATAC during mitosis, promoting SASS6 proteasome degradation (PubMed:31722219). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P53914, ECO:0000269|PubMed:14592445, ECO:0000269|PubMed:17631499, ECO:0000269|PubMed:18082603, ECO:0000269|PubMed:19303003, ECO:0000269|PubMed:25411247, ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:26882543, ECO:0000269|PubMed:27993683, ECO:0000269|PubMed:30165671, ECO:0000269|PubMed:30449621, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:34516797, ECO:0000269|PubMed:35679869}. |
Q9H1B7 | IRF2BPL | S553 | ochoa | Probable E3 ubiquitin-protein ligase IRF2BPL (EC 2.3.2.27) (Enhanced at puberty protein 1) (Interferon regulatory factor 2-binding protein-like) | Probable E3 ubiquitin protein ligase involved in the proteasome-mediated ubiquitin-dependent degradation of target proteins (PubMed:29374064). Through the degradation of CTNNB1, functions downstream of FOXF2 to negatively regulate the Wnt signaling pathway (PubMed:29374064). Probably plays a role in the development of the central nervous system and in neuronal maintenance (Probable). Also acts as a transcriptional regulator of genes controlling female reproductive function. May play a role in gene transcription by transactivating GNRH1 promoter and repressing PENK promoter (By similarity). {ECO:0000250|UniProtKB:Q5EIC4, ECO:0000269|PubMed:29374064, ECO:0000305|PubMed:17334524, ECO:0000305|PubMed:29374064, ECO:0000305|PubMed:30057031}. |
Q9H2D6 | TRIOBP | S1983 | ochoa | TRIO and F-actin-binding protein (Protein Tara) (TRF1-associated protein of 68 kDa) (Trio-associated repeat on actin) | [Isoform 1]: Regulates actin cytoskeletal organization, cell spreading and cell contraction by directly binding and stabilizing filamentous F-actin and prevents its depolymerization (PubMed:18194665, PubMed:28438837). May also serve as a linker protein to recruit proteins required for F-actin formation and turnover (PubMed:18194665). Essential for correct mitotic progression (PubMed:22820163, PubMed:24692559). {ECO:0000269|PubMed:18194665, ECO:0000269|PubMed:22820163, ECO:0000269|PubMed:24692559, ECO:0000269|PubMed:28438837}.; FUNCTION: [Isoform 5]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}.; FUNCTION: [Isoform 4]: Plays a pivotal role in the formation of stereocilia rootlets. {ECO:0000250|UniProtKB:Q99KW3}. |
Q9H2G9 | BLZF1 | S32 | ochoa | Golgin-45 (Basic leucine zipper nuclear factor 1) (JEM-1) (p45 basic leucine-zipper nuclear factor) | Required for normal Golgi structure and for protein transport from the endoplasmic reticulum (ER) through the Golgi apparatus to the cell surface. {ECO:0000269|PubMed:11739401}. |
Q9H2J7 | SLC6A15 | S25 | ochoa | Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) | Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}. |
Q9H3D4 | TP63 | S43 | psp | Tumor protein 63 (p63) (Chronic ulcerative stomatitis protein) (CUSP) (Keratinocyte transcription factor KET) (Transformation-related protein 63) (TP63) (Tumor protein p73-like) (p73L) (p40) (p51) | Acts as a sequence specific DNA binding transcriptional activator or repressor. The isoforms contain a varying set of transactivation and auto-regulating transactivation inhibiting domains thus showing an isoform specific activity. Isoform 2 activates RIPK4 transcription. May be required in conjunction with TP73/p73 for initiation of p53/TP53 dependent apoptosis in response to genotoxic insults and the presence of activated oncogenes. Involved in Notch signaling by probably inducing JAG1 and JAG2. Plays a role in the regulation of epithelial morphogenesis. The ratio of DeltaN-type and TA*-type isoforms may govern the maintenance of epithelial stem cell compartments and regulate the initiation of epithelial stratification from the undifferentiated embryonal ectoderm. Required for limb formation from the apical ectodermal ridge. Activates transcription of the p21 promoter. {ECO:0000269|PubMed:11641404, ECO:0000269|PubMed:12374749, ECO:0000269|PubMed:12446779, ECO:0000269|PubMed:12446784, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:22197488, ECO:0000269|PubMed:9774969}. |
Q9H4L5 | OSBPL3 | S34 | ochoa | Oxysterol-binding protein-related protein 3 (ORP-3) (OSBP-related protein 3) | Phosphoinositide-binding protein which associates with both cell and endoplasmic reticulum (ER) membranes (PubMed:16143324). Can bind to the ER membrane protein VAPA and recruit VAPA to plasma membrane sites, thus linking these intracellular compartments (PubMed:25447204). The ORP3-VAPA complex stimulates RRAS signaling which in turn attenuates integrin beta-1 (ITGB1) activation at the cell surface (PubMed:18270267, PubMed:25447204). With VAPA, may regulate ER morphology (PubMed:16143324). Has a role in regulation of the actin cytoskeleton, cell polarity and cell adhesion (PubMed:18270267). Binds to phosphoinositides with preference for PI(3,4)P2 and PI(3,4,5)P3 (PubMed:16143324). Also binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000269|PubMed:16143324, ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:18270267, ECO:0000269|PubMed:25447204}. |
Q9H6R4 | NOL6 | S811 | ochoa | Nucleolar protein 6 (Nucleolar RNA-associated protein) (Nrap) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. {ECO:0000269|PubMed:11895476, ECO:0000269|PubMed:34516797}. |
Q9H788 | SH2D4A | S118 | ochoa | SH2 domain-containing protein 4A (Protein SH(2)A) (Protein phosphatase 1 regulatory subunit 38) | Inhibits estrogen-induced cell proliferation by competing with PLCG for binding to ESR1, blocking the effect of estrogen on PLCG and repressing estrogen-induced proliferation. May play a role in T-cell development and function. {ECO:0000269|PubMed:18641339, ECO:0000269|PubMed:19712589}. |
Q9H7D7 | WDR26 | S123 | ochoa | WD repeat-containing protein 26 (CUL4- and DDB1-associated WDR protein 2) (Myocardial ischemic preconditioning up-regulated protein 2) | G-beta-like protein involved in cell signal transduction (PubMed:15378603, PubMed:19446606, PubMed:22065575, PubMed:23625927, PubMed:26895380, PubMed:27098453). Acts as a negative regulator in MAPK signaling pathway (PubMed:15378603). Functions as a scaffolding protein to promote G beta:gamma-mediated PLCB2 plasma membrane translocation and subsequent activation in leukocytes (PubMed:22065575, PubMed:23625927). Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1 (PubMed:29911972). Acts as a negative regulator of the canonical Wnt signaling pathway through preventing ubiquitination of beta-catenin CTNNB1 by the beta-catenin destruction complex, thus negatively regulating CTNNB1 degradation (PubMed:27098453). Serves as a scaffold to coordinate PI3K/AKT pathway-driven cell growth and migration (PubMed:26895380). Protects cells from oxidative stress-induced apoptosis via the down-regulation of AP-1 transcriptional activity as well as by inhibiting cytochrome c release from mitochondria (PubMed:19446606). Also protects cells by promoting hypoxia-mediated autophagy and mitophagy (By similarity). {ECO:0000250|UniProtKB:F1LTR1, ECO:0000269|PubMed:15378603, ECO:0000269|PubMed:19446606, ECO:0000269|PubMed:23625927, ECO:0000269|PubMed:26895380, ECO:0000269|PubMed:27098453, ECO:0000269|PubMed:29911972}. |
Q9H9Q4 | NHEJ1 | S132 | psp | Non-homologous end-joining factor 1 (Protein cernunnos) (XRCC4-like factor) | DNA repair protein involved in DNA non-homologous end joining (NHEJ); it is required for double-strand break (DSB) repair and V(D)J recombination and is also involved in telomere maintenance (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781, PubMed:17717001, PubMed:18158905, PubMed:18644470, PubMed:20558749, PubMed:26100018, PubMed:28369633). Plays a key role in NHEJ by promoting the ligation of various mismatched and non-cohesive ends (PubMed:17470781, PubMed:17717001, PubMed:19056826). Together with PAXX, collaborates with DNA polymerase lambda (POLL) to promote joining of non-cohesive DNA ends (PubMed:25670504, PubMed:30250067). May act in concert with XRCC5-XRCC6 (Ku) to stimulate XRCC4-mediated joining of blunt ends and several types of mismatched ends that are non-complementary or partially complementary (PubMed:16439204, PubMed:16439205, PubMed:17317666, PubMed:17470781). In some studies, has been shown to associate with XRCC4 to form alternating helical filaments that bridge DNA and act like a bandage, holding together the broken DNA until it is repaired (PubMed:21768349, PubMed:21775435, PubMed:22228831, PubMed:22287571, PubMed:26100018, PubMed:27437582, PubMed:28500754). Alternatively, it has also been shown that rather than forming filaments, a single NHEJ1 dimer interacts through both head domains with XRCC4 to promote the close alignment of DNA ends (By similarity). The XRCC4-NHEJ1/XLF subcomplex binds to the DNA fragments of a DSB in a highly diffusive manner and robustly bridges two independent DNA molecules, holding the broken DNA fragments in close proximity to one other (PubMed:27437582, PubMed:28500754). The mobility of the bridges ensures that the ends remain accessible for further processing by other repair factors (PubMed:27437582). Binds DNA in a length-dependent manner (PubMed:17317666, PubMed:18158905). {ECO:0000250|UniProtKB:A0A1L8ENT6, ECO:0000269|PubMed:16439204, ECO:0000269|PubMed:16439205, ECO:0000269|PubMed:17317666, ECO:0000269|PubMed:17470781, ECO:0000269|PubMed:17717001, ECO:0000269|PubMed:18158905, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:19056826, ECO:0000269|PubMed:20558749, ECO:0000269|PubMed:21768349, ECO:0000269|PubMed:21775435, ECO:0000269|PubMed:22228831, ECO:0000269|PubMed:22287571, ECO:0000269|PubMed:25670504, ECO:0000269|PubMed:26100018, ECO:0000269|PubMed:27437582, ECO:0000269|PubMed:28369633, ECO:0000269|PubMed:28500754, ECO:0000269|PubMed:30250067}. |
Q9HAF1 | MEAF6 | S136 | ochoa | Chromatin modification-related protein MEAF6 (MYST/Esa1-associated factor 6) (Esa1-associated factor 6 homolog) (Protein EAF6 homolog) (hEAF6) (Sarcoma antigen NY-SAR-91) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histone H4 and H2A (PubMed:14966270). This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription (PubMed:14966270). Component of HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), and have reduced activity toward histone H4 (PubMed:16387653, PubMed:24065767). Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity (PubMed:18794358). {ECO:0000269|PubMed:14966270, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:18794358, ECO:0000269|PubMed:24065767}. |
Q9HAW4 | CLSPN | S34 | psp | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HB58 | SP110 | S348 | ochoa | Sp110 nuclear body protein (Interferon-induced protein 41/75) (Speckled 110 kDa) (Transcriptional coactivator Sp110) | Transcription factor. May be a nuclear hormone receptor coactivator. Enhances transcription of genes with retinoic acid response elements (RARE). |
Q9HBH0 | RHOF | S64 | ochoa | Rho-related GTP-binding protein RhoF (Rho family GTPase Rif) (Rho in filopodia) | Plasma membrane-associated small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. Causes the formation of thin, actin-rich surface projections called filopodia. Functions cooperatively with CDC42 and Rac to generate additional structures, increasing the diversity of actin-based morphology. |
Q9HC35 | EML4 | S184 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9HCH5 | SYTL2 | S535 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9HCS5 | EPB41L4A | S302 | ochoa | Band 4.1-like protein 4A (Erythrocyte membrane protein band 4.1-like 4A) (Protein NBL4) | None |
Q9NP77 | SSU72 | S19 | psp | RNA polymerase II subunit A C-terminal domain phosphatase SSU72 (CTD phosphatase SSU72) (EC 3.1.3.16) | Protein phosphatase that catalyzes the dephosphorylation of the C-terminal domain of RNA polymerase II. Plays a role in RNA processing and termination. Plays a role in pre-mRNA polyadenylation via its interaction with SYMPK. {ECO:0000269|PubMed:15659578, ECO:0000269|PubMed:20861839, ECO:0000269|PubMed:23070812}. |
Q9NRY4 | ARHGAP35 | S985 | ochoa | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NSI6 | BRWD1 | S1611 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSI8 | SAMSN1 | S41 | ochoa | SAM domain-containing protein SAMSN-1 (Hematopoietic adaptor containing SH3 and SAM domains 1) (Nash1) (SAM domain, SH3 domain and nuclear localization signals protein 1) (SH3-SAM adaptor protein) | Negative regulator of B-cell activation. Down-regulates cell proliferation (in vitro). Promotes RAC1-dependent membrane ruffle formation and reorganization of the actin cytoskeleton. Regulates cell spreading and cell polarization. Stimulates HDAC1 activity. Regulates LYN activity by modulating its tyrosine phosphorylation (By similarity). {ECO:0000250, ECO:0000269|PubMed:15381729}. |
Q9NV96 | TMEM30A | S154 | ochoa | Cell cycle control protein 50A (P4-ATPase flippase complex beta subunit TMEM30A) (Transmembrane protein 30A) | Accessory component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules. The beta subunit may assist in binding of the phospholipid substrate. Required for the proper folding, assembly and ER to Golgi exit of the ATP8A2:TMEM30A flippase complex. ATP8A2:TMEM30A may be involved in regulation of neurite outgrowth, and, reconstituted to liposomes, predomiminantly transports phosphatidylserine (PS) and to a lesser extent phosphatidylethanolamine (PE). The ATP8A1:TMEM30A flippase complex seems to play a role in regulation of cell migration probably involving flippase-mediated translocation of phosphatidylethanolamine (PE) at the plasma membrane. Required for the formation of the ATP8A2, ATP8B1 and ATP8B2 P-type ATPAse intermediate phosphoenzymes. Involved in uptake of platelet-activating factor (PAF), synthetic drug alkylphospholipid edelfosine, and, probably in association with ATP8B1, of perifosine. Also mediates the export of alpha subunits ATP8A1, ATP8B1, ATP8B2, ATP8B4, ATP10A, ATP10B, ATP10D, ATP11A, ATP11B and ATP11C from the ER to other membrane localizations. {ECO:0000269|PubMed:20510206, ECO:0000269|PubMed:20947505, ECO:0000269|PubMed:20961850, ECO:0000269|PubMed:21289302, ECO:0000269|PubMed:25947375, ECO:0000269|PubMed:29799007, ECO:0000269|PubMed:32493773}. |
Q9NVI7 | ATAD3A | S168 | ochoa | ATPase family AAA domain-containing protein 3A (EC 3.6.1.-) | Essential for mitochondrial network organization, mitochondrial metabolism and cell growth at organism and cellular level (PubMed:17210950, PubMed:20154147, PubMed:22453275, PubMed:31522117, PubMed:37832546, PubMed:39116259). May play an important role in mitochondrial protein synthesis (PubMed:22453275). May also participate in mitochondrial DNA replication (PubMed:17210950). May bind to mitochondrial DNA D-loops and contribute to nucleoid stability (PubMed:17210950). Required for enhanced channeling of cholesterol for hormone-dependent steroidogenesis (PubMed:22453275). Involved in mitochondrial-mediated antiviral innate immunity (PubMed:31522117). Required to protect mitochondria from the PERK-mediated unfolded protein response: specifically inhibits the activity of EIF2AK3/PERK at mitochondria-endoplasmic reticulum contact sites, thereby providing a safe haven for mitochondrial protein translation during endoplasmic reticulum stress (PubMed:39116259). Ability to inhibit EIF2AK3/PERK is independent of its ATPase activity (PubMed:39116259). Also involved in the mitochondrial DNA damage response by promoting signaling between damaged genomes and the mitochondrial membrane, leading to activation of the integrated stress response (ISR) (PubMed:37832546). {ECO:0000269|PubMed:17210950, ECO:0000269|PubMed:20154147, ECO:0000269|PubMed:22453275, ECO:0000269|PubMed:31522117, ECO:0000269|PubMed:37832546, ECO:0000269|PubMed:39116259}. |
Q9NVP1 | DDX18 | S74 | ochoa | ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) | ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}. |
Q9NWA0 | MED9 | S80 | ochoa | Mediator of RNA polymerase II transcription subunit 9 (Mediator complex subunit 9) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors. |
Q9NWQ8 | PAG1 | S150 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NXL9 | MCM9 | S934 | ochoa | DNA helicase MCM9 (hMCM9) (EC 3.6.4.12) (Mini-chromosome maintenance deficient domain-containing protein 1) (Minichromosome maintenance 9) | Component of the MCM8-MCM9 complex, a complex involved in the repair of double-stranded DNA breaks (DBSs) and DNA interstrand cross-links (ICLs) by homologous recombination (HR) (PubMed:23401855). Required for DNA resection by the MRE11-RAD50-NBN/NBS1 (MRN) complex by recruiting the MRN complex to the repair site and by promoting the complex nuclease activity (PubMed:26215093). Probably by regulating the localization of the MRN complex, indirectly regulates the recruitment of downstream effector RAD51 to DNA damage sites including DBSs and ICLs (PubMed:23401855). Acts as a helicase in DNA mismatch repair (MMR) following DNA replication errors to unwind the mismatch containing DNA strand (PubMed:26300262). In addition, recruits MLH1, a component of the MMR complex, to chromatin (PubMed:26300262). The MCM8-MCM9 complex is dispensable for DNA replication and S phase progression (PubMed:23401855). Probably by regulating HR, plays a key role during gametogenesis (By similarity). {ECO:0000250|UniProtKB:Q2KHI9, ECO:0000269|PubMed:23401855, ECO:0000269|PubMed:26215093, ECO:0000269|PubMed:26300262}. |
Q9NY74 | ETAA1 | S529 | ochoa | Ewing's tumor-associated antigen 1 (Ewing's tumor-associated antigen 16) | Replication stress response protein that accumulates at DNA damage sites and promotes replication fork progression and integrity (PubMed:27601467, PubMed:27723717, PubMed:27723720). Recruited to stalled replication forks via interaction with the RPA complex and directly stimulates ATR kinase activity independently of TOPBP1 (PubMed:27723717, PubMed:27723720, PubMed:30139873). Probably only regulates a subset of ATR targets (PubMed:27723717, PubMed:27723720). {ECO:0000269|PubMed:27601467, ECO:0000269|PubMed:27723717, ECO:0000269|PubMed:27723720, ECO:0000269|PubMed:30139873}. |
Q9NYI0 | PSD3 | S387 | ochoa | PH and SEC7 domain-containing protein 3 (Epididymis tissue protein Li 20mP) (Exchange factor for ADP-ribosylation factor guanine nucleotide factor 6 D) (Exchange factor for ARF6 D) (Hepatocellular carcinoma-associated antigen 67) (Pleckstrin homology and SEC7 domain-containing protein 3) | Guanine nucleotide exchange factor for ARF6. {ECO:0000250}. |
Q9NZ63 | C9orf78 | S24 | ochoa | Splicing factor C9orf78 (Hepatocellular carcinoma-associated antigen 59) | Plays a role in pre-mRNA splicing by promoting usage of the upstream 3'-splice site at alternative NAGNAG splice sites; these are sites featuring alternative acceptor motifs separated by only a few nucleotides (PubMed:35241646). May also modulate exon inclusion events (PubMed:35241646). Plays a role in spliceosomal remodeling by displacing WBP4 from SNRNP200 and may act to inhibit SNRNP200 helicase activity (PubMed:35241646). Binds U5 snRNA (PubMed:35241646). Required for proper chromosome segregation (PubMed:35167828). Not required for splicing of shelterin components (PubMed:35167828). {ECO:0000269|PubMed:35167828, ECO:0000269|PubMed:35241646}. |
Q9NZI6 | TFCP2L1 | S37 | ochoa | Transcription factor CP2-like protein 1 (CP2-related transcriptional repressor 1) (CRTR-1) (Transcription factor LBP-9) | Transcription factor that facilitates establishment and maintenance of pluripotency in embryonic stem cells (ESCs) (PubMed:25215486, PubMed:26906118). With KLF2, acts as the major effector of self-renewal that mediates induction of pluripotency downstream of LIF/STAT3 and Wnt/beta-catenin signaling (By similarity). Required for normal duct development in the salivary gland and kidney (By similarity). Coordinates the development of the kidney collecting ducts intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively (By similarity). Regulates the expression of IC genes including subunits B1 and D2 of the V-ATPase complex, OXGR1, CA12, SLC4A1, AQP6 and IC-specific transcription factor FOXI1 (By similarity). Also regulates the expression of JAG1 and subsequent notch signaling in the collecting duct (By similarity). JAG1 initiates notch signaling in PCs but inhibits notch signaling in ICs (By similarity). Acts as a transcriptional suppressor that may suppress UBP1-mediated transcriptional activation (By similarity). Modulates the placental expression of CYP11A1 (PubMed:10644752). {ECO:0000250|UniProtKB:Q3UNW5, ECO:0000269|PubMed:10644752, ECO:0000269|PubMed:25215486, ECO:0000269|PubMed:26906118}. |
Q9P0B6 | CCDC167 | S42 | ochoa | Coiled-coil domain-containing protein 167 | None |
Q9P244 | LRFN1 | S632 | ochoa | Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) | Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}. |
Q9P266 | JCAD | S185 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P266 | JCAD | S1281 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P2Q2 | FRMD4A | S711 | ochoa | FERM domain-containing protein 4A | Scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex (By similarity). Plays a redundant role with FRMD4B in epithelial polarization (By similarity). May regulate MAPT secretion by activating ARF6-signaling (PubMed:27044754). {ECO:0000250|UniProtKB:Q8BIE6, ECO:0000269|PubMed:27044754}. |
Q9P2Y5 | UVRAG | S582 | psp | UV radiation resistance-associated gene protein (p63) | Versatile protein that is involved in regulation of different cellular pathways implicated in membrane trafficking. Involved in regulation of the COPI-dependent retrograde transport from Golgi and the endoplasmic reticulum by associating with the NRZ complex; the function is dependent on its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) (PubMed:16799551, PubMed:18552835, PubMed:20643123, PubMed:24056303, PubMed:28306502). During autophagy acts as a regulatory subunit of the alternative PI3K complex II (PI3KC3-C2) that mediates formation of phosphatidylinositol 3-phosphate and is believed to be involved in maturation of autophagosomes and endocytosis. Activates lipid kinase activity of PIK3C3 (PubMed:16799551, PubMed:20643123, PubMed:24056303, PubMed:28306502). Involved in the regulation of degradative endocytic trafficking and cytokinesis, and in regulation of ATG9A transport from the Golgi to the autophagosome; the functions seems to implicate its association with PI3KC3-C2 (PubMed:16799551, PubMed:20643123, PubMed:24056303). Involved in maturation of autophagosomes and degradative endocytic trafficking independently of BECN1 but depending on its association with a class C Vps complex (possibly the HOPS complex); the association is also proposed to promote autophagosome recruitment and activation of Rab7 and endosome-endosome fusion events (PubMed:18552835, PubMed:28306502). Enhances class C Vps complex (possibly HOPS complex) association with a SNARE complex and promotes fusogenic SNARE complex formation during late endocytic membrane fusion (PubMed:24550300). In case of negative-strand RNA virus infection is required for efficient virus entry, promotes endocytic transport of virions and is implicated in a VAMP8-specific fusogenic SNARE complex assembly (PubMed:24550300). {ECO:0000269|PubMed:18552835, ECO:0000269|PubMed:20643123, ECO:0000269|PubMed:24056303, ECO:0000269|PubMed:28306502, ECO:0000305}.; FUNCTION: Involved in maintaining chromosomal stability. Promotes DNA double-strand break (DSB) repair by association with DNA-dependent protein kinase complex DNA-PK and activating it in non-homologous end joining (NHEJ) (PubMed:22542840). Required for centrosome stability and proper chromosome segregation (PubMed:22542840). {ECO:0000269|PubMed:22542840}. |
Q9UBU7 | DBF4 | S420 | ochoa | Protein DBF4 homolog A (Activator of S phase kinase) (Chiffon homolog A) (DBF4-type zinc finger-containing protein 1) | Regulatory subunit for CDC7 which activates its kinase activity thereby playing a central role in DNA replication and cell proliferation. Required for progression of S phase. The complex CDC7-DBF4A selectively phosphorylates MCM2 subunit at 'Ser-40' and 'Ser-53' and then is involved in regulating the initiation of DNA replication during cell cycle. {ECO:0000269|PubMed:10373557, ECO:0000269|PubMed:10523313, ECO:0000269|PubMed:17062569}. |
Q9UBV2 | SEL1L | S41 | ochoa | Protein sel-1 homolog 1 (Suppressor of lin-12-like protein 1) (Sel-1L) | Plays a role in the endoplasmic reticulum quality control (ERQC) system also called ER-associated degradation (ERAD) involved in ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins (PubMed:16186509, PubMed:29997207, PubMed:37943610, PubMed:37943617). Enhances SYVN1 stability. Plays a role in LPL maturation and secretion. Required for normal differentiation of the pancreas epithelium, and for normal exocrine function and survival of pancreatic cells. May play a role in Notch signaling. {ECO:0000250|UniProtKB:Q9Z2G6, ECO:0000269|PubMed:16186509, ECO:0000269|PubMed:29997207, ECO:0000269|PubMed:37943610, ECO:0000269|PubMed:37943617}. |
Q9UHW9 | SLC12A6 | S1064 | ochoa | Solute carrier family 12 member 6 (Electroneutral potassium-chloride cotransporter 3) (K-Cl cotransporter 3) | [Isoform 1]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:10600773, PubMed:11551954, PubMed:16048901, PubMed:18566107, PubMed:19665974, PubMed:21628467, PubMed:27485015). May contribute to cell volume homeostasis in single cells (PubMed:16048901, PubMed:27485015). {ECO:0000269|PubMed:10600773, ECO:0000269|PubMed:11551954, ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:18566107, ECO:0000269|PubMed:19665974, ECO:0000269|PubMed:21628467, ECO:0000269|PubMed:27485015, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 2]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901, PubMed:33199848, PubMed:34031912). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000269|PubMed:33199848, ECO:0000269|PubMed:34031912, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 3]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 4]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 5]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}.; FUNCTION: [Isoform 6]: Mediates electroneutral potassium-chloride cotransport when activated by cell swelling (PubMed:16048901). May contribute to cell volume homeostasis in single cells (Probable). {ECO:0000269|PubMed:16048901, ECO:0000305|PubMed:16048901}. |
Q9UIF9 | BAZ2A | S1559 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UIG0 | BAZ1B | S507 | ochoa | Tyrosine-protein kinase BAZ1B (EC 2.7.10.2) (Bromodomain adjacent to zinc finger domain protein 1B) (Williams syndrome transcription factor) (Williams-Beuren syndrome chromosomal region 10 protein) (Williams-Beuren syndrome chromosomal region 9 protein) (hWALp2) | Atypical tyrosine-protein kinase that plays a central role in chromatin remodeling and acts as a transcription regulator (PubMed:19092802). Involved in DNA damage response by phosphorylating 'Tyr-142' of histone H2AX (H2AXY142ph) (PubMed:19092802, PubMed:19234442). H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between apoptotic and repair responses to genotoxic stress (PubMed:19092802, PubMed:19234442). Regulatory subunit of the ATP-dependent WICH-1 and WICH-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:11980720, PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The WICH-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the WICH-5 ISWI chromatin remodeling complex (PubMed:28801535). The WICH-5 ISWI chromatin-remodeling complex regulates the transcription of various genes, has a role in RNA polymerase I transcription (By similarity). Within the B-WICH complex has a role in RNA polymerase III transcription (PubMed:16603771). Mediates the recruitment of the WICH-5 ISWI chromatin remodeling complex to replication foci during DNA replication (PubMed:15543136). {ECO:0000250|UniProtKB:Q9Z277, ECO:0000269|PubMed:11980720, ECO:0000269|PubMed:15543136, ECO:0000269|PubMed:16603771, ECO:0000269|PubMed:19092802, ECO:0000269|PubMed:19234442, ECO:0000269|PubMed:28801535}. |
Q9UKE5 | TNIK | S954 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKI9 | POU2F3 | S287 | ochoa | POU domain, class 2, transcription factor 3 (Octamer-binding protein 11) (Oct-11) (Octamer-binding transcription factor 11) (OTF-11) (Transcription factor PLA-1) (Transcription factor Skn-1) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and regulates cell type-specific differentiation pathways. Involved in the regulation of keratinocytes differentiation (PubMed:11329378). The POU2F3-POU2AF2/POU2AF3 complex drives the expression of tuft-cell-specific genes, a rare chemosensory cells that coordinate immune and neural functions within mucosal epithelial tissues (PubMed:35576971). {ECO:0000269|PubMed:11329378, ECO:0000269|PubMed:35576971}. |
Q9UKK3 | PARP4 | S1525 | ochoa | Protein mono-ADP-ribosyltransferase PARP4 (EC 2.4.2.-) (193 kDa vault protein) (ADP-ribosyltransferase diphtheria toxin-like 4) (ARTD4) (PARP-related/IalphaI-related H5/proline-rich) (PH5P) (Poly [ADP-ribose] polymerase 4) (PARP-4) (Vault poly(ADP-ribose) polymerase) (VPARP) | Mono-ADP-ribosyltransferase that mediates mono-ADP-ribosylation of target proteins. {ECO:0000269|PubMed:25043379}. |
Q9UKL0 | RCOR1 | S127 | ochoa | REST corepressor 1 (Protein CoREST) | Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}. |
Q9UKL3 | CASP8AP2 | S1383 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UKX2 | MYH2 | S1290 | ochoa | Myosin-2 (Myosin heavy chain 2) (Myosin heavy chain 2a) (MyHC-2a) (Myosin heavy chain IIa) (MyHC-IIa) (Myosin heavy chain, skeletal muscle, adult 2) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. {ECO:0000250|UniProtKB:P12883}. |
Q9UKY1 | ZHX1 | S686 | ochoa | Zinc fingers and homeoboxes protein 1 | Acts as a transcriptional repressor. Increases DNMT3B-mediated repressive transcriptional activity when DNMT3B is tethered to DNA. May link molecule between DNMT3B and other co-repressor proteins. {ECO:0000269|PubMed:12237128}. |
Q9ULD2 | MTUS1 | S1224 | ochoa | Microtubule-associated tumor suppressor 1 (AT2 receptor-binding protein) (Angiotensin-II type 2 receptor-interacting protein) (Mitochondrial tumor suppressor 1) | Cooperates with AGTR2 to inhibit ERK2 activation and cell proliferation. May be required for AGTR2 cell surface expression. Together with PTPN6, induces UBE2V2 expression upon angiotensin-II stimulation. Isoform 1 inhibits breast cancer cell proliferation, delays the progression of mitosis by prolonging metaphase and reduces tumor growth. {ECO:0000269|PubMed:12692079, ECO:0000269|PubMed:19794912}. |
Q9ULI4 | KIF26A | S1437 | ochoa | Kinesin-like protein KIF26A | Atypical kinesin that plays a key role in enteric neuron development. Acts by repressing a cell growth signaling pathway in the enteric nervous system development, possibly via its interaction with GRB2 that prevents GRB2-binding to SHC, thereby attenating the GDNF-Ret signaling (By similarity). Binds to microtubules but lacks microtubule-based motility due to the absence of ATPase activity (By similarity). Plays a critical role in cerebral cortical development. It probably acts as a microtubule stabilizer that regulates neurite growth and radial migration of cortical excitatory neurons (PubMed:36228617). {ECO:0000250|UniProtKB:Q52KG5, ECO:0000269|PubMed:36228617}. |
Q9ULJ3 | ZBTB21 | S219 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULL1 | PLEKHG1 | S1285 | ochoa | Pleckstrin homology domain-containing family G member 1 | None |
Q9ULU4 | ZMYND8 | S462 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UNS1 | TIMELESS | S823 | ochoa | Protein timeless homolog (hTIM) | Plays an important role in the control of DNA replication, maintenance of replication fork stability, maintenance of genome stability throughout normal DNA replication, DNA repair and in the regulation of the circadian clock (PubMed:17141802, PubMed:17296725, PubMed:23359676, PubMed:23418588, PubMed:26344098, PubMed:31138685, PubMed:32705708, PubMed:35585232, PubMed:9856465). Required to stabilize replication forks during DNA replication by forming a complex with TIPIN: this complex regulates DNA replication processes under both normal and stress conditions, stabilizes replication forks and influences both CHEK1 phosphorylation and the intra-S phase checkpoint in response to genotoxic stress (PubMed:17141802, PubMed:17296725, PubMed:23359676, PubMed:35585232). During DNA replication, inhibits the CMG complex ATPase activity and activates DNA polymerases catalytic activities, coupling DNA unwinding and DNA synthesis (PubMed:23359676). TIMELESS promotes TIPIN nuclear localization (PubMed:17141802, PubMed:17296725). Plays a role in maintaining processive DNA replication past genomic guanine-rich DNA sequences that form G-quadruplex (G4) structures, possibly together with DDX1 (PubMed:32705708). Involved in cell survival after DNA damage or replication stress by promoting DNA repair (PubMed:17141802, PubMed:17296725, PubMed:26344098, PubMed:30356214). In response to double-strand breaks (DSBs), accumulates at DNA damage sites and promotes homologous recombination repair via its interaction with PARP1 (PubMed:26344098, PubMed:30356214, PubMed:31138685). May be specifically required for the ATR-CHEK1 pathway in the replication checkpoint induced by hydroxyurea or ultraviolet light (PubMed:15798197). Involved in the determination of period length and in the DNA damage-dependent phase advancing of the circadian clock (PubMed:23418588, PubMed:31138685). Negatively regulates CLOCK|NPAS2-ARTNL/BMAL1|ARTNL2/BMAL2-induced transactivation of PER1 possibly via translocation of PER1 into the nucleus (PubMed:31138685, PubMed:9856465). May play a role as destabilizer of the PER2-CRY2 complex (PubMed:31138685). May also play an important role in epithelial cell morphogenesis and formation of branching tubules (By similarity). {ECO:0000250|UniProtKB:Q9R1X4, ECO:0000269|PubMed:15798197, ECO:0000269|PubMed:17141802, ECO:0000269|PubMed:17296725, ECO:0000269|PubMed:23359676, ECO:0000269|PubMed:23418588, ECO:0000269|PubMed:26344098, ECO:0000269|PubMed:30356214, ECO:0000269|PubMed:31138685, ECO:0000269|PubMed:32705708, ECO:0000269|PubMed:35585232, ECO:0000269|PubMed:9856465}. |
Q9UPQ0 | LIMCH1 | S718 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UPS6 | SETD1B | S1275 | ochoa | Histone-lysine N-methyltransferase SETD1B (EC 2.1.1.364) (Lysine N-methyltransferase 2G) (SET domain-containing protein 1B) (hSET1B) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:17355966, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17355966, PubMed:25561738). Plays an essential role in regulating the transcriptional programming of multipotent hematopoietic progenitor cells and lymphoid lineage specification during hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8CFT2, ECO:0000269|PubMed:17355966, ECO:0000269|PubMed:25561738}. |
Q9UPZ3 | HPS5 | S463 | ochoa | BLOC-2 complex member HPS5 (Alpha-integrin-binding protein 63) (Hermansky-Pudlak syndrome 5 protein) (Ruby-eye protein 2 homolog) (Ru2) | May regulate the synthesis and function of lysosomes and of highly specialized organelles, such as melanosomes and platelet dense granules. Regulates intracellular vesicular trafficking in fibroblasts. May be involved in the regulation of general functions of integrins. {ECO:0000269|PubMed:15296495, ECO:0000269|PubMed:17301833}. |
Q9UQ35 | SRRM2 | S1348 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ88 | CDK11A | S422 | ochoa | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q9UQC2 | GAB2 | S223 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9UQC2 | GAB2 | S422 | ochoa | GRB2-associated-binding protein 2 (GRB2-associated binder 2) (Growth factor receptor bound protein 2-associated protein 2) (pp100) | Adapter protein which acts downstream of several membrane receptors including cytokine, antigen, hormone, cell matrix and growth factor receptors to regulate multiple signaling pathways. Regulates osteoclast differentiation mediating the TNFRSF11A/RANK signaling. In allergic response, it plays a role in mast cells activation and degranulation through PI-3-kinase regulation. Also involved in the regulation of cell proliferation and hematopoiesis. {ECO:0000269|PubMed:15750601, ECO:0000269|PubMed:19172738}. |
Q9Y297 | BTRC | S129 | ochoa | F-box/WD repeat-containing protein 1A (E3RSIkappaB) (Epididymis tissue protein Li 2a) (F-box and WD repeats protein beta-TrCP) (pIkappaBalpha-E3 receptor subunit) | Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). Recognizes and binds to phosphorylated target proteins (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:10835356, PubMed:11158290, PubMed:11238952, PubMed:11359933, PubMed:11994270, PubMed:12791267, PubMed:12902344, PubMed:14603323, PubMed:14681206, PubMed:14988407, PubMed:15448698, PubMed:15917222, PubMed:16371461, PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:22087322, PubMed:25503564, PubMed:25704143, PubMed:36608670, PubMed:9859996, PubMed:9990852). SCF(BTRC) mediates the ubiquitination of CTNNB1 and participates in Wnt signaling (PubMed:12077367, PubMed:12820959). SCF(BTRC) mediates the ubiquitination of phosphorylated NFKB1, ATF4, CDC25A, DLG1, FBXO5, PER1, SMAD3, SMAD4, SNAI1 and probably NFKB2 (PubMed:10835356, PubMed:11238952, PubMed:14603323, PubMed:14681206). SCF(BTRC) mediates the ubiquitination of NFKBIA, NFKBIB and NFKBIE; the degradation frees the associated NFKB1 to translocate into the nucleus and to activate transcription (PubMed:10066435, PubMed:10497169, PubMed:10644755, PubMed:9859996). Ubiquitination of NFKBIA occurs at 'Lys-21' and 'Lys-22' (PubMed:10066435). The SCF(FBXW11) complex also regulates NF-kappa-B by mediating ubiquitination of phosphorylated NFKB1: specifically ubiquitinates the p105 form of NFKB1, leading to its degradation (PubMed:10835356, PubMed:11158290, PubMed:14673179). SCF(BTRC) mediates the ubiquitination of CEP68; this is required for centriole separation during mitosis (PubMed:25503564, PubMed:25704143). SCF(BTRC) mediates the ubiquitination and subsequent degradation of nuclear NFE2L1 (By similarity). Has an essential role in the control of the clock-dependent transcription via degradation of phosphorylated PER1 and PER2 (PubMed:15917222). May be involved in ubiquitination and subsequent proteasomal degradation through a DBB1-CUL4 E3 ubiquitin-protein ligase. Required for activation of NFKB-mediated transcription by IL1B, MAP3K14, MAP3K1, IKBKB and TNF. Required for proteolytic processing of GLI3 (PubMed:16371461). Mediates ubiquitination of REST, thereby leading to its proteasomal degradation (PubMed:18354482, PubMed:21258371). SCF(BTRC) mediates the ubiquitination and subsequent proteasomal degradation of KLF4; thereby negatively regulating cell pluripotency maintenance and embryogenesis (By similarity). SCF(BTRC) acts as a regulator of mTORC1 signaling pathway by catalyzing ubiquitination and subsequent proteasomal degradation of phosphorylated DEPTOR, TFE3 and MITF (PubMed:22017875, PubMed:22017876, PubMed:22017877, PubMed:33110214, PubMed:36608670). SCF(BTRC) directs 'Lys-48'-linked ubiquitination of UBR2 in the T-cell receptor signaling pathway (PubMed:38225265). {ECO:0000250|UniProtKB:Q3ULA2, ECO:0000269|PubMed:10066435, ECO:0000269|PubMed:10497169, ECO:0000269|PubMed:10644755, ECO:0000269|PubMed:10835356, ECO:0000269|PubMed:11158290, ECO:0000269|PubMed:11238952, ECO:0000269|PubMed:11359933, ECO:0000269|PubMed:11994270, ECO:0000269|PubMed:12077367, ECO:0000269|PubMed:12791267, ECO:0000269|PubMed:12820959, ECO:0000269|PubMed:12902344, ECO:0000269|PubMed:14603323, ECO:0000269|PubMed:14673179, ECO:0000269|PubMed:14681206, ECO:0000269|PubMed:14988407, ECO:0000269|PubMed:15448698, ECO:0000269|PubMed:15917222, ECO:0000269|PubMed:16371461, ECO:0000269|PubMed:18354482, ECO:0000269|PubMed:21258371, ECO:0000269|PubMed:22017875, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:22017877, ECO:0000269|PubMed:22087322, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:25704143, ECO:0000269|PubMed:33110214, ECO:0000269|PubMed:38225265, ECO:0000269|PubMed:9859996, ECO:0000269|PubMed:9990852}. |
Q9Y2D8 | SSX2IP | S322 | ochoa | Afadin- and alpha-actinin-binding protein (ADIP) (Afadin DIL domain-interacting protein) (SSX2-interacting protein) | Belongs to an adhesion system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs). May connect the nectin-afadin and E-cadherin-catenin system through alpha-actinin and may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin (By similarity). Involved in cell movement: localizes at the leading edge of moving cells in response to PDGF and is required for the formation of the leading edge and the promotion of cell movement, possibly via activation of Rac signaling (By similarity). Acts as a centrosome maturation factor, probably by maintaining the integrity of the pericentriolar material and proper microtubule nucleation at mitotic spindle poles. The function seems to implicate at least in part WRAP73; the SSX2IP:WRAP73 complex is proposed to act as regulator of spindle anchoring at the mitotic centrosome (PubMed:23816619, PubMed:26545777). Involved in ciliogenesis (PubMed:24356449). It is required for targeted recruitment of the BBSome, CEP290, RAB8, and SSTR3 to the cilia (PubMed:24356449). {ECO:0000250|UniProtKB:Q8VC66, ECO:0000269|PubMed:23816619, ECO:0000269|PubMed:24356449, ECO:0000305|PubMed:26545777}. |
Q9Y2F5 | ICE1 | S388 | ochoa | Little elongation complex subunit 1 (Interactor of little elongator complex ELL subunit 1) | Component of the little elongation complex (LEC), a complex required to regulate small nuclear RNA (snRNA) gene transcription by RNA polymerase II and III (PubMed:22195968, PubMed:23932780). Specifically acts as a scaffold protein that promotes the LEC complex formation and recruitment and RNA polymerase II occupancy at snRNA genes in subnuclear bodies (PubMed:23932780). {ECO:0000269|PubMed:22195968, ECO:0000269|PubMed:23932780}. |
Q9Y2L6 | FRMD4B | S694 | ochoa | FERM domain-containing protein 4B (GRP1-binding protein GRSP1) | Member of GRP1 signaling complexes that are acutely recruited to plasma membrane ruffles in response to insulin receptor signaling. May function as a scaffolding protein that regulates epithelial cell polarity by connecting ARF6 activation with the PAR3 complex. Plays a redundant role with FRMD4A in epithelial polarization. {ECO:0000250|UniProtKB:Q920B0}. |
Q9Y388 | RBMX2 | S121 | ochoa | RNA-binding motif protein, X-linked 2 | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9Y3E5 | PTRH2 | S62 | ochoa | Peptidyl-tRNA hydrolase 2, mitochondrial (PTH 2) (EC 3.1.1.29) (Bcl-2 inhibitor of transcription 1) | Peptidyl-tRNA hydrolase which releases tRNAs from the ribosome during protein synthesis (PubMed:14660562). Promotes caspase-independent apoptosis by regulating the function of two transcriptional regulators, AES and TLE1. {ECO:0000269|PubMed:14660562, ECO:0000269|PubMed:15006356}. |
Q9Y3I0 | RTCB | S300 | ochoa | RNA-splicing ligase RtcB homolog (EC 6.5.1.8) (3'-phosphate/5'-hydroxy nucleic acid ligase) | Catalytic subunit of the tRNA-splicing ligase complex that acts by directly joining spliced tRNA halves to mature-sized tRNAs by incorporating the precursor-derived splice junction phosphate into the mature tRNA as a canonical 3',5'-phosphodiester. May act as an RNA ligase with broad substrate specificity, and may function toward other RNAs. {ECO:0000255|HAMAP-Rule:MF_03144, ECO:0000269|PubMed:21311021, ECO:0000269|PubMed:24870230}. |
Q9Y487 | ATP6V0A2 | S154 | ochoa | V-type proton ATPase 116 kDa subunit a 2 (V-ATPase 116 kDa subunit a 2) (Lysosomal H(+)-transporting ATPase V0 subunit a 2) (TJ6) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Essential component of the endosomal pH-sensing machinery (PubMed:16415858). May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (PubMed:18157129). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:16415858, ECO:0000269|PubMed:18157129, ECO:0000269|PubMed:28296633}. |
Q9Y487 | ATP6V0A2 | S695 | ochoa | V-type proton ATPase 116 kDa subunit a 2 (V-ATPase 116 kDa subunit a 2) (Lysosomal H(+)-transporting ATPase V0 subunit a 2) (TJ6) (Vacuolar proton translocating ATPase 116 kDa subunit a isoform 2) | Subunit of the V0 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons (By similarity). V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Essential component of the endosomal pH-sensing machinery (PubMed:16415858). May play a role in maintaining the Golgi functions, such as glycosylation maturation, by controlling the Golgi pH (PubMed:18157129). In aerobic conditions, involved in intracellular iron homeostasis, thus triggering the activity of Fe(2+) prolyl hydroxylase (PHD) enzymes, and leading to HIF1A hydroxylation and subsequent proteasomal degradation (PubMed:28296633). {ECO:0000250|UniProtKB:Q29466, ECO:0000250|UniProtKB:Q93050, ECO:0000269|PubMed:16415858, ECO:0000269|PubMed:18157129, ECO:0000269|PubMed:28296633}. |
Q9Y4C1 | KDM3A | S264 | ochoa|psp | Lysine-specific demethylase 3A (EC 1.14.11.65) (JmjC domain-containing histone demethylation protein 2A) (Jumonji domain-containing protein 1A) ([histone H3]-dimethyl-L-lysine(9) demethylase 3A) | Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code. Preferentially demethylates mono- and dimethylated H3 'Lys-9' residue, with a preference for dimethylated residue, while it has weak or no activity on trimethylated H3 'Lys-9'. Demethylation of Lys residue generates formaldehyde and succinate. Involved in hormone-dependent transcriptional activation, by participating in recruitment to androgen-receptor target genes, resulting in H3 'Lys-9' demethylation and transcriptional activation. Involved in spermatogenesis by regulating expression of target genes such as PRM1 and TNP1 which are required for packaging and condensation of sperm chromatin. Involved in obesity resistance through regulation of metabolic genes such as PPARA and UCP1. {ECO:0000269|PubMed:16603237, ECO:0000269|PubMed:28262558}. |
Q9Y4L1 | HYOU1 | S567 | ochoa | Hypoxia up-regulated protein 1 (150 kDa oxygen-regulated protein) (ORP-150) (170 kDa glucose-regulated protein) (GRP-170) (Heat shock protein family H member 4) | Has a pivotal role in cytoprotective cellular mechanisms triggered by oxygen deprivation. Promotes HSPA5/BiP-mediated ATP nucleotide exchange and thereby activates the unfolded protein response (UPR) pathway in the presence of endoplasmic reticulum stress (By similarity). May play a role as a molecular chaperone and participate in protein folding. {ECO:0000250|UniProtKB:Q9JKR6, ECO:0000269|PubMed:10037731}. |
Q9Y5H0 | PCDHGA3 | S784 | ochoa | Protocadherin gamma-A3 (PCDH-gamma-A3) | Potential calcium-dependent cell-adhesion protein. May be involved in the establishment and maintenance of specific neuronal connections in the brain. |
Q9Y5H3 | PCDHGA10 | S788 | ochoa | Protocadherin gamma-A10 (PCDH-gamma-A10) | Potential calcium-dependent cell-adhesion protein. May be involved in the establishment and maintenance of specific neuronal connections in the brain. |
Q9Y5J1 | UTP18 | S210 | ochoa | U3 small nucleolar RNA-associated protein 18 homolog (WD repeat-containing protein 50) | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in nucleolar processing of pre-18S ribosomal RNA. {ECO:0000269|PubMed:34516797}. |
Q9Y6G9 | DYNC1LI1 | S215 | ochoa | Cytoplasmic dynein 1 light intermediate chain 1 (LIC1) (Dynein light chain A) (DLC-A) (Dynein light intermediate chain 1, cytosolic) (DLIC-1) | Acts as one of several non-catalytic accessory components of the cytoplasmic dynein 1 complex that are thought to be involved in linking dynein to cargos and to adapter proteins that regulate dynein function. Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. May play a role in binding dynein to membranous organelles or chromosomes. Probably involved in the microtubule-dependent transport of pericentrin. Is required for progress through the spindle assembly checkpoint. The phosphorylated form appears to be involved in the selective removal of MAD1L1 and MAD1L2 but not BUB1B from kinetochores. Forms a functional Rab11/RAB11FIP3/dynein complex onto endosomal membrane that regulates the movement of peripheral sorting endosomes (SE) along microtubule tracks toward the microtubule organizing center/centrosome, generating the endosomal recycling compartment (ERC) (PubMed:20026645). {ECO:0000269|PubMed:19229290, ECO:0000269|PubMed:20026645}. |
Q9Y6Y8 | SEC23IP | S742 | ochoa | SEC23-interacting protein (p125) | Plays a role in the organization of endoplasmic reticulum exit sites. Specifically binds to phosphatidylinositol 3-phosphate (PI(3)P), phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 5-phosphate (PI(5)P). {ECO:0000269|PubMed:10400679, ECO:0000269|PubMed:15623529, ECO:0000269|PubMed:22922100}. |
O14733 | MAP2K7 | S89 | Sugiyama | Dual specificity mitogen-activated protein kinase kinase 7 (MAP kinase kinase 7) (MAPKK 7) (EC 2.7.12.2) (JNK-activating kinase 2) (MAPK/ERK kinase 7) (MEK 7) (Stress-activated protein kinase kinase 4) (SAPK kinase 4) (SAPKK-4) (SAPKK4) (c-Jun N-terminal kinase kinase 2) (JNK kinase 2) (JNKK 2) | Dual specificity protein kinase which acts as an essential component of the MAP kinase signal transduction pathway. Essential component of the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. With MAP2K4/MKK4, is the one of the only known kinase to directly activate the stress-activated protein kinase/c-Jun N-terminal kinases MAPK8/JNK1, MAPK9/JNK2 and MAPK10/JNK3. MAP2K4/MKK4 and MAP2K7/MKK7 both activate the JNKs by phosphorylation, but they differ in their preference for the phosphorylation site in the Thr-Pro-Tyr motif. MAP2K4/MKK4 shows preference for phosphorylation of the Tyr residue and MAP2K7/MKK7 for the Thr residue. The monophosphorylation of JNKs on the Thr residue is sufficient to increase JNK activity indicating that MAP2K7/MKK7 is important to trigger JNK activity, while the additional phosphorylation of the Tyr residue by MAP2K4/MKK4 ensures optimal JNK activation. Has a specific role in JNK signal transduction pathway activated by pro-inflammatory cytokines. The MKK/JNK signaling pathway is also involved in mitochondrial death signaling pathway, including the release cytochrome c, leading to apoptosis. Part of a non-canonical MAPK signaling pathway, composed of the upstream MAP3K12 kinase and downstream MAP kinases MAPK1/ERK2 and MAPK3/ERK1, that enhances the AP-1-mediated transcription of APP in response to APOE (PubMed:28111074). {ECO:0000269|PubMed:28111074, ECO:0000269|PubMed:9312068, ECO:0000269|PubMed:9372971, ECO:0000269|PubMed:9535930, ECO:0000269|Ref.5}. |
P40227 | CCT6A | S306 | Sugiyama | T-complex protein 1 subunit zeta (TCP-1-zeta) (EC 3.6.1.-) (Acute morphine dependence-related protein 2) (CCT-zeta-1) (Chaperonin containing T-complex polypeptide 1 subunit 6A) (HTR3) (Tcp20) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). {ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
Q02952 | AKAP12 | S1367 | Sugiyama | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q9NQC3 | RTN4 | S1084 | Sugiyama | Reticulon-4 (Foocen) (Neurite outgrowth inhibitor) (Nogo protein) (Neuroendocrine-specific protein) (NSP) (Neuroendocrine-specific protein C homolog) (RTN-x) (Reticulon-5) | Required to induce the formation and stabilization of endoplasmic reticulum (ER) tubules (PubMed:24262037, PubMed:25612671, PubMed:27619977). They regulate membrane morphogenesis in the ER by promoting tubular ER production (PubMed:24262037, PubMed:25612671, PubMed:27619977, PubMed:27786289). They influence nuclear envelope expansion, nuclear pore complex formation and proper localization of inner nuclear membrane proteins (PubMed:26906412). However each isoform have specific functions mainly depending on their tissue expression specificities (Probable). {ECO:0000269|PubMed:24262037, ECO:0000269|PubMed:25612671, ECO:0000269|PubMed:26906412, ECO:0000269|PubMed:27619977, ECO:0000269|PubMed:27786289, ECO:0000305}.; FUNCTION: [Isoform A]: Developmental neurite growth regulatory factor with a role as a negative regulator of axon-axon adhesion and growth, and as a facilitator of neurite branching. Regulates neurite fasciculation, branching and extension in the developing nervous system. Involved in down-regulation of growth, stabilization of wiring and restriction of plasticity in the adult CNS (PubMed:10667797, PubMed:11201742). Regulates the radial migration of cortical neurons via an RTN4R-LINGO1 containing receptor complex (By similarity). Acts as a negative regulator of central nervous system angiogenesis. Inhibits spreading, migration and sprouting of primary brain microvascular endothelial cells (MVECs). Also induces the retraction of MVECs lamellipodia and filopodia in a ROCK pathway-dependent manner (By similarity). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:10667797, ECO:0000269|PubMed:11201742, ECO:0000269|PubMed:19699797}.; FUNCTION: [Isoform B]: Mainly function in endothelial cells and vascular smooth muscle cells, is also involved in immune system regulation (Probable). Modulator of vascular remodeling, promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle cells. Regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Inhibits serine palmitoyltransferase, SPTLC1, the rate-limiting enzyme of the novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine-1-phosphate (S1P). Required to promote macrophage homing and functions such as cytokine/chemokine gene expression involved in angiogenesis, arteriogenesis and tissue repair. Mediates ICAM1 induced transendothelial migration of leukocytes such as monocytes and neutrophils and acute inflammation. Necessary for immune responses triggered by nucleic acid sensing TLRs, such as TLR9, is required for proper TLR9 location to endolysosomes. Also involved in immune response to LPS. Plays a role in liver regeneration through the modulation of hepatocytes proliferation (By similarity). Reduces the anti-apoptotic activity of Bcl-xl and Bcl-2. This is likely consecutive to their change in subcellular location, from the mitochondria to the endoplasmic reticulum, after binding and sequestration (PubMed:11126360). With isoform C, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:11126360, ECO:0000269|PubMed:16965550, ECO:0000305}.; FUNCTION: [Isoform C]: Regulates cardiomyocyte apoptosis upon hypoxic conditions (By similarity). With isoform B, inhibits BACE1 activity and amyloid precursor protein processing (PubMed:16965550). {ECO:0000250|UniProtKB:Q99P72, ECO:0000269|PubMed:16965550}. |
P31943 | HNRNPH1 | S54 | Sugiyama | Heterogeneous nuclear ribonucleoprotein H (hnRNP H) [Cleaved into: Heterogeneous nuclear ribonucleoprotein H, N-terminally processed] | This protein is a component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre-mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG). {ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:16946708}. |
P52597 | HNRNPF | S54 | Sugiyama | Heterogeneous nuclear ribonucleoprotein F (hnRNP F) (Nucleolin-like protein mcs94-1) [Cleaved into: Heterogeneous nuclear ribonucleoprotein F, N-terminally processed] | Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state. {ECO:0000269|PubMed:20526337}. |
Q16576 | RBBP7 | S163 | Sugiyama | Histone-binding protein RBBP7 (Histone acetyltransferase type B subunit 2) (Nucleosome-remodeling factor subunit RBAP46) (Retinoblastoma-binding protein 7) (RBBP-7) (Retinoblastoma-binding protein p46) | Core histone-binding subunit that may target chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA. Component of several complexes which regulate chromatin metabolism. These include the type B histone acetyltransferase (HAT) complex, which is required for chromatin assembly following DNA replication; the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression; the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling; and the PRC2/EED-EZH2 complex, which promotes repression of homeotic genes during development; and the NURF (nucleosome remodeling factor) complex. {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666}. |
O60566 | BUB1B | S25 | Sugiyama | Mitotic checkpoint serine/threonine-protein kinase BUB1 beta (EC 2.7.11.1) (MAD3/BUB1-related protein kinase) (hBUBR1) (Mitotic checkpoint kinase MAD3L) (Protein SSK1) | Essential component of the mitotic checkpoint. Required for normal mitosis progression. The mitotic checkpoint delays anaphase until all chromosomes are properly attached to the mitotic spindle. One of its checkpoint functions is to inhibit the activity of the anaphase-promoting complex/cyclosome (APC/C) by blocking the binding of CDC20 to APC/C, independently of its kinase activity. The other is to monitor kinetochore activities that depend on the kinetochore motor CENPE. Required for kinetochore localization of CENPE. Negatively regulates PLK1 activity in interphase cells and suppresses centrosome amplification. Also implicated in triggering apoptosis in polyploid cells that exit aberrantly from mitotic arrest. May play a role for tumor suppression. {ECO:0000269|PubMed:10477750, ECO:0000269|PubMed:11702782, ECO:0000269|PubMed:14706340, ECO:0000269|PubMed:15020684, ECO:0000269|PubMed:19411850, ECO:0000269|PubMed:19503101}. |
Q14204 | DYNC1H1 | S3257 | Sugiyama | Cytoplasmic dynein 1 heavy chain 1 (Cytoplasmic dynein heavy chain 1) (Dynein heavy chain, cytosolic) | Cytoplasmic dynein 1 acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Plays a role in mitotic spindle assembly and metaphase plate congression (PubMed:27462074). {ECO:0000269|PubMed:27462074}. |
Q8N129 | CNPY4 | S45 | Sugiyama | Protein canopy homolog 4 | Plays a role in the regulation of the cell surface expression of TLR4. {ECO:0000269|PubMed:16338228}. |
O95881 | TXNDC12 | S143 | Sugiyama | Thioredoxin domain-containing protein 12 (EC 1.8.4.2) (Endoplasmic reticulum resident protein 18) (ER protein 18) (ERp18) (Endoplasmic reticulum resident protein 19) (ER protein 19) (ERp19) (Thioredoxin-like protein p19) (hTLP19) | Protein-disulfide reductase of the endoplasmic reticulum that promotes disulfide bond formation in client proteins through its thiol-disulfide oxidase activity. {ECO:0000269|PubMed:12761212}. |
P35579 | MYH9 | S131 | Sugiyama | Myosin-9 (Cellular myosin heavy chain, type A) (Myosin heavy chain 9) (Myosin heavy chain, non-muscle IIa) (Non-muscle myosin heavy chain A) (NMMHC-A) (Non-muscle myosin heavy chain IIa) (NMMHC II-a) (NMMHC-IIA) | Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. Required for cortical actin clearance prior to oocyte exocytosis (By similarity). Promotes cell motility in conjunction with S100A4 (PubMed:16707441). During cell spreading, plays an important role in cytoskeleton reorganization, focal contact formation (in the margins but not the central part of spreading cells), and lamellipodial retraction; this function is mechanically antagonized by MYH10 (PubMed:20052411). {ECO:0000250|UniProtKB:Q8VDD5, ECO:0000269|PubMed:16707441, ECO:0000269|PubMed:20052411}.; FUNCTION: (Microbial infection) Acts as a receptor for herpes simplex virus 1/HHV-1 envelope glycoprotein B. {ECO:0000269|PubMed:20944748, ECO:0000269|PubMed:39048823}. |
Q7L5Y9 | MAEA | S226 | Sugiyama | E3 ubiquitin-protein transferase MAEA (EC 2.3.2.27) (Cell proliferation-inducing gene 5 protein) (Erythroblast macrophage protein) (Human lung cancer oncogene 10 protein) (HLC-10) (Macrophage erythroblast attacher) (P44EMLP) | Core component of the CTLH E3 ubiquitin-protein ligase complex that selectively accepts ubiquitin from UBE2H and mediates ubiquitination and subsequent proteasomal degradation of the transcription factor HBP1. MAEA and RMND5A are both required for catalytic activity of the CTLH E3 ubiquitin-protein ligase complex (PubMed:29911972). MAEA is required for normal cell proliferation (PubMed:29911972). The CTLH E3 ubiquitin-protein ligase complex is not required for the degradation of enzymes involved in gluconeogenesis, such as FBP1 (PubMed:29911972). Plays a role in erythroblast enucleation during erythrocyte maturation and in the development of mature macrophages (By similarity). Mediates the attachment of erythroid cell to mature macrophages; this MAEA-mediated contact inhibits erythroid cell apoptosis (PubMed:9763581). Participates in erythroblastic island formation, which is the functional unit of definitive erythropoiesis. Associates with F-actin to regulate actin distribution in erythroblasts and macrophages (By similarity). May contribute to nuclear architecture and cells division events (Probable). {ECO:0000250|UniProtKB:Q4VC33, ECO:0000269|PubMed:29911972, ECO:0000269|PubMed:9763581, ECO:0000305|PubMed:16510120}. |
P08195 | SLC3A2 | S286 | Sugiyama | Amino acid transporter heavy chain SLC3A2 (4F2 cell-surface antigen heavy chain) (4F2hc) (4F2 heavy chain antigen) (Lymphocyte activation antigen 4F2 large subunit) (Solute carrier family 3 member 2) (CD antigen CD98) | Acts as a chaperone that facilitates biogenesis and trafficking of functional transporters heterodimers to the plasma membrane. Forms heterodimer with SLC7 family transporters (SLC7A5, SLC7A6, SLC7A7, SLC7A8, SLC7A10 and SLC7A11), a group of amino-acid antiporters (PubMed:10574970, PubMed:10903140, PubMed:11557028, PubMed:30867591, PubMed:33298890, PubMed:33758168, PubMed:34880232, PubMed:9751058, PubMed:9829974, PubMed:9878049). Heterodimers function as amino acids exchangers, the specificity of the substrate depending on the SLC7A subunit. Heterodimers SLC3A2/SLC7A6 or SLC3A2/SLC7A7 mediate the uptake of dibasic amino acids (PubMed:10903140, PubMed:9829974). Heterodimer SLC3A2/SLC7A11 functions as an antiporter by mediating the exchange of extracellular anionic L-cystine and intracellular L-glutamate across the cellular plasma membrane (PubMed:34880232). SLC3A2/SLC7A10 translocates small neutral L- and D-amino acids across the plasma membrane (By similarity). SLC3A2/SLC75 or SLC3A2/SLC7A8 translocates neutral amino acids with broad specificity, thyroid hormones and L-DOPA (PubMed:10574970, PubMed:11389679, PubMed:11557028, PubMed:11564694, PubMed:11742812, PubMed:12117417, PubMed:12225859, PubMed:12716892, PubMed:15980244, PubMed:30867591, PubMed:33298890, PubMed:33758168). SLC3A2 is essential for plasma membrane localization, stability, and the transport activity of SLC7A5 and SLC7A8 (PubMed:10391915, PubMed:10574970, PubMed:11311135, PubMed:15769744, PubMed:33066406). When associated with LAPTM4B, the heterodimer SLC7A5 is recruited to lysosomes to promote leucine uptake into these organelles, and thereby mediates mTORC1 activation (PubMed:25998567). Modulates integrin-related signaling and is essential for integrin-dependent cell spreading, migration and tumor progression (PubMed:11121428, PubMed:15625115). {ECO:0000250|UniProtKB:P63115, ECO:0000269|PubMed:10391915, ECO:0000269|PubMed:10574970, ECO:0000269|PubMed:10903140, ECO:0000269|PubMed:11121428, ECO:0000269|PubMed:11311135, ECO:0000269|PubMed:11389679, ECO:0000269|PubMed:11557028, ECO:0000269|PubMed:11564694, ECO:0000269|PubMed:11742812, ECO:0000269|PubMed:12117417, ECO:0000269|PubMed:12225859, ECO:0000269|PubMed:12716892, ECO:0000269|PubMed:15625115, ECO:0000269|PubMed:15769744, ECO:0000269|PubMed:15980244, ECO:0000269|PubMed:25998567, ECO:0000269|PubMed:30867591, ECO:0000269|PubMed:33066406, ECO:0000269|PubMed:33298890, ECO:0000269|PubMed:33758168, ECO:0000269|PubMed:34880232, ECO:0000269|PubMed:9751058, ECO:0000269|PubMed:9829974, ECO:0000269|PubMed:9878049}.; FUNCTION: (Microbial infection) In case of hepatitis C virus/HCV infection, the complex formed by SLC3A2 and SLC7A5/LAT1 plays a role in HCV propagation by facilitating viral entry into host cell and increasing L-leucine uptake-mediated mTORC1 signaling activation, thereby contributing to HCV-mediated pathogenesis. {ECO:0000269|PubMed:30341327}.; FUNCTION: (Microbial infection) Acts as a receptor for malaria parasite Plasmodium vivax (Thai isolate) in immature red blood cells. {ECO:0000269|PubMed:34294905}. |
P09132 | SRP19 | S69 | Sugiyama | Signal recognition particle 19 kDa protein (SRP19) | Component of the signal recognition particle (SRP) complex, a ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER) (By similarity). Binds directly to 7SL RNA (By similarity). Mediates binding of SRP54 to the SRP complex (By similarity). {ECO:0000250|UniProtKB:J9PAS6}. |
P51617 | IRAK1 | S213 | Sugiyama | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
Q9Y2I6 | NINL | S686 | GPS6|SIGNOR|ELM|iPTMNet|EPSD|PSP | Ninein-like protein | Involved in the microtubule organization in interphase cells. Overexpression induces the fragmentation of the Golgi, and causes lysosomes to disperse toward the cell periphery; it also interferes with mitotic spindle assembly. Involved in vesicle transport in photoreceptor cells (By similarity). May play a role in ovarian carcinogenesis. {ECO:0000250|UniProtKB:G9G127, ECO:0000269|PubMed:12852856, ECO:0000269|PubMed:16254247, ECO:0000269|PubMed:18538832}. |
Q04917 | YWHAH | S38 | Sugiyama | 14-3-3 protein eta (Protein AS1) | Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1. {ECO:0000269|PubMed:12177059}. |
P57059 | SIK1 | S644 | Sugiyama | Serine/threonine-protein kinase SIK1 (EC 2.7.11.1) (Salt-inducible kinase 1) (SIK-1) (Serine/threonine-protein kinase SNF1-like kinase 1) (Serine/threonine-protein kinase SNF1LK) | Serine/threonine-protein kinase involved in various processes such as cell cycle regulation, gluconeogenesis and lipogenesis regulation, muscle growth and differentiation and tumor suppression. Phosphorylates HDAC4, HDAC5, PPME1, SREBF1, CRTC1/TORC1. Inhibits CREB activity by phosphorylating and inhibiting activity of TORCs, the CREB-specific coactivators, like CRTC2/TORC2 and CRTC3/TORC3 in response to cAMP signaling (PubMed:29211348). Acts as a tumor suppressor and plays a key role in p53/TP53-dependent anoikis, a type of apoptosis triggered by cell detachment: required for phosphorylation of p53/TP53 in response to loss of adhesion and is able to suppress metastasis. Part of a sodium-sensing signaling network, probably by mediating phosphorylation of PPME1: following increases in intracellular sodium, SIK1 is activated by CaMK1 and phosphorylates PPME1 subunit of protein phosphatase 2A (PP2A), leading to dephosphorylation of sodium/potassium-transporting ATPase ATP1A1 and subsequent increase activity of ATP1A1. Acts as a regulator of muscle cells by phosphorylating and inhibiting class II histone deacetylases HDAC4 and HDAC5, leading to promote expression of MEF2 target genes in myocytes. Also required during cardiomyogenesis by regulating the exit of cardiomyoblasts from the cell cycle via down-regulation of CDKN1C/p57Kip2. Acts as a regulator of hepatic gluconeogenesis by phosphorylating and repressing the CREB-specific coactivators CRTC1/TORC1 and CRTC2/TORC2, leading to inhibit CREB activity. Also regulates hepatic lipogenesis by phosphorylating and inhibiting SREBF1. In concert with CRTC1/TORC1, regulates the light-induced entrainment of the circadian clock by attenuating PER1 induction; represses CREB-mediated transcription of PER1 by phosphorylating and deactivating CRTC1/TORC1 (By similarity). {ECO:0000250|UniProtKB:Q60670, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:16306228, ECO:0000269|PubMed:18348280, ECO:0000269|PubMed:19622832, ECO:0000269|PubMed:29211348}. |
P57721 | PCBP3 | S173 | Sugiyama | Poly(rC)-binding protein 3 (Alpha-CP3) (PCBP3-overlapping transcript) (PCBP3-overlapping transcript 1) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. {ECO:0000250}. |
Q04637 | EIF4G1 | S1440 | Sugiyama | Eukaryotic translation initiation factor 4 gamma 1 (eIF-4-gamma 1) (eIF-4G 1) (eIF-4G1) (p220) | Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome (PubMed:29987188). Exists in two complexes, either with EIF1 or with EIF4E (mutually exclusive) (PubMed:29987188). Together with EIF1, is required for leaky scanning, in particular for avoiding cap-proximal start codon (PubMed:29987188). Together with EIF4E, antagonizes the scanning promoted by EIF1-EIF4G1 and locates the start codon (through a TISU element) without scanning (PubMed:29987188). As a member of the eIF4F complex, required for endoplasmic reticulum stress-induced ATF4 mRNA translation (PubMed:29062139). {ECO:0000269|PubMed:29062139, ECO:0000269|PubMed:29987188}. |
Q15365 | PCBP1 | S141 | Sugiyama | Poly(rC)-binding protein 1 (Alpha-CP1) (Heterogeneous nuclear ribonucleoprotein E1) (hnRNP E1) (Nucleic acid-binding protein SUB2.3) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:15731341, PubMed:7556077, PubMed:7607214, PubMed:8152927). Together with PCBP2, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:P60335, ECO:0000269|PubMed:15731341, ECO:0000269|PubMed:7556077, ECO:0000269|PubMed:7607214, ECO:0000269|PubMed:8152927}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, plays a role in initiation of viral RNA replication in concert with the viral protein 3CD. {ECO:0000269|PubMed:12414943}. |
Q15366 | PCBP2 | S141 | Sugiyama | Poly(rC)-binding protein 2 (Alpha-CP2) (Heterogeneous nuclear ribonucleoprotein E2) (hnRNP E2) | Single-stranded nucleic acid binding protein that binds preferentially to oligo dC (PubMed:12414943, PubMed:7607214). Major cellular poly(rC)-binding protein (PubMed:12414943). Also binds poly(rU) (PubMed:12414943). Acts as a negative regulator of antiviral signaling (PubMed:19881509, PubMed:35322803). Negatively regulates cellular antiviral responses mediated by MAVS signaling (PubMed:19881509). It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation (PubMed:19881509). Negativeley regulates the cGAS-STING pathway via interaction with CGAS, preventing the formation of liquid-like droplets in which CGAS is activated (PubMed:35322803). Together with PCBP1, required for erythropoiesis, possibly by regulating mRNA splicing (By similarity). {ECO:0000250|UniProtKB:Q61990, ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:19881509, ECO:0000269|PubMed:35322803, ECO:0000269|PubMed:7607214}.; FUNCTION: (Microbial infection) In case of infection by poliovirus, binds to the viral internal ribosome entry site (IRES) and stimulates the IRES-mediated translation (PubMed:12414943, PubMed:24371074). Also plays a role in initiation of viral RNA replication in concert with the viral protein 3CD (PubMed:12414943). {ECO:0000269|PubMed:12414943, ECO:0000269|PubMed:24371074}. |
P04150 | NR3C1 | S746 | PSP | Glucocorticoid receptor (GR) (Nuclear receptor subfamily 3 group C member 1) | Receptor for glucocorticoids (GC) (PubMed:27120390, PubMed:37478846). Has a dual mode of action: as a transcription factor that binds to glucocorticoid response elements (GRE), both for nuclear and mitochondrial DNA, and as a modulator of other transcription factors (PubMed:28139699). Affects inflammatory responses, cellular proliferation and differentiation in target tissues. Involved in chromatin remodeling (PubMed:9590696). Plays a role in rapid mRNA degradation by binding to the 5' UTR of target mRNAs and interacting with PNRC2 in a ligand-dependent manner which recruits the RNA helicase UPF1 and the mRNA-decapping enzyme DCP1A, leading to RNA decay (PubMed:25775514). Could act as a coactivator for STAT5-dependent transcription upon growth hormone (GH) stimulation and could reveal an essential role of hepatic GR in the control of body growth (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:25775514, ECO:0000269|PubMed:27120390, ECO:0000269|PubMed:28139699, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:9590696}.; FUNCTION: [Isoform Alpha]: Has transcriptional activation and repression activity (PubMed:11435610, PubMed:15769988, PubMed:15866175, PubMed:17635946, PubMed:19141540, PubMed:19248771, PubMed:20484466, PubMed:21664385, PubMed:23820903). Mediates glucocorticoid-induced apoptosis (PubMed:23303127). Promotes accurate chromosome segregation during mitosis (PubMed:25847991). May act as a tumor suppressor (PubMed:25847991). May play a negative role in adipogenesis through the regulation of lipolytic and antilipogenic gene expression (By similarity). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15769988, ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:17635946, ECO:0000269|PubMed:19141540, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:21664385, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903, ECO:0000269|PubMed:25847991}.; FUNCTION: [Isoform Beta]: Acts as a dominant negative inhibitor of isoform Alpha (PubMed:20484466, PubMed:7769088, PubMed:8621628). Has intrinsic transcriptional activity independent of isoform Alpha when both isoforms are coexpressed (PubMed:19248771, PubMed:26711253). Loses this transcription modulator function on its own (PubMed:20484466). Has no hormone-binding activity (PubMed:8621628). May play a role in controlling glucose metabolism by maintaining insulin sensitivity (By similarity). Reduces hepatic gluconeogenesis through down-regulation of PEPCK in an isoform Alpha-dependent manner (PubMed:26711253). Directly regulates STAT1 expression in isoform Alpha-independent manner (PubMed:26711253). {ECO:0000250|UniProtKB:P06537, ECO:0000269|PubMed:19248771, ECO:0000269|PubMed:20484466, ECO:0000269|PubMed:26711253, ECO:0000269|PubMed:7769088, ECO:0000269|PubMed:8621628}.; FUNCTION: [Isoform Alpha-2]: Has lower transcriptional activation activity than isoform Alpha. Exerts a dominant negative effect on isoform Alpha trans-repression mechanism (PubMed:20484466).; FUNCTION: [Isoform GR-P]: Increases activity of isoform Alpha. {ECO:0000269|PubMed:11358809}.; FUNCTION: [Isoform Alpha-B]: More effective than isoform Alpha in transcriptional activation, but not repression activity. {ECO:0000269|PubMed:11435610, ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform 10]: Has transcriptional activation activity. {ECO:0000269|PubMed:20484466}.; FUNCTION: [Isoform Alpha-C1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-C3]: Has highest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). Mediates glucocorticoid-induced apoptosis (PubMed:23303127, PubMed:23820903). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}.; FUNCTION: [Isoform Alpha-D1]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D2]: Has transcriptional activation activity. {ECO:0000269|PubMed:15866175}.; FUNCTION: [Isoform Alpha-D3]: Has lowest transcriptional activation activity of all isoforms created by alternative initiation (PubMed:15866175, PubMed:23820903). Has transcriptional repression activity (PubMed:23303127). {ECO:0000269|PubMed:15866175, ECO:0000269|PubMed:23303127, ECO:0000269|PubMed:23820903}. |
Q96JX3 | SERAC1 | S450 | Sugiyama | Protein SERAC1 (Serine active site-containing protein 1) | Facilitates the transport of serine from the cytosol to the mitochondria by interacting with and stabilizing Sideroflexin-1 (SFXN1), a mitochondrial serine transporter, playing a fundamental role in the one-carbon cycle responsible for the synthesis of nucleotides needed for mitochondrial DNA replication (PubMed:35235340). Plays an important role in the phosphatidylglycerol (PG) remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking (PubMed:22683713). Specifically involved in the exchange of the sn-1 acyl chain from PG 16:0/18:1(9Z) (also known as 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-sn-glycerol)) to PG 18:0/18:1(9Z) (also known as 1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1'-sn-glycerol)), a step needed in the bis(monoacylglycerol)phosphate biosynthetic pathway (PubMed:22683713). May have acyltransferase activity although the mechanism for PG remodeling has not been determined (PubMed:22683713). {ECO:0000269|PubMed:22683713, ECO:0000269|PubMed:35235340}. |
Q9NZV8 | KCND2 | S459 | ELM | A-type voltage-gated potassium channel KCND2 (Potassium voltage-gated channel subfamily D member 2) (Voltage-gated potassium channel subunit Kv4.2) | Voltage-gated potassium channel that mediates transmembrane potassium transport in excitable membranes, primarily in the brain. Mediates the major part of the dendritic A-type current I(SA) in brain neurons (By similarity). This current is activated at membrane potentials that are below the threshold for action potentials. It regulates neuronal excitability, prolongs the latency before the first spike in a series of action potentials, regulates the frequency of repetitive action potential firing, shortens the duration of action potentials and regulates the back-propagation of action potentials from the neuronal cell body to the dendrites. Contributes to the regulation of the circadian rhythm of action potential firing in suprachiasmatic nucleus neurons, which regulates the circadian rhythm of locomotor activity (By similarity). Functions downstream of the metabotropic glutamate receptor GRM5 and plays a role in neuronal excitability and in nociception mediated by activation of GRM5 (By similarity). Mediates the transient outward current I(to) in rodent heart left ventricle apex cells, but not in human heart, where this current is mediated by another family member. Forms tetrameric potassium-selective channels through which potassium ions pass in accordance with their electrochemical gradient (PubMed:10551270, PubMed:11507158, PubMed:14623880, PubMed:14695263, PubMed:14980201, PubMed:15454437, PubMed:16934482, PubMed:19171772, PubMed:24501278, PubMed:24811166, PubMed:34552243, PubMed:35597238). The channel alternates between opened and closed conformations in response to the voltage difference across the membrane (PubMed:11507158). Can form functional homotetrameric channels and heterotetrameric channels that contain variable proportions of KCND2 and KCND3; channel properties depend on the type of pore-forming alpha subunits that are part of the channel. In vivo, membranes probably contain a mixture of heteromeric potassium channel complexes. Interaction with specific isoforms of the regulatory subunits KCNIP1, KCNIP2, KCNIP3 or KCNIP4 strongly increases expression at the cell surface and thereby increases channel activity; it modulates the kinetics of channel activation and inactivation, shifts the threshold for channel activation to more negative voltage values, shifts the threshold for inactivation to less negative voltages and accelerates recovery after inactivation (PubMed:14623880, PubMed:14980201, PubMed:15454437, PubMed:19171772, PubMed:24501278, PubMed:24811166). Likewise, interaction with DPP6 or DPP10 promotes expression at the cell membrane and regulates both channel characteristics and activity (By similarity). Upon depolarization, the channel goes from a resting closed state (C state) to an activated but non-conducting state (C* state), from there, the channel may either inactivate (I state) or open (O state) (PubMed:35597238). {ECO:0000250|UniProtKB:Q63881, ECO:0000250|UniProtKB:Q9Z0V2, ECO:0000269|PubMed:10551270, ECO:0000269|PubMed:10729221, ECO:0000269|PubMed:11507158, ECO:0000269|PubMed:14623880, ECO:0000269|PubMed:14695263, ECO:0000269|PubMed:14980201, ECO:0000269|PubMed:15454437, ECO:0000269|PubMed:16934482, ECO:0000269|PubMed:19171772, ECO:0000269|PubMed:24501278, ECO:0000269|PubMed:24811166, ECO:0000269|PubMed:34552243, ECO:0000269|PubMed:35597238}. |
Q15349 | RPS6KA2 | S454 | Sugiyama | Ribosomal protein S6 kinase alpha-2 (S6K-alpha-2) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 2) (p90-RSK 2) (p90RSK2) (MAP kinase-activated protein kinase 1c) (MAPK-activated protein kinase 1c) (MAPKAP kinase 1c) (MAPKAPK-1c) (Ribosomal S6 kinase 3) (RSK-3) (pp90RSK3) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of transcription factors, regulates translation, and mediates cellular proliferation, survival, and differentiation. May function as tumor suppressor in epithelial ovarian cancer cells. {ECO:0000269|PubMed:16878154, ECO:0000269|PubMed:7623830}. |
Q15418 | RPS6KA1 | S457 | Sugiyama | Ribosomal protein S6 kinase alpha-1 (S6K-alpha-1) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 1) (p90-RSK 1) (p90RSK1) (p90S6K) (MAP kinase-activated protein kinase 1a) (MAPK-activated protein kinase 1a) (MAPKAP kinase 1a) (MAPKAPK-1a) (Ribosomal S6 kinase 1) (RSK-1) | Serine/threonine-protein kinase that acts downstream of ERK (MAPK1/ERK2 and MAPK3/ERK1) signaling and mediates mitogenic and stress-induced activation of the transcription factors CREB1, ETV1/ER81 and NR4A1/NUR77, regulates translation through RPS6 and EIF4B phosphorylation, and mediates cellular proliferation, survival, and differentiation by modulating mTOR signaling and repressing pro-apoptotic function of BAD and DAPK1 (PubMed:10679322, PubMed:12213813, PubMed:15117958, PubMed:16223362, PubMed:17360704, PubMed:18722121, PubMed:26158630, PubMed:35772404, PubMed:9430688). In fibroblast, is required for EGF-stimulated phosphorylation of CREB1, which results in the subsequent transcriptional activation of several immediate-early genes (PubMed:18508509, PubMed:18813292). In response to mitogenic stimulation (EGF and PMA), phosphorylates and activates NR4A1/NUR77 and ETV1/ER81 transcription factors and the cofactor CREBBP (PubMed:12213813, PubMed:16223362). Upon insulin-derived signal, acts indirectly on the transcription regulation of several genes by phosphorylating GSK3B at 'Ser-9' and inhibiting its activity (PubMed:18508509, PubMed:18813292). Phosphorylates RPS6 in response to serum or EGF via an mTOR-independent mechanism and promotes translation initiation by facilitating assembly of the pre-initiation complex (PubMed:17360704). In response to insulin, phosphorylates EIF4B, enhancing EIF4B affinity for the EIF3 complex and stimulating cap-dependent translation (PubMed:16763566). Is involved in the mTOR nutrient-sensing pathway by directly phosphorylating TSC2 at 'Ser-1798', which potently inhibits TSC2 ability to suppress mTOR signaling, and mediates phosphorylation of RPTOR, which regulates mTORC1 activity and may promote rapamycin-sensitive signaling independently of the PI3K/AKT pathway (PubMed:15342917). Also involved in feedback regulation of mTORC1 and mTORC2 by phosphorylating DEPTOR (PubMed:22017876). Mediates cell survival by phosphorylating the pro-apoptotic proteins BAD and DAPK1 and suppressing their pro-apoptotic function (PubMed:10679322, PubMed:16213824). Promotes the survival of hepatic stellate cells by phosphorylating CEBPB in response to the hepatotoxin carbon tetrachloride (CCl4) (PubMed:11684016). Mediates induction of hepatocyte prolifration by TGFA through phosphorylation of CEBPB (PubMed:18508509, PubMed:18813292). Is involved in cell cycle regulation by phosphorylating the CDK inhibitor CDKN1B, which promotes CDKN1B association with 14-3-3 proteins and prevents its translocation to the nucleus and inhibition of G1 progression (PubMed:18508509, PubMed:18813292). Phosphorylates EPHA2 at 'Ser-897', the RPS6KA-EPHA2 signaling pathway controls cell migration (PubMed:26158630). In response to mTORC1 activation, phosphorylates EIF4B at 'Ser-406' and 'Ser-422' which stimulates bicarbonate cotransporter SLC4A7 mRNA translation, increasing SLC4A7 protein abundance and function (PubMed:35772404). {ECO:0000269|PubMed:10679322, ECO:0000269|PubMed:11684016, ECO:0000269|PubMed:12213813, ECO:0000269|PubMed:15117958, ECO:0000269|PubMed:15342917, ECO:0000269|PubMed:16213824, ECO:0000269|PubMed:16223362, ECO:0000269|PubMed:16763566, ECO:0000269|PubMed:17360704, ECO:0000269|PubMed:18722121, ECO:0000269|PubMed:22017876, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:35772404, ECO:0000269|PubMed:9430688, ECO:0000303|PubMed:18508509, ECO:0000303|PubMed:18813292}.; FUNCTION: (Microbial infection) Promotes the late transcription and translation of viral lytic genes during Kaposi's sarcoma-associated herpesvirus/HHV-8 infection, when constitutively activated. {ECO:0000269|PubMed:30842327}. |
P50416 | CPT1A | S747 | Sugiyama | Carnitine O-palmitoyltransferase 1, liver isoform (CPT1-L) (EC 2.3.1.21) (Carnitine O-palmitoyltransferase I, liver isoform) (CPT I) (CPTI-L) (Carnitine palmitoyltransferase 1A) (Succinyltransferase CPT1A) (EC 2.3.1.-) | Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion (PubMed:11350182, PubMed:14517221, PubMed:16651524, PubMed:9691089). Also possesses a lysine succinyltransferase activity that can regulate enzymatic activity of substrate proteins such as ENO1 and metabolism independent of its classical carnitine O-palmitoyltransferase activity (PubMed:29425493). Plays an important role in hepatic triglyceride metabolism (By similarity). Also plays a role in inducible regulatory T-cell (iTreg) differentiation once activated by butyryl-CoA that antagonizes malonyl-CoA-mediated CPT1A repression (By similarity). Sustains the IFN-I response by recruiting ZDHCC4 to palmitoylate MAVS at the mitochondria leading to MAVS stabilization and activation (PubMed:38016475). Promotes ROS-induced oxidative stress in liver injury via modulation of NFE2L2 and NLRP3-mediated signaling pathways (By similarity). {ECO:0000250|UniProtKB:P32198, ECO:0000269|PubMed:11350182, ECO:0000269|PubMed:14517221, ECO:0000269|PubMed:16651524, ECO:0000269|PubMed:29425493, ECO:0000269|PubMed:38016475, ECO:0000269|PubMed:9691089}. |
Q9UH65 | SWAP70 | S409 | Sugiyama | Switch-associated protein 70 (SWAP-70) | Phosphatidylinositol 3,4,5-trisphosphate-dependent guanine nucleotide exchange factor (GEF) which, independently of RAS, transduces signals from tyrosine kinase receptors to RAC. It also mediates signaling of membrane ruffling. Regulates the actin cytoskeleton as an effector or adapter protein in response to agonist stimulated phosphatidylinositol (3,4)-bisphosphate production and cell protrusion (By similarity). {ECO:0000250, ECO:0000269|PubMed:10681448, ECO:0000269|PubMed:12925760}. |
Q09028 | RBBP4 | S164 | Sugiyama | Histone-binding protein RBBP4 (Chromatin assembly factor 1 subunit C) (CAF-1 subunit C) (Chromatin assembly factor I p48 subunit) (CAF-I 48 kDa subunit) (CAF-I p48) (Nucleosome-remodeling factor subunit RBAP48) (Retinoblastoma-binding protein 4) (RBBP-4) (Retinoblastoma-binding protein p48) | Core histone-binding subunit that may target chromatin assembly factors, chromatin remodeling factors and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA (PubMed:10866654). Component of the chromatin assembly factor 1 (CAF-1) complex, which is required for chromatin assembly following DNA replication and DNA repair (PubMed:8858152). Component of the core histone deacetylase (HDAC) complex, which promotes histone deacetylation and consequent transcriptional repression (PubMed:9150135). Component of the nucleosome remodeling and histone deacetylase complex (the NuRD complex), which promotes transcriptional repression by histone deacetylation and nucleosome remodeling (PubMed:16428440, PubMed:28977666, PubMed:39460621). Component of the PRC2 complex, which promotes repression of homeotic genes during development (PubMed:29499137, PubMed:31959557). Component of the NURF (nucleosome remodeling factor) complex (PubMed:14609955, PubMed:15310751). {ECO:0000269|PubMed:10866654, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:15310751, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557, ECO:0000269|PubMed:39460621, ECO:0000269|PubMed:8858152, ECO:0000269|PubMed:9150135}. |
Q92499 | DDX1 | S113 | Sugiyama | ATP-dependent RNA helicase DDX1 (EC 3.6.4.13) (DEAD box protein 1) (DEAD box protein retinoblastoma) (DBP-RB) | Acts as an ATP-dependent RNA helicase, able to unwind both RNA-RNA and RNA-DNA duplexes. Possesses 5' single-stranded RNA overhang nuclease activity. Possesses ATPase activity on various RNA, but not DNA polynucleotides. May play a role in RNA clearance at DNA double-strand breaks (DSBs), thereby facilitating the template-guided repair of transcriptionally active regions of the genome. Together with RELA, acts as a coactivator to enhance NF-kappa-B-mediated transcriptional activation. Acts as a positive transcriptional regulator of cyclin CCND2 expression. Binds to the cyclin CCND2 promoter region. Associates with chromatin at the NF-kappa-B promoter region via association with RELA. Binds to poly(A) RNA. May be involved in 3'-end cleavage and polyadenylation of pre-mRNAs. Component of the tRNA-splicing ligase complex required to facilitate the enzymatic turnover of catalytic subunit RTCB: together with archease (ZBTB8OS), acts by facilitating the guanylylation of RTCB, a key intermediate step in tRNA ligation (PubMed:24870230). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1. Specifically binds (via helicase ATP-binding domain) on both short and long poly(I:C) dsRNA (By similarity). {ECO:0000250|UniProtKB:Q91VR5, ECO:0000269|PubMed:12183465, ECO:0000269|PubMed:15567440, ECO:0000269|PubMed:18335541, ECO:0000269|PubMed:18710941, ECO:0000269|PubMed:20573827, ECO:0000269|PubMed:24870230}.; FUNCTION: (Microbial infection) Required for HIV-1 Rev function as well as for HIV-1 and coronavirus IBV replication. Binds to the RRE sequence of HIV-1 mRNAs. {ECO:0000269|PubMed:15567440}.; FUNCTION: (Microbial infection) Required for Coronavirus IBV replication. {ECO:0000269|PubMed:20573827}. |
Q8N568 | DCLK2 | S223 | Sugiyama | Serine/threonine-protein kinase DCLK2 (EC 2.7.11.1) (CaMK-like CREB regulatory kinase 2) (CL2) (CLICK-II) (CLICK2) (Doublecortin domain-containing protein 3B) (Doublecortin-like and CAM kinase-like 2) (Doublecortin-like kinase 2) | Protein kinase with a significantly reduced C(a2+)/CAM affinity and dependence compared to other members of the CaMK family. May play a role in the down-regulation of CRE-dependent gene activation probably by phosphorylation of the CREB coactivator CRTC2/TORC2 and the resulting retention of TORC2 in the cytoplasm (By similarity). {ECO:0000250}. |
Q8NE63 | HIPK4 | S522 | Sugiyama | Homeodomain-interacting protein kinase 4 (EC 2.7.11.1) | Protein kinase that phosphorylates human TP53 at Ser-9, and thus induces TP53 repression of BIRC5 promoter (By similarity). May act as a corepressor of transcription factors (Potential). {ECO:0000250, ECO:0000305}. |
Q9BQ39 | DDX50 | S145 | Sugiyama | ATP-dependent RNA helicase DDX50 (EC 3.6.4.13) (DEAD box protein 50) (Gu-beta) (Nucleolar protein Gu2) | ATP-dependent RNA helicase that may play a role in various aspects of RNA metabolism including pre-mRNA splicing or ribosomal RNA production (PubMed:12027455). Also acts as a viral restriction factor and promotes the activation of the NF-kappa-B and IRF3 signaling pathways following its stimulation with viral RNA or infection with RNA and DNA viruses (PubMed:35215908). For instance, decreases vaccinia virus, herpes simplex virus, Zika virus or dengue virus replication during the early stage of infection (PubMed:28181036, PubMed:35215908). Mechanistically, acts via the adapter TICAM1 and independently of the DDX1-DDX21-DHX36 helicase complex to induce the production of interferon-beta (PubMed:35215908). {ECO:0000269|PubMed:12027455, ECO:0000269|PubMed:28181036, ECO:0000269|PubMed:35215908}. |
Q9NR30 | DDX21 | S194 | Sugiyama | Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) | RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}. |
P30740 | SERPINB1 | S281 | Sugiyama | Leukocyte elastase inhibitor (LEI) (Monocyte/neutrophil elastase inhibitor) (EI) (M/NEI) (Peptidase inhibitor 2) (PI-2) (Serpin B1) | Neutrophil serine protease inhibitor that plays an essential role in the regulation of the innate immune response, inflammation and cellular homeostasis (PubMed:30692621). Acts primarily to protect the cell from proteases released in the cytoplasm during stress or infection. These proteases are important in killing microbes but when released from granules, these potent enzymes also destroy host proteins and contribute to mortality. Regulates the activity of the neutrophil proteases elastase, cathepsin G, proteinase-3, chymase, chymotrypsin, and kallikrein-3 (PubMed:11747453, PubMed:30692621). Also acts as a potent intracellular inhibitor of GZMH by directly blocking its proteolytic activity (PubMed:23269243). During inflammation, limits the activity of inflammatory caspases CASP1, CASP4 and CASP5 by suppressing their caspase-recruitment domain (CARD) oligomerization and enzymatic activation (PubMed:30692621). When secreted, promotes the proliferation of beta-cells via its protease inhibitory function (PubMed:26701651). {ECO:0000269|PubMed:11747453, ECO:0000269|PubMed:23269243, ECO:0000269|PubMed:26701651, ECO:0000269|PubMed:30692621}. |
O60645 | EXOC3 | S89 | Sugiyama | Exocyst complex component 3 (Exocyst complex component Sec6) | Component of the exocyst complex involved in the docking of exocytic vesicles with fusion sites on the plasma membrane. |
Q96PY6 | NEK1 | S23 | Sugiyama | Serine/threonine-protein kinase Nek1 (EC 2.7.11.1) (Never in mitosis A-related kinase 1) (NimA-related protein kinase 1) (Renal carcinoma antigen NY-REN-55) | Phosphorylates serines and threonines, but also appears to possess tyrosine kinase activity (PubMed:20230784). Involved in DNA damage checkpoint control and for proper DNA damage repair (PubMed:20230784). In response to injury that includes DNA damage, NEK1 phosphorylates VDAC1 to limit mitochondrial cell death (PubMed:20230784). May be implicated in the control of meiosis (By similarity). Involved in cilium assembly (PubMed:21211617). {ECO:0000250|UniProtKB:P51954, ECO:0000269|PubMed:20230784, ECO:0000269|PubMed:21211617}. |
Q9UPN3 | MACF1 | T1097 | Sugiyama | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UK32 | RPS6KA6 | S465 | Sugiyama | Ribosomal protein S6 kinase alpha-6 (S6K-alpha-6) (EC 2.7.11.1) (90 kDa ribosomal protein S6 kinase 6) (p90-RSK 6) (p90RSK6) (Ribosomal S6 kinase 4) (RSK-4) (pp90RSK4) | Constitutively active serine/threonine-protein kinase that exhibits growth-factor-independent kinase activity and that may participate in p53/TP53-dependent cell growth arrest signaling and play an inhibitory role during embryogenesis. {ECO:0000269|PubMed:15042092, ECO:0000269|PubMed:15632195}. |
Q9UQ07 | MOK | S41 | Sugiyama | MAPK/MAK/MRK overlapping kinase (EC 2.7.11.22) (MOK protein kinase) (Renal tumor antigen 1) (RAGE-1) | Able to phosphorylate several exogenous substrates and to undergo autophosphorylation. Negatively regulates cilium length in a cAMP and mTORC1 signaling-dependent manner. {ECO:0000250|UniProtKB:Q9WVS4}. |
P35372 | OPRM1 | S270 | SIGNOR | Mu-type opioid receptor (M-OR-1) (MOR-1) (Mu opiate receptor) (Mu opioid receptor) (MOP) (hMOP) | Receptor for endogenous opioids such as beta-endorphin and endomorphin (PubMed:10529478, PubMed:12589820, PubMed:7891175, PubMed:7905839, PubMed:7957926, PubMed:9689128). Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone (PubMed:10529478, PubMed:10836142, PubMed:12589820, PubMed:19300905, PubMed:7891175, PubMed:7905839, PubMed:7957926, PubMed:9689128). Also activated by enkephalin peptides, such as Met-enkephalin or Met-enkephalin-Arg-Phe, with higher affinity for Met-enkephalin-Arg-Phe (By similarity). Agonist binding to the receptor induces coupling to an inactive GDP-bound heterotrimeric G-protein complex and subsequent exchange of GDP for GTP in the G-protein alpha subunit leading to dissociation of the G-protein complex with the free GTP-bound G-protein alpha and the G-protein beta-gamma dimer activating downstream cellular effectors (PubMed:7905839). The agonist- and cell type-specific activity is predominantly coupled to pertussis toxin-sensitive G(i) and G(o) G alpha proteins, GNAI1, GNAI2, GNAI3 and GNAO1 isoforms Alpha-1 and Alpha-2, and to a lesser extent to pertussis toxin-insensitive G alpha proteins GNAZ and GNA15 (PubMed:12068084). They mediate an array of downstream cellular responses, including inhibition of adenylate cyclase activity and both N-type and L-type calcium channels, activation of inward rectifying potassium channels, mitogen-activated protein kinase (MAPK), phospholipase C (PLC), phosphoinositide/protein kinase (PKC), phosphoinositide 3-kinase (PI3K) and regulation of NF-kappa-B (By similarity). Also couples to adenylate cyclase stimulatory G alpha proteins (By similarity). The selective temporal coupling to G-proteins and subsequent signaling can be regulated by RGSZ proteins, such as RGS9, RGS17 and RGS4 (By similarity). Phosphorylation by members of the GPRK subfamily of Ser/Thr protein kinases and association with beta-arrestins is involved in short-term receptor desensitization (By similarity). Beta-arrestins associate with the GPRK-phosphorylated receptor and uncouple it from the G-protein thus terminating signal transduction (By similarity). The phosphorylated receptor is internalized through endocytosis via clathrin-coated pits which involves beta-arrestins (By similarity). The activation of the ERK pathway occurs either in a G-protein-dependent or a beta-arrestin-dependent manner and is regulated by agonist-specific receptor phosphorylation (By similarity). Acts as a class A G-protein coupled receptor (GPCR) which dissociates from beta-arrestin at or near the plasma membrane and undergoes rapid recycling (By similarity). Receptor down-regulation pathways are varying with the agonist and occur dependent or independent of G-protein coupling (By similarity). Endogenous ligands induce rapid desensitization, endocytosis and recycling (By similarity). Heterooligomerization with other GPCRs can modulate agonist binding, signaling and trafficking properties (By similarity). {ECO:0000250|UniProtKB:P33535, ECO:0000269|PubMed:10529478, ECO:0000269|PubMed:12068084, ECO:0000269|PubMed:12589820, ECO:0000269|PubMed:7891175, ECO:0000269|PubMed:7905839, ECO:0000269|PubMed:7957926, ECO:0000269|PubMed:9689128, ECO:0000303|PubMed:10836142, ECO:0000303|PubMed:19300905}.; FUNCTION: [Isoform 12]: Couples to GNAS and is proposed to be involved in excitatory effects. {ECO:0000269|PubMed:20525224}.; FUNCTION: [Isoform 16]: Does not bind agonists but may act through oligomerization with binding-competent OPRM1 isoforms and reduce their ligand binding activity. {ECO:0000269|PubMed:16580639}.; FUNCTION: [Isoform 17]: Does not bind agonists but may act through oligomerization with binding-competent OPRM1 isoforms and reduce their ligand binding activity. {ECO:0000269|PubMed:16580639}. |
A6QL64 | ANKRD36 | S1033 | ochoa | Ankyrin repeat domain-containing protein 36A | None |
A8KAH6 | HSPB2-C11orf52 | S100 | ochoa | Heat shock protein beta-2 | May regulate the kinase DMPK. {ECO:0000256|ARBA:ARBA00059393}. |
O14513 | NCKAP5 | S613 | ochoa | Nck-associated protein 5 (NAP-5) (Peripheral clock protein) | None |
O15061 | SYNM | S341 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O15516 | CLOCK | S106 | psp | Circadian locomoter output cycles protein kaput (hCLOCK) (EC 2.3.1.48) (Class E basic helix-loop-helix protein 8) (bHLHe8) | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. Regulates the circadian expression of ICAM1, VCAM1, CCL2, THPO and MPL and also acts as an enhancer of the transactivation potential of NF-kappaB. Plays an important role in the homeostatic regulation of sleep. The CLOCK-BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The CLOCK-BMAL2 heterodimer activates the transcription of SERPINE1/PAI1 and BHLHE40/DEC1. The preferred binding motif for the CLOCK-BMAL1 heterodimer is 5'-CACGTGA-3', which contains a flanking adenine nucleotide at the 3-prime end of the canonical 6-nucleotide E-box sequence (PubMed:23229515). CLOCK specifically binds to the half-site 5'-CAC-3', while BMAL1 binds to the half-site 5'-GTGA-3' (PubMed:23229515). The CLOCK-BMAL1 heterodimer also recognizes the non-canonical E-box motifs 5'-AACGTGA-3' and 5'-CATGTGA-3' (PubMed:23229515). CLOCK has an intrinsic acetyltransferase activity, which enables circadian chromatin remodeling by acetylating histones and nonhistone proteins, including its own partner BMAL1. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region (PubMed:21980503). The acetyltransferase activity of CLOCK is as important as its transcription activity in circadian control. Acetylates metabolic enzymes IMPDH2 and NDUFA9 in a circadian manner. Facilitated by BMAL1, rhythmically interacts and acetylates argininosuccinate synthase 1 (ASS1) leading to enzymatic inhibition of ASS1 as well as the circadian oscillation of arginine biosynthesis and subsequent ureagenesis (PubMed:28985504). Drives the circadian rhythm of blood pressure through transcriptional activation of ATP1B1 (By similarity). {ECO:0000250|UniProtKB:O08785, ECO:0000269|PubMed:14645221, ECO:0000269|PubMed:18587630, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:21980503, ECO:0000269|PubMed:22284746, ECO:0000269|PubMed:23229515, ECO:0000269|PubMed:23785138, ECO:0000269|PubMed:24005054, ECO:0000269|PubMed:28985504}. |
O60763 | USO1 | S881 | ochoa | General vesicular transport factor p115 (Protein USO1 homolog) (Transcytosis-associated protein) (TAP) (Vesicle-docking protein) | General vesicular transport factor required for intercisternal transport in the Golgi stack; it is required for transcytotic fusion and/or subsequent binding of the vesicles to the target membrane. May well act as a vesicular anchor by interacting with the target membrane and holding the vesicular and target membranes in proximity. {ECO:0000250|UniProtKB:P41542}. |
O94921 | CDK14 | S134 | ochoa | Cyclin-dependent kinase 14 (EC 2.7.11.22) (Cell division protein kinase 14) (Serine/threonine-protein kinase PFTAIRE-1) (hPFTAIRE1) | Serine/threonine-protein kinase involved in the control of the eukaryotic cell cycle, whose activity is controlled by an associated cyclin. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by mediating the phosphorylation of LRP6 at 'Ser-1490', leading to the activation of the Wnt signaling pathway. Acts as a regulator of cell cycle progression and cell proliferation via its interaction with CCDN3. Phosphorylates RB1 in vitro, however the relevance of such result remains to be confirmed in vivo. May also play a role in meiosis, neuron differentiation and may indirectly act as a negative regulator of insulin-responsive glucose transport. {ECO:0000269|PubMed:16461467, ECO:0000269|PubMed:17517622, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949}. |
P00338 | LDHA | S237 | ochoa | L-lactate dehydrogenase A chain (LDH-A) (EC 1.1.1.27) (Cell proliferation-inducing gene 19 protein) (LDH muscle subunit) (LDH-M) (Renal carcinoma antigen NY-REN-59) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:11276087}. |
P02652 | APOA2 | S68 | ochoa | Apolipoprotein A-II (Apo-AII) (ApoA-II) (Apolipoprotein A2) [Cleaved into: Proapolipoprotein A-II (ProapoA-II); Truncated apolipoprotein A-II (Apolipoprotein A-II(1-76))] | May stabilize HDL (high density lipoprotein) structure by its association with lipids, and affect the HDL metabolism. |
P07195 | LDHB | S238 | ochoa | L-lactate dehydrogenase B chain (LDH-B) (EC 1.1.1.27) (LDH heart subunit) (LDH-H) (Renal carcinoma antigen NY-REN-46) | Interconverts simultaneously and stereospecifically pyruvate and lactate with concomitant interconversion of NADH and NAD(+). {ECO:0000269|PubMed:27618187}. |
P13861 | PRKAR2A | S254 | ochoa | cAMP-dependent protein kinase type II-alpha regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase. |
P14866 | HNRNPL | S188 | ochoa | Heterogeneous nuclear ribonucleoprotein L (hnRNP L) | Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements (PubMed:11809897, PubMed:22570490, PubMed:24164894, PubMed:25623890, PubMed:26051023). Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts (PubMed:2687284). Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (PubMed:11809897). As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPK and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Regulates alternative splicing of a core group of genes involved in neuronal differentiation, likely by mediating H3K36me3-coupled transcription elongation and co-transcriptional RNA processing via interaction with CHD8. {ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:22570490, ECO:0000269|PubMed:25623890, ECO:0000269|PubMed:26051023, ECO:0000269|PubMed:2687284, ECO:0000269|PubMed:33174841, ECO:0000269|PubMed:36537238}. |
P23415 | GLRA1 | S408 | psp | Glycine receptor subunit alpha-1 (Glycine receptor 48 kDa subunit) (Glycine receptor strychnine-binding subunit) | Subunit of heteromeric glycine-gated chloride channels (PubMed:14551753, PubMed:23994010, PubMed:25730860, PubMed:37821459). Plays an important role in the down-regulation of neuronal excitability (PubMed:8298642, PubMed:9009272). Contributes to the generation of inhibitory postsynaptic currents (PubMed:25445488). Channel activity is potentiated by ethanol (PubMed:25973519). Potentiation of channel activity by intoxicating levels of ethanol contribute to the sedative effects of ethanol (By similarity). {ECO:0000250|UniProtKB:Q64018, ECO:0000269|PubMed:14551753, ECO:0000269|PubMed:16144831, ECO:0000269|PubMed:2155780, ECO:0000269|PubMed:22715885, ECO:0000269|PubMed:22973015, ECO:0000269|PubMed:23994010, ECO:0000269|PubMed:25445488, ECO:0000269|PubMed:25730860, ECO:0000269|PubMed:25973519, ECO:0000269|PubMed:7920629, ECO:0000269|PubMed:7925268, ECO:0000269|PubMed:9009272, ECO:0000305|PubMed:8298642}. |
P25054 | APC | S127 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25205 | MCM3 | S292 | ochoa|psp | DNA replication licensing factor MCM3 (EC 3.6.4.12) (DNA polymerase alpha holoenzyme-associated protein P1) (P1-MCM3) (RLF subunit beta) (p102) | Acts as a component of the MCM2-7 complex (MCM complex) which is the replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. Core component of CDC45-MCM-GINS (CMG) helicase, the molecular machine that unwinds template DNA during replication, and around which the replisome is built (PubMed:32453425, PubMed:34694004, PubMed:34700328, PubMed:35585232). The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity (PubMed:32453425). Required for the entry in S phase and for cell division (Probable). {ECO:0000269|PubMed:32453425, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:34700328, ECO:0000269|PubMed:35585232, ECO:0000305|PubMed:35585232}. |
P25325 | MPST | S225 | ochoa | 3-mercaptopyruvate sulfurtransferase (MST) (EC 2.8.1.2) | Transfer of a sulfur ion to cyanide or to other thiol compounds. Also has weak rhodanese activity. Detoxifies cyanide and is required for thiosulfate biosynthesis. Acts as an antioxidant. In combination with cysteine aminotransferase (CAT), contributes to the catabolism of cysteine and is an important producer of hydrogen sulfide in the brain, retina and vascular endothelial cells. Hydrogen sulfide H(2)S is an important synaptic modulator, signaling molecule, smooth muscle contractor and neuroprotectant. Its production by the 3MST/CAT pathway is regulated by calcium ions. {ECO:0000250|UniProtKB:P97532}. |
P29374 | ARID4A | S427 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P30260 | CDC27 | S339 | ochoa | Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
P46100 | ATRX | S731 | ochoa | Transcriptional regulator ATRX (EC 3.6.4.12) (ATP-dependent helicase ATRX) (X-linked helicase II) (X-linked nuclear protein) (XNP) (Znf-HX) | Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3-containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase activity and catalyzes the replication-independent deposition of histone H3.3 in pericentric DNA repeats outside S-phase and telomeres, and the in vitro remodeling of H3.3-containing nucleosomes. Its heterochromatin targeting is proposed to involve a combinatorial readout of histone H3 modifications (specifically methylation states of H3K9 and H3K4) and association with CBX5. Involved in maintaining telomere structural integrity in embryonic stem cells which probably implies recruitment of CBX5 to telomeres. Reports on the involvement in transcriptional regulation of telomeric repeat-containing RNA (TERRA) are conflicting; according to a report, it is not sufficient to decrease chromatin condensation at telomeres nor to increase expression of telomeric RNA in fibroblasts (PubMed:24500201). May be involved in telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines. Acts as a negative regulator of chromatin incorporation of transcriptionally repressive histone MACROH2A1, particularily at telomeres and the alpha-globin cluster in erythroleukemic cells. Participates in the allele-specific gene expression at the imprinted IGF2/H19 gene locus. On the maternal allele, required for the chromatin occupancy of SMC1 and CTCTF within the H19 imprinting control region (ICR) and involved in esatblishment of histone tails modifications in the ICR. May be involved in brain development and facial morphogenesis. Binds to zinc-finger coding genes with atypical chromatin signatures and regulates its H3K9me3 levels. Forms a complex with ZNF274, TRIM28 and SETDB1 to facilitate the deposition and maintenance of H3K9me3 at the 3' exons of zinc-finger genes (PubMed:27029610). {ECO:0000269|PubMed:12953102, ECO:0000269|PubMed:14990586, ECO:0000269|PubMed:20504901, ECO:0000269|PubMed:20651253, ECO:0000269|PubMed:21029860, ECO:0000269|PubMed:22391447, ECO:0000269|PubMed:22829774, ECO:0000269|PubMed:24500201, ECO:0000269|PubMed:27029610}. |
P48643 | CCT5 | S270 | ochoa | T-complex protein 1 subunit epsilon (TCP-1-epsilon) (EC 3.6.1.-) (CCT-epsilon) (Chaperonin containing T-complex polypeptide 1 subunit 5) | Component of the chaperonin-containing T-complex (TRiC), a molecular chaperone complex that assists the folding of actin, tubulin and other proteins upon ATP hydrolysis (PubMed:25467444, PubMed:36493755, PubMed:35449234, PubMed:37193829). The TRiC complex mediates the folding of WRAP53/TCAB1, thereby regulating telomere maintenance (PubMed:25467444). As part of the TRiC complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia (PubMed:20080638). {ECO:0000269|PubMed:20080638, ECO:0000269|PubMed:25467444, ECO:0000269|PubMed:35449234, ECO:0000269|PubMed:36493755, ECO:0000269|PubMed:37193829}. |
P49005 | POLD2 | S257 | ochoa | DNA polymerase delta subunit 2 (DNA polymerase delta subunit p50) | Accessory component of both the DNA polymerase delta complex and the DNA polymerase zeta complex (PubMed:17317665, PubMed:22801543, PubMed:24449906). As a component of the trimeric and tetrameric DNA polymerase delta complexes (Pol-delta3 and Pol-delta4, respectively), plays a role in high fidelity genome replication, including in lagging strand synthesis, and repair (PubMed:12403614, PubMed:16510448, PubMed:19074196, PubMed:20334433, PubMed:24035200). Pol-delta3 and Pol-delta4 are characterized by the absence or the presence of POLD4. They exhibit differences in catalytic activity. Most notably, Pol-delta3 shows higher proofreading activity than Pol-delta4 (PubMed:19074196, PubMed:20334433). Although both Pol-delta3 and Pol-delta4 process Okazaki fragments in vitro, Pol-delta3 may also be better suited to fulfill this task, exhibiting near-absence of strand displacement activity compared to Pol-delta4 and stalling on encounter with the 5'-blocking oligonucleotides. Pol-delta3 idling process may avoid the formation of a gap, while maintaining a nick that can be readily ligated (PubMed:24035200). Along with DNA polymerase kappa, DNA polymerase delta carries out approximately half of nucleotide excision repair (NER) synthesis following UV irradiation (PubMed:20227374). Under conditions of DNA replication stress, required for the repair of broken replication forks through break-induced replication (BIR) (PubMed:24310611). Involved in the translesion synthesis (TLS) of templates carrying O6-methylguanine or abasic sites performed by Pol-delta4, independently of DNA polymerase zeta (REV3L) or eta (POLH). Facilitates abasic site bypass by DNA polymerase delta by promoting extension from the nucleotide inserted opposite the lesion. Also involved in TLS as a component of the DNA polymerase zeta complex (PubMed:24449906). Along with POLD3, dramatically increases the efficiency and processivity of DNA synthesis of the DNA polymerase zeta complex compared to the minimal zeta complex, consisting of only REV3L and REV7 (PubMed:24449906). {ECO:0000269|PubMed:12403614, ECO:0000269|PubMed:16510448, ECO:0000269|PubMed:19074196, ECO:0000269|PubMed:20227374, ECO:0000269|PubMed:20334433, ECO:0000269|PubMed:24035200, ECO:0000269|PubMed:24310611, ECO:0000269|PubMed:24449906}. |
P51532 | SMARCA4 | S721 | psp | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 4 (SMARCA4) (EC 3.6.4.-) (BRG1-associated factor 190A) (BAF190A) (Mitotic growth and transcription activator) (Protein BRG-1) (Protein brahma homolog 1) (SNF2-beta) (Transcription activator BRG1) | ATPase involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner (PubMed:15075294, PubMed:29374058, PubMed:30339381, PubMed:32459350). Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating the calcium-dependent release of a repressor complex and the recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by SMARCA4-dependent recruitment of a phospho-RB1-HDAC repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves the release of HDAC1 and recruitment of CREBBP (By similarity). Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and the neuron-specific chromatin remodeling complex (nBAF complex). During neural development, a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. SMARCA4/BAF190A may promote neural stem cell self-renewal/proliferation by enhancing Notch-dependent proliferative signals, while concurrently making the neural stem cell insensitive to SHH-dependent differentiating cues (By similarity). Acts as a corepressor of ZEB1 to regulate E-cadherin transcription and is required for induction of epithelial-mesenchymal transition (EMT) by ZEB1 (PubMed:20418909). Binds via DLX1 to enhancers located in the intergenic region between DLX5 and DLX6 and this binding is stabilized by the long non-coding RNA (lncRNA) Evf2 (By similarity). Binds to RNA in a promiscuous manner (By similarity). In brown adipose tissue, involved in the regulation of thermogenic genes expression (By similarity). {ECO:0000250|UniProtKB:Q3TKT4, ECO:0000250|UniProtKB:Q8K1P7, ECO:0000269|PubMed:15075294, ECO:0000269|PubMed:19571879, ECO:0000269|PubMed:20418909, ECO:0000269|PubMed:29374058, ECO:0000269|PubMed:30339381, ECO:0000269|PubMed:32459350, ECO:0000303|PubMed:22952240, ECO:0000303|PubMed:26601204}. |
P62841 | RPS15 | S29 | ochoa | Small ribosomal subunit protein uS19 (40S ribosomal protein S15) (RIG protein) | Component of the small ribosomal subunit (PubMed:23636399). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399). {ECO:0000269|PubMed:23636399}. |
P62854 | RPS26 | S57 | ochoa | Small ribosomal subunit protein eS26 (40S ribosomal protein S26) | Component of the small ribosomal subunit (PubMed:23636399, PubMed:25901680, PubMed:25957688). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:23636399, PubMed:25901680, PubMed:25957688). {ECO:0000269|PubMed:23636399, ECO:0000269|PubMed:25901680, ECO:0000269|PubMed:25957688}. |
P78527 | PRKDC | S2029 | psp | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
Q02078 | MEF2A | S59 | psp | Myocyte-specific enhancer factor 2A (Serum response factor-like protein 1) | Transcriptional activator which binds specifically to the MEF2 element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific genes. Also involved in the activation of numerous growth factor- and stress-induced genes. Mediates cellular functions not only in skeletal and cardiac muscle development, but also in neuronal differentiation and survival. Plays diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK signaling in muscle-specific and/or growth factor-related transcription. In cerebellar granule neurons, phosphorylated and sumoylated MEF2A represses transcription of NUR77 promoting synaptic differentiation. Associates with chromatin to the ZNF16 promoter. {ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:12691662, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:16371476, ECO:0000269|PubMed:16484498, ECO:0000269|PubMed:16563226, ECO:0000269|PubMed:21468593, ECO:0000269|PubMed:9858528}. |
Q02952 | AKAP12 | S1251 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q06413 | MEF2C | S59 | psp | Myocyte-specific enhancer factor 2C (Myocyte enhancer factor 2C) | Transcription activator which binds specifically to the MEF2 element present in the regulatory regions of many muscle-specific genes. Controls cardiac morphogenesis and myogenesis, and is also involved in vascular development. Enhances transcriptional activation mediated by SOX18. Plays an essential role in hippocampal-dependent learning and memory by suppressing the number of excitatory synapses and thus regulating basal and evoked synaptic transmission. Crucial for normal neuronal development, distribution, and electrical activity in the neocortex. Necessary for proper development of megakaryocytes and platelets and for bone marrow B-lymphopoiesis. Required for B-cell survival and proliferation in response to BCR stimulation, efficient IgG1 antibody responses to T-cell-dependent antigens and for normal induction of germinal center B-cells. May also be involved in neurogenesis and in the development of cortical architecture (By similarity). Isoforms that lack the repressor domain are more active than isoform 1. {ECO:0000250|UniProtKB:Q8CFN5, ECO:0000269|PubMed:11904443, ECO:0000269|PubMed:15340086, ECO:0000269|PubMed:15831463, ECO:0000269|PubMed:15834131, ECO:0000269|PubMed:9069290, ECO:0000269|PubMed:9384584}. |
Q08379 | GOLGA2 | S123 | ochoa | Golgin subfamily A member 2 (130 kDa cis-Golgi matrix protein) (GM130) (GM130 autoantigen) (Golgin-95) | Peripheral membrane component of the cis-Golgi stack that acts as a membrane skeleton that maintains the structure of the Golgi apparatus, and as a vesicle thether that facilitates vesicle fusion to the Golgi membrane (Probable) (PubMed:16489344). Required for normal protein transport from the endoplasmic reticulum to the Golgi apparatus and the cell membrane (By similarity). Together with p115/USO1 and STX5, involved in vesicle tethering and fusion at the cis-Golgi membrane to maintain the stacked and inter-connected structure of the Golgi apparatus. Plays a central role in mitotic Golgi disassembly: phosphorylation at Ser-37 by CDK1 at the onset of mitosis inhibits the interaction with p115/USO1, preventing tethering of COPI vesicles and thereby inhibiting transport through the Golgi apparatus during mitosis (By similarity). Also plays a key role in spindle pole assembly and centrosome organization (PubMed:26165940). Promotes the mitotic spindle pole assembly by activating the spindle assembly factor TPX2 to nucleate microtubules around the Golgi and capture them to couple mitotic membranes to the spindle: upon phosphorylation at the onset of mitosis, GOLGA2 interacts with importin-alpha via the nuclear localization signal region, leading to recruit importin-alpha to the Golgi membranes and liberate the spindle assembly factor TPX2 from importin-alpha. TPX2 then activates AURKA kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GOLGA2, thus linking Golgi membranes to the spindle (PubMed:19242490, PubMed:26165940). Regulates the meiotic spindle pole assembly, probably via the same mechanism (By similarity). Also regulates the centrosome organization (PubMed:18045989, PubMed:19109421). Also required for the Golgi ribbon formation and glycosylation of membrane and secretory proteins (PubMed:16489344, PubMed:17314401). {ECO:0000250|UniProtKB:Q62839, ECO:0000250|UniProtKB:Q921M4, ECO:0000269|PubMed:16489344, ECO:0000269|PubMed:17314401, ECO:0000269|PubMed:18045989, ECO:0000269|PubMed:19109421, ECO:0000269|PubMed:19242490, ECO:0000269|PubMed:26165940, ECO:0000305|PubMed:26363069}. |
Q12888 | TP53BP1 | S809 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q13501 | SQSTM1 | S370 | ochoa | Sequestosome-1 (EBI3-associated protein of 60 kDa) (EBIAP) (p60) (Phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa) (Ubiquitin-binding protein p62) (p62) | Molecular adapter required for selective macroautophagy (aggrephagy) by acting as a bridge between polyubiquitinated proteins and autophagosomes (PubMed:15340068, PubMed:15953362, PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22017874, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:33509017, PubMed:34471133, PubMed:34893540, PubMed:35831301, PubMed:37306101, PubMed:37802024). Promotes the recruitment of ubiquitinated cargo proteins to autophagosomes via multiple domains that bridge proteins and organelles in different steps (PubMed:16286508, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:29343546, PubMed:29507397, PubMed:34893540, PubMed:37802024). SQSTM1 first mediates the assembly and removal of ubiquitinated proteins by undergoing liquid-liquid phase separation upon binding to ubiquitinated proteins via its UBA domain, leading to the formation of insoluble cytoplasmic inclusions, known as p62 bodies (PubMed:15911346, PubMed:20168092, PubMed:22017874, PubMed:24128730, PubMed:29343546, PubMed:29507397, PubMed:31857589, PubMed:37802024). SQSTM1 then interacts with ATG8 family proteins on autophagosomes via its LIR motif, leading to p62 body recruitment to autophagosomes, followed by autophagic clearance of ubiquitinated proteins (PubMed:16286508, PubMed:17580304, PubMed:20168092, PubMed:22622177, PubMed:24128730, PubMed:28404643, PubMed:37802024). SQSTM1 is itself degraded along with its ubiquitinated cargos (PubMed:16286508, PubMed:17580304, PubMed:37802024). Also required to recruit ubiquitinated proteins to PML bodies in the nucleus (PubMed:20168092). Also involved in autophagy of peroxisomes (pexophagy) in response to reactive oxygen species (ROS) by acting as a bridge between ubiquitinated PEX5 receptor and autophagosomes (PubMed:26344566). Acts as an activator of the NFE2L2/NRF2 pathway via interaction with KEAP1: interaction inactivates the BCR(KEAP1) complex by sequestering the complex in inclusion bodies, promoting nuclear accumulation of NFE2L2/NRF2 and subsequent expression of cytoprotective genes (PubMed:20452972, PubMed:28380357, PubMed:33393215, PubMed:37306101). Promotes relocalization of 'Lys-63'-linked ubiquitinated STING1 to autophagosomes (PubMed:29496741). Involved in endosome organization by retaining vesicles in the perinuclear cloud: following ubiquitination by RNF26, attracts specific vesicle-associated adapters, forming a molecular bridge that restrains cognate vesicles in the perinuclear region and organizes the endosomal pathway for efficient cargo transport (PubMed:27368102, PubMed:33472082). Sequesters tensin TNS2 into cytoplasmic puncta, promoting TNS2 ubiquitination and proteasomal degradation (PubMed:25101860). May regulate the activation of NFKB1 by TNF-alpha, nerve growth factor (NGF) and interleukin-1 (PubMed:10356400, PubMed:10747026, PubMed:11244088, PubMed:12471037, PubMed:16079148, PubMed:19931284). May play a role in titin/TTN downstream signaling in muscle cells (PubMed:15802564). Adapter that mediates the interaction between TRAF6 and CYLD (By similarity). {ECO:0000250|UniProtKB:Q64337, ECO:0000269|PubMed:10356400, ECO:0000269|PubMed:10747026, ECO:0000269|PubMed:11244088, ECO:0000269|PubMed:12471037, ECO:0000269|PubMed:15340068, ECO:0000269|PubMed:15802564, ECO:0000269|PubMed:15911346, ECO:0000269|PubMed:15953362, ECO:0000269|PubMed:16079148, ECO:0000269|PubMed:16286508, ECO:0000269|PubMed:17580304, ECO:0000269|PubMed:19931284, ECO:0000269|PubMed:20168092, ECO:0000269|PubMed:20452972, ECO:0000269|PubMed:22017874, ECO:0000269|PubMed:22622177, ECO:0000269|PubMed:24128730, ECO:0000269|PubMed:25101860, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:27368102, ECO:0000269|PubMed:28380357, ECO:0000269|PubMed:28404643, ECO:0000269|PubMed:29343546, ECO:0000269|PubMed:29496741, ECO:0000269|PubMed:29507397, ECO:0000269|PubMed:31857589, ECO:0000269|PubMed:33393215, ECO:0000269|PubMed:33472082, ECO:0000269|PubMed:33509017, ECO:0000269|PubMed:34471133, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:35831301, ECO:0000269|PubMed:37306101, ECO:0000269|PubMed:37802024}. |
Q13563 | PKD2 | S835 | ochoa | Polycystin-2 (PC2) (Autosomal dominant polycystic kidney disease type II protein) (Polycystic kidney disease 2 protein) (Polycystwin) (R48321) (Transient receptor potential cation channel subfamily P member 2) | Forms a nonselective cation channel (PubMed:11854751, PubMed:11991947, PubMed:15692563, PubMed:26269590, PubMed:27071085, PubMed:31441214, PubMed:39009345). Can function as a homotetrameric ion channel or can form heteromer with PKD1 (PubMed:31441214, PubMed:33164752). Displays distinct function depending on its subcellular localization and regulation by its binding partners (PubMed:11854751, PubMed:11991947, PubMed:27214281, PubMed:29899465). In primary cilium functions as a cation channel, with a preference for monovalent cations over divalent cations that allows K(+), Na(+) and Ca(2+) influx, with low selectivity for Ca(2+) (PubMed:27071085). Involved in fluid-flow mechanosensation by the primary cilium in renal epithelium (By similarity). In the endoplasmic reticulum, likely functions as a K(+) channel to facilitate Ca(2+) release (By similarity). The heterotetrameric PKD1/PKD2 channel has higher Ca(2+) permeability than homomeric PKD2 channel and acts as a primarily Ca(2+)-permeable channel (PubMed:31441214). Interacts with and acts as a regulator of a number of other channels, such as TRPV4, TRPC1, IP3R, RYR2, ultimately further affecting intracellular signaling, to modulate intracellular Ca(2+) signaling (PubMed:11854751, PubMed:11991947, PubMed:27214281, PubMed:29899465). Together with TRPV4, forms mechano- and thermosensitive channels in cilium (PubMed:18695040). In cardiomyocytes, PKD2 modulates Ca(2+) release from stimulated RYR2 receptors through direct association (By similarity). Also involved in left-right axis specification via its role in sensing nodal flow; forms a complex with PKD1L1 in cilia to facilitate flow detection in left-right patterning (By similarity). Acts as a regulator of cilium length together with PKD1 (By similarity). Mediates systemic blood pressure and contributes to the myogenic response in cerebral arteries though vasoconstriction (By similarity). {ECO:0000250|UniProtKB:O35245, ECO:0000269|PubMed:11854751, ECO:0000269|PubMed:11991947, ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:18695040, ECO:0000269|PubMed:26269590, ECO:0000269|PubMed:27071085, ECO:0000269|PubMed:27214281, ECO:0000269|PubMed:29899465, ECO:0000269|PubMed:31441214, ECO:0000269|PubMed:33164752, ECO:0000269|PubMed:39009345}. |
Q13621 | SLC12A1 | S91 | psp | Solute carrier family 12 member 1 (Bumetanide-sensitive sodium-(potassium)-chloride cotransporter 1) (BSC1) (Kidney-specific Na-K-Cl symporter) (Na-K-2Cl cotransporter 2) (NKCC2) | Renal sodium, potassium and chloride ion cotransporter that mediates the transepithelial NaCl reabsorption in the thick ascending limb and plays an essential role in the urinary concentration and volume regulation (PubMed:21321328). Electrically silent transporter system (By similarity). {ECO:0000250|UniProtKB:P55014, ECO:0000250|UniProtKB:P55016, ECO:0000269|PubMed:21321328}. |
Q13772 | NCOA4 | S334 | ochoa | Nuclear receptor coactivator 4 (NCoA-4) (Androgen receptor coactivator 70 kDa protein) (70 kDa AR-activator) (70 kDa androgen receptor coactivator) (Androgen receptor-associated protein of 70 kDa) (Ferritin cargo receptor NCOA4) (Ret-activating protein ELE1) | Cargo receptor for the autophagic turnover of the iron-binding ferritin complex, playing a central role in iron homeostasis (PubMed:25327288, PubMed:26436293). Acts as an adapter for delivery of ferritin to lysosomes and autophagic degradation of ferritin, a process named ferritinophagy (PubMed:25327288, PubMed:26436293). Targets the iron-binding ferritin complex to autolysosomes following starvation or iron depletion (PubMed:25327288). Ensures efficient erythropoiesis, possibly by regulating hemin-induced erythroid differentiation (PubMed:26436293). In some studies, has been shown to enhance the androgen receptor AR transcriptional activity as well as acting as ligand-independent coactivator of the peroxisome proliferator-activated receptor (PPAR) gamma (PubMed:10347167, PubMed:8643607). Another study shows only weak behavior as a coactivator for the androgen receptor and no alteration of the ligand responsiveness of the AR (PubMed:10517667). Binds to DNA replication origins, binding is not restricted to sites of active transcription and may likely be independent from the nuclear receptor transcriptional coactivator function (PubMed:24910095). May inhibit activation of DNA replication origins, possibly by obstructing DNA unwinding via interaction with the MCM2-7 complex (PubMed:24910095). {ECO:0000269|PubMed:10347167, ECO:0000269|PubMed:10517667, ECO:0000269|PubMed:24910095, ECO:0000269|PubMed:25327288, ECO:0000269|PubMed:26436293, ECO:0000269|PubMed:8643607}. |
Q15262 | PTPRK | S804 | ochoa | Receptor-type tyrosine-protein phosphatase kappa (Protein-tyrosine phosphatase kappa) (R-PTP-kappa) (EC 3.1.3.48) | Regulation of processes involving cell contact and adhesion such as growth control, tumor invasion, and metastasis. Negative regulator of EGFR signaling pathway. Forms complexes with beta-catenin and gamma-catenin/plakoglobin. Beta-catenin may be a substrate for the catalytic activity of PTPRK/PTP-kappa. {ECO:0000269|PubMed:19836242}. |
Q15382 | RHEB | S130 | psp | GTP-binding protein Rheb (EC 3.6.5.-) (Ras homolog enriched in brain) | Small GTPase that acts as an allosteric activator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12869586, PubMed:12906785, PubMed:15340059, PubMed:15854902, PubMed:16098514, PubMed:20381137, PubMed:22819219, PubMed:24529379, PubMed:29416044, PubMed:32470140, PubMed:33157014, PubMed:25816988). In response to nutrients, growth factors or amino acids, specifically activates the protein kinase activity of MTOR, the catalytic component of the mTORC1 complex: acts by causing a conformational change that allows the alignment of residues in the active site of MTOR, thereby enhancing the phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) (PubMed:29236692, PubMed:33157014). RHEB is also required for localization of the TSC-TBC complex to lysosomal membranes (PubMed:24529379). In response to starvation, RHEB is inactivated by the TSC-TBC complex, preventing activation of mTORC1 (PubMed:24529379, PubMed:33157014). Has low intrinsic GTPase activity (PubMed:15340059). {ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12869586, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:15854902, ECO:0000269|PubMed:16098514, ECO:0000269|PubMed:20381137, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:29236692, ECO:0000269|PubMed:29416044, ECO:0000269|PubMed:32470140, ECO:0000269|PubMed:33157014}. |
Q15643 | TRIP11 | S383 | ochoa | Thyroid receptor-interacting protein 11 (TR-interacting protein 11) (TRIP-11) (Clonal evolution-related gene on chromosome 14 protein) (Golgi-associated microtubule-binding protein 210) (GMAP-210) (Trip230) | Is a membrane tether required for vesicle tethering to Golgi. Has an essential role in the maintenance of Golgi structure and function (PubMed:25473115, PubMed:30728324). It is required for efficient anterograde and retrograde trafficking in the early secretory pathway, functioning at both the ER-to-Golgi intermediate compartment (ERGIC) and Golgi complex (PubMed:25717001). Binds the ligand binding domain of the thyroid receptor (THRB) in the presence of triiodothyronine and enhances THRB-modulated transcription. {ECO:0000269|PubMed:10189370, ECO:0000269|PubMed:25473115, ECO:0000269|PubMed:25717001, ECO:0000269|PubMed:30728324, ECO:0000269|PubMed:9256431}. |
Q16082 | HSPB2 | S100 | ochoa | Heat shock protein beta-2 (HspB2) (DMPK-binding protein) (MKBP) (Heat shock protein family B member 2) | May regulate the kinase DMPK. {ECO:0000269|PubMed:9490724}. |
Q16821 | PPP1R3A | S290 | ochoa | Protein phosphatase 1 regulatory subunit 3A (Protein phosphatase 1 glycogen-associated regulatory subunit) (Protein phosphatase type-1 glycogen targeting subunit) (RG1) | Seems to act as a glycogen-targeting subunit for PP1. PP1 is essential for cell division, and participates in the regulation of glycogen metabolism, muscle contractility and protein synthesis. Plays an important role in glycogen synthesis but is not essential for insulin activation of glycogen synthase (By similarity). {ECO:0000250}. |
Q16891 | IMMT | S121 | ochoa | MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}. |
Q49A88 | CCDC14 | S702 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q4L180 | FILIP1L | S959 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q4L180 | FILIP1L | S962 | ochoa | Filamin A-interacting protein 1-like (130 kDa GPBP-interacting protein) (90 kDa GPBP-interacting protein) (Protein down-regulated in ovarian cancer 1) (DOC-1) | Acts as a regulator of the antiangiogenic activity on endothelial cells. When overexpressed in endothelial cells, leads to inhibition of cell proliferation and migration and an increase in apoptosis. Inhibits melanoma growth When expressed in tumor-associated vasculature. {ECO:0000269|PubMed:18794120}. |
Q4V328 | GRIPAP1 | S704 | ochoa | GRIP1-associated protein 1 (GRASP-1) [Cleaved into: GRASP-1 C-terminal chain (30kDa C-terminus form)] | Regulates the endosomal recycling back to the neuronal plasma membrane, possibly by connecting early and late recycling endosomal domains and promoting segregation of recycling endosomes from early endosomal membranes. Involved in the localization of recycling endosomes to dendritic spines, thereby playing a role in the maintenance of dendritic spine morphology. Required for the activity-induced AMPA receptor recycling to dendrite membranes and for long-term potentiation and synaptic plasticity (By similarity). {ECO:0000250|UniProtKB:Q9JHZ4}.; FUNCTION: [GRASP-1 C-terminal chain]: Functions as a scaffold protein to facilitate MAP3K1/MEKK1-mediated activation of the JNK1 kinase by phosphorylation, possibly by bringing MAP3K1/MEKK1 and JNK1 in close proximity. {ECO:0000269|PubMed:17761173}. |
Q5HYJ3 | FAM76B | S193 | ochoa | Protein FAM76B | Negatively regulates the NF-kappa-B-mediated inflammatory pathway by preventing the translocation of HNRNPA2B1 from the nucleus to the cytoplasm (PubMed:37643469). Inhibits the PI3K/Akt/NF-kappa-B pathway-mediated polarization of M1 macrophages by binding to and stabilizing PIK3CD mRNA, resulting in increased levels of PIK3CD protein and increased levels of phosphorylated downstream target AKT which leads to decreased NF-kappa-B signaling (PubMed:38421448). {ECO:0000269|PubMed:37643469, ECO:0000269|PubMed:38421448}. |
Q5JPF3 | ANKRD36C | S829 | ochoa | Ankyrin repeat domain-containing protein 36C (Protein immuno-reactive with anti-PTH polyclonal antibodies) | None |
Q5JSH3 | WDR44 | S162 | ochoa | WD repeat-containing protein 44 (Rab11-binding protein) (Rab11BP) (Rabphilin-11) | Downstream effector for Rab11 which regulates Rab11 intracellular membrane trafficking functions such as endocytic recycling, intracellular ciliogenesis and protein export (PubMed:31204173, PubMed:32344433). ATK1-mediated phosphorylation of WDR44 induces binding to Rab11 which activates endocytic recycling of transferrin receptor back to the plasma membrane (PubMed:31204173). When bound to Rab11, prevents the formation of the ciliogenic Rab11-Rabin8/RAB3IP-RAB11FIP3 complex, therefore inhibiting preciliary trafficking and ciliogenesis (PubMed:31204173). Participates in neo-synthesized protein export by connecting the endoplasmic reticulum (ER) with the endosomal tubule via direct interactions with the integral ER proteins VAPA or VAPB and the endosomal protein GRAFs (GRAF1/ARHGAP26 or GRAF2/ARHGAP10), which facilitates the transfer of proteins such as E-cadherin, MPP14 and CFTR into a Rab8-Rab10-Rab11-dependent export route (PubMed:32344433). {ECO:0000269|PubMed:31204173, ECO:0000269|PubMed:32344433}. |
Q5SVQ8 | ZBTB41 | S759 | ochoa | Zinc finger and BTB domain-containing protein 41 | May be involved in transcriptional regulation. |
Q5T5Y3 | CAMSAP1 | S1126 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5T5Y3 | CAMSAP1 | S1427 | ochoa | Calmodulin-regulated spectrin-associated protein 1 | Key microtubule-organizing protein that specifically binds the minus-end of non-centrosomal microtubules and regulates their dynamics and organization (PubMed:19508979, PubMed:21834987, PubMed:24117850, PubMed:24486153, PubMed:24706919). Specifically recognizes growing microtubule minus-ends and stabilizes microtubules (PubMed:24486153, PubMed:24706919). Acts on free microtubule minus-ends that are not capped by microtubule-nucleating proteins or other factors and protects microtubule minus-ends from depolymerization (PubMed:24486153, PubMed:24706919). In contrast to CAMSAP2 and CAMSAP3, tracks along the growing tips of minus-end microtubules without significantly affecting the polymerization rate: binds at the very tip of the microtubules minus-end and acts as a minus-end tracking protein (-TIP) that dissociates from microtubules after allowing tubulin incorporation (PubMed:24486153, PubMed:24706919). Through interaction with spectrin may regulate neurite outgrowth (PubMed:24117850). {ECO:0000269|PubMed:19508979, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:24117850, ECO:0000269|PubMed:24486153, ECO:0000269|PubMed:24706919}. |
Q5VT06 | CEP350 | S2860 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VZL5 | ZMYM4 | S104 | ochoa | Zinc finger MYM-type protein 4 (Zinc finger protein 262) | Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:21834987}. |
Q68CZ2 | TNS3 | S698 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q6IQ55 | TTBK2 | S579 | ochoa | Tau-tubulin kinase 2 (EC 2.7.11.1) | Serine/threonine kinase that acts as a key regulator of ciliogenesis: controls the initiation of ciliogenesis by binding to the distal end of the basal body and promoting the removal of CCP110, which caps the mother centriole, leading to the recruitment of IFT proteins, which build the ciliary axoneme. Has some substrate preference for proteins that are already phosphorylated on a Tyr residue at the +2 position relative to the phosphorylation site. Able to phosphorylate tau on serines in vitro (PubMed:23141541). Phosphorylates MPHOSPH9 which promotes its ubiquitination and proteasomal degradation, loss of MPHOSPH9 facilitates the removal of the CP110-CEP97 complex (a negative regulator of ciliogenesis) from the mother centrioles, promoting the initiation of ciliogenesis (PubMed:30375385). Required for recruitment of CPLANE2 and INTU to the mother centriole (By similarity). {ECO:0000250|UniProtKB:Q3UVR3, ECO:0000269|PubMed:21548880, ECO:0000269|PubMed:23141541, ECO:0000269|PubMed:30375385}. |
Q6P2E9 | EDC4 | S585 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6UWR7 | ENPP6 | S71 | ochoa | Glycerophosphocholine cholinephosphodiesterase ENPP6 (GPC-Cpde) (EC 3.1.4.-) (EC 3.1.4.38) (Choline-specific glycerophosphodiester phosphodiesterase) (Ectonucleotide pyrophosphatase/phosphodiesterase family member 6) (E-NPP 6) (NPP-6) | Choline-specific glycerophosphodiesterase that hydrolyzes glycerophosphocholine (GPC) and lysophosphatidylcholine (LPC) and contributes to supplying choline to the cells (PubMed:15788404). Has a preference for LPC with short (12:0 and 14:0) or polyunsaturated (18:2 and 20:4) fatty acids. In vitro, hydrolyzes only choline-containing lysophospholipids, such as sphingosylphosphorylcholine (SPC), platelet-activating factor (PAF) and lysoPAF, but not other lysophospholipids (By similarity). {ECO:0000250|UniProtKB:Q8BGN3, ECO:0000269|PubMed:15788404}. |
Q7L8J4 | SH3BP5L | S350 | ochoa | SH3 domain-binding protein 5-like (SH3BP-5-like) | Functions as a guanine nucleotide exchange factor (GEF) for RAB11A. {ECO:0000269|PubMed:30217979}. |
Q7Z6Z7 | HUWE1 | S927 | psp | E3 ubiquitin-protein ligase HUWE1 (EC 2.3.2.26) (ARF-binding protein 1) (ARF-BP1) (HECT, UBA and WWE domain-containing protein 1) (HECT-type E3 ubiquitin transferase HUWE1) (Homologous to E6AP carboxyl terminus homologous protein 9) (HectH9) (Large structure of UREB1) (LASU1) (Mcl-1 ubiquitin ligase E3) (Mule) (Upstream regulatory element-binding protein 1) (URE-B1) (URE-binding protein 1) | E3 ubiquitin-protein ligase which mediates ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15567145, PubMed:15767685, PubMed:15989957, PubMed:17567951, PubMed:18488021, PubMed:19037095, PubMed:19713937, PubMed:20534529, PubMed:30217973). Regulates apoptosis by catalyzing the polyubiquitination and degradation of MCL1 (PubMed:15989957). Mediates monoubiquitination of DNA polymerase beta (POLB) at 'Lys-41', 'Lys-61' and 'Lys-81', thereby playing a role in base-excision repair (PubMed:19713937). Also ubiquitinates the p53/TP53 tumor suppressor and core histones including H1, H2A, H2B, H3 and H4 (PubMed:15567145, PubMed:15767685, PubMed:15989956). Ubiquitinates MFN2 to negatively regulate mitochondrial fusion in response to decreased stearoylation of TFRC (PubMed:26214738). Ubiquitination of MFN2 also takes place following induction of mitophagy; AMBRA1 acts as a cofactor for HUWE1-mediated ubiquitination (PubMed:30217973). Regulates neural differentiation and proliferation by catalyzing the polyubiquitination and degradation of MYCN (PubMed:18488021). May regulate abundance of CDC6 after DNA damage by polyubiquitinating and targeting CDC6 to degradation (PubMed:17567951). Mediates polyubiquitination of isoform 2 of PA2G4 (PubMed:19037095). Acts in concert with MYCBP2 to regulate the circadian clock gene expression by promoting the lithium-induced ubiquination and degradation of NR1D1 (PubMed:20534529). Binds to an upstream initiator-like sequence in the preprodynorphin gene (By similarity). Mediates HAPSTR1 degradation, but is also a required cofactor in the pathway by which HAPSTR1 governs stress signaling (PubMed:35776542). Acts as a regulator of the JNK and NF-kappa-B signaling pathways by mediating assembly of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains that are then recognized by TAB2: HUWE1 mediates branching of 'Lys-48'-linked chains of substrates initially modified with 'Lys-63'-linked conjugates by TRAF6 (PubMed:27746020). 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains protect 'Lys-63'-linkages from CYLD deubiquitination (PubMed:27746020). Ubiquitinates PPARA in hepatocytes (By similarity). {ECO:0000250|UniProtKB:P51593, ECO:0000250|UniProtKB:Q7TMY8, ECO:0000269|PubMed:15567145, ECO:0000269|PubMed:15767685, ECO:0000269|PubMed:15989956, ECO:0000269|PubMed:15989957, ECO:0000269|PubMed:17567951, ECO:0000269|PubMed:18488021, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19713937, ECO:0000269|PubMed:20534529, ECO:0000269|PubMed:26214738, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:30217973, ECO:0000269|PubMed:35776542}. |
Q7Z739 | YTHDF3 | S388 | ochoa | YTH domain-containing family protein 3 (DF3) | Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, and regulates their stability (PubMed:28106072, PubMed:28106076, PubMed:28281539, PubMed:32492408). M6A is a modification present at internal sites of mRNAs and some non-coding RNAs and plays a role in mRNA stability and processing (PubMed:22575960, PubMed:24284625, PubMed:28106072, PubMed:28281539, PubMed:32492408). Acts as a regulator of mRNA stability by promoting degradation of m6A-containing mRNAs via interaction with the CCR4-NOT complex or PAN3 (PubMed:32492408). The YTHDF paralogs (YTHDF1, YTHDF2 and YTHDF3) share m6A-containing mRNAs targets and act redundantly to mediate mRNA degradation and cellular differentiation (PubMed:28106072, PubMed:28106076, PubMed:32492408). Acts as a negative regulator of type I interferon response by down-regulating interferon-stimulated genes (ISGs) expression: acts by binding to FOXO3 mRNAs (By similarity). Binds to FOXO3 mRNAs independently of METTL3-mediated m6A modification (By similarity). Can also act as a regulator of mRNA stability in cooperation with YTHDF2 by binding to m6A-containing mRNA and promoting their degradation (PubMed:28106072). Recognizes and binds m6A-containing circular RNAs (circRNAs); circRNAs are generated through back-splicing of pre-mRNAs, a non-canonical splicing process promoted by dsRNA structures across circularizing exons (PubMed:28281539). Promotes formation of phase-separated membraneless compartments, such as P-bodies or stress granules, by undergoing liquid-liquid phase separation upon binding to mRNAs containing multiple m6A-modified residues: polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their disordered regions and thereby leading to phase separation (PubMed:31292544, PubMed:31388144, PubMed:32451507). The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated membraneless compartments, such as P-bodies, stress granules or neuronal RNA granules (PubMed:31292544). May also recognize and bind N1-methyladenosine (m1A)-containing mRNAs: inhibits trophoblast invasion by binding to m1A-methylated transcripts of IGF1R, promoting their degradation (PubMed:32194978). {ECO:0000250|UniProtKB:Q8BYK6, ECO:0000269|PubMed:22575960, ECO:0000269|PubMed:24284625, ECO:0000269|PubMed:28106072, ECO:0000269|PubMed:28106076, ECO:0000269|PubMed:28281539, ECO:0000269|PubMed:31292544, ECO:0000269|PubMed:31388144, ECO:0000269|PubMed:32194978, ECO:0000269|PubMed:32451507, ECO:0000269|PubMed:32492408}.; FUNCTION: Has some antiviral activity against HIV-1 virus: incorporated into HIV-1 particles in a nucleocapsid-dependent manner and reduces viral infectivity in the next cycle of infection (PubMed:32053707). May interfere with this early step of the viral life cycle by binding to N6-methyladenosine (m6A) modified sites on the HIV-1 RNA genome (PubMed:32053707). {ECO:0000269|PubMed:32053707}. |
Q86WJ1 | CHD1L | S591 | ochoa | Chromodomain-helicase-DNA-binding protein 1-like (EC 3.6.4.-) (Amplified in liver cancer protein 1) | ATP-dependent chromatin remodeler that mediates chromatin-remodeling following DNA damage (PubMed:19661379, PubMed:29220652, PubMed:29220653, PubMed:33357431, PubMed:34210977, PubMed:34486521, PubMed:34874266). Recruited to DNA damage sites through interaction with poly-ADP-ribose: specifically recognizes and binds histones that are poly-ADP-ribosylated on serine residues in response to DNA damage (PubMed:19661379, PubMed:29220652, PubMed:29220653, PubMed:34486521, PubMed:34874266). Poly-ADP-ribose-binding activates the ATP-dependent chromatin remodeler activity, thereby regulating chromatin during DNA repair (PubMed:19661379, PubMed:29220652, PubMed:29220653, PubMed:34486521, PubMed:34874266). Catalyzes nucleosome sliding away from DNA breaks in an ATP-dependent manner (PubMed:19661379, PubMed:29220652, PubMed:29220653). Chromatin remodeling activity promotes PARP2 removal from chromatin (PubMed:33275888). {ECO:0000269|PubMed:19661379, ECO:0000269|PubMed:29220652, ECO:0000269|PubMed:29220653, ECO:0000269|PubMed:33275888, ECO:0000269|PubMed:33357431, ECO:0000269|PubMed:34210977, ECO:0000269|PubMed:34486521, ECO:0000269|PubMed:34874266}. |
Q86YT6 | MIB1 | S411 | ochoa | E3 ubiquitin-protein ligase MIB1 (EC 2.3.2.27) (DAPK-interacting protein 1) (DIP-1) (Mind bomb homolog 1) (RING-type E3 ubiquitin transferase MIB1) (Zinc finger ZZ type with ankyrin repeat domain protein 2) | E3 ubiquitin-protein ligase that mediates ubiquitination of Delta receptors, which act as ligands of Notch proteins. Positively regulates the Delta-mediated Notch signaling by ubiquitinating the intracellular domain of Delta, leading to endocytosis of Delta receptors. Probably mediates ubiquitination and subsequent proteasomal degradation of DAPK1, thereby antagonizing anti-apoptotic effects of DAPK1 to promote TNF-induced apoptosis (By similarity). Involved in ubiquitination of centriolar satellite CEP131, CEP290 and PCM1 proteins and hence inhibits primary cilium formation in proliferating cells. Mediates 'Lys-63'-linked polyubiquitination of TBK1, which probably participates in kinase activation. {ECO:0000250, ECO:0000269|PubMed:24121310}.; FUNCTION: (Microbial infection) During adenovirus infection, mediates ubiquitination of Core-capsid bridging protein. This allows viral genome delivery into nucleus for infection. {ECO:0000269|PubMed:31851912}. |
Q8IXT5 | RBM12B | S839 | ochoa | RNA-binding protein 12B (RNA-binding motif protein 12B) | None |
Q8ND76 | CCNY | S295 | psp | Cyclin-Y (Cyc-Y) (Cyclin box protein 1) (Cyclin fold protein 1) (cyclin-X) | Positive regulatory subunit of the cyclin-dependent kinases CDK14/PFTK1 and CDK16. Acts as a cell-cycle regulator of Wnt signaling pathway during G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6, leading to the activation of the Wnt signaling pathway. Recruits CDK16 to the plasma membrane. Isoform 3 might play a role in the activation of MYC-mediated transcription. {ECO:0000269|PubMed:18060517, ECO:0000269|PubMed:19524571, ECO:0000269|PubMed:20059949, ECO:0000269|PubMed:22184064}. |
Q8NDI1 | EHBP1 | T165 | ochoa | EH domain-binding protein 1 | May play a role in actin reorganization. Links clathrin-mediated endocytosis to the actin cytoskeleton. May act as Rab effector protein and play a role in vesicle trafficking (PubMed:14676205, PubMed:27552051). Required for perinuclear sorting and insulin-regulated recycling of SLC2A4/GLUT4 in adipocytes (By similarity). {ECO:0000250|UniProtKB:Q69ZW3, ECO:0000269|PubMed:14676205, ECO:0000305|PubMed:27552051}. |
Q8NHP6 | MOSPD2 | S283 | ochoa | Motile sperm domain-containing protein 2 | Endoplasmic reticulum-anchored protein that mediates the formation of contact sites between the endoplasmic (ER) and endosomes, mitochondria or Golgi through interaction with conventional- and phosphorylated-FFAT-containing organelle-bound proteins (PubMed:29858488, PubMed:33124732, PubMed:35389430). In addition, forms endoplasmic reticulum (ER)-lipid droplets (LDs) contacts through a direct protein-membrane interaction and participates in LDs homeostasis (PubMed:35389430). The attachment mechanism involves an amphipathic helix that has an affinity for lipid packing defects present at the surface of LDs (PubMed:35389430). Promotes migration of primary monocytes and neutrophils, in response to various chemokines (PubMed:28137892). {ECO:0000269|PubMed:28137892, ECO:0000269|PubMed:29858488, ECO:0000269|PubMed:33124732, ECO:0000269|PubMed:35389430}. |
Q8NHV4 | NEDD1 | S493 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8WUY9 | DEPDC1B | S448 | ochoa | DEP domain-containing protein 1B (HBV X-transactivated gene 8 protein) (HBV XAg-transactivated protein 8) | None |
Q8WWK9 | CKAP2 | S651 | ochoa | Cytoskeleton-associated protein 2 (CTCL tumor antigen se20-10) (Tumor- and microtubule-associated protein) | Possesses microtubule stabilizing properties. Involved in regulating aneuploidy, cell cycling, and cell death in a p53/TP53-dependent manner (By similarity). {ECO:0000250}. |
Q8WYP5 | AHCTF1 | S1533 | ochoa | Protein ELYS (Embryonic large molecule derived from yolk sac) (Protein MEL-28) (Putative AT-hook-containing transcription factor 1) | Required for the assembly of a functional nuclear pore complex (NPC) on the surface of chromosomes as nuclei form at the end of mitosis. May initiate NPC assembly by binding to chromatin and recruiting the Nup107-160 subcomplex of the NPC. Also required for the localization of the Nup107-160 subcomplex of the NPC to the kinetochore during mitosis and for the completion of cytokinesis. {ECO:0000269|PubMed:17098863, ECO:0000269|PubMed:17235358}. |
Q92859 | NEO1 | S1434 | ochoa | Neogenin (Immunoglobulin superfamily DCC subclass member 2) | Multi-functional cell surface receptor regulating cell adhesion in many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Receptor for members of the BMP, netrin, and repulsive guidance molecule (RGM) families. Netrin-Neogenin interactions result in a chemoattractive axon guidance response and cell-cell adhesion, the interaction between NEO1/Neogenin and RGMa and RGMb induces a chemorepulsive response. {ECO:0000269|PubMed:21149453}. |
Q96CW5 | TUBGCP3 | S614 | ochoa | Gamma-tubulin complex component 3 (GCP-3) (hGCP3) (Gamma-ring complex protein 104 kDa) (h104p) (hGrip104) (Spindle pole body protein Spc98 homolog) (hSpc98) | Component of the gamma-tubulin ring complex (gTuRC) which mediates microtubule nucleation (PubMed:38305685, PubMed:38609661, PubMed:39321809, PubMed:9566967). The gTuRC regulates the minus-end nucleation of alpha-beta tubulin heterodimers that grow into microtubule protafilaments, a critical step in centrosome duplication and spindle formation (PubMed:38305685, PubMed:38609661, PubMed:39321809). {ECO:0000269|PubMed:38305685, ECO:0000269|PubMed:38609661, ECO:0000269|PubMed:39321809, ECO:0000269|PubMed:9566967}. |
Q96K76 | USP47 | S876 | ochoa | Ubiquitin carboxyl-terminal hydrolase 47 (EC 3.4.19.12) (Deubiquitinating enzyme 47) (Ubiquitin thioesterase 47) (Ubiquitin-specific-processing protease 47) | Ubiquitin-specific protease that specifically deubiquitinates monoubiquitinated DNA polymerase beta (POLB), stabilizing POLB thereby playing a role in base-excision repair (BER). Acts as a regulator of cell growth and genome integrity. May also indirectly regulate CDC25A expression at a transcriptional level. {ECO:0000269|PubMed:19966869, ECO:0000269|PubMed:21362556}. |
Q96ST3 | SIN3A | S1112 | ochoa | Paired amphipathic helix protein Sin3a (Histone deacetylase complex subunit Sin3a) (Transcriptional corepressor Sin3a) | Acts as a transcriptional repressor. Corepressor for REST. Interacts with MXI1 to repress MYC responsive genes and antagonize MYC oncogenic activities. Also interacts with MXD1-MAX heterodimers to repress transcription by tethering SIN3A to DNA. Acts cooperatively with OGT to repress transcription in parallel with histone deacetylation. Involved in the control of the circadian rhythms. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation. Cooperates with FOXK1 to regulate cell cycle progression probably by repressing cell cycle inhibitor genes expression (By similarity). Required for cortical neuron differentiation and callosal axon elongation (By similarity). {ECO:0000250|UniProtKB:Q60520, ECO:0000269|PubMed:12150998}. |
Q9BVJ6 | UTP14A | S453 | ochoa | U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) | May be required for ribosome biogenesis. {ECO:0000250}. |
Q9BX79 | STRA6 | S247 | ochoa | Receptor for retinol uptake STRA6 (Retinol-binding protein receptor STRA6) (Stimulated by retinoic acid gene 6 protein homolog) | Functions as a retinol transporter. Accepts all-trans retinol from the extracellular retinol-binding protein RBP4, facilitates retinol transport across the cell membrane, and then transfers retinol to the cytoplasmic retinol-binding protein RBP1 (PubMed:18316031, PubMed:22665496, PubMed:9452451). Retinol uptake is enhanced by LRAT, an enzyme that converts retinol to all-trans retinyl esters, the storage forms of vitamin A (PubMed:18316031, PubMed:22665496). Contributes to the activation of a signaling cascade that depends on retinol transport and LRAT-dependent generation of retinol metabolites that then trigger activation of JAK2 and its target STAT5, and ultimately increase the expression of SOCS3 and inhibit cellular responses to insulin (PubMed:21368206, PubMed:22665496). Important for the homeostasis of vitamin A and its derivatives, such as retinoic acid (PubMed:18316031). STRA6-mediated transport is particularly important in the eye, and under conditions of dietary vitamin A deficiency (Probable). Does not transport retinoic acid (PubMed:18316031). {ECO:0000269|PubMed:18316031, ECO:0000269|PubMed:21901792, ECO:0000269|PubMed:22665496, ECO:0000269|PubMed:9452451, ECO:0000305}. |
Q9BXB4 | OSBPL11 | S289 | ochoa | Oxysterol-binding protein-related protein 11 (ORP-11) (OSBP-related protein 11) | Plays a role in regulating ADIPOQ and FABP4 levels in differentiating adipocytes and is also involved in regulation of adipocyte triglyceride storage (PubMed:23028956). Weakly binds 25-hydroxycholesterol (PubMed:17428193). Interacts with OSBPL9 to function as lipid transfer proteins (PubMed:39106189). Together they form a heterodimer that localizes at the ER-trans-Golgi membrane contact sites, and exchanges phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) for phosphatidylinositol-4-phosphate (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate), PI(4)P) between the two organelles, a step that is critical for sphingomyelin synthesis in the Golgi complex (PubMed:39106189). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:23028956, ECO:0000269|PubMed:39106189}. |
Q9H019 | MTFR1L | S110 | ochoa | Mitochondrial fission regulator 1-like | Mitochondrial protein required for adaptation of miochondrial dynamics to metabolic changes. Regulates mitochondrial morphology at steady state and mediates AMPK-dependent stress-induced mitochondrial fragmentation via the control of OPA1 levels. {ECO:0000269|PubMed:36367943}. |
Q9H792 | PEAK1 | S902 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H9J4 | USP42 | S615 | ochoa | Ubiquitin carboxyl-terminal hydrolase 42 (EC 3.4.19.12) (Deubiquitinating enzyme 42) (Ubiquitin thioesterase 42) (Ubiquitin-specific-processing protease 42) | Deubiquitinating enzyme which may play an important role during spermatogenesis. {ECO:0000250}. |
Q9HCS7 | XAB2 | S803 | ochoa | Pre-mRNA-splicing factor SYF1 (Protein HCNP) (XPA-binding protein 2) | Involved in pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:28076346, PubMed:28502770). Involved in transcription-coupled repair (TCR), transcription and pre-mRNA splicing (PubMed:10944529, PubMed:17981804). {ECO:0000269|PubMed:10944529, ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:17981804, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770}. |
Q9NVW2 | RLIM | S248 | ochoa | E3 ubiquitin-protein ligase RLIM (EC 2.3.2.27) (LIM domain-interacting RING finger protein) (RING finger LIM domain-binding protein) (R-LIM) (RING finger protein 12) (RING-type E3 ubiquitin transferase RLIM) (Renal carcinoma antigen NY-REN-43) | E3 ubiquitin-protein ligase. Acts as a negative coregulator for LIM homeodomain transcription factors by mediating the ubiquitination and subsequent degradation of LIM cofactors LDB1 and LDB2 and by mediating the recruitment the SIN3a/histone deacetylase corepressor complex. Ubiquitination and degradation of LIM cofactors LDB1 and LDB2 allows DNA-bound LIM homeodomain transcription factors to interact with other protein partners such as RLIM. Plays a role in telomere length-mediated growth suppression by mediating the ubiquitination and degradation of TERF1. By targeting ZFP42 for degradation, acts as an activator of random inactivation of X chromosome in the embryo, a stochastic process in which one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes in somatic cells of female placental mammals. {ECO:0000269|PubMed:19164295, ECO:0000269|PubMed:19945382}. |
Q9NW97 | TMEM51 | S160 | ochoa | Transmembrane protein 51 | None |
Q9NWQ8 | PAG1 | S301 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NYQ6 | CELSR1 | S2726 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 1 (Cadherin family member 9) (Flamingo homolog 2) (hFmi2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9UHE8 | STEAP1 | S36 | ochoa | STEAP1 protein (Six-transmembrane epithelial antigen of prostate 1) | Does not function as a metalloreductase due to the absence of binding sites for the electron-donating substrate NADPH. Promotes Fe(3+) reduction when fused to the NADPH-binding domain of STEAP4. {ECO:0000269|PubMed:32409586}. |
Q9UIB8 | CD84 | S293 | ochoa | SLAM family member 5 (Cell surface antigen MAX.3) (Hly9-beta) (Leukocyte differentiation antigen CD84) (Signaling lymphocytic activation molecule 5) (CD antigen CD84) | Self-ligand receptor of the signaling lymphocytic activation molecule (SLAM) family. SLAM receptors triggered by homo- or heterotypic cell-cell interactions are modulating the activation and differentiation of a wide variety of immune cells and thus are involved in the regulation and interconnection of both innate and adaptive immune response. Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2. Can mediate natural killer (NK) cell cytotoxicity dependent on SH2D1A and SH2D1B (By similarity). Increases proliferative responses of activated T-cells and SH2D1A/SAP does not seem be required for this process. Homophilic interactions enhance interferon gamma/IFNG secretion in lymphocytes and induce platelet stimulation via a SH2D1A-dependent pathway. May serve as a marker for hematopoietic progenitor cells (PubMed:11564780, PubMed:12115647, PubMed:12928397, PubMed:12962726, PubMed:16037392) Required for a prolonged T-cell:B-cell contact, optimal T follicular helper function, and germinal center formation. In germinal centers involved in maintaining B-cell tolerance and in preventing autoimmunity (By similarity). In mast cells negatively regulates high affinity immunoglobulin epsilon receptor signaling; independent of SH2D1A and SH2D1B but implicating FES and PTPN6/SHP-1 (PubMed:22068234). In macrophages enhances LPS-induced MAPK phosphorylation and NF-kappaB activation and modulates LPS-induced cytokine secretion; involving ITSM 2 (By similarity). Positively regulates macroautophagy in primary dendritic cells via stabilization of IRF8; inhibits TRIM21-mediated proteasomal degradation of IRF8 (PubMed:29434592). {ECO:0000250|UniProtKB:Q18PI6, ECO:0000269|PubMed:11564780, ECO:0000269|PubMed:12115647, ECO:0000269|PubMed:12928397, ECO:0000269|PubMed:12962726, ECO:0000269|PubMed:16037392, ECO:0000269|PubMed:22068234, ECO:0000269|PubMed:29434592, ECO:0000305}. |
Q9UKS6 | PACSIN3 | S181 | ochoa | Protein kinase C and casein kinase substrate in neurons protein 3 (SH3 domain-containing protein 6511) | Plays a role in endocytosis and regulates internalization of plasma membrane proteins. Overexpression impairs internalization of SLC2A1/GLUT1 and TRPV4 and increases the levels of SLC2A1/GLUT1 and TRPV4 at the cell membrane. Inhibits the TRPV4 calcium channel activity (By similarity). {ECO:0000250, ECO:0000269|PubMed:11082044}. |
Q9ULH0 | KIDINS220 | S1329 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9UPN3 | MACF1 | S3914 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9Y2H2 | INPP5F | S793 | ochoa | Phosphatidylinositide phosphatase SAC2 (EC 3.1.3.25) (Inositol polyphosphate 5-phosphatase F) (Sac domain-containing inositol phosphatase 2) (Sac domain-containing phosphoinositide 4-phosphatase 2) (hSAC2) | Inositol 4-phosphatase which mainly acts on phosphatidylinositol 4-phosphate. May be functionally linked to OCRL, which converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol, for a sequential dephosphorylation of phosphatidylinositol 4,5-bisphosphate at the 5 and 4 position of inositol, thus playing an important role in the endocytic recycling (PubMed:25869669). Regulator of TF:TFRC and integrins recycling pathway, is also involved in cell migration mechanisms (PubMed:25869669). Modulates AKT/GSK3B pathway by decreasing AKT and GSK3B phosphorylation (PubMed:17322895). Negatively regulates STAT3 signaling pathway through inhibition of STAT3 phosphorylation and translocation to the nucleus (PubMed:25476455). Functionally important modulator of cardiac myocyte size and of the cardiac response to stress (By similarity). May play a role as negative regulator of axon regeneration after central nervous system injuries (By similarity). {ECO:0000250|UniProtKB:Q8CDA1, ECO:0000269|PubMed:17322895, ECO:0000269|PubMed:25476455, ECO:0000269|PubMed:25869669}. |
Q9Y5Q8 | GTF3C5 | S200 | ochoa | General transcription factor 3C polypeptide 5 (TF3C-epsilon) (Transcription factor IIIC 63 kDa subunit) (TFIIIC 63 kDa subunit) (TFIIIC63) (Transcription factor IIIC subunit epsilon) | Involved in RNA polymerase III-mediated transcription. Integral, tightly associated component of the DNA-binding TFIIIC2 subcomplex that directly binds tRNA and virus-associated RNA promoters. |
Q9Y6C2 | EMILIN1 | S703 | ochoa | EMILIN-1 (Elastin microfibril interface-located protein 1) (Elastin microfibril interfacer 1) | Involved in elastic and collagen fibers formation. It is required for EFEMP2 deposition into the extracellular matrix, and collagen network assembly and cross-linking via protein-lysine 6-oxidase/LOX activity (PubMed:36351433). May be responsible for anchoring smooth muscle cells to elastic fibers, and may be involved in the processes that regulate vessel assembly. Has cell adhesive capacity. {ECO:0000269|PubMed:36351433}. |
P36894 | BMPR1A | T391 | Sugiyama | Bone morphogenetic protein receptor type-1A (BMP type-1A receptor) (BMPR-1A) (EC 2.7.11.30) (Activin receptor-like kinase 3) (ALK-3) (Serine/threonine-protein kinase receptor R5) (SKR5) (CD antigen CD292) | On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for BMP2, BMP4, GDF5 and GDF6. Positively regulates chondrocyte differentiation through GDF5 interaction. Mediates induction of adipogenesis by GDF6. May promote the expression of HAMP, potentially via its interaction with BMP2 (By similarity). {ECO:0000250|UniProtKB:P36895}. |
P51617 | IRAK1 | S588 | Sugiyama | Interleukin-1 receptor-associated kinase 1 (IRAK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays a critical role in initiating innate immune response against foreign pathogens. Involved in Toll-like receptor (TLR) and IL-1R signaling pathways. Is rapidly recruited by MYD88 to the receptor-signaling complex upon TLR activation. Association with MYD88 leads to IRAK1 phosphorylation by IRAK4 and subsequent autophosphorylation and kinase activation. Phosphorylates E3 ubiquitin ligases Pellino proteins (PELI1, PELI2 and PELI3) to promote pellino-mediated polyubiquitination of IRAK1. Then, the ubiquitin-binding domain of IKBKG/NEMO binds to polyubiquitinated IRAK1 bringing together the IRAK1-MAP3K7/TAK1-TRAF6 complex and the NEMO-IKKA-IKKB complex. In turn, MAP3K7/TAK1 activates IKKs (CHUK/IKKA and IKBKB/IKKB) leading to NF-kappa-B nuclear translocation and activation. Alternatively, phosphorylates TIRAP to promote its ubiquitination and subsequent degradation. Phosphorylates the interferon regulatory factor 7 (IRF7) to induce its activation and translocation to the nucleus, resulting in transcriptional activation of type I IFN genes, which drive the cell in an antiviral state. When sumoylated, translocates to the nucleus and phosphorylates STAT3. {ECO:0000269|PubMed:11397809, ECO:0000269|PubMed:12860405, ECO:0000269|PubMed:14684752, ECO:0000269|PubMed:15084582, ECO:0000269|PubMed:15465816, ECO:0000269|PubMed:15767370, ECO:0000269|PubMed:17997719, ECO:0000269|PubMed:20400509}. |
Q8TF05 | PPP4R1 | S547 | Sugiyama | Serine/threonine-protein phosphatase 4 regulatory subunit 1 | Regulatory subunit of serine/threonine-protein phosphatase 4. May play a role in regulation of cell division in renal glomeruli. The PPP4C-PPP4R1 PP4 complex may play a role in dephosphorylation and regulation of HDAC3. Plays a role in the inhibition of TNF-induced NF-kappa-B activation by regulating the dephosphorylation of TRAF2. {ECO:0000269|PubMed:15805470}.; FUNCTION: (Microbial infection) Participates in merkel polyomavirus-mediated inhibition of NF-kappa-B by bridging viral small tumor antigen with NEMO. {ECO:0000269|PubMed:28445980}. |
Q8NE63 | HIPK4 | S532 | Sugiyama | Homeodomain-interacting protein kinase 4 (EC 2.7.11.1) | Protein kinase that phosphorylates human TP53 at Ser-9, and thus induces TP53 repression of BIRC5 promoter (By similarity). May act as a corepressor of transcription factors (Potential). {ECO:0000250, ECO:0000305}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-69620 | Cell Cycle Checkpoints | 0.000002 | 5.696 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.000008 | 5.110 |
R-HSA-1640170 | Cell Cycle | 0.000005 | 5.285 |
R-HSA-111447 | Activation of BAD and translocation to mitochondria | 0.000016 | 4.802 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.000016 | 4.802 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.000039 | 4.408 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.000055 | 4.260 |
R-HSA-69481 | G2/M Checkpoints | 0.000097 | 4.012 |
R-HSA-114452 | Activation of BH3-only proteins | 0.000136 | 3.867 |
R-HSA-9755779 | SARS-CoV-2 targets host intracellular signalling and regulatory pathways | 0.000147 | 3.833 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.000301 | 3.521 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.000282 | 3.550 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.000582 | 3.235 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.000643 | 3.192 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.000681 | 3.167 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.000928 | 3.032 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.000941 | 3.027 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.001300 | 2.886 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.002035 | 2.691 |
R-HSA-380287 | Centrosome maturation | 0.002420 | 2.616 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.002385 | 2.622 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.002104 | 2.677 |
R-HSA-450294 | MAP kinase activation | 0.002335 | 2.632 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.003257 | 2.487 |
R-HSA-198753 | ERK/MAPK targets | 0.004491 | 2.348 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.003680 | 2.434 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.003720 | 2.429 |
R-HSA-448424 | Interleukin-17 signaling | 0.005142 | 2.289 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.005130 | 2.290 |
R-HSA-162658 | Golgi Cisternae Pericentriolar Stack Reorganization | 0.005395 | 2.268 |
R-HSA-72172 | mRNA Splicing | 0.005400 | 2.268 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.005610 | 2.251 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.005569 | 2.254 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.006064 | 2.217 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 0.006131 | 2.212 |
R-HSA-68877 | Mitotic Prometaphase | 0.006865 | 2.163 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.008040 | 2.095 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.008584 | 2.066 |
R-HSA-525793 | Myogenesis | 0.010437 | 1.981 |
R-HSA-444257 | RSK activation | 0.010550 | 1.977 |
R-HSA-390450 | Folding of actin by CCT/TriC | 0.016417 | 1.785 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.012938 | 1.888 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.015833 | 1.800 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.015833 | 1.800 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.016604 | 1.780 |
R-HSA-1989781 | PPARA activates gene expression | 0.012421 | 1.906 |
R-HSA-68962 | Activation of the pre-replicative complex | 0.016527 | 1.782 |
R-HSA-156711 | Polo-like kinase mediated events | 0.014981 | 1.824 |
R-HSA-180024 | DARPP-32 events | 0.014826 | 1.829 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.013150 | 1.881 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.014459 | 1.840 |
R-HSA-4839726 | Chromatin organization | 0.015370 | 1.813 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.014826 | 1.829 |
R-HSA-9614085 | FOXO-mediated transcription | 0.015705 | 1.804 |
R-HSA-109581 | Apoptosis | 0.016858 | 1.773 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.014374 | 1.842 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.017217 | 1.764 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.017467 | 1.758 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.019650 | 1.707 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.019650 | 1.707 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.019650 | 1.707 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.019650 | 1.707 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.018943 | 1.723 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.020306 | 1.692 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.021954 | 1.658 |
R-HSA-140837 | Intrinsic Pathway of Fibrin Clot Formation | 0.022286 | 1.652 |
R-HSA-69275 | G2/M Transition | 0.022177 | 1.654 |
R-HSA-9733709 | Cardiogenesis | 0.022391 | 1.650 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.023886 | 1.622 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.022820 | 1.642 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.024371 | 1.613 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.024609 | 1.609 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.025127 | 1.600 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.027279 | 1.564 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.027279 | 1.564 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.027804 | 1.556 |
R-HSA-5617833 | Cilium Assembly | 0.025691 | 1.590 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.028030 | 1.552 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.029162 | 1.535 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.029162 | 1.535 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.029459 | 1.531 |
R-HSA-389957 | Prefoldin mediated transfer of substrate to CCT/TriC | 0.031436 | 1.503 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.032971 | 1.482 |
R-HSA-9796292 | Formation of axial mesoderm | 0.032653 | 1.486 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.032094 | 1.494 |
R-HSA-74160 | Gene expression (Transcription) | 0.031434 | 1.503 |
R-HSA-69205 | G1/S-Specific Transcription | 0.032094 | 1.494 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.033292 | 1.478 |
R-HSA-174577 | Activation of C3 and C5 | 0.033292 | 1.478 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.034145 | 1.467 |
R-HSA-2559583 | Cellular Senescence | 0.034972 | 1.456 |
R-HSA-9673218 | Defective F9 secretion | 0.039682 | 1.401 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.039682 | 1.401 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.038595 | 1.413 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.035973 | 1.444 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.035851 | 1.445 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.035851 | 1.445 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.035851 | 1.445 |
R-HSA-212436 | Generic Transcription Pathway | 0.037136 | 1.430 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.042357 | 1.373 |
R-HSA-68689 | CDC6 association with the ORC:origin complex | 0.042357 | 1.373 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.044120 | 1.355 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.040862 | 1.389 |
R-HSA-9909396 | Circadian clock | 0.041551 | 1.381 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.043011 | 1.366 |
R-HSA-3214815 | HDACs deacetylate histones | 0.045166 | 1.345 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.044076 | 1.356 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.044076 | 1.356 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.042241 | 1.374 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.042357 | 1.373 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.044032 | 1.356 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.046610 | 1.332 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.048732 | 1.312 |
R-HSA-9662001 | Defective factor VIII causes hemophilia A | 0.052226 | 1.282 |
R-HSA-8953854 | Metabolism of RNA | 0.047067 | 1.327 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.050946 | 1.293 |
R-HSA-199920 | CREB phosphorylation | 0.052226 | 1.282 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.051361 | 1.289 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.048833 | 1.311 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.048052 | 1.318 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.054805 | 1.261 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.054805 | 1.261 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.058559 | 1.232 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.060229 | 1.220 |
R-HSA-389958 | Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 0.065188 | 1.186 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.061222 | 1.213 |
R-HSA-69190 | DNA strand elongation | 0.070355 | 1.153 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.069863 | 1.156 |
R-HSA-426117 | Cation-coupled Chloride cotransporters | 0.062819 | 1.202 |
R-HSA-5358508 | Mismatch Repair | 0.067970 | 1.168 |
R-HSA-9707616 | Heme signaling | 0.067715 | 1.169 |
R-HSA-73894 | DNA Repair | 0.063231 | 1.199 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.060996 | 1.215 |
R-HSA-9861718 | Regulation of pyruvate metabolism | 0.070710 | 1.151 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.066463 | 1.177 |
R-HSA-9675135 | Diseases of DNA repair | 0.070710 | 1.151 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.062819 | 1.202 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.062200 | 1.206 |
R-HSA-8949275 | RUNX3 Regulates Immune Response and Cell Migration | 0.062819 | 1.202 |
R-HSA-75153 | Apoptotic execution phase | 0.070710 | 1.151 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.071385 | 1.146 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.071387 | 1.146 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.077791 | 1.109 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.077791 | 1.109 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.077791 | 1.109 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.077791 | 1.109 |
R-HSA-9663199 | Defective DNA double strand break response due to BRCA1 loss of function | 0.077791 | 1.109 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.077791 | 1.109 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 0.077791 | 1.109 |
R-HSA-9699150 | Defective DNA double strand break response due to BARD1 loss of function | 0.077791 | 1.109 |
R-HSA-9672393 | Defective F8 binding to von Willebrand factor | 0.077791 | 1.109 |
R-HSA-170984 | ARMS-mediated activation | 0.085893 | 1.066 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.085893 | 1.066 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.082422 | 1.084 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.081294 | 1.090 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.085893 | 1.066 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.074144 | 1.130 |
R-HSA-2025928 | Calcineurin activates NFAT | 0.085893 | 1.066 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.081294 | 1.090 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.075724 | 1.121 |
R-HSA-77042 | Formation of editosomes by ADAR proteins | 0.077791 | 1.109 |
R-HSA-176974 | Unwinding of DNA | 0.085893 | 1.066 |
R-HSA-199991 | Membrane Trafficking | 0.076870 | 1.114 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.082132 | 1.085 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.079856 | 1.098 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 0.074064 | 1.130 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.075724 | 1.121 |
R-HSA-9818032 | NFE2L2 regulating MDR associated enzymes | 0.085893 | 1.066 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.079856 | 1.098 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.074064 | 1.130 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.085893 | 1.066 |
R-HSA-5357801 | Programmed Cell Death | 0.078088 | 1.107 |
R-HSA-180746 | Nuclear import of Rev protein | 0.087060 | 1.060 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.087060 | 1.060 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.087060 | 1.060 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.087190 | 1.060 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.090102 | 1.045 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.090102 | 1.045 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.090102 | 1.045 |
R-HSA-9845622 | Defective VWF binding to collagen type I | 0.114391 | 0.942 |
R-HSA-5619096 | Defective SLC5A5 causes thyroid dyshormonogenesis 1 (TDH1) | 0.114391 | 0.942 |
R-HSA-5619039 | Defective SLC12A6 causes agenesis of the corpus callosum, with peripheral neurop... | 0.114391 | 0.942 |
R-HSA-9665230 | Drug resistance in ERBB2 KD mutants | 0.149540 | 0.825 |
R-HSA-9652282 | Drug-mediated inhibition of ERBB2 signaling | 0.149540 | 0.825 |
R-HSA-9672391 | Defective F8 cleavage by thrombin | 0.149540 | 0.825 |
R-HSA-9665245 | Resistance of ERBB2 KD mutants to tesevatinib | 0.149540 | 0.825 |
R-HSA-9665244 | Resistance of ERBB2 KD mutants to sapitinib | 0.149540 | 0.825 |
R-HSA-9665249 | Resistance of ERBB2 KD mutants to afatinib | 0.149540 | 0.825 |
R-HSA-9665251 | Resistance of ERBB2 KD mutants to lapatinib | 0.149540 | 0.825 |
R-HSA-9672383 | Defective factor IX causes thrombophilia | 0.149540 | 0.825 |
R-HSA-9665233 | Resistance of ERBB2 KD mutants to trastuzumab | 0.149540 | 0.825 |
R-HSA-9665737 | Drug resistance in ERBB2 TMD/JMD mutants | 0.149540 | 0.825 |
R-HSA-9665250 | Resistance of ERBB2 KD mutants to AEE788 | 0.149540 | 0.825 |
R-HSA-9665247 | Resistance of ERBB2 KD mutants to osimertinib | 0.149540 | 0.825 |
R-HSA-9672396 | Defective cofactor function of FVIIIa variant | 0.149540 | 0.825 |
R-HSA-9845619 | Enhanced cleavage of VWF variant by ADAMTS13 | 0.149540 | 0.825 |
R-HSA-9845621 | Defective VWF cleavage by ADAMTS13 variant | 0.149540 | 0.825 |
R-HSA-9665246 | Resistance of ERBB2 KD mutants to neratinib | 0.149540 | 0.825 |
R-HSA-9918449 | Defective visual phototransduction due to STRA6 loss of function | 0.149540 | 0.825 |
R-HSA-9673202 | Defective F9 variant does not activate FX | 0.149540 | 0.825 |
R-HSA-68881 | Mitotic Metaphase/Anaphase Transition | 0.149540 | 0.825 |
R-HSA-5619104 | Defective SLC12A1 causes Bartter syndrome 1 (BS1) | 0.149540 | 0.825 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.111051 | 0.954 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.124264 | 0.906 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.124264 | 0.906 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.137829 | 0.861 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.137829 | 0.861 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.137829 | 0.861 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.137829 | 0.861 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.137829 | 0.861 |
R-HSA-389960 | Formation of tubulin folding intermediates by CCT/TriC | 0.123551 | 0.908 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.141728 | 0.849 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.151132 | 0.821 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.144718 | 0.839 |
R-HSA-3000157 | Laminin interactions | 0.132530 | 0.878 |
R-HSA-5689877 | Josephin domain DUBs | 0.098242 | 1.008 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.139720 | 0.855 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.147418 | 0.831 |
R-HSA-9762292 | Regulation of CDH11 function | 0.098242 | 1.008 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.125536 | 0.901 |
R-HSA-5693538 | Homology Directed Repair | 0.092061 | 1.036 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.141728 | 0.849 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.101893 | 0.992 |
R-HSA-8963901 | Chylomicron remodeling | 0.151698 | 0.819 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.132530 | 0.878 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.137562 | 0.862 |
R-HSA-8963888 | Chylomicron assembly | 0.111051 | 0.954 |
R-HSA-190827 | Transport of connexins along the secretory pathway | 0.114391 | 0.942 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 0.114391 | 0.942 |
R-HSA-75064 | mRNA Editing: A to I Conversion | 0.149540 | 0.825 |
R-HSA-75102 | C6 deamination of adenosine | 0.149540 | 0.825 |
R-HSA-198765 | Signalling to ERK5 | 0.149540 | 0.825 |
R-HSA-209560 | NF-kB is activated and signals survival | 0.124264 | 0.906 |
R-HSA-9933947 | Formation of the non-canonical BAF (ncBAF) complex | 0.151698 | 0.819 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.125536 | 0.901 |
R-HSA-8963898 | Plasma lipoprotein assembly | 0.123551 | 0.908 |
R-HSA-68886 | M Phase | 0.100635 | 0.997 |
R-HSA-165159 | MTOR signalling | 0.147041 | 0.833 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.141728 | 0.849 |
R-HSA-9005895 | Pervasive developmental disorders | 0.137829 | 0.861 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.137829 | 0.861 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.137829 | 0.861 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.112003 | 0.951 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.144718 | 0.839 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.092185 | 1.035 |
R-HSA-69242 | S Phase | 0.141297 | 0.850 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.132530 | 0.878 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.109408 | 0.961 |
R-HSA-166208 | mTORC1-mediated signalling | 0.106307 | 0.973 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.095274 | 1.021 |
R-HSA-190704 | Oligomerization of connexins into connexons | 0.114391 | 0.942 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.147041 | 0.833 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.095274 | 1.021 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.105299 | 0.978 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.105299 | 0.978 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.120956 | 0.917 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.092385 | 1.034 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.141297 | 0.850 |
R-HSA-69206 | G1/S Transition | 0.119558 | 0.922 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.149540 | 0.825 |
R-HSA-69091 | Polymerase switching | 0.137829 | 0.861 |
R-HSA-69109 | Leading Strand Synthesis | 0.137829 | 0.861 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.124002 | 0.907 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.111051 | 0.954 |
R-HSA-8953897 | Cellular responses to stimuli | 0.107110 | 0.970 |
R-HSA-1266695 | Interleukin-7 signaling | 0.132530 | 0.878 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.112003 | 0.951 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.139494 | 0.855 |
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.111051 | 0.954 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.141728 | 0.849 |
R-HSA-9659379 | Sensory processing of sound | 0.144849 | 0.839 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.091417 | 1.039 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.094857 | 1.023 |
R-HSA-2262752 | Cellular responses to stress | 0.152699 | 0.816 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.155836 | 0.807 |
R-HSA-5660862 | Defective SLC7A7 causes lysinuric protein intolerance (LPI) | 0.183296 | 0.737 |
R-HSA-9673240 | Defective gamma-carboxylation of F9 | 0.183296 | 0.737 |
R-HSA-5682113 | Defective ABCA1 causes TGD | 0.183296 | 0.737 |
R-HSA-191650 | Regulation of gap junction activity | 0.215714 | 0.666 |
R-HSA-9846298 | Defective binding of VWF variant to GPIb:IX:V | 0.246847 | 0.608 |
R-HSA-9845620 | Enhanced binding of GP1BA variant to VWF multimer:collagen | 0.246847 | 0.608 |
R-HSA-9673221 | Defective F9 activation | 0.246847 | 0.608 |
R-HSA-9823587 | Defects of platelet adhesion to exposed collagen | 0.276746 | 0.558 |
R-HSA-5576894 | Phase 1 - inactivation of fast Na+ channels | 0.276746 | 0.558 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.276746 | 0.558 |
R-HSA-69166 | Removal of the Flap Intermediate | 0.165825 | 0.780 |
R-HSA-8964011 | HDL clearance | 0.305460 | 0.515 |
R-HSA-9645135 | STAT5 Activation | 0.305460 | 0.515 |
R-HSA-113507 | E2F-enabled inhibition of pre-replication complex formation | 0.305460 | 0.515 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.180168 | 0.744 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.180168 | 0.744 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.194687 | 0.711 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.333036 | 0.478 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.333036 | 0.478 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.333036 | 0.478 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.333036 | 0.478 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.209347 | 0.679 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.359518 | 0.444 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.359518 | 0.444 |
R-HSA-196025 | Formation of annular gap junctions | 0.359518 | 0.444 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.359518 | 0.444 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.238954 | 0.622 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.170502 | 0.768 |
R-HSA-9613354 | Lipophagy | 0.384951 | 0.415 |
R-HSA-190873 | Gap junction degradation | 0.384951 | 0.415 |
R-HSA-5218900 | CASP8 activity is inhibited | 0.384951 | 0.415 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.268745 | 0.571 |
R-HSA-9668250 | Defective factor IX causes hemophilia B | 0.409375 | 0.388 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.298513 | 0.525 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.232160 | 0.634 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.232160 | 0.634 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.193802 | 0.713 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.313333 | 0.504 |
R-HSA-210990 | PECAM1 interactions | 0.432831 | 0.364 |
R-HSA-4839744 | Signaling by APC mutants | 0.432831 | 0.364 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.432831 | 0.364 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.432831 | 0.364 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.432831 | 0.364 |
R-HSA-68949 | Orc1 removal from chromatin | 0.227211 | 0.644 |
R-HSA-2214320 | Anchoring fibril formation | 0.455356 | 0.342 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.204514 | 0.689 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.190848 | 0.719 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.261933 | 0.582 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.279662 | 0.553 |
R-HSA-8949613 | Cristae formation | 0.386050 | 0.413 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.414221 | 0.383 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.373728 | 0.427 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.373728 | 0.427 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.373728 | 0.427 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.428064 | 0.368 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.342826 | 0.465 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.441732 | 0.355 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.441732 | 0.355 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.468515 | 0.329 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.468515 | 0.329 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.352062 | 0.453 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.438151 | 0.358 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.388682 | 0.410 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.448660 | 0.348 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.448660 | 0.348 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.387681 | 0.412 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.387681 | 0.412 |
R-HSA-72649 | Translation initiation complex formation | 0.459088 | 0.338 |
R-HSA-6798695 | Neutrophil degranulation | 0.228588 | 0.641 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.358782 | 0.445 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.428064 | 0.368 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.268745 | 0.571 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.233376 | 0.632 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.286117 | 0.543 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.218797 | 0.660 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.218797 | 0.660 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.406316 | 0.391 |
R-HSA-69183 | Processive synthesis on the lagging strand | 0.180168 | 0.744 |
R-HSA-157579 | Telomere Maintenance | 0.443845 | 0.353 |
R-HSA-73886 | Chromosome Maintenance | 0.185553 | 0.732 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.349028 | 0.457 |
R-HSA-75158 | TRAIL signaling | 0.276746 | 0.558 |
R-HSA-1221632 | Meiotic synapsis | 0.448660 | 0.348 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.325327 | 0.488 |
R-HSA-180786 | Extension of Telomeres | 0.288596 | 0.540 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.276746 | 0.558 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.298513 | 0.525 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.209347 | 0.679 |
R-HSA-6802949 | Signaling by RAS mutants | 0.373728 | 0.427 |
R-HSA-9931529 | Phosphorylation and nuclear translocation of BMAL1 (ARNTL) and CLOCK | 0.246847 | 0.608 |
R-HSA-5635851 | GLI proteins bind promoters of Hh responsive genes to promote transcription | 0.276746 | 0.558 |
R-HSA-6803529 | FGFR2 alternative splicing | 0.313333 | 0.504 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.362821 | 0.440 |
R-HSA-774815 | Nucleosome assembly | 0.362821 | 0.440 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.366293 | 0.436 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.222540 | 0.653 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.232160 | 0.634 |
R-HSA-442742 | CREB1 phosphorylation through NMDA receptor-mediated activation of RAS signaling | 0.211119 | 0.675 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.157296 | 0.803 |
R-HSA-9766229 | Degradation of CDH1 | 0.406198 | 0.391 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.404521 | 0.393 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.246847 | 0.608 |
R-HSA-8963896 | HDL assembly | 0.165825 | 0.780 |
R-HSA-8849473 | PTK6 Expression | 0.333036 | 0.478 |
R-HSA-432142 | Platelet sensitization by LDL | 0.238954 | 0.622 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.384951 | 0.415 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.211119 | 0.675 |
R-HSA-69239 | Synthesis of DNA | 0.211133 | 0.675 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.337877 | 0.471 |
R-HSA-391251 | Protein folding | 0.235043 | 0.629 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.270915 | 0.567 |
R-HSA-69186 | Lagging Strand Synthesis | 0.283644 | 0.547 |
R-HSA-9843745 | Adipogenesis | 0.248771 | 0.604 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.370097 | 0.432 |
R-HSA-169893 | Prolonged ERK activation events | 0.194687 | 0.711 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.211617 | 0.674 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.207774 | 0.682 |
R-HSA-69306 | DNA Replication | 0.260270 | 0.585 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.371742 | 0.430 |
R-HSA-212676 | Dopamine Neurotransmitter Release Cycle | 0.313333 | 0.504 |
R-HSA-3371568 | Attenuation phase | 0.297051 | 0.527 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.255732 | 0.592 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.317463 | 0.498 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.455218 | 0.342 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.397290 | 0.401 |
R-HSA-9671793 | Diseases of hemostasis | 0.253840 | 0.595 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.455218 | 0.342 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.384598 | 0.415 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.197493 | 0.704 |
R-HSA-72312 | rRNA processing | 0.325834 | 0.487 |
R-HSA-3214847 | HATs acetylate histones | 0.288884 | 0.539 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.211133 | 0.675 |
R-HSA-1538133 | G0 and Early G1 | 0.200763 | 0.697 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.183296 | 0.737 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.183296 | 0.737 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.215714 | 0.666 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.276746 | 0.558 |
R-HSA-5607763 | CLEC7A (Dectin-1) induces NFAT activation | 0.165825 | 0.780 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.305460 | 0.515 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.180168 | 0.744 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.180168 | 0.744 |
R-HSA-114516 | Disinhibition of SNARE formation | 0.333036 | 0.478 |
R-HSA-193634 | Axonal growth inhibition (RHOA activation) | 0.359518 | 0.444 |
R-HSA-3371378 | Regulation by c-FLIP | 0.359518 | 0.444 |
R-HSA-425986 | Sodium/Proton exchangers | 0.359518 | 0.444 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.384951 | 0.415 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.409375 | 0.388 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.409375 | 0.388 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.342744 | 0.465 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.455356 | 0.342 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.455356 | 0.342 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.455356 | 0.342 |
R-HSA-5610787 | Hedgehog 'off' state | 0.295799 | 0.529 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.427568 | 0.369 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.211133 | 0.675 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.324668 | 0.489 |
R-HSA-6794361 | Neurexins and neuroligins | 0.227211 | 0.644 |
R-HSA-201451 | Signaling by BMP | 0.386050 | 0.413 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.329956 | 0.482 |
R-HSA-196780 | Biotin transport and metabolism | 0.180168 | 0.744 |
R-HSA-6804114 | TP53 Regulates Transcription of Genes Involved in G2 Cell Cycle Arrest | 0.209347 | 0.679 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.253840 | 0.595 |
R-HSA-9651496 | Defects of contact activation system (CAS) and kallikrein/kinin system (KKS) | 0.209347 | 0.679 |
R-HSA-187687 | Signalling to ERKs | 0.242819 | 0.615 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.268745 | 0.571 |
R-HSA-9948001 | CASP4 inflammasome assembly | 0.409375 | 0.388 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.221589 | 0.654 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.157296 | 0.803 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.428064 | 0.368 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.178854 | 0.748 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.242819 | 0.615 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.264358 | 0.578 |
R-HSA-5694530 | Cargo concentration in the ER | 0.441732 | 0.355 |
R-HSA-390648 | Muscarinic acetylcholine receptors | 0.246847 | 0.608 |
R-HSA-139915 | Activation of PUMA and translocation to mitochondria | 0.333036 | 0.478 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.455218 | 0.342 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.405711 | 0.392 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.432557 | 0.364 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.366177 | 0.436 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.170502 | 0.768 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.298513 | 0.525 |
R-HSA-68875 | Mitotic Prophase | 0.301936 | 0.520 |
R-HSA-5653656 | Vesicle-mediated transport | 0.294841 | 0.530 |
R-HSA-5358351 | Signaling by Hedgehog | 0.438126 | 0.358 |
R-HSA-5684264 | MAP3K8 (TPL2)-dependent MAPK1/3 activation | 0.165825 | 0.780 |
R-HSA-193697 | p75NTR regulates axonogenesis | 0.384951 | 0.415 |
R-HSA-68882 | Mitotic Anaphase | 0.361124 | 0.442 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.394974 | 0.403 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.211119 | 0.675 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.361009 | 0.442 |
R-HSA-73887 | Death Receptor Signaling | 0.164789 | 0.783 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 0.183296 | 0.737 |
R-HSA-205025 | NADE modulates death signalling | 0.215714 | 0.666 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.209347 | 0.679 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.209347 | 0.679 |
R-HSA-69416 | Dimerization of procaspase-8 | 0.359518 | 0.444 |
R-HSA-75072 | mRNA Editing | 0.384951 | 0.415 |
R-HSA-1433617 | Regulation of signaling by NODAL | 0.384951 | 0.415 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 0.455356 | 0.342 |
R-HSA-9623433 | NR1H2 & NR1H3 regulate gene expression to control bile acid homeostasis | 0.455356 | 0.342 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.286117 | 0.543 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.459088 | 0.338 |
R-HSA-9663891 | Selective autophagy | 0.356952 | 0.447 |
R-HSA-9664873 | Pexophagy | 0.409375 | 0.388 |
R-HSA-438064 | Post NMDA receptor activation events | 0.196958 | 0.706 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.441732 | 0.355 |
R-HSA-2028269 | Signaling by Hippo | 0.224113 | 0.650 |
R-HSA-200425 | Carnitine shuttle | 0.328082 | 0.484 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.275216 | 0.560 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.357303 | 0.447 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.357303 | 0.447 |
R-HSA-9612973 | Autophagy | 0.408048 | 0.389 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.252300 | 0.598 |
R-HSA-435368 | Zinc efflux and compartmentalization by the SLC30 family | 0.246847 | 0.608 |
R-HSA-9856872 | Malate-aspartate shuttle | 0.165825 | 0.780 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.160727 | 0.794 |
R-HSA-392517 | Rap1 signalling | 0.253840 | 0.595 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.242819 | 0.615 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.386050 | 0.413 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.259939 | 0.585 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.392474 | 0.406 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.441732 | 0.355 |
R-HSA-114608 | Platelet degranulation | 0.353352 | 0.452 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.224498 | 0.649 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.455356 | 0.342 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.253840 | 0.595 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.182919 | 0.738 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.215714 | 0.666 |
R-HSA-8941284 | RUNX2 regulates chondrocyte maturation | 0.246847 | 0.608 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.305460 | 0.515 |
R-HSA-8964026 | Chylomicron clearance | 0.305460 | 0.515 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.409375 | 0.388 |
R-HSA-70635 | Urea cycle | 0.371742 | 0.430 |
R-HSA-1632852 | Macroautophagy | 0.311857 | 0.506 |
R-HSA-111885 | Opioid Signalling | 0.188828 | 0.724 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.194687 | 0.711 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.233376 | 0.632 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.346958 | 0.460 |
R-HSA-5688426 | Deubiquitination | 0.229788 | 0.639 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.253840 | 0.595 |
R-HSA-9768777 | Regulation of NPAS4 gene transcription | 0.384951 | 0.415 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.200763 | 0.697 |
R-HSA-9758890 | Transport of RCbl within the body | 0.432831 | 0.364 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.455356 | 0.342 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.414221 | 0.383 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.384951 | 0.415 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.211119 | 0.675 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.406316 | 0.391 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.433218 | 0.363 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.178056 | 0.749 |
R-HSA-73893 | DNA Damage Bypass | 0.406198 | 0.391 |
R-HSA-9933937 | Formation of the canonical BAF (cBAF) complex | 0.165825 | 0.780 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.180168 | 0.744 |
R-HSA-447041 | CHL1 interactions | 0.333036 | 0.478 |
R-HSA-1483148 | Synthesis of PG | 0.209347 | 0.679 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 0.359518 | 0.444 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.384951 | 0.415 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.384951 | 0.415 |
R-HSA-427601 | Inorganic anion exchange by SLC26 transporters | 0.432831 | 0.364 |
R-HSA-9754560 | SARS-CoV-2 modulates autophagy | 0.432831 | 0.364 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.455356 | 0.342 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.371742 | 0.430 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.441732 | 0.355 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.438151 | 0.358 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.249863 | 0.602 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.166193 | 0.779 |
R-HSA-70268 | Pyruvate metabolism | 0.196958 | 0.706 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.329806 | 0.482 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.226929 | 0.644 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.308009 | 0.511 |
R-HSA-381042 | PERK regulates gene expression | 0.242819 | 0.615 |
R-HSA-216083 | Integrin cell surface interactions | 0.270915 | 0.567 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.165825 | 0.780 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.232160 | 0.634 |
R-HSA-8875878 | MET promotes cell motility | 0.275216 | 0.560 |
R-HSA-9748787 | Azathioprine ADME | 0.416915 | 0.380 |
R-HSA-162582 | Signal Transduction | 0.238938 | 0.622 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.443845 | 0.353 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.351885 | 0.454 |
R-HSA-373753 | Nephrin family interactions | 0.268745 | 0.571 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.409375 | 0.388 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.190848 | 0.719 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.282710 | 0.549 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.211119 | 0.675 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.409375 | 0.388 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 0.409375 | 0.388 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.308009 | 0.511 |
R-HSA-9638630 | Attachment of bacteria to epithelial cells | 0.371742 | 0.430 |
R-HSA-983189 | Kinesins | 0.297570 | 0.526 |
R-HSA-3000170 | Syndecan interactions | 0.328082 | 0.484 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.308009 | 0.511 |
R-HSA-373760 | L1CAM interactions | 0.161504 | 0.792 |
R-HSA-140834 | Extrinsic Pathway of Fibrin Clot Formation | 0.215714 | 0.666 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.253840 | 0.595 |
R-HSA-9833482 | PKR-mediated signaling | 0.286285 | 0.543 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.294030 | 0.532 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.388242 | 0.411 |
R-HSA-166520 | Signaling by NTRKs | 0.359611 | 0.444 |
R-HSA-159763 | Transport of gamma-carboxylated protein precursors from the endoplasmic reticulu... | 0.305460 | 0.515 |
R-HSA-159782 | Removal of aminoterminal propeptides from gamma-carboxylated proteins | 0.333036 | 0.478 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.224113 | 0.650 |
R-HSA-159740 | Gamma-carboxylation of protein precursors | 0.455356 | 0.342 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.465593 | 0.332 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 0.224113 | 0.650 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.359518 | 0.444 |
R-HSA-9755088 | Ribavirin ADME | 0.298513 | 0.525 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.226052 | 0.646 |
R-HSA-437239 | Recycling pathway of L1 | 0.384598 | 0.415 |
R-HSA-9679506 | SARS-CoV Infections | 0.313857 | 0.503 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.328996 | 0.483 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.468535 | 0.329 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.468535 | 0.329 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.469432 | 0.328 |
R-HSA-6811436 | COPI-independent Golgi-to-ER retrograde traffic | 0.469432 | 0.328 |
R-HSA-9734767 | Developmental Cell Lineages | 0.475776 | 0.323 |
R-HSA-975144 | IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation | 0.476988 | 0.321 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.476988 | 0.321 |
R-HSA-937039 | IRAK1 recruits IKK complex | 0.476988 | 0.321 |
R-HSA-3000484 | Scavenging by Class F Receptors | 0.476988 | 0.321 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.476988 | 0.321 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.476988 | 0.321 |
R-HSA-380615 | Serotonin clearance from the synaptic cleft | 0.476988 | 0.321 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.476988 | 0.321 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.476988 | 0.321 |
R-HSA-8983432 | Interleukin-15 signaling | 0.476988 | 0.321 |
R-HSA-159854 | Gamma-carboxylation, transport, and amino-terminal cleavage of proteins | 0.476988 | 0.321 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.477242 | 0.321 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.477242 | 0.321 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.479685 | 0.319 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.479685 | 0.319 |
R-HSA-193648 | NRAGE signals death through JNK | 0.479685 | 0.319 |
R-HSA-9675108 | Nervous system development | 0.480280 | 0.319 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.481616 | 0.317 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.481616 | 0.317 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.481616 | 0.317 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.481616 | 0.317 |
R-HSA-8964539 | Glutamate and glutamine metabolism | 0.481616 | 0.317 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.481616 | 0.317 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.482507 | 0.316 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.482507 | 0.316 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.489844 | 0.310 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.489844 | 0.310 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.489844 | 0.310 |
R-HSA-1483166 | Synthesis of PA | 0.489844 | 0.310 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.494516 | 0.306 |
R-HSA-5673000 | RAF activation | 0.494516 | 0.306 |
R-HSA-9735869 | SARS-CoV-1 modulates host translation machinery | 0.494516 | 0.306 |
R-HSA-5205647 | Mitophagy | 0.494516 | 0.306 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.497717 | 0.303 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.497763 | 0.303 |
R-HSA-8949664 | Processing of SMDT1 | 0.497763 | 0.303 |
R-HSA-75892 | Platelet Adhesion to exposed collagen | 0.497763 | 0.303 |
R-HSA-170968 | Frs2-mediated activation | 0.497763 | 0.303 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 0.497763 | 0.303 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.497763 | 0.303 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.497763 | 0.303 |
R-HSA-9683610 | Maturation of nucleoprotein | 0.497763 | 0.303 |
R-HSA-9711123 | Cellular response to chemical stress | 0.499828 | 0.301 |
R-HSA-6782135 | Dual incision in TC-NER | 0.499906 | 0.301 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.499906 | 0.301 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.501283 | 0.300 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.503997 | 0.298 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.507210 | 0.295 |
R-HSA-191859 | snRNP Assembly | 0.509865 | 0.293 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.509865 | 0.293 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.509865 | 0.293 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.509865 | 0.293 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.515732 | 0.288 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.515732 | 0.288 |
R-HSA-5689880 | Ub-specific processing proteases | 0.515732 | 0.288 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.517713 | 0.286 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.517713 | 0.286 |
R-HSA-1170546 | Prolactin receptor signaling | 0.517713 | 0.286 |
R-HSA-9686114 | Non-canonical inflammasome activation | 0.517713 | 0.286 |
R-HSA-5578768 | Physiological factors | 0.517713 | 0.286 |
R-HSA-435354 | Zinc transporters | 0.517713 | 0.286 |
R-HSA-9828642 | Respiratory syncytial virus genome transcription | 0.517713 | 0.286 |
R-HSA-6814848 | Glycerophospholipid catabolism | 0.517713 | 0.286 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.519695 | 0.284 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.519695 | 0.284 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.519695 | 0.284 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.519695 | 0.284 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.519695 | 0.284 |
R-HSA-9682385 | FLT3 signaling in disease | 0.519695 | 0.284 |
R-HSA-111933 | Calmodulin induced events | 0.519695 | 0.284 |
R-HSA-111997 | CaM pathway | 0.519695 | 0.284 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.519695 | 0.284 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.519720 | 0.284 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.519720 | 0.284 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.519720 | 0.284 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.519720 | 0.284 |
R-HSA-8873719 | RAB geranylgeranylation | 0.519720 | 0.284 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.519720 | 0.284 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.519720 | 0.284 |
R-HSA-1500620 | Meiosis | 0.519890 | 0.284 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.527349 | 0.278 |
R-HSA-1296072 | Voltage gated Potassium channels | 0.531966 | 0.274 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.531966 | 0.274 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.531966 | 0.274 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.533453 | 0.273 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.534956 | 0.272 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.534956 | 0.272 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.534956 | 0.272 |
R-HSA-174430 | Telomere C-strand synthesis initiation | 0.536872 | 0.270 |
R-HSA-171007 | p38MAPK events | 0.536872 | 0.270 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.536872 | 0.270 |
R-HSA-8876725 | Protein methylation | 0.536872 | 0.270 |
R-HSA-418885 | DCC mediated attractive signaling | 0.536872 | 0.270 |
R-HSA-1566948 | Elastic fibre formation | 0.544022 | 0.264 |
R-HSA-9931953 | Biofilm formation | 0.544022 | 0.264 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.545712 | 0.263 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.548621 | 0.261 |
R-HSA-373755 | Semaphorin interactions | 0.548621 | 0.261 |
R-HSA-156902 | Peptide chain elongation | 0.552790 | 0.257 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.555271 | 0.255 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.555271 | 0.255 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 0.555271 | 0.255 |
R-HSA-210744 | Regulation of gene expression in late stage (branching morphogenesis) pancreatic... | 0.555271 | 0.255 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.555271 | 0.255 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.555271 | 0.255 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.555859 | 0.255 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.555859 | 0.255 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.555859 | 0.255 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.558025 | 0.253 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.567477 | 0.246 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.567477 | 0.246 |
R-HSA-9646399 | Aggrephagy | 0.567477 | 0.246 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.567477 | 0.246 |
R-HSA-73884 | Base Excision Repair | 0.568784 | 0.245 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.572940 | 0.242 |
R-HSA-3000471 | Scavenging by Class B Receptors | 0.572940 | 0.242 |
R-HSA-975110 | TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling | 0.572940 | 0.242 |
R-HSA-9702518 | STAT5 activation downstream of FLT3 ITD mutants | 0.572940 | 0.242 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.572940 | 0.242 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.572940 | 0.242 |
R-HSA-1566977 | Fibronectin matrix formation | 0.572940 | 0.242 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.572940 | 0.242 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.576662 | 0.239 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.578874 | 0.237 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.578874 | 0.237 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.578874 | 0.237 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.578874 | 0.237 |
R-HSA-9006936 | Signaling by TGFB family members | 0.581639 | 0.235 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.589908 | 0.229 |
R-HSA-190840 | Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane | 0.589908 | 0.229 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.589908 | 0.229 |
R-HSA-9768759 | Regulation of NPAS4 gene expression | 0.589908 | 0.229 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.590049 | 0.229 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.590049 | 0.229 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.590049 | 0.229 |
R-HSA-6811438 | Intra-Golgi traffic | 0.590049 | 0.229 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.590049 | 0.229 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.592168 | 0.228 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.592168 | 0.228 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.598571 | 0.223 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.601002 | 0.221 |
R-HSA-111996 | Ca-dependent events | 0.601002 | 0.221 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.601002 | 0.221 |
R-HSA-6807070 | PTEN Regulation | 0.604676 | 0.218 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.604676 | 0.218 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.605333 | 0.218 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.605333 | 0.218 |
R-HSA-163615 | PKA activation | 0.606203 | 0.217 |
R-HSA-190872 | Transport of connexons to the plasma membrane | 0.606203 | 0.217 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.606203 | 0.217 |
R-HSA-181429 | Serotonin Neurotransmitter Release Cycle | 0.606203 | 0.217 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.606203 | 0.217 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.606203 | 0.217 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.606203 | 0.217 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.606203 | 0.217 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.606203 | 0.217 |
R-HSA-428643 | Organic anion transport by SLC5/17/25 transporters | 0.606203 | 0.217 |
R-HSA-180292 | GAB1 signalosome | 0.606203 | 0.217 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.606203 | 0.217 |
R-HSA-196791 | Vitamin D (calciferol) metabolism | 0.606203 | 0.217 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.606203 | 0.217 |
R-HSA-9710421 | Defective pyroptosis | 0.611733 | 0.213 |
R-HSA-8854214 | TBC/RABGAPs | 0.611733 | 0.213 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.611733 | 0.213 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.611894 | 0.213 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.611894 | 0.213 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.611894 | 0.213 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.611894 | 0.213 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.614787 | 0.211 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.620432 | 0.207 |
R-HSA-3000178 | ECM proteoglycans | 0.620432 | 0.207 |
R-HSA-597592 | Post-translational protein modification | 0.620901 | 0.207 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.621852 | 0.206 |
R-HSA-8964058 | HDL remodeling | 0.621852 | 0.206 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.621852 | 0.206 |
R-HSA-9834899 | Specification of the neural plate border | 0.621852 | 0.206 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.621852 | 0.206 |
R-HSA-113510 | E2F mediated regulation of DNA replication | 0.621852 | 0.206 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 0.621852 | 0.206 |
R-HSA-9694631 | Maturation of nucleoprotein | 0.621852 | 0.206 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.622152 | 0.206 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.622152 | 0.206 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.622242 | 0.206 |
R-HSA-373752 | Netrin-1 signaling | 0.622242 | 0.206 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.625221 | 0.204 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.629427 | 0.201 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.629427 | 0.201 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.632530 | 0.199 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.632530 | 0.199 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.632530 | 0.199 |
R-HSA-1489509 | DAG and IP3 signaling | 0.632530 | 0.199 |
R-HSA-163210 | Formation of ATP by chemiosmotic coupling | 0.636879 | 0.196 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 0.636879 | 0.196 |
R-HSA-389977 | Post-chaperonin tubulin folding pathway | 0.636879 | 0.196 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.636879 | 0.196 |
R-HSA-1181150 | Signaling by NODAL | 0.636879 | 0.196 |
R-HSA-9823730 | Formation of definitive endoderm | 0.636879 | 0.196 |
R-HSA-9629569 | Protein hydroxylation | 0.636879 | 0.196 |
R-HSA-4086398 | Ca2+ pathway | 0.637121 | 0.196 |
R-HSA-3371556 | Cellular response to heat stress | 0.638140 | 0.195 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.641897 | 0.193 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.642598 | 0.192 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.642598 | 0.192 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.644483 | 0.191 |
R-HSA-202040 | G-protein activation | 0.651311 | 0.186 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.651311 | 0.186 |
R-HSA-264642 | Acetylcholine Neurotransmitter Release Cycle | 0.651311 | 0.186 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.651311 | 0.186 |
R-HSA-167044 | Signalling to RAS | 0.651311 | 0.186 |
R-HSA-422085 | Synthesis, secretion, and deacylation of Ghrelin | 0.651311 | 0.186 |
R-HSA-9819196 | Zygotic genome activation (ZGA) | 0.651311 | 0.186 |
R-HSA-9013695 | NOTCH4 Intracellular Domain Regulates Transcription | 0.651311 | 0.186 |
R-HSA-210991 | Basigin interactions | 0.651311 | 0.186 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.651311 | 0.186 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.653291 | 0.185 |
R-HSA-162909 | Host Interactions of HIV factors | 0.656996 | 0.182 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.657618 | 0.182 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.661180 | 0.180 |
R-HSA-5620924 | Intraflagellar transport | 0.662078 | 0.179 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.662078 | 0.179 |
R-HSA-425410 | Metal ion SLC transporters | 0.662078 | 0.179 |
R-HSA-9020702 | Interleukin-1 signaling | 0.664436 | 0.178 |
R-HSA-2408557 | Selenocysteine synthesis | 0.664436 | 0.178 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.665169 | 0.177 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.665169 | 0.177 |
R-HSA-9617324 | Negative regulation of NMDA receptor-mediated neuronal transmission | 0.665169 | 0.177 |
R-HSA-194138 | Signaling by VEGF | 0.669211 | 0.174 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.671494 | 0.173 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.674596 | 0.171 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.676566 | 0.170 |
R-HSA-192823 | Viral mRNA Translation | 0.677792 | 0.169 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.678478 | 0.168 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.678478 | 0.168 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.678478 | 0.168 |
R-HSA-6803205 | TP53 regulates transcription of several additional cell death genes whose specif... | 0.678478 | 0.168 |
R-HSA-112409 | RAF-independent MAPK1/3 activation | 0.678478 | 0.168 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.678478 | 0.168 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.678478 | 0.168 |
R-HSA-8964038 | LDL clearance | 0.678478 | 0.168 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.678478 | 0.168 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.684329 | 0.165 |
R-HSA-422475 | Axon guidance | 0.687688 | 0.163 |
R-HSA-912446 | Meiotic recombination | 0.689687 | 0.161 |
R-HSA-168255 | Influenza Infection | 0.690203 | 0.161 |
R-HSA-9833110 | RSV-host interactions | 0.690773 | 0.161 |
R-HSA-912526 | Interleukin receptor SHC signaling | 0.691258 | 0.160 |
R-HSA-1369062 | ABC transporters in lipid homeostasis | 0.691258 | 0.160 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.691258 | 0.160 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.691430 | 0.160 |
R-HSA-6806834 | Signaling by MET | 0.691430 | 0.160 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.698468 | 0.156 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.698468 | 0.156 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.701267 | 0.154 |
R-HSA-429947 | Deadenylation of mRNA | 0.703531 | 0.153 |
R-HSA-9703648 | Signaling by FLT3 ITD and TKD mutants | 0.703531 | 0.153 |
R-HSA-181430 | Norepinephrine Neurotransmitter Release Cycle | 0.703531 | 0.153 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.703531 | 0.153 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.703531 | 0.153 |
R-HSA-9836573 | Mitochondrial RNA degradation | 0.703531 | 0.153 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.703531 | 0.153 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.703531 | 0.153 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.705775 | 0.151 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.707042 | 0.151 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.707042 | 0.151 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.707042 | 0.151 |
R-HSA-211000 | Gene Silencing by RNA | 0.709542 | 0.149 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.712753 | 0.147 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.715317 | 0.146 |
R-HSA-9839394 | TGFBR3 expression | 0.715317 | 0.146 |
R-HSA-203927 | MicroRNA (miRNA) biogenesis | 0.715317 | 0.146 |
R-HSA-3214842 | HDMs demethylate histones | 0.715317 | 0.146 |
R-HSA-9830364 | Formation of the nephric duct | 0.715317 | 0.146 |
R-HSA-1660516 | Synthesis of PIPs at the early endosome membrane | 0.715317 | 0.146 |
R-HSA-2453864 | Retinoid cycle disease events | 0.715317 | 0.146 |
R-HSA-2474795 | Diseases associated with visual transduction | 0.715317 | 0.146 |
R-HSA-9675143 | Diseases of the neuronal system | 0.715317 | 0.146 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.715412 | 0.145 |
R-HSA-9711097 | Cellular response to starvation | 0.716547 | 0.145 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.721992 | 0.141 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.723580 | 0.141 |
R-HSA-210500 | Glutamate Neurotransmitter Release Cycle | 0.726635 | 0.139 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.726635 | 0.139 |
R-HSA-5689901 | Metalloprotease DUBs | 0.726635 | 0.139 |
R-HSA-9845614 | Sphingolipid catabolism | 0.726635 | 0.139 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.726635 | 0.139 |
R-HSA-177929 | Signaling by EGFR | 0.731549 | 0.136 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.732922 | 0.135 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 0.737504 | 0.132 |
R-HSA-171306 | Packaging Of Telomere Ends | 0.737504 | 0.132 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.737504 | 0.132 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.737504 | 0.132 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.737504 | 0.132 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.737504 | 0.132 |
R-HSA-83936 | Transport of nucleosides and free purine and pyrimidine bases across the plasma ... | 0.737504 | 0.132 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.737504 | 0.132 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.737504 | 0.132 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.737504 | 0.132 |
R-HSA-901032 | ER Quality Control Compartment (ERQC) | 0.737504 | 0.132 |
R-HSA-264876 | Insulin processing | 0.737504 | 0.132 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.737504 | 0.132 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.739392 | 0.131 |
R-HSA-195721 | Signaling by WNT | 0.740018 | 0.131 |
R-HSA-163685 | Integration of energy metabolism | 0.741492 | 0.130 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.744555 | 0.128 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.746538 | 0.127 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.746903 | 0.127 |
R-HSA-418990 | Adherens junctions interactions | 0.747198 | 0.127 |
R-HSA-171319 | Telomere Extension By Telomerase | 0.747941 | 0.126 |
R-HSA-77387 | Insulin receptor recycling | 0.747941 | 0.126 |
R-HSA-5205685 | PINK1-PRKN Mediated Mitophagy | 0.747941 | 0.126 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.747941 | 0.126 |
R-HSA-5620971 | Pyroptosis | 0.747941 | 0.126 |
R-HSA-9948299 | Ribosome-associated quality control | 0.751510 | 0.124 |
R-HSA-9645723 | Diseases of programmed cell death | 0.751959 | 0.124 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.754293 | 0.122 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.754293 | 0.122 |
R-HSA-9033241 | Peroxisomal protein import | 0.754293 | 0.122 |
R-HSA-9615710 | Late endosomal microautophagy | 0.757964 | 0.120 |
R-HSA-420092 | Glucagon-type ligand receptors | 0.757964 | 0.120 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.757964 | 0.120 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.757964 | 0.120 |
R-HSA-209968 | Thyroxine biosynthesis | 0.757964 | 0.120 |
R-HSA-5619102 | SLC transporter disorders | 0.759104 | 0.120 |
R-HSA-8951664 | Neddylation | 0.759188 | 0.120 |
R-HSA-449147 | Signaling by Interleukins | 0.762820 | 0.118 |
R-HSA-112310 | Neurotransmitter release cycle | 0.764035 | 0.117 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.766054 | 0.116 |
R-HSA-9609690 | HCMV Early Events | 0.766855 | 0.115 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.767589 | 0.115 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.767589 | 0.115 |
R-HSA-888590 | GABA synthesis, release, reuptake and degradation | 0.767589 | 0.115 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.767589 | 0.115 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.767589 | 0.115 |
R-HSA-112311 | Neurotransmitter clearance | 0.767589 | 0.115 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.768516 | 0.114 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.768516 | 0.114 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.768516 | 0.114 |
R-HSA-112043 | PLC beta mediated events | 0.768516 | 0.114 |
R-HSA-112316 | Neuronal System | 0.769643 | 0.114 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.775285 | 0.111 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.775355 | 0.110 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.775629 | 0.110 |
R-HSA-2980736 | Peptide hormone metabolism | 0.776261 | 0.110 |
R-HSA-72306 | tRNA processing | 0.776445 | 0.110 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.776832 | 0.110 |
R-HSA-182971 | EGFR downregulation | 0.776832 | 0.110 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.779458 | 0.108 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.782017 | 0.107 |
R-HSA-8848021 | Signaling by PTK6 | 0.782017 | 0.107 |
R-HSA-110330 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.785708 | 0.105 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.792140 | 0.101 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.792832 | 0.101 |
R-HSA-376176 | Signaling by ROBO receptors | 0.794077 | 0.100 |
R-HSA-5083635 | Defective B3GALTL causes PpS | 0.794231 | 0.100 |
R-HSA-354192 | Integrin signaling | 0.794231 | 0.100 |
R-HSA-68616 | Assembly of the ORC complex at the origin of replication | 0.794231 | 0.100 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.794231 | 0.100 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.794231 | 0.100 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.794231 | 0.100 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.794231 | 0.100 |
R-HSA-159418 | Recycling of bile acids and salts | 0.794231 | 0.100 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.794823 | 0.100 |
R-HSA-1500931 | Cell-Cell communication | 0.799405 | 0.097 |
R-HSA-390522 | Striated Muscle Contraction | 0.802415 | 0.096 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.802415 | 0.096 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.802415 | 0.096 |
R-HSA-114508 | Effects of PIP2 hydrolysis | 0.802415 | 0.096 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.802576 | 0.096 |
R-HSA-168249 | Innate Immune System | 0.806772 | 0.093 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.806959 | 0.093 |
R-HSA-112040 | G-protein mediated events | 0.806959 | 0.093 |
R-HSA-5389840 | Mitochondrial translation elongation | 0.807627 | 0.093 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.807627 | 0.093 |
R-HSA-190861 | Gap junction assembly | 0.810275 | 0.091 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.810275 | 0.091 |
R-HSA-392518 | Signal amplification | 0.810275 | 0.091 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.810275 | 0.091 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.810275 | 0.091 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.810275 | 0.091 |
R-HSA-5218859 | Regulated Necrosis | 0.812784 | 0.090 |
R-HSA-8939211 | ESR-mediated signaling | 0.816300 | 0.088 |
R-HSA-422356 | Regulation of insulin secretion | 0.817403 | 0.088 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.817548 | 0.087 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.817823 | 0.087 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.817823 | 0.087 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.817823 | 0.087 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.817823 | 0.087 |
R-HSA-917977 | Transferrin endocytosis and recycling | 0.817823 | 0.087 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.819624 | 0.086 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.823966 | 0.084 |
R-HSA-8853659 | RET signaling | 0.825070 | 0.084 |
R-HSA-3371511 | HSF1 activation | 0.825070 | 0.084 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.825070 | 0.084 |
R-HSA-975634 | Retinoid metabolism and transport | 0.829329 | 0.081 |
R-HSA-5173214 | O-glycosylation of TSR domain-containing proteins | 0.832030 | 0.080 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.832030 | 0.080 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.832030 | 0.080 |
R-HSA-110331 | Cleavage of the damaged purine | 0.832030 | 0.080 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.832030 | 0.080 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.832030 | 0.080 |
R-HSA-8948216 | Collagen chain trimerization | 0.832030 | 0.080 |
R-HSA-196757 | Metabolism of folate and pterines | 0.832030 | 0.080 |
R-HSA-913531 | Interferon Signaling | 0.832814 | 0.079 |
R-HSA-392499 | Metabolism of proteins | 0.834488 | 0.079 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.834544 | 0.079 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.834544 | 0.079 |
R-HSA-1266738 | Developmental Biology | 0.835989 | 0.078 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 0.838713 | 0.076 |
R-HSA-73927 | Depurination | 0.838713 | 0.076 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.838713 | 0.076 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.839615 | 0.076 |
R-HSA-1474244 | Extracellular matrix organization | 0.840818 | 0.075 |
R-HSA-1474165 | Reproduction | 0.841952 | 0.075 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.844545 | 0.073 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.845131 | 0.073 |
R-HSA-69541 | Stabilization of p53 | 0.845131 | 0.073 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.845131 | 0.073 |
R-HSA-201556 | Signaling by ALK | 0.845131 | 0.073 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 0.845131 | 0.073 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.846351 | 0.072 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.848354 | 0.071 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.848354 | 0.071 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.849337 | 0.071 |
R-HSA-8852135 | Protein ubiquitination | 0.849337 | 0.071 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.849354 | 0.071 |
R-HSA-73779 | RNA Polymerase II Transcription Pre-Initiation And Promoter Opening | 0.851294 | 0.070 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.851294 | 0.070 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.851294 | 0.070 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.851294 | 0.070 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 0.851294 | 0.070 |
R-HSA-451927 | Interleukin-2 family signaling | 0.851294 | 0.070 |
R-HSA-71240 | Tryptophan catabolism | 0.851294 | 0.070 |
R-HSA-446728 | Cell junction organization | 0.851665 | 0.070 |
R-HSA-5689603 | UCH proteinases | 0.853994 | 0.069 |
R-HSA-9020591 | Interleukin-12 signaling | 0.853994 | 0.069 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.855351 | 0.068 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.857212 | 0.067 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.857212 | 0.067 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.857212 | 0.067 |
R-HSA-9607240 | FLT3 Signaling | 0.857212 | 0.067 |
R-HSA-421270 | Cell-cell junction organization | 0.857224 | 0.067 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.858519 | 0.066 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.859575 | 0.066 |
R-HSA-167161 | HIV Transcription Initiation | 0.862894 | 0.064 |
R-HSA-75953 | RNA Polymerase II Transcription Initiation | 0.862894 | 0.064 |
R-HSA-167162 | RNA Polymerase II HIV Promoter Escape | 0.862894 | 0.064 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.862894 | 0.064 |
R-HSA-3000480 | Scavenging by Class A Receptors | 0.862894 | 0.064 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.862894 | 0.064 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.862894 | 0.064 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.862894 | 0.064 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.862894 | 0.064 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.862894 | 0.064 |
R-HSA-9683701 | Translation of Structural Proteins | 0.862894 | 0.064 |
R-HSA-5619084 | ABC transporter disorders | 0.862916 | 0.064 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.866762 | 0.062 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.868351 | 0.061 |
R-HSA-379716 | Cytosolic tRNA aminoacylation | 0.868351 | 0.061 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.868351 | 0.061 |
R-HSA-73928 | Depyrimidination | 0.868351 | 0.061 |
R-HSA-5654738 | Signaling by FGFR2 | 0.871337 | 0.060 |
R-HSA-73776 | RNA Polymerase II Promoter Escape | 0.873591 | 0.059 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.873591 | 0.059 |
R-HSA-6806667 | Metabolism of fat-soluble vitamins | 0.875367 | 0.058 |
R-HSA-977225 | Amyloid fiber formation | 0.875367 | 0.058 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.878048 | 0.056 |
R-HSA-190828 | Gap junction trafficking | 0.878623 | 0.056 |
R-HSA-196741 | Cobalamin (Cbl, vitamin B12) transport and metabolism | 0.878623 | 0.056 |
R-HSA-375280 | Amine ligand-binding receptors | 0.878623 | 0.056 |
R-HSA-9664407 | Parasite infection | 0.879129 | 0.056 |
R-HSA-9664417 | Leishmania phagocytosis | 0.879129 | 0.056 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.879129 | 0.056 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.879280 | 0.056 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.882101 | 0.054 |
R-HSA-76042 | RNA Polymerase II Transcription Initiation And Promoter Clearance | 0.883455 | 0.054 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.883455 | 0.054 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.883455 | 0.054 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.883455 | 0.054 |
R-HSA-9824272 | Somitogenesis | 0.883455 | 0.054 |
R-HSA-1614558 | Degradation of cysteine and homocysteine | 0.883455 | 0.054 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.883455 | 0.054 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.883455 | 0.054 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.883455 | 0.054 |
R-HSA-2453902 | The canonical retinoid cycle in rods (twilight vision) | 0.883455 | 0.054 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.885301 | 0.053 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.887854 | 0.052 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.888094 | 0.052 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.888094 | 0.052 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.888094 | 0.052 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.888094 | 0.052 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.888094 | 0.052 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.890802 | 0.050 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.892550 | 0.049 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.892550 | 0.049 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.893823 | 0.049 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.896828 | 0.047 |
R-HSA-9634597 | GPER1 signaling | 0.896828 | 0.047 |
R-HSA-389356 | Co-stimulation by CD28 | 0.896828 | 0.047 |
R-HSA-9007101 | Rab regulation of trafficking | 0.899674 | 0.046 |
R-HSA-447115 | Interleukin-12 family signaling | 0.900468 | 0.046 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.900936 | 0.045 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.900936 | 0.045 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.900936 | 0.045 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.900936 | 0.045 |
R-HSA-157118 | Signaling by NOTCH | 0.901613 | 0.045 |
R-HSA-109704 | PI3K Cascade | 0.904881 | 0.043 |
R-HSA-9758941 | Gastrulation | 0.906101 | 0.043 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.908668 | 0.042 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.908668 | 0.042 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.909712 | 0.041 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.912306 | 0.040 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.912306 | 0.040 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.912306 | 0.040 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.912611 | 0.040 |
R-HSA-446652 | Interleukin-1 family signaling | 0.913082 | 0.039 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.915394 | 0.038 |
R-HSA-2132295 | MHC class II antigen presentation | 0.915394 | 0.038 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.915433 | 0.038 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.915798 | 0.038 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.915798 | 0.038 |
R-HSA-9824446 | Viral Infection Pathways | 0.917541 | 0.037 |
R-HSA-74752 | Signaling by Insulin receptor | 0.918148 | 0.037 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.919152 | 0.037 |
R-HSA-977606 | Regulation of Complement cascade | 0.920114 | 0.036 |
R-HSA-9609646 | HCMV Infection | 0.920309 | 0.036 |
R-HSA-9753281 | Paracetamol ADME | 0.922372 | 0.035 |
R-HSA-1474290 | Collagen formation | 0.923354 | 0.035 |
R-HSA-162587 | HIV Life Cycle | 0.923694 | 0.034 |
R-HSA-75893 | TNF signaling | 0.925465 | 0.034 |
R-HSA-209776 | Metabolism of amine-derived hormones | 0.925465 | 0.034 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.925839 | 0.033 |
R-HSA-112399 | IRS-mediated signalling | 0.928434 | 0.032 |
R-HSA-1296071 | Potassium Channels | 0.930582 | 0.031 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.931285 | 0.031 |
R-HSA-186712 | Regulation of beta-cell development | 0.934023 | 0.030 |
R-HSA-162906 | HIV Infection | 0.934399 | 0.029 |
R-HSA-5368286 | Mitochondrial translation initiation | 0.935037 | 0.029 |
R-HSA-190236 | Signaling by FGFR | 0.935037 | 0.029 |
R-HSA-379724 | tRNA Aminoacylation | 0.936652 | 0.028 |
R-HSA-1227986 | Signaling by ERBB2 | 0.936652 | 0.028 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.936652 | 0.028 |
R-HSA-1442490 | Collagen degradation | 0.939176 | 0.027 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.939176 | 0.027 |
R-HSA-445717 | Aquaporin-mediated transport | 0.939176 | 0.027 |
R-HSA-211976 | Endogenous sterols | 0.939176 | 0.027 |
R-HSA-70171 | Glycolysis | 0.939221 | 0.027 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.941171 | 0.026 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.941600 | 0.026 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.941600 | 0.026 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.941600 | 0.026 |
R-HSA-186797 | Signaling by PDGF | 0.941600 | 0.026 |
R-HSA-1483255 | PI Metabolism | 0.943148 | 0.025 |
R-HSA-9937383 | Mitochondrial ribosome-associated quality control | 0.945020 | 0.025 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.946162 | 0.024 |
R-HSA-2428924 | IGF1R signaling cascade | 0.946162 | 0.024 |
R-HSA-211981 | Xenobiotics | 0.946162 | 0.024 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.946162 | 0.024 |
R-HSA-15869 | Metabolism of nucleotides | 0.946872 | 0.024 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.946962 | 0.024 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.947043 | 0.024 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.948307 | 0.023 |
R-HSA-418555 | G alpha (s) signalling events | 0.948896 | 0.023 |
R-HSA-5368287 | Mitochondrial translation | 0.950028 | 0.022 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.950368 | 0.022 |
R-HSA-418346 | Platelet homeostasis | 0.951937 | 0.021 |
R-HSA-9830369 | Kidney development | 0.952346 | 0.021 |
R-HSA-196807 | Nicotinate metabolism | 0.952346 | 0.021 |
R-HSA-72766 | Translation | 0.952554 | 0.021 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.954246 | 0.020 |
R-HSA-167172 | Transcription of the HIV genome | 0.954246 | 0.020 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.956117 | 0.019 |
R-HSA-5419276 | Mitochondrial translation termination | 0.956571 | 0.019 |
R-HSA-202403 | TCR signaling | 0.958018 | 0.019 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.958018 | 0.019 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.958264 | 0.019 |
R-HSA-6803157 | Antimicrobial peptides | 0.959419 | 0.018 |
R-HSA-5632684 | Hedgehog 'on' state | 0.959503 | 0.018 |
R-HSA-3906995 | Diseases associated with O-glycosylation of proteins | 0.959503 | 0.018 |
R-HSA-166658 | Complement cascade | 0.960714 | 0.017 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.960776 | 0.017 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.961118 | 0.017 |
R-HSA-9749641 | Aspirin ADME | 0.962668 | 0.017 |
R-HSA-2187338 | Visual phototransduction | 0.963029 | 0.016 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.964157 | 0.016 |
R-HSA-425397 | Transport of vitamins, nucleosides, and related molecules | 0.964157 | 0.016 |
R-HSA-1236394 | Signaling by ERBB4 | 0.964157 | 0.016 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.964157 | 0.016 |
R-HSA-1222556 | ROS and RNS production in phagocytes | 0.964157 | 0.016 |
R-HSA-166663 | Initial triggering of complement | 0.964589 | 0.016 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.965426 | 0.015 |
R-HSA-917937 | Iron uptake and transport | 0.965587 | 0.015 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 0.965587 | 0.015 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.966930 | 0.015 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.966930 | 0.015 |
R-HSA-9694635 | Translation of Structural Proteins | 0.968277 | 0.014 |
R-HSA-70326 | Glucose metabolism | 0.969122 | 0.014 |
R-HSA-9955298 | SLC-mediated transport of organic anions | 0.969542 | 0.013 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.970165 | 0.013 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.970347 | 0.013 |
R-HSA-109582 | Hemostasis | 0.970476 | 0.013 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.970868 | 0.013 |
R-HSA-416476 | G alpha (q) signalling events | 0.973226 | 0.012 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.973628 | 0.012 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.973810 | 0.012 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.974891 | 0.011 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.975152 | 0.011 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.976144 | 0.010 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.977370 | 0.010 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.977370 | 0.010 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.977370 | 0.010 |
R-HSA-1614635 | Sulfur amino acid metabolism | 0.978887 | 0.009 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.978887 | 0.009 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.979223 | 0.009 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.980985 | 0.008 |
R-HSA-202424 | Downstream TCR signaling | 0.982062 | 0.008 |
R-HSA-5576891 | Cardiac conduction | 0.982268 | 0.008 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.982680 | 0.008 |
R-HSA-9658195 | Leishmania infection | 0.982680 | 0.008 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.982993 | 0.007 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.984038 | 0.007 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.984038 | 0.007 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.984126 | 0.007 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.984126 | 0.007 |
R-HSA-168256 | Immune System | 0.985122 | 0.007 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.985368 | 0.006 |
R-HSA-8957322 | Metabolism of steroids | 0.985896 | 0.006 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.985956 | 0.006 |
R-HSA-5173105 | O-linked glycosylation | 0.986131 | 0.006 |
R-HSA-2168880 | Scavenging of heme from plasma | 0.986513 | 0.006 |
R-HSA-9748784 | Drug ADME | 0.987008 | 0.006 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.987052 | 0.006 |
R-HSA-1280218 | Adaptive Immune System | 0.987973 | 0.005 |
R-HSA-1483257 | Phospholipid metabolism | 0.988021 | 0.005 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.988336 | 0.005 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.988542 | 0.005 |
R-HSA-418594 | G alpha (i) signalling events | 0.990302 | 0.004 |
R-HSA-983712 | Ion channel transport | 0.990446 | 0.004 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.990656 | 0.004 |
R-HSA-2173782 | Binding and Uptake of Ligands by Scavenger Receptors | 0.991557 | 0.004 |
R-HSA-2672351 | Stimuli-sensing channels | 0.992380 | 0.003 |
R-HSA-9609507 | Protein localization | 0.992414 | 0.003 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.992667 | 0.003 |
R-HSA-9610379 | HCMV Late Events | 0.993427 | 0.003 |
R-HSA-877300 | Interferon gamma signaling | 0.993882 | 0.003 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.995013 | 0.002 |
R-HSA-382551 | Transport of small molecules | 0.995159 | 0.002 |
R-HSA-5663205 | Infectious disease | 0.995622 | 0.002 |
R-HSA-397014 | Muscle contraction | 0.995655 | 0.002 |
R-HSA-6809371 | Formation of the cornified envelope | 0.996345 | 0.002 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.996766 | 0.001 |
R-HSA-611105 | Respiratory electron transport | 0.997033 | 0.001 |
R-HSA-5683057 | MAPK family signaling cascades | 0.997156 | 0.001 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.997784 | 0.001 |
R-HSA-388396 | GPCR downstream signalling | 0.997927 | 0.001 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.998629 | 0.001 |
R-HSA-428157 | Sphingolipid metabolism | 0.998723 | 0.001 |
R-HSA-9640148 | Infection with Enterobacteria | 0.998814 | 0.001 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999216 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 0.999296 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.999465 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999673 | 0.000 |
R-HSA-1643685 | Disease | 0.999679 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 0.999744 | 0.000 |
R-HSA-6805567 | Keratinization | 0.999901 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999993 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999995 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 1.000000 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
FAM20C |
0.906 | 0.873 | 2 | 0.897 |
COT |
0.856 | 0.084 | 2 | 0.328 |
CLK3 |
0.854 | 0.197 | 1 | 0.886 |
CAMK2G |
0.844 | 0.117 | 2 | 0.386 |
CAMK2B |
0.843 | 0.248 | 2 | 0.467 |
DSTYK |
0.842 | 0.108 | 2 | 0.373 |
CDC7 |
0.842 | 0.010 | 1 | 0.903 |
PIM3 |
0.841 | 0.044 | -3 | 0.861 |
MOS |
0.841 | 0.051 | 1 | 0.927 |
CAMK1B |
0.840 | 0.044 | -3 | 0.884 |
PRPK |
0.840 | -0.007 | -1 | 0.870 |
NDR2 |
0.838 | 0.005 | -3 | 0.867 |
GCN2 |
0.836 | -0.140 | 2 | 0.258 |
SKMLCK |
0.836 | 0.113 | -2 | 0.902 |
ULK2 |
0.836 | -0.121 | 2 | 0.252 |
PKN3 |
0.836 | 0.014 | -3 | 0.851 |
MARK4 |
0.835 | 0.056 | 4 | 0.885 |
PDHK4 |
0.834 | 0.048 | 1 | 0.891 |
TSSK2 |
0.834 | 0.059 | -5 | 0.861 |
CAMK2D |
0.834 | 0.144 | -3 | 0.863 |
NLK |
0.834 | -0.022 | 1 | 0.873 |
PIM1 |
0.834 | 0.077 | -3 | 0.813 |
PRKD1 |
0.834 | 0.035 | -3 | 0.841 |
ATR |
0.834 | 0.052 | 1 | 0.905 |
RAF1 |
0.834 | -0.064 | 1 | 0.871 |
SRPK1 |
0.834 | 0.087 | -3 | 0.773 |
RSK2 |
0.833 | 0.050 | -3 | 0.799 |
CDKL1 |
0.833 | 0.020 | -3 | 0.824 |
IKKB |
0.833 | -0.017 | -2 | 0.795 |
BMPR2 |
0.833 | 0.004 | -2 | 0.941 |
WNK1 |
0.832 | 0.007 | -2 | 0.909 |
ATM |
0.832 | 0.146 | 1 | 0.863 |
PRKD2 |
0.832 | 0.039 | -3 | 0.804 |
TBK1 |
0.832 | -0.054 | 1 | 0.761 |
NUAK2 |
0.831 | -0.003 | -3 | 0.870 |
NEK6 |
0.831 | -0.062 | -2 | 0.918 |
NDR1 |
0.831 | -0.017 | -3 | 0.861 |
HUNK |
0.831 | -0.074 | 2 | 0.255 |
LATS2 |
0.830 | 0.029 | -5 | 0.782 |
CAMK2A |
0.830 | 0.118 | 2 | 0.394 |
LATS1 |
0.830 | 0.205 | -3 | 0.876 |
AMPKA1 |
0.830 | 0.002 | -3 | 0.878 |
PKCD |
0.830 | -0.013 | 2 | 0.249 |
NIK |
0.829 | -0.037 | -3 | 0.901 |
TGFBR2 |
0.829 | -0.035 | -2 | 0.880 |
MTOR |
0.829 | -0.095 | 1 | 0.838 |
GRK1 |
0.829 | 0.085 | -2 | 0.840 |
CAMLCK |
0.828 | 0.029 | -2 | 0.899 |
MST4 |
0.828 | -0.032 | 2 | 0.273 |
TSSK1 |
0.828 | 0.024 | -3 | 0.893 |
P90RSK |
0.828 | 0.019 | -3 | 0.801 |
ULK1 |
0.828 | -0.126 | -3 | 0.840 |
NEK7 |
0.828 | -0.112 | -3 | 0.870 |
MAPKAPK2 |
0.827 | 0.081 | -3 | 0.764 |
RIPK3 |
0.827 | -0.051 | 3 | 0.779 |
CDKL5 |
0.827 | 0.005 | -3 | 0.815 |
HIPK4 |
0.826 | 0.015 | 1 | 0.858 |
PDHK1 |
0.826 | -0.117 | 1 | 0.874 |
MLK1 |
0.826 | -0.110 | 2 | 0.268 |
SRPK2 |
0.826 | 0.074 | -3 | 0.701 |
DAPK2 |
0.826 | 0.011 | -3 | 0.887 |
RSK3 |
0.826 | 0.010 | -3 | 0.791 |
ERK5 |
0.825 | -0.035 | 1 | 0.825 |
MAPKAPK3 |
0.825 | 0.018 | -3 | 0.805 |
IKKE |
0.825 | -0.073 | 1 | 0.754 |
CHAK2 |
0.825 | -0.066 | -1 | 0.903 |
P70S6KB |
0.825 | 0.006 | -3 | 0.825 |
PKN2 |
0.825 | -0.052 | -3 | 0.861 |
IKKA |
0.824 | 0.017 | -2 | 0.782 |
AMPKA2 |
0.824 | 0.004 | -3 | 0.851 |
GRK6 |
0.824 | 0.021 | 1 | 0.861 |
WNK3 |
0.823 | -0.132 | 1 | 0.857 |
BRSK1 |
0.823 | 0.017 | -3 | 0.820 |
BMPR1B |
0.823 | 0.113 | 1 | 0.812 |
ICK |
0.823 | 0.012 | -3 | 0.859 |
BCKDK |
0.823 | -0.051 | -1 | 0.816 |
PKACG |
0.822 | 0.013 | -2 | 0.788 |
KIS |
0.822 | 0.019 | 1 | 0.748 |
RSK4 |
0.821 | 0.054 | -3 | 0.776 |
PAK1 |
0.821 | -0.013 | -2 | 0.825 |
PLK3 |
0.821 | 0.054 | 2 | 0.346 |
NIM1 |
0.821 | -0.078 | 3 | 0.817 |
GRK5 |
0.821 | -0.099 | -3 | 0.860 |
TGFBR1 |
0.821 | 0.094 | -2 | 0.878 |
MNK2 |
0.821 | 0.011 | -2 | 0.839 |
MLK3 |
0.821 | -0.074 | 2 | 0.237 |
CLK2 |
0.821 | 0.128 | -3 | 0.780 |
ALK2 |
0.820 | 0.165 | -2 | 0.885 |
TTBK2 |
0.820 | -0.149 | 2 | 0.218 |
DNAPK |
0.820 | 0.157 | 1 | 0.797 |
IRE2 |
0.820 | -0.070 | 2 | 0.225 |
PKCB |
0.819 | -0.042 | 2 | 0.221 |
SRPK3 |
0.819 | 0.055 | -3 | 0.746 |
MSK2 |
0.819 | 0.023 | -3 | 0.764 |
AURC |
0.819 | 0.026 | -2 | 0.706 |
MNK1 |
0.819 | 0.013 | -2 | 0.850 |
IRE1 |
0.818 | -0.107 | 1 | 0.839 |
PRKD3 |
0.818 | 0.010 | -3 | 0.771 |
NUAK1 |
0.818 | -0.028 | -3 | 0.826 |
GRK4 |
0.818 | -0.056 | -2 | 0.883 |
ANKRD3 |
0.818 | -0.116 | 1 | 0.879 |
CAMK4 |
0.818 | -0.052 | -3 | 0.849 |
PAK3 |
0.818 | -0.046 | -2 | 0.825 |
SSTK |
0.818 | 0.039 | 4 | 0.865 |
RIPK1 |
0.818 | -0.065 | 1 | 0.851 |
NEK9 |
0.817 | -0.165 | 2 | 0.252 |
QSK |
0.817 | 0.001 | 4 | 0.863 |
PLK1 |
0.817 | -0.029 | -2 | 0.884 |
PKR |
0.817 | -0.015 | 1 | 0.880 |
PKCG |
0.817 | -0.057 | 2 | 0.219 |
MARK2 |
0.817 | 0.042 | 4 | 0.794 |
CLK4 |
0.817 | 0.060 | -3 | 0.796 |
PKCA |
0.817 | -0.052 | 2 | 0.216 |
MELK |
0.816 | -0.044 | -3 | 0.834 |
ALK4 |
0.816 | 0.004 | -2 | 0.903 |
BRSK2 |
0.816 | -0.031 | -3 | 0.843 |
MARK3 |
0.816 | 0.026 | 4 | 0.823 |
MSK1 |
0.816 | 0.056 | -3 | 0.770 |
DLK |
0.816 | -0.118 | 1 | 0.856 |
MLK4 |
0.815 | -0.084 | 2 | 0.241 |
SIK |
0.815 | -0.005 | -3 | 0.794 |
MLK2 |
0.815 | -0.144 | 2 | 0.262 |
MASTL |
0.815 | -0.192 | -2 | 0.862 |
QIK |
0.815 | -0.056 | -3 | 0.858 |
CDK8 |
0.815 | 0.009 | 1 | 0.714 |
DYRK2 |
0.815 | 0.043 | 1 | 0.758 |
PKCH |
0.814 | -0.064 | 2 | 0.214 |
CLK1 |
0.814 | 0.050 | -3 | 0.777 |
MYLK4 |
0.814 | 0.029 | -2 | 0.821 |
PKACB |
0.813 | 0.048 | -2 | 0.723 |
MARK1 |
0.813 | 0.033 | 4 | 0.847 |
AURB |
0.812 | 0.015 | -2 | 0.705 |
PHKG1 |
0.812 | -0.087 | -3 | 0.853 |
CHK1 |
0.812 | 0.018 | -3 | 0.855 |
PRKX |
0.811 | 0.073 | -3 | 0.718 |
PAK6 |
0.811 | -0.010 | -2 | 0.751 |
PLK4 |
0.811 | -0.108 | 2 | 0.189 |
PAK2 |
0.811 | -0.045 | -2 | 0.813 |
PKCZ |
0.811 | -0.066 | 2 | 0.231 |
SNRK |
0.811 | -0.129 | 2 | 0.205 |
CAMK1G |
0.811 | -0.010 | -3 | 0.794 |
CDK5 |
0.810 | 0.024 | 1 | 0.741 |
BMPR1A |
0.810 | 0.111 | 1 | 0.802 |
PIM2 |
0.810 | 0.033 | -3 | 0.776 |
ACVR2A |
0.810 | 0.031 | -2 | 0.872 |
NEK2 |
0.809 | -0.126 | 2 | 0.234 |
PKG2 |
0.809 | 0.006 | -2 | 0.720 |
ACVR2B |
0.809 | 0.036 | -2 | 0.879 |
CHAK1 |
0.809 | -0.138 | 2 | 0.210 |
DCAMKL1 |
0.808 | -0.019 | -3 | 0.817 |
MEK1 |
0.808 | -0.132 | 2 | 0.294 |
GRK7 |
0.808 | 0.022 | 1 | 0.794 |
SMG1 |
0.808 | 0.014 | 1 | 0.866 |
AURA |
0.808 | 0.029 | -2 | 0.681 |
ERK7 |
0.808 | -0.030 | 2 | 0.180 |
CDK7 |
0.807 | -0.004 | 1 | 0.725 |
CAMK1D |
0.807 | 0.062 | -3 | 0.724 |
DCAMKL2 |
0.807 | -0.037 | -3 | 0.842 |
CDK19 |
0.807 | -0.000 | 1 | 0.673 |
SGK3 |
0.806 | -0.016 | -3 | 0.786 |
VRK2 |
0.806 | -0.211 | 1 | 0.912 |
AKT2 |
0.806 | 0.018 | -3 | 0.720 |
BRAF |
0.806 | -0.002 | -4 | 0.868 |
HIPK1 |
0.806 | 0.035 | 1 | 0.769 |
JNK2 |
0.806 | 0.034 | 1 | 0.664 |
CDK1 |
0.806 | 0.032 | 1 | 0.673 |
JNK3 |
0.805 | 0.024 | 1 | 0.705 |
TLK2 |
0.805 | -0.075 | 1 | 0.860 |
YSK4 |
0.805 | -0.140 | 1 | 0.799 |
PERK |
0.804 | -0.122 | -2 | 0.904 |
DYRK4 |
0.804 | 0.062 | 1 | 0.679 |
MAPKAPK5 |
0.803 | -0.020 | -3 | 0.741 |
PKCT |
0.803 | -0.059 | 2 | 0.214 |
HIPK2 |
0.802 | 0.036 | 1 | 0.670 |
WNK4 |
0.802 | -0.084 | -2 | 0.898 |
SMMLCK |
0.802 | 0.010 | -3 | 0.841 |
CDK13 |
0.802 | -0.006 | 1 | 0.699 |
IRAK4 |
0.802 | -0.110 | 1 | 0.841 |
CDK18 |
0.801 | 0.009 | 1 | 0.646 |
TLK1 |
0.801 | -0.065 | -2 | 0.894 |
PHKG2 |
0.801 | -0.061 | -3 | 0.827 |
P38A |
0.801 | 0.005 | 1 | 0.743 |
HRI |
0.801 | -0.135 | -2 | 0.914 |
DYRK1A |
0.801 | 0.009 | 1 | 0.798 |
PRP4 |
0.800 | 0.001 | -3 | 0.761 |
CDK2 |
0.799 | -0.005 | 1 | 0.746 |
ERK2 |
0.799 | -0.021 | 1 | 0.717 |
TTBK1 |
0.799 | -0.135 | 2 | 0.192 |
DRAK1 |
0.799 | -0.106 | 1 | 0.759 |
MEKK3 |
0.799 | -0.134 | 1 | 0.824 |
NEK5 |
0.799 | -0.120 | 1 | 0.866 |
MEKK2 |
0.798 | -0.135 | 2 | 0.255 |
MEKK1 |
0.798 | -0.150 | 1 | 0.846 |
ZAK |
0.798 | -0.143 | 1 | 0.809 |
PKACA |
0.798 | 0.032 | -2 | 0.670 |
PINK1 |
0.798 | -0.095 | 1 | 0.868 |
DAPK3 |
0.798 | 0.057 | -3 | 0.830 |
MEK5 |
0.798 | -0.210 | 2 | 0.268 |
AKT1 |
0.798 | 0.013 | -3 | 0.740 |
PASK |
0.797 | 0.011 | -3 | 0.874 |
P38B |
0.797 | 0.024 | 1 | 0.672 |
HIPK3 |
0.797 | -0.003 | 1 | 0.770 |
PLK2 |
0.797 | 0.043 | -3 | 0.802 |
CDK17 |
0.796 | 0.005 | 1 | 0.593 |
PKCI |
0.796 | -0.059 | 2 | 0.216 |
DYRK1B |
0.796 | 0.036 | 1 | 0.703 |
DYRK3 |
0.796 | 0.037 | 1 | 0.777 |
P38G |
0.796 | 0.009 | 1 | 0.586 |
GRK2 |
0.796 | -0.057 | -2 | 0.762 |
CK2A2 |
0.795 | 0.105 | 1 | 0.728 |
CDK3 |
0.795 | 0.045 | 1 | 0.611 |
ERK1 |
0.795 | -0.013 | 1 | 0.662 |
P70S6K |
0.795 | -0.032 | -3 | 0.735 |
PKCE |
0.795 | -0.029 | 2 | 0.209 |
CDK9 |
0.794 | -0.021 | 1 | 0.703 |
CDK12 |
0.794 | -0.008 | 1 | 0.672 |
IRAK1 |
0.794 | -0.084 | -1 | 0.780 |
MST3 |
0.794 | -0.108 | 2 | 0.240 |
CK1E |
0.793 | -0.041 | -3 | 0.558 |
NEK8 |
0.793 | -0.140 | 2 | 0.245 |
TAO3 |
0.792 | -0.085 | 1 | 0.825 |
CDK16 |
0.792 | 0.019 | 1 | 0.613 |
CDK14 |
0.792 | -0.001 | 1 | 0.687 |
PAK4 |
0.790 | -0.029 | -2 | 0.695 |
PAK5 |
0.790 | -0.037 | -2 | 0.687 |
CDK10 |
0.790 | 0.013 | 1 | 0.673 |
MPSK1 |
0.789 | -0.052 | 1 | 0.803 |
CAMK1A |
0.789 | 0.012 | -3 | 0.689 |
GAK |
0.789 | -0.034 | 1 | 0.837 |
TAO2 |
0.789 | -0.103 | 2 | 0.276 |
CAMKK1 |
0.788 | -0.101 | -2 | 0.801 |
EEF2K |
0.788 | -0.073 | 3 | 0.859 |
STK33 |
0.788 | -0.106 | 2 | 0.197 |
PKN1 |
0.787 | -0.047 | -3 | 0.753 |
LKB1 |
0.787 | -0.087 | -3 | 0.855 |
DAPK1 |
0.787 | 0.024 | -3 | 0.810 |
P38D |
0.786 | 0.016 | 1 | 0.621 |
ROCK2 |
0.785 | 0.026 | -3 | 0.815 |
CK2A1 |
0.785 | 0.089 | 1 | 0.700 |
CK1D |
0.784 | -0.021 | -3 | 0.508 |
MRCKB |
0.784 | 0.010 | -3 | 0.769 |
AKT3 |
0.784 | 0.014 | -3 | 0.656 |
SGK1 |
0.784 | 0.020 | -3 | 0.639 |
TNIK |
0.783 | -0.046 | 3 | 0.875 |
CHK2 |
0.783 | -0.016 | -3 | 0.667 |
PDK1 |
0.783 | -0.103 | 1 | 0.829 |
CAMKK2 |
0.783 | -0.107 | -2 | 0.794 |
NEK11 |
0.783 | -0.201 | 1 | 0.818 |
MRCKA |
0.782 | 0.005 | -3 | 0.787 |
NEK4 |
0.782 | -0.146 | 1 | 0.823 |
GSK3A |
0.782 | -0.013 | 4 | 0.423 |
GCK |
0.782 | -0.070 | 1 | 0.811 |
MST2 |
0.781 | -0.111 | 1 | 0.829 |
GRK3 |
0.781 | -0.051 | -2 | 0.719 |
CK1G1 |
0.781 | -0.080 | -3 | 0.551 |
HGK |
0.781 | -0.084 | 3 | 0.870 |
YANK3 |
0.780 | -0.056 | 2 | 0.166 |
SBK |
0.780 | 0.043 | -3 | 0.606 |
LRRK2 |
0.780 | -0.139 | 2 | 0.270 |
MINK |
0.780 | -0.066 | 1 | 0.810 |
MOK |
0.780 | 0.037 | 1 | 0.778 |
MEKK6 |
0.780 | -0.169 | 1 | 0.828 |
MAK |
0.780 | 0.043 | -2 | 0.748 |
MAP3K15 |
0.780 | -0.150 | 1 | 0.798 |
GSK3B |
0.780 | -0.041 | 4 | 0.414 |
TAK1 |
0.779 | -0.125 | 1 | 0.861 |
JNK1 |
0.779 | 0.005 | 1 | 0.649 |
NEK1 |
0.778 | -0.130 | 1 | 0.835 |
CDK6 |
0.778 | -0.009 | 1 | 0.668 |
CDK4 |
0.778 | -0.001 | 1 | 0.659 |
CK1A2 |
0.778 | -0.047 | -3 | 0.508 |
LOK |
0.778 | -0.113 | -2 | 0.815 |
VRK1 |
0.777 | -0.168 | 2 | 0.253 |
DMPK1 |
0.777 | 0.043 | -3 | 0.793 |
BUB1 |
0.777 | -0.009 | -5 | 0.812 |
TTK |
0.775 | -0.030 | -2 | 0.898 |
KHS2 |
0.775 | -0.029 | 1 | 0.808 |
HPK1 |
0.775 | -0.081 | 1 | 0.794 |
KHS1 |
0.774 | -0.059 | 1 | 0.802 |
MST1 |
0.774 | -0.134 | 1 | 0.810 |
SLK |
0.773 | -0.099 | -2 | 0.759 |
YSK1 |
0.772 | -0.144 | 2 | 0.233 |
RIPK2 |
0.772 | -0.175 | 1 | 0.770 |
PKG1 |
0.771 | -0.023 | -2 | 0.638 |
PDHK3_TYR |
0.771 | 0.099 | 4 | 0.922 |
ROCK1 |
0.771 | 0.008 | -3 | 0.782 |
MEK2 |
0.771 | -0.200 | 2 | 0.255 |
ALPHAK3 |
0.770 | 0.100 | -1 | 0.794 |
CRIK |
0.769 | 0.020 | -3 | 0.736 |
HASPIN |
0.768 | -0.016 | -1 | 0.746 |
PBK |
0.767 | -0.070 | 1 | 0.756 |
NEK3 |
0.766 | -0.152 | 1 | 0.799 |
OSR1 |
0.765 | -0.113 | 2 | 0.239 |
TESK1_TYR |
0.763 | -0.011 | 3 | 0.894 |
PDHK4_TYR |
0.763 | 0.066 | 2 | 0.337 |
EPHA6 |
0.763 | 0.075 | -1 | 0.882 |
BIKE |
0.760 | -0.015 | 1 | 0.697 |
MAP2K6_TYR |
0.760 | 0.047 | -1 | 0.892 |
ASK1 |
0.760 | -0.136 | 1 | 0.788 |
MYO3B |
0.759 | -0.109 | 2 | 0.244 |
MAP2K7_TYR |
0.758 | -0.119 | 2 | 0.313 |
MAP2K4_TYR |
0.757 | -0.056 | -1 | 0.886 |
PDHK1_TYR |
0.757 | 0.000 | -1 | 0.905 |
BMPR2_TYR |
0.756 | 0.032 | -1 | 0.872 |
LIMK2_TYR |
0.756 | -0.049 | -3 | 0.907 |
MYO3A |
0.756 | -0.123 | 1 | 0.822 |
TAO1 |
0.755 | -0.126 | 1 | 0.765 |
PINK1_TYR |
0.755 | -0.117 | 1 | 0.877 |
PKMYT1_TYR |
0.755 | -0.118 | 3 | 0.864 |
EPHB4 |
0.755 | 0.025 | -1 | 0.871 |
EPHA4 |
0.754 | 0.079 | 2 | 0.353 |
RET |
0.754 | -0.035 | 1 | 0.843 |
DDR1 |
0.752 | 0.015 | 4 | 0.859 |
INSRR |
0.751 | 0.070 | 3 | 0.783 |
TYRO3 |
0.751 | -0.074 | 3 | 0.824 |
LIMK1_TYR |
0.750 | -0.134 | 2 | 0.296 |
TYK2 |
0.749 | -0.116 | 1 | 0.842 |
FGFR2 |
0.749 | 0.034 | 3 | 0.818 |
ROS1 |
0.749 | -0.109 | 3 | 0.803 |
MST1R |
0.748 | -0.099 | 3 | 0.832 |
ABL2 |
0.747 | 0.011 | -1 | 0.827 |
CSF1R |
0.747 | -0.051 | 3 | 0.819 |
YES1 |
0.747 | 0.016 | -1 | 0.857 |
SRMS |
0.746 | 0.067 | 1 | 0.870 |
FER |
0.746 | 0.010 | 1 | 0.893 |
JAK3 |
0.746 | -0.052 | 1 | 0.829 |
EPHB2 |
0.746 | 0.052 | -1 | 0.850 |
STLK3 |
0.746 | -0.180 | 1 | 0.779 |
YANK2 |
0.746 | -0.066 | 2 | 0.197 |
JAK2 |
0.746 | -0.103 | 1 | 0.836 |
EPHB3 |
0.745 | 0.020 | -1 | 0.854 |
TNK2 |
0.745 | -0.037 | 3 | 0.786 |
EPHB1 |
0.745 | -0.004 | 1 | 0.870 |
TXK |
0.744 | 0.017 | 1 | 0.835 |
PDGFRB |
0.744 | -0.076 | 3 | 0.831 |
TEK |
0.743 | -0.036 | 3 | 0.767 |
EPHA7 |
0.743 | 0.041 | 2 | 0.341 |
FGFR1 |
0.742 | -0.041 | 3 | 0.798 |
HCK |
0.742 | -0.006 | -1 | 0.829 |
FLT3 |
0.742 | -0.059 | 3 | 0.816 |
BLK |
0.742 | 0.034 | -1 | 0.837 |
AAK1 |
0.742 | -0.001 | 1 | 0.583 |
EPHA5 |
0.741 | 0.099 | 2 | 0.371 |
FGR |
0.741 | -0.065 | 1 | 0.845 |
CK1A |
0.741 | -0.071 | -3 | 0.416 |
ITK |
0.740 | -0.043 | -1 | 0.807 |
LCK |
0.740 | 0.005 | -1 | 0.829 |
EPHA3 |
0.740 | -0.002 | 2 | 0.326 |
AXL |
0.740 | -0.046 | 3 | 0.804 |
MERTK |
0.740 | -0.029 | 3 | 0.798 |
ABL1 |
0.740 | -0.045 | -1 | 0.818 |
KIT |
0.740 | -0.044 | 3 | 0.819 |
TNNI3K_TYR |
0.740 | -0.097 | 1 | 0.850 |
TNK1 |
0.739 | -0.095 | 3 | 0.799 |
KDR |
0.739 | -0.083 | 3 | 0.787 |
FGFR3 |
0.738 | -0.007 | 3 | 0.795 |
LTK |
0.738 | -0.041 | 3 | 0.769 |
DDR2 |
0.737 | 0.067 | 3 | 0.772 |
ALK |
0.736 | -0.076 | 3 | 0.753 |
TEC |
0.736 | -0.042 | -1 | 0.753 |
PDGFRA |
0.735 | -0.147 | 3 | 0.830 |
NEK10_TYR |
0.734 | -0.115 | 1 | 0.721 |
BMX |
0.734 | -0.022 | -1 | 0.732 |
EPHA1 |
0.734 | -0.034 | 3 | 0.785 |
BTK |
0.734 | -0.064 | -1 | 0.777 |
INSR |
0.734 | -0.022 | 3 | 0.758 |
JAK1 |
0.733 | -0.122 | 1 | 0.783 |
FYN |
0.733 | 0.041 | -1 | 0.799 |
MET |
0.733 | -0.081 | 3 | 0.805 |
NTRK1 |
0.732 | -0.051 | -1 | 0.841 |
FLT4 |
0.731 | -0.094 | 3 | 0.777 |
EPHA8 |
0.731 | 0.008 | -1 | 0.822 |
ERBB2 |
0.731 | -0.070 | 1 | 0.784 |
LYN |
0.730 | 0.012 | 3 | 0.741 |
FLT1 |
0.730 | -0.077 | -1 | 0.856 |
WEE1_TYR |
0.730 | -0.102 | -1 | 0.766 |
PTK2B |
0.729 | -0.035 | -1 | 0.792 |
EGFR |
0.729 | 0.017 | 1 | 0.690 |
PTK2 |
0.729 | 0.023 | -1 | 0.795 |
FRK |
0.729 | -0.084 | -1 | 0.848 |
CK1G3 |
0.729 | -0.048 | -3 | 0.369 |
PTK6 |
0.726 | -0.174 | -1 | 0.744 |
NTRK2 |
0.726 | -0.115 | 3 | 0.786 |
FGFR4 |
0.725 | 0.005 | -1 | 0.796 |
EPHA2 |
0.723 | 0.022 | -1 | 0.795 |
MATK |
0.722 | -0.088 | -1 | 0.761 |
NTRK3 |
0.722 | -0.071 | -1 | 0.794 |
CSK |
0.721 | -0.073 | 2 | 0.320 |
SRC |
0.720 | -0.036 | -1 | 0.802 |
IGF1R |
0.720 | -0.029 | 3 | 0.697 |
SYK |
0.719 | 0.028 | -1 | 0.783 |
ERBB4 |
0.715 | 0.005 | 1 | 0.700 |
MUSK |
0.705 | -0.156 | 1 | 0.678 |
CK1G2 |
0.705 | -0.050 | -3 | 0.467 |
FES |
0.698 | -0.103 | -1 | 0.710 |
ZAP70 |
0.689 | -0.053 | -1 | 0.698 |