Motif 548 (n=713)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0B4J1V8 | PPAN-P2RY11 | S240 | ochoa | HCG2039996 (PPAN-P2RY11 readthrough) | None |
A0JNW5 | BLTP3B | S1060 | ochoa | Bridge-like lipid transfer protein family member 3B (Syntaxin-6 Habc-interacting protein of 164 kDa) (UHRF1-binding protein 1-like) | Tube-forming lipid transport protein which mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). Required for retrograde traffic of vesicle clusters in the early endocytic pathway to the Golgi complex (PubMed:20163565, PubMed:35499567). {ECO:0000269|PubMed:20163565, ECO:0000269|PubMed:35499567}. |
A2RRP1 | NBAS | Y477 | ochoa | NBAS subunit of NRZ tethering complex (Neuroblastoma-amplified gene protein) (Neuroblastoma-amplified sequence) | Involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport; the function is proposed to depend on its association in the NRZ complex which is believed to play a role in SNARE assembly at the ER (PubMed:19369418). Required for normal embryonic development (By similarity). May play a role in the nonsense-mediated decay pathway of mRNAs containing premature stop codons (By similarity). {ECO:0000250|UniProtKB:Q5TYW4, ECO:0000269|PubMed:19369418}. |
A4QPH2 | PI4KAP2 | S295 | ochoa | Putative phosphatidylinositol 4-kinase alpha-like protein P2 | None |
A6NHT5 | HMX3 | S182 | ochoa | Homeobox protein HMX3 (Homeobox protein H6 family member 3) (Homeobox protein Nkx-5.1) | Transcription factor involved in specification of neuronal cell types and which is required for inner ear and hypothalamus development. Binds to the 5'-CAAGTG-3' core sequence. Controls semicircular canal formation in the inner ear. Also required for hypothalamic/pituitary axis of the CNS (By similarity). {ECO:0000250}. |
A6NKT7 | RGPD3 | S1593 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A8MSY1 | STIMATE-MUSTN1 | S255 | ochoa | Musculoskeletal embryonic nuclear protein 1 | None |
B5ME19 | EIF3CL | S533 | ochoa | Eukaryotic translation initiation factor 3 subunit C-like protein | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis. The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation. The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. {ECO:0000250|UniProtKB:Q99613}. |
I3L4J1 | None | S123 | ochoa | vesicle-fusing ATPase (EC 3.6.4.6) | (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000256|ARBA:ARBA00059988}. |
O00203 | AP3B1 | S752 | ochoa | AP-3 complex subunit beta-1 (Adaptor protein complex AP-3 subunit beta-1) (Adaptor-related protein complex 3 subunit beta-1) (Beta-3A-adaptin) (Clathrin assembly protein complex 3 beta-1 large chain) | Subunit of non-clathrin- and clathrin-associated adaptor protein complex 3 (AP-3) that plays a role in protein sorting in the late-Golgi/trans-Golgi network (TGN) and/or endosomes. The AP complexes mediate both the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. AP-3 appears to be involved in the sorting of a subset of transmembrane proteins targeted to lysosomes and lysosome-related organelles. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. {ECO:0000305|PubMed:9151686}. |
O00470 | MEIS1 | S198 | ochoa | Homeobox protein Meis1 | Acts as a transcriptional regulator of PAX6. Acts as a transcriptional activator of PF4 in complex with PBX1 or PBX2. Required for hematopoiesis, megakaryocyte lineage development and vascular patterning. May function as a cofactor for HOXA7 and HOXA9 in the induction of myeloid leukemias. {ECO:0000269|PubMed:12609849}. |
O00763 | ACACB | S37 | ochoa | Acetyl-CoA carboxylase 2 (EC 6.4.1.2) (ACC-beta) | Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism (PubMed:16854592, PubMed:19236960, PubMed:19900410, PubMed:20457939, PubMed:20952656, PubMed:26976583). Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:19236960, PubMed:20457939, PubMed:20952656, PubMed:26976583). Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation (By similarity). Together with its cytosolic isozyme ACACA, which is involved in de novo fatty acid biosynthesis, promotes lipid storage (By similarity). {ECO:0000250|UniProtKB:E9Q4Z2, ECO:0000269|PubMed:16854592, ECO:0000269|PubMed:19236960, ECO:0000269|PubMed:19900410, ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:26976583}. |
O14617 | AP3D1 | S634 | ochoa | AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) | Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}. |
O14617 | AP3D1 | S636 | ochoa | AP-3 complex subunit delta-1 (AP-3 complex subunit delta) (Adaptor-related protein complex 3 subunit delta-1) (Delta-adaptin) | Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T-cell and NK cell degranulation (PubMed:26744459). In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity). {ECO:0000250|UniProtKB:O54774, ECO:0000269|PubMed:26744459}. |
O14641 | DVL2 | S620 | ochoa | Segment polarity protein dishevelled homolog DVL-2 (Dishevelled-2) (DSH homolog 2) | Plays a role in the signal transduction pathways mediated by multiple Wnt genes (PubMed:24616100). Participates both in canonical and non-canonical Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Promotes internalization and degradation of frizzled proteins upon Wnt signaling. {ECO:0000250|UniProtKB:Q60838, ECO:0000269|PubMed:19252499, ECO:0000269|PubMed:24616100}. |
O14654 | IRS4 | S66 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14654 | IRS4 | S68 | ochoa|psp | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14715 | RGPD8 | S1592 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14777 | NDC80 | S77 | ochoa | Kinetochore protein NDC80 homolog (Highly expressed in cancer protein) (Kinetochore protein Hec1) (HsHec1) (Kinetochore-associated protein 2) (Retinoblastoma-associated protein HEC) | Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity (PubMed:12351790, PubMed:14654001, PubMed:14699129, PubMed:15062103, PubMed:15235793, PubMed:15239953, PubMed:15548592, PubMed:16732327, PubMed:30409912, PubMed:9315664). Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore (PubMed:15548592, PubMed:30409912). The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules (PubMed:23085020). Plays a role in chromosome congression and is essential for the end-on attachment of the kinetochores to spindle microtubules (PubMed:23891108, PubMed:25743205). {ECO:0000269|PubMed:12351790, ECO:0000269|PubMed:14654001, ECO:0000269|PubMed:14699129, ECO:0000269|PubMed:15062103, ECO:0000269|PubMed:15235793, ECO:0000269|PubMed:15239953, ECO:0000269|PubMed:15548592, ECO:0000269|PubMed:16732327, ECO:0000269|PubMed:23085020, ECO:0000269|PubMed:23891108, ECO:0000269|PubMed:25743205, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:9315664}. |
O15164 | TRIM24 | S773 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15417 | TNRC18 | S2130 | ochoa | Trinucleotide repeat-containing gene 18 protein (Long CAG trinucleotide repeat-containing gene 79 protein) | None |
O15498 | YKT6 | S174 | ochoa|psp | Synaptobrevin homolog YKT6 (EC 2.3.1.-) | Vesicular soluble NSF attachment protein receptor (v-SNARE) mediating vesicle docking and fusion to a specific acceptor cellular compartment. Functions in endoplasmic reticulum to Golgi transport; as part of a SNARE complex composed of GOSR1, GOSR2 and STX5. Functions in early/recycling endosome to TGN transport; as part of a SNARE complex composed of BET1L, GOSR1 and STX5. Has a S-palmitoyl transferase activity. {ECO:0000269|PubMed:15215310, ECO:0000269|PubMed:9211930}. |
O43159 | RRP8 | S64 | ochoa | Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) | Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}. |
O43159 | RRP8 | S106 | ochoa | Ribosomal RNA-processing protein 8 (EC 2.1.1.-) (Cerebral protein 1) (Nucleomethylin) | Essential component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. In the complex, RRP8 binds to H3K9me2 and probably acts as a methyltransferase. Its substrates are however unknown. {ECO:0000269|PubMed:18485871}. |
O43166 | SIPA1L1 | S288 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43166 | SIPA1L1 | S1367 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43182 | ARHGAP6 | S852 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43252 | PAPSS1 | S190 | ochoa | Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPS synthase 1) (PAPSS 1) (Sulfurylase kinase 1) (SK 1) (SK1) [Includes: Sulfate adenylyltransferase (EC 2.7.7.4) (ATP-sulfurylase) (Sulfate adenylate transferase) (SAT); Adenylyl-sulfate kinase (EC 2.7.1.25) (3'-phosphoadenosine-5'-phosphosulfate synthase) (APS kinase) (Adenosine-5'-phosphosulfate 3'-phosphotransferase) (Adenylylsulfate 3'-phosphotransferase)] | Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate (PAPS: activated sulfate donor used by sulfotransferase). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway (PubMed:14747722, PubMed:9576487, PubMed:9648242, PubMed:9668121). Required for normal biosynthesis of sulfated L-selectin ligands in endothelial cells (PubMed:9576487). {ECO:0000269|PubMed:14747722, ECO:0000269|PubMed:9576487, ECO:0000269|PubMed:9648242, ECO:0000269|PubMed:9668121}. |
O43781 | DYRK3 | S108 | ochoa | Dual specificity tyrosine-phosphorylation-regulated kinase 3 (EC 2.7.12.1) (Regulatory erythroid kinase) (REDK) | Dual-specificity protein kinase that promotes disassembly of several types of membraneless organelles during mitosis, such as stress granules, nuclear speckles and pericentriolar material (PubMed:29973724). Dual-specificity tyrosine-regulated kinases (DYRKs) autophosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues (PubMed:29634919, PubMed:9748265). Acts as a central dissolvase of membraneless organelles during the G2-to-M transition, after the nuclear-envelope breakdown: acts by mediating phosphorylation of multiple serine and threonine residues in unstructured domains of proteins, such as SRRM1 and PCM1 (PubMed:29973724). Does not mediate disassembly of all membraneless organelles: disassembly of P-body and nucleolus is not regulated by DYRK3 (PubMed:29973724). Dissolution of membraneless organelles at the onset of mitosis is also required to release mitotic regulators, such as ZNF207, from liquid-unmixed organelles where they are sequestered and keep them dissolved during mitosis (PubMed:29973724). Regulates mTORC1 by mediating the dissolution of stress granules: during stressful conditions, DYRK3 partitions from the cytosol to the stress granule, together with mTORC1 components, which prevents mTORC1 signaling (PubMed:23415227). When stress signals are gone, the kinase activity of DYRK3 is required for the dissolution of stress granule and mTORC1 relocation to the cytosol: acts by mediating the phosphorylation of the mTORC1 inhibitor AKT1S1, allowing full reactivation of mTORC1 signaling (PubMed:23415227). Also acts as a negative regulator of EPO-dependent erythropoiesis: may place an upper limit on red cell production during stress erythropoiesis (PubMed:10779429). Inhibits cell death due to cytokine withdrawal in hematopoietic progenitor cells (PubMed:10779429). Promotes cell survival upon genotoxic stress through phosphorylation of SIRT1: this in turn inhibits p53/TP53 activity and apoptosis (PubMed:20167603). {ECO:0000269|PubMed:10779429, ECO:0000269|PubMed:20167603, ECO:0000269|PubMed:23415227, ECO:0000269|PubMed:29634919, ECO:0000269|PubMed:29973724, ECO:0000269|PubMed:9748265}. |
O60238 | BNIP3L | S120 | ochoa | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) | Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}. |
O60269 | GPRIN2 | S266 | ochoa | G protein-regulated inducer of neurite outgrowth 2 (GRIN2) | May be involved in neurite outgrowth. {ECO:0000269|PubMed:10480904}. |
O60292 | SIPA1L3 | S1619 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60447 | EVI5 | S778 | ochoa | Ecotropic viral integration site 5 protein homolog (EVI-5) (Neuroblastoma stage 4S gene protein) | Functions as a regulator of cell cycle progression by stabilizing the FBXO5 protein and promoting cyclin-A accumulation during interphase. May play a role in cytokinesis. {ECO:0000269|PubMed:16439210}. |
O60565 | GREM1 | S44 | ochoa | Gremlin-1 (Cell proliferation-inducing gene 2 protein) (Cysteine knot superfamily 1, BMP antagonist 1) (DAN domain family member 2) (Down-regulated in Mos-transformed cells protein) (Increased in high glucose protein 2) (IHG-2) | Cytokine that may play an important role during carcinogenesis and metanephric kidney organogenesis, as a BMP antagonist required for early limb outgrowth and patterning in maintaining the FGF4-SHH feedback loop. Down-regulates the BMP4 signaling in a dose-dependent manner (By similarity). Antagonist of BMP2; inhibits BMP2-mediated differentiation of osteoblasts (in vitro) (PubMed:27036124). Acts as inhibitor of monocyte chemotaxis. Can inhibit the growth or viability of normal cells but not transformed cells when is overexpressed (By similarity). {ECO:0000250|UniProtKB:O35793, ECO:0000250|UniProtKB:O70326, ECO:0000269|PubMed:27036124}. |
O60841 | EIF5B | S591 | ochoa | Eukaryotic translation initiation factor 5B (eIF-5B) (EC 3.6.5.3) (Translation initiation factor IF-2) | Plays a role in translation initiation (PubMed:10659855, PubMed:35732735). Ribosome-dependent GTPase that promotes the joining of the 60S ribosomal subunit to the pre-initiation complex to form the 80S initiation complex with the initiator methionine-tRNA in the P-site base paired to the start codon (PubMed:10659855, PubMed:35732735). Together with eIF1A (EIF1AX), actively orients the initiator methionine-tRNA in a conformation that allows 60S ribosomal subunit joining to form the 80S initiation complex (PubMed:12569173, PubMed:35732735). Is released after formation of the 80S initiation complex (PubMed:35732735). Its GTPase activity is not essential for ribosomal subunits joining, but GTP hydrolysis is needed for eIF1A (EIF1AX) ejection quickly followed by EIF5B release to form elongation-competent ribosomes (PubMed:10659855, PubMed:35732735). In contrast to its procaryotic homolog, does not promote recruitment of Met-rRNA to the small ribosomal subunit (PubMed:10659855). {ECO:0000269|PubMed:10659855, ECO:0000269|PubMed:12569173, ECO:0000269|PubMed:35732735}. |
O75113 | N4BP1 | S290 | ochoa | NEDD4-binding protein 1 (N4BP1) (EC 3.1.-.-) | Potent suppressor of cytokine production that acts as a regulator of innate immune signaling and inflammation. Acts as a key negative regulator of select cytokine and chemokine responses elicited by TRIF-independent Toll-like receptors (TLRs), thereby limiting inflammatory cytokine responses to minor insults. In response to more threatening pathogens, cleaved by CASP8 downstream of TLR3 or TLR4, leading to its inactivation, thereby allowing production of inflammatory cytokines (By similarity). Acts as a restriction factor against some viruses, such as HIV-1: restricts HIV-1 replication by binding to HIV-1 mRNAs and mediating their degradation via its ribonuclease activity (PubMed:31133753). Also acts as an inhibitor of the E3 ubiquitin-protein ligase ITCH: acts by interacting with the second WW domain of ITCH, leading to compete with ITCH's substrates and impairing ubiquitination of substrates (By similarity). {ECO:0000250|UniProtKB:Q6A037, ECO:0000269|PubMed:31133753}. |
O75164 | KDM4A | S412 | ochoa | Lysine-specific demethylase 4A (EC 1.14.11.66) (EC 1.14.11.69) (JmjC domain-containing histone demethylation protein 3A) (Jumonji domain-containing protein 2A) ([histone H3]-trimethyl-L-lysine(36) demethylase 4A) ([histone H3]-trimethyl-L-lysine(9) demethylase 4A) | Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code (PubMed:26741168, PubMed:21768309). Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively. {ECO:0000269|PubMed:16024779, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:21768309, ECO:0000269|PubMed:26741168}.; FUNCTION: [Isoform 2]: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain. {ECO:0000269|PubMed:21694756}. |
O75164 | KDM4A | S525 | ochoa | Lysine-specific demethylase 4A (EC 1.14.11.66) (EC 1.14.11.69) (JmjC domain-containing histone demethylation protein 3A) (Jumonji domain-containing protein 2A) ([histone H3]-trimethyl-L-lysine(36) demethylase 4A) ([histone H3]-trimethyl-L-lysine(9) demethylase 4A) | Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code (PubMed:26741168, PubMed:21768309). Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively. {ECO:0000269|PubMed:16024779, ECO:0000269|PubMed:16603238, ECO:0000269|PubMed:21768309, ECO:0000269|PubMed:26741168}.; FUNCTION: [Isoform 2]: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain. {ECO:0000269|PubMed:21694756}. |
O75362 | ZNF217 | S329 | ochoa | Zinc finger protein 217 | Binds to the promoters of target genes and functions as repressor. Promotes cell proliferation and antagonizes cell death. Promotes phosphorylation of AKT1 at 'Ser-473'. {ECO:0000269|PubMed:16203743, ECO:0000269|PubMed:16940172, ECO:0000269|PubMed:17259635, ECO:0000269|PubMed:18625718}. |
O75410 | TACC1 | S57 | ochoa | Transforming acidic coiled-coil-containing protein 1 (Gastric cancer antigen Ga55) (Taxin-1) | Involved in transcription regulation induced by nuclear receptors, including in T3 thyroid hormone and all-trans retinoic acid pathways (PubMed:20078863). Might promote the nuclear localization of the receptors (PubMed:20078863). Likely involved in the processes that promote cell division prior to the formation of differentiated tissues. {ECO:0000269|PubMed:20078863}. |
O75475 | PSIP1 | S275 | ochoa|psp | PC4 and SFRS1-interacting protein (CLL-associated antigen KW-7) (Dense fine speckles 70 kDa protein) (DFS 70) (Lens epithelium-derived growth factor) (Transcriptional coactivator p75/p52) | Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration. {ECO:0000269|PubMed:15642333}. |
O75554 | WBP4 | S325 | ochoa | WW domain-binding protein 4 (WBP-4) (Formin-binding protein 21) (WW domain-containing-binding protein 4) | Involved in pre-mRNA splicing as a component of the spliceosome (PubMed:19592703, PubMed:28781166, PubMed:9724750). May play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex (PubMed:9724750). {ECO:0000269|PubMed:19592703, ECO:0000269|PubMed:28781166, ECO:0000269|PubMed:9724750}. |
O76021 | RSL1D1 | S92 | ochoa | Ribosomal L1 domain-containing protein 1 (CATX-11) (Cellular senescence-inhibited gene protein) (Protein PBK1) | Regulates cellular senescence through inhibition of PTEN translation. Acts as a pro-apoptotic regulator in response to DNA damage. {ECO:0000269|PubMed:18678645, ECO:0000269|PubMed:22419112}. |
O76080 | ZFAND5 | S139 | ochoa | AN1-type zinc finger protein 5 (Zinc finger A20 domain-containing protein 2) (Zinc finger protein 216) | Involved in protein degradation via the ubiquitin-proteasome system. May act by anchoring ubiquitinated proteins to the proteasome. Plays a role in ubiquitin-mediated protein degradation during muscle atrophy. Plays a role in the regulation of NF-kappa-B activation and apoptosis. Inhibits NF-kappa-B activation triggered by overexpression of RIPK1 and TRAF6 but not of RELA. Also inhibits tumor necrosis factor (TNF), IL-1 and TLR4-induced NF-kappa-B activation in a dose-dependent manner. Overexpression sensitizes cells to TNF-induced apoptosis. Is a potent inhibitory factor for osteoclast differentiation. {ECO:0000269|PubMed:14754897}. |
O94880 | PHF14 | S61 | ochoa | PHD finger protein 14 | Histone-binding protein (PubMed:23688586). Binds preferentially to unmodified histone H3 but can also bind to a lesser extent to histone H3 trimethylated at 'Lys-9' (H3K9me3) as well as to histone H3 monomethylated at 'Lys-27' (H3K27ac) and trimethylated at 'Lys-27' (H3K27me3) (By similarity). Represses PDGFRA expression, thus playing a role in regulation of mesenchymal cell proliferation (By similarity). Suppresses the expression of CDKN1A/p21 by reducing the level of trimethylation of histone H3 'Lys-4', leading to enhanced proliferation of germinal center B cells (By similarity). {ECO:0000250|UniProtKB:A0A286Y9D1, ECO:0000250|UniProtKB:Q9D4H9, ECO:0000269|PubMed:23688586}. |
O94885 | SASH1 | S137 | ochoa | SAM and SH3 domain-containing protein 1 (Proline-glutamate repeat-containing protein) | Is a positive regulator of NF-kappa-B signaling downstream of TLR4 activation. It acts as a scaffold molecule to assemble a molecular complex that includes TRAF6, MAP3K7, CHUK and IKBKB, thereby facilitating NF-kappa-B signaling activation (PubMed:23776175). Regulates TRAF6 and MAP3K7 ubiquitination (PubMed:23776175). Involved in the regulation of cell mobility (PubMed:23333244, PubMed:23776175, PubMed:25315659). Regulates lipolysaccharide (LPS)-induced endothelial cell migration (PubMed:23776175). Is involved in the regulation of skin pigmentation through the control of melanocyte migration in the epidermis (PubMed:23333244). {ECO:0000269|PubMed:23333244, ECO:0000269|PubMed:23776175, ECO:0000269|PubMed:25315659}. |
O94986 | CEP152 | S497 | ochoa | Centrosomal protein of 152 kDa (Cep152) | Necessary for centrosome duplication; the function also seems to involve CEP63, CDK5RAP2 and WDR62 through a stepwise assembled complex at the centrosome that recruits CDK2 required for centriole duplication (PubMed:26297806). Acts as a molecular scaffold facilitating the interaction of PLK4 and CPAP, 2 molecules involved in centriole formation (PubMed:20852615, PubMed:21059844). Proposed to snatch PLK4 away from PLK4:CEP92 complexes in early G1 daughter centriole and to reposition PLK4 at the outer boundary of a newly forming CEP152 ring structure (PubMed:24997597). Also plays a key role in deuterosome-mediated centriole amplification in multiciliated that can generate more than 100 centrioles (By similarity). Overexpression of CEP152 can drive amplification of centrioles (PubMed:20852615). {ECO:0000250|UniProtKB:A2AUM9, ECO:0000250|UniProtKB:Q498G2, ECO:0000269|PubMed:20852615, ECO:0000269|PubMed:21059844, ECO:0000269|PubMed:21131973}. |
O95208 | EPN2 | S182 | ochoa | Epsin-2 (EPS-15-interacting protein 2) | Plays a role in the formation of clathrin-coated invaginations and endocytosis. {ECO:0000269|PubMed:10567358}. |
O95239 | KIF4A | S812 | ochoa | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95251 | KAT7 | S102 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95400 | CD2BP2 | S141 | ochoa | CD2 antigen cytoplasmic tail-binding protein 2 (CD2 cytoplasmic domain-binding protein 2) (CD2 tail-binding protein 2) (U5 snRNP 52K protein) (U5-52K) | Involved in pre-mRNA splicing as component of the U5 snRNP complex that is involved in spliceosome assembly. {ECO:0000269|PubMed:15840814}. |
O95425 | SVIL | S675 | ochoa | Supervillin (Archvillin) (p205/p250) | [Isoform 1]: Forms a high-affinity link between the actin cytoskeleton and the membrane. Is among the first costameric proteins to assemble during myogenesis and it contributes to myogenic membrane structure and differentiation (PubMed:12711699). Appears to be involved in myosin II assembly. May modulate myosin II regulation through MLCK during cell spreading, an initial step in cell migration. May play a role in invadopodial function (PubMed:19109420). {ECO:0000269|PubMed:12711699, ECO:0000269|PubMed:19109420}.; FUNCTION: [Isoform 2]: May be involved in modulation of focal adhesions. Supervillin-mediated down-regulation of focal adhesions involves binding to TRIP6. Plays a role in cytokinesis through KIF14 interaction (By similarity). {ECO:0000250|UniProtKB:O46385}. |
O95674 | CDS2 | S23 | ochoa | Phosphatidate cytidylyltransferase 2 (EC 2.7.7.41) (CDP-DAG synthase 2) (CDP-DG synthase 2) (CDP-diacylglycerol synthase 2) (CDS 2) (CDP-diglyceride pyrophosphorylase 2) (CDP-diglyceride synthase 2) (CTP:phosphatidate cytidylyltransferase 2) | Catalyzes the conversion of phosphatidic acid (PA) to CDP-diacylglycerol (CDP-DAG), an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PubMed:25375833). Exhibits specificity for the nature of the acyl chains at the sn-1 and sn-2 positions in the substrate, PA and the preferred acyl chain composition is 1-stearoyl-2-arachidonoyl-sn-phosphatidic acid (PubMed:25375833). Plays an important role in regulating the growth and maturation of lipid droplets which are storage organelles at the center of lipid and energy homeostasis (PubMed:26946540, PubMed:31548309). {ECO:0000269|PubMed:25375833, ECO:0000269|PubMed:26946540, ECO:0000269|PubMed:31548309}. |
O95684 | CEP43 | S209 | ochoa | Centrosomal protein 43 (FGFR1 oncogene partner) | Required for anchoring microtubules to the centrosomes (PubMed:16314388, PubMed:28659385). Required for ciliation (PubMed:28625565, PubMed:28659385). {ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:28625565, ECO:0000269|PubMed:28659385}. |
O95714 | HERC2 | S1948 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
O95801 | TTC4 | S245 | ochoa | Tetratricopeptide repeat protein 4 (TPR repeat protein 4) | May act as a co-chaperone for HSP90AB1 (PubMed:18320024). Promotes Sendai virus (SeV)-induced host cell innate immune responses (PubMed:29251827). {ECO:0000269|PubMed:18320024, ECO:0000269|PubMed:29251827}. |
O95831 | AIFM1 | S118 | ochoa | Apoptosis-inducing factor 1, mitochondrial (EC 1.6.99.-) (Programmed cell death protein 8) | Functions both as NADH oxidoreductase and as regulator of apoptosis (PubMed:17094969, PubMed:20362274, PubMed:23217327, PubMed:33168626). In response to apoptotic stimuli, it is released from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it functions as a proapoptotic factor in a caspase-independent pathway (PubMed:20362274). Release into the cytoplasm is mediated upon binding to poly-ADP-ribose chains (By similarity). The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA (PubMed:20362274). Binds to DNA in a sequence-independent manner (PubMed:27178839). Interacts with EIF3G, and thereby inhibits the EIF3 machinery and protein synthesis, and activates caspase-7 to amplify apoptosis (PubMed:17094969). Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells (PubMed:19418225). In contrast, participates in normal mitochondrial metabolism. Plays an important role in the regulation of respiratory chain biogenesis by interacting with CHCHD4 and controlling CHCHD4 mitochondrial import (PubMed:26004228). {ECO:0000250|UniProtKB:Q9Z0X1, ECO:0000269|PubMed:17094969, ECO:0000269|PubMed:19418225, ECO:0000269|PubMed:20362274, ECO:0000269|PubMed:23217327, ECO:0000269|PubMed:26004228, ECO:0000269|PubMed:27178839, ECO:0000269|PubMed:33168626}.; FUNCTION: [Isoform 4]: Has NADH oxidoreductase activity. Does not induce nuclear apoptosis. {ECO:0000269|PubMed:16644725}.; FUNCTION: [Isoform 5]: Pro-apoptotic isoform. {ECO:0000269|PubMed:16365034}. |
P07332 | FES | S412 | ochoa | Tyrosine-protein kinase Fes/Fps (EC 2.7.10.2) (Feline sarcoma/Fujinami avian sarcoma oncogene homolog) (Proto-oncogene c-Fes) (Proto-oncogene c-Fps) (p93c-fes) | Tyrosine-protein kinase that acts downstream of cell surface receptors and plays a role in the regulation of the actin cytoskeleton, microtubule assembly, cell attachment and cell spreading. Plays a role in FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Acts down-stream of the activated FCER1 receptor and the mast/stem cell growth factor receptor KIT. Plays a role in the regulation of mast cell degranulation. Plays a role in the regulation of cell differentiation and promotes neurite outgrowth in response to NGF signaling. Plays a role in cell scattering and cell migration in response to HGF-induced activation of EZR. Phosphorylates BCR and down-regulates BCR kinase activity. Phosphorylates HCLS1/HS1, PECAM1, STAT3 and TRIM28. {ECO:0000269|PubMed:11509660, ECO:0000269|PubMed:15302586, ECO:0000269|PubMed:15485904, ECO:0000269|PubMed:16455651, ECO:0000269|PubMed:17595334, ECO:0000269|PubMed:18046454, ECO:0000269|PubMed:19001085, ECO:0000269|PubMed:19051325, ECO:0000269|PubMed:20111072, ECO:0000269|PubMed:2656706, ECO:0000269|PubMed:8955135}. |
P09327 | VIL1 | S261 | ochoa | Villin-1 | Epithelial cell-specific Ca(2+)-regulated actin-modifying protein that modulates the reorganization of microvillar actin filaments. Plays a role in the actin nucleation, actin filament bundle assembly, actin filament capping and severing. Binds phosphatidylinositol 4,5-bisphosphate (PIP2) and lysophosphatidic acid (LPA); binds LPA with higher affinity than PIP2. Binding to LPA increases its phosphorylation by SRC and inhibits all actin-modifying activities. Binding to PIP2 inhibits actin-capping and -severing activities but enhances actin-bundling activity. Regulates the intestinal epithelial cell morphology, cell invasion, cell migration and apoptosis. Protects against apoptosis induced by dextran sodium sulfate (DSS) in the gastrointestinal epithelium. Appears to regulate cell death by maintaining mitochondrial integrity. Enhances hepatocyte growth factor (HGF)-induced epithelial cell motility, chemotaxis and wound repair. Upon S.flexneri cell infection, its actin-severing activity enhances actin-based motility of the bacteria and plays a role during the dissemination. {ECO:0000269|PubMed:11500485, ECO:0000269|PubMed:14594952, ECO:0000269|PubMed:15084600, ECO:0000269|PubMed:15272027, ECO:0000269|PubMed:15342783, ECO:0000269|PubMed:16921170, ECO:0000269|PubMed:17182858, ECO:0000269|PubMed:17229814, ECO:0000269|PubMed:17606613, ECO:0000269|PubMed:18054784, ECO:0000269|PubMed:18198174, ECO:0000269|PubMed:19808673, ECO:0000269|PubMed:3087992}. |
P09958 | FURIN | S775 | psp | Furin (EC 3.4.21.75) (Dibasic-processing enzyme) (Paired basic amino acid residue-cleaving enzyme) (PACE) | Ubiquitous endoprotease within constitutive secretory pathways capable of cleavage at the RX(K/R)R consensus motif (PubMed:11799113, PubMed:1629222, PubMed:1713771, PubMed:2251280, PubMed:24666235, PubMed:25974265, PubMed:7592877, PubMed:7690548, PubMed:9130696). Mediates processing of TGFB1, an essential step in TGF-beta-1 activation (PubMed:7737999). Converts through proteolytic cleavage the non-functional Brain natriuretic factor prohormone into its active hormone BNP(1-32) (PubMed:20489134, PubMed:21763278). By mediating processing of accessory subunit ATP6AP1/Ac45 of the V-ATPase, regulates the acidification of dense-core secretory granules in islets of Langerhans cells (By similarity). {ECO:0000250|UniProtKB:P23188, ECO:0000269|PubMed:11799113, ECO:0000269|PubMed:1629222, ECO:0000269|PubMed:1713771, ECO:0000269|PubMed:20489134, ECO:0000269|PubMed:21763278, ECO:0000269|PubMed:2251280, ECO:0000269|PubMed:24666235, ECO:0000269|PubMed:25974265, ECO:0000269|PubMed:7592877, ECO:0000269|PubMed:7690548, ECO:0000269|PubMed:7737999, ECO:0000269|PubMed:9130696}.; FUNCTION: (Microbial infection) Cleaves and activates diphtheria toxin DT. {ECO:0000269|PubMed:8253774}.; FUNCTION: (Microbial infection) Cleaves and activates anthrax toxin protective antigen (PA). {ECO:0000269|PubMed:1438214, ECO:0000269|PubMed:1644824}.; FUNCTION: (Microbial infection) Cleaves and activates HIV-1 virus Envelope glycoprotein gp160. {ECO:0000269|PubMed:31091448}.; FUNCTION: (Microbial infection) Required for H7N1 and H5N1 influenza virus infection probably by cleaving hemagglutinin. {ECO:0000269|PubMed:25974265}.; FUNCTION: (Microbial infection) Able to cleave S.pneumoniae serine-rich repeat protein PsrP. {ECO:0000269|PubMed:27582320}.; FUNCTION: (Microbial infection) Facilitates human coronaviruses EMC and SARS-CoV-2 infections by proteolytically cleaving the spike protein at the monobasic S1/S2 cleavage site. This cleavage is essential for spike protein-mediated cell-cell fusion and entry into human lung cells. {ECO:0000269|PubMed:32362314, ECO:0000269|PubMed:32703818}.; FUNCTION: (Microbial infection) Facilitates mumps virus infection by proteolytically cleaving the viral fusion protein F. {ECO:0000269|PubMed:32295904}. |
P0DJ93 | SMIM13 | S60 | ochoa | Small integral membrane protein 13 | None |
P10599 | TXN | S46 | ochoa | Thioredoxin (Trx) (ATL-derived factor) (ADF) (Surface-associated sulphydryl protein) (SASP) (allergen Hom s Trx) | Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions (PubMed:17182577, PubMed:19032234, PubMed:2176490). Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity (PubMed:16408020, PubMed:17606900). Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates AP-1 transcriptional activity (PubMed:11118054, PubMed:9108029). {ECO:0000269|PubMed:11118054, ECO:0000269|PubMed:16408020, ECO:0000269|PubMed:17182577, ECO:0000269|PubMed:17606900, ECO:0000269|PubMed:19032234, ECO:0000269|PubMed:2176490, ECO:0000269|PubMed:9108029}.; FUNCTION: ADF augments the expression of the interleukin-2 receptor TAC (IL2R/P55). |
P10914 | IRF1 | S221 | psp | Interferon regulatory factor 1 (IRF-1) | Transcriptional regulator which displays a remarkable functional diversity in the regulation of cellular responses (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195, PubMed:32385160). Regulates transcription of IFN and IFN-inducible genes, host response to viral and bacterial infections, regulation of many genes expressed during hematopoiesis, inflammation, immune responses and cell proliferation and differentiation, regulation of the cell cycle and induction of growth arrest and programmed cell death following DNA damage (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Stimulates both innate and acquired immune responses through the activation of specific target genes and can act as a transcriptional activator and repressor regulating target genes by binding to an interferon-stimulated response element (ISRE) in their promoters (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:21389130, PubMed:22367195). Has an essentail role in IFNG-dependent immunity to mycobacteria (PubMed:36736301). Competes with the transcriptional repressor ZBED2 for binding to a common consensus sequence in gene promoters (PubMed:32385160). Its target genes for transcriptional activation activity include: genes involved in anti-viral response, such as IFN-alpha/beta, RIGI, TNFSF10/TRAIL, ZBP1, OAS1/2, PIAS1/GBP, EIF2AK2/PKR and RSAD2/viperin; antibacterial response, such as GBP2, GBP5 and NOS2/INOS; anti-proliferative response, such as p53/TP53, LOX and CDKN1A; apoptosis, such as BBC3/PUMA, CASP1, CASP7 and CASP8; immune response, such as IL7, IL12A/B and IL15, PTGS2/COX2 and CYBB; DNA damage responses and DNA repair, such as POLQ/POLH; MHC class I expression, such as TAP1, PSMB9/LMP2, PSME1/PA28A, PSME2/PA28B and B2M and MHC class II expression, such as CIITA; metabolic enzymes, such as ACOD1/IRG1 (PubMed:15226432, PubMed:15509808, PubMed:17516545, PubMed:17942705, PubMed:18497060, PubMed:19404407, PubMed:19851330, PubMed:22367195). Represses genes involved in anti-proliferative response, such as BIRC5/survivin, CCNB1, CCNE1, CDK1, CDK2 and CDK4 and in immune response, such as FOXP3, IL4, ANXA2 and TLR4 (PubMed:18641303, PubMed:22200613). Stimulates p53/TP53-dependent transcription through enhanced recruitment of EP300 leading to increased acetylation of p53/TP53 (PubMed:15509808, PubMed:18084608). Plays an important role in immune response directly affecting NK maturation and activity, macrophage production of IL12, Th1 development and maturation of CD8+ T-cells (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Also implicated in the differentiation and maturation of dendritic cells and in the suppression of regulatory T (Treg) cells development (PubMed:11244049, PubMed:11846971, PubMed:11846974, PubMed:16932750). Acts as a tumor suppressor and plays a role not only in antagonism of tumor cell growth but also in stimulating an immune response against tumor cells (PubMed:20049431). {ECO:0000269|PubMed:15226432, ECO:0000269|PubMed:15509808, ECO:0000269|PubMed:17516545, ECO:0000269|PubMed:17942705, ECO:0000269|PubMed:18084608, ECO:0000269|PubMed:18497060, ECO:0000269|PubMed:18641303, ECO:0000269|PubMed:19404407, ECO:0000269|PubMed:19851330, ECO:0000269|PubMed:21389130, ECO:0000269|PubMed:22200613, ECO:0000269|PubMed:22367195, ECO:0000269|PubMed:32385160, ECO:0000269|PubMed:36736301, ECO:0000303|PubMed:11244049, ECO:0000303|PubMed:11846971, ECO:0000303|PubMed:11846974, ECO:0000303|PubMed:16932750, ECO:0000303|PubMed:20049431}. |
P12830 | CDH1 | S840 | psp | Cadherin-1 (CAM 120/80) (Epithelial cadherin) (E-cadherin) (Uvomorulin) (CD antigen CD324) [Cleaved into: E-Cad/CTF1; E-Cad/CTF2; E-Cad/CTF3] | Cadherins are calcium-dependent cell adhesion proteins (PubMed:11976333). They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types. CDH1 is involved in mechanisms regulating cell-cell adhesions, mobility and proliferation of epithelial cells (PubMed:11976333). Promotes organization of radial actin fiber structure and cellular response to contractile forces, via its interaction with AMOTL2 which facilitates anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane (By similarity). Plays a role in the early stages of desmosome cell-cell junction formation via facilitating the recruitment of DSG2 and DSP to desmosome plaques (PubMed:29999492). Has a potent invasive suppressor role. It is a ligand for integrin alpha-E/beta-7. {ECO:0000250|UniProtKB:F1PAA9, ECO:0000269|PubMed:11976333, ECO:0000269|PubMed:16417575, ECO:0000269|PubMed:29999492}.; FUNCTION: E-Cad/CTF2 promotes non-amyloidogenic degradation of Abeta precursors. Has a strong inhibitory effect on APP C99 and C83 production. {ECO:0000269|PubMed:16417575}.; FUNCTION: (Microbial infection) Serves as a receptor for Listeria monocytogenes; internalin A (InlA) binds to this protein and promotes uptake of the bacteria. {ECO:0000269|PubMed:10406800, ECO:0000269|PubMed:17540170, ECO:0000269|PubMed:8601315}. |
P12883 | MYH7 | S1465 | ochoa | Myosin-7 (Myosin heavy chain 7) (Myosin heavy chain slow isoform) (MyHC-slow) (Myosin heavy chain, cardiac muscle beta isoform) (MyHC-beta) | Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. {ECO:0000305|PubMed:26150528, ECO:0000305|PubMed:26246073}. |
P13533 | MYH6 | S1467 | ochoa | Myosin-6 (Myosin heavy chain 6) (Myosin heavy chain, cardiac muscle alpha isoform) (MyHC-alpha) | Muscle contraction. |
P13796 | LCP1 | S119 | ochoa | Plastin-2 (L-plastin) (LC64P) (Lymphocyte cytosolic protein 1) (LCP-1) | Actin-binding protein (PubMed:16636079, PubMed:17294403, PubMed:28493397). Plays a role in the activation of T-cells in response to costimulation through TCR/CD3 and CD2 or CD28 (PubMed:17294403). Modulates the cell surface expression of IL2RA/CD25 and CD69 (PubMed:17294403). {ECO:0000269|PubMed:16636079, ECO:0000269|PubMed:17294403, ECO:0000269|PubMed:28493397}. |
P13861 | PRKAR2A | S80 | ochoa|psp | cAMP-dependent protein kinase type II-alpha regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase. |
P18858 | LIG1 | S201 | ochoa | DNA ligase 1 (EC 6.5.1.1) (DNA ligase I) (Polydeoxyribonucleotide synthase [ATP] 1) | DNA ligase that seals nicks in double-stranded during DNA repair (PubMed:30395541). Also involved in DNA replication and DNA recombination. {ECO:0000269|PubMed:30395541}. |
P21359 | NF1 | S2599 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P23246 | SFPQ | S275 | ochoa | Splicing factor, proline- and glutamine-rich (100 kDa DNA-pairing protein) (hPOMp100) (DNA-binding p52/p100 complex, 100 kDa subunit) (Polypyrimidine tract-binding protein-associated-splicing factor) (PSF) (PTB-associated-splicing factor) | DNA- and RNA binding protein, involved in several nuclear processes. Essential pre-mRNA splicing factor required early in spliceosome formation and for splicing catalytic step II, probably as a heteromer with NONO. Binds to pre-mRNA in spliceosome C complex, and specifically binds to intronic polypyrimidine tracts. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45, a phosphorylated form is sequestered by THRAP3 from the pre-mRNA in resting T-cells; T-cell activation and subsequent reduced phosphorylation is proposed to lead to release from THRAP3 allowing binding to pre-mRNA splicing regulatotry elements which represses exon inclusion. Interacts with U5 snRNA, probably by binding to a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. May be involved in a pre-mRNA coupled splicing and polyadenylation process as component of a snRNP-free complex with SNRPA/U1A. The SFPQ-NONO heteromer associated with MATR3 may play a role in nuclear retention of defective RNAs. SFPQ may be involved in homologous DNA pairing; in vitro, promotes the invasion of ssDNA between a duplex DNA and produces a D-loop formation. The SFPQ-NONO heteromer may be involved in DNA unwinding by modulating the function of topoisomerase I/TOP1; in vitro, stimulates dissociation of TOP1 from DNA after cleavage and enhances its jumping between separate DNA helices. The SFPQ-NONO heteromer binds DNA (PubMed:25765647). The SFPQ-NONO heteromer may be involved in DNA non-homologous end joining (NHEJ) required for double-strand break repair and V(D)J recombination and may stabilize paired DNA ends; in vitro, the complex strongly stimulates DNA end joining, binds directly to the DNA substrates and cooperates with the Ku70/G22P1-Ku80/XRCC5 (Ku) dimer to establish a functional preligation complex. SFPQ is involved in transcriptional regulation. Functions as a transcriptional activator (PubMed:25765647). Transcriptional repression is mediated by an interaction of SFPQ with SIN3A and subsequent recruitment of histone deacetylases (HDACs). The SFPQ-NONO-NR5A1 complex binds to the CYP17 promoter and regulates basal and cAMP-dependent transcriptional activity. SFPQ isoform Long binds to the DNA binding domains (DBD) of nuclear hormone receptors, like RXRA and probably THRA, and acts as a transcriptional corepressor in absence of hormone ligands. Binds the DNA sequence 5'-CTGAGTC-3' in the insulin-like growth factor response element (IGFRE) and inhibits IGF1-stimulated transcriptional activity. Regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex through histone deacetylation (By similarity). Required for the assembly of nuclear speckles (PubMed:25765647). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). {ECO:0000250|UniProtKB:Q8VIJ6, ECO:0000269|PubMed:10847580, ECO:0000269|PubMed:10858305, ECO:0000269|PubMed:10931916, ECO:0000269|PubMed:11259580, ECO:0000269|PubMed:11525732, ECO:0000269|PubMed:11897684, ECO:0000269|PubMed:15590677, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:25765647, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:8045264, ECO:0000269|PubMed:8449401}. |
P25054 | APC | S987 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P25054 | APC | S2207 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26045 | PTPN3 | S427 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P28290 | ITPRID2 | S427 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P28290 | ITPRID2 | S652 | ochoa | Protein ITPRID2 (Cleavage signal-1 protein) (CS-1) (ITPR-interacting domain-containing protein 2) (Ki-ras-induced actin-interacting protein) (Sperm-specific antigen 2) | None |
P29317 | EPHA2 | S579 | ochoa | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P29317 | EPHA2 | S901 | ochoa | Ephrin type-A receptor 2 (EC 2.7.10.1) (Epithelial cell kinase) (Tyrosine-protein kinase receptor ECK) | Receptor tyrosine kinase which binds promiscuously membrane-bound ephrin-A family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Activated by the ligand ephrin-A1/EFNA1 regulates migration, integrin-mediated adhesion, proliferation and differentiation of cells. Regulates cell adhesion and differentiation through DSG1/desmoglein-1 and inhibition of the ERK1/ERK2 (MAPK3/MAPK1, respectively) signaling pathway. May also participate in UV radiation-induced apoptosis and have a ligand-independent stimulatory effect on chemotactic cell migration. During development, may function in distinctive aspects of pattern formation and subsequently in development of several fetal tissues. Involved for instance in angiogenesis, in early hindbrain development and epithelial proliferation and branching morphogenesis during mammary gland development. Engaged by the ligand ephrin-A5/EFNA5 may regulate lens fiber cells shape and interactions and be important for lens transparency development and maintenance. With ephrin-A2/EFNA2 may play a role in bone remodeling through regulation of osteoclastogenesis and osteoblastogenesis. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:16236711, ECO:0000269|PubMed:18339848, ECO:0000269|PubMed:19573808, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:20861311, ECO:0000269|PubMed:23358419, ECO:0000269|PubMed:26158630, ECO:0000269|PubMed:27385333}.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}.; FUNCTION: Acts as a receptor for human cytomegalovirus (HCMV) to mediate viral entry and fusion in glioblastoma cells. {ECO:0000269|PubMed:37146061}. |
P29374 | ARID4A | S1111 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P29590 | PML | S580 | ochoa | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P30414 | NKTR | S891 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P30414 | NKTR | S918 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P31323 | PRKAR2B | S85 | ochoa | cAMP-dependent protein kinase type II-beta regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase. |
P32004 | L1CAM | S1163 | ochoa | Neural cell adhesion molecule L1 (N-CAM-L1) (NCAM-L1) (CD antigen CD171) | Neural cell adhesion molecule involved in the dynamics of cell adhesion and in the generation of transmembrane signals at tyrosine kinase receptors. During brain development, critical in multiple processes, including neuronal migration, axonal growth and fasciculation, and synaptogenesis. In the mature brain, plays a role in the dynamics of neuronal structure and function, including synaptic plasticity. {ECO:0000269|PubMed:20621658, ECO:0000305}. |
P35251 | RFC1 | S71 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35348 | ADRA1A | S229 | psp | Alpha-1A adrenergic receptor (Alpha-1A adrenoreceptor) (Alpha-1A adrenoceptor) (Alpha-1C adrenergic receptor) (Alpha-adrenergic receptor 1c) | This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes. {ECO:0000269|PubMed:18802028, ECO:0000269|PubMed:22120526}. |
P36956 | SREBF1 | S457 | ochoa | Sterol regulatory element-binding protein 1 (SREBP-1) (Class D basic helix-loop-helix protein 1) (bHLHd1) (Sterol regulatory element-binding transcription factor 1) [Cleaved into: Processed sterol regulatory element-binding protein 1 (Transcription factor SREBF1)] | [Sterol regulatory element-binding protein 1]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 1), which is embedded in the endoplasmic reticulum membrane (PubMed:32322062). Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis and lipid homeostasis (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:32322062}.; FUNCTION: [Processed sterol regulatory element-binding protein 1]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis and lipid homeostasis (PubMed:12177166, PubMed:32322062, PubMed:8402897). Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3') (PubMed:12177166, PubMed:8402897). Regulates the promoters of genes involved in cholesterol biosynthesis and the LDL receptor (LDLR) pathway of sterol regulation (PubMed:12177166, PubMed:32322062, PubMed:8402897). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32322062, ECO:0000269|PubMed:8402897}.; FUNCTION: [Isoform SREBP-1A]: Isoform expressed only in select tissues, which has higher transcriptional activity compared to SREBP-1C (By similarity). Able to stimulate both lipogenic and cholesterogenic gene expression (PubMed:12177166, PubMed:32497488). Has a role in the nutritional regulation of fatty acids and triglycerides in lipogenic organs such as the liver (By similarity). Required for innate immune response in macrophages by regulating lipid metabolism (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166, ECO:0000269|PubMed:32497488}.; FUNCTION: [Isoform SREBP-1C]: Predominant isoform expressed in most tissues, which has weaker transcriptional activity compared to isoform SREBP-1A (By similarity). Primarily controls expression of lipogenic gene (PubMed:12177166). Strongly activates global lipid synthesis in rapidly growing cells (By similarity). {ECO:0000250|UniProtKB:Q9WTN3, ECO:0000269|PubMed:12177166}.; FUNCTION: [Isoform SREBP-1aDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}.; FUNCTION: [Isoform SREBP-1cDelta]: The absence of Golgi proteolytic processing requirement makes this isoform constitutively active in transactivation of lipogenic gene promoters. {ECO:0000305|PubMed:7759101}. |
P41440 | SLC19A1 | S225 | ochoa | Reduced folate transporter (FOLT) (Cyclic dinucleotide:anion antiporter SLC19A1) (Folate:anion antiporter SLC19A1) (Intestinal folate carrier 1) (IFC-1) (Placental folate transporter) (Reduced folate carrier protein) (RFC) (hRFC) (Reduced folate transporter 1) (RFT-1) (Solute carrier family 19 member 1) (hSLC19A1) | Antiporter that mediates the import of reduced folates or a subset of cyclic dinucleotides, driven by the export of organic anions (PubMed:10787414, PubMed:15337749, PubMed:16115875, PubMed:22554803, PubMed:31126740, PubMed:31511694, PubMed:32276275, PubMed:36071163, PubMed:36265513, PubMed:36575193, PubMed:7826387, PubMed:9041240). Acts as an importer of immunoreactive cyclic dinucleotides, such as cyclic GMP-AMP (2'-3'-cGAMP), an immune messenger produced in response to DNA virus in the cytosol, and its linkage isomer 3'-3'-cGAMP, thus playing a role in triggering larger immune responses (PubMed:31126740, PubMed:31511694, PubMed:36745868). Mechanistically, acts as a secondary active transporter, which exports intracellular organic anions down their concentration gradients to facilitate the uptake of its substrates (PubMed:22554803, PubMed:31126740, PubMed:31511694). Has high affinity for N5-methyltetrahydrofolate, the predominant circulating form of folate (PubMed:10787414, PubMed:14609557, PubMed:22554803, PubMed:36071163, PubMed:36265513, PubMed:36575193). Also mediates the import of antifolate drug methotrexate (PubMed:22554803, PubMed:36071163, PubMed:7615551, PubMed:7641195, PubMed:9767079). 5-amino-4-imidazolecarboxamide riboside (AICAR), when phosphorylated to AICAR monophosphate, can serve as an organic anion for antiporter activity (PubMed:22554803). {ECO:0000269|PubMed:10787414, ECO:0000269|PubMed:14609557, ECO:0000269|PubMed:15337749, ECO:0000269|PubMed:16115875, ECO:0000269|PubMed:22554803, ECO:0000269|PubMed:31126740, ECO:0000269|PubMed:31511694, ECO:0000269|PubMed:32276275, ECO:0000269|PubMed:36071163, ECO:0000269|PubMed:36265513, ECO:0000269|PubMed:36575193, ECO:0000269|PubMed:36745868, ECO:0000269|PubMed:7615551, ECO:0000269|PubMed:7641195, ECO:0000269|PubMed:7826387, ECO:0000269|PubMed:9041240, ECO:0000269|PubMed:9767079}. |
P42261 | GRIA1 | S834 | psp | Glutamate receptor 1 (GluR-1) (AMPA-selective glutamate receptor 1) (GluR-A) (GluR-K1) (Glutamate receptor ionotropic, AMPA 1) | Ionotropic glutamate receptor that functions as a ligand-gated cation channel, gated by L-glutamate and glutamatergic agonists such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), quisqualic acid, and kainic acid (PubMed:1311100, PubMed:20805473, PubMed:21172611, PubMed:28628100, PubMed:35675825). L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse upon entry of monovalent and divalent cations such as sodium and calcium. The receptor then desensitizes rapidly and enters in a transient inactive state, characterized by the presence of bound agonist (By similarity). In the presence of CACNG2 or CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of L-glutamate (PubMed:21172611). Resensitization is blocked by CNIH2 through interaction with CACNG8 in the CACNG8-containing AMPA receptors complex (PubMed:21172611). Calcium (Ca(2+)) permeability depends on subunits composition and, heteromeric channels containing edited GRIA2 subunit are calcium-impermeable. Also permeable to other divalents cations such as strontium(2+) and magnesium(2+) and monovalent cations such as potassium(1+) and lithium(1+) (By similarity). {ECO:0000250|UniProtKB:P19490, ECO:0000269|PubMed:1311100, ECO:0000269|PubMed:20805473, ECO:0000269|PubMed:21172611, ECO:0000269|PubMed:28628100, ECO:0000269|PubMed:35675825}. |
P42356 | PI4KA | S1828 | ochoa | Phosphatidylinositol 4-kinase alpha (PI4-kinase alpha) (PI4K-alpha) (PtdIns-4-kinase alpha) (EC 2.7.1.67) (Phosphatidylinositol 4-Kinase III alpha) | Acts on phosphatidylinositol (PtdIns) in the first committed step in the production of the second messenger inositol-1,4,5,-trisphosphate. {ECO:0000269|PubMed:10101268, ECO:0000269|PubMed:23229899}. |
P42892 | ECE1 | S36 | ochoa|psp | Endothelin-converting enzyme 1 (ECE-1) (EC 3.4.24.71) | Converts big endothelin-1 to endothelin-1. {ECO:0000269|PubMed:37835445, ECO:0000269|PubMed:9396733}. |
P45974 | USP5 | S785 | ochoa | Ubiquitin carboxyl-terminal hydrolase 5 (EC 3.4.19.12) (Deubiquitinating enzyme 5) (Isopeptidase T) (Ubiquitin thioesterase 5) (Ubiquitin-specific-processing protease 5) | Deubiquitinating enzyme that participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. Affects thereby important cellular signaling pathways such as NF-kappa-B, Wnt/beta-catenin, and cytokine production by regulating ubiquitin-dependent protein degradation. Participates in the activation of the Wnt signaling pathway by promoting FOXM1 deubiquitination and stabilization that induces the recruitment of beta-catenin to Wnt target gene promoter (PubMed:26912724). Regulates the assembly and disassembly of heat-induced stress granules by mediating the hydrolysis of unanchored ubiquitin chains (PubMed:29567855). Promotes lipopolysaccharide-induced apoptosis and inflammatory response by stabilizing the TXNIP protein (PubMed:37534934). Affects T-cell biology by stabilizing the inhibitory receptor on T-cells PDC1 (PubMed:37208329). Acts as a negative regulator of autophagy by regulating ULK1 at both protein and mRNA levels (PubMed:37607937). Acts also as a negative regulator of type I interferon production by simultaneously removing both 'Lys-48'-linked unanchored and 'Lys-63'-linked anchored polyubiquitin chains on the transcription factor IRF3 (PubMed:39761299). Modulates the stability of DNA mismatch repair protein MLH1 and counteracts the effect of the ubiquitin ligase UBR4 (PubMed:39032648). Upon activation by insulin, it gets phosphorylated through mTORC1-mediated phosphorylation to enhance YTHDF1 stability by removing 'Lys-11'-linked polyubiquitination (PubMed:39900921). May also deubiquitinate other substrates such as the calcium channel CACNA1H (By similarity). {ECO:0000250|UniProtKB:P56399, ECO:0000269|PubMed:19098288, ECO:0000269|PubMed:26912724, ECO:0000269|PubMed:29567855, ECO:0000269|PubMed:37208329, ECO:0000269|PubMed:37534934, ECO:0000269|PubMed:39032648, ECO:0000269|PubMed:39761299, ECO:0000269|PubMed:39900921}. |
P46013 | MKI67 | S565 | ochoa | Proliferation marker protein Ki-67 (Antigen identified by monoclonal antibody Ki-67) (Antigen KI-67) (Antigen Ki67) | Protein that associates with the surface of mitotic chromosomes and acts both as a chromosome repellent during early mitosis and chromosome attractant during late mitosis (PubMed:27362226, PubMed:32879492, PubMed:35513709, PubMed:39153474). Required to maintain individual mitotic chromosomes dispersed in the cytoplasm following nuclear envelope disassembly (PubMed:27362226). During early mitosis, relocalizes from nucleoli to the chromosome surface where it forms extended brush structures that cover a substantial fraction of the chromosome surface (PubMed:27362226). The MKI67 brush structure prevents chromosomes from collapsing into a single chromatin mass by forming a steric and electrostatic charge barrier: the protein has a high net electrical charge and acts as a surfactant, dispersing chromosomes and enabling independent chromosome motility (PubMed:27362226). During mitotic anaphase, the MKI67 brush structure collapses and MKI67 switches from a chromosome repellent to a chromosome attractant to promote chromosome clustering and facilitate the exclusion of large cytoplasmic particles from the future nuclear space (PubMed:32879492, PubMed:39153474). Mechanistically, dephosphorylation during mitotic exit and simultaneous exposure of a conserved basic patch induce the RNA-dependent formation of a liquid-like condensed phase on the chromosome surface, promoting coalescence of neighboring chromosome surfaces and clustering of chromosomes (PubMed:39153474). Binds premature ribosomal RNAs during anaphase; promoting liquid-liquid phase separation (PubMed:28935370, PubMed:39153474). Binds DNA, with a preference for supercoiled DNA and AT-rich DNA (PubMed:10878551). Does not contribute to the internal structure of mitotic chromosomes (By similarity). May play a role in chromatin organization; it is however unclear whether it plays a direct role in chromatin organization or whether it is an indirect consequence of its function in mitotic chromosome (PubMed:24867636). {ECO:0000250|UniProtKB:E9PVX6, ECO:0000269|PubMed:10878551, ECO:0000269|PubMed:24867636, ECO:0000269|PubMed:27362226, ECO:0000269|PubMed:28935370, ECO:0000269|PubMed:32879492, ECO:0000269|PubMed:35513709, ECO:0000269|PubMed:39153474}. |
P46821 | MAP1B | S1522 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P47900 | P2RY1 | S354 | psp | P2Y purinoceptor 1 (P2Y1) (ADP receptor) (Purinergic receptor) | Receptor for extracellular adenine nucleotides such as ADP (PubMed:25822790, PubMed:9038354, PubMed:9442040). In platelets, binding to ADP leads to mobilization of intracellular calcium ions via activation of phospholipase C, a change in platelet shape, and ultimately platelet aggregation (PubMed:9442040). {ECO:0000269|PubMed:25822790, ECO:0000269|PubMed:9038354, ECO:0000269|PubMed:9442040}. |
P48634 | PRRC2A | S766 | ochoa | Protein PRRC2A (HLA-B-associated transcript 2) (Large proline-rich protein BAT2) (Proline-rich and coiled-coil-containing protein 2A) (Protein G2) | May play a role in the regulation of pre-mRNA splicing. {ECO:0000269|PubMed:14667819}. |
P48681 | NES | S1498 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P48788 | TNNI2 | S59 | ochoa | Troponin I, fast skeletal muscle (Troponin I, fast-twitch isoform) | Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. |
P49321 | NASP | S176 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49792 | RANBP2 | S2568 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P50851 | LRBA | S1576 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P52701 | MSH6 | S254 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P53999 | SUB1 | S19 | ochoa | Activated RNA polymerase II transcriptional coactivator p15 (Positive cofactor 4) (PC4) (SUB1 homolog) (p14) | General coactivator that functions cooperatively with TAFs and mediates functional interactions between upstream activators and the general transcriptional machinery. May be involved in stabilizing the multiprotein transcription complex. Binds single-stranded DNA. Also binds, in vitro, non-specifically to double-stranded DNA (ds DNA). {ECO:0000269|PubMed:16605275, ECO:0000269|PubMed:16689930, ECO:0000269|PubMed:7628453, ECO:0000269|PubMed:8062391, ECO:0000269|PubMed:8062392, ECO:0000269|PubMed:9360603, ECO:0000269|PubMed:9482861}. |
P54259 | ATN1 | S79 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P54259 | ATN1 | S81 | ochoa | Atrophin-1 (Dentatorubral-pallidoluysian atrophy protein) | Transcriptional corepressor. Recruits NR2E1 to repress transcription. Promotes vascular smooth cell (VSMC) migration and orientation (By similarity). Corepressor of MTG8 transcriptional repression. Has some intrinsic repression activity which is independent of the number of poly-Gln (polyQ) repeats. {ECO:0000250|UniProtKB:O35126, ECO:0000269|PubMed:10085113, ECO:0000269|PubMed:10973986}. |
P54296 | MYOM2 | S1059 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P54753 | EPHB3 | S591 | ochoa | Ephrin type-B receptor 3 (EC 2.7.10.1) (EPH-like tyrosine kinase 2) (EPH-like kinase 2) (Embryonic kinase 2) (EK2) (hEK2) (Tyrosine-protein kinase TYRO6) | Receptor tyrosine kinase which binds promiscuously transmembrane ephrin-B family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Generally has an overlapping and redundant function with EPHB2. Like EPHB2, functions in axon guidance during development regulating for instance the neurons forming the corpus callosum and the anterior commissure, 2 major interhemispheric connections between the temporal lobes of the cerebral cortex. In addition to its role in axon guidance also plays an important redundant role with other ephrin-B receptors in development and maturation of dendritic spines and the formation of excitatory synapses. Controls other aspects of development through regulation of cell migration and positioning. This includes angiogenesis, palate development and thymic epithelium development for instance. Forward and reverse signaling through the EFNB2/EPHB3 complex also regulate migration and adhesion of cells that tubularize the urethra and septate the cloaca. Finally, plays an important role in intestinal epithelium differentiation segregating progenitor from differentiated cells in the crypt. {ECO:0000269|PubMed:15536074}. |
P57103 | SLC8A3 | S384 | ochoa | Sodium/calcium exchanger 3 (Na(+)/Ca(2+)-exchange protein 3) (Solute carrier family 8 member 3) | Mediates the electrogenic exchange of Ca(2+) against Na(+) ions across the cell membrane, and thereby contributes to the regulation of cytoplasmic Ca(2+) levels and Ca(2+)-dependent cellular processes. Contributes to cellular Ca(2+) homeostasis in excitable cells, both in muscle and in brain. In a first phase, voltage-gated channels mediate the rapid increase of cytoplasmic Ca(2+) levels due to release of Ca(2+) stores from the endoplasmic reticulum. SLC8A3 mediates the export of Ca(2+) from the cell during the next phase, so that cytoplasmic Ca(2+) levels rapidly return to baseline. Contributes to Ca(2+) transport during excitation-contraction coupling in muscle. In neurons, contributes to the rapid decrease of cytoplasmic Ca(2+) levels back to baseline after neuronal activation, and thereby contributes to modulate synaptic plasticity, learning and memory (By similarity). Required for normal oligodendrocyte differentiation and for normal myelination (PubMed:21959935). Mediates Ca(2+) efflux from mitochondria and contributes to mitochondrial Ca(2+) ion homeostasis (By similarity). {ECO:0000250|UniProtKB:S4R2P9, ECO:0000269|PubMed:21959935}. |
P58340 | MLF1 | S34 | ochoa | Myeloid leukemia factor 1 (Myelodysplasia-myeloid leukemia factor 1) | Involved in lineage commitment of primary hemopoietic progenitors by restricting erythroid formation and enhancing myeloid formation. Interferes with erythropoietin-induced erythroid terminal differentiation by preventing cells from exiting the cell cycle through suppression of CDKN1B/p27Kip1 levels. Suppresses COP1 activity via CSN3 which activates p53 and induces cell cycle arrest. Binds DNA and affects the expression of a number of genes so may function as a transcription factor in the nucleus. {ECO:0000269|PubMed:15861129}. |
P78504 | JAG1 | S1107 | ochoa | Protein jagged-1 (Jagged1) (hJ1) (CD antigen CD339) | Ligand for multiple Notch receptors and involved in the mediation of Notch signaling (PubMed:18660822, PubMed:20437614). May be involved in cell-fate decisions during hematopoiesis (PubMed:9462510). Seems to be involved in early and late stages of mammalian cardiovascular development. Inhibits myoblast differentiation (By similarity). Enhances fibroblast growth factor-induced angiogenesis (in vitro). {ECO:0000250, ECO:0000269|PubMed:18660822, ECO:0000269|PubMed:20437614, ECO:0000269|PubMed:9462510}. |
P78527 | PRKDC | S505 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78527 | PRKDC | S3367 | ochoa | DNA-dependent protein kinase catalytic subunit (DNA-PK catalytic subunit) (DNA-PKcs) (EC 2.7.11.1) (DNPK1) (Ser-473 kinase) (S473K) (p460) | Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234). Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:33854234, PubMed:34352203). Must be bound to DNA to express its catalytic properties (PubMed:11955432). Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C) (PubMed:11955432). Recruited by XRCC5 and XRCC6 to DNA ends and is required to (1) protect and align broken ends of DNA, thereby preventing their degradation, (2) and sequester the DSB for repair by NHEJ (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326, PubMed:33854234). Acts as a scaffold protein to aid the localization of DNA repair proteins to the site of damage (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Found at the ends of chromosomes, suggesting a further role in the maintenance of telomeric stability and the prevention of chromosomal end fusion (By similarity). Also involved in modulation of transcription (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). As part of the DNA-PK complex, involved in the early steps of ribosome assembly by promoting the processing of precursor rRNA into mature 18S rRNA in the small-subunit processome (PubMed:32103174). Binding to U3 small nucleolar RNA, recruits PRKDC and XRCC5/Ku86 to the small-subunit processome (PubMed:32103174). Recognizes the substrate consensus sequence [ST]-Q (PubMed:11955432, PubMed:12649176, PubMed:14734805, PubMed:15574326). Phosphorylates 'Ser-139' of histone variant H2AX, thereby regulating DNA damage response mechanism (PubMed:14627815, PubMed:16046194). Phosphorylates ASF1A, DCLRE1C, c-Abl/ABL1, histone H1, HSPCA, c-jun/JUN, p53/TP53, PARP1, POU2F1, DHX9, FH, SRF, NHEJ1/XLF, XRCC1, XRCC4, XRCC5, XRCC6, WRN, MYC and RFA2 (PubMed:10026262, PubMed:10467406, PubMed:11889123, PubMed:12509254, PubMed:14599745, PubMed:14612514, PubMed:14704337, PubMed:15177042, PubMed:1597196, PubMed:16397295, PubMed:18644470, PubMed:2247066, PubMed:2507541, PubMed:26237645, PubMed:26666690, PubMed:28712728, PubMed:29478807, PubMed:30247612, PubMed:8407951, PubMed:8464713, PubMed:9139719, PubMed:9362500). Can phosphorylate C1D not only in the presence of linear DNA but also in the presence of supercoiled DNA (PubMed:9679063). Ability to phosphorylate p53/TP53 in the presence of supercoiled DNA is dependent on C1D (PubMed:9363941). Acts as a regulator of the phosphatidylinositol 3-kinase/protein kinase B signal transduction by mediating phosphorylation of 'Ser-473' of protein kinase B (PKB/AKT1, PKB/AKT2, PKB/AKT3), promoting their activation (PubMed:15262962). Contributes to the determination of the circadian period length by antagonizing phosphorylation of CRY1 'Ser-588' and increasing CRY1 protein stability, most likely through an indirect mechanism (By similarity). Plays a role in the regulation of DNA virus-mediated innate immune response by assembling into the HDP-RNP complex, a complex that serves as a platform for IRF3 phosphorylation and subsequent innate immune response activation through the cGAS-STING pathway (PubMed:28712728). Also regulates the cGAS-STING pathway by catalyzing phosphorylation of CGAS, thereby impairing CGAS oligomerization and activation (PubMed:33273464). Also regulates the cGAS-STING pathway by mediating phosphorylation of PARP1 (PubMed:35460603). {ECO:0000250|UniProtKB:P97313, ECO:0000269|PubMed:10026262, ECO:0000269|PubMed:10467406, ECO:0000269|PubMed:11889123, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12509254, ECO:0000269|PubMed:12649176, ECO:0000269|PubMed:14599745, ECO:0000269|PubMed:14612514, ECO:0000269|PubMed:14627815, ECO:0000269|PubMed:14704337, ECO:0000269|PubMed:14734805, ECO:0000269|PubMed:15177042, ECO:0000269|PubMed:15262962, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:1597196, ECO:0000269|PubMed:16046194, ECO:0000269|PubMed:16397295, ECO:0000269|PubMed:18644470, ECO:0000269|PubMed:2247066, ECO:0000269|PubMed:2507541, ECO:0000269|PubMed:26237645, ECO:0000269|PubMed:26666690, ECO:0000269|PubMed:28712728, ECO:0000269|PubMed:29478807, ECO:0000269|PubMed:30247612, ECO:0000269|PubMed:32103174, ECO:0000269|PubMed:33273464, ECO:0000269|PubMed:33854234, ECO:0000269|PubMed:34352203, ECO:0000269|PubMed:35460603, ECO:0000269|PubMed:8407951, ECO:0000269|PubMed:8464713, ECO:0000269|PubMed:9139719, ECO:0000269|PubMed:9362500, ECO:0000269|PubMed:9363941, ECO:0000269|PubMed:9679063}. |
P78559 | MAP1A | S2108 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P78559 | MAP1A | S2261 | ochoa | Microtubule-associated protein 1A (MAP-1A) (Proliferation-related protein p80) [Cleaved into: MAP1A heavy chain; MAP1 light chain LC2] | Structural protein involved in the filamentous cross-bridging between microtubules and other skeletal elements. |
P83916 | CBX1 | S91 | ochoa | Chromobox protein homolog 1 (HP1Hsbeta) (Heterochromatin protein 1 homolog beta) (HP1 beta) (Heterochromatin protein p25) (M31) (Modifier 1 protein) (p25beta) | Component of heterochromatin. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. Interaction with lamin B receptor (LBR) can contribute to the association of the heterochromatin with the inner nuclear membrane. {ECO:0000250|UniProtKB:P83917}. |
Q00059 | TFAM | S195 | ochoa | Transcription factor A, mitochondrial (mtTFA) (Mitochondrial transcription factor 1) (MtTF1) (Transcription factor 6) (TCF-6) (Transcription factor 6-like 2) | Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation (PubMed:29445193, PubMed:32183942). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA (PubMed:29149603). In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand (PubMed:20410300). Required for accurate and efficient promoter recognition by the mitochondrial RNA polymerase (PubMed:22037172). Promotes transcription initiation from the HSP1 and the light strand promoter by binding immediately upstream of transcriptional start sites (PubMed:22037172). Is able to unwind DNA (PubMed:22037172). Bends the mitochondrial light strand promoter DNA into a U-turn shape via its HMG boxes (PubMed:1737790). Required for maintenance of normal levels of mitochondrial DNA (PubMed:19304746, PubMed:22841477). May play a role in organizing and compacting mitochondrial DNA (PubMed:22037171). {ECO:0000269|PubMed:1737790, ECO:0000269|PubMed:19304746, ECO:0000269|PubMed:20410300, ECO:0000269|PubMed:22037171, ECO:0000269|PubMed:22037172, ECO:0000269|PubMed:22841477, ECO:0000269|PubMed:29149603, ECO:0000269|PubMed:29445193, ECO:0000269|PubMed:32183942}. |
Q00653 | NFKB2 | S717 | psp | Nuclear factor NF-kappa-B p100 subunit (DNA-binding factor KBF2) (H2TF1) (Lymphocyte translocation chromosome 10 protein) (Nuclear factor of kappa light polypeptide gene enhancer in B-cells 2) (Oncogene Lyt-10) (Lyt10) [Cleaved into: Nuclear factor NF-kappa-B p52 subunit] | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form; the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. {ECO:0000269|PubMed:7925301}. |
Q01484 | ANK2 | S2664 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q01484 | ANK2 | S2666 | ochoa | Ankyrin-2 (ANK-2) (Ankyrin-B) (Brain ankyrin) (Non-erythroid ankyrin) | Plays an essential role in the localization and membrane stabilization of ion transporters and ion channels in several cell types, including cardiomyocytes, as well as in striated muscle cells. In skeletal muscle, required for proper localization of DMD and DCTN4 and for the formation and/or stability of a special subset of microtubules associated with costameres and neuromuscular junctions. In cardiomyocytes, required for coordinate assembly of Na/Ca exchanger, SLC8A1/NCX1, Na/K ATPases ATP1A1 and ATP1A2 and inositol 1,4,5-trisphosphate (InsP3) receptors at sarcoplasmic reticulum/sarcolemma sites. Required for expression and targeting of SPTBN1 in neonatal cardiomyocytes and for the regulation of neonatal cardiomyocyte contraction rate (PubMed:12571597). In the inner segment of rod photoreceptors, required for the coordinated expression of the Na/K ATPase, Na/Ca exchanger and beta-2-spectrin (SPTBN1) (By similarity). Plays a role in endocytosis and intracellular protein transport. Associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles and binds dynactin to promote long-range motility of cells. Recruits RABGAP1L to (PI3P)-positive early endosomes, where RABGAP1L inactivates RAB22A, and promotes polarized trafficking to the leading edge of the migrating cells. Part of the ANK2/RABGAP1L complex which is required for the polarized recycling of fibronectin receptor ITGA5 ITGB1 to the plasma membrane that enables continuous directional cell migration (By similarity). {ECO:0000250|UniProtKB:Q8C8R3, ECO:0000269|PubMed:12571597}. |
Q02880 | TOP2B | S1342 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02880 | TOP2B | S1526 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q02880 | TOP2B | S1552 | ochoa | DNA topoisomerase 2-beta (EC 5.6.2.2) (DNA topoisomerase II, beta isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand. Plays a role in B-cell differentiation. {ECO:0000269|PubMed:10684600, ECO:0000269|PubMed:31409799, ECO:0000269|PubMed:32128574}. |
Q03111 | MLLT1 | S442 | ochoa | Protein ENL (YEATS domain-containing protein 1) | Chromatin reader component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA (PubMed:20159561, PubMed:20471948). Specifically recognizes and binds acetylated and crotonylated histones, with a preference for histones that are crotonylated (PubMed:27105114). Has a slightly higher affinity for binding histone H3 crotonylated at 'Lys-27' (H3K27cr) than 'Lys-20' (H3K9cr20) (PubMed:27105114). {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:27105114}.; FUNCTION: Acts as a key chromatin reader in acute myeloid leukemia by recognizing and binding to acetylated histones via its YEATS domain, thereby regulating oncogenic gene transcription. {ECO:0000269|PubMed:28241139, ECO:0000269|PubMed:28241141}. |
Q04912 | MST1R | S1043 | ochoa | Macrophage-stimulating protein receptor (MSP receptor) (EC 2.7.10.1) (CDw136) (Protein-tyrosine kinase 8) (p185-Ron) (CD antigen CD136) [Cleaved into: Macrophage-stimulating protein receptor alpha chain; Macrophage-stimulating protein receptor beta chain] | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to MST1 ligand. Regulates many physiological processes including cell survival, migration and differentiation. Ligand binding at the cell surface induces autophosphorylation of RON on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1 or the adapter GAB1. Recruitment of these downstream effectors by RON leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. RON signaling activates the wound healing response by promoting epithelial cell migration, proliferation as well as survival at the wound site. Also plays a role in the innate immune response by regulating the migration and phagocytic activity of macrophages. Alternatively, RON can also promote signals such as cell migration and proliferation in response to growth factors other than MST1 ligand. {ECO:0000269|PubMed:18836480, ECO:0000269|PubMed:7939629, ECO:0000269|PubMed:9764835}. |
Q05469 | LIPE | S855 | ochoa|psp | Hormone-sensitive lipase (HSL) (EC 3.1.1.79) (Monoacylglycerol lipase LIPE) (EC 3.1.1.23) (Retinyl ester hydrolase) (REH) | Lipase with broad substrate specificity, catalyzing the hydrolysis of triacylglycerols (TAGs), diacylglycerols (DAGs), monoacylglycerols (MAGs), cholesteryl esters and retinyl esters (PubMed:15716583, PubMed:15955102, PubMed:19800417, PubMed:8812477). Shows a preferential hydrolysis of DAGs over TAGs and MAGs and preferentially hydrolyzes the fatty acid (FA) esters at the sn-3 position of the glycerol backbone in DAGs (PubMed:19800417). Preferentially hydrolyzes FA esters at the sn-1 and sn-2 positions of the glycerol backbone in TAGs (By similarity). Catalyzes the hydrolysis of 2-arachidonoylglycerol, an endocannabinoid and of 2-acetyl monoalkylglycerol ether, the penultimate precursor of the pathway for de novo synthesis of platelet-activating factor (By similarity). In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production (By similarity). {ECO:0000250|UniProtKB:P15304, ECO:0000250|UniProtKB:P54310, ECO:0000269|PubMed:15716583, ECO:0000269|PubMed:15955102, ECO:0000269|PubMed:19800417, ECO:0000269|PubMed:8812477}. |
Q06265 | EXOSC9 | S394 | ochoa|psp | Exosome complex component RRP45 (Autoantigen PM/Scl 1) (Exosome component 9) (P75 polymyositis-scleroderma overlap syndrome-associated autoantigen) (Polymyositis/scleroderma autoantigen 1) (Polymyositis/scleroderma autoantigen 75 kDa) (PM/Scl-75) | Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and promoter-upstream transcripts (PROMPTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. The RNA exosome may be involved in Ig class switch recombination (CSR) and/or Ig variable region somatic hypermutation (SHM) by targeting AICDA deamination activity to transcribed dsDNA substrates. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and specifically degrades inherently unstable mRNAs containing AU-rich elements (AREs) within their 3' untranslated regions, and in RNA surveillance pathways, preventing translation of aberrant mRNAs. It seems to be involved in degradation of histone mRNA. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. EXOSC9 binds to ARE-containing RNAs. {ECO:0000269|PubMed:11782436, ECO:0000269|PubMed:16455498, ECO:0000269|PubMed:16912217, ECO:0000269|PubMed:17545563}. |
Q07157 | TJP1 | Y843 | ochoa | Tight junction protein 1 (Tight junction protein ZO-1) (Zona occludens protein 1) (Zonula occludens protein 1) | TJP1, TJP2, and TJP3 are closely related scaffolding proteins that link tight junction (TJ) transmembrane proteins such as claudins, junctional adhesion molecules, and occludin to the actin cytoskeleton (PubMed:7798316, PubMed:9792688). Forms a multistranded TJP1/ZO1 condensate which elongates to form a tight junction belt, the belt is anchored at the apical cell membrane via interaction with PATJ (By similarity). The tight junction acts to limit movement of substances through the paracellular space and as a boundary between the compositionally distinct apical and basolateral plasma membrane domains of epithelial and endothelial cells. Necessary for lumenogenesis, and particularly efficient epithelial polarization and barrier formation (By similarity). Plays a role in the regulation of cell migration by targeting CDC42BPB to the leading edge of migrating cells (PubMed:21240187). Plays an important role in podosome formation and associated function, thus regulating cell adhesion and matrix remodeling (PubMed:20930113). With TJP2 and TJP3, participates in the junctional retention and stability of the transcription factor DBPA, but is not involved in its shuttling to the nucleus (By similarity). May play a role in mediating cell morphology changes during ameloblast differentiation via its role in tight junctions (By similarity). {ECO:0000250|UniProtKB:O97758, ECO:0000250|UniProtKB:P39447, ECO:0000269|PubMed:20930113, ECO:0000269|PubMed:21240187}. |
Q08881 | ITK | S565 | ochoa | Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}. |
Q0D2I5 | IFFO1 | S379 | ochoa | Non-homologous end joining factor IFFO1 (NHEJ factor IFFO1) (Intermediate filament family orphan 1) (Tumor antigen HOM-TES-103) | Nuclear matrix protein involved in the immobilization of broken DNA ends and the suppression of chromosome translocation during DNA double-strand breaks (DSBs) (PubMed:31548606). Interacts with the nuclear lamina component LMNA, resulting in the formation of a nucleoskeleton that relocalizes to the DSB sites in a XRCC4-dependent manner and promotes the immobilization of the broken ends, thereby preventing chromosome translocation (PubMed:31548606). Acts as a scaffold that allows the DNA repair protein XRCC4 and LMNA to assemble into a complex at the DSB sites (PubMed:31548606). {ECO:0000269|PubMed:31548606}. |
Q12815 | TROAP | S381 | ochoa | Tastin (Trophinin-assisting protein) (Trophinin-associated protein) | Could be involved with bystin and trophinin in a cell adhesion molecule complex that mediates an initial attachment of the blastocyst to uterine epithelial cells at the time of the embryo implantation. |
Q12905 | ILF2 | S54 | ochoa | Interleukin enhancer-binding factor 2 (Nuclear factor of activated T-cells 45 kDa) | Chromatin-interacting protein that forms a stable heterodimer with interleukin enhancer-binding factor 3/ILF3 and plays a role in several biological processes including transcription, innate immunity or cell growth (PubMed:18458058, PubMed:31212927). Essential for the efficient reshuttling of ILF3 (isoform 1 and isoform 2) into the nucleus. Together with ILF3, forms an RNA-binding complex that is required for mitotic progression and cytokinesis by regulating the expression of a cluster of mitotic genes. Mechanistically, competes with STAU1/STAU2-mediated mRNA decay (PubMed:32433969). Also plays a role in the inhibition of various viruses including Japanese encephalitis virus or enterovirus 71. {ECO:0000269|PubMed:10574923, ECO:0000269|PubMed:11739746, ECO:0000269|PubMed:18458058, ECO:0000269|PubMed:21123651, ECO:0000269|PubMed:31212927, ECO:0000269|PubMed:32433969, ECO:0000269|PubMed:9442054}.; FUNCTION: (Microbial infection) Plays a positive role in HIV-1 virus production by binding to and thereby stabilizing HIV-1 RNA, together with ILF3. {ECO:0000269|PubMed:26891316}. |
Q12912 | IRAG2 | S461 | ochoa | Inositol 1,4,5-triphosphate receptor associated 2 (Lymphoid-restricted membrane protein) (Protein Jaw1) [Cleaved into: Processed inositol 1,4,5-triphosphate receptor associated 2] | Plays a role in the delivery of peptides to major histocompatibility complex (MHC) class I molecules; this occurs in a transporter associated with antigen processing (TAP)-independent manner. May play a role in taste signal transduction via ITPR3. May play a role during fertilization in pronucleus congression and fusion. Plays a role in maintaining nuclear shape, maybe as a component of the LINC complex and through interaction with microtubules. Plays a role in the regulation of cellular excitability by regulating the hyperpolarization-activated cyclic nucleotide-gated HCN4 channel activity (By similarity). {ECO:0000250|UniProtKB:Q60664}. |
Q12923 | PTPN13 | S938 | ochoa | Tyrosine-protein phosphatase non-receptor type 13 (EC 3.1.3.48) (Fas-associated protein-tyrosine phosphatase 1) (FAP-1) (PTP-BAS) (Protein-tyrosine phosphatase 1E) (PTP-E1) (hPTPE1) (Protein-tyrosine phosphatase PTPL1) | Tyrosine phosphatase which negatively regulates FAS-induced apoptosis and NGFR-mediated pro-apoptotic signaling (PubMed:15611135). May regulate phosphoinositide 3-kinase (PI3K) signaling through dephosphorylation of PIK3R2 (PubMed:23604317). {ECO:0000269|PubMed:15611135, ECO:0000269|PubMed:23604317}. |
Q12929 | EPS8 | S483 | ochoa | Epidermal growth factor receptor kinase substrate 8 | Signaling adapter that controls various cellular protrusions by regulating actin cytoskeleton dynamics and architecture. Depending on its association with other signal transducers, can regulate different processes. Together with SOS1 and ABI1, forms a trimeric complex that participates in transduction of signals from Ras to Rac by activating the Rac-specific guanine nucleotide exchange factor (GEF) activity. Acts as a direct regulator of actin dynamics by binding actin filaments and has both barbed-end actin filament capping and actin bundling activities depending on the context. Displays barbed-end actin capping activity when associated with ABI1, thereby regulating actin-based motility process: capping activity is auto-inhibited and inhibition is relieved upon ABI1 interaction. Also shows actin bundling activity when associated with BAIAP2, enhancing BAIAP2-dependent membrane extensions and promoting filopodial protrusions. Involved in the regulation of processes such as axonal filopodia growth, stereocilia length, dendritic cell migration and cancer cell migration and invasion. Acts as a regulator of axonal filopodia formation in neurons: in the absence of neurotrophic factors, negatively regulates axonal filopodia formation via actin-capping activity. In contrast, it is phosphorylated in the presence of BDNF leading to inhibition of its actin-capping activity and stimulation of filopodia formation. Component of a complex with WHRN and MYO15A that localizes at stereocilia tips and is required for elongation of the stereocilia actin core. Indirectly involved in cell cycle progression; its degradation following ubiquitination being required during G2 phase to promote cell shape changes. {ECO:0000269|PubMed:15558031, ECO:0000269|PubMed:17115031}. |
Q12983 | BNIP3 | S95 | psp | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 | Apoptosis-inducing protein that can overcome BCL2 suppression. May play a role in repartitioning calcium between the two major intracellular calcium stores in association with BCL2. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. Plays an important role in the calprotectin (S100A8/A9)-induced cell death pathway. {ECO:0000269|PubMed:19935772, ECO:0000269|PubMed:22292033}. |
Q12986 | NFX1 | S154 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q13085 | ACACA | S25 | ochoa | Acetyl-CoA carboxylase 1 (ACC1) (EC 6.4.1.2) (Acetyl-Coenzyme A carboxylase alpha) (ACC-alpha) | Cytosolic enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis (PubMed:20457939, PubMed:20952656, PubMed:29899443). This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA (PubMed:20457939, PubMed:20952656, PubMed:29899443). {ECO:0000269|PubMed:20457939, ECO:0000269|PubMed:20952656, ECO:0000269|PubMed:29899443}. |
Q13129 | RLF | S1239 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13185 | CBX3 | S97 | ochoa | Chromobox protein homolog 3 (HECH) (Heterochromatin protein 1 homolog gamma) (HP1 gamma) (Modifier 2 protein) | Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the recruitment of the methyltransferases SUV39H1 and/or SUV39H2 by the PER complex to the E-box elements of the circadian target genes such as PER2 itself or PER1. Mediates the recruitment of NIPBL to sites of DNA damage at double-strand breaks (DSBs) (PubMed:28167679). {ECO:0000250|UniProtKB:P23198, ECO:0000269|PubMed:28167679}. |
Q13315 | ATM | S1893 | psp | Serine-protein kinase ATM (EC 2.7.11.1) (Ataxia telangiectasia mutated) (A-T mutated) | Serine/threonine protein kinase which activates checkpoint signaling upon double strand breaks (DSBs), apoptosis and genotoxic stresses such as ionizing ultraviolet A light (UVA), thereby acting as a DNA damage sensor (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15064416, PubMed:15448695, PubMed:15456891, PubMed:15790808, PubMed:15916964, PubMed:17923702, PubMed:21757780, PubMed:24534091, PubMed:35076389, PubMed:9733514). Recognizes the substrate consensus sequence [ST]-Q (PubMed:10550055, PubMed:10839545, PubMed:10910365, PubMed:12556884, PubMed:14871926, PubMed:15448695, PubMed:15456891, PubMed:15916964, PubMed:17923702, PubMed:24534091, PubMed:9733514). Phosphorylates 'Ser-139' of histone variant H2AX at double strand breaks (DSBs), thereby regulating DNA damage response mechanism (By similarity). Also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. After the introduction of DNA breaks by the RAG complex on one immunoglobulin allele, acts by mediating a repositioning of the second allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. Also involved in signal transduction and cell cycle control. May function as a tumor suppressor. Necessary for activation of ABL1 and SAPK. Phosphorylates DYRK2, CHEK2, p53/TP53, FBXW7, FANCD2, NFKBIA, BRCA1, CREBBP/CBP, RBBP8/CTIP, FBXO46, MRE11, nibrin (NBN), RAD50, RAD17, PELI1, TERF1, UFL1, RAD9, UBQLN4 and DCLRE1C (PubMed:10550055, PubMed:10766245, PubMed:10802669, PubMed:10839545, PubMed:10910365, PubMed:10973490, PubMed:11375976, PubMed:12086603, PubMed:15456891, PubMed:19965871, PubMed:21757780, PubMed:24534091, PubMed:26240375, PubMed:26774286, PubMed:30171069, PubMed:30612738, PubMed:30886146, PubMed:30952868, PubMed:38128537, PubMed:9733515, PubMed:9843217). May play a role in vesicle and/or protein transport. Could play a role in T-cell development, gonad and neurological function. Plays a role in replication-dependent histone mRNA degradation. Binds DNA ends. Phosphorylation of DYRK2 in nucleus in response to genotoxic stress prevents its MDM2-mediated ubiquitination and subsequent proteasome degradation (PubMed:19965871). Phosphorylates ATF2 which stimulates its function in DNA damage response (PubMed:15916964). Phosphorylates ERCC6 which is essential for its chromatin remodeling activity at DNA double-strand breaks (PubMed:29203878). Phosphorylates TTC5/STRAP at 'Ser-203' in the cytoplasm in response to DNA damage, which promotes TTC5/STRAP nuclear localization (PubMed:15448695). Also involved in pexophagy by mediating phosphorylation of PEX5: translocated to peroxisomes in response to reactive oxygen species (ROS), and catalyzes phosphorylation of PEX5, promoting PEX5 ubiquitination and induction of pexophagy (PubMed:26344566). {ECO:0000250|UniProtKB:Q62388, ECO:0000269|PubMed:10550055, ECO:0000269|PubMed:10766245, ECO:0000269|PubMed:10802669, ECO:0000269|PubMed:10839545, ECO:0000269|PubMed:10910365, ECO:0000269|PubMed:10973490, ECO:0000269|PubMed:11375976, ECO:0000269|PubMed:12086603, ECO:0000269|PubMed:12556884, ECO:0000269|PubMed:14871926, ECO:0000269|PubMed:15448695, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15916964, ECO:0000269|PubMed:16086026, ECO:0000269|PubMed:16858402, ECO:0000269|PubMed:17923702, ECO:0000269|PubMed:19431188, ECO:0000269|PubMed:19965871, ECO:0000269|PubMed:21757780, ECO:0000269|PubMed:24534091, ECO:0000269|PubMed:26240375, ECO:0000269|PubMed:26344566, ECO:0000269|PubMed:26774286, ECO:0000269|PubMed:29203878, ECO:0000269|PubMed:30171069, ECO:0000269|PubMed:30612738, ECO:0000269|PubMed:30886146, ECO:0000269|PubMed:30952868, ECO:0000269|PubMed:35076389, ECO:0000269|PubMed:38128537, ECO:0000269|PubMed:9733514, ECO:0000269|PubMed:9733515, ECO:0000269|PubMed:9843217}. |
Q13371 | PDCL | S20 | psp | Phosducin-like protein (PHLP) | Acts as a positive regulator of hedgehog signaling and regulates ciliary function. {ECO:0000250|UniProtKB:Q9DBX2}.; FUNCTION: [Isoform 1]: Functions as a co-chaperone for CCT in the assembly of heterotrimeric G protein complexes, facilitates the assembly of both Gbeta-Ggamma and RGS-Gbeta5 heterodimers.; FUNCTION: [Isoform 2]: Acts as a negative regulator of heterotrimeric G proteins assembly by trapping the preloaded G beta subunits inside the CCT chaperonin. |
Q13428 | TCOF1 | S279 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S701 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S877 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S1001 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13523 | PRP4K | S144 | ochoa | Serine/threonine-protein kinase PRP4 homolog (EC 2.7.11.1) (PRP4 kinase) (PRP4 pre-mRNA-processing factor 4 homolog) | Serine/threonine kinase involved in spliceosomal assembly as well as mitosis and signaling regulation (PubMed:10799319, PubMed:12077342, PubMed:17513757, PubMed:17998396). Connects chromatin mediated regulation of transcription and pre-mRNA splicing (PubMed:12077342). During spliceosomal assembly, interacts with and phosphorylates PRPF6 and PRPF31, components of the U4/U6-U5 tri-small nuclear ribonucleoprotein (snRNP), to facilitate the formation of the spliceosome B complex. Plays a role in regulating transcription and the spindle assembly checkpoint (SAC) (PubMed:20118938). Associates with U5 snRNP and NCOR1 deacetylase complexes which may allow a coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation (PubMed:12077342). Associates and probably phosphorylates SMARCA4 and NCOR1 (PubMed:12077342). Phosphorylates SRSF1 (PubMed:11418604). Associates with kinetochores during mitosis and is necessary for recruitment and maintenance of the checkpoint proteins such as MAD1L1 and MAD12L1 at the kinetochores (PubMed:17998396). Phosphorylates and regulates the activity of the transcription factors such as ELK1 and KLF13 (PubMed:10799319, PubMed:17513757). Phosphorylates nuclear YAP1 and WWTR1/TAZ which induces nuclear exclusion and regulates Hippo signaling pathway, involved in tissue growth control (PubMed:29695716). {ECO:0000269|PubMed:10799319, ECO:0000269|PubMed:11418604, ECO:0000269|PubMed:12077342, ECO:0000269|PubMed:17513757, ECO:0000269|PubMed:17998396, ECO:0000269|PubMed:20118938, ECO:0000269|PubMed:29695716}. |
Q13547 | HDAC1 | S423 | ochoa|psp | Histone deacetylase 1 (HD1) (EC 3.5.1.98) (Protein deacetylase HDAC1) (EC 3.5.1.-) (Protein deacylase HDAC1) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:16762839, PubMed:17704056, PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (PubMed:16762839, PubMed:17704056). Histone deacetylases act via the formation of large multiprotein complexes (PubMed:16762839, PubMed:17704056). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). As part of the SIN3B complex is recruited downstream of the constitutively active genes transcriptional start sites through interaction with histones and mitigates histone acetylation and RNA polymerase II progression within transcribed regions contributing to the regulation of transcription (PubMed:21041482). Also functions as a deacetylase for non-histone targets, such as NR1D2, RELA, SP1, SP3, STAT3 and TSHZ3 (PubMed:12837748, PubMed:16285960, PubMed:16478997, PubMed:17996965, PubMed:19343227). Deacetylates SP proteins, SP1 and SP3, and regulates their function (PubMed:12837748, PubMed:16478997). Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons (PubMed:19081374). Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation (PubMed:19081374). Deacetylates TSHZ3 and regulates its transcriptional repressor activity (PubMed:19343227). Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B (PubMed:17000776). Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity (PubMed:17996965). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-BMAL1 heterodimer (By similarity). Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation (By similarity). In addition to protein deacetylase activity, also has protein-lysine deacylase activity: acts as a protein decrotonylase and delactylase by mediating decrotonylation ((2E)-butenoyl) and delactylation (lactoyl) of histones, respectively (PubMed:28497810, PubMed:35044827). {ECO:0000250|UniProtKB:O09106, ECO:0000269|PubMed:12837748, ECO:0000269|PubMed:16285960, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16762839, ECO:0000269|PubMed:17000776, ECO:0000269|PubMed:17704056, ECO:0000269|PubMed:17996965, ECO:0000269|PubMed:19081374, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21041482, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:35044827}. |
Q13586 | STIM1 | S521 | ochoa|psp | Stromal interaction molecule 1 | Acts as a Ca(2+) sensor that gates two major inward rectifying Ca(2+) channels at the plasma membrane: Ca(2+) release-activated Ca(2+) (CRAC) channels and arachidonate-regulated Ca(2+)-selective (ARC) channels (PubMed:15866891, PubMed:16005298, PubMed:16208375, PubMed:16537481, PubMed:16733527, PubMed:16766533, PubMed:16807233, PubMed:18854159, PubMed:19182790, PubMed:19249086, PubMed:19622606, PubMed:19706554, PubMed:22464749, PubMed:24069340, PubMed:24351972, PubMed:24591628, PubMed:25326555, PubMed:26322679, PubMed:28219928, PubMed:32415068). Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates CRAC channel pore-forming subunits ORA1, ORA2 and ORAI3 to generate sustained and oscillatory Ca(2+) entry (PubMed:16208375, PubMed:16537481, PubMed:32415068). Involved in enamel formation (PubMed:24621671). {ECO:0000269|PubMed:15866891, ECO:0000269|PubMed:16005298, ECO:0000269|PubMed:16208375, ECO:0000269|PubMed:16537481, ECO:0000269|PubMed:16733527, ECO:0000269|PubMed:16766533, ECO:0000269|PubMed:16807233, ECO:0000269|PubMed:18854159, ECO:0000269|PubMed:19182790, ECO:0000269|PubMed:19249086, ECO:0000269|PubMed:19622606, ECO:0000269|PubMed:19706554, ECO:0000269|PubMed:22464749, ECO:0000269|PubMed:24069340, ECO:0000269|PubMed:24351972, ECO:0000269|PubMed:24591628, ECO:0000269|PubMed:24621671, ECO:0000269|PubMed:25326555, ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:28219928, ECO:0000269|PubMed:32415068}. |
Q13976 | PRKG1 | S275 | ochoa | cGMP-dependent protein kinase 1 (cGK 1) (cGK1) (EC 2.7.11.12) (cGMP-dependent protein kinase I) (cGKI) | Serine/threonine protein kinase that acts as a key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes involved in several aspects of the CNS like axon guidance, hippocampal and cerebellar learning, circadian rhythm and nociception. Smooth muscle relaxation is mediated through lowering of intracellular free calcium, by desensitization of contractile proteins to calcium, and by decrease in the contractile state of smooth muscle or in platelet activation. Regulates intracellular calcium levels via several pathways: phosphorylates IRAG1 and inhibits IP3-induced Ca(2+) release from intracellular stores, phosphorylation of KCNMA1 (BKCa) channels decreases intracellular Ca(2+) levels, which leads to increased opening of this channel. PRKG1 phosphorylates the canonical transient receptor potential channel (TRPC) family which inactivates the associated inward calcium current. Another mode of action of NO/cGMP/PKGI signaling involves PKGI-mediated inactivation of the Ras homolog gene family member A (RhoA). Phosphorylation of RHOA by PRKG1 blocks the action of this protein in myriad processes: regulation of RHOA translocation; decreasing contraction; controlling vesicle trafficking, reduction of myosin light chain phosphorylation resulting in vasorelaxation. Activation of PRKG1 by NO signaling also alters gene expression in a number of tissues. In smooth muscle cells, increased cGMP and PRKG1 activity influence expression of smooth muscle-specific contractile proteins, levels of proteins in the NO/cGMP signaling pathway, down-regulation of the matrix proteins osteopontin and thrombospondin-1 to limit smooth muscle cell migration and phenotype. Regulates vasodilator-stimulated phosphoprotein (VASP) functions in platelets and smooth muscle. {ECO:0000269|PubMed:10567269, ECO:0000269|PubMed:11162591, ECO:0000269|PubMed:11723116, ECO:0000269|PubMed:12082086, ECO:0000269|PubMed:14608379, ECO:0000269|PubMed:15194681, ECO:0000269|PubMed:16990611, ECO:0000269|PubMed:8182057}. |
Q14432 | PDE3A | S402 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14432 | PDE3A | S410 | ochoa | cGMP-inhibited 3',5'-cyclic phosphodiesterase 3A (EC 3.1.4.17) (Cyclic GMP-inhibited phosphodiesterase A) (CGI-PDE A) (cGMP-inhibited cAMP phosphodiesterase) (cGI-PDE) | Cyclic nucleotide phosphodiesterase with specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes (PubMed:1315035, PubMed:25961942, PubMed:8155697, PubMed:8695850). Also has activity toward cUMP (PubMed:27975297). Independently of its catalytic activity it is part of an E2/17beta-estradiol-induced pro-apoptotic signaling pathway. E2 stabilizes the PDE3A/SLFN12 complex in the cytosol, promoting the dephosphorylation of SLFN12 and activating its pro-apoptotic ribosomal RNA/rRNA ribonuclease activity. This apoptotic pathway might be relevant in tissues with high concentration of E2 and be for instance involved in placenta remodeling (PubMed:31420216, PubMed:34707099). {ECO:0000269|PubMed:1315035, ECO:0000269|PubMed:25961942, ECO:0000269|PubMed:27975297, ECO:0000269|PubMed:31420216, ECO:0000269|PubMed:34707099, ECO:0000269|PubMed:8155697, ECO:0000269|PubMed:8695850}. |
Q14524 | SCN5A | S499 | psp | Sodium channel protein type 5 subunit alpha (Sodium channel protein cardiac muscle subunit alpha) (Sodium channel protein type V subunit alpha) (Voltage-gated sodium channel subunit alpha Nav1.5) (hH1) | Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity). {ECO:0000250|UniProtKB:Q9JJV9, ECO:0000269|PubMed:11234013, ECO:0000269|PubMed:11804990, ECO:0000269|PubMed:12569159, ECO:0000269|PubMed:1309946, ECO:0000269|PubMed:19074138, ECO:0000269|PubMed:21447824, ECO:0000269|PubMed:23085483, ECO:0000269|PubMed:23420830, ECO:0000269|PubMed:24167619, ECO:0000269|PubMed:25370050, ECO:0000269|PubMed:26279430, ECO:0000269|PubMed:26392562, ECO:0000269|PubMed:26776555}. |
Q14689 | DIP2A | S140 | ochoa | Disco-interacting protein 2 homolog A (DIP2 homolog A) (EC 6.2.1.1) | Catalyzes the de novo synthesis of acetyl-CoA in vitro (By similarity). Promotes acetylation of CTTN, possibly by providing the acetyl donor, ensuring correct dendritic spine morphology and synaptic transmission (By similarity). Binds to follistatin-related protein FSTL1 and may act as a cell surface receptor for FSTL1, contributing to AKT activation and subsequent FSTL1-induced survival and function of endothelial cells and cardiac myocytes (PubMed:20054002). {ECO:0000250|UniProtKB:Q8BWT5, ECO:0000269|PubMed:20054002}. |
Q14839 | CHD4 | S310 | ochoa|psp | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q14966 | ZNF638 | S1245 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q15014 | MORF4L2 | S92 | ochoa | Mortality factor 4-like protein 2 (MORF-related gene X protein) (Protein MSL3-2) (Transcription factor-like protein MRGX) | Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histone H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. The NuA4 complex ATPase and helicase activities seem to be, at least in part, contributed by the association of RUVBL1 and RUVBL2 with EP400. NuA4 may also play a direct role in DNA repair when directly recruited to sites of DNA damage. Also a component of the MSIN3A complex which acts to repress transcription by deacetylation of nucleosomal histones. |
Q15022 | SUZ12 | S541 | ochoa|psp | Polycomb protein SUZ12 (Chromatin precipitated E2F target 9 protein) (ChET 9 protein) (Joined to JAZF1 protein) (Suppressor of zeste 12 protein homolog) | Polycomb group (PcG) protein. Component of the PRC2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene (PubMed:15225548, PubMed:15231737, PubMed:15385962, PubMed:16618801, PubMed:17344414, PubMed:18285464, PubMed:28229514, PubMed:29499137, PubMed:31959557). The PRC2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems (PubMed:12351676, PubMed:12435631, PubMed:15099518, PubMed:15225548, PubMed:15385962, PubMed:15684044, PubMed:16431907, PubMed:18086877, PubMed:18285464). Genes repressed by the PRC2 complex include HOXC8, HOXA9, MYT1 and CDKN2A (PubMed:15231737, PubMed:16618801, PubMed:17200670, PubMed:31959557). {ECO:0000269|PubMed:12351676, ECO:0000269|PubMed:12435631, ECO:0000269|PubMed:15099518, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:15684044, ECO:0000269|PubMed:16431907, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:17200670, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18086877, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:28229514, ECO:0000269|PubMed:29499137, ECO:0000269|PubMed:31959557}. |
Q15047 | SETDB1 | S112 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15047 | SETDB1 | S1140 | ochoa | Histone-lysine N-methyltransferase SETDB1 (EC 2.1.1.366) (ERG-associated protein with SET domain) (ESET) (Histone H3-K9 methyltransferase 4) (H3-K9-HMTase 4) (Lysine N-methyltransferase 1E) (SET domain bifurcated 1) | Histone methyltransferase that specifically trimethylates 'Lys-9' of histone H3. H3 'Lys-9' trimethylation represents a specific tag for epigenetic transcriptional repression by recruiting HP1 (CBX1, CBX3 and/or CBX5) proteins to methylated histones. Mainly functions in euchromatin regions, thereby playing a central role in the silencing of euchromatic genes. H3 'Lys-9' trimethylation is coordinated with DNA methylation (PubMed:12869583, PubMed:27237050, PubMed:39096901). Required for HUSH-mediated heterochromatin formation and gene silencing. Forms a complex with MBD1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation (PubMed:14536086, PubMed:27732843). Its activity is dependent on MBD1 and is heritably maintained through DNA replication by being recruited by CAF-1 (PubMed:14536086). SETDB1 is targeted to histone H3 by TRIM28/TIF1B, a factor recruited by KRAB zinc-finger proteins. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). In ESCs, in collaboration with TRIM28, is also required for H3K9me3 and silencing of endogenous and introduced retroviruses in a DNA-methylation independent-pathway (By similarity). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). The SETDB1-TRIM28-ZNF274 complex may play a role in recruiting ATRX to the 3'-exons of zinc-finger coding genes with atypical chromatin signatures to establish or maintain/protect H3K9me3 at these transcriptionally active regions (PubMed:27029610). {ECO:0000250|UniProtKB:O88974, ECO:0000269|PubMed:12869583, ECO:0000269|PubMed:14536086, ECO:0000269|PubMed:24623306, ECO:0000269|PubMed:27029610, ECO:0000269|PubMed:27237050, ECO:0000269|PubMed:27732843, ECO:0000269|PubMed:39096901}. |
Q15149 | PLEC | S2041 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15398 | DLGAP5 | S789 | ochoa | Disks large-associated protein 5 (DAP-5) (Discs large homolog 7) (Disks large-associated protein DLG7) (Hepatoma up-regulated protein) (HURP) | Potential cell cycle regulator that may play a role in carcinogenesis of cancer cells. Mitotic phosphoprotein regulated by the ubiquitin-proteasome pathway. Key regulator of adherens junction integrity and differentiation that may be involved in CDH1-mediated adhesion and signaling in epithelial cells. {ECO:0000269|PubMed:12527899, ECO:0000269|PubMed:14699157, ECO:0000269|PubMed:15145941}. |
Q15424 | SAFB | S375 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15464 | SHB | S312 | ochoa | SH2 domain-containing adapter protein B | Adapter protein which regulates several signal transduction cascades by linking activated receptors to downstream signaling components. May play a role in angiogenesis by regulating FGFR1, VEGFR2 and PDGFR signaling. May also play a role in T-cell antigen receptor/TCR signaling, interleukin-2 signaling, apoptosis and neuronal cells differentiation by mediating basic-FGF and NGF-induced signaling cascades. May also regulate IRS1 and IRS2 signaling in insulin-producing cells. {ECO:0000269|PubMed:10828022, ECO:0000269|PubMed:10837138, ECO:0000269|PubMed:12084069, ECO:0000269|PubMed:12464388, ECO:0000269|PubMed:12520086, ECO:0000269|PubMed:15026417, ECO:0000269|PubMed:15919073, ECO:0000269|PubMed:8806685, ECO:0000269|PubMed:9484780, ECO:0000269|PubMed:9751119}. |
Q15583 | TGIF1 | S142 | ochoa | Homeobox protein TGIF1 (5'-TG-3'-interacting factor 1) | Binds to a retinoid X receptor (RXR) responsive element from the cellular retinol-binding protein II promoter (CRBPII-RXRE). Inhibits the 9-cis-retinoic acid-dependent RXR alpha transcription activation of the retinoic acid responsive element. Active transcriptional corepressor of SMAD2. Links the nodal signaling pathway to the bifurcation of the forebrain and the establishment of ventral midline structures. May participate in the transmission of nuclear signals during development and in the adult, as illustrated by the down-modulation of the RXR alpha activities. |
Q16513 | PKN2 | S622 | ochoa | Serine/threonine-protein kinase N2 (EC 2.7.11.13) (PKN gamma) (Protein kinase C-like 2) (Protein-kinase C-related kinase 2) | PKC-related serine/threonine-protein kinase and Rho/Rac effector protein that participates in specific signal transduction responses in the cell. Plays a role in the regulation of cell cycle progression, actin cytoskeleton assembly, cell migration, cell adhesion, tumor cell invasion and transcription activation signaling processes. Phosphorylates CTTN in hyaluronan-induced astrocytes and hence decreases CTTN ability to associate with filamentous actin. Phosphorylates HDAC5, therefore lead to impair HDAC5 import. Direct RhoA target required for the regulation of the maturation of primordial junctions into apical junction formation in bronchial epithelial cells. Required for G2/M phases of the cell cycle progression and abscission during cytokinesis in a ECT2-dependent manner. Stimulates FYN kinase activity that is required for establishment of skin cell-cell adhesion during keratinocytes differentiation. Regulates epithelial bladder cells speed and direction of movement during cell migration and tumor cell invasion. Inhibits Akt pro-survival-induced kinase activity. Mediates Rho protein-induced transcriptional activation via the c-fos serum response factor (SRF). Involved in the negative regulation of ciliogenesis (PubMed:27104747). {ECO:0000269|PubMed:10226025, ECO:0000269|PubMed:10926925, ECO:0000269|PubMed:11777936, ECO:0000269|PubMed:11781095, ECO:0000269|PubMed:15123640, ECO:0000269|PubMed:15364941, ECO:0000269|PubMed:17332740, ECO:0000269|PubMed:20188095, ECO:0000269|PubMed:20974804, ECO:0000269|PubMed:21754995, ECO:0000269|PubMed:27104747, ECO:0000269|PubMed:9121475}.; FUNCTION: (Microbial infection) Phosphorylates HCV NS5B leading to stimulation of HCV RNA replication. {ECO:0000269|PubMed:15364941}. |
Q16799 | RTN1 | S352 | ochoa | Reticulon-1 (Neuroendocrine-specific protein) | Inhibits amyloid precursor protein processing, probably by blocking BACE1 activity. {ECO:0000269|PubMed:15286784}. |
Q16891 | IMMT | S115 | ochoa | MICOS complex subunit MIC60 (Cell proliferation-inducing gene 4/52 protein) (Mitochondrial inner membrane protein) (Mitofilin) (p87/89) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). Plays an important role in the maintenance of the MICOS complex stability and the mitochondrial cristae morphology (PubMed:22114354, PubMed:25781180, PubMed:32567732, PubMed:33130824). {ECO:0000269|PubMed:22114354, ECO:0000269|PubMed:25781180, ECO:0000269|PubMed:32567732, ECO:0000269|PubMed:33130824}. |
Q27J81 | INF2 | S1149 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q27J81 | INF2 | S1194 | ochoa | Inverted formin-2 (HBEBP2-binding protein C) | Severs actin filaments and accelerates their polymerization and depolymerization. {ECO:0000250}. |
Q2M2Z5 | KIZ | S439 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q2M2Z5 | KIZ | S652 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q49A88 | CCDC14 | S98 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q49A88 | CCDC14 | S126 | ochoa | Coiled-coil domain-containing protein 14 | Negatively regulates centriole duplication. Negatively regulates CEP63 and CDK2 centrosomal localization. {ECO:0000269|PubMed:24613305, ECO:0000269|PubMed:26297806}. |
Q4G0J3 | LARP7 | S413 | ochoa | La-related protein 7 (La ribonucleoprotein domain family member 7) (hLARP7) (P-TEFb-interaction protein for 7SK stability) (PIP7S) | RNA-binding protein that specifically binds distinct small nuclear RNA (snRNAs) and regulates their processing and function (PubMed:18249148, PubMed:32017898). Specifically binds the 7SK snRNA (7SK RNA) and acts as a core component of the 7SK ribonucleoprotein (RNP) complex, thereby acting as a negative regulator of transcription elongation by RNA polymerase II (PubMed:18249148, PubMed:18483487). The 7SK RNP complex sequesters the positive transcription elongation factor b (P-TEFb) in a large inactive 7SK RNP complex preventing RNA polymerase II phosphorylation and subsequent transcriptional elongation (PubMed:18249148, PubMed:18483487). The 7SK RNP complex also promotes snRNA gene transcription by RNA polymerase II via interaction with the little elongation complex (LEC) (PubMed:28254838). LARP7 specifically binds to the highly conserved 3'-terminal U-rich stretch of 7SK RNA; on stimulation, remains associated with 7SK RNA, whereas P-TEFb is released from the complex (PubMed:18281698, PubMed:18483487). LARP7 also acts as a regulator of mRNA splicing fidelity by promoting U6 snRNA processing (PubMed:32017898). Specifically binds U6 snRNAs and associates with a subset of box C/D RNP complexes: promotes U6 snRNA 2'-O-methylation by facilitating U6 snRNA loading into box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Binds U6 snRNAs with a 5'-CAGGG-3' sequence motif (PubMed:32017898). U6 snRNA processing is required for spermatogenesis (By similarity). {ECO:0000250|UniProtKB:Q05CL8, ECO:0000269|PubMed:18249148, ECO:0000269|PubMed:18281698, ECO:0000269|PubMed:18483487, ECO:0000269|PubMed:28254838, ECO:0000269|PubMed:32017898}. |
Q4LE39 | ARID4B | S1155 | ochoa | AT-rich interactive domain-containing protein 4B (ARID domain-containing protein 4B) (180 kDa Sin3-associated polypeptide) (Sin3-associated polypeptide p180) (Breast cancer-associated antigen BRCAA1) (Histone deacetylase complex subunit SAP180) (Retinoblastoma-binding protein 1-like 1) | Acts as a transcriptional repressor (PubMed:12724404). May function in the assembly and/or enzymatic activity of the Sin3A corepressor complex or in mediating interactions between the complex and other regulatory complexes (PubMed:12724404). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4A. Involved in spermatogenesis, together with ARID4A, where it functions as a transcriptional coactivator for AR (androgen receptor) and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier. Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:A2CG63, ECO:0000269|PubMed:12724404}. |
Q504Q3 | PAN2 | S463 | ochoa | PAN2-PAN3 deadenylation complex catalytic subunit PAN2 (EC 3.1.13.4) (Inactive ubiquitin carboxyl-terminal hydrolase 52) (PAB1P-dependent poly(A)-specific ribonuclease) (Poly(A)-nuclease deadenylation complex subunit 2) (PAN deadenylation complex subunit 2) | Catalytic subunit of the poly(A)-nuclease (PAN) deadenylation complex, one of two cytoplasmic mRNA deadenylases involved in general and miRNA-mediated mRNA turnover. PAN specifically shortens poly(A) tails of RNA and the activity is stimulated by poly(A)-binding protein (PABP). PAN deadenylation is followed by rapid degradation of the shortened mRNA tails by the CCR4-NOT complex. Deadenylated mRNAs are then degraded by two alternative mechanisms, namely exosome-mediated 3'-5' exonucleolytic degradation, or deadenylation-dependent mRNA decaping and subsequent 5'-3' exonucleolytic degradation by XRN1. Also acts as an important regulator of the HIF1A-mediated hypoxic response. Required for HIF1A mRNA stability independent of poly(A) tail length regulation. {ECO:0000255|HAMAP-Rule:MF_03182, ECO:0000269|PubMed:14583602, ECO:0000269|PubMed:16284618, ECO:0000269|PubMed:23398456}. |
Q52LR7 | EPC2 | S540 | ochoa | Enhancer of polycomb homolog 2 (EPC-like) | May play a role in transcription or DNA repair. {ECO:0000250}. |
Q53TN4 | CYBRD1 | S262 | ochoa | Plasma membrane ascorbate-dependent reductase CYBRD1 (EC 7.2.1.3) (Cytochrome b reductase 1) (Duodenal cytochrome b) (Ferric-chelate reductase 3) | Plasma membrane reductase that uses cytoplasmic ascorbate as an electron donor to reduce extracellular Fe(3+) into Fe(2+) (PubMed:30272000). Probably functions in dietary iron absorption at the brush border of duodenal enterocytes by producing Fe(2+), the divalent form of iron that can be transported into enterocytes (PubMed:30272000). It is also able to reduce extracellular monodehydro-L-ascorbate and may be involved in extracellular ascorbate regeneration by erythrocytes in blood (PubMed:17068337). May also act as a ferrireductase in airway epithelial cells (Probable). May also function as a cupric transmembrane reductase (By similarity). {ECO:0000250|UniProtKB:Q925G2, ECO:0000269|PubMed:17068337, ECO:0000269|PubMed:30272000, ECO:0000305|PubMed:16510471}. |
Q58EX2 | SDK2 | S2059 | ochoa | Protein sidekick-2 | Adhesion molecule that promotes lamina-specific synaptic connections in the retina and is specifically required for the formation of neuronal circuits that detect motion. Acts by promoting formation of synapses between two specific retinal cell types: the retinal ganglion cells W3B-RGCs and the excitatory amacrine cells VG3-ACs. Formation of synapses between these two cells plays a key role in detection of motion. Promotes synaptic connectivity via homophilic interactions. {ECO:0000250|UniProtKB:Q6V4S5}. |
Q5SW79 | CEP170 | S381 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1114 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1167 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SW79 | CEP170 | S1241 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SXM2 | SNAPC4 | S1400 | ochoa | snRNA-activating protein complex subunit 4 (SNAPc subunit 4) (Proximal sequence element-binding transcription factor subunit alpha) (PSE-binding factor subunit alpha) (PTF subunit alpha) (snRNA-activating protein complex 190 kDa subunit) (SNAPc 190 kDa subunit) | Part of the SNAPc complex required for the transcription of both RNA polymerase II and III small-nuclear RNA genes. Binds to the proximal sequence element (PSE), a non-TATA-box basal promoter element common to these 2 types of genes. Recruits TBP and BRF2 to the U6 snRNA TATA box. {ECO:0000269|PubMed:12621023, ECO:0000269|PubMed:9418884}. |
Q5THK1 | PRR14L | S1971 | ochoa | Protein PRR14L (Proline rich 14-like protein) | None |
Q5TZA2 | CROCC | S464 | ochoa | Rootletin (Ciliary rootlet coiled-coil protein) | Major structural component of the ciliary rootlet, a cytoskeletal-like structure in ciliated cells which originates from the basal body at the proximal end of a cilium and extends proximally toward the cell nucleus (By similarity). Furthermore, is required for the correct positioning of the cilium basal body relative to the cell nucleus, to allow for ciliogenesis (PubMed:27623382). Contributes to centrosome cohesion before mitosis (PubMed:16203858). {ECO:0000250|UniProtKB:Q8CJ40, ECO:0000269|PubMed:16203858, ECO:0000269|PubMed:27623382}. |
Q5UIP0 | RIF1 | S1709 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VSY0 | GKAP1 | S29 | ochoa | G kinase-anchoring protein 1 (cGMP-dependent protein kinase-anchoring protein of 42 kDa) | Regulates insulin-dependent IRS1 tyrosine phosphorylation in adipocytes by modulating the availability of IRS1 to IR tyrosine kinase. Its association with IRS1 is required for insulin-induced translocation of SLC2A4 to the cell membrane. Involved in TNF-induced impairment of insulin-dependent IRS1 tyrosine phosphorylation. {ECO:0000250|UniProtKB:Q9JMB0}. |
Q5VTR2 | RNF20 | S138 | ochoa | E3 ubiquitin-protein ligase BRE1A (BRE1-A) (hBRE1) (EC 2.3.2.27) (RING finger protein 20) (RING-type E3 ubiquitin transferase BRE1A) | Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role inb histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradictory. Required for transcriptional activation of Hox genes. Recruited to the MDM2 promoter, probably by being recruited by p53/TP53, and thereby acts as a transcriptional coactivator. Mediates the polyubiquitination of isoform 2 of PA2G4 in cancer cells leading to its proteasome-mediated degradation. {ECO:0000269|PubMed:16307923, ECO:0000269|PubMed:16337599, ECO:0000269|PubMed:19037095, ECO:0000269|PubMed:19410543}.; FUNCTION: (Microbial infection) Promotes the human herpesvirus 8 (KSHV) lytic cycle by inducing the expression of lytic viral genes including the latency switch gene RTA/ORF50. {ECO:0000269|PubMed:37888983}. |
Q63HN8 | RNF213 | S45 | ochoa | E3 ubiquitin-protein ligase RNF213 (EC 2.3.2.27) (EC 3.6.4.-) (ALK lymphoma oligomerization partner on chromosome 17) (E3 ubiquitin-lipopolysaccharide ligase RNF213) (EC 2.3.2.-) (Mysterin) (RING finger protein 213) | Atypical E3 ubiquitin ligase that can catalyze ubiquitination of both proteins and lipids, and which is involved in various processes, such as lipid metabolism, angiogenesis and cell-autonomous immunity (PubMed:21799892, PubMed:26126547, PubMed:26278786, PubMed:26766444, PubMed:30705059, PubMed:32139119, PubMed:34012115). Acts as a key immune sensor by catalyzing ubiquitination of the lipid A moiety of bacterial lipopolysaccharide (LPS) via its RZ-type zinc-finger: restricts the proliferation of cytosolic bacteria, such as Salmonella, by generating the bacterial ubiquitin coat through the ubiquitination of LPS (PubMed:34012115). Also acts indirectly by mediating the recruitment of the LUBAC complex, which conjugates linear polyubiquitin chains (PubMed:34012115). Ubiquitination of LPS triggers cell-autonomous immunity, such as antibacterial autophagy, leading to degradation of the microbial invader (PubMed:34012115). Involved in lipid metabolism by regulating fat storage and lipid droplet formation; act by inhibiting the lipolytic process (PubMed:30705059). Also regulates lipotoxicity by inhibiting desaturation of fatty acids (PubMed:30846318). Also acts as an E3 ubiquitin-protein ligase via its RING-type zinc finger: mediates 'Lys-63'-linked ubiquitination of target proteins (PubMed:32139119, PubMed:33842849). Involved in the non-canonical Wnt signaling pathway in vascular development: acts by mediating ubiquitination and degradation of FLNA and NFATC2 downstream of RSPO3, leading to inhibit the non-canonical Wnt signaling pathway and promoting vessel regression (PubMed:26766444). Also has ATPase activity; ATPase activity is required for ubiquitination of LPS (PubMed:34012115). {ECO:0000269|PubMed:21799892, ECO:0000269|PubMed:26126547, ECO:0000269|PubMed:26278786, ECO:0000269|PubMed:26766444, ECO:0000269|PubMed:30705059, ECO:0000269|PubMed:30846318, ECO:0000269|PubMed:32139119, ECO:0000269|PubMed:33842849, ECO:0000269|PubMed:34012115}. |
Q641Q2 | WASHC2A | S160 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q6EMK4 | VASN | S649 | ochoa | Vasorin (Protein slit-like 2) | May act as an inhibitor of TGF-beta signaling. {ECO:0000269|PubMed:15247411}. |
Q6J4K2 | SLC8B1 | S273 | ochoa | Mitochondrial sodium/calcium exchanger protein (Na(+)/K(+)/Ca(2+)-exchange protein 6) (Sodium/calcium exchanger protein, mitochondrial) (Sodium/potassium/calcium exchanger 6) (Solute carrier family 24 member 6) (Solute carrier family 8 member B1) | Mitochondrial sodium/calcium antiporter that mediates sodium-dependent calcium efflux from mitochondrion, by mediating the exchange of 3 sodium ions per 1 calcium ion (PubMed:15060069, PubMed:20018762, PubMed:22829870, PubMed:23056385, PubMed:24898248, PubMed:28130126, PubMed:28219928). Plays a central role in mitochondrial calcium homeostasis by mediating mitochondrial calcium extrusion: calcium efflux is essential for mitochondrial function and cell survival, notably in cardiomyocytes (By similarity). Regulates rates of glucose-dependent insulin secretion in pancreatic beta-cells during the first phase of insulin secretion: acts by mediating efflux of calcium from mitochondrion, thereby affecting cytoplasmic calcium responses (PubMed:23056385). Required for store-operated Ca(2+) entry (SOCE) and Ca(2+) release-activated Ca(2+) (CRAC) channel regulation: sodium transport by SLC8B1 leads to promote calcium-shuttling that modulates mitochondrial redox status, thereby regulating SOCE activity (PubMed:28219928). Involved in B-lymphocyte chemotaxis (By similarity). Able to transport Ca(2+) in exchange of either Li(+) or Na(+), explaining how Li(+) catalyzes Ca(2+) exchange (PubMed:15060069, PubMed:28130126). In contrast to other members of the family its function is independent of K(+) (PubMed:15060069). {ECO:0000250|UniProtKB:Q925Q3, ECO:0000269|PubMed:15060069, ECO:0000269|PubMed:20018762, ECO:0000269|PubMed:22829870, ECO:0000269|PubMed:23056385, ECO:0000269|PubMed:24898248, ECO:0000269|PubMed:28219928}. |
Q6KC79 | NIPBL | S2493 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6KC79 | NIPBL | S2515 | ochoa | Nipped-B-like protein (Delangin) (SCC2 homolog) | Plays an important role in the loading of the cohesin complex on to DNA. Forms a heterodimeric complex (also known as cohesin loading complex) with MAU2/SCC4 which mediates the loading of the cohesin complex onto chromatin (PubMed:22628566, PubMed:28914604). Plays a role in cohesin loading at sites of DNA damage. Its recruitment to double-strand breaks (DSBs) sites occurs in a CBX3-, RNF8- and RNF168-dependent manner whereas its recruitment to UV irradiation-induced DNA damage sites occurs in a ATM-, ATR-, RNF8- and RNF168-dependent manner (PubMed:28167679). Along with ZNF609, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others (By similarity). {ECO:0000250|UniProtKB:Q6KCD5, ECO:0000269|PubMed:22628566, ECO:0000269|PubMed:28167679, ECO:0000269|PubMed:28914604}. |
Q6NSI3 | FAM53A | S125 | ochoa | Protein FAM53A (Dorsal neural-tube nuclear protein) | May play an important role in neural development; the dorsomedial roof of the third ventricle. {ECO:0000250|UniProtKB:Q5ZKN5}. |
Q6P158 | DHX57 | S477 | ochoa | Putative ATP-dependent RNA helicase DHX57 (EC 3.6.4.13) (DEAH box protein 57) | Probable ATP-binding RNA helicase. |
Q6R327 | RICTOR | S1037 | ochoa | Rapamycin-insensitive companion of mTOR (AVO3 homolog) (hAVO3) | Component of the mechanistic target of rapamycin complex 2 (mTORC2), which transduces signals from growth factors to pathways involved in proliferation, cytoskeletal organization, lipogenesis and anabolic output (PubMed:15268862, PubMed:15718470, PubMed:19720745, PubMed:19995915, PubMed:21343617, PubMed:33158864, PubMed:35904232, PubMed:35926713). In response to growth factors, mTORC2 phosphorylates and activates AGC protein kinase family members, including AKT (AKT1, AKT2 and AKT3), PKC (PRKCA, PRKCB and PRKCE) and SGK1 (PubMed:19720745, PubMed:19935711, PubMed:19995915). In contrast to mTORC1, mTORC2 is nutrient-insensitive (PubMed:15467718, PubMed:21343617). Within the mTORC2 complex, RICTOR probably acts as a molecular adapter (PubMed:21343617, PubMed:33158864, PubMed:35926713). RICTOR is responsible for the FKBP12-rapamycin-insensitivity of mTORC2 (PubMed:33158864). mTORC2 plays a critical role in AKT1 activation by mediating phosphorylation of different sites depending on the context, such as 'Thr-450', 'Ser-473', 'Ser-477' or 'Thr-479', facilitating the phosphorylation of the activation loop of AKT1 on 'Thr-308' by PDPK1/PDK1 which is a prerequisite for full activation (PubMed:15718470, PubMed:19720745, PubMed:19935711, PubMed:35926713). mTORC2 catalyzes the phosphorylation of SGK1 at 'Ser-422' and of PRKCA on 'Ser-657' (By similarity). The mTORC2 complex also phosphorylates various proteins involved in insulin signaling, such as FBXW8 and IGF2BP1 (By similarity). mTORC2 acts upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:15467718). mTORC2 promotes the serum-induced formation of stress-fibers or F-actin (PubMed:15467718). {ECO:0000250|UniProtKB:Q6QI06, ECO:0000269|PubMed:15268862, ECO:0000269|PubMed:15467718, ECO:0000269|PubMed:15718470, ECO:0000269|PubMed:19720745, ECO:0000269|PubMed:19935711, ECO:0000269|PubMed:19995915, ECO:0000269|PubMed:21343617, ECO:0000269|PubMed:33158864, ECO:0000269|PubMed:35904232, ECO:0000269|PubMed:35926713}. |
Q6UXM1 | LRIG3 | S1081 | ochoa | Leucine-rich repeats and immunoglobulin-like domains protein 3 (LIG-3) | May play a role in craniofacial and inner ear morphogenesis during embryonic development. May act within the otic vesicle epithelium to control formation of the lateral semicircular canal in the inner ear, possibly by restricting the expression of NTN1 (By similarity). {ECO:0000250}. |
Q6UXV4 | APOOL | S205 | ochoa | MICOS complex subunit MIC27 (Apolipoprotein O-like) (Protein FAM121A) | Component of the MICOS complex, a large protein complex of the mitochondrial inner membrane that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane. Specifically binds to cardiolipin (in vitro) but not to the precursor lipid phosphatidylglycerol. Plays a crucial role in crista junction formation and mitochondrial function (PubMed:23704930), (PubMed:25764979). {ECO:0000269|PubMed:23704930, ECO:0000269|PubMed:25764979}. |
Q6XZF7 | DNMBP | S518 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6Y7W6 | GIGYF2 | S201 | ochoa | GRB10-interacting GYF protein 2 (PERQ amino acid-rich with GYF domain-containing protein 2) (Trinucleotide repeat-containing gene 15 protein) | Key component of the 4EHP-GYF2 complex, a multiprotein complex that acts as a repressor of translation initiation (PubMed:22751931, PubMed:31439631, PubMed:35878012). In the 4EHP-GYF2 complex, acts as a factor that bridges EIF4E2 to ZFP36/TTP, linking translation repression with mRNA decay (PubMed:31439631). Also recruits and bridges the association of the 4EHP complex with the decapping effector protein DDX6, which is required for the ZFP36/TTP-mediated down-regulation of AU-rich mRNA (PubMed:31439631). May act cooperatively with GRB10 to regulate tyrosine kinase receptor signaling, including IGF1 and insulin receptors (PubMed:12771153). In association with EIF4E2, assists ribosome-associated quality control (RQC) by sequestering the mRNA cap, blocking ribosome initiation and decreasing the translational load on problematic messages. Part of a pathway that works in parallel to RQC-mediated degradation of the stalled nascent polypeptide (PubMed:32726578). GIGYF2 and EIF4E2 work downstream and independently of ZNF598, which seems to work as a scaffold that can recruit them to faulty mRNA even if alternative recruitment mechanisms may exist (PubMed:32726578). {ECO:0000269|PubMed:12771153, ECO:0000269|PubMed:22751931, ECO:0000269|PubMed:31439631, ECO:0000269|PubMed:32726578, ECO:0000269|PubMed:35878012}.; FUNCTION: (Microbial infection) Upon SARS coronavirus-2/SARS-CoV-2 infection, the interaction with non-structural protein 2 (nsp2) enhances GIGYF2 binding to EIF4E2 and increases repression of translation initiation of genes involved in antiviral innate immune response such as IFNB1. {ECO:0000269|PubMed:35878012}. |
Q6ZN28 | MACC1 | S19 | ochoa | Metastasis-associated in colon cancer protein 1 (SH3 domain-containing protein 7a5) | Acts as a transcription activator for MET and as a key regulator of HGF-MET signaling. Promotes cell motility, proliferation and hepatocyte growth factor (HGF)-dependent scattering in vitro and tumor growth and metastasis in vivo. {ECO:0000269|PubMed:19098908}. |
Q6ZU35 | CRACD | S822 | ochoa | Capping protein-inhibiting regulator of actin dynamics (Cancer-related regulator of actin dynamics) | Involved in epithelial cell integrity by acting on the maintenance of the actin cytoskeleton. Positively regulates the actin polymerization, by inhibiting the interaction of actin-capping proteins with actin. {ECO:0000269|PubMed:30361697}. |
Q6ZW31 | SYDE1 | S683 | ochoa | Rho GTPase-activating protein SYDE1 (Synapse defective protein 1 homolog 1) (Protein syd-1 homolog 1) | GTPase activator for the Rho-type GTPases. As a GCM1 downstream effector, it is involved in placental development and positively regulates trophoblast cells migration. It regulates cytoskeletal remodeling by controlling the activity of Rho GTPases including RHOA, CDC42 and RAC1 (PubMed:27917469). {ECO:0000269|PubMed:27917469}. |
Q76FK4 | NOL8 | S845 | ochoa | Nucleolar protein 8 (Nucleolar protein Nop132) | Plays an essential role in the survival of diffuse-type gastric cancer cells. Acts as a nucleolar anchoring protein for DDX47. May be involved in regulation of gene expression at the post-transcriptional level or in ribosome biogenesis in cancer cells. {ECO:0000269|PubMed:14660641, ECO:0000269|PubMed:15132771, ECO:0000269|PubMed:16963496}. |
Q7Z2T5 | TRMT1L | S709 | ochoa | tRNA (guanine(27)-N(2))-dimethyltransferase (EC 2.1.1.-) (tRNA methyltransferase 1-like protein) (TRMT1-like protein) | Specifically dimethylates a single guanine residue at position 27 of tRNA(Tyr) using S-adenosyl-L-methionine as donor of the methyl groups (PubMed:39786990, PubMed:39786998). Dimethylation at position 27 of tRNA(Tyr) is required for efficient translation of tyrosine codons (PubMed:39786990, PubMed:39786998). Also required to maintain 3-(3-amino-3-carboxypropyl)uridine (acp3U) in the D-loop of several cytoplasmic tRNAs (PubMed:39786990, PubMed:39786998). {ECO:0000269|PubMed:39786990, ECO:0000269|PubMed:39786998}. |
Q7Z3J3 | RGPD4 | S1593 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z401 | DENND4A | S941 | ochoa | C-myc promoter-binding protein (DENN domain-containing protein 4A) | Probable guanine nucleotide exchange factor (GEF) which may activate RAB10. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form. According to PubMed:8056341, it may bind to ISRE-like element (interferon-stimulated response element) of MYC P2 promoter. {ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:8056341}. |
Q7Z417 | NUFIP2 | S214 | ochoa | FMR1-interacting protein NUFIP2 (82 kDa FMRP-interacting protein) (82-FIP) (Cell proliferation-inducing gene 1 protein) (FMRP-interacting protein 2) (Nuclear FMR1-interacting protein 2) | Binds RNA. {ECO:0000269|PubMed:12837692}. |
Q7Z4V5 | HDGFL2 | S399 | ochoa | Hepatoma-derived growth factor-related protein 2 (HDGF-related protein 2) (HRP-2) (Hepatoma-derived growth factor 2) (HDGF-2) | Acts as an epigenetic regulator of myogenesis in cooperation with DPF3a (isoform 2 of DPF3/BAF45C) (PubMed:32459350). Associates with the BAF complex via its interaction with DPF3a and HDGFL2-DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of SMARCA4/BRG1/BAF190A (ATPase subunit of the BAF complex) to myogenic gene promoters (PubMed:32459350). Promotes the repair of DNA double-strand breaks (DSBs) through the homologous recombination pathway by facilitating the recruitment of the DNA endonuclease RBBP8 to the DSBs (PubMed:26721387). Preferentially binds to chromatin regions marked by H3K9me3, H3K27me3 and H3K36me2 (PubMed:26721387, PubMed:32459350). Involved in cellular growth control, through the regulation of cyclin D1 expression (PubMed:25689719). {ECO:0000269|PubMed:25689719, ECO:0000269|PubMed:26721387, ECO:0000269|PubMed:32459350}. |
Q7Z5H3 | ARHGAP22 | S558 | ochoa | Rho GTPase-activating protein 22 (Rho-type GTPase-activating protein 22) | Rho GTPase-activating protein involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Acts as a GTPase activator for the RAC1 by converting it to an inactive GDP-bound state. Inhibits RAC1-dependent lamellipodia formation. May also play a role in transcription regulation via its interaction with VEZF1, by regulating activity of the endothelin-1 (EDN1) promoter (By similarity). {ECO:0000250}. |
Q7Z5K2 | WAPL | S461 | ochoa | Wings apart-like protein homolog (Friend of EBNA2 protein) (WAPL cohesin release factor) | Regulator of sister chromatid cohesion in mitosis which negatively regulates cohesin association with chromatin (PubMed:26299517). Involved in both sister chromatid cohesion during interphase and sister-chromatid resolution during early stages of mitosis. Couples DNA replication to sister chromatid cohesion. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. {ECO:0000269|PubMed:15150110, ECO:0000269|PubMed:17112726, ECO:0000269|PubMed:17113138, ECO:0000269|PubMed:19696148, ECO:0000269|PubMed:19907496, ECO:0000269|PubMed:21111234, ECO:0000269|PubMed:23776203, ECO:0000269|PubMed:26299517}. |
Q7Z628 | NET1 | S38 | ochoa | Neuroepithelial cell-transforming gene 1 protein (Proto-oncogene p65 Net1) (Rho guanine nucleotide exchange factor 8) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPase. May be involved in activation of the SAPK/JNK pathway Stimulates genotoxic stress-induced RHOB activity in breast cancer cells leading to their cell death. {ECO:0000269|PubMed:21373644}. |
Q7Z6E9 | RBBP6 | S1646 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q86T82 | USP37 | S652 | ochoa | Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) | Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}. |
Q86TL2 | STIMATE | S255 | ochoa | Store-operated calcium entry regulator STIMATE (STIM-activating enhancer encoded by TMEM110) (Transmembrane protein 110) | Acts as a regulator of store-operated Ca(2+) entry (SOCE) at junctional sites that connect the endoplasmic reticulum (ER) and plasma membrane (PM), called ER-plasma membrane (ER-PM) junction or cortical ER (PubMed:26322679, PubMed:26644574). SOCE is a Ca(2+) influx following depletion of intracellular Ca(2+) stores (PubMed:26322679). Acts by interacting with STIM1, promoting STIM1 conformational switch (PubMed:26322679). Involved in STIM1 relocalization to ER-PM junctions (PubMed:26644574). Contributes to the maintenance and reorganization of store-dependent ER-PM junctions (PubMed:26644574). {ECO:0000269|PubMed:26322679, ECO:0000269|PubMed:26644574}. |
Q86UV5 | USP48 | S888 | ochoa | Ubiquitin carboxyl-terminal hydrolase 48 (EC 3.4.19.12) (Deubiquitinating enzyme 48) (Ubiquitin thioesterase 48) (Ubiquitin-specific peptidase 48) (Ubiquitin-specific protease 48) (Ubiquitin-specific-processing protease 48) | Deubiquitinase that recognizes and hydrolyzes the peptide bond at the C-terminal Gly of ubiquitin. Involved in the processing of polyubiquitin precursors as well as that of ubiquitinated proteins (PubMed:16214042, PubMed:34059922). Plays a role in the regulation of NF-kappa-B activation by TNF receptor superfamily via its interactions with RELA and TRAF2. May also play a regulatory role at postsynaptic sites. Plays an important role in cell cycle progression by deubiquitinating Aurora B/AURKB and thereby extending its stability (PubMed:34445214). In the context of H.pylori infection, stabilizes nuclear RELA through deubiquitination, thereby promoting the transcriptional activity of RELA to prolong TNFAIP3 de novo synthesis. Consequently, TNFAIP3 suppresses caspase activity and apoptotic cell death (PubMed:35913642). Also functions in the modulation of the ciliary and synaptic transport as well as cytoskeleton organization, which are key for photoreceptor function and homeostasis. To achieve this, stabilizes the levels of the retinal degeneration-associated proteins ARL3 and UNC119 using distinct mechanisms (PubMed:36293380). Plays a positive role in pyroptosis by stabilizing gasdermin E/GSDME through removal of its 'Lys-48'-linked ubiquitination (PubMed:36607699). {ECO:0000269|PubMed:16214042, ECO:0000269|PubMed:34059922, ECO:0000269|PubMed:34445214, ECO:0000269|PubMed:35913642, ECO:0000269|PubMed:36293380, ECO:0000269|PubMed:36607699}. |
Q86WB0 | ZC3HC1 | S483 | ochoa | Zinc finger C3HC-type protein 1 (Nuclear-interacting partner of ALK) (hNIPA) (Nuclear-interacting partner of anaplastic lymphoma kinase) | Required for proper positioning of a substantial amount of TPR at the nuclear basket (NB) through interaction with TPR. {ECO:0000269|PubMed:34440706}. |
Q86Y82 | STX12 | S94 | ochoa | Syntaxin-12 | SNARE promoting fusion of transport vesicles with target membranes. Together with SNARE STX6, promotes movement of vesicles from endosomes to the cell membrane, and may therefore function in the endocytic recycling pathway. Through complex formation with GRIP1, GRIA2 and NSG1 controls the intracellular fate of AMPAR and the endosomal sorting of the GRIA2 subunit toward recycling and membrane targeting. {ECO:0000250|UniProtKB:G3V7P1}. |
Q86YN6 | PPARGC1B | S994 | ochoa | Peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC-1-beta) (PPAR-gamma coactivator 1-beta) (PPARGC-1-beta) (PGC-1-related estrogen receptor alpha coactivator) | Plays a role of stimulator of transcription factors and nuclear receptors activities. Activates transcriptional activity of estrogen receptor alpha, nuclear respiratory factor 1 (NRF1) and glucocorticoid receptor in the presence of glucocorticoids. May play a role in constitutive non-adrenergic-mediated mitochondrial biogenesis as suggested by increased basal oxygen consumption and mitochondrial number when overexpressed. May be involved in fat oxidation and non-oxidative glucose metabolism and in the regulation of energy expenditure. Induces the expression of PERM1 in the skeletal muscle in an ESRRA-dependent manner. {ECO:0000269|PubMed:11854298, ECO:0000269|PubMed:12678921, ECO:0000269|PubMed:15546003, ECO:0000269|PubMed:23836911}. |
Q86YV5 | PRAG1 | S852 | ochoa | Inactive tyrosine-protein kinase PRAG1 (PEAK1-related kinase-activating pseudokinase 1) (Pragmin) (Sugen kinase 223) (SgK223) | Catalytically inactive protein kinase that acts as a scaffold protein. Functions as an effector of the small GTPase RND2, which stimulates RhoA activity and inhibits NGF-induced neurite outgrowth (By similarity). Promotes Src family kinase (SFK) signaling by regulating the subcellular localization of CSK, a negative regulator of these kinases, leading to the regulation of cell morphology and motility by a CSK-dependent mechanism (By similarity). Acts as a critical coactivator of Notch signaling (By similarity). {ECO:0000250|UniProtKB:D3ZMK9, ECO:0000250|UniProtKB:Q571I4}. |
Q8IV63 | VRK3 | S85 | ochoa | Serine/threonine-protein kinase VRK3 (EC 2.7.11.22) (Vaccinia-related kinase 3) | Plays a role in the regulation of the cell cycle by phosphorylating the nuclear envelope protein barrier-to-autointegration factor/BAF that is required for disassembly and reassembly, respectively, of the nuclear envelope during mitosis (PubMed:25899223). Under normal physiological conditions, negatively regulates ERK activity along with VHR/DUSP3 phosphatase in the nucleus, causing timely and transient action of ERK. Stress conditions activate CDK5 which phosphorylates VRK3 to increase VHR phosphatase activity and suppress prolonged ERK activation that causes cell death (PubMed:27346674). For example, upon glutamate induction, promotes nuclear localization of HSP70/HSPA1A to inhibit ERK activation via VHR/DUSP3 phosphatase (PubMed:27941812). {ECO:0000250|UniProtKB:Q8K3G5, ECO:0000269|PubMed:14645249, ECO:0000269|PubMed:19141289, ECO:0000269|PubMed:25899223, ECO:0000269|PubMed:27346674, ECO:0000269|PubMed:27941812}. |
Q8IWJ2 | GCC2 | S448 | ochoa | GRIP and coiled-coil domain-containing protein 2 (185 kDa Golgi coiled-coil protein) (GCC185) (CLL-associated antigen KW-11) (CTCL tumor antigen se1-1) (Ran-binding protein 2-like 4) (RanBP2L4) (Renal carcinoma antigen NY-REN-53) | Golgin which probably tethers transport vesicles to the trans-Golgi network (TGN) and regulates vesicular transport between the endosomes and the Golgi. As a RAB9A effector it is involved in recycling of the mannose 6-phosphate receptor from the late endosomes to the TGN. May also play a role in transport between the recycling endosomes and the Golgi. Required for maintenance of the Golgi structure, it is involved in the biogenesis of noncentrosomal, Golgi-associated microtubules through recruitment of CLASP1 and CLASP2. {ECO:0000269|PubMed:16885419, ECO:0000269|PubMed:17488291, ECO:0000269|PubMed:17543864}. |
Q8IWU2 | LMTK2 | S1111 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8IXJ6 | SIRT2 | S27 | ochoa | NAD-dependent protein deacetylase sirtuin-2 (EC 2.3.1.286) (NAD-dependent protein defatty-acylase sirtuin-2) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 2) (SIR2-like protein 2) | NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and alpha-tubulin as well as many other proteins such as key transcription factors (PubMed:12620231, PubMed:16648462, PubMed:18249187, PubMed:18332217, PubMed:18995842, PubMed:20543840, PubMed:20587414, PubMed:21081649, PubMed:21726808, PubMed:21949390, PubMed:22014574, PubMed:22771473, PubMed:23468428, PubMed:23908241, PubMed:24177535, PubMed:24681946, PubMed:24769394, PubMed:24940000). Participates in the modulation of multiple and diverse biological processes such as cell cycle control, genomic integrity, microtubule dynamics, cell differentiation, metabolic networks, and autophagy (PubMed:12620231, PubMed:16648462, PubMed:18249187, PubMed:18332217, PubMed:18995842, PubMed:20543840, PubMed:20587414, PubMed:21081649, PubMed:21726808, PubMed:21949390, PubMed:22014574, PubMed:22771473, PubMed:23468428, PubMed:23908241, PubMed:24177535, PubMed:24681946, PubMed:24769394, PubMed:24940000). Plays a major role in the control of cell cycle progression and genomic stability (PubMed:12697818, PubMed:16909107, PubMed:17488717, PubMed:17726514, PubMed:19282667, PubMed:23468428). Functions in the antephase checkpoint preventing precocious mitotic entry in response to microtubule stress agents, and hence allowing proper inheritance of chromosomes (PubMed:12697818, PubMed:16909107, PubMed:17488717, PubMed:17726514, PubMed:19282667, PubMed:23468428). Positively regulates the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase complex activity by deacetylating CDC20 and FZR1, then allowing progression through mitosis (PubMed:22014574). Associates both with chromatin at transcriptional start sites (TSSs) and enhancers of active genes (PubMed:23468428). Plays a role in cell cycle and chromatin compaction through epigenetic modulation of the regulation of histone H4 'Lys-20' methylation (H4K20me1) during early mitosis (PubMed:23468428). Specifically deacetylates histone H4 at 'Lys-16' (H4K16ac) between the G2/M transition and metaphase enabling H4K20me1 deposition by KMT5A leading to ulterior levels of H4K20me2 and H4K20me3 deposition throughout cell cycle, and mitotic S-phase progression (PubMed:23468428). Deacetylates KMT5A modulating KMT5A chromatin localization during the mitotic stress response (PubMed:23468428). Also deacetylates histone H3 at 'Lys-57' (H3K56ac) during the mitotic G2/M transition (PubMed:20587414). Upon bacterium Listeria monocytogenes infection, deacetylates 'Lys-18' of histone H3 in a receptor tyrosine kinase MET- and PI3K/Akt-dependent manner, thereby inhibiting transcriptional activity and promoting late stages of listeria infection (PubMed:23908241). During oocyte meiosis progression, may deacetylate histone H4 at 'Lys-16' (H4K16ac) and alpha-tubulin, regulating spindle assembly and chromosome alignment by influencing microtubule dynamics and kinetochore function (PubMed:24940000). Deacetylates histone H4 at 'Lys-16' (H4K16ac) at the VEGFA promoter and thereby contributes to regulate expression of VEGFA, a key regulator of angiogenesis (PubMed:24940000). Deacetylates alpha-tubulin at 'Lys-40' and hence controls neuronal motility, oligodendroglial cell arbor projection processes and proliferation of non-neuronal cells (PubMed:18332217, PubMed:18995842). Phosphorylation at Ser-368 by a G1/S-specific cyclin E-CDK2 complex inactivates SIRT2-mediated alpha-tubulin deacetylation, negatively regulating cell adhesion, cell migration and neurite outgrowth during neuronal differentiation (PubMed:17488717). Deacetylates PARD3 and participates in the regulation of Schwann cell peripheral myelination formation during early postnatal development and during postinjury remyelination (PubMed:21949390). Involved in several cellular metabolic pathways (PubMed:20543840, PubMed:21726808, PubMed:24769394). Plays a role in the regulation of blood glucose homeostasis by deacetylating and stabilizing phosphoenolpyruvate carboxykinase PCK1 activity in response to low nutrient availability (PubMed:21726808). Acts as a key regulator in the pentose phosphate pathway (PPP) by deacetylating and activating the glucose-6-phosphate G6PD enzyme, and therefore, stimulates the production of cytosolic NADPH to counteract oxidative damage (PubMed:24769394). Maintains energy homeostasis in response to nutrient deprivation as well as energy expenditure by inhibiting adipogenesis and promoting lipolysis (PubMed:20543840). Attenuates adipocyte differentiation by deacetylating and promoting FOXO1 interaction to PPARG and subsequent repression of PPARG-dependent transcriptional activity (PubMed:20543840). Plays a role in the regulation of lysosome-mediated degradation of protein aggregates by autophagy in neuronal cells (PubMed:20543840). Deacetylates FOXO1 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagy (PubMed:20543840). Deacetylates a broad range of transcription factors and co-regulators regulating target gene expression. Deacetylates transcriptional factor FOXO3 stimulating the ubiquitin ligase SCF(SKP2)-mediated FOXO3 ubiquitination and degradation (By similarity). Deacetylates HIF1A and therefore promotes HIF1A degradation and inhibition of HIF1A transcriptional activity in tumor cells in response to hypoxia (PubMed:24681946). Deacetylates RELA in the cytoplasm inhibiting NF-kappaB-dependent transcription activation upon TNF-alpha stimulation (PubMed:21081649). Inhibits transcriptional activation by deacetylating p53/TP53 and EP300 (PubMed:18249187, PubMed:18995842). Also deacetylates EIF5A (PubMed:22771473). Functions as a negative regulator on oxidative stress-tolerance in response to anoxia-reoxygenation conditions (PubMed:24769394). Plays a role as tumor suppressor (PubMed:22014574). In addition to protein deacetylase activity, also has activity toward long-chain fatty acyl groups and mediates protein-lysine demyristoylation and depalmitoylation of target proteins, such as ARF6 and KRAS, thereby regulating their association with membranes (PubMed:25704306, PubMed:29239724, PubMed:32103017). {ECO:0000250|UniProtKB:Q8VDQ8, ECO:0000269|PubMed:12620231, ECO:0000269|PubMed:12697818, ECO:0000269|PubMed:16648462, ECO:0000269|PubMed:16909107, ECO:0000269|PubMed:17488717, ECO:0000269|PubMed:17574768, ECO:0000269|PubMed:17726514, ECO:0000269|PubMed:18249187, ECO:0000269|PubMed:18332217, ECO:0000269|PubMed:18640115, ECO:0000269|PubMed:18722353, ECO:0000269|PubMed:18995842, ECO:0000269|PubMed:19282667, ECO:0000269|PubMed:20543840, ECO:0000269|PubMed:20587414, ECO:0000269|PubMed:21081649, ECO:0000269|PubMed:21726808, ECO:0000269|PubMed:21949390, ECO:0000269|PubMed:22014574, ECO:0000269|PubMed:22771473, ECO:0000269|PubMed:22819792, ECO:0000269|PubMed:23468428, ECO:0000269|PubMed:23908241, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:24177535, ECO:0000269|PubMed:24681946, ECO:0000269|PubMed:24769394, ECO:0000269|PubMed:24940000, ECO:0000269|PubMed:25704306, ECO:0000269|PubMed:29239724, ECO:0000269|PubMed:32103017}.; FUNCTION: [Isoform 1]: Deacetylates EP300, alpha-tubulin and histone H3 and H4. {ECO:0000269|PubMed:24177535}.; FUNCTION: [Isoform 2]: Deacetylates EP300, alpha-tubulin and histone H3 and H4. {ECO:0000269|PubMed:24177535}.; FUNCTION: [Isoform 5]: Lacks deacetylation activity, at least toward known SIRT2 targets. {ECO:0000269|PubMed:24177535}. |
Q8IYB3 | SRRM1 | S465 | ochoa | Serine/arginine repetitive matrix protein 1 (SR-related nuclear matrix protein of 160 kDa) (SRm160) (Ser/Arg-related nuclear matrix protein) | Part of pre- and post-splicing multiprotein mRNP complexes. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with low sequence specificity and has similar preference for either double- or single-stranded nucleic acid substrates. {ECO:0000269|PubMed:10339552, ECO:0000269|PubMed:10668804, ECO:0000269|PubMed:11739730, ECO:0000269|PubMed:12600940, ECO:0000269|PubMed:12944400, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q8IYB7 | DIS3L2 | S175 | ochoa | DIS3-like exonuclease 2 (hDIS3L2) (EC 3.1.13.-) | 3'-5'-exoribonuclease that specifically recognizes RNAs polyuridylated at their 3' end and mediates their degradation. Component of an exosome-independent RNA degradation pathway that mediates degradation of both mRNAs and miRNAs that have been polyuridylated by a terminal uridylyltransferase, such as ZCCHC11/TUT4. Mediates degradation of cytoplasmic mRNAs that have been deadenylated and subsequently uridylated at their 3'. Mediates degradation of uridylated pre-let-7 miRNAs, contributing to the maintenance of embryonic stem (ES) cells. Essential for correct mitosis, and negatively regulates cell proliferation. {ECO:0000255|HAMAP-Rule:MF_03045, ECO:0000269|PubMed:23756462, ECO:0000269|PubMed:24141620}. |
Q8IZ21 | PHACTR4 | S518 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8IZ41 | RASEF | S451 | ochoa | Ras and EF-hand domain-containing protein (Ras-related protein Rab-45) | Binds predominantly GDP, and also GTP (PubMed:17448446). Acts as a dynein adapter protein that activates dynein-mediated transport and dynein-dynactin motility on microtubules (PubMed:30814157). {ECO:0000269|PubMed:17448446, ECO:0000269|PubMed:30814157}. |
Q8IZA0 | KIAA0319L | S1005 | ochoa | Dyslexia-associated protein KIAA0319-like protein (Adeno-associated virus receptor) (AAVR) | Possible role in axon guidance through interaction with RTN4R. {ECO:0000269|PubMed:20697954}.; FUNCTION: (Microbial infection) Acts as a receptor for adeno-associated virus and is involved in adeno-associated virus infection through endocytosis system. {ECO:0000269|PubMed:26814968}. |
Q8N1G0 | ZNF687 | S1087 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N1G1 | REXO1 | S289 | ochoa | RNA exonuclease 1 homolog (EC 3.1.-.-) (Elongin-A-binding protein 1) (EloA-BP1) (Transcription elongation factor B polypeptide 3-binding protein 1) | Seems to have no detectable effect on transcription elongation in vitro. {ECO:0000269|PubMed:12943681}. |
Q8N1G2 | CMTR1 | S55 | ochoa | Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1 (EC 2.1.1.57) (Cap methyltransferase 1) (Cap1 2'O-ribose methyltransferase 1) (MTr1) (hMTr1) (FtsJ methyltransferase domain-containing protein 2) (Interferon-stimulated gene 95 kDa protein) (ISG95) | S-adenosyl-L-methionine-dependent methyltransferase that mediates mRNA cap1 2'-O-ribose methylation to the 5'-cap structure of mRNAs. Methylates the ribose of the first nucleotide of a m(7)GpppG-capped mRNA and small nuclear RNA (snRNA) to produce m(7)GpppRm (cap1). Displays a preference for cap0 transcripts. Cap1 modification is linked to higher levels of translation. May be involved in the interferon response pathway. {ECO:0000269|PubMed:18533109, ECO:0000269|PubMed:20713356, ECO:0000269|PubMed:21310715}. |
Q8N4X5 | AFAP1L2 | S305 | ochoa | Actin filament-associated protein 1-like 2 (AFAP1-like protein 2) | May play a role in a signaling cascade by enhancing the kinase activity of SRC. Contributes to SRC-regulated transcription activation. {ECO:0000269|PubMed:17412687}. |
Q8N5D0 | WDTC1 | S513 | ochoa | WD and tetratricopeptide repeats protein 1 | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16964240}. |
Q8N6H7 | ARFGAP2 | S242 | ochoa | ADP-ribosylation factor GTPase-activating protein 2 (ARF GAP 2) (GTPase-activating protein ZNF289) (Zinc finger protein 289) | GTPase-activating protein (GAP) for ADP ribosylation factor 1 (ARF1). Implicated in coatomer-mediated protein transport between the Golgi complex and the endoplasmic reticulum. Hydrolysis of ARF1-bound GTP may lead to dissociation of coatomer from Golgi-derived membranes to allow fusion with target membranes. {ECO:0000269|PubMed:17760859}. |
Q8N806 | UBR7 | S265 | ochoa | Putative E3 ubiquitin-protein ligase UBR7 (EC 2.3.2.27) (N-recognin-7) (RING-type E3 ubiquitin transferase UBR7) | E3 ubiquitin-protein ligase which is a component of the N-end rule pathway. Recognizes and binds to proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation. {ECO:0000250}. |
Q8N9T8 | KRI1 | S97 | ochoa | Protein KRI1 homolog | None |
Q8NBU5 | ATAD1 | S319 | ochoa | Outer mitochondrial transmembrane helix translocase (EC 7.4.2.-) (ATPase family AAA domain-containing protein 1) (hATAD1) (Thorase) | Outer mitochondrial translocase required to remove mislocalized tail-anchored transmembrane proteins on mitochondria (PubMed:24843043). Specifically recognizes and binds tail-anchored transmembrane proteins: acts as a dislocase that mediates the ATP-dependent extraction of mistargeted tail-anchored transmembrane proteins from the mitochondrion outer membrane (By similarity). Also plays a critical role in regulating the surface expression of AMPA receptors (AMPAR), thereby regulating synaptic plasticity and learning and memory (By similarity). Required for NMDA-stimulated AMPAR internalization and inhibition of GRIA1 and GRIA2 recycling back to the plasma membrane; these activities are ATPase-dependent (By similarity). {ECO:0000250|UniProtKB:P28737, ECO:0000250|UniProtKB:Q9D5T0, ECO:0000269|PubMed:24843043}. |
Q8NC44 | RETREG2 | S140 | ochoa | Reticulophagy regulator 2 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Required for collagen quality control in a LIR motif-independent manner (By similarity). {ECO:0000250|UniProtKB:Q6NS82, ECO:0000269|PubMed:34338405}. |
Q8NC44 | RETREG2 | S283 | ochoa | Reticulophagy regulator 2 | Endoplasmic reticulum (ER)-anchored autophagy regulator which exists in an inactive state under basal conditions but is activated following cellular stress (PubMed:34338405). When activated, induces ER fragmentation and mediates ER delivery into lysosomes through sequestration into autophagosomes via interaction with ATG8 family proteins (PubMed:34338405). Required for collagen quality control in a LIR motif-independent manner (By similarity). {ECO:0000250|UniProtKB:Q6NS82, ECO:0000269|PubMed:34338405}. |
Q8NC51 | SERBP1 | S330 | ochoa|psp | SERPINE1 mRNA-binding protein 1 (PAI1 RNA-binding protein 1) (PAI-RBP1) (Plasminogen activator inhibitor 1 RNA-binding protein) | Ribosome-binding protein that promotes ribosome hibernation, a process during which ribosomes are stabilized in an inactive state and preserved from proteasomal degradation (PubMed:36691768). Acts via its association with EEF2/eEF2 factor, sequestering EEF2/eEF2 at the A-site of the ribosome and promoting ribosome stabilization and storage in an inactive state (By similarity). May also play a role in the regulation of mRNA stability: binds to the 3'-most 134 nt of the SERPINE1/PAI1 mRNA, a region which confers cyclic nucleotide regulation of message decay (PubMed:11001948). Seems to play a role in PML-nuclear bodies formation (PubMed:28695742). {ECO:0000250|UniProtKB:Q9CY58, ECO:0000269|PubMed:11001948, ECO:0000269|PubMed:28695742, ECO:0000269|PubMed:36691768}. |
Q8NCN4 | RNF169 | S249 | ochoa | E3 ubiquitin-protein ligase RNF169 (EC 2.3.2.27) (RING finger protein 169) (RING-type E3 ubiquitin transferase RNF169) | Probable E3 ubiquitin-protein ligase that acts as a regulator of double-strand breaks (DSBs) repair following DNA damage. Functions in a non-canonical fashion to harness RNF168-mediated protein recruitment to DSB-containing chromatin, thereby contributing to regulation of DSB repair pathway utilization (PubMed:22492721, PubMed:30773093). Once recruited to DSB repair sites by recognizing and binding ubiquitin catalyzed by RNF168, competes with TP53BP1 and BRCA1 for association with RNF168-modified chromatin, thereby favouring homologous recombination repair (HRR) and single-strand annealing (SSA) instead of non-homologous end joining (NHEJ) mediated by TP53BP1 (PubMed:30104380, PubMed:30773093). E3 ubiquitin-protein ligase activity is not required for regulation of DSBs repair. {ECO:0000269|PubMed:22492721, ECO:0000269|PubMed:22733822, ECO:0000269|PubMed:22742833, ECO:0000269|PubMed:30104380, ECO:0000269|PubMed:30773093}. |
Q8ND83 | SLAIN1 | S255 | ochoa | SLAIN motif-containing protein 1 | Microtubule plus-end tracking protein that might be involved in the regulation of cytoplasmic microtubule dynamics, microtubule organization and microtubule elongation. {ECO:0000269|PubMed:21646404}. |
Q8NDX6 | ZNF740 | S72 | ochoa | Zinc finger protein 740 (OriLyt TD-element-binding protein 7) | May be involved in transcriptional regulation. |
Q8NEM2 | SHCBP1 | S275 | ochoa | SHC SH2 domain-binding protein 1 | May play a role in signaling pathways governing cellular proliferation, cell growth and differentiation. May be a component of a novel signaling pathway downstream of Shc. Acts as a positive regulator of FGF signaling in neural progenitor cells. {ECO:0000250|UniProtKB:Q9Z179}. |
Q8NEY1 | NAV1 | S476 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NFC6 | BOD1L1 | S2027 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFC6 | BOD1L1 | S2845 | ochoa | Biorientation of chromosomes in cell division protein 1-like 1 | Component of the fork protection machinery required to protect stalled/damaged replication forks from uncontrolled DNA2-dependent resection. Acts by stabilizing RAD51 at stalled replication forks and protecting RAD51 nucleofilaments from the antirecombinogenic activities of FBH1 and BLM (PubMed:26166705, PubMed:29937342). Does not regulate spindle orientation (PubMed:26166705). {ECO:0000269|PubMed:26166705, ECO:0000269|PubMed:29937342}. |
Q8NFP9 | NBEA | S1221 | ochoa | Neurobeachin (Lysosomal-trafficking regulator 2) (Protein BCL8B) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them to the membrane. May anchor the kinase to cytoskeletal and/or organelle-associated proteins (By similarity). {ECO:0000250}. |
Q8NI08 | NCOA7 | S211 | ochoa | Nuclear receptor coactivator 7 (140 kDa estrogen receptor-associated protein) (Estrogen nuclear receptor coactivator 1) | Enhances the transcriptional activities of several nuclear receptors. Involved in the coactivation of different nuclear receptors, such as ESR1, THRB, PPARG and RARA. {ECO:0000269|PubMed:11971969}. |
Q8TD19 | NEK9 | S838 | ochoa | Serine/threonine-protein kinase Nek9 (EC 2.7.11.1) (Nercc1 kinase) (Never in mitosis A-related kinase 9) (NimA-related protein kinase 9) (NimA-related kinase 8) (Nek8) | Pleiotropic regulator of mitotic progression, participating in the control of spindle dynamics and chromosome separation (PubMed:12101123, PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates different histones, myelin basic protein, beta-casein, and BICD2 (PubMed:11864968). Phosphorylates histone H3 on serine and threonine residues and beta-casein on serine residues (PubMed:11864968). Important for G1/S transition and S phase progression (PubMed:12840024, PubMed:14660563, PubMed:19941817). Phosphorylates NEK6 and NEK7 and stimulates their activity by releasing the autoinhibitory functions of Tyr-108 and Tyr-97 respectively (PubMed:12840024, PubMed:14660563, PubMed:19941817, PubMed:26522158). {ECO:0000269|PubMed:11864968, ECO:0000269|PubMed:12101123, ECO:0000269|PubMed:12840024, ECO:0000269|PubMed:14660563, ECO:0000269|PubMed:19941817, ECO:0000269|PubMed:26522158}. |
Q8TDB6 | DTX3L | S223 | ochoa | E3 ubiquitin-protein ligase DTX3L (EC 2.3.2.27) (B-lymphoma- and BAL-associated protein) (Protein deltex-3-like) (RING-type E3 ubiquitin transferase DTX3L) (Rhysin-2) (Rhysin2) | E3 ubiquitin-protein ligase which, in association with ADP-ribosyltransferase PARP9, plays a role in DNA damage repair and in interferon-mediated antiviral responses (PubMed:12670957, PubMed:19818714, PubMed:23230272, PubMed:26479788). Monoubiquitinates several histones, including histone H2A, H2B, H3 and H4 (PubMed:28525742). In response to DNA damage, mediates monoubiquitination of 'Lys-91' of histone H4 (H4K91ub1) (PubMed:19818714). The exact role of H4K91ub1 in DNA damage response is still unclear but it may function as a licensing signal for additional histone H4 post-translational modifications such as H4 'Lys-20' methylation (H4K20me) (PubMed:19818714). PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites (PubMed:23230272). By monoubiquitinating histone H2B H2BC9/H2BJ and thereby promoting chromatin remodeling, positively regulates STAT1-dependent interferon-stimulated gene transcription and thus STAT1-mediated control of viral replication (PubMed:26479788). Independently of its catalytic activity, promotes the sorting of chemokine receptor CXCR4 from early endosome to lysosome following CXCL12 stimulation by reducing E3 ligase ITCH activity and thus ITCH-mediated ubiquitination of endosomal sorting complex required for transport ESCRT-0 components HGS and STAM (PubMed:24790097). In addition, required for the recruitment of HGS and STAM to early endosomes (PubMed:24790097). In association with PARP9, plays a role in antiviral responses by mediating 'Lys-48'-linked ubiquitination of encephalomyocarditis virus (EMCV) and human rhinovirus (HRV) C3 proteases and thus promoting their proteasomal-mediated degradation (PubMed:26479788). {ECO:0000269|PubMed:12670957, ECO:0000269|PubMed:19818714, ECO:0000269|PubMed:23230272, ECO:0000269|PubMed:24790097, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28525742}. |
Q8TDD1 | DDX54 | S41 | ochoa | ATP-dependent RNA helicase DDX54 (EC 3.6.4.13) (ATP-dependent RNA helicase DP97) (DEAD box RNA helicase 97 kDa) (DEAD box protein 54) | Has RNA-dependent ATPase activity. Represses the transcriptional activity of nuclear receptors. {ECO:0000269|PubMed:12466272}. |
Q8TEY7 | USP33 | S389 | ochoa | Ubiquitin carboxyl-terminal hydrolase 33 (EC 3.4.19.12) (Deubiquitinating enzyme 33) (Ubiquitin thioesterase 33) (Ubiquitin-specific-processing protease 33) (VHL-interacting deubiquitinating enzyme 1) (hVDU1) | Deubiquitinating enzyme involved in various processes such as centrosome duplication, cellular migration and beta-2 adrenergic receptor/ADRB2 recycling. Involved in regulation of centrosome duplication by mediating deubiquitination of CCP110 in S and G2/M phase, leading to stabilize CCP110 during the period which centrioles duplicate and elongate. Involved in cell migration via its interaction with intracellular domain of ROBO1, leading to regulate the Slit signaling. Plays a role in commissural axon guidance cross the ventral midline of the neural tube in a Slit-dependent manner, possibly by mediating the deubiquitination of ROBO1. Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination of beta-arrestins (ARRB1 and ARRB2) and beta-2 adrenergic receptor (ADRB2). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, leading to beta-arrestins deubiquitination and disengagement from ADRB2. This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Mediates deubiquitination of both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains. {ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:19363159, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:23486064}. |
Q8TF40 | FNIP1 | S948 | ochoa|psp | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8WVC0 | LEO1 | S296 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q8WW38 | ZFPM2 | S588 | ochoa | Zinc finger protein ZFPM2 (Friend of GATA protein 2) (FOG-2) (Friend of GATA 2) (hFOG-2) (Zinc finger protein 89B) (Zinc finger protein multitype 2) | Transcription regulator that plays a central role in heart morphogenesis and development of coronary vessels from epicardium, by regulating genes that are essential during cardiogenesis. Essential cofactor that acts via the formation of a heterodimer with transcription factors of the GATA family GATA4, GATA5 and GATA6. Such heterodimer can both activate or repress transcriptional activity, depending on the cell and promoter context. Also required in gonadal differentiation, possibly be regulating expression of SRY. Probably acts a corepressor of NR2F2 (By similarity). {ECO:0000250, ECO:0000269|PubMed:10438528}. |
Q8WWQ0 | PHIP | S1283 | ochoa | PH-interacting protein (PHIP) (DDB1- and CUL4-associated factor 14) (IRS-1 PH domain-binding protein) (WD repeat-containing protein 11) | Probable regulator of the insulin and insulin-like growth factor signaling pathways. Stimulates cell proliferation through regulation of cyclin transcription and has an anti-apoptotic activity through AKT1 phosphorylation and activation. Plays a role in the regulation of cell morphology and cytoskeletal organization. {ECO:0000269|PubMed:12242307, ECO:0000269|PubMed:21834987}. |
Q8WX93 | PALLD | S53 | ochoa | Palladin (SIH002) (Sarcoma antigen NY-SAR-77) | Cytoskeletal protein required for organization of normal actin cytoskeleton. Roles in establishing cell morphology, motility, cell adhesion and cell-extracellular matrix interactions in a variety of cell types. May function as a scaffolding molecule with the potential to influence both actin polymerization and the assembly of existing actin filaments into higher-order arrays. Binds to proteins that bind to either monomeric or filamentous actin. Localizes at sites where active actin remodeling takes place, such as lamellipodia and membrane ruffles. Different isoforms may have functional differences. Involved in the control of morphological and cytoskeletal changes associated with dendritic cell maturation. Involved in targeting ACTN to specific subcellular foci. {ECO:0000269|PubMed:11598191, ECO:0000269|PubMed:15147863, ECO:0000269|PubMed:17537434}. |
Q8WXG6 | MADD | S1241 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q92539 | LPIN2 | S245 | ochoa | Phosphatidate phosphatase LPIN2 (EC 3.1.3.4) (Lipin-2) | Acts as a magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis in the endoplasmic reticulum membrane. Plays important roles in controlling the metabolism of fatty acids at different levels. Also acts as a nuclear transcriptional coactivator for PPARGC1A to modulate lipid metabolism. {ECO:0000250|UniProtKB:Q99PI5}. |
Q92613 | JADE3 | S776 | ochoa | Protein Jade-3 (Jade family PHD finger protein 3) (PHD finger protein 16) | Scaffold subunit of some HBO1 complexes, which have a histone H4 acetyltransferase activity. {ECO:0000269|PubMed:16387653}. |
Q92628 | KIAA0232 | S1082 | ochoa | Uncharacterized protein KIAA0232 | None |
Q92733 | PRCC | S159 | ochoa | Proline-rich protein PRCC (Papillary renal cell carcinoma translocation-associated gene protein) | May regulate cell cycle progression through interaction with MAD2L2. {ECO:0000269|PubMed:11717438}. |
Q92769 | HDAC2 | S424 | ochoa|psp | Histone deacetylase 2 (HD2) (EC 3.5.1.98) (Protein deacylase HDAC2) (EC 3.5.1.-) | Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4) (PubMed:28497810). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events (By similarity). Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR (PubMed:12724404). Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (By similarity). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). Component of the SIN3B complex that represses transcription and counteracts the histone acetyltransferase activity of EP300 through the recognition H3K27ac marks by PHF12 and the activity of the histone deacetylase HDAC2 (PubMed:37137925). Also deacetylates non-histone targets: deacetylates TSHZ3, thereby regulating its transcriptional repressor activity (PubMed:19343227). May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation (By similarity). Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A (PubMed:21965678). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl), lactoyl (lactyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation, delactylation and de-2-hydroxyisobutyrylation, respectively (PubMed:28497810, PubMed:29192674, PubMed:35044827). {ECO:0000250|UniProtKB:P70288, ECO:0000269|PubMed:12724404, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:19343227, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:29192674, ECO:0000269|PubMed:35044827, ECO:0000269|PubMed:37137925}. |
Q92997 | DVL3 | S603 | psp | Segment polarity protein dishevelled homolog DVL-3 (Dishevelled-3) (DSH homolog 3) | Involved in the signal transduction pathway mediated by multiple Wnt genes. {ECO:0000250|UniProtKB:Q61062}. |
Q969G2 | LHX4 | S254 | ochoa | LIM/homeobox protein Lhx4 (LIM homeobox protein 4) | May play a critical role in the development of respiratory control mechanisms and in the normal growth and maturation of the lung. Binds preferentially to methylated DNA (PubMed:28473536). {ECO:0000250, ECO:0000269|PubMed:28473536}. |
Q969R5 | L3MBTL2 | S85 | ochoa | Lethal(3)malignant brain tumor-like protein 2 (H-l(3)mbt-like protein 2) (L(3)mbt-like protein 2) | Putative Polycomb group (PcG) protein. PcG proteins maintain the transcriptionally repressive state of genes, probably via a modification of chromatin, rendering it heritably changed in its expressibility. Its association with a chromatin-remodeling complex suggests that it may contribute to prevent expression of genes that trigger the cell into mitosis. Binds to monomethylated and dimethylated 'Lys-20' on histone H4. Binds histone H3 peptides that are monomethylated or dimethylated on 'Lys-4', 'Lys-9' or 'Lys-27'. {ECO:0000269|PubMed:19233876}. |
Q96D09 | GPRASP2 | S284 | ochoa | G-protein coupled receptor-associated sorting protein 2 (GASP-2) | May play a role in regulation of a variety of G-protein coupled receptors. {ECO:0000269|PubMed:15086532}. |
Q96EZ8 | MCRS1 | S87 | ochoa | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96FF9 | CDCA5 | S35 | ochoa | Sororin (Cell division cycle-associated protein 5) (p35) | Regulator of sister chromatid cohesion in mitosis stabilizing cohesin complex association with chromatin. May antagonize the action of WAPL which stimulates cohesin dissociation from chromatin. Cohesion ensures that chromosome partitioning is accurate in both meiotic and mitotic cells and plays an important role in DNA repair. Required for efficient DNA double-stranded break repair. {ECO:0000269|PubMed:15837422, ECO:0000269|PubMed:17349791, ECO:0000269|PubMed:21111234}. |
Q96GN5 | CDCA7L | S199 | ochoa | Cell division cycle-associated 7-like protein (Protein JPO2) (Transcription factor RAM2) | Plays a role in transcriptional regulation as a repressor that inhibits monoamine oxidase A (MAOA) activity and gene expression by binding to the promoter. Plays an important oncogenic role in mediating the full transforming effect of MYC in medulloblastoma cells. Involved in apoptotic signaling pathways; May act downstream of P38-kinase and BCL-2, but upstream of CASP3/caspase-3 as well as CCND1/cyclin D1 and E2F1. {ECO:0000269|PubMed:15654081, ECO:0000269|PubMed:15994933, ECO:0000269|PubMed:16829576}. |
Q96HE7 | ERO1A | S145 | ochoa|psp | ERO1-like protein alpha (ERO1-L) (ERO1-L-alpha) (EC 1.8.4.-) (Endoplasmic oxidoreductin-1-like protein) (Endoplasmic reticulum oxidoreductase alpha) (Oxidoreductin-1-L-alpha) | Oxidoreductase involved in disulfide bond formation in the endoplasmic reticulum. Efficiently reoxidizes P4HB/PDI, the enzyme catalyzing protein disulfide formation, in order to allow P4HB to sustain additional rounds of disulfide formation. Following P4HB reoxidation, passes its electrons to molecular oxygen via FAD, leading to the production of reactive oxygen species (ROS) in the cell. Required for the proper folding of immunoglobulins (PubMed:29858230). Plays an important role in ER stress-induced, CHOP-dependent apoptosis by activating the inositol 1,4,5-trisphosphate receptor IP3R1. Involved in the release of the unfolded cholera toxin from reduced P4HB/PDI in case of infection by V.cholerae, thereby playing a role in retrotranslocation of the toxin. {ECO:0000269|PubMed:10671517, ECO:0000269|PubMed:10970843, ECO:0000269|PubMed:11707400, ECO:0000269|PubMed:12403808, ECO:0000269|PubMed:18833192, ECO:0000269|PubMed:18971943, ECO:0000269|PubMed:23027870, ECO:0000269|PubMed:29858230}. |
Q96IZ0 | PAWR | S233 | ochoa | PRKC apoptosis WT1 regulator protein (Prostate apoptosis response 4 protein) (Par-4) | Pro-apoptotic protein capable of selectively inducing apoptosis in cancer cells, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. Induces apoptosis in certain cancer cells by activation of the Fas prodeath pathway and coparallel inhibition of NF-kappa-B transcriptional activity. Inhibits the transcriptional activation and augments the transcriptional repression mediated by WT1. Down-regulates the anti-apoptotic protein BCL2 via its interaction with WT1. Also seems to be a transcriptional repressor by itself. May be directly involved in regulating the amyloid precursor protein (APP) cleavage activity of BACE1. {ECO:0000269|PubMed:11585763}. |
Q96JK2 | DCAF5 | S533 | ochoa | DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) | Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96QE3 | ATAD5 | S308 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96R06 | SPAG5 | S413 | ochoa | Sperm-associated antigen 5 (Astrin) (Deepest) (Mitotic spindle-associated protein p126) (MAP126) | Essential component of the mitotic spindle required for normal chromosome segregation and progression into anaphase (PubMed:11724960, PubMed:12356910, PubMed:27462074). Required for chromosome alignment, normal timing of sister chromatid segregation, and maintenance of spindle pole architecture (PubMed:17664331, PubMed:27462074). In complex with SKAP, promotes stable microtubule-kinetochore attachments. May contribute to the regulation of separase activity. May regulate AURKA localization to mitotic spindle, but not to centrosomes and CCNB1 localization to both mitotic spindle and centrosomes (PubMed:18361916, PubMed:21402792). Involved in centriole duplication. Required for CDK5RAP2, CEP152, WDR62 and CEP63 centrosomal localization and promotes the centrosomal localization of CDK2 (PubMed:26297806). In non-mitotic cells, upon stress induction, inhibits mammalian target of rapamycin complex 1 (mTORC1) association and recruits the mTORC1 component RPTOR to stress granules (SGs), thereby preventing mTORC1 hyperactivation-induced apoptosis (PubMed:23953116). May enhance GSK3B-mediated phosphorylation of other substrates, such as MAPT/TAU (PubMed:18055457). {ECO:0000269|PubMed:12356910, ECO:0000269|PubMed:17664331, ECO:0000269|PubMed:18055457, ECO:0000269|PubMed:18361916, ECO:0000269|PubMed:21402792, ECO:0000269|PubMed:23953116, ECO:0000269|PubMed:26297806, ECO:0000269|PubMed:27462074, ECO:0000305|PubMed:11724960}. |
Q96RL1 | UIMC1 | S453 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96RL1 | UIMC1 | S686 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96SD1 | DCLRE1C | S457 | ochoa | Protein artemis (EC 3.1.-.-) (DNA cross-link repair 1C protein) (Protein A-SCID) (SNM1 homolog C) (hSNM1C) (SNM1-like protein) | Nuclease involved in DNA non-homologous end joining (NHEJ); required for double-strand break repair and V(D)J recombination (PubMed:11336668, PubMed:11955432, PubMed:12055248, PubMed:14744996, PubMed:15071507, PubMed:15574326, PubMed:15936993). Required for V(D)J recombination, the process by which exons encoding the antigen-binding domains of immunoglobulins and T-cell receptor proteins are assembled from individual V, (D), and J gene segments (PubMed:11336668, PubMed:11955432, PubMed:14744996). V(D)J recombination is initiated by the lymphoid specific RAG endonuclease complex, which generates site specific DNA double strand breaks (DSBs) (PubMed:11336668, PubMed:11955432, PubMed:14744996). These DSBs present two types of DNA end structures: hairpin sealed coding ends and phosphorylated blunt signal ends (PubMed:11336668, PubMed:11955432, PubMed:14744996). These ends are independently repaired by the non homologous end joining (NHEJ) pathway to form coding and signal joints respectively (PubMed:11336668, PubMed:11955432, PubMed:14744996). This protein exhibits single-strand specific 5'-3' exonuclease activity in isolation and acquires endonucleolytic activity on 5' and 3' hairpins and overhangs when in a complex with PRKDC (PubMed:11955432, PubMed:15071507, PubMed:15574326, PubMed:15936993). The latter activity is required specifically for the resolution of closed hairpins prior to the formation of the coding joint (PubMed:11955432). Also required for the repair of complex DSBs induced by ionizing radiation, which require substantial end-processing prior to religation by NHEJ (PubMed:15456891, PubMed:15468306, PubMed:15574327, PubMed:15811628). {ECO:0000269|PubMed:11336668, ECO:0000269|PubMed:11955432, ECO:0000269|PubMed:12055248, ECO:0000269|PubMed:14744996, ECO:0000269|PubMed:15071507, ECO:0000269|PubMed:15456891, ECO:0000269|PubMed:15468306, ECO:0000269|PubMed:15574326, ECO:0000269|PubMed:15574327, ECO:0000269|PubMed:15811628, ECO:0000269|PubMed:15936993}. |
Q96ST2 | IWS1 | S82 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S84 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S159 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S172 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S198 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S211 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S213 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S237 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S250 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S252 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S263 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S289 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S302 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S304 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S315 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S365 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S440 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST8 | CEP89 | S77 | ochoa | Centrosomal protein of 89 kDa (Cep89) (Centrosomal protein 123) (Cep123) (Coiled-coil domain-containing protein 123) | Required for ciliogenesis. Also plays a role in mitochondrial metabolism where it may modulate complex IV activity. {ECO:0000269|PubMed:23348840, ECO:0000269|PubMed:23575228}. |
Q96T23 | RSF1 | S1247 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q99567 | NUP88 | S657 | ochoa | Nuclear pore complex protein Nup88 (88 kDa nucleoporin) (Nucleoporin Nup88) | Component of nuclear pore complex. {ECO:0000269|PubMed:30543681}. |
Q99590 | SCAF11 | S535 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q99613 | EIF3C | S532 | ochoa | Eukaryotic translation initiation factor 3 subunit C (eIF3c) (Eukaryotic translation initiation factor 3 subunit 8) (eIF3 p110) | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis (PubMed:17581632, PubMed:25849773, PubMed:27462815). The eIF-3 complex associates with the 40S ribosome and facilitates the recruitment of eIF-1, eIF-1A, eIF-2:GTP:methionyl-tRNAi and eIF-5 to form the 43S pre-initiation complex (43S PIC). The eIF-3 complex stimulates mRNA recruitment to the 43S PIC and scanning of the mRNA for AUG recognition. The eIF-3 complex is also required for disassembly and recycling of post-termination ribosomal complexes and subsequently prevents premature joining of the 40S and 60S ribosomal subunits prior to initiation (PubMed:17581632). The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression (PubMed:25849773). {ECO:0000255|HAMAP-Rule:MF_03002, ECO:0000269|PubMed:17581632, ECO:0000269|PubMed:25849773, ECO:0000269|PubMed:27462815}. |
Q99666 | RGPD5 | S1592 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q9BPX7 | C7orf25 | S210 | ochoa | UPF0415 protein C7orf25 | None |
Q9BQK8 | LPIN3 | S226 | ochoa | Phosphatidate phosphatase LPIN3 (EC 3.1.3.4) (Lipin-3) (Lipin-3-like) | Magnesium-dependent phosphatidate phosphatase enzyme which catalyzes the conversion of phosphatidic acid to diacylglycerol during triglyceride, phosphatidylcholine and phosphatidylethanolamine biosynthesis therefore regulates fatty acid metabolism. {ECO:0000250|UniProtKB:Q99PI4}. |
Q9BRS2 | RIOK1 | S24 | ochoa | Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) | Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}. |
Q9BRS2 | RIOK1 | S498 | ochoa | Serine/threonine-protein kinase RIO1 (EC 2.7.11.1) (EC 3.6.1.-) (RIO kinase 1) | Involved in the final steps of cytoplasmic maturation of the 40S ribosomal subunit. Involved in processing of 18S-E pre-rRNA to the mature 18S rRNA. Required for the recycling of NOB1 and PNO1 from the late 40S precursor (PubMed:22072790). The association with the very late 40S subunit intermediate may involve a translation-like checkpoint point cycle preceeding the binding to the 60S ribosomal subunit (By similarity). Despite the protein kinase domain is proposed to act predominantly as an ATPase (By similarity). The catalytic activity regulates its dynamic association with the 40S subunit (By similarity). In addition to its role in ribosomal biogenesis acts as an adapter protein by recruiting NCL/nucleolin the to PRMT5 complex for its symmetrical methylation (PubMed:21081503). {ECO:0000250|UniProtKB:G0S3J5, ECO:0000250|UniProtKB:Q12196, ECO:0000269|PubMed:21081503, ECO:0000269|PubMed:22072790}. |
Q9BRS8 | LARP6 | S58 | ochoa|psp | La-related protein 6 (Acheron) (Achn) (La ribonucleoprotein domain family member 6) | Regulates the coordinated translation of type I collagen alpha-1 and alpha-2 mRNAs, CO1A1 and CO1A2. Stabilizes mRNAs through high-affinity binding of a stem-loop structure in their 5' UTR. This regulation requires VIM and MYH10 filaments, and the helicase DHX9. {ECO:0000269|PubMed:20603131, ECO:0000269|PubMed:21746880, ECO:0000269|PubMed:22190748}. |
Q9BRY0 | SLC39A3 | S131 | ochoa | Zinc transporter ZIP3 (Solute carrier family 39 member 3) (Zrt- and Irt-like protein 3) (ZIP-3) | Transporter for the divalent cation Zn(2+). Mediates the influx of Zn(2+) into cells from extracellular space. Controls Zn(2+) accumulation into dentate gyrus granule cells in the hippocampus. Mediates Zn(2+) reuptake from the secreted milk within the alveolar lumen. {ECO:0000250|UniProtKB:Q99K24}. |
Q9BSQ5 | CCM2 | S183 | ochoa | Cerebral cavernous malformations 2 protein (Malcavernin) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}. |
Q9BSQ5 | CCM2 | S289 | ochoa | Cerebral cavernous malformations 2 protein (Malcavernin) | Component of the CCM signaling pathway which is a crucial regulator of heart and vessel formation and integrity. May act through the stabilization of endothelial cell junctions (By similarity). May function as a scaffold protein for MAP2K3-MAP3K3 signaling. Seems to play a major role in the modulation of MAP3K3-dependent p38 activation induced by hyperosmotic shock (By similarity). {ECO:0000250}. |
Q9BTC0 | DIDO1 | S811 | ochoa | Death-inducer obliterator 1 (DIO-1) (hDido1) (Death-associated transcription factor 1) (DATF-1) | Putative transcription factor, weakly pro-apoptotic when overexpressed (By similarity). Tumor suppressor. Required for early embryonic stem cell development. {ECO:0000250, ECO:0000269|PubMed:16127461}.; FUNCTION: [Isoform 2]: Displaces isoform 4 at the onset of differentiation, required for repression of stemness genes. {ECO:0000269|PubMed:16127461}. |
Q9BUH8 | BEGAIN | S477 | ochoa | Brain-enriched guanylate kinase-associated protein | May sustain the structure of the postsynaptic density (PSD). |
Q9BUL5 | PHF23 | S317 | ochoa | PHD finger protein 23 (PDH-containing protein JUNE-1) | Acts as a negative regulator of autophagy, through promoting ubiquitination and degradation of LRSAM1, an E3 ubiquitin ligase that promotes autophagy in response to starvation or infecting bacteria. {ECO:0000269|PubMed:25484098}. |
Q9BVJ6 | UTP14A | S31 | ochoa | U3 small nucleolar RNA-associated protein 14 homolog A (Antigen NY-CO-16) (Serologically defined colon cancer antigen 16) | May be required for ribosome biogenesis. {ECO:0000250}. |
Q9BW71 | HIRIP3 | S104 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BW71 | HIRIP3 | S291 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BW71 | HIRIP3 | S372 | ochoa | HIRA-interacting protein 3 | Histone chaperone that carries a H2A-H2B histone complex and facilitates its deposition onto chromatin. {ECO:0000269|PubMed:38334665, ECO:0000269|PubMed:9710638}. |
Q9BW85 | YJU2 | S213 | ochoa | Splicing factor YJU2 (Coiled-coil domain-containing protein 94) | Part of the spliceosome which catalyzes two sequential transesterification reactions, first the excision of the non-coding intron from pre-mRNA and then the ligation of the coding exons to form the mature mRNA (PubMed:29301961). Plays a role in stabilizing the structure of the spliceosome catalytic core and docking of the branch helix into the active site, producing 5'-exon and lariat intron-3'-intermediates (By similarity). May protect cells from TP53-dependent apoptosis upon dsDNA break damage through association with PRP19-CD5L complex (PubMed:22952453). {ECO:0000255|HAMAP-Rule:MF_03226, ECO:0000269|PubMed:22952453, ECO:0000269|PubMed:29301961}. |
Q9BXI6 | TBC1D10A | S45 | ochoa | TBC1 domain family member 10A (EBP50-PDX interactor of 64 kDa) (EPI64 protein) (Rab27A-GAP-alpha) | GTPase-activating protein (GAP) specific for RAB27A and RAB35 (PubMed:16923811, PubMed:30905672). Does not show GAP activity for RAB2A, RAB3A and RAB4A (PubMed:16923811). {ECO:0000269|PubMed:16923811, ECO:0000269|PubMed:30905672}. |
Q9BXW6 | OSBPL1A | S483 | ochoa | Oxysterol-binding protein-related protein 1 (ORP-1) (OSBP-related protein 1) | Binds phospholipids; exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate (By similarity). Stabilizes GTP-bound RAB7A on late endosomes/lysosomes and alters functional properties of late endocytic compartments via its interaction with RAB7A (PubMed:16176980). Binds 25-hydroxycholesterol and cholesterol (PubMed:17428193). {ECO:0000250, ECO:0000269|PubMed:16176980, ECO:0000269|PubMed:17428193}. |
Q9BY89 | KIAA1671 | S1671 | ochoa | Uncharacterized protein KIAA1671 | None |
Q9BYP7 | WNK3 | S1473 | ochoa | Serine/threonine-protein kinase WNK3 (EC 2.7.11.1) (Protein kinase lysine-deficient 3) (Protein kinase with no lysine 3) | Serine/threonine-protein kinase component of the WNK3-SPAK/OSR1 kinase cascade, which plays an important role in the regulation of electrolyte homeostasis and regulatory volume increase in response to hyperosmotic stress (PubMed:16275911, PubMed:16275913, PubMed:16501604, PubMed:22989884, PubMed:36318922). WNK3 mediates regulatory volume increase in response to hyperosmotic stress by acting as a molecular crowding sensor, which senses cell shrinkage and mediates formation of a membraneless compartment by undergoing liquid-liquid phase separation (PubMed:36318922). The membraneless compartment concentrates WNK3 with its substrates, OXSR1/OSR1 and STK39/SPAK, promoting WNK3-dependent phosphorylation and activation of downstream kinases OXSR1/OSR1 and STK39/SPAK (PubMed:22989884). Following activation, OXSR1/OSR1 and STK39/SPAK catalyze phosphorylation of ion cotransporters SLC12A1/NKCC2, SLC12A2/NKCC1, SLC12A3/NCC, SLC12A4/KCC1, SLC12A5/KCC2 or SLC12A6/KCC3, regulating their activity (PubMed:16275911, PubMed:16275913). Phosphorylation of Na-K-Cl cotransporters SLC12A2/NKCC1 and SLC12A2/NKCC1 promote their activation and ion influx; simultaneously, phosphorylation of K-Cl cotransporters SLC12A4/KCC1, SLC12A5/KCC2 and SLC12A6/KCC3 inhibits its activity, blocking ion efflux (PubMed:16275911, PubMed:16275913, PubMed:16357011, PubMed:19470686, PubMed:21613606). Phosphorylates WNK4, possibly regulating the activity of SLC12A3/NCC (PubMed:17975670). May also phosphorylate NEDD4L (PubMed:20525693). Also acts as a scaffold protein independently of its protein kinase activity: negatively regulates cell membrane localization of various transporters and channels, such as KCNJ1 and SLC26A9 (PubMed:16357011, PubMed:17673510). Increases Ca(2+) influx mediated by TRPV5 and TRPV6 by enhancing their membrane expression level via a kinase-dependent pathway (PubMed:18768590). {ECO:0000269|PubMed:16275911, ECO:0000269|PubMed:16275913, ECO:0000269|PubMed:16357011, ECO:0000269|PubMed:16501604, ECO:0000269|PubMed:17673510, ECO:0000269|PubMed:17975670, ECO:0000269|PubMed:18768590, ECO:0000269|PubMed:19470686, ECO:0000269|PubMed:20525693, ECO:0000269|PubMed:21613606, ECO:0000269|PubMed:22989884, ECO:0000269|PubMed:36318922}. |
Q9BYW2 | SETD2 | S1415 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZF1 | OSBPL8 | S810 | ochoa | Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}. |
Q9BZL6 | PRKD2 | S355 | ochoa | Serine/threonine-protein kinase D2 (EC 2.7.11.13) (nPKC-D2) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion (PubMed:14743217, PubMed:15604256, PubMed:16928771, PubMed:17077180, PubMed:17951978, PubMed:17962809, PubMed:18262756, PubMed:19001381, PubMed:19192391, PubMed:23503467, PubMed:28428613). May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B (PubMed:15604256, PubMed:28428613). In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77 (PubMed:17962809). Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation (PubMed:17077180). During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway (PubMed:16928771). During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors (PubMed:19192391). In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane (PubMed:14743217). Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis (PubMed:19001381). In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN (PubMed:18262756). Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells (PubMed:17951978). Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion (PubMed:23503467). {ECO:0000250|UniProtKB:Q8BZ03, ECO:0000269|PubMed:14743217, ECO:0000269|PubMed:15604256, ECO:0000269|PubMed:16928771, ECO:0000269|PubMed:17077180, ECO:0000269|PubMed:17951978, ECO:0000269|PubMed:17962809, ECO:0000269|PubMed:18262756, ECO:0000269|PubMed:19001381, ECO:0000269|PubMed:19192391, ECO:0000269|PubMed:23503467, ECO:0000269|PubMed:28428613}. |
Q9C0C9 | UBE2O | S89 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9H089 | LSG1 | S281 | ochoa | Large subunit GTPase 1 homolog (hLsg1) (EC 3.6.5.-) | Functions as a GTPase (PubMed:16209721). May act by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm during the 60S ribosomal subunit maturation (PubMed:31148378). {ECO:0000269|PubMed:16209721, ECO:0000269|PubMed:31148378}. |
Q9H089 | LSG1 | S283 | ochoa | Large subunit GTPase 1 homolog (hLsg1) (EC 3.6.5.-) | Functions as a GTPase (PubMed:16209721). May act by mediating the release of NMD3 from the 60S ribosomal subunit after export into the cytoplasm during the 60S ribosomal subunit maturation (PubMed:31148378). {ECO:0000269|PubMed:16209721, ECO:0000269|PubMed:31148378}. |
Q9H0D6 | XRN2 | S501 | ochoa | 5'-3' exoribonuclease 2 (EC 3.1.13.-) (DHM1-like protein) (DHP protein) | Possesses 5'->3' exoribonuclease activity (By similarity). May promote the termination of transcription by RNA polymerase II. During transcription termination, cleavage at the polyadenylation site liberates a 5' fragment which is subsequently processed to form the mature mRNA and a 3' fragment which remains attached to the elongating polymerase. The processive degradation of this 3' fragment by this protein may promote termination of transcription. Binds to RNA polymerase II (RNAp II) transcription termination R-loops formed by G-rich pause sites (PubMed:21700224). {ECO:0000250, ECO:0000269|PubMed:15565158, ECO:0000269|PubMed:16648491, ECO:0000269|PubMed:21700224}. |
Q9H0K6 | PUS7L | S105 | ochoa | Pseudouridylate synthase PUS7L (EC 5.4.99.-) (Pseudouridylate synthase 7 homolog-like protein) | Pseudouridine synthase that catalyzes pseudouridylation of mRNAs. {ECO:0000269|PubMed:35051350}. |
Q9H2G2 | SLK | S448 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H2P0 | ADNP | S955 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H2P0 | ADNP | S1003 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H4G0 | EPB41L1 | S443 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H4L7 | SMARCAD1 | S98 | ochoa | SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1 (SMARCAD1) (EC 3.6.4.12) (ATP-dependent helicase 1) (hHEL1) | DNA helicase that possesses intrinsic ATP-dependent nucleosome-remodeling activity and is both required for DNA repair and heterochromatin organization. Promotes DNA end resection of double-strand breaks (DSBs) following DNA damage: probably acts by weakening histone DNA interactions in nucleosomes flanking DSBs. Required for the restoration of heterochromatin organization after replication. Acts at replication sites to facilitate the maintenance of heterochromatin by directing H3 and H4 histones deacetylation, H3 'Lys-9' trimethylation (H3K9me3) and restoration of silencing. {ECO:0000269|PubMed:21549307, ECO:0000269|PubMed:22960744}. |
Q9H582 | ZNF644 | S396 | ochoa | Zinc finger protein 644 (Zinc finger motif enhancer-binding protein 2) (Zep-2) | May be involved in transcriptional regulation. |
Q9H6S0 | YTHDC2 | S1092 | ochoa | 3'-5' RNA helicase YTHDC2 (EC 3.6.4.13) (YTH domain-containing protein 2) (hYTHDC2) | 3'-5' RNA helicase that plays a key role in the male and female germline by promoting transition from mitotic to meiotic divisions in stem cells (PubMed:26318451, PubMed:29033321, PubMed:29970596). Specifically recognizes and binds N6-methyladenosine (m6A)-containing RNAs, a modification present at internal sites of mRNAs and some non-coding RNAs that plays a role in the efficiency of RNA processing and stability (PubMed:26318451, PubMed:29033321). Essential for ensuring a successful progression of the meiotic program in the germline by regulating the level of m6A-containing RNAs (By similarity). Acts by binding and promoting degradation of m6A-containing mRNAs: the 3'-5' RNA helicase activity is required for this process and RNA degradation may be mediated by XRN1 exoribonuclease (PubMed:29033321). Required for both spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B2RR83, ECO:0000269|PubMed:26318451, ECO:0000269|PubMed:29033321, ECO:0000269|PubMed:29970596}. |
Q9H6T3 | RPAP3 | S121 | ochoa|psp | RNA polymerase II-associated protein 3 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. {ECO:0000269|PubMed:17643375}. |
Q9H6T3 | RPAP3 | S523 | ochoa | RNA polymerase II-associated protein 3 | Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. {ECO:0000269|PubMed:17643375}. |
Q9H6Z4 | RANBP3 | S355 | ochoa | Ran-binding protein 3 (RanBP3) | Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran-dependent manner. Negative regulator of TGF-beta signaling through interaction with the R-SMAD proteins, SMAD2 and SMAD3, and mediating their nuclear export. {ECO:0000269|PubMed:11425870, ECO:0000269|PubMed:11571268, ECO:0000269|PubMed:11932251, ECO:0000269|PubMed:19289081, ECO:0000269|PubMed:9637251}. |
Q9H8U3 | ZFAND3 | S124 | ochoa | AN1-type zinc finger protein 3 (Testis-expressed protein 27) | None |
Q9HAW0 | BRF2 | S387 | ochoa | Transcription factor IIIB 50 kDa subunit (TFIIIB50) (hTFIIIB50) (B-related factor 2) (BRF-2) (hBRFU) | General activator of RNA polymerase III transcription. Factor exclusively required for RNA polymerase III transcription of genes with promoter elements upstream of the initiation sites (PubMed:11040218, PubMed:11121026, PubMed:11564744, PubMed:26638071). Contributes to the regulation of gene expression; functions as activator in the absence of oxidative stress (PubMed:26638071). Down-regulates expression of target genes in response to oxidative stress (PubMed:26638071). Overexpression protects cells against apoptosis in response to oxidative stress (PubMed:26638071). {ECO:0000269|PubMed:11040218, ECO:0000269|PubMed:11121026, ECO:0000269|PubMed:11564744, ECO:0000269|PubMed:26638071}. |
Q9HAW4 | CLSPN | S67 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HC77 | CPAP | S683 | ochoa | Centrosomal P4.1-associated protein (Centromere protein J) (CENP-J) (Centrosome assembly and centriole elongation protein) (LAG-3-associated protein) (LYST-interacting protein 1) | Plays an important role in cell division and centrosome function by participating in centriole duplication (PubMed:17681131, PubMed:20531387). Inhibits microtubule nucleation from the centrosome. Involved in the regulation of slow processive growth of centriolar microtubules. Acts as a microtubule plus-end tracking protein that stabilizes centriolar microtubules and inhibits microtubule polymerization and extension from the distal ends of centrioles (PubMed:15047868, PubMed:27219064, PubMed:27306797). Required for centriole elongation and for STIL-mediated centriole amplification (PubMed:22020124). Required for the recruitment of CEP295 to the proximal end of new-born centrioles at the centriolar microtubule wall during early S phase in a PLK4-dependent manner (PubMed:27185865). May be involved in the control of centriolar-microtubule growth by acting as a regulator of tubulin release (PubMed:27306797). {ECO:0000269|PubMed:15047868, ECO:0000269|PubMed:17681131, ECO:0000269|PubMed:20531387, ECO:0000269|PubMed:22020124, ECO:0000269|PubMed:27185865, ECO:0000269|PubMed:27219064, ECO:0000305|PubMed:27306797}. |
Q9HCI7 | MSL2 | S349 | ochoa | E3 ubiquitin-protein ligase MSL2 (EC 2.3.2.27) (Male-specific lethal 2-like 1) (MSL2-like 1) (Male-specific lethal-2 homolog) (MSL-2) (Male-specific lethal-2 homolog 1) (RING finger protein 184) | Non-catalytic component of the MSL histone acetyltransferase complex, a multiprotein complex that mediates the majority of histone H4 acetylation at 'Lys-16' (H4K16ac), an epigenetic mark that prevents chromatin compaction (PubMed:16543150, PubMed:33837287). The MSL complex is required for chromosome stability and genome integrity by maintaining homeostatic levels of H4K16ac (PubMed:33837287). The MSL complex is also involved in gene dosage by promoting up-regulation of genes expressed by the X chromosome (By similarity). X up-regulation is required to compensate for autosomal biallelic expression (By similarity). The MSL complex also participates in gene dosage compensation by promoting expression of Tsix non-coding RNA (By similarity). MSL2 plays a key role in gene dosage by ensuring biallelic expression of a subset of dosage-sensitive genes, including many haploinsufficient genes (By similarity). Acts by promoting promoter-enhancer contacts, thereby preventing DNA methylation of one allele and creating a methylation-free environment for methylation-sensitive transcription factors such as SP1, KANSL1 and KANSL3 (By similarity). Also acts as an E3 ubiquitin ligase that promotes monoubiquitination of histone H2B at 'Lys-35' (H2BK34Ub), but not that of H2A (PubMed:21726816, PubMed:30930284). This activity is greatly enhanced by heterodimerization with MSL1 (PubMed:21726816, PubMed:30930284). H2B ubiquitination in turn stimulates histone H3 methylation at 'Lys-4' (H3K4me) and 'Lys-79' (H3K79me) and leads to gene activation, including that of HOXA9 and MEIS1 (PubMed:21726816). Also involved in the DNA damage response by mediating ubiquitination of TP53/p53 and TP53BP1 (PubMed:19033443, PubMed:23874665). {ECO:0000250|UniProtKB:Q69ZF8, ECO:0000250|UniProtKB:Q9D1P2, ECO:0000269|PubMed:16543150, ECO:0000269|PubMed:19033443, ECO:0000269|PubMed:21726816, ECO:0000269|PubMed:23874665, ECO:0000269|PubMed:30930284, ECO:0000269|PubMed:33837287}. |
Q9HCK1 | ZDBF2 | S1496 | ochoa | DBF4-type zinc finger-containing protein 2 | None |
Q9NPE2 | NGRN | S241 | ochoa | Neugrin (Mesenchymal stem cell protein DSC92) (Neurite outgrowth-associated protein) (Spinal cord-derived protein FI58G) | Plays an essential role in mitochondrial ribosome biogenesis. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation of core subunits of the oxidative phosphorylation system. {ECO:0000269|PubMed:27667664}. |
Q9NQ55 | PPAN | S240 | ochoa | Suppressor of SWI4 1 homolog (Ssf-1) (Brix domain-containing protein 3) (Peter Pan homolog) | May have a role in cell growth. |
Q9NQT8 | KIF13B | S1691 | ochoa | Kinesin-like protein KIF13B (Kinesin-like protein GAKIN) | Involved in reorganization of the cortical cytoskeleton. Regulates axon formation by promoting the formation of extra axons. May be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes. {ECO:0000269|PubMed:20194617}. |
Q9NQV6 | PRDM10 | S1090 | ochoa | PR domain zinc finger protein 10 (PR domain-containing protein 10) (Tristanin) | Transcriptional activator, essential for early embryonic development and survival of embryonic stem cells (ESCs) (By similarity). Supports cell growth and survival during early development by transcriptionally activating the expression of the translation initiation factor EIF3B, to sustain global translation (By similarity). Activates the transcription of FLNC (PubMed:36440963). {ECO:0000250|UniProtKB:Q3UTQ7, ECO:0000269|PubMed:36440963}. |
Q9NR09 | BIRC6 | S482 | ochoa|psp | Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) | Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}. |
Q9NR30 | DDX21 | S173 | ochoa | Nucleolar RNA helicase 2 (EC 3.6.4.13) (DEAD box protein 21) (Gu-alpha) (Nucleolar RNA helicase Gu) (Nucleolar RNA helicase II) (RH II/Gu) | RNA helicase that acts as a sensor of the transcriptional status of both RNA polymerase (Pol) I and II: promotes ribosomal RNA (rRNA) processing and transcription from polymerase II (Pol II) (PubMed:25470060, PubMed:28790157). Binds various RNAs, such as rRNAs, snoRNAs, 7SK and, at lower extent, mRNAs (PubMed:25470060). In the nucleolus, localizes to rDNA locus, where it directly binds rRNAs and snoRNAs, and promotes rRNA transcription, processing and modification. Required for rRNA 2'-O-methylation, possibly by promoting the recruitment of late-acting snoRNAs SNORD56 and SNORD58 with pre-ribosomal complexes (PubMed:25470060, PubMed:25477391). In the nucleoplasm, binds 7SK RNA and is recruited to the promoters of Pol II-transcribed genes: acts by facilitating the release of P-TEFb from inhibitory 7SK snRNP in a manner that is dependent on its helicase activity, thereby promoting transcription of its target genes (PubMed:25470060). Functions as a cofactor for JUN-activated transcription: required for phosphorylation of JUN at 'Ser-77' (PubMed:11823437, PubMed:25260534). Can unwind double-stranded RNA (helicase) and can fold or introduce a secondary structure to a single-stranded RNA (foldase) (PubMed:9461305). Together with SIRT7, required to prevent R-loop-associated DNA damage and transcription-associated genomic instability: deacetylation by SIRT7 activates the helicase activity, thereby overcoming R-loop-mediated stalling of RNA polymerases (PubMed:28790157). Involved in rRNA processing (PubMed:14559904, PubMed:18180292). May bind to specific miRNA hairpins (PubMed:28431233). Component of a multi-helicase-TICAM1 complex that acts as a cytoplasmic sensor of viral double-stranded RNA (dsRNA) and plays a role in the activation of a cascade of antiviral responses including the induction of pro-inflammatory cytokines via the adapter molecule TICAM1 (By similarity). {ECO:0000250|UniProtKB:Q9JIK5, ECO:0000269|PubMed:11823437, ECO:0000269|PubMed:14559904, ECO:0000269|PubMed:18180292, ECO:0000269|PubMed:25260534, ECO:0000269|PubMed:25470060, ECO:0000269|PubMed:25477391, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:28790157, ECO:0000269|PubMed:9461305}. |
Q9NRD9 | DUOX1 | S637 | ochoa | Dual oxidase 1 (EC 1.11.1.-) (EC 1.6.3.1) (Large NOX 1) (Long NOX 1) (NADPH thyroid oxidase 1) (Thyroid oxidase 1) | Generates hydrogen peroxide which is required for the activity of thyroid peroxidase/TPO and lactoperoxidase/LPO. Plays a role in thyroid hormones synthesis and lactoperoxidase-mediated antimicrobial defense at the surface of mucosa. May have its own peroxidase activity through its N-terminal peroxidase-like domain. {ECO:0000269|PubMed:11514595, ECO:0000269|PubMed:12824283}. |
Q9NRY4 | ARHGAP35 | S1136 | ochoa | Rho GTPase-activating protein 35 (Glucocorticoid receptor DNA-binding factor 1) (Glucocorticoid receptor repression factor 1) (GRF-1) (Rho GAP p190A) (p190-A) | Rho GTPase-activating protein (GAP) (PubMed:19673492, PubMed:28894085). Binds several acidic phospholipids which inhibits the Rho GAP activity to promote the Rac GAP activity (PubMed:19673492). This binding is inhibited by phosphorylation by PRKCA (PubMed:19673492). Involved in cell differentiation as well as cell adhesion and migration, plays an important role in retinal tissue morphogenesis, neural tube fusion, midline fusion of the cerebral hemispheres and mammary gland branching morphogenesis (By similarity). Transduces signals from p21-ras to the nucleus, acting via the ras GTPase-activating protein (GAP) (By similarity). Transduces SRC-dependent signals from cell-surface adhesion molecules, such as laminin, to promote neurite outgrowth. Regulates axon outgrowth, guidance and fasciculation (By similarity). Modulates Rho GTPase-dependent F-actin polymerization, organization and assembly, is involved in polarized cell migration and in the positive regulation of ciliogenesis and cilia elongation (By similarity). During mammary gland development, is required in both the epithelial and stromal compartments for ductal outgrowth (By similarity). Represses transcription of the glucocorticoid receptor by binding to the cis-acting regulatory sequence 5'-GAGAAAAGAAACTGGAGAAACTC-3'; this function is however unclear and would need additional experimental evidences (PubMed:1894621). {ECO:0000250|UniProtKB:P81128, ECO:0000250|UniProtKB:Q91YM2, ECO:0000269|PubMed:1894621, ECO:0000269|PubMed:19673492, ECO:0000269|PubMed:28894085}. |
Q9NS56 | TOPORS | S501 | ochoa | E3 ubiquitin-protein ligase Topors (EC 2.3.2.27) (RING-type E3 ubiquitin transferase Topors) (SUMO1-protein E3 ligase Topors) (Topoisomerase I-binding RING finger protein) (Topoisomerase I-binding arginine/serine-rich protein) (Tumor suppressor p53-binding protein 3) (p53-binding protein 3) (p53BP3) | Functions as an E3 ubiquitin-protein ligase and as an E3 SUMO1-protein ligase. Probable tumor suppressor involved in cell growth, cell proliferation and apoptosis that regulates p53/TP53 stability through ubiquitin-dependent degradation. May regulate chromatin modification through sumoylation of several chromatin modification-associated proteins. May be involved in DNA damage-induced cell death through IKBKE sumoylation. {ECO:0000269|PubMed:15247280, ECO:0000269|PubMed:15735665, ECO:0000269|PubMed:16122737, ECO:0000269|PubMed:17803295, ECO:0000269|PubMed:18077445, ECO:0000269|PubMed:19473992, ECO:0000269|PubMed:20188669}. |
Q9NSI6 | BRWD1 | S1788 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NSI6 | BRWD1 | S2020 | ochoa | Bromodomain and WD repeat-containing protein 1 (WD repeat-containing protein 9) | May be a transcriptional activator. May be involved in chromatin remodeling (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
Q9NVU7 | SDAD1 | S234 | ochoa | Protein SDA1 homolog (Nucleolar protein 130) (SDA1 domain-containing protein 1) (hSDA) | Required for 60S pre-ribosomal subunits export to the cytoplasm. {ECO:0000250}. |
Q9NVU7 | SDAD1 | S236 | ochoa | Protein SDA1 homolog (Nucleolar protein 130) (SDA1 domain-containing protein 1) (hSDA) | Required for 60S pre-ribosomal subunits export to the cytoplasm. {ECO:0000250}. |
Q9NWV8 | BABAM1 | S49 | ochoa | BRISC and BRCA1-A complex member 1 (Mediator of RAP80 interactions and targeting subunit of 40 kDa) (New component of the BRCA1-A complex) | Component of the BRCA1-A complex, a complex that specifically recognizes 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. In the BRCA1-A complex, it is required for the complex integrity and its localization at DSBs. Component of the BRISC complex, a multiprotein complex that specifically cleaves 'Lys-63'-linked ubiquitin in various substrates (PubMed:24075985, PubMed:26195665). In these 2 complexes, it is probably required to maintain the stability of BABAM2 and help the 'Lys-63'-linked deubiquitinase activity mediated by BRCC3/BRCC36 component. The BRISC complex is required for normal mitotic spindle assembly and microtubule attachment to kinetochores via its role in deubiquitinating NUMA1 (PubMed:26195665). Plays a role in interferon signaling via its role in the deubiquitination of the interferon receptor IFNAR1; deubiquitination increases IFNAR1 activity by enhancing its stability and cell surface expression (PubMed:24075985). Down-regulates the response to bacterial lipopolysaccharide (LPS) via its role in IFNAR1 deubiquitination (PubMed:24075985). {ECO:0000269|PubMed:19261746, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19261749}. |
Q9NXG2 | THUMPD1 | S88 | ochoa | THUMP domain-containing protein 1 | Functions as a tRNA-binding adapter to mediate NAT10-dependent tRNA acetylation modifying cytidine to N4-acetylcytidine (ac4C) (PubMed:25653167, PubMed:35196516). {ECO:0000269|PubMed:25653167, ECO:0000269|PubMed:35196516}. |
Q9NY27 | PPP4R2 | S218 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 2 | Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4). May regulate the activity of PPP4C at centrosomal microtubule organizing centers. Its interaction with the SMN complex leads to enhance the temporal localization of snRNPs, suggesting a role of PPP4C in maturation of spliceosomal snRNPs. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA double strand break repair. Mediates RPA2 dephosphorylation by recruiting PPP4C to RPA2 in a DNA damage-dependent manner. RPA2 dephosphorylation is required for the efficient RPA2-mediated recruitment of RAD51 to chromatin following double strand breaks, an essential step for DNA repair. {ECO:0000269|PubMed:10769191, ECO:0000269|PubMed:12668731, ECO:0000269|PubMed:18614045, ECO:0000269|PubMed:20154705}. |
Q9NYD6 | HOXC10 | S228 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYD6 | HOXC10 | S230 | ochoa | Homeobox protein Hox-C10 (Homeobox protein Hox-3I) | Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. |
Q9NYQ6 | CELSR1 | S2873 | ochoa | Cadherin EGF LAG seven-pass G-type receptor 1 (Cadherin family member 9) (Flamingo homolog 2) (hFmi2) | Receptor that may have an important role in cell/cell signaling during nervous system formation. |
Q9NZ53 | PODXL2 | S562 | ochoa | Podocalyxin-like protein 2 (Endoglycan) | Acts as a ligand for vascular selectins. Mediates rapid rolling of leukocytes over vascular surfaces through high affinity divalent cation-dependent interactions with E-, P- and L-selectins. {ECO:0000269|PubMed:18606703}. |
Q9NZN5 | ARHGEF12 | S753 | ochoa | Rho guanine nucleotide exchange factor 12 (Leukemia-associated RhoGEF) | May play a role in the regulation of RhoA GTPase by guanine nucleotide-binding alpha-12 (GNA12) and alpha-13 (GNA13). Acts as guanine nucleotide exchange factor (GEF) for RhoA GTPase and may act as GTPase-activating protein (GAP) for GNA12 and GNA13. {ECO:0000269|PubMed:11094164}. |
Q9NZT2 | OGFR | S405 | ochoa | Opioid growth factor receptor (OGFr) (Protein 7-60) (Zeta-type opioid receptor) | Receptor for opioid growth factor (OGF), also known as Met-enkephalin. Seems to be involved in growth regulation. |
Q9P0M6 | MACROH2A2 | S175 | ochoa | Core histone macro-H2A.2 (Histone macroH2A2) (mH2A2) | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes where it represses transcription. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in stable X chromosome inactivation. {ECO:0000269|PubMed:15621527}. |
Q9P265 | DIP2B | S148 | ochoa | Disco-interacting protein 2 homolog B (DIP2 homolog B) | Negatively regulates axonal outgrowth and is essential for normal synaptic transmission. Not required for regulation of axon polarity. Promotes acetylation of alpha-tubulin. {ECO:0000250|UniProtKB:Q3UH60}. |
Q9P266 | JCAD | S696 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P270 | SLAIN2 | S259 | ochoa | SLAIN motif-containing protein 2 | Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. Required for normal structure of the microtubule cytoskeleton during interphase. {ECO:0000269|PubMed:21646404}. |
Q9P273 | TENM3 | S168 | ochoa | Teneurin-3 (Ten-3) (Protein Odd Oz/ten-m homolog 3) (Tenascin-M3) (Ten-m3) (Teneurin transmembrane protein 3) | Involved in neural development by regulating the establishment of proper connectivity within the nervous system. Acts in both pre- and postsynaptic neurons in the hippocampus to control the assembly of a precise topographic projection: required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum, probably by promoting homophilic cell adhesion. Required for proper dendrite morphogenesis and axon targeting in the vertebrate visual system, thereby playing a key role in the development of the visual pathway. Regulates the formation in ipsilateral retinal mapping to both the dorsal lateral geniculate nucleus (dLGN) and the superior colliculus (SC). May also be involved in the differentiation of the fibroblast-like cells in the superficial layer of mandibular condylar cartilage into chondrocytes. {ECO:0000250|UniProtKB:Q9WTS6}. |
Q9P289 | STK26 | S306 | ochoa | Serine/threonine-protein kinase 26 (EC 2.7.11.1) (MST3 and SOK1-related kinase) (Mammalian STE20-like protein kinase 4) (MST-4) (STE20-like kinase MST4) (Serine/threonine-protein kinase MASK) | Serine/threonine-protein kinase that acts as a mediator of cell growth (PubMed:11641781, PubMed:17360971). Modulates apoptosis (PubMed:11641781, PubMed:17360971). In association with STK24 negatively regulates Golgi reorientation in polarized cell migration upon RHO activation (PubMed:27807006). Phosphorylates ATG4B at 'Ser-383', thereby increasing autophagic flux (PubMed:29232556). Part of the striatin-interacting phosphatase and kinase (STRIPAK) complexes. STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (PubMed:18782753). {ECO:0000269|PubMed:11641781, ECO:0000269|PubMed:17360971, ECO:0000269|PubMed:18782753, ECO:0000269|PubMed:27807006, ECO:0000269|PubMed:29232556}. |
Q9P2D1 | CHD7 | S1583 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2R6 | RERE | S681 | ochoa | Arginine-glutamic acid dipeptide repeats protein (Atrophin-1-like protein) (Atrophin-1-related protein) | Plays a role as a transcriptional repressor during development. May play a role in the control of cell survival. Overexpression of RERE recruits BAX to the nucleus particularly to POD and triggers caspase-3 activation, leading to cell death. {ECO:0000269|PubMed:11331249}. |
Q9UDY2 | TJP2 | S400 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UGP8 | SEC63 | S576 | psp | Translocation protein SEC63 homolog (DnaJ homolog subfamily C member 23) | Mediates cotranslational and post-translational transport of certain precursor polypeptides across endoplasmic reticulum (ER) (PubMed:22375059, PubMed:29719251). Proposed to play an auxiliary role in recognition of precursors with short and apolar signal peptides. May cooperate with SEC62 and HSPA5/BiP to facilitate targeting of small presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen (PubMed:29719251). Required for efficient PKD1/Polycystin-1 biogenesis and trafficking to the plasma membrane of the primary cilia (By similarity). {ECO:0000250|UniProtKB:Q8VHE0, ECO:0000269|PubMed:22375059, ECO:0000269|PubMed:29719251}. |
Q9UGU0 | TCF20 | S527 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHB7 | AFF4 | S411 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UHK0 | NUFIP1 | S340 | ochoa | FMR1-interacting protein NUFIP1 (Nuclear FMR1-interacting protein 1) (Nuclear FMRP-interacting protein 1) | Binds RNA. {ECO:0000269|PubMed:10556305}. |
Q9UJV9 | DDX41 | S23 | ochoa | Probable ATP-dependent RNA helicase DDX41 (EC 3.6.4.13) (DEAD box protein 41) (DEAD box protein abstrakt homolog) | Multifunctional protein that participates in many aspects of cellular RNA metabolism. Plays pivotal roles in innate immune sensing and hematopoietic homeostasis (PubMed:34473945). Recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses (PubMed:23222971). Mechanistically, phosphorylation by BTK allows binding to dsDNA leading to interaction with STING1 (PubMed:25704810). Modulates the homeostasis of dsDNA through its ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity (PubMed:35613581). In turn, induces STING1-mediated type I interferon and cytokine responses to DNA and DNA viruses (PubMed:35613581). Selectively modulates the transcription of certain immunity-associated genes by regulating their alternative splicing (PubMed:33650667). Binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, and prevents their accumulation, thereby maintaining genome stability (PubMed:36229594). Also participates in pre-mRNA splicing, translational regulation and snoRNA processing, which is essential for ribosome biogenesis (PubMed:36229594, PubMed:36780110). {ECO:0000250|UniProtKB:Q91VN6, ECO:0000269|PubMed:23222971, ECO:0000269|PubMed:25704810, ECO:0000269|PubMed:25920683, ECO:0000269|PubMed:33650667, ECO:0000269|PubMed:34473945, ECO:0000269|PubMed:35613581, ECO:0000269|PubMed:36229594, ECO:0000269|PubMed:36780110}. |
Q9ULG6 | CCPG1 | S188 | ochoa | Cell cycle progression protein 1 (Cell cycle progression restoration protein 8) | Acts as an assembly platform for Rho protein signaling complexes. Limits guanine nucleotide exchange activity of MCF2L toward RHOA, which results in an inhibition of both its transcriptional activation ability and its transforming activity. Does not inhibit activity of MCF2L toward CDC42, or activity of MCF2 toward either RHOA or CDC42 (By similarity). May be involved in cell cycle regulation. {ECO:0000250, ECO:0000269|PubMed:9383053}. |
Q9ULG6 | CCPG1 | S190 | ochoa | Cell cycle progression protein 1 (Cell cycle progression restoration protein 8) | Acts as an assembly platform for Rho protein signaling complexes. Limits guanine nucleotide exchange activity of MCF2L toward RHOA, which results in an inhibition of both its transcriptional activation ability and its transforming activity. Does not inhibit activity of MCF2L toward CDC42, or activity of MCF2 toward either RHOA or CDC42 (By similarity). May be involved in cell cycle regulation. {ECO:0000250, ECO:0000269|PubMed:9383053}. |
Q9ULI0 | ATAD2B | S947 | ochoa | ATPase family AAA domain-containing protein 2B | None |
Q9ULJ3 | ZBTB21 | S286 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULU4 | ZMYND8 | S709 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULU4 | ZMYND8 | S711 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UMN6 | KMT2B | S2070 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9UN37 | VPS4A | S99 | ochoa | Vacuolar protein sorting-associated protein 4A (EC 3.6.4.6) (Protein SKD2) (VPS4-1) (hVPS4) | Involved in late steps of the endosomal multivesicular bodies (MVB) pathway. Recognizes membrane-associated ESCRT-III assemblies and catalyzes their disassembly, possibly in combination with membrane fission. Redistributes the ESCRT-III components to the cytoplasm for further rounds of MVB sorting. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. It is required for proper accomplishment of various processes including the regulation of endosome size, primary cilium organization, mitotic spindle organization, chromosome segregation, and nuclear envelope sealing and spindle disassembly during anaphase (PubMed:33186545). Involved in cytokinesis: retained at the midbody by ZFYVE19/ANCHR and CHMP4C until abscission checkpoint signaling is terminated at late cytokinesis. It is then released following dephosphorylation of CHMP4C, leading to abscission (PubMed:24814515). VPS4A/B are required for the exosomal release of SDCBP, CD63 and syndecan (PubMed:22660413). Critical for normal erythroblast cytokinesis and correct erythropoiesis (PubMed:33186543). {ECO:0000269|PubMed:11563910, ECO:0000269|PubMed:15075231, ECO:0000269|PubMed:22660413, ECO:0000269|PubMed:24814515, ECO:0000269|PubMed:33186543, ECO:0000269|PubMed:33186545}.; FUNCTION: (Microbial infection) In conjunction with the ESCRT machinery also appears to function in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:11595185}. |
Q9UPQ0 | LIMCH1 | S233 | ochoa | LIM and calponin homology domains-containing protein 1 | Actin stress fibers-associated protein that activates non-muscle myosin IIa. Activates the non-muscle myosin IIa complex by promoting the phosphorylation of its regulatory subunit MRLC/MYL9. Through the activation of non-muscle myosin IIa, positively regulates actin stress fibers assembly and stabilizes focal adhesions. It therefore negatively regulates cell spreading and cell migration. {ECO:0000269|PubMed:28228547}. |
Q9UQR1 | ZNF148 | S438 | ochoa | Zinc finger protein 148 (Transcription factor ZBP-89) (Zinc finger DNA-binding protein 89) | Involved in transcriptional regulation. Represses the transcription of a number of genes including gastrin, stromelysin and enolase. Binds to the G-rich box in the enhancer region of these genes. |
Q9Y2K6 | USP20 | S134 | ochoa | Ubiquitin carboxyl-terminal hydrolase 20 (EC 3.4.19.12) (Deubiquitinating enzyme 20) (Ubiquitin thioesterase 20) (Ubiquitin-specific-processing protease 20) (VHL-interacting deubiquitinating enzyme 2) (hVDU2) | Deubiquitinating enzyme that plays a role in many cellular processes including autophagy, cellular antiviral response or membrane protein biogenesis (PubMed:27801882, PubMed:29487085). Attenuates TLR4-mediated NF-kappa-B signaling by cooperating with beta-arrestin-2/ARRB2 and inhibiting TRAF6 autoubiquitination (PubMed:26839314). Promotes cellular antiviral responses by deconjugating 'Lys-33' and 'Lys-48'-linked ubiquitination of STING1 leading to its stabilization (PubMed:27801882). Plays an essential role in autophagy induction by regulating the ULK1 stability through deubiquitination of ULK1 (PubMed:29487085). Acts as a positive regulator for NF-kappa-B activation by TNF-alpha through deubiquitinating 'Lys-48'-linked polyubiquitination of SQSTM1, leading to its increased stability (PubMed:32354117). Acts as a regulator of G-protein coupled receptor (GPCR) signaling by mediating the deubiquitination beta-2 adrenergic receptor (ADRB2) (PubMed:19424180). Plays a central role in ADRB2 recycling and resensitization after prolonged agonist stimulation by constitutively binding ADRB2, mediating deubiquitination of ADRB2 and inhibiting lysosomal trafficking of ADRB2. Upon dissociation, it is probably transferred to the translocated beta-arrestins, possibly leading to beta-arrestins deubiquitination and disengagement from ADRB2 (PubMed:19424180). This suggests the existence of a dynamic exchange between the ADRB2 and beta-arrestins. Deubiquitinates DIO2, thereby regulating thyroid hormone regulation. Deubiquitinates HIF1A, leading to stabilize HIF1A and enhance HIF1A-mediated activity (PubMed:15776016). Deubiquitinates MCL1, a pivotal member of the anti-apoptotic Bcl-2 protein family to regulate its stability (PubMed:35063767). Within the endoplasmic reticulum, participates with USP33 in the rescue of post-translationally targeted membrane proteins that are inappropriately ubiquitinated by the cytosolic protein quality control in the cytosol (PubMed:33792613). {ECO:0000269|PubMed:12056827, ECO:0000269|PubMed:12865408, ECO:0000269|PubMed:15776016, ECO:0000269|PubMed:19424180, ECO:0000269|PubMed:26839314, ECO:0000269|PubMed:27801882, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:32354117, ECO:0000269|PubMed:33792613, ECO:0000269|PubMed:35063767}. |
Q9Y2U8 | LEMD3 | S261 | ochoa | Inner nuclear membrane protein Man1 (LEM domain-containing protein 3) | Can function as a specific repressor of TGF-beta, activin, and BMP signaling through its interaction with the R-SMAD proteins. Antagonizes TGF-beta-induced cell proliferation arrest. {ECO:0000269|PubMed:15601644, ECO:0000269|PubMed:15647271}. |
Q9Y2X7 | GIT1 | Y598 | ochoa | ARF GTPase-activating protein GIT1 (ARF GAP GIT1) (Cool-associated and tyrosine-phosphorylated protein 1) (CAT-1) (CAT1) (G protein-coupled receptor kinase-interactor 1) (GRK-interacting protein 1) (p95-APP1) | GTPase-activating protein for ADP ribosylation factor family members, including ARF1. Multidomain scaffold protein that interacts with numerous proteins and therefore participates in many cellular functions, including receptor internalization, focal adhesion remodeling, and signaling by both G protein-coupled receptors and tyrosine kinase receptors (By similarity). Through PAK1 activation, positively regulates microtubule nucleation during interphase (PubMed:27012601). Plays a role in the regulation of cytokinesis; for this function, may act in a pathway also involving ENTR1 and PTPN13 (PubMed:23108400). May promote cell motility both by regulating focal complex dynamics and by local activation of RAC1 (PubMed:10938112, PubMed:11896197). May act as scaffold for MAPK1/3 signal transduction in focal adhesions. Recruits MAPK1/3/ERK1/2 to focal adhesions after EGF stimulation via a Src-dependent pathway, hence stimulating cell migration (PubMed:15923189). Plays a role in brain development and function. Involved in the regulation of spine density and synaptic plasticity that is required for processes involved in learning (By similarity). Plays an important role in dendritic spine morphogenesis and synapse formation (PubMed:12695502, PubMed:15800193). In hippocampal neurons, recruits guanine nucleotide exchange factors (GEFs), such as ARHGEF7/beta-PIX, to the synaptic membrane. These in turn locally activate RAC1, which is an essential step for spine morphogenesis and synapse formation (PubMed:12695502). May contribute to the organization of presynaptic active zones through oligomerization and formation of a Piccolo/PCLO-based protein network, which includes ARHGEF7/beta-PIX and FAK1 (By similarity). In neurons, through its interaction with liprin-alpha family members, may be required for AMPA receptor (GRIA2/3) proper targeting to the cell membrane (By similarity). In complex with GABA(A) receptors and ARHGEF7, plays a crucial role in regulating GABA(A) receptor synaptic stability, maintaining GPHN/gephyrin scaffolds and hence GABAergic inhibitory synaptic transmission, by locally coordinating RAC1 and PAK1 downstream effector activity, leading to F-actin stabilization (PubMed:25284783). May also be important for RAC1 downstream signaling pathway through PAK3 and regulation of neuronal inhibitory transmission at presynaptic input (By similarity). Required for successful bone regeneration during fracture healing (By similarity). The function in intramembranous ossification may, at least partly, exerted by macrophages in which GIT1 is a key negative regulator of redox homeostasis, IL1B production, and glycolysis, acting through the ERK1/2/NRF2/NFE2L2 axis (By similarity). May play a role in angiogenesis during fracture healing (By similarity). In this process, may regulate activation of the canonical NF-kappa-B signal in bone mesenchymal stem cells by enhancing the interaction between NEMO and 'Lys-63'-ubiquitinated RIPK1/RIP1, eventually leading to enhanced production of VEGFA and others angiogenic factors (PubMed:31502302). Essential for VEGF signaling through the activation of phospholipase C-gamma and ERK1/2, hence may control endothelial cell proliferation and angiogenesis (PubMed:19273721). {ECO:0000250|UniProtKB:Q68FF6, ECO:0000250|UniProtKB:Q9Z272, ECO:0000269|PubMed:10938112, ECO:0000269|PubMed:11896197, ECO:0000269|PubMed:12695502, ECO:0000269|PubMed:15800193, ECO:0000269|PubMed:15923189, ECO:0000269|PubMed:19273721, ECO:0000269|PubMed:23108400, ECO:0000269|PubMed:25284783, ECO:0000269|PubMed:27012601, ECO:0000269|PubMed:31502302}. |
Q9Y3T9 | NOC2L | S28 | ochoa | Nucleolar complex protein 2 homolog (Protein NOC2 homolog) (NOC2-like protein) (Novel INHAT repressor) | Acts as an inhibitor of histone acetyltransferase activity; prevents acetylation of all core histones by the EP300/p300 histone acetyltransferase at p53/TP53-regulated target promoters in a histone deacetylases (HDAC)-independent manner. Acts as a transcription corepressor of p53/TP53- and TP63-mediated transactivation of the p21/CDKN1A promoter. Involved in the regulation of p53/TP53-dependent apoptosis. Associates together with TP63 isoform TA*-gamma to the p21/CDKN1A promoter. {ECO:0000269|PubMed:16322561, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:20959462}. |
Q9Y3T9 | NOC2L | S30 | ochoa | Nucleolar complex protein 2 homolog (Protein NOC2 homolog) (NOC2-like protein) (Novel INHAT repressor) | Acts as an inhibitor of histone acetyltransferase activity; prevents acetylation of all core histones by the EP300/p300 histone acetyltransferase at p53/TP53-regulated target promoters in a histone deacetylases (HDAC)-independent manner. Acts as a transcription corepressor of p53/TP53- and TP63-mediated transactivation of the p21/CDKN1A promoter. Involved in the regulation of p53/TP53-dependent apoptosis. Associates together with TP63 isoform TA*-gamma to the p21/CDKN1A promoter. {ECO:0000269|PubMed:16322561, ECO:0000269|PubMed:20123734, ECO:0000269|PubMed:20959462}. |
Q9Y462 | ZNF711 | S200 | ochoa | Zinc finger protein 711 (Zinc finger protein 6) | Transcription regulator required for brain development (PubMed:20346720). Probably acts as a transcription factor that binds to the promoter of target genes and recruits PHF8 histone demethylase, leading to activated expression of genes involved in neuron development, such as KDM5C (PubMed:20346720, PubMed:31691806). May compete with transcription factor ARX for activation of expression of KDM5C (PubMed:31691806). {ECO:0000269|PubMed:20346720, ECO:0000269|PubMed:31691806}. |
Q9Y4B5 | MTCL1 | S778 | ochoa | Microtubule cross-linking factor 1 (Coiled-coil domain-containing protein 165) (PAR-1-interacting protein) (SOGA family member 2) | Microtubule-associated factor involved in the late phase of epithelial polarization and microtubule dynamics regulation (PubMed:23902687). Plays a role in the development and maintenance of non-centrosomal microtubule bundles at the lateral membrane in polarized epithelial cells (PubMed:23902687). Required for faithful chromosome segregation during mitosis (PubMed:33587225). {ECO:0000269|PubMed:23902687, ECO:0000269|PubMed:33587225}. |
Q9Y520 | PRRC2C | S801 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
V9GYH0 | None | S33 | ochoa | Homeobox domain-containing protein | None |
V9GYH0 | None | S35 | ochoa | Homeobox domain-containing protein | None |
P28066 | PSMA5 | S174 | Sugiyama | Proteasome subunit alpha type-5 (Macropain zeta chain) (Multicatalytic endopeptidase complex zeta chain) (Proteasome subunit alpha-5) (alpha-5) (Proteasome zeta chain) | Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing proteins whose functions are no longer required. Associated with the PA200 or PA28, the 20S proteasome mediates ubiquitin-independent protein degradation. This type of proteolysis is required in several pathways including spermatogenesis (20S-PA200 complex) or generation of a subset of MHC class I-presented antigenic peptides (20S-PA28 complex). {ECO:0000269|PubMed:15244466, ECO:0000269|PubMed:27176742, ECO:0000269|PubMed:8610016}. |
P61024 | CKS1B | S41 | Sugiyama | Cyclin-dependent kinases regulatory subunit 1 (CKS-1) | Binds to the catalytic subunit of the cyclin dependent kinases and is essential for their biological function. |
O95340 | PAPSS2 | Y182 | Sugiyama | Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (PAPS synthase 2) (PAPSS 2) (Sulfurylase kinase 2) (SK 2) (SK2) [Includes: Sulfate adenylyltransferase (EC 2.7.7.4) (ATP-sulfurylase) (Sulfate adenylate transferase) (SAT); Adenylyl-sulfate kinase (EC 2.7.1.25) (3'-phosphoadenosine-5'-phosphosulfate synthase) (APS kinase) (Adenosine-5'-phosphosulfate 3'-phosphotransferase) (Adenylylsulfate 3'-phosphotransferase)] | Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate/PAPS, the activated sulfate donor used by sulfotransferases (PubMed:11773860, PubMed:19474428, PubMed:23824674, PubMed:25594860). In mammals, PAPS is the sole source of sulfate while APS appears to only be an intermediate in the sulfate-activation pathway (PubMed:11773860, PubMed:19474428, PubMed:23824674, PubMed:25594860). Plays indirectly an important role in skeletogenesis during postnatal growth (PubMed:9771708). {ECO:0000269|PubMed:11773860, ECO:0000269|PubMed:19474428, ECO:0000269|PubMed:23824674, ECO:0000269|PubMed:25594860, ECO:0000269|PubMed:9771708}. |
P42224 | STAT1 | S710 | Sugiyama | Signal transducer and activator of transcription 1-alpha/beta (Transcription factor ISGF-3 components p91/p84) | Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors (PubMed:12764129, PubMed:12855578, PubMed:15322115, PubMed:23940278, PubMed:34508746, PubMed:35568036, PubMed:9724754). Following type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phosphorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus (PubMed:28753426, PubMed:35568036). ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of IFN-stimulated genes (ISG), which drive the cell in an antiviral state (PubMed:28753426, PubMed:35568036). In response to type II IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated (PubMed:26479788). It then forms a homodimer termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cellular antiviral state (PubMed:8156998). Becomes activated in response to KITLG/SCF and KIT signaling (PubMed:15526160). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:19088846). Following bacterial lipopolysaccharide (LPS)-induced TLR4 endocytosis, phosphorylated at Thr-749 by IKBKB which promotes binding of STAT1 to the 5'-TTTGAGGC-3' sequence in the ARID5A promoter, resulting in transcriptional activation of ARID5A and subsequent ARID5A-mediated stabilization of IL6 (PubMed:32209697). Phosphorylation at Thr-749 also promotes binding of STAT1 to the 5'-TTTGAGTC-3' sequence in the IL12B promoter and activation of IL12B transcription (PubMed:32209697). Involved in food tolerance in small intestine: associates with the Gasdermin-D, p13 cleavage product (13 kDa GSDMD) and promotes transcription of CIITA, inducing type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:P42225, ECO:0000269|PubMed:12764129, ECO:0000269|PubMed:12855578, ECO:0000269|PubMed:15322115, ECO:0000269|PubMed:19088846, ECO:0000269|PubMed:23940278, ECO:0000269|PubMed:26479788, ECO:0000269|PubMed:28753426, ECO:0000269|PubMed:32209697, ECO:0000269|PubMed:34508746, ECO:0000269|PubMed:35568036, ECO:0000269|PubMed:8156998, ECO:0000269|PubMed:9724754, ECO:0000303|PubMed:15526160}. |
O15067 | PFAS | S227 | Sugiyama | Phosphoribosylformylglycinamidine synthase (FGAM synthase) (FGAMS) (EC 6.3.5.3) (Formylglycinamide ribonucleotide amidotransferase) (FGAR amidotransferase) (FGAR-AT) (Formylglycinamide ribotide amidotransferase) (Phosphoribosylformylglycineamide amidotransferase) | Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. {ECO:0000305|PubMed:10548741}. |
P53621 | COPA | S268 | Sugiyama | Coatomer subunit alpha (Alpha-coat protein) (Alpha-COP) (HEP-COP) (HEPCOP) [Cleaved into: Xenin (Xenopsin-related peptide); Proxenin] | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity). {ECO:0000250}.; FUNCTION: Xenin stimulates exocrine pancreatic secretion. It inhibits pentagastrin-stimulated secretion of acid, to induce exocrine pancreatic secretion and to affect small and large intestinal motility. In the gut, xenin interacts with the neurotensin receptor. |
Q12931 | TRAP1 | S484 | Sugiyama | Heat shock protein 75 kDa, mitochondrial (HSP 75) (Heat shock protein family C member 5) (TNFR-associated protein 1) (Tumor necrosis factor type 1 receptor-associated protein) (TRAP-1) | Chaperone that expresses an ATPase activity. Involved in maintaining mitochondrial function and polarization, downstream of PINK1 and mitochondrial complex I. Is a negative regulator of mitochondrial respiration able to modulate the balance between oxidative phosphorylation and aerobic glycolysis. The impact of TRAP1 on mitochondrial respiration is probably mediated by modulation of mitochondrial SRC and inhibition of SDHA. {ECO:0000269|PubMed:23525905, ECO:0000269|PubMed:23564345, ECO:0000269|PubMed:23747254}. |
P13797 | PLS3 | S122 | Sugiyama | Plastin-3 (T-fimbrin) (T-plastin) | Actin-bundling protein. |
P10721 | KIT | S717 | Sugiyama | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
Q01892 | SPIB | S146 | SIGNOR|ELM|iPTMNet | Transcription factor Spi-B | Sequence specific transcriptional activator which binds to the PU-box, a purine-rich DNA sequence (5'-GAGGAA-3') that can act as a lymphoid-specific enhancer. Promotes development of plasmacytoid dendritic cells (pDCs), also known as type 2 DC precursors (pre-DC2) or natural interferon (IFN)-producing cells. These cells have the capacity to produce large amounts of interferon and block viral replication. May be required for B-cell receptor (BCR) signaling, which is necessary for normal B-cell development and antigenic stimulation. {ECO:0000269|PubMed:10196196, ECO:0000269|PubMed:12393575, ECO:0000269|PubMed:1406622, ECO:0000269|PubMed:15583020}. |
P30291 | WEE1 | Y272 | Sugiyama | Wee1-like protein kinase (WEE1hu) (EC 2.7.10.2) (Wee1A kinase) | Acts as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDK1 before the onset of mitosis by mediating phosphorylation of CDK1 on 'Tyr-15' (PubMed:15070733, PubMed:7743995, PubMed:8348613, PubMed:8428596). Specifically phosphorylates and inactivates cyclin B1-complexed CDK1 reaching a maximum during G2 phase and a minimum as cells enter M phase (PubMed:7743995, PubMed:8348613, PubMed:8428596). Phosphorylation of cyclin B1-CDK1 occurs exclusively on 'Tyr-15' and phosphorylation of monomeric CDK1 does not occur (PubMed:7743995, PubMed:8348613, PubMed:8428596). Its activity increases during S and G2 phases and decreases at M phase when it is hyperphosphorylated (PubMed:7743995). A correlated decrease in protein level occurs at M/G1 phase, probably due to its degradation (PubMed:7743995). {ECO:0000269|PubMed:15070733, ECO:0000269|PubMed:7743995, ECO:0000269|PubMed:8348613, ECO:0000269|PubMed:8428596}. |
P30101 | PDIA3 | S165 | Sugiyama | Protein disulfide-isomerase A3 (EC 5.3.4.1) (58 kDa glucose-regulated protein) (58 kDa microsomal protein) (p58) (Disulfide isomerase ER-60) (Endoplasmic reticulum resident protein 57) (ER protein 57) (ERp57) (Endoplasmic reticulum resident protein 60) (ER protein 60) (ERp60) | Protein disulfide isomerase that catalyzes the formation, isomerization, and reduction or oxidation of disulfide bonds in client proteins and functions as a protein folding chaperone (PubMed:11825568, PubMed:16193070, PubMed:27897272, PubMed:36104323, PubMed:7487104). Core component of the major histocompatibility complex class I (MHC I) peptide loading complex where it functions as an essential folding chaperone for TAPBP. Through TAPBP, assists the dynamic assembly of the MHC I complex with high affinity antigens in the endoplasmic reticulum. Therefore, plays a crucial role in the presentation of antigens to cytotoxic T cells in adaptive immunity (PubMed:35948544, PubMed:36104323). {ECO:0000269|PubMed:11825568, ECO:0000269|PubMed:16193070, ECO:0000269|PubMed:27897272, ECO:0000269|PubMed:35948544, ECO:0000269|PubMed:36104323, ECO:0000269|PubMed:7487104}. |
Q14980 | NUMA1 | S863 | Sugiyama | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q9H7E2 | TDRD3 | S367 | Sugiyama | Tudor domain-containing protein 3 | Scaffolding protein that specifically recognizes and binds dimethylarginine-containing proteins (PubMed:15955813). Plays a role in the regulation of translation of target mRNAs by binding Arg/Gly-rich motifs (GAR) in dimethylarginine-containing proteins. In nucleus, acts as a coactivator: recognizes and binds asymmetric dimethylation on the core histone tails associated with transcriptional activation (H3R17me2a and H4R3me2a) and recruits proteins at these arginine-methylated loci (PubMed:21172665). In cytoplasm, acts as an antiviral factor that participates in the assembly of stress granules together with G3BP1 (PubMed:35085371). {ECO:0000269|PubMed:15955813, ECO:0000269|PubMed:18632687, ECO:0000269|PubMed:21172665, ECO:0000269|PubMed:35085371}. |
A4UGR9 | XIRP2 | S3241 | ochoa | Xin actin-binding repeat-containing protein 2 (Beta-xin) (Cardiomyopathy-associated protein 3) (Xeplin) | Protects actin filaments from depolymerization (PubMed:15454575). Required for correct morphology of cell membranes and maturation of intercalated disks of cardiomyocytes via facilitating localization of XIRP1 and CDH2 to the termini of aligned mature cardiomyocytes (By similarity). Thereby required for correct postnatal heart development and growth regulation that is crucial for overall heart morphology and diastolic function (By similarity). Required for normal electrical conduction in the heart including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with the cardiac ion channel components Scn5a/Nav1.5 and Kcna5/Kv1.5 (By similarity). Required for regular actin filament spacing of the paracrystalline array in both inner and outer hair cells of the cochlea, thereby required for maintenance of stereocilia morphology (By similarity). {ECO:0000250|UniProtKB:Q4U4S6, ECO:0000269|PubMed:15454575}. |
B2RTY4 | MYO9A | S1301 | ochoa | Unconventional myosin-IXa (Unconventional myosin-9a) | Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Regulates Rho by stimulating it's GTPase activity in neurons. Required for the regulation of neurite branching and motor neuron axon guidance (By similarity). {ECO:0000250|UniProtKB:Q8C170, ECO:0000250|UniProtKB:Q9Z1N3}. |
O14640 | DVL1 | S602 | ochoa | Segment polarity protein dishevelled homolog DVL-1 (Dishevelled-1) (DSH homolog 1) | Participates in Wnt signaling by binding to the cytoplasmic C-terminus of frizzled family members and transducing the Wnt signal to down-stream effectors. Plays a role both in canonical and non-canonical Wnt signaling. Plays a role in the signal transduction pathways mediated by multiple Wnt genes. Required for LEF1 activation upon WNT1 and WNT3A signaling. DVL1 and PAK1 form a ternary complex with MUSK which is important for MUSK-dependent regulation of AChR clustering during the formation of the neuromuscular junction (NMJ). |
O14974 | PPP1R12A | T873 | ochoa | Protein phosphatase 1 regulatory subunit 12A (Myosin phosphatase-targeting subunit 1) (Myosin phosphatase target subunit 1) (Protein phosphatase myosin-binding subunit) | Key regulator of protein phosphatase 1C (PPP1C). Mediates binding to myosin. As part of the PPP1C complex, involved in dephosphorylation of PLK1. Capable of inhibiting HIF1AN-dependent suppression of HIF1A activity. {ECO:0000269|PubMed:18477460, ECO:0000269|PubMed:19245366, ECO:0000269|PubMed:20354225}. |
O15014 | ZNF609 | S454 | ochoa | Zinc finger protein 609 | Transcription factor, which activates RAG1, and possibly RAG2, transcription. Through the regulation of RAG1/2 expression, may regulate thymocyte maturation. Along with NIPBL and the multiprotein complex Integrator, promotes cortical neuron migration during brain development by regulating the transcription of crucial genes in this process. Preferentially binds promoters containing paused RNA polymerase II. Up-regulates the expression of SEMA3A, NRP1, PLXND1 and GABBR2 genes, among others. {ECO:0000250|UniProtKB:Q8BZ47}.; FUNCTION: [Isoform 2]: Involved in the regulation of myoblast proliferation during myogenesis. {ECO:0000269|PubMed:28344082}. |
O15033 | AREL1 | S339 | ochoa | Apoptosis-resistant E3 ubiquitin protein ligase 1 (EC 2.3.2.26) (Apoptosis-resistant HECT-type E3 ubiquitin transferase 1) | E3 ubiquitin-protein ligase that catalyzes 'Lys-11'- or 'Lys-33'-linked polyubiquitin chains, with some preference for 'Lys-33' linkages (PubMed:25752577). E3 ubiquitin-protein ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates (PubMed:23479728, PubMed:31578312). Ubiquitinates SEPTIN4, DIABLO/SMAC and HTRA2 in vitro (PubMed:23479728). Modulates pulmonary inflammation by targeting SOCS2 for ubiquitination and subsequent degradation by the proteasome (PubMed:31578312). {ECO:0000269|PubMed:23479728, ECO:0000269|PubMed:25752577, ECO:0000269|PubMed:31578312}. |
O15075 | DCLK1 | S722 | ochoa | Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) | Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system. |
O15231 | ZNF185 | S457 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15231 | ZNF185 | S523 | ochoa | Zinc finger protein 185 (LIM domain protein ZNF185) (P1-A) | May be involved in the regulation of cellular proliferation and/or differentiation. |
O15355 | PPM1G | S218 | ochoa | Protein phosphatase 1G (EC 3.1.3.16) (Protein phosphatase 1C) (Protein phosphatase 2C isoform gamma) (PP2C-gamma) (Protein phosphatase magnesium-dependent 1 gamma) | None |
O43491 | EPB41L2 | S649 | ochoa | Band 4.1-like protein 2 (Erythrocyte membrane protein band 4.1-like 2) (Generally expressed protein 4.1) (4.1G) | Required for dynein-dynactin complex and NUMA1 recruitment at the mitotic cell cortex during anaphase (PubMed:23870127). {ECO:0000269|PubMed:23870127}. |
O43719 | HTATSF1 | S391 | ochoa | 17S U2 SnRNP complex component HTATSF1 (HIV Tat-specific factor 1) (Tat-SF1) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:30567737, PubMed:32494006, PubMed:34822310). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:30567737, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop (PubMed:34822310). HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences (PubMed:32494006, PubMed:34822310). Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation (PubMed:10454543, PubMed:10913173, PubMed:11780068). Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites (PubMed:35597237). Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination (PubMed:35597237). {ECO:0000269|PubMed:10454543, ECO:0000269|PubMed:10913173, ECO:0000269|PubMed:11780068, ECO:0000269|PubMed:30567737, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:35597237}.; FUNCTION: (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus. {ECO:0000269|PubMed:10393184, ECO:0000269|PubMed:11420046, ECO:0000269|PubMed:15905670, ECO:0000269|PubMed:8849451, ECO:0000269|PubMed:9765201}. |
O60292 | SIPA1L3 | S172 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60307 | MAST3 | S711 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60307 | MAST3 | S728 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60508 | CDC40 | S24 | ochoa | Pre-mRNA-processing factor 17 (Cell division cycle 40 homolog) (EH-binding protein 3) (Ehb3) (PRP17 homolog) (hPRP17) | Required for pre-mRNA splicing as component of the activated spliceosome (PubMed:33220177). Plays an important role in embryonic brain development; this function does not require proline isomerization (PubMed:33220177). {ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:33220177, ECO:0000269|PubMed:9830021}. |
O60664 | PLIN3 | S93 | ochoa | Perilipin-3 (47 kDa mannose 6-phosphate receptor-binding protein) (47 kDa MPR-binding protein) (Cargo selection protein TIP47) (Mannose-6-phosphate receptor-binding protein 1) (Placental protein 17) (PP17) | Structural component of lipid droplets, which is required for the formation and maintenance of lipid storage droplets (PubMed:34077757). Required for the transport of mannose 6-phosphate receptors (MPR) from endosomes to the trans-Golgi network (PubMed:9590177). {ECO:0000269|PubMed:34077757, ECO:0000269|PubMed:9590177}. |
O76074 | PDE5A | S104 | ochoa|psp | cGMP-specific 3',5'-cyclic phosphodiesterase (EC 3.1.4.35) (cGMP-binding cGMP-specific phosphodiesterase) (CGB-PDE) | Plays a role in signal transduction by regulating the intracellular concentration of cyclic nucleotides. This phosphodiesterase catalyzes the specific hydrolysis of cGMP to 5'-GMP (PubMed:15489334, PubMed:9714779). Specifically regulates nitric-oxide-generated cGMP (PubMed:15489334). {ECO:0000269|PubMed:15489334, ECO:0000269|PubMed:9714779}. |
O94929 | ABLIM3 | S485 | ochoa | Actin-binding LIM protein 3 (abLIM-3) (Actin-binding LIM protein family member 3) | May act as scaffold protein. May stimulate ABRA activity and ABRA-dependent SRF transcriptional activity. {ECO:0000269|PubMed:17194709}. |
O95197 | RTN3 | S562 | ochoa | Reticulon-3 (Homolog of ASY protein) (HAP) (Neuroendocrine-specific protein-like 2) (NSP-like protein 2) (Neuroendocrine-specific protein-like II) (NSP-like protein II) (NSPLII) | May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. Induces the formation of endoplasmic reticulum tubules (PubMed:25612671). Also acts as an inflammation-resolving regulator by interacting with both TRIM25 and RIGI, subsequently impairing RIGI 'Lys-63'-linked polyubiquitination leading to IRF3 and NF-kappa-B inhibition. {ECO:0000269|PubMed:15286784, ECO:0000269|PubMed:16054885, ECO:0000269|PubMed:17031492, ECO:0000269|PubMed:17191123, ECO:0000269|PubMed:25612671}.; FUNCTION: (Microbial infection) Plays a positive role in viral replication and pathogenesis of enteroviruses. {ECO:0000269|PubMed:17182608}. |
O95235 | KIF20A | S670 | ochoa | Kinesin-like protein KIF20A (GG10_2) (Mitotic kinesin-like protein 2) (MKlp2) (Rab6-interacting kinesin-like protein) (Rabkinesin-6) | Mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. Following phosphorylation by PLK1, involved in recruitment of PLK1 to the central spindle. Interacts with guanosine triphosphate (GTP)-bound forms of RAB6A and RAB6B. May act as a motor required for the retrograde RAB6 regulated transport of Golgi membranes and associated vesicles along microtubules. Has a microtubule plus end-directed motility. {ECO:0000269|PubMed:12939256}. |
O95630 | STAMBP | S245 | ochoa|psp | STAM-binding protein (EC 3.4.19.-) (Associated molecule with the SH3 domain of STAM) (Endosome-associated ubiquitin isopeptidase) | Zinc metalloprotease that specifically cleaves 'Lys-63'-linked polyubiquitin chains (PubMed:15314065, PubMed:23542699, PubMed:34425109). Does not cleave 'Lys-48'-linked polyubiquitin chains (PubMed:15314065). Plays a role in signal transduction for cell growth and MYC induction mediated by IL-2 and GM-CSF (PubMed:10383417). Potentiates BMP (bone morphogenetic protein) signaling by antagonizing the inhibitory action of SMAD6 and SMAD7 (PubMed:11483516). Has a key role in regulation of cell surface receptor-mediated endocytosis and ubiquitin-dependent sorting of receptors to lysosomes (PubMed:15314065, PubMed:17261583). Endosomal localization of STAMBP is required for efficient EGFR degradation but not for its internalization (PubMed:15314065, PubMed:17261583). Involved in the negative regulation of PI3K-AKT-mTOR and RAS-MAP signaling pathways (PubMed:23542699). {ECO:0000269|PubMed:10383417, ECO:0000269|PubMed:11483516, ECO:0000269|PubMed:15314065, ECO:0000269|PubMed:17261583, ECO:0000269|PubMed:23542699, ECO:0000269|PubMed:34425109}. |
O95674 | CDS2 | S35 | ochoa | Phosphatidate cytidylyltransferase 2 (EC 2.7.7.41) (CDP-DAG synthase 2) (CDP-DG synthase 2) (CDP-diacylglycerol synthase 2) (CDS 2) (CDP-diglyceride pyrophosphorylase 2) (CDP-diglyceride synthase 2) (CTP:phosphatidate cytidylyltransferase 2) | Catalyzes the conversion of phosphatidic acid (PA) to CDP-diacylglycerol (CDP-DAG), an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PubMed:25375833). Exhibits specificity for the nature of the acyl chains at the sn-1 and sn-2 positions in the substrate, PA and the preferred acyl chain composition is 1-stearoyl-2-arachidonoyl-sn-phosphatidic acid (PubMed:25375833). Plays an important role in regulating the growth and maturation of lipid droplets which are storage organelles at the center of lipid and energy homeostasis (PubMed:26946540, PubMed:31548309). {ECO:0000269|PubMed:25375833, ECO:0000269|PubMed:26946540, ECO:0000269|PubMed:31548309}. |
O95714 | HERC2 | T1944 | ochoa | E3 ubiquitin-protein ligase HERC2 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 2) (HECT-type E3 ubiquitin transferase HERC2) | E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway (PubMed:26692333). Also modulates iron metabolism by regulating the basal turnover of FBXL5 (PubMed:24778179). {ECO:0000269|PubMed:20023648, ECO:0000269|PubMed:20304803, ECO:0000269|PubMed:22508508, ECO:0000269|PubMed:24778179, ECO:0000269|PubMed:26692333}. |
P04049 | RAF1 | S621 | ochoa|psp | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P0DJD0 | RGPD1 | S1577 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S1585 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P10109 | FDX1 | S63 | ochoa | Adrenodoxin, mitochondrial (Adrenal ferredoxin) (Ferredoxin-1) (Hepatoredoxin) | Essential for the synthesis of various steroid hormones (PubMed:20547883, PubMed:21636783). Participates in the reduction of mitochondrial cytochrome P450 for steroidogenesis (PubMed:20547883, PubMed:21636783). Transfers electrons from adrenodoxin reductase to CYP11A1, a cytochrome P450 that catalyzes cholesterol side-chain cleavage (PubMed:20547883, PubMed:21636783). Does not form a ternary complex with adrenodoxin reductase and CYP11A1 but shuttles between the two enzymes to transfer electrons (By similarity). {ECO:0000250|UniProtKB:P00257, ECO:0000269|PubMed:20547883, ECO:0000269|PubMed:21636783}. |
P20810 | CAST | S366 | ochoa | Calpastatin (Calpain inhibitor) (Sperm BS-17 component) | Specific inhibition of calpain (calcium-dependent cysteine protease). Plays a key role in postmortem tenderization of meat and have been proposed to be involved in muscle protein degradation in living tissue. |
P22087 | FBL | S126 | ochoa | rRNA 2'-O-methyltransferase fibrillarin (EC 2.1.1.-) (34 kDa nucleolar scleroderma antigen) (Histone-glutamine methyltransferase) (U6 snRNA 2'-O-methyltransferase fibrillarin) | S-adenosyl-L-methionine-dependent methyltransferase that has the ability to methylate both RNAs and proteins (PubMed:24352239, PubMed:30540930, PubMed:32017898). Involved in pre-rRNA processing by catalyzing the site-specific 2'-hydroxyl methylation of ribose moieties in pre-ribosomal RNA (PubMed:30540930). Site specificity is provided by a guide RNA that base pairs with the substrate (By similarity). Methylation occurs at a characteristic distance from the sequence involved in base pairing with the guide RNA (By similarity). Probably catalyzes 2'-O-methylation of U6 snRNAs in box C/D RNP complexes (PubMed:32017898). U6 snRNA 2'-O-methylation is required for mRNA splicing fidelity (PubMed:32017898). Also acts as a protein methyltransferase by mediating methylation of 'Gln-105' of histone H2A (H2AQ104me), a modification that impairs binding of the FACT complex and is specifically present at 35S ribosomal DNA locus (PubMed:24352239, PubMed:30540930). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000250|UniProtKB:P15646, ECO:0000269|PubMed:24352239, ECO:0000269|PubMed:30540930, ECO:0000269|PubMed:32017898, ECO:0000269|PubMed:34516797}. |
P29590 | PML | S562 | ochoa|psp | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P30414 | NKTR | S811 | ochoa | NK-tumor recognition protein (NK-TR protein) (Natural-killer cells cyclophilin-related protein) (Peptidyl-prolyl cis-trans isomerase NKTR) (PPIase) (EC 5.2.1.8) (Rotamase) | PPIase that catalyzes the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and may therefore assist protein folding (PubMed:20676357). Component of a putative tumor-recognition complex involved in the function of NK cells (PubMed:8421688). {ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:8421688}. |
P36897 | TGFBR1 | S172 | psp | TGF-beta receptor type-1 (TGFR-1) (EC 2.7.11.30) (Activin A receptor type II-like protein kinase of 53kD) (Activin receptor-like kinase 5) (ALK-5) (ALK5) (Serine/threonine-protein kinase receptor R4) (SKR4) (TGF-beta type I receptor) (Transforming growth factor-beta receptor type I) (TGF-beta receptor type I) (TbetaR-I) | Transmembrane serine/threonine kinase forming with the TGF-beta type II serine/threonine kinase receptor, TGFBR2, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis (PubMed:33914044). The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. For instance, TGFBR1 induces TRAF6 autoubiquitination which in turn results in MAP3K7 ubiquitination and activation to trigger apoptosis. Also regulates epithelial to mesenchymal transition through a SMAD-independent signaling pathway through PARD6A phosphorylation and activation. {ECO:0000269|PubMed:15761148, ECO:0000269|PubMed:16754747, ECO:0000269|PubMed:18758450, ECO:0000269|PubMed:33914044, ECO:0000269|PubMed:7774578, ECO:0000269|PubMed:8752209, ECO:0000269|PubMed:8980228, ECO:0000269|PubMed:9346908}. |
P46939 | UTRN | S827 | ochoa | Utrophin (Dystrophin-related protein 1) (DRP-1) | May play a role in anchoring the cytoskeleton to the plasma membrane. {ECO:0000250}. |
P47974 | ZFP36L2 | S125 | ochoa | mRNA decay activator protein ZFP36L2 (Butyrate response factor 2) (EGF-response factor 2) (ERF-2) (TPA-induced sequence 11d) (Zinc finger protein 36, C3H1 type-like 2) (ZFP36-like 2) | Zinc-finger RNA-binding protein that destabilizes several cytoplasmic AU-rich element (ARE)-containing mRNA transcripts by promoting their poly(A) tail removal or deadenylation, and hence provide a mechanism for attenuating protein synthesis (PubMed:14981510, PubMed:25106868, PubMed:34611029). Acts as a 3'-untranslated region (UTR) ARE mRNA-binding adapter protein to communicate signaling events to the mRNA decay machinery (PubMed:25106868). Functions by recruiting the CCR4-NOT deadenylase complex and probably other components of the cytoplasmic RNA decay machinery to the bound ARE-containing mRNAs, and hence promotes ARE-mediated mRNA deadenylation and decay processes (PubMed:25106868). Binds to 3'-UTR ARE of numerous mRNAs (PubMed:14981510, PubMed:20506496, PubMed:25106868). Promotes ARE-containing mRNA decay of the low-density lipoprotein (LDL) receptor (LDLR) mRNA in response to phorbol 12-myristate 13-acetate (PMA) treatment in a p38 MAPK-dependent manner (PubMed:25106868). Positively regulates early adipogenesis by promoting ARE-mediated mRNA decay of immediate early genes (IEGs). Plays a role in mature peripheral neuron integrity by promoting ARE-containing mRNA decay of the transcriptional repressor REST mRNA. Plays a role in ovulation and oocyte meiotic maturation by promoting ARE-mediated mRNA decay of the luteinizing hormone receptor LHCGR mRNA. Acts as a negative regulator of erythroid cell differentiation: promotes glucocorticoid-induced self-renewal of erythroid cells by binding mRNAs that are induced or highly expressed during terminal erythroid differentiation and promotes their degradation, preventing erythroid cell differentiation. In association with ZFP36L1 maintains quiescence on developing B lymphocytes by promoting ARE-mediated decay of several mRNAs encoding cell cycle regulators that help B cells progress through the cell cycle, and hence ensuring accurate variable-diversity-joining (VDJ) recombination process and functional immune cell formation. Together with ZFP36L1 is also necessary for thymocyte development and prevention of T-cell acute lymphoblastic leukemia (T-ALL) transformation by promoting ARE-mediated mRNA decay of the oncogenic transcription factor NOTCH1 mRNA. {ECO:0000250|UniProtKB:P23949, ECO:0000269|PubMed:14981510, ECO:0000269|PubMed:20506496, ECO:0000269|PubMed:25106868, ECO:0000269|PubMed:34611029}. |
P49815 | TSC2 | S983 | ochoa | Tuberin (Tuberous sclerosis 2 protein) | Catalytic component of the TSC-TBC complex, a multiprotein complex that acts as a negative regulator of the canonical mTORC1 complex, an evolutionarily conserved central nutrient sensor that stimulates anabolic reactions and macromolecule biosynthesis to promote cellular biomass generation and growth (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:33436626, PubMed:35772404). Within the TSC-TBC complex, TSC2 acts as a GTPase-activating protein (GAP) for the small GTPase RHEB, a direct activator of the protein kinase activity of mTORC1 (PubMed:12172553, PubMed:12820960, PubMed:12842888, PubMed:12906785, PubMed:15340059, PubMed:22819219, PubMed:24529379, PubMed:33436626). In absence of nutrients, the TSC-TBC complex inhibits mTORC1, thereby preventing phosphorylation of ribosomal protein S6 kinase (RPS6KB1 and RPS6KB2) and EIF4EBP1 (4E-BP1) by the mTORC1 signaling (PubMed:12172553, PubMed:12271141, PubMed:12842888, PubMed:12906785, PubMed:22819219, PubMed:24529379, PubMed:28215400, PubMed:35772404). The TSC-TBC complex is inactivated in response to nutrients, relieving inhibition of mTORC1 (PubMed:12172553, PubMed:24529379). Involved in microtubule-mediated protein transport via its ability to regulate mTORC1 signaling (By similarity). Also stimulates the intrinsic GTPase activity of the Ras-related proteins RAP1A and RAB5 (By similarity). {ECO:0000250|UniProtKB:P49816, ECO:0000269|PubMed:12172553, ECO:0000269|PubMed:12271141, ECO:0000269|PubMed:12820960, ECO:0000269|PubMed:12842888, ECO:0000269|PubMed:12906785, ECO:0000269|PubMed:15340059, ECO:0000269|PubMed:22819219, ECO:0000269|PubMed:24529379, ECO:0000269|PubMed:28215400, ECO:0000269|PubMed:33436626, ECO:0000269|PubMed:35772404}. |
P53396 | ACLY | S457 | ochoa | ATP-citrate synthase (EC 2.3.3.8) (ATP-citrate (pro-S-)-lyase) (ACL) (Citrate cleavage enzyme) | Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate in multiple biochemical reactions in protein, carbohydrate and lipid metabolism. {ECO:0000269|PubMed:10653665, ECO:0000269|PubMed:1371749, ECO:0000269|PubMed:19286649, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:39881208, ECO:0000269|PubMed:9116495}. |
P54132 | BLM | S74 | ochoa | RecQ-like DNA helicase BLM (EC 5.6.2.4) (Bloom syndrome protein) (DNA 3'-5' helicase BLM) (DNA helicase, RecQ-like type 2) (RecQ2) (RecQ protein-like 3) | ATP-dependent DNA helicase that unwinds double-stranded (ds)DNA in a 3'-5' direction (PubMed:24816114, PubMed:25901030, PubMed:9388193, PubMed:9765292). Participates in DNA replication and repair (PubMed:12019152, PubMed:21325134, PubMed:23509288, PubMed:34606619). Involved in 5'-end resection of DNA during double-strand break (DSB) repair: unwinds DNA and recruits DNA2 which mediates the cleavage of 5'-ssDNA (PubMed:21325134). Stimulates DNA 4-way junction branch migration and DNA Holliday junction dissolution (PubMed:25901030). Binds single-stranded DNA (ssDNA), forked duplex DNA and Holliday junction DNA (PubMed:20639533, PubMed:24257077, PubMed:25901030). Unwinds G-quadruplex DNA; unwinding occurs in the 3'-5' direction and requires a 3' single-stranded end of at least 7 nucleotides (PubMed:18426915, PubMed:9765292). Helicase activity is higher on G-quadruplex substrates than on duplex DNA substrates (PubMed:9765292). Telomeres, immunoglobulin heavy chain switch regions and rDNA are notably G-rich; formation of G-quadruplex DNA would block DNA replication and transcription (PubMed:18426915, PubMed:9765292). Negatively regulates sister chromatid exchange (SCE) (PubMed:25901030). Recruited by the KHDC3L-OOEP scaffold to DNA replication forks where it is retained by TRIM25 ubiquitination, it thereby promotes the restart of stalled replication forks (By similarity). {ECO:0000250|UniProtKB:O88700, ECO:0000269|PubMed:12019152, ECO:0000269|PubMed:18426915, ECO:0000269|PubMed:20639533, ECO:0000269|PubMed:21325134, ECO:0000269|PubMed:23509288, ECO:0000269|PubMed:24257077, ECO:0000269|PubMed:24816114, ECO:0000269|PubMed:25901030, ECO:0000269|PubMed:34606619, ECO:0000269|PubMed:9388193, ECO:0000269|PubMed:9765292}.; FUNCTION: (Microbial infection) Eliminates nuclear HIV-1 cDNA, thereby suppressing immune sensing and proviral hyper-integration. {ECO:0000269|PubMed:32690953}. |
P54296 | MYOM2 | S1274 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P57764 | GSDMD | S252 | ochoa | Gasdermin-D (Gasdermin domain-containing protein 1) [Cleaved into: Gasdermin-D, N-terminal (GSDMD-NT) (hGSDMD-NTD); Gasdermin-D, C-terminal (GSDMD-CT) (hGSDMD-CTD); Gasdermin-D, p13 (Gasdermin-D, 13 kDa) (13 kDa GSDMD); Gasdermin-D, p40] | [Gasdermin-D]: Precursor of a pore-forming protein that plays a key role in host defense against pathogen infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27281216). This form constitutes the precursor of the pore-forming protein: upon cleavage, the released N-terminal moiety (Gasdermin-D, N-terminal) binds to membranes and forms pores, triggering pyroptosis (PubMed:26375003, PubMed:26375259, PubMed:27281216). {ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216}.; FUNCTION: [Gasdermin-D, N-terminal]: Promotes pyroptosis in response to microbial infection and danger signals (PubMed:26375003, PubMed:26375259, PubMed:27418190, PubMed:28392147, PubMed:32820063, PubMed:34289345, PubMed:38040708, PubMed:38530158, PubMed:38599239). Produced by the cleavage of gasdermin-D by inflammatory caspases CASP1, CASP4 or CASP5 in response to canonical, as well as non-canonical (such as cytosolic LPS) inflammasome activators (PubMed:26375003, PubMed:26375259, PubMed:27418190). After cleavage, moves to the plasma membrane where it strongly binds to inner leaflet lipids, including monophosphorylated phosphatidylinositols, such as phosphatidylinositol 4-phosphate, bisphosphorylated phosphatidylinositols, such as phosphatidylinositol (4,5)-bisphosphate, as well as phosphatidylinositol (3,4,5)-bisphosphate, and more weakly to phosphatidic acid and phosphatidylserine (PubMed:27281216, PubMed:29898893, PubMed:36227980). Homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the release of mature interleukin-1 (IL1B and IL18) and triggering pyroptosis (PubMed:27281216, PubMed:27418190, PubMed:29898893, PubMed:33883744, PubMed:38040708, PubMed:38530158, PubMed:38599239). Gasdermin pores also allow the release of mature caspase-7 (CASP7) (By similarity). In some, but not all, cells types, pyroptosis is followed by pyroptotic cell death, which is caused by downstream activation of ninjurin-1 (NINJ1), which mediates membrane rupture (cytolysis) (PubMed:33472215, PubMed:37198476). Also forms pores in the mitochondrial membrane, resulting in release of mitochondrial DNA (mtDNA) into the cytosol (By similarity). Gasdermin-D, N-terminal released from pyroptotic cells into the extracellular milieu rapidly binds to and kills both Gram-negative and Gram-positive bacteria, without harming neighboring mammalian cells, as it does not disrupt the plasma membrane from the outside due to lipid-binding specificity (PubMed:27281216). Under cell culture conditions, also active against intracellular bacteria, such as Listeria monocytogenes (By similarity). Also active in response to MAP3K7/TAK1 inactivation by Yersinia toxin YopJ, which triggers cleavage by CASP8 and subsequent activation (By similarity). Required for mucosal tissue defense against enteric pathogens (By similarity). Activation of the non-canonical inflammasome in brain endothelial cells can lead to excessive pyroptosis, leading to blood-brain barrier breakdown (By similarity). Strongly binds to bacterial and mitochondrial lipids, including cardiolipin (PubMed:27281216). Does not bind to unphosphorylated phosphatidylinositol, phosphatidylethanolamine nor phosphatidylcholine (PubMed:27281216). {ECO:0000250|UniProtKB:Q9D8T2, ECO:0000269|PubMed:26375003, ECO:0000269|PubMed:26375259, ECO:0000269|PubMed:27281216, ECO:0000269|PubMed:27418190, ECO:0000269|PubMed:28392147, ECO:0000269|PubMed:29898893, ECO:0000269|PubMed:32820063, ECO:0000269|PubMed:33472215, ECO:0000269|PubMed:33883744, ECO:0000269|PubMed:34289345, ECO:0000269|PubMed:36227980, ECO:0000269|PubMed:37198476, ECO:0000269|PubMed:38040708, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}.; FUNCTION: [Gasdermin-D, p13]: Transcription coactivator produced by the cleavage by CASP3 or CASP7 in the upper small intestine in response to dietary antigens (By similarity). Required to maintain food tolerance in small intestine: translocates to the nucleus and acts as a coactivator for STAT1 to induce the transcription of CIITA and MHC class II molecules, which in turn induce type 1 regulatory T (Tr1) cells in upper small intestine (By similarity). {ECO:0000250|UniProtKB:Q9D8T2}.; FUNCTION: [Gasdermin-D, p40]: Produced by the cleavage by papain allergen (PubMed:35794369). After cleavage, moves to the plasma membrane and homooligomerizes within the membrane and forms pores of 10-15 nanometers (nm) of inner diameter, allowing the specific release of mature interleukin-33 (IL33), promoting type 2 inflammatory immune response (PubMed:35794369). {ECO:0000269|PubMed:35794369}. |
P78337 | PITX1 | S48 | ochoa | Pituitary homeobox 1 (Hindlimb-expressed homeobox protein backfoot) (Homeobox protein PITX1) (Paired-like homeodomain transcription factor 1) | Sequence-specific transcription factor that binds gene promoters and activates their transcription. May play a role in the development of anterior structures, and in particular, the brain and facies and in specifying the identity or structure of hindlimb. {ECO:0000250|UniProtKB:P56673}. |
P85299 | PRR5 | S284 | ochoa | Proline-rich protein 5 (Protein observed with Rictor-1) (Protor-1) | Associated subunit of mTORC2, which regulates cell growth and survival in response to hormonal signals (PubMed:17461779, PubMed:17599906, PubMed:29424687). mTORC2 is activated by growth factors, but, in contrast to mTORC1, seems to be nutrient-insensitive (PubMed:17461779, PubMed:17599906, PubMed:29424687). mTORC2 seems to function upstream of Rho GTPases to regulate the actin cytoskeleton, probably by activating one or more Rho-type guanine nucleotide exchange factors (PubMed:17461779, PubMed:17599906, PubMed:29424687). PRR5 plays an important role in regulation of PDGFRB expression and in modulation of platelet-derived growth factor signaling (PubMed:17599906). May act as a tumor suppressor in breast cancer (PubMed:15718101). {ECO:0000269|PubMed:15718101, ECO:0000269|PubMed:17461779, ECO:0000269|PubMed:17599906, ECO:0000269|PubMed:29424687}. |
Q00341 | HDLBP | S624 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q00341 | HDLBP | S1238 | ochoa | Vigilin (High density lipoprotein-binding protein) (HDL-binding protein) | Appears to play a role in cell sterol metabolism. It may function to protect cells from over-accumulation of cholesterol. |
Q00536 | CDK16 | S155 | ochoa|psp | Cyclin-dependent kinase 16 (EC 2.7.11.22) (Cell division protein kinase 16) (PCTAIRE-motif protein kinase 1) (Serine/threonine-protein kinase PCTAIRE-1) | Protein kinase that plays a role in vesicle-mediated transport processes and exocytosis. Regulates GH1 release by brain neurons. Phosphorylates NSF, and thereby regulates NSF oligomerization. Required for normal spermatogenesis. Regulates neuron differentiation and dendrite development (By similarity). Plays a role in the regulation of insulin secretion in response to changes in blood glucose levels. Can phosphorylate CCNY at 'Ser-336' (in vitro). {ECO:0000250, ECO:0000269|PubMed:22184064, ECO:0000269|PubMed:22796189, ECO:0000269|PubMed:22798068}. |
Q00537 | CDK17 | S182 | ochoa | Cyclin-dependent kinase 17 (EC 2.7.11.22) (Cell division protein kinase 17) (PCTAIRE-motif protein kinase 2) (Serine/threonine-protein kinase PCTAIRE-2) | May play a role in terminally differentiated neurons. Has a Ser/Thr-phosphorylating activity for histone H1 (By similarity). {ECO:0000250}. |
Q01970 | PLCB3 | S1107 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-3) (Phospholipase C-beta-3) (PLC-beta-3) | Catalyzes the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) (PubMed:20966218, PubMed:29122926, PubMed:37991948, PubMed:9188725). Key transducer of G protein-coupled receptor signaling: activated by G(q)/G(11) G alpha proteins downstream of G protein-coupled receptors activation (PubMed:20966218, PubMed:37991948). In neutrophils, participates in a phospholipase C-activating N-formyl peptide-activated GPCR (G protein-coupled receptor) signaling pathway by promoting RASGRP4 activation by DAG, to promote neutrophil functional responses (By similarity). {ECO:0000250|UniProtKB:P51432, ECO:0000269|PubMed:20966218, ECO:0000269|PubMed:29122926, ECO:0000269|PubMed:37991948, ECO:0000269|PubMed:9188725}. |
Q03001 | DST | S3970 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q03188 | CENPC | S615 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q04726 | TLE3 | S205 | ochoa | Transducin-like enhancer protein 3 (Enhancer of split groucho-like protein 3) (ESG3) | Transcriptional corepressor that binds to a number of transcription factors (PubMed:28689657). Inhibits the transcriptional activation mediated by CTNNB1 and TCF family members in Wnt signaling (PubMed:28689657). The effects of full-length TLE family members may be modulated by association with dominant-negative AES (By similarity). {ECO:0000250|UniProtKB:Q04724, ECO:0000269|PubMed:28689657}. |
Q05397 | PTK2 | S392 | ochoa | Focal adhesion kinase 1 (FADK 1) (EC 2.7.10.2) (Focal adhesion kinase-related nonkinase) (FRNK) (Protein phosphatase 1 regulatory subunit 71) (PPP1R71) (Protein-tyrosine kinase 2) (p125FAK) (pp125FAK) | Non-receptor protein-tyrosine kinase that plays an essential role in regulating cell migration, adhesion, spreading, reorganization of the actin cytoskeleton, formation and disassembly of focal adhesions and cell protrusions, cell cycle progression, cell proliferation and apoptosis. Required for early embryonic development and placenta development. Required for embryonic angiogenesis, normal cardiomyocyte migration and proliferation, and normal heart development. Regulates axon growth and neuronal cell migration, axon branching and synapse formation; required for normal development of the nervous system. Plays a role in osteogenesis and differentiation of osteoblasts. Functions in integrin signal transduction, but also in signaling downstream of numerous growth factor receptors, G-protein coupled receptors (GPCR), EPHA2, netrin receptors and LDL receptors. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascade. Promotes activation of MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling cascade. Promotes localized and transient activation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and thereby modulates the activity of Rho family GTPases. Signaling via CAS family members mediates activation of RAC1. Phosphorylates NEDD9 following integrin stimulation (PubMed:9360983). Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ACTN1, ARHGEF7, GRB7, RET and WASL. Promotes phosphorylation of PXN and STAT1; most likely PXN and STAT1 are phosphorylated by a SRC family kinase that is recruited to autophosphorylated PTK2/FAK1, rather than by PTK2/FAK1 itself. Promotes phosphorylation of BCAR1; GIT2 and SHC1; this requires both SRC and PTK2/FAK1. Promotes phosphorylation of BMX and PIK3R1. Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:10655584, ECO:0000269|PubMed:11331870, ECO:0000269|PubMed:11980671, ECO:0000269|PubMed:15166238, ECO:0000269|PubMed:15561106, ECO:0000269|PubMed:15895076, ECO:0000269|PubMed:16919435, ECO:0000269|PubMed:16927379, ECO:0000269|PubMed:17395594, ECO:0000269|PubMed:17431114, ECO:0000269|PubMed:17968709, ECO:0000269|PubMed:18006843, ECO:0000269|PubMed:18206965, ECO:0000269|PubMed:18256281, ECO:0000269|PubMed:18292575, ECO:0000269|PubMed:18497331, ECO:0000269|PubMed:18677107, ECO:0000269|PubMed:19138410, ECO:0000269|PubMed:19147981, ECO:0000269|PubMed:19224453, ECO:0000269|PubMed:20332118, ECO:0000269|PubMed:20495381, ECO:0000269|PubMed:21454698, ECO:0000269|PubMed:9360983}.; FUNCTION: [Isoform 6]: Isoform 6 (FRNK) does not contain a kinase domain and inhibits PTK2/FAK1 phosphorylation and signaling. Its enhanced expression can attenuate the nuclear accumulation of LPXN and limit its ability to enhance serum response factor (SRF)-dependent gene transcription. {ECO:0000269|PubMed:20109444}. |
Q09666 | AHNAK | S572 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12789 | GTF3C1 | S1842 | ochoa | General transcription factor 3C polypeptide 1 (TF3C-alpha) (TFIIIC box B-binding subunit) (Transcription factor IIIC 220 kDa subunit) (TFIIIC 220 kDa subunit) (TFIIIC220) (Transcription factor IIIC subunit alpha) | Required for RNA polymerase III-mediated transcription. Component of TFIIIC that initiates transcription complex assembly on tRNA and is required for transcription of 5S rRNA and other stable nuclear and cytoplasmic RNAs. Binds to the box B promoter element. |
Q12888 | TP53BP1 | S520 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12888 | TP53BP1 | S900 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q12986 | NFX1 | S152 | ochoa | Transcriptional repressor NF-X1 (EC 2.3.2.-) (Nuclear transcription factor, X box-binding protein 1) | Binds to the X-box motif of MHC class II genes and represses their expression. May play an important role in regulating the duration of an inflammatory response by limiting the period in which MHC class II molecules are induced by interferon-gamma. Isoform 3 binds to the X-box motif of TERT promoter and represses its expression. Together with PABPC1 or PABPC4, isoform 1 acts as a coactivator for TERT expression. Mediates E2-dependent ubiquitination. {ECO:0000269|PubMed:10500182, ECO:0000269|PubMed:15371341, ECO:0000269|PubMed:17267499}. |
Q13206 | DDX10 | S809 | ochoa | Probable ATP-dependent RNA helicase DDX10 (EC 3.6.4.13) (DEAD box protein 10) | Putative ATP-dependent RNA helicase that plays various role in innate immunity or inflammation. Plays a role in the enhancement of AIM2-induced inflammasome activation by interacting with AIM2 and stabilizing its protein level (PubMed:32519665). Negatively regulates viral infection by promoting interferon beta production and interferon stimulated genes/ISGs expression (PubMed:36779599). {ECO:0000269|PubMed:32519665, ECO:0000269|PubMed:36779599}. |
Q13322 | GRB10 | S428 | ochoa|psp | Growth factor receptor-bound protein 10 (GRB10 adapter protein) (Insulin receptor-binding protein Grb-IR) | Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2. {ECO:0000269|PubMed:12493740, ECO:0000269|PubMed:15060076, ECO:0000269|PubMed:16434550, ECO:0000269|PubMed:17376403}. |
Q13425 | SNTB2 | S228 | ochoa | Beta-2-syntrophin (59 kDa dystrophin-associated protein A1 basic component 2) (Syntrophin-3) (SNT3) (Syntrophin-like) (SNTL) | Adapter protein that binds to and probably organizes the subcellular localization of a variety of membrane proteins. May link various receptors to the actin cytoskeleton and the dystrophin glycoprotein complex. May play a role in the regulation of secretory granules via its interaction with PTPRN. |
Q13428 | TCOF1 | S999 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13835 | PKP1 | S155 | ochoa|psp | Plakophilin-1 (Band 6 protein) (B6P) | A component of desmosome cell-cell junctions which are required for positive regulation of cellular adhesion (PubMed:23444369). Plays a role in desmosome protein expression regulation and localization to the desmosomal plaque, thereby maintaining cell sheet integrity and anchorage of desmosomes to intermediate filaments (PubMed:10852826, PubMed:23444369). Required for localization of DSG3 and YAP1 to the cell membrane in keratinocytes in response to mechanical strain, via the formation of an interaction complex composed of DSG3, YAP1, PKP1 and YWHAG (PubMed:31835537). Positively regulates differentiation of keratinocytes, potentially via promoting localization of DSG1 at desmosome cell junctions (By similarity). Required for calcium-independent development and maturation of desmosome plaques specifically at lateral cell-cell contacts in differentiating keratinocytes (By similarity). Plays a role in the maintenance of DSG3 protein abundance, DSG3 clustering and localization of these clusters to the cell membrane in keratinocytes (By similarity). May also promote keratinocyte proliferation and morphogenesis during postnatal development (PubMed:9326952). Required for tight junction inside-out transepidermal barrier function of the skin (By similarity). Promotes Wnt-mediated proliferation and differentiation of ameloblasts, via facilitating TJP1/ZO-1 localization to tight junctions (By similarity). Binds single-stranded DNA (ssDNA), and may thereby play a role in sensing DNA damage and promoting cell survival (PubMed:20613778). Positively regulates cap-dependent translation and as a result cell proliferation, via recruitment of EIF4A1 to the initiation complex and promotion of EIF4A1 ATPase activity (PubMed:20156963, PubMed:23444369). Regulates the mRNA stability and protein abundance of desmosome components PKP2, PKP3, DSC2 and DSP, potentially via its interaction with FXR1 (PubMed:25225333). {ECO:0000250|UniProtKB:P97350, ECO:0000269|PubMed:10852826, ECO:0000269|PubMed:20156963, ECO:0000269|PubMed:20613778, ECO:0000269|PubMed:23444369, ECO:0000269|PubMed:25225333, ECO:0000269|PubMed:31835537, ECO:0000269|PubMed:9326952}. |
Q14449 | GRB14 | S372 | ochoa|psp | Growth factor receptor-bound protein 14 (GRB14 adapter protein) | Adapter protein which modulates coupling of cell surface receptor kinases with specific signaling pathways. Binds to, and suppresses signals from, the activated insulin receptor (INSR). Potent inhibitor of insulin-stimulated MAPK3 phosphorylation. Plays a critical role regulating PDPK1 membrane translocation in response to insulin stimulation and serves as an adapter protein to recruit PDPK1 to activated insulin receptor, thus promoting PKB/AKT1 phosphorylation and transduction of the insulin signal. {ECO:0000269|PubMed:15210700, ECO:0000269|PubMed:19648926}. |
Q14669 | TRIP12 | S163 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14684 | RRP1B | S460 | ochoa | Ribosomal RNA processing protein 1 homolog B (RRP1-like protein B) | Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1 (PubMed:20040599). Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus (PubMed:20926688). Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure (PubMed:19710015). {ECO:0000250|UniProtKB:Q91YK2, ECO:0000269|PubMed:19710015, ECO:0000269|PubMed:20040599, ECO:0000269|PubMed:20926688}.; FUNCTION: (Microbial infection) Following influenza A virus (IAV) infection, promotes viral mRNA transcription by facilitating the binding of IAV RNA-directed RNA polymerase to capped mRNA. {ECO:0000269|PubMed:26311876}. |
Q14766 | LTBP1 | S1415 | ochoa | Latent-transforming growth factor beta-binding protein 1 (LTBP-1) (Transforming growth factor beta-1-binding protein 1) (TGF-beta1-BP-1) | Key regulator of transforming growth factor beta (TGFB1, TGFB2 and TGFB3) that controls TGF-beta activation by maintaining it in a latent state during storage in extracellular space (PubMed:2022183, PubMed:8617200, PubMed:8939931). Associates specifically via disulfide bonds with the Latency-associated peptide (LAP), which is the regulatory chain of TGF-beta, and regulates integrin-dependent activation of TGF-beta (PubMed:15184403, PubMed:8617200, PubMed:8939931). Outcompeted by LRRC32/GARP for binding to LAP regulatory chain of TGF-beta (PubMed:22278742). {ECO:0000269|PubMed:15184403, ECO:0000269|PubMed:2022183, ECO:0000269|PubMed:22278742, ECO:0000269|PubMed:8617200, ECO:0000269|PubMed:8939931}. |
Q14978 | NOLC1 | S267 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q15139 | PRKD1 | S237 | ochoa | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15147 | PLCB4 | S891 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4 (EC 3.1.4.11) (Phosphoinositide phospholipase C-beta-4) (Phospholipase C-beta-4) (PLC-beta-4) | Activated phosphatidylinositol-specific phospholipase C enzymes catalyze the production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) involved in G-protein coupled receptor signaling pathways. PLCB4 is a direct effector of the endothelin receptor signaling pathway that plays an essential role in lower jaw and middle ear structures development (PubMed:35284927). {ECO:0000250|UniProtKB:Q07722, ECO:0000269|PubMed:35284927}. |
Q15149 | PLEC | S1446 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15678 | PTPN14 | S809 | ochoa | Tyrosine-protein phosphatase non-receptor type 14 (EC 3.1.3.48) (Protein-tyrosine phosphatase pez) | Protein tyrosine phosphatase which may play a role in the regulation of lymphangiogenesis, cell-cell adhesion, cell-matrix adhesion, cell migration, cell growth and also regulates TGF-beta gene expression, thereby modulating epithelial-mesenchymal transition. Mediates beta-catenin dephosphorylation at adhesion junctions. Acts as a negative regulator of the oncogenic property of YAP, a downstream target of the hippo pathway, in a cell density-dependent manner. May function as a tumor suppressor. {ECO:0000269|PubMed:10934049, ECO:0000269|PubMed:12808048, ECO:0000269|PubMed:17893246, ECO:0000269|PubMed:20826270, ECO:0000269|PubMed:22233626, ECO:0000269|PubMed:22525271, ECO:0000269|PubMed:22948661}. |
Q15751 | HERC1 | S1512 | ochoa | Probable E3 ubiquitin-protein ligase HERC1 (EC 2.3.2.26) (HECT domain and RCC1-like domain-containing protein 1) (HECT-type E3 ubiquitin transferase HERC1) (p532) (p619) | Involved in membrane trafficking via some guanine nucleotide exchange factor (GEF) activity and its ability to bind clathrin. Acts as a GEF for Arf and Rab, by exchanging bound GDP for free GTP. Binds phosphatidylinositol 4,5-bisphosphate, which is required for GEF activity. May also act as a E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. {ECO:0000269|PubMed:15642342, ECO:0000269|PubMed:8861955, ECO:0000269|PubMed:9233772}. |
Q16825 | PTPN21 | S797 | ochoa | Tyrosine-protein phosphatase non-receptor type 21 (EC 3.1.3.48) (Protein-tyrosine phosphatase D1) | None |
Q2M2Z5 | KIZ | S620 | ochoa | Centrosomal protein kizuna (Polo-like kinase 1 substrate 1) | Centrosomal protein required for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation. Required for stabilizing the expanded pericentriolar material around the centriole. {ECO:0000269|PubMed:16980960}. |
Q49AR2 | C5orf22 | S199 | ochoa | UPF0489 protein C5orf22 | None |
Q52LW3 | ARHGAP29 | S184 | ochoa | Rho GTPase-activating protein 29 (PTPL1-associated RhoGAP protein 1) (Rho-type GTPase-activating protein 29) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Has strong activity toward RHOA, and weaker activity toward RAC1 and CDC42. May act as a specific effector of RAP2A to regulate Rho. In concert with RASIP1, suppresses RhoA signaling and dampens ROCK and MYH9 activities in endothelial cells and plays an essential role in blood vessel tubulogenesis. {ECO:0000269|PubMed:15752761, ECO:0000269|PubMed:9305890}. |
Q5M775 | SPECC1 | S366 | ochoa | Cytospin-B (Nuclear structure protein 5) (NSP5) (Sperm antigen HCMOGT-1) (Sperm antigen with calponin homology and coiled-coil domains 1) | None |
Q5QJE6 | DNTTIP2 | S253 | ochoa | Deoxynucleotidyltransferase terminal-interacting protein 2 (Estrogen receptor-binding protein) (LPTS-interacting protein 2) (LPTS-RP2) (Terminal deoxynucleotidyltransferase-interacting factor 2) (TdIF2) (TdT-interacting factor 2) | Regulates the transcriptional activity of DNTT and ESR1. May function as a chromatin remodeling protein (PubMed:12786946, PubMed:15047147). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (PubMed:34516797). {ECO:0000269|PubMed:12786946, ECO:0000269|PubMed:15047147, ECO:0000269|PubMed:34516797}. |
Q5SWA1 | PPP1R15B | S510 | ochoa | Protein phosphatase 1 regulatory subunit 15B | Maintains low levels of EIF2S1 phosphorylation in unstressed cells by promoting its dephosphorylation by PP1. {ECO:0000269|PubMed:26159176, ECO:0000269|PubMed:26307080}. |
Q5T1M5 | FKBP15 | S348 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T1R4 | HIVEP3 | S993 | ochoa | Transcription factor HIVEP3 (Human immunodeficiency virus type I enhancer-binding protein 3) (Kappa-B and V(D)J recombination signal sequences-binding protein) (Kappa-binding protein 1) (KBP-1) (Zinc finger protein ZAS3) | Plays a role of transcription factor; binds to recognition signal sequences (Rss heptamer) for somatic recombination of immunoglobulin and T-cell receptor gene segments; Also binds to the kappa-B motif of gene such as S100A4, involved in cell progression and differentiation. Kappa-B motif is a gene regulatory element found in promoters and enhancers of genes involved in immunity, inflammation, and growth and that responds to viral antigens, mitogens, and cytokines. Involvement of HIVEP3 in cell growth is strengthened by the fact that its down-regulation promotes cell cycle progression with ultimate formation of multinucleated giant cells. Strongly inhibits TNF-alpha-induced NF-kappa-B activation; Interferes with nuclear factor NF-kappa-B by several mechanisms: as transcription factor, by competing for Kappa-B motif and by repressing transcription in the nucleus; through a non transcriptional process, by inhibiting nuclear translocation of RELA by association with TRAF2, an adapter molecule in the tumor necrosis factor signaling, which blocks the formation of IKK complex. Interaction with TRAF proteins inhibits both NF-Kappa-B-mediated and c-Jun N-terminal kinase/JNK-mediated responses that include apoptosis and pro-inflammatory cytokine gene expression. Positively regulates the expression of IL2 in T-cell. Essential regulator of adult bone formation. {ECO:0000269|PubMed:11161801}. |
Q5VWQ8 | DAB2IP | S730 | ochoa | Disabled homolog 2-interacting protein (DAB2 interaction protein) (DAB2-interacting protein) (ASK-interacting protein 1) (AIP-1) (DOC-2/DAB-2 interactive protein) | Functions as a scaffold protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Involved in several processes such as innate immune response, inflammation and cell growth inhibition, apoptosis, cell survival, angiogenesis, cell migration and maturation. Also plays a role in cell cycle checkpoint control; reduces G1 phase cyclin levels resulting in G0/G1 cell cycle arrest. Mediates signal transduction by receptor-mediated inflammatory signals, such as the tumor necrosis factor (TNF), interferon (IFN) or lipopolysaccharide (LPS). Modulates the balance between phosphatidylinositol 3-kinase (PI3K)-AKT-mediated cell survival and apoptosis stimulated kinase (MAP3K5)-JNK signaling pathways; sequesters both AKT1 and MAP3K5 and counterbalances the activity of each kinase by modulating their phosphorylation status in response to pro-inflammatory stimuli. Acts as a regulator of the endoplasmic reticulum (ER) unfolded protein response (UPR) pathway; specifically involved in transduction of the ER stress-response to the JNK cascade through ERN1. Mediates TNF-alpha-induced apoptosis activation by facilitating dissociation of inhibitor 14-3-3 from MAP3K5; recruits the PP2A phosphatase complex which dephosphorylates MAP3K5 on 'Ser-966', leading to the dissociation of 13-3-3 proteins and activation of the MAP3K5-JNK signaling pathway in endothelial cells. Also mediates TNF/TRAF2-induced MAP3K5-JNK activation, while it inhibits CHUK-NF-kappa-B signaling. Acts a negative regulator in the IFN-gamma-mediated JAK-STAT signaling cascade by inhibiting smooth muscle cell (VSMCs) proliferation and intimal expansion, and thus, prevents graft arteriosclerosis (GA). Acts as a GTPase-activating protein (GAP) for the ADP ribosylation factor 6 (ARF6), Ras and RAB40C (PubMed:29156729). Promotes hydrolysis of the ARF6-bound GTP and thus, negatively regulates phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent TLR4-TIRAP-MyD88 and NF-kappa-B signaling pathways in endothelial cells in response to lipopolysaccharides (LPS). Binds specifically to phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 3-phosphate (PtdIns3P). In response to vascular endothelial growth factor (VEGFA), acts as a negative regulator of the VEGFR2-PI3K-mediated angiogenic signaling pathway by inhibiting endothelial cell migration and tube formation. In the developing brain, promotes both the transition from the multipolar to the bipolar stage and the radial migration of cortical neurons from the ventricular zone toward the superficial layer of the neocortex in a glial-dependent locomotion process. Probable downstream effector of the Reelin signaling pathway; promotes Purkinje cell (PC) dendrites development and formation of cerebellar synapses. Also functions as a tumor suppressor protein in prostate cancer progression; prevents cell proliferation and epithelial-to-mesenchymal transition (EMT) through activation of the glycogen synthase kinase-3 beta (GSK3B)-induced beta-catenin and inhibition of PI3K-AKT and Ras-MAPK survival downstream signaling cascades, respectively. {ECO:0000269|PubMed:12813029, ECO:0000269|PubMed:17389591, ECO:0000269|PubMed:18292600, ECO:0000269|PubMed:19033661, ECO:0000269|PubMed:19903888, ECO:0000269|PubMed:19948740, ECO:0000269|PubMed:20080667, ECO:0000269|PubMed:20154697, ECO:0000269|PubMed:21700930, ECO:0000269|PubMed:22696229, ECO:0000269|PubMed:29156729}. |
Q6DN90 | IQSEC1 | S107 | ochoa | IQ motif and SEC7 domain-containing protein 1 (ADP-ribosylation factors guanine nucleotide-exchange protein 100) (ADP-ribosylation factors guanine nucleotide-exchange protein 2) (Brefeldin-resistant Arf-GEF 2 protein) (BRAG2) | Guanine nucleotide exchange factor for ARF1 and ARF6 (PubMed:11226253, PubMed:24058294). Guanine nucleotide exchange factor activity is enhanced by lipid binding (PubMed:24058294). Accelerates GTP binding by ARFs of all three classes. Guanine nucleotide exchange protein for ARF6, mediating internalization of beta-1 integrin (PubMed:16461286). Involved in neuronal development (Probable). In neurons, plays a role in the control of vesicle formation by endocytoc cargo. Upon long term depression, interacts with GRIA2 and mediates the activation of ARF6 to internalize synaptic AMPAR receptors (By similarity). {ECO:0000250|UniProtKB:A0A0G2JUG7, ECO:0000269|PubMed:11226253, ECO:0000269|PubMed:16461286, ECO:0000269|PubMed:24058294, ECO:0000305|PubMed:31607425}. |
Q6DT37 | CDC42BPG | S1484 | ochoa | Serine/threonine-protein kinase MRCK gamma (EC 2.7.11.1) (CDC42-binding protein kinase gamma) (DMPK-like gamma) (Myotonic dystrophy kinase-related CDC42-binding kinase gamma) (MRCK gamma) (MRCKG) (Myotonic dystrophy protein kinase-like gamma) (Myotonic dystrophy protein kinase-like alpha) | May act as a downstream effector of CDC42 in cytoskeletal reorganization. Contributes to the actomyosin contractility required for cell invasion, through the regulation of MYPT1 and thus MLC2 phosphorylation (By similarity). {ECO:0000250|UniProtKB:Q5VT25, ECO:0000269|PubMed:15194684}. |
Q6N043 | ZNF280D | S181 | ochoa | Zinc finger protein 280D (Suppressor of hairy wing homolog 4) (Zinc finger protein 634) | May function as a transcription factor. |
Q6P0Q8 | MAST2 | S911 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6VY07 | PACS1 | S531 | ochoa | Phosphofurin acidic cluster sorting protein 1 (PACS-1) | Coat protein that is involved in the localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster sorting motifs. Controls the endosome-to-Golgi trafficking of furin and mannose-6-phosphate receptor by connecting the acidic-cluster-containing cytoplasmic domain of these molecules with the adapter-protein complex-1 (AP-1) of endosomal clathrin-coated membrane pits. Involved in HIV-1 nef-mediated removal of MHC-I from the cell surface to the TGN. Required for normal ER Ca2+ handling in lymphocytes. Together with WDR37, it plays an essential role in lymphocyte development, quiescence and survival. Required for stabilizing peripheral lymphocyte populations (By similarity). {ECO:0000250|UniProtKB:Q8K212, ECO:0000269|PubMed:11331585, ECO:0000269|PubMed:15692563}. |
Q6ZMT1 | STAC2 | S234 | ochoa | SH3 and cysteine-rich domain-containing protein 2 (24b2/STAC2) (Src homology 3 and cysteine-rich domain-containing protein 2) | Plays a redundant role in promoting the expression of calcium channel CACNA1S at the cell membrane, and thereby contributes to increased channel activity. Slows down the inactivation rate of the calcium channel CACNA1C. {ECO:0000250|UniProtKB:Q8R1B0}. |
Q70Z53 | FRA10AC1 | S287 | ochoa | Protein FRA10AC1 | May be involved in pre-mRNA splicing. {ECO:0000269|PubMed:34694367}. |
Q76I76 | SSH2 | S38 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7RTP6 | MICAL3 | S1794 | ochoa | [F-actin]-monooxygenase MICAL3 (EC 1.14.13.225) (Molecule interacting with CasL protein 3) (MICAL-3) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization. In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2). Seems to act as Rab effector protein and plays a role in vesicle trafficking. Involved in exocytic vesicles tethering and fusion: the monooxygenase activity is required for this process and implicates RAB8A associated with exocytotic vesicles. Required for cytokinesis. Contributes to stabilization and/or maturation of the intercellular bridge independently of its monooxygenase activity. Promotes recruitment of Rab8 and ERC1 to the intercellular bridge, and together these proteins are proposed to function in timely abscission. {ECO:0000269|PubMed:21596566, ECO:0000269|PubMed:24440334}. |
Q7Z434 | MAVS | S409 | ochoa | Mitochondrial antiviral-signaling protein (MAVS) (CARD adapter inducing interferon beta) (Cardif) (Interferon beta promoter stimulator protein 1) (IPS-1) (Putative NF-kappa-B-activating protein 031N) (Virus-induced-signaling adapter) (VISA) | Adapter required for innate immune defense against viruses (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:21170385, PubMed:23087404, PubMed:27992402, PubMed:33139700, PubMed:37582970). Acts downstream of DHX33, RIGI and IFIH1/MDA5, which detect intracellular dsRNA produced during viral replication, to coordinate pathways leading to the activation of NF-kappa-B, IRF3 and IRF7, and to the subsequent induction of antiviral cytokines such as IFNB and RANTES (CCL5) (PubMed:16125763, PubMed:16127453, PubMed:16153868, PubMed:16177806, PubMed:19631370, PubMed:20127681, PubMed:20451243, PubMed:20628368, PubMed:21170385, PubMed:23087404, PubMed:25636800, PubMed:27736772, PubMed:33110251). Peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state (PubMed:20451243). Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response (PubMed:20451243). May activate the same pathways following detection of extracellular dsRNA by TLR3 (PubMed:16153868). May protect cells from apoptosis (PubMed:16125763). Involved in NLRP3 inflammasome activation by mediating NLRP3 recruitment to mitochondria (PubMed:23582325). {ECO:0000269|PubMed:16125763, ECO:0000269|PubMed:16127453, ECO:0000269|PubMed:16153868, ECO:0000269|PubMed:16177806, ECO:0000269|PubMed:19631370, ECO:0000269|PubMed:20127681, ECO:0000269|PubMed:20451243, ECO:0000269|PubMed:20628368, ECO:0000269|PubMed:21170385, ECO:0000269|PubMed:23087404, ECO:0000269|PubMed:23582325, ECO:0000269|PubMed:25636800, ECO:0000269|PubMed:27736772, ECO:0000269|PubMed:27992402, ECO:0000269|PubMed:33110251, ECO:0000269|PubMed:33139700, ECO:0000269|PubMed:37582970}. |
Q7Z591 | AKNA | S1175 | ochoa | Microtubule organization protein AKNA (AT-hook-containing transcription factor) | Centrosomal protein that plays a key role in cell delamination by regulating microtubule organization (By similarity). Required for the delamination and retention of neural stem cells from the subventricular zone during neurogenesis (By similarity). Also regulates the epithelial-to-mesenchymal transition in other epithelial cells (By similarity). Acts by increasing centrosomal microtubule nucleation and recruiting nucleation factors and minus-end stabilizers, thereby destabilizing microtubules at the adherens junctions and mediating constriction of the apical endfoot (By similarity). In addition, may also act as a transcription factor that specifically activates the expression of the CD40 receptor and its ligand CD40L/CD154, two cell surface molecules on lymphocytes that are critical for antigen-dependent-B-cell development (PubMed:11268217). Binds to A/T-rich promoters (PubMed:11268217). It is unclear how it can both act as a microtubule organizer and as a transcription factor; additional evidences are required to reconcile these two apparently contradictory functions (Probable). {ECO:0000250|UniProtKB:Q80VW7, ECO:0000269|PubMed:11268217, ECO:0000305}. |
Q86T82 | USP37 | T772 | ochoa | Ubiquitin carboxyl-terminal hydrolase 37 (EC 3.4.19.12) (Deubiquitinating enzyme 37) (Ubiquitin thioesterase 37) (Ubiquitin-specific-processing protease 37) | Deubiquitinase that plays a role in different processes including cell cycle regulation, DNA replication or DNA damage response (PubMed:26299517, PubMed:27296872, PubMed:31911859, PubMed:34509474). Antagonizes the anaphase-promoting complex (APC/C) during G1/S transition by mediating deubiquitination of cyclin-A (CCNA1 and CCNA2), thereby promoting S phase entry. Specifically mediates deubiquitination of 'Lys-11'-linked polyubiquitin chains, a specific ubiquitin-linkage type mediated by the APC/C complex. Phosphorylation at Ser-628 during G1/S phase maximizes the deubiquitinase activity, leading to prevent degradation of cyclin-A (CCNA1 and CCNA2) (PubMed:21596315). Plays an important role in the regulation of DNA replication by stabilizing the licensing factor CDT1 (PubMed:27296872). Also plays an essential role beyond S-phase entry to promote the efficiency and fidelity of replication by deubiquitinating checkpoint kinase 1/CHK1, promoting its stability (PubMed:34509474). Sustains the DNA damage response (DDR) by deubiquitinating and stabilizing the ATP-dependent DNA helicase BLM (PubMed:34606619). Mechanistically, DNA double-strand breaks (DSB) promotes ATM-mediated phosphorylation of USP37 and enhances the binding between USP37 and BLM (PubMed:34606619). Promotes cell migration by deubiquitinating and stabilizing the epithelial-mesenchymal transition (EMT)-inducing transcription factor SNAI (PubMed:31911859). Plays a role in the regulation of mitotic spindle assembly and mitotic progression by associating with chromatin-associated WAPL and stabilizing it through deubiquitination (PubMed:26299517). {ECO:0000269|PubMed:21596315, ECO:0000269|PubMed:26299517, ECO:0000269|PubMed:27296872, ECO:0000269|PubMed:31911859, ECO:0000269|PubMed:34509474, ECO:0000269|PubMed:34606619}. |
Q86TI0 | TBC1D1 | S573 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q8IVF2 | AHNAK2 | S282 | ochoa | Protein AHNAK2 | None |
Q8IZT6 | ASPM | S607 | ochoa | Abnormal spindle-like microcephaly-associated protein (Abnormal spindle protein homolog) (Asp homolog) | Involved in mitotic spindle regulation and coordination of mitotic processes. The function in regulating microtubule dynamics at spindle poles including spindle orientation, astral microtubule density and poleward microtubule flux seems to depend on the association with the katanin complex formed by KATNA1 and KATNB1. Enhances the microtubule lattice severing activity of KATNA1 by recruiting the katanin complex to microtubules. Can block microtubule minus-end growth and reversely this function can be enhanced by the katanin complex (PubMed:28436967). May have a preferential role in regulating neurogenesis. {ECO:0000269|PubMed:12355089, ECO:0000269|PubMed:15972725, ECO:0000269|PubMed:28436967}. |
Q8IZW8 | TNS4 | S198 | ochoa | Tensin-4 (C-terminal tensin-like protein) | Promotes EGF-induced cell migration by displacing tensin TNS3 from the cytoplasmic tail of integrin ITGB1 which results in dissociation of TNS3 from focal adhesions, disassembly of actin stress fibers and initiation of cell migration (PubMed:17643115). Suppresses ligand-induced degradation of EGFR by reducing EGFR ubiquitination in the presence of EGF (PubMed:23774213). Increases MET protein stability by inhibiting MET endocytosis and subsequent lysosomal degradation which leads to increased cell survival, proliferation and migration (PubMed:24814316). {ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:23774213, ECO:0000269|PubMed:24814316}. |
Q8N1G4 | LRRC47 | T522 | ochoa | Leucine-rich repeat-containing protein 47 | None |
Q8N3E9 | PLCD3 | S559 | ochoa | 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase delta-3 (EC 3.1.4.11) (Phosphoinositide phospholipase C-delta-3) (Phospholipase C-delta-3) (PLC-delta-3) | Hydrolyzes the phosphatidylinositol 4,5-bisphosphate (PIP2) to generate 2 second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG mediates the activation of protein kinase C (PKC), while IP3 releases Ca(2+) from intracellular stores. Essential for trophoblast and placental development. May participate in cytokinesis by hydrolyzing PIP2 at the cleavage furrow (PubMed:10336610). Regulates neurite outgrowth through the inhibition of RhoA/Rho kinase signaling (By similarity). {ECO:0000250|UniProtKB:Q8K2J0, ECO:0000269|PubMed:10336610}. |
Q8N3X1 | FNBP4 | S124 | ochoa | Formin-binding protein 4 (Formin-binding protein 30) | None |
Q8N9M5 | TMEM102 | S216 | ochoa | Transmembrane protein 102 (Common beta-chain associated protein) (CBAP) | Selectively involved in CSF2 deprivation-induced apoptosis via a mitochondria-dependent pathway. {ECO:0000269|PubMed:17828305}. |
Q8NBF6 | AVL9 | S246 | ochoa | Late secretory pathway protein AVL9 homolog | Functions in cell migration. {ECO:0000269|PubMed:22595670}. |
Q8NC74 | RBBP8NL | S394 | ochoa | RBBP8 N-terminal-like protein | None |
Q8NEY1 | NAV1 | S142 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NFY9 | KBTBD8 | S348 | ochoa | Kelch repeat and BTB domain-containing protein 8 (T-cell activation kelch repeat protein) (TA-KRP) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin ligase complex that acts as a regulator of neural crest specification (PubMed:26399832). The BCR(KBTBD8) complex acts by mediating monoubiquitination of NOLC1 and TCOF1: monoubiquitination promotes the formation of a NOLC1-TCOF1 complex that acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:26399832}. |
Q8NHV4 | NEDD1 | S568 | psp | Protein NEDD1 (Neural precursor cell expressed developmentally down-regulated protein 1) (NEDD-1) | Required for mitosis progression. Promotes the nucleation of microtubules from the spindle. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19509060}. |
Q8TDM6 | DLG5 | S888 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TDM6 | DLG5 | S1668 | ochoa | Disks large homolog 5 (Discs large protein P-dlg) (Placenta and prostate DLG) | Acts as a regulator of the Hippo signaling pathway (PubMed:28087714, PubMed:28169360). Negatively regulates the Hippo signaling pathway by mediating the interaction of MARK3 with STK3/4, bringing them together to promote MARK3-dependent hyperphosphorylation and inactivation of STK3 kinase activity toward LATS1 (PubMed:28087714). Positively regulates the Hippo signaling pathway by mediating the interaction of SCRIB with STK4/MST1 and LATS1 which is important for the activation of the Hippo signaling pathway. Involved in regulating cell proliferation, maintenance of epithelial polarity, epithelial-mesenchymal transition (EMT), cell migration and invasion (PubMed:28169360). Plays an important role in dendritic spine formation and synaptogenesis in cortical neurons; regulates synaptogenesis by enhancing the cell surface localization of N-cadherin. Acts as a positive regulator of hedgehog (Hh) signaling pathway. Plays a critical role in the early point of the SMO activity cycle by interacting with SMO at the ciliary base to induce the accumulation of KIF7 and GLI2 at the ciliary tip for GLI2 activation (By similarity). {ECO:0000250|UniProtKB:E9Q9R9, ECO:0000269|PubMed:28087714, ECO:0000269|PubMed:28169360}. |
Q8TE76 | MORC4 | S617 | ochoa | MORC family CW-type zinc finger protein 4 (Zinc finger CW-type coiled-coil domain protein 2) (Zinc finger CW-type domain protein 4) | Histone methylation reader which binds to non-methylated (H3K4me0), monomethylated (H3K4me1), dimethylated (H3K4me2) and trimethylated (H3K4me3) 'Lys-4' on histone H3 (PubMed:26933034). The order of binding preference is H3K4me3 > H3K4me2 > H3K4me1 > H3K4me0 (PubMed:26933034). {ECO:0000269|PubMed:26933034}. |
Q8TEW0 | PARD3 | S829 | ochoa | Partitioning defective 3 homolog (PAR-3) (PARD-3) (Atypical PKC isotype-specific-interacting protein) (ASIP) (CTCL tumor antigen se2-5) (PAR3-alpha) | Adapter protein involved in asymmetrical cell division and cell polarization processes (PubMed:10954424, PubMed:27925688). Seems to play a central role in the formation of epithelial tight junctions (PubMed:27925688). Targets the phosphatase PTEN to cell junctions (By similarity). Involved in Schwann cell peripheral myelination (By similarity). Association with PARD6B may prevent the interaction of PARD3 with F11R/JAM1, thereby preventing tight junction assembly (By similarity). The PARD6-PARD3 complex links GTP-bound Rho small GTPases to atypical protein kinase C proteins (PubMed:10934474). Required for establishment of neuronal polarity and normal axon formation in cultured hippocampal neurons (PubMed:19812038, PubMed:27925688). {ECO:0000250|UniProtKB:Q99NH2, ECO:0000250|UniProtKB:Q9Z340, ECO:0000269|PubMed:10934474, ECO:0000269|PubMed:10954424, ECO:0000269|PubMed:19812038, ECO:0000269|PubMed:27925688}. |
Q8WTT2 | NOC3L | S117 | ochoa | Nucleolar complex protein 3 homolog (NOC3 protein homolog) (Factor for adipocyte differentiation 24) (NOC3-like protein) (Nucleolar complex-associated protein 3-like protein) | May be required for adipogenesis. {ECO:0000250}. |
Q8WUM9 | SLC20A1 | S267 | ochoa | Sodium-dependent phosphate transporter 1 (Gibbon ape leukemia virus receptor 1) (GLVR-1) (Leukemia virus receptor 1 homolog) (Phosphate transporter 1) (PiT-1) (Solute carrier family 20 member 1) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:11009570, PubMed:16790504, PubMed:17494632, PubMed:19726692, PubMed:7929240, PubMed:8041748). May play a role in extracellular matrix and cartilage calcification as well as in vascular calcification (PubMed:11009570). Essential for cell proliferation but this function is independent of its phosphate transporter activity (PubMed:19726692). {ECO:0000269|PubMed:11009570, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:19726692, ECO:0000269|PubMed:7929240, ECO:0000269|PubMed:8041748}.; FUNCTION: (Microbial infection) May function as a retroviral receptor as it confers human cells susceptibility to infection to Gibbon Ape Leukemia Virus (GaLV), Simian sarcoma-associated virus (SSAV) and Feline leukemia virus subgroup B (FeLV-B) as well as 10A1 murine leukemia virus (10A1 MLV). {ECO:0000269|PubMed:12097582, ECO:0000269|PubMed:1309898, ECO:0000269|PubMed:2078500, ECO:0000269|PubMed:7966619}. |
Q8WUX9 | CHMP7 | S431 | ochoa | Charged multivesicular body protein 7 (Chromatin-modifying protein 7) | ESCRT-III-like protein required to recruit the ESCRT-III complex to the nuclear envelope (NE) during late anaphase (PubMed:26040712). Together with SPAST, the ESCRT-III complex promotes NE sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712, PubMed:28242692). Recruited to the reforming NE during anaphase by LEMD2 (PubMed:28242692). Plays a role in the endosomal sorting pathway (PubMed:16856878). {ECO:0000269|PubMed:16856878, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
Q8WVC0 | LEO1 | S279 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q92576 | PHF3 | S1632 | ochoa | PHD finger protein 3 | None |
Q92614 | MYO18A | S151 | ochoa | Unconventional myosin-XVIIIa (Molecule associated with JAK3 N-terminus) (MAJN) (Myosin containing a PDZ domain) (Surfactant protein receptor SP-R210) (SP-R210) | May link Golgi membranes to the cytoskeleton and participate in the tensile force required for vesicle budding from the Golgi. Thereby, may play a role in Golgi membrane trafficking and could indirectly give its flattened shape to the Golgi apparatus (PubMed:19837035, PubMed:23345592). Alternatively, in concert with LURAP1 and CDC42BPA/CDC42BPB, has been involved in modulating lamellar actomyosin retrograde flow that is crucial to cell protrusion and migration (PubMed:18854160). May be involved in the maintenance of the stromal cell architectures required for cell to cell contact (By similarity). Regulates trafficking, expression, and activation of innate immune receptors on macrophages. Plays a role to suppress inflammatory responsiveness of macrophages via a mechanism that modulates CD14 trafficking (PubMed:25965346). Acts as a receptor of surfactant-associated protein A (SFTPA1/SP-A) and plays an important role in internalization and clearance of SFTPA1-opsonized S.aureus by alveolar macrophages (PubMed:16087679, PubMed:21123169). Strongly enhances natural killer cell cytotoxicity (PubMed:27467939). {ECO:0000250|UniProtKB:Q9JMH9, ECO:0000269|PubMed:16087679, ECO:0000269|PubMed:18854160, ECO:0000269|PubMed:19837035, ECO:0000269|PubMed:21123169, ECO:0000269|PubMed:23345592, ECO:0000269|PubMed:25965346, ECO:0000269|PubMed:27467939}. |
Q92622 | RUBCN | S390 | ochoa | Run domain Beclin-1-interacting and cysteine-rich domain-containing protein (Rubicon) (Beclin-1 associated RUN domain containing protein) (Baron) | Inhibits PIK3C3 activity; under basal conditions negatively regulates PI3K complex II (PI3KC3-C2) function in autophagy. Negatively regulates endosome maturation and degradative endocytic trafficking and impairs autophagosome maturation process. Can sequester UVRAG from association with a class C Vps complex (possibly the HOPS complex) and negatively regulates Rab7 activation (PubMed:20974968, PubMed:21062745). {ECO:0000269|PubMed:20974968, ECO:0000269|PubMed:21062745}.; FUNCTION: Involved in regulation of pathogen-specific host defense of activated macrophages. Following bacterial infection promotes NADH oxidase activity by association with CYBA thereby affecting TLR2 signaling and probably other TLR-NOX pathways. Stabilizes the CYBA:CYBB NADPH oxidase heterodimer, increases its association with TLR2 and its phagosome trafficking to induce antimicrobial burst of ROS and production of inflammatory cytokines (PubMed:22423966). Following fungal or viral infection (implicating CLEC7A (dectin-1)-mediated myeloid cell activation or RIGI-dependent sensing of RNA viruses) negatively regulates pro-inflammatory cytokine production by association with CARD9 and sequestering it from signaling complexes (PubMed:22423967). {ECO:0000269|PubMed:22423966, ECO:0000269|PubMed:22423967}. |
Q96EB6 | SIRT1 | S661 | psp | NAD-dependent protein deacetylase sirtuin-1 (hSIRT1) (EC 2.3.1.286) (NAD-dependent protein deacylase sirtuin-1) (EC 2.3.1.-) (Regulatory protein SIR2 homolog 1) (SIR2-like protein 1) (hSIR2) [Cleaved into: SirtT1 75 kDa fragment (75SirT1)] | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17290224, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20955178, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21947282, PubMed:22274616, PubMed:22918831, PubMed:24415752, PubMed:24824780, PubMed:29681526, PubMed:29765047, PubMed:30409912). Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression (PubMed:15469825). Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively (PubMed:14976264, PubMed:14980222, PubMed:15152190). Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction (PubMed:15205477). Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT) (By similarity). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes (PubMed:18485871). The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus (PubMed:18485871, PubMed:21504832). Deacetylates 'Lys-266' of SUV39H1, leading to its activation (PubMed:21504832). Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1 (PubMed:19188449). Deacetylates H2A and 'Lys-26' of H1-4 (PubMed:15469825). Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression (PubMed:20375098). Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting (By similarity). Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1 (PubMed:15469825, PubMed:18004385). Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2 (PubMed:18004385, PubMed:21504832). This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response (PubMed:18004385, PubMed:21504832). Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence (PubMed:11672523, PubMed:12006491, PubMed:22542455). Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I (By similarity). Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability (PubMed:19364925, PubMed:21807113). Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation (PubMed:14976264, PubMed:14980222, PubMed:21841822). Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis (PubMed:15126506). Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing (PubMed:21947282). Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha (PubMed:15152190). Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1 (PubMed:17283066, PubMed:17620057, PubMed:20100829, PubMed:20620956). Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver (PubMed:15692560). Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation (PubMed:16892051). Involved in HES1- and HEY2-mediated transcriptional repression (PubMed:12535671). In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62' (PubMed:21698133). Deacetylates MEF2D (PubMed:16166628). Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3 (PubMed:17505061). Represses HNF1A-mediated transcription (By similarity). Required for the repression of ESRRG by CREBZF (PubMed:19690166). Deacetylates NR1H3 and NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteasomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed (PubMed:17936707). Involved in lipid metabolism: deacetylates LPIN1, thereby inhibiting diacylglycerol synthesis (PubMed:20817729, PubMed:29765047). Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2 (By similarity). Deacetylates p300/EP300 and PRMT1 (By similarity). Deacetylates ACSS2 leading to its activation, and HMGCS1 deacetylation (PubMed:21701047). Involved in liver and muscle metabolism. Through deacetylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis (PubMed:23142079). Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression (PubMed:17290224, PubMed:20817729). Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2 (PubMed:15205477, PubMed:16998810, PubMed:17334224, PubMed:17612497, PubMed:20670893, PubMed:21149730). Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN (PubMed:15205477, PubMed:17334224, PubMed:20097625). Promotes DNA double-strand breaks by mediating deacetylation of SIRT6 (PubMed:32538779). Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage (PubMed:18203716). Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1 (PubMed:19934257). Catalyzes deacetylation of ERCC4/XPF, thereby impairing interaction with ERCC1 and nucleotide excision repair (NER) (PubMed:32034146). Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8 (PubMed:18296641). Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation (PubMed:21775285). Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear (PubMed:18687677, PubMed:20203304). In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability (PubMed:21890893). Deacetylates MECOM/EVI1 (PubMed:21555002). Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization (PubMed:22274616). During the neurogenic transition, represses selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling (PubMed:18662546). Deacetylates BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator (By similarity). Deacetylates PER2, facilitating its ubiquitination and degradation by the proteasome (By similarity). Protects cardiomyocytes against palmitate-induced apoptosis (By similarity). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Deacetylates PCK1 and directs its activity toward phosphoenolpyruvate production promoting gluconeogenesis (PubMed:30193097). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780). In POMC (pro-opiomelanocortin) neurons, required for leptin-induced activation of PI3K signaling (By similarity). Deacetylates SOX9; promoting SOX9 nuclear localization and transactivation activity (By similarity). Involved in the regulation of centrosome duplication: deacetylates CENATAC in G1 phase, allowing for SASS6 accumulation on the centrosome and subsequent procentriole assembly (PubMed:31722219). Deacetylates NDC80/HEC1 (PubMed:30409912). In addition to protein deacetylase activity, also acts as a protein-lysine deacylase by mediating protein delactylation, depropionylation and decrotonylation (PubMed:28497810, PubMed:38512451). Mediates depropionylation of Osterix (SP7) (By similarity). Catalyzes decrotonylation of histones; it however does not represent a major histone decrotonylase (PubMed:28497810). Mediates protein delactylation of TEAD1 and YAP1 (PubMed:38512451). {ECO:0000250|UniProtKB:Q923E4, ECO:0000269|PubMed:11672523, ECO:0000269|PubMed:12006491, ECO:0000269|PubMed:12535671, ECO:0000269|PubMed:14976264, ECO:0000269|PubMed:14980222, ECO:0000269|PubMed:15126506, ECO:0000269|PubMed:15152190, ECO:0000269|PubMed:15205477, ECO:0000269|PubMed:15469825, ECO:0000269|PubMed:15692560, ECO:0000269|PubMed:16079181, ECO:0000269|PubMed:16166628, ECO:0000269|PubMed:16892051, ECO:0000269|PubMed:16998810, ECO:0000269|PubMed:17283066, ECO:0000269|PubMed:17290224, ECO:0000269|PubMed:17334224, ECO:0000269|PubMed:17505061, ECO:0000269|PubMed:17612497, ECO:0000269|PubMed:17620057, ECO:0000269|PubMed:17936707, ECO:0000269|PubMed:18203716, ECO:0000269|PubMed:18296641, ECO:0000269|PubMed:18485871, ECO:0000269|PubMed:18662546, ECO:0000269|PubMed:18687677, ECO:0000269|PubMed:19188449, ECO:0000269|PubMed:19220062, ECO:0000269|PubMed:19364925, ECO:0000269|PubMed:19690166, ECO:0000269|PubMed:19934257, ECO:0000269|PubMed:20097625, ECO:0000269|PubMed:20100829, ECO:0000269|PubMed:20203304, ECO:0000269|PubMed:20375098, ECO:0000269|PubMed:20620956, ECO:0000269|PubMed:20670893, ECO:0000269|PubMed:20817729, ECO:0000269|PubMed:20955178, ECO:0000269|PubMed:21149730, ECO:0000269|PubMed:21245319, ECO:0000269|PubMed:21471201, ECO:0000269|PubMed:21504832, ECO:0000269|PubMed:21555002, ECO:0000269|PubMed:21698133, ECO:0000269|PubMed:21701047, ECO:0000269|PubMed:21775285, ECO:0000269|PubMed:21807113, ECO:0000269|PubMed:21841822, ECO:0000269|PubMed:21890893, ECO:0000269|PubMed:21947282, ECO:0000269|PubMed:22274616, ECO:0000269|PubMed:22542455, ECO:0000269|PubMed:22918831, ECO:0000269|PubMed:23142079, ECO:0000269|PubMed:24415752, ECO:0000269|PubMed:24824780, ECO:0000269|PubMed:28497810, ECO:0000269|PubMed:29681526, ECO:0000269|PubMed:29765047, ECO:0000269|PubMed:30193097, ECO:0000269|PubMed:30409912, ECO:0000269|PubMed:31722219, ECO:0000269|PubMed:32034146, ECO:0000269|PubMed:32538779, ECO:0000269|PubMed:38512451}.; FUNCTION: [Isoform 2]: Deacetylates 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. {ECO:0000269|PubMed:20975832}.; FUNCTION: [SirtT1 75 kDa fragment]: Catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. {ECO:0000269|PubMed:21987377}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. {ECO:0000269|PubMed:18329615}. |
Q96FS4 | SIPA1 | S888 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96GN5 | CDCA7L | T81 | ochoa | Cell division cycle-associated 7-like protein (Protein JPO2) (Transcription factor RAM2) | Plays a role in transcriptional regulation as a repressor that inhibits monoamine oxidase A (MAOA) activity and gene expression by binding to the promoter. Plays an important oncogenic role in mediating the full transforming effect of MYC in medulloblastoma cells. Involved in apoptotic signaling pathways; May act downstream of P38-kinase and BCL-2, but upstream of CASP3/caspase-3 as well as CCND1/cyclin D1 and E2F1. {ECO:0000269|PubMed:15654081, ECO:0000269|PubMed:15994933, ECO:0000269|PubMed:16829576}. |
Q96JJ3 | ELMO2 | S505 | ochoa | Engulfment and cell motility protein 2 (Protein ced-12 homolog A) (hCed-12A) | Involved in cytoskeletal rearrangements required for phagocytosis of apoptotic cells and cell motility. Acts in association with DOCK1 and CRK. Was initially proposed to be required in complex with DOCK1 to activate Rac Rho small GTPases. May enhance the guanine nucleotide exchange factor (GEF) activity of DOCK1. {ECO:0000269|PubMed:11595183, ECO:0000269|PubMed:11703939, ECO:0000269|PubMed:20679435, ECO:0000269|PubMed:27476657}. |
Q96JM3 | CHAMP1 | S634 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JN0 | LCOR | S74 | ochoa | Ligand-dependent corepressor (LCoR) (Mblk1-related protein 2) | May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3' (By similarity). Repressor of ligand-dependent transcription activation by target nuclear receptors. Repressor of ligand-dependent transcription activation by ESR1, ESR2, NR3C1, PGR, RARA, RARB, RARG, RXRA and VDR. {ECO:0000250, ECO:0000269|PubMed:12535528}. |
Q96PE2 | ARHGEF17 | S862 | ochoa | Rho guanine nucleotide exchange factor 17 (164 kDa Rho-specific guanine-nucleotide exchange factor) (p164-RhoGEF) (p164RhoGEF) (Tumor endothelial marker 4) | Acts as a guanine nucleotide exchange factor (GEF) for RhoA GTPases. {ECO:0000269|PubMed:12071859}. |
Q96QE3 | ATAD5 | S821 | ochoa | ATPase family AAA domain-containing protein 5 (Chromosome fragility-associated gene 1 protein) | Has an important role in DNA replication and in maintaining genome integrity during replication stress (PubMed:15983387, PubMed:19755857). Involved in a RAD9A-related damage checkpoint, a pathway that is important in determining whether DNA damage is compatible with cell survival or whether it requires cell elimination by apoptosis (PubMed:15983387). Modulates the RAD9A interaction with BCL2 and thereby induces DNA damage-induced apoptosis (PubMed:15983387). Promotes PCNA deubiquitination by recruiting the ubiquitin-specific protease 1 (USP1) and WDR48 thereby down-regulating the error-prone damage bypass pathway (PubMed:20147293). As component of the ATAD5 RFC-like complex, regulates the function of the DNA polymerase processivity factor PCNA by unloading the ring-shaped PCNA homotrimer from DNA after replication during the S phase of the cell cycle (PubMed:23277426, PubMed:23937667). This seems to be dependent on its ATPase activity (PubMed:23277426). Plays important roles in restarting stalled replication forks under replication stress, by unloading the PCNA homotrimer from DNA and recruiting RAD51 possibly through an ATR-dependent manner (PubMed:31844045). Ultimately this enables replication fork regression, breakage, and eventual fork restart (PubMed:31844045). Both the PCNA unloading activity and the interaction with WDR48 are required to efficiently recruit RAD51 to stalled replication forks (PubMed:31844045). Promotes the generation of MUS81-mediated single-stranded DNA-associated breaks in response to replication stress, which is an alternative pathway to restart stalled/regressed replication forks (PubMed:31844045). {ECO:0000269|PubMed:15983387, ECO:0000269|PubMed:19755857, ECO:0000269|PubMed:20147293, ECO:0000269|PubMed:23277426, ECO:0000269|PubMed:23937667, ECO:0000269|PubMed:31844045}. |
Q96RL7 | VPS13A | S835 | ochoa | Intermembrane lipid transfer protein VPS13A (Chorea-acanthocytosis protein) (Chorein) (Vacuolar protein sorting-associated protein 13A) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Binds phospholipids (PubMed:34830155). Required for the formation or stabilization of ER-mitochondria contact sites which enable transfer of lipids between the ER and mitochondria (PubMed:30741634). Negatively regulates lipid droplet size and motility (PubMed:30741634). Required for efficient lysosomal protein degradation (PubMed:30709847). {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:30709847, ECO:0000269|PubMed:30741634, ECO:0000269|PubMed:34830155}. |
Q96ST2 | IWS1 | T317 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96T23 | RSF1 | S1249 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q99490 | AGAP2 | S929 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2 (AGAP-2) (Centaurin-gamma-1) (Cnt-g1) (GTP-binding and GTPase-activating protein 2) (GGAP2) (Phosphatidylinositol 3-kinase enhancer) (PIKE) | GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. {ECO:0000269|PubMed:12640130, ECO:0000269|PubMed:14761976, ECO:0000269|PubMed:15118108, ECO:0000269|PubMed:16079295}. |
Q99590 | SCAF11 | S1112 | ochoa | Protein SCAF11 (CTD-associated SR protein 11) (Renal carcinoma antigen NY-REN-40) (SC35-interacting protein 1) (SR-related and CTD-associated factor 11) (SRSF2-interacting protein) (Serine/arginine-rich splicing factor 2-interacting protein) (Splicing factor, arginine/serine-rich 2-interacting protein) (Splicing regulatory protein 129) (SRrp129) | Plays a role in pre-mRNA alternative splicing by regulating spliceosome assembly. {ECO:0000269|PubMed:9447963}. |
Q9BQ52 | ELAC2 | S215 | ochoa | Zinc phosphodiesterase ELAC protein 2 (EC 3.1.26.11) (ElaC homolog protein 2) (Heredity prostate cancer protein 2) (Ribonuclease Z 2) (RNase Z 2) (tRNA 3 endonuclease 2) (tRNase Z 2) | Zinc phosphodiesterase, which displays mitochondrial tRNA 3'-processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA (PubMed:21593607). Associates with mitochondrial DNA complexes at the nucleoids to initiate RNA processing and ribosome assembly (PubMed:24703694). {ECO:0000269|PubMed:21593607, ECO:0000269|PubMed:24703694}. |
Q9BUA3 | SPINDOC | S123 | ochoa | Spindlin interactor and repressor of chromatin-binding protein (SPIN1-docking protein) (SPIN-DOC) | Chromatin protein that stabilizes SPIN1 and enhances its association with histone H3 trimethylated at both 'Lys-4' and 'Lys-9' (H3K4me3K9me3) (PubMed:33574238). Positively regulates poly-ADP-ribosylation in response to DNA damage; acts by facilitating PARP1 ADP-ribosyltransferase activity (PubMed:34737271). {ECO:0000269|PubMed:33574238, ECO:0000269|PubMed:34737271}. |
Q9BV36 | MLPH | S233 | ochoa | Melanophilin (Exophilin-3) (Slp homolog lacking C2 domains a) (SlaC2-a) (Synaptotagmin-like protein 2a) | Rab effector protein involved in melanosome transport. Serves as link between melanosome-bound RAB27A and the motor protein MYO5A. {ECO:0000269|PubMed:12062444}. |
Q9BX66 | SORBS1 | S481 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXF6 | RAB11FIP5 | S397 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9C0A6 | SETD5 | S193 | ochoa | Histone-lysine N-methyltransferase SETD5 (EC 2.1.1.359) (EC 2.1.1.367) (SET domain-containing protein 5) | Chromatin regulator required for brain development: acts as a regulator of RNA elongation rate, thereby regulating neural stem cell (NSC) proliferation and synaptic transmission. May act by mediating trimethylation of 'Lys-36' of histone H3 (H3K36me3), which is essential to allow on-time RNA elongation dynamics. Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro. The relevance of histone methyltransferase activity is however subject to discussion. {ECO:0000250|UniProtKB:Q5XJV7}. |
Q9C0D6 | FHDC1 | S500 | ochoa | FH2 domain-containing protein 1 (Inverted formin-1) | Microtubule-associated formin which regulates both actin and microtubule dynamics. Induces microtubule acetylation and stabilization and actin stress fiber formation (PubMed:18815276). Regulates Golgi ribbon formation (PubMed:26564798). Required for normal cilia assembly. Early in cilia assembly, may assist in the maturation and positioning of the centrosome/basal body, and once cilia assembly has initiated, may also promote cilia elongation by inhibiting disassembly (PubMed:29742020). {ECO:0000269|PubMed:18815276, ECO:0000269|PubMed:26564798, ECO:0000269|PubMed:29742020}. |
Q9H0U9 | TSPYL1 | S142 | ochoa | Testis-specific Y-encoded-like protein 1 (TSPY-like protein 1) | None |
Q9H2Y7 | ZNF106 | S1304 | ochoa | Zinc finger protein 106 (Zfp-106) (Zinc finger protein 474) | RNA-binding protein. Specifically binds to 5'-GGGGCC-3' sequence repeats in RNA. Essential for maintenance of peripheral motor neuron and skeletal muscle function. Required for normal expression and/or alternative splicing of a number of genes in spinal cord and skeletal muscle, including the neurite outgrowth inhibitor RTN4. Also contributes to normal mitochondrial respiratory function in motor neurons, via an unknown mechanism. {ECO:0000250|UniProtKB:O88466}. |
Q9H3K6 | BOLA2 | S34 | ochoa | BolA-like protein 2 | Acts as a cytosolic iron-sulfur (Fe-S) cluster assembly factor that facilitates [2Fe-2S] cluster insertion into a subset of cytosolic proteins (PubMed:26613676, PubMed:27519415). Acts together with the monothiol glutaredoxin GLRX3 (PubMed:26613676, PubMed:27519415). {ECO:0000269|PubMed:26613676, ECO:0000269|PubMed:27519415}. |
Q9H5V8 | CDCP1 | S803 | ochoa | CUB domain-containing protein 1 (Membrane glycoprotein gp140) (Subtractive immunization M plus HEp3-associated 135 kDa protein) (SIMA135) (Transmembrane and associated with src kinases) (CD antigen CD318) | May be involved in cell adhesion and cell matrix association. May play a role in the regulation of anchorage versus migration or proliferation versus differentiation via its phosphorylation. May be a novel marker for leukemia diagnosis and for immature hematopoietic stem cell subsets. Belongs to the tetraspanin web involved in tumor progression and metastasis. {ECO:0000269|PubMed:11466621, ECO:0000269|PubMed:12799299, ECO:0000269|PubMed:15153610, ECO:0000269|PubMed:16007225, ECO:0000269|PubMed:16404722, ECO:0000269|PubMed:8647901}. |
Q9HAU0 | PLEKHA5 | S374 | ochoa | Pleckstrin homology domain-containing family A member 5 (PH domain-containing family A member 5) (Phosphoinositol 3-phosphate-binding protein 2) (PEPP-2) | None |
Q9NZB2 | FAM120A | S1077 | ochoa | Constitutive coactivator of PPAR-gamma-like protein 1 (Oxidative stress-associated SRC activator) (Protein FAM120A) | Component of the oxidative stress-induced survival signaling. May regulate the activation of SRC family protein kinases (PubMed:19015244). May act as a scaffolding protein enabling SRC family protein kinases to phosphorylate and activate PI3-kinase (PubMed:19015244). Binds IGF2 RNA and promotes the production of IGF2 protein (PubMed:19015244). {ECO:0000269|PubMed:19015244}. |
Q9P0V3 | SH3BP4 | S248 | ochoa | SH3 domain-binding protein 4 (EH-binding protein 10) (Transferrin receptor-trafficking protein) | May function in transferrin receptor internalization at the plasma membrane through a cargo-specific control of clathrin-mediated endocytosis. Alternatively, may act as a negative regulator of the amino acid-induced TOR signaling by inhibiting the formation of active Rag GTPase complexes. Preferentially binds inactive Rag GTPase complexes and prevents their interaction with the mTORC1 complex inhibiting its relocalization to lysosomes and its activation. Thereby, may indirectly regulate cell growth, proliferation and autophagy. {ECO:0000269|PubMed:16325581, ECO:0000269|PubMed:22575674}. |
Q9P266 | JCAD | S913 | ochoa | Junctional cadherin 5-associated protein (Junctional protein associated with coronary artery disease) (JCAD) | None |
Q9P2D1 | CHD7 | S1876 | ochoa | Chromodomain-helicase-DNA-binding protein 7 (CHD-7) (EC 3.6.4.-) (ATP-dependent helicase CHD7) | ATP-dependent chromatin-remodeling factor, slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Probable transcription regulator. May be involved in the in 45S precursor rRNA production. {ECO:0000269|PubMed:22646239, ECO:0000269|PubMed:28533432}. |
Q9P2G1 | ANKIB1 | S913 | ochoa | Ankyrin repeat and IBR domain-containing protein 1 (EC 2.3.2.31) | Might act as an E3 ubiquitin-protein ligase, or as part of E3 complex, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes and then transfers it to substrates. {ECO:0000250}. |
Q9P2T1 | GMPR2 | S28 | ochoa | GMP reductase 2 (GMPR 2) (EC 1.7.1.7) (Guanosine 5'-monophosphate oxidoreductase 2) (Guanosine monophosphate reductase 2) | Catalyzes the irreversible NADPH-dependent deamination of GMP to IMP. It functions in the conversion of nucleobase, nucleoside and nucleotide derivatives of G to A nucleotides, and in maintaining the intracellular balance of A and G nucleotides (PubMed:12009299, PubMed:12669231, PubMed:16359702, PubMed:22037469). Plays a role in modulating cellular differentiation (PubMed:12669231). {ECO:0000255|HAMAP-Rule:MF_03195, ECO:0000269|PubMed:12009299, ECO:0000269|PubMed:12669231, ECO:0000269|PubMed:16359702, ECO:0000269|PubMed:22037469}. |
Q9UBW5 | BIN2 | S290 | ochoa | Bridging integrator 2 (Breast cancer-associated protein 1) | Promotes cell motility and migration, probably via its interaction with the cell membrane and with podosome proteins that mediate interaction with the cytoskeleton. Modulates membrane curvature and mediates membrane tubulation. Plays a role in podosome formation. Inhibits phagocytosis. {ECO:0000269|PubMed:23285027}. |
Q9UDY2 | TJP2 | S432 | ochoa | Tight junction protein 2 (Tight junction protein ZO-2) (Zona occludens protein 2) (Zonula occludens protein 2) | Plays a role in tight junctions and adherens junctions (By similarity). Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity (By similarity). {ECO:0000250|UniProtKB:Q9Z0U1}. |
Q9UID6 | ZNF639 | T62 | ochoa | Zinc finger protein 639 (Zinc finger protein ANC_2H01) (Zinc finger protein ZASC1) | Binds DNA and may function as a transcriptional repressor. {ECO:0000269|PubMed:16182284}. |
Q9UIS9 | MBD1 | S393 | ochoa | Methyl-CpG-binding domain protein 1 (CXXC-type zinc finger protein 3) (Methyl-CpG-binding protein MBD1) (Protein containing methyl-CpG-binding domain 1) | Transcriptional repressor that binds CpG islands in promoters where the DNA is methylated at position 5 of cytosine within CpG dinucleotides. Binding is abolished by the presence of 7-mG that is produced by DNA damage by methylmethanesulfonate (MMS). Acts as transcriptional repressor and plays a role in gene silencing by recruiting ATF7IP, which in turn recruits factors such as the histone methyltransferase SETDB1. Probably forms a complex with SETDB1 and ATF7IP that represses transcription and couples DNA methylation and histone 'Lys-9' trimethylation. Isoform 1 and isoform 2 can also repress transcription from unmethylated promoters. {ECO:0000269|PubMed:10454587, ECO:0000269|PubMed:10648624, ECO:0000269|PubMed:12665582, ECO:0000269|PubMed:12697822, ECO:0000269|PubMed:12711603, ECO:0000269|PubMed:14555760, ECO:0000269|PubMed:14610093, ECO:0000269|PubMed:9207790, ECO:0000269|PubMed:9774669}. |
Q9UKA4 | AKAP11 | S20 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9ULH0 | KIDINS220 | S1654 | ochoa | Kinase D-interacting substrate of 220 kDa (Ankyrin repeat-rich membrane-spanning protein) | Promotes a prolonged MAP-kinase signaling by neurotrophins through activation of a Rap1-dependent mechanism. Provides a docking site for the CRKL-C3G complex, resulting in Rap1-dependent sustained ERK activation. May play an important role in regulating postsynaptic signal transduction through the syntrophin-mediated localization of receptor tyrosine kinases such as EPHA4. In cooperation with SNTA1 can enhance EPHA4-induced JAK/STAT activation. Plays a role in nerve growth factor (NGF)-induced recruitment of RAPGEF2 to late endosomes and neurite outgrowth. May play a role in neurotrophin- and ephrin-mediated neuronal outgrowth and in axon guidance during neural development and in neuronal regeneration (By similarity). Modulates stress-induced apoptosis of melanoma cells via regulation of the MEK/ERK signaling pathway. {ECO:0000250, ECO:0000269|PubMed:18089783}. |
Q9UMD9 | COL17A1 | S384 | ochoa | Collagen alpha-1(XVII) chain (180 kDa bullous pemphigoid antigen 2) (Bullous pemphigoid antigen 2) [Cleaved into: 120 kDa linear IgA disease antigen (120 kDa linear IgA dermatosis antigen) (Linear IgA disease antigen 1) (LAD-1); 97 kDa linear IgA disease antigen (97 kDa linear IgA bullous dermatosis antigen) (97 kDa LAD antigen) (97-LAD) (Linear IgA bullous disease antigen of 97 kDa) (LABD97)] | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.; FUNCTION: The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies. |
Q9UMS6 | SYNPO2 | S365 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UPC5 | GPR34 | S357 | ochoa | Probable G-protein coupled receptor 34 | G-protein-coupled receptor of lysophosphatidylserine (LysoPS) that plays different roles in immune response (PubMed:16460680). Acts a damage-sensing receptor that triggers tissue repair upon recognition of dying neutrophils (By similarity). Mechanistically, apoptotic neutrophils release lysophosphatydilserine that are recognized by type 3 innate lymphoid cells (ILC3s) via GPR34, which activates downstream PI3K-AKT and RAS-ERK signaling pathways leading to STAT3 activation and IL-22 production (By similarity). Plays an important role in microglial function, controlling morphology and phagocytosis (By similarity). {ECO:0000250|UniProtKB:Q9R1K6, ECO:0000269|PubMed:16460680}. |
Q9UPN3 | MACF1 | S3929 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UPQ3 | AGAP1 | S607 | ochoa | Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 1 (AGAP-1) (Centaurin-gamma-2) (Cnt-g2) (GTP-binding and GTPase-activating protein 1) (GGAP1) | GTPase-activating protein for ARF1 and, to a lesser extent, ARF5. Directly and specifically regulates the adapter protein 3 (AP-3)-dependent trafficking of proteins in the endosomal-lysosomal system. {ECO:0000269|PubMed:12640130}. |
Q9Y2J4 | AMOTL2 | S159 | ochoa|psp | Angiomotin-like protein 2 (Leman coiled-coil protein) (LCCP) | Regulates the translocation of phosphorylated SRC to peripheral cell-matrix adhesion sites. Required for proper architecture of actin filaments. Plays a role in coupling actin fibers to cell junctions in endothelial cells and is therefore required for correct endothelial cell morphology via facilitating transcellular transmission of mechanical force resulting in endothelial cell elongation (By similarity). Required for the anchoring of radial actin fibers to CDH1 junction complexes at the cell membrane which facilitates organization of radial actin fiber structure and cellular response to contractile forces (PubMed:28842668). This contributes to maintenance of cell area, size, shape, epithelial sheet organization and trophectoderm cell properties that facilitate blastocyst zona hatching (PubMed:28842668). Inhibits the Wnt/beta-catenin signaling pathway, probably by recruiting CTNNB1 to recycling endosomes and hence preventing its translocation to the nucleus. Participates in angiogenesis. Activates the Hippo signaling pathway in response to cell contact inhibition via interaction with and ubiquitination by Crumbs complex-bound WWP1 (PubMed:34404733). Ubiquitinated AMOTL2 then interacts with LATS2 which in turn phosphorylates YAP1, excluding it from the nucleus and localizing it to the cytoplasm and tight junctions, therefore ultimately repressing YAP1-driven transcription of target genes (PubMed:17293535, PubMed:21205866, PubMed:26598551). Acts to inhibit WWTR1/TAZ transcriptional coactivator activity via sequestering WWTR1/TAZ in the cytoplasm and at tight junctions (PubMed:23911299). Regulates the size and protein composition of the podosome cortex and core at myofibril neuromuscular junctions (PubMed:23525008). Selectively promotes FGF-induced MAPK activation through SRC (PubMed:17293535). May play a role in the polarity, proliferation and migration of endothelial cells. {ECO:0000250|UniProtKB:Q8K371, ECO:0000269|PubMed:17293535, ECO:0000269|PubMed:21205866, ECO:0000269|PubMed:21937427, ECO:0000269|PubMed:22362771, ECO:0000269|PubMed:23525008, ECO:0000269|PubMed:23911299, ECO:0000269|PubMed:26598551, ECO:0000269|PubMed:28842668, ECO:0000269|PubMed:34404733}. |
Q9Y426 | C2CD2 | T477 | ochoa | C2 domain-containing protein 2 (Transmembrane protein 24-like) | None |
Q9Y5B0 | CTDP1 | S841 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
Q9Y5B0 | CTDP1 | S874 | ochoa | RNA polymerase II subunit A C-terminal domain phosphatase (EC 3.1.3.16) (TFIIF-associating CTD phosphatase) | Processively dephosphorylates 'Ser-2' and 'Ser-5' of the heptad repeats YSPTSPS in the C-terminal domain of the largest RNA polymerase II subunit. This promotes the activity of RNA polymerase II. Plays a role in the exit from mitosis by dephosphorylating crucial mitotic substrates (USP44, CDC20 and WEE1) that are required for M-phase-promoting factor (MPF)/CDK1 inactivation. {ECO:0000269|PubMed:22692537}. |
P08238 | HSP90AB1 | S470 | Sugiyama | Heat shock protein HSP 90-beta (HSP 90) (Heat shock 84 kDa) (HSP 84) (HSP84) (Heat shock protein family C member 3) | Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (PubMed:16478993, PubMed:19696785). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (PubMed:26991466, PubMed:27295069). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression (PubMed:25973397). Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation (PubMed:24613385). Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery (PubMed:18239673). Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription (PubMed:20353823). Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 (PubMed:32272059). {ECO:0000269|PubMed:16478993, ECO:0000269|PubMed:18239673, ECO:0000269|PubMed:19696785, ECO:0000269|PubMed:20353823, ECO:0000269|PubMed:24613385, ECO:0000269|PubMed:32272059, ECO:0000303|PubMed:25973397, ECO:0000303|PubMed:26991466, ECO:0000303|PubMed:27295069}.; FUNCTION: (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes (PubMed:21949862). Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). {ECO:0000269|PubMed:21949862, ECO:0000305|PubMed:22066472}. |
P30301 | MIP | S231 | ELM|iPTMNet|EPSD | Lens fiber major intrinsic protein (Aquaporin-0) (MIP26) (MP26) | Aquaporins form homotetrameric transmembrane channels, with each monomer independently mediating water transport across the plasma membrane along its osmotic gradient (PubMed:11001937, PubMed:24120416). Specifically expressed in lens fiber cells, this aquaporin is crucial for maintaining lens water homeostasis and transparency. Beyond water permeability, it also acts as a cell-to-cell adhesion molecule, forming thin junctions between lens fiber cells that are essential for maintaining the ordered structure and transparency of the lens (PubMed:24120416). {ECO:0000269|PubMed:11001937, ECO:0000269|PubMed:24120416}. |
Q15084 | PDIA6 | S377 | Sugiyama | Protein disulfide-isomerase A6 (EC 5.3.4.1) (Endoplasmic reticulum protein 5) (ER protein 5) (ERp5) (Protein disulfide isomerase P5) (Thioredoxin domain-containing protein 7) | May function as a chaperone that inhibits aggregation of misfolded proteins (PubMed:12204115). Negatively regulates the unfolded protein response (UPR) through binding to UPR sensors such as ERN1, which in turn inactivates ERN1 signaling (PubMed:24508390). May also regulate the UPR via the EIF2AK3 UPR sensor (PubMed:24508390). Plays a role in platelet aggregation and activation by agonists such as convulxin, collagen and thrombin (PubMed:15466936). {ECO:0000269|PubMed:12204115, ECO:0000269|PubMed:15466936, ECO:0000269|PubMed:24508390}. |
Q96ES7 | SGF29 | S31 | Sugiyama | SAGA-associated factor 29 (Coiled-coil domain-containing protein 101) (SAGA complex-associated factor 29) | Chromatin reader component of some histone acetyltransferase (HAT) SAGA-type complexes like the TFTC-HAT, ATAC or STAGA complexes (PubMed:19103755, PubMed:20850016, PubMed:21685874, PubMed:26421618, PubMed:26578293). SGF29 specifically recognizes and binds methylated 'Lys-4' of histone H3 (H3K4me), with a preference for trimethylated form (H3K4me3) (PubMed:20850016, PubMed:21685874, PubMed:26421618, PubMed:26578293). In the SAGA-type complexes, SGF29 is required to recruit complexes to H3K4me (PubMed:20850016). Involved in the response to endoplasmic reticulum (ER) stress by recruiting the SAGA complex to H3K4me, thereby promoting histone H3 acetylation and cell survival (PubMed:23894581). Also binds non-histone proteins that are methylated on Lys residues: specifically recognizes and binds CGAS monomethylated on 'Lys-506' (By similarity). {ECO:0000250|UniProtKB:Q9DA08, ECO:0000269|PubMed:19103755, ECO:0000269|PubMed:20850016, ECO:0000269|PubMed:21685874, ECO:0000269|PubMed:23894581, ECO:0000269|PubMed:26421618, ECO:0000269|PubMed:26578293}. |
P11498 | PC | S122 | Sugiyama | Pyruvate carboxylase, mitochondrial (EC 6.4.1.1) (Pyruvic carboxylase) (PCB) | Pyruvate carboxylase catalyzes a 2-step reaction, involving the ATP-dependent carboxylation of the covalently attached biotin in the first step and the transfer of the carboxyl group to pyruvate in the second. Catalyzes in a tissue specific manner, the initial reactions of glucose (liver, kidney) and lipid (adipose tissue, liver, brain) synthesis from pyruvate. {ECO:0000269|PubMed:9585002}. |
Q8NBP7 | PCSK9 | S668 | GPS6 | Proprotein convertase subtilisin/kexin type 9 (EC 3.4.21.-) (Neural apoptosis-regulated convertase 1) (NARC-1) (Proprotein convertase 9) (PC9) (Subtilisin/kexin-like protease PC9) | Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments (PubMed:18039658). Acts via a non-proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes to the cell surface or direct it to lysosomes for degradation. Can induce ubiquitination of LDLR leading to its subsequent degradation (PubMed:17461796, PubMed:18197702, PubMed:18799458, PubMed:22074827). Inhibits intracellular degradation of APOB via the autophagosome/lysosome pathway in a LDLR-independent manner. Involved in the disposal of non-acetylated intermediates of BACE1 in the early secretory pathway (PubMed:18660751). Inhibits epithelial Na(+) channel (ENaC)-mediated Na(+) absorption by reducing ENaC surface expression primarily by increasing its proteasomal degradation. Regulates neuronal apoptosis via modulation of LRP8/APOER2 levels and related anti-apoptotic signaling pathways. {ECO:0000269|PubMed:17461796, ECO:0000269|PubMed:18039658, ECO:0000269|PubMed:18197702, ECO:0000269|PubMed:18660751, ECO:0000269|PubMed:18799458, ECO:0000269|PubMed:22074827, ECO:0000269|PubMed:22493497, ECO:0000269|PubMed:22580899}. |
Q96RR4 | CAMKK2 | S28 | Sugiyama | Calcium/calmodulin-dependent protein kinase kinase 2 (CaM-KK 2) (CaM-kinase kinase 2) (CaMKK 2) (EC 2.7.11.17) (Calcium/calmodulin-dependent protein kinase kinase beta) (CaM-KK beta) (CaM-kinase kinase beta) (CaMKK beta) | Calcium/calmodulin-dependent protein kinase belonging to a proposed calcium-triggered signaling cascade involved in a number of cellular processes. Isoform 1, isoform 2 and isoform 3 phosphorylate CAMK1 and CAMK4. Isoform 3 phosphorylates CAMK1D. Isoform 4, isoform 5 and isoform 6 lacking part of the calmodulin-binding domain are inactive. Efficiently phosphorylates 5'-AMP-activated protein kinase (AMPK) trimer, including that consisting of PRKAA1, PRKAB1 and PRKAG1. This phosphorylation is stimulated in response to Ca(2+) signals (By similarity). Seems to be involved in hippocampal activation of CREB1 (By similarity). May play a role in neurite growth. Isoform 3 may promote neurite elongation, while isoform 1 may promoter neurite branching. {ECO:0000250, ECO:0000269|PubMed:11395482, ECO:0000269|PubMed:12935886, ECO:0000269|PubMed:21957496, ECO:0000269|PubMed:9662074}. |
Q96JH7 | VCPIP1 | S1079 | Sugiyama | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
A8MYA2 | CXorf49; | S206 | ochoa | Uncharacterized protein CXorf49 | None |
O14776 | TCERG1 | S834 | ochoa | Transcription elongation regulator 1 (TATA box-binding protein-associated factor 2S) (Transcription factor CA150) | Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter. {ECO:0000269|PubMed:11604498, ECO:0000269|PubMed:9315662}. |
O15047 | SETD1A | T510 | ochoa | Histone-lysine N-methyltransferase SETD1A (EC 2.1.1.364) (Lysine N-methyltransferase 2F) (SET domain-containing protein 1A) (hSET1A) (Set1/Ash2 histone methyltransferase complex subunit SET1) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism (PubMed:12670868, PubMed:25561738). Part of chromatin remodeling machinery, forms H3K4me1, H3K4me2 and H3K4me3 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:29937342, PubMed:31197650, PubMed:32346159). Responsible for H3K4me3 enriched promoters and transcriptional programming of inner mass stem cells and neuron progenitors during embryogenesis (By similarity) (PubMed:31197650). Required for H3K4me1 mark at stalled replication forks. Mediates FANCD2-dependent nucleosome remodeling and RAD51 nucleofilaments stabilization at reversed forks, protecting them from nucleolytic degradation (PubMed:29937342, PubMed:32346159). Does not methylate 'Lys-4' of histone H3 if the neighboring 'Lys-9' residue is already methylated (PubMed:12670868). Binds RNAs involved in RNA processing and the DNA damage response (PubMed:38003223). {ECO:0000250|UniProtKB:E9PYH6, ECO:0000269|PubMed:12670868, ECO:0000269|PubMed:25561738, ECO:0000269|PubMed:29937342, ECO:0000269|PubMed:31197650, ECO:0000269|PubMed:32346159, ECO:0000269|PubMed:38003223}. |
O15061 | SYNM | S824 | ochoa | Synemin (Desmuslin) | Type-VI intermediate filament (IF) which plays an important cytoskeletal role within the muscle cell cytoskeleton. It forms heteromeric IFs with desmin and/or vimentin, and via its interaction with cytoskeletal proteins alpha-dystrobrevin, dystrophin, talin-1, utrophin and vinculin, is able to link these heteromeric IFs to adherens-type junctions, such as to the costameres, neuromuscular junctions, and myotendinous junctions within striated muscle cells. {ECO:0000269|PubMed:11353857, ECO:0000269|PubMed:16777071, ECO:0000269|PubMed:18028034}. |
O60266 | ADCY3 | S580 | ochoa | Adenylate cyclase type 3 (EC 4.6.1.1) (ATP pyrophosphate-lyase 3) (Adenylate cyclase type III) (AC-III) (Adenylate cyclase, olfactive type) (Adenylyl cyclase 3) (AC3) | Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Participates in signaling cascades triggered by odorant receptors via its function in cAMP biosynthesis: specifically activated by G alpha protein GNAL/G(olf) in olfactory epithelium. Required for normal sperm motility and normal male fertility. Plays a role in regulating insulin levels and body fat accumulation in response to a high fat diet. {ECO:0000250|UniProtKB:Q8VHH7}. |
O60296 | TRAK2 | S461 | ochoa | Trafficking kinesin-binding protein 2 (Amyotrophic lateral sclerosis 2 chromosomal region candidate gene 3 protein) | May regulate endosome-to-lysosome trafficking of membrane cargo, including EGFR. {ECO:0000250}. |
O60678 | PRMT3 | S27 | ochoa | Protein arginine N-methyltransferase 3 (EC 2.1.1.319) (Heterogeneous nuclear ribonucleoprotein methyltransferase-like protein 3) | Protein-arginine N-methyltransferase that catalyzes both the monomethylation and asymmetric dimethylation of the guanidino nitrogens of arginine residues in target proteins, and therefore falls into the group of type I methyltransferases (PubMed:22795084, PubMed:23445220, PubMed:25728001, PubMed:31378783, PubMed:33495566, PubMed:39513743). Catalyzes the asymmetric arginine dimethylation at multiple sites in the Arg/Gly-rich region of small ribosomal subunit protein uS5/RPS2 (PubMed:22795084). Also appears to methylate other ribosomal proteins (By similarity). May regulate retinoic acid synthesis and signaling by inhibiting ALDH1A1 retinal dehydrogenase activity (PubMed:33495566). Contributes to methylation of histone H4 'Arg-3', a specific tag for epigenetic transcriptional activation (PubMed:25728001, PubMed:31378783, PubMed:39513743). Mediates asymmetric arginine dimethylation of histone H4 'Arg-3' (H4R3me2a) in the promoter region of miRNA miR-3648, to promote its transcription and osteogenesis (PubMed:31378783). {ECO:0000250|UniProtKB:Q922H1, ECO:0000269|PubMed:22795084, ECO:0000269|PubMed:23445220, ECO:0000269|PubMed:25728001, ECO:0000269|PubMed:31378783, ECO:0000269|PubMed:33495566, ECO:0000269|PubMed:39513743}. |
O75167 | PHACTR2 | S430 | ochoa | Phosphatase and actin regulator 2 | None |
O75400 | PRPF40A | S935 | ochoa | Pre-mRNA-processing factor 40 homolog A (Fas ligand-associated factor 1) (Formin-binding protein 11) (Formin-binding protein 3) (Huntingtin yeast partner A) (Huntingtin-interacting protein 10) (HIP-10) (Huntingtin-interacting protein A) (Renal carcinoma antigen NY-REN-6) | Binds to WASL/N-WASP and suppresses its translocation from the nucleus to the cytoplasm, thereby inhibiting its cytoplasmic function (By similarity). Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the control of cell shape and migration. May play a role in cytokinesis. May be involved in pre-mRNA splicing. {ECO:0000250, ECO:0000269|PubMed:21834987}. |
O75528 | TADA3 | S338 | ochoa | Transcriptional adapter 3 (ADA3 homolog) (hADA3) (STAF54) (Transcriptional adapter 3-like) (ADA3-like protein) | Functions as a component of the PCAF complex. The PCAF complex is capable of efficiently acetylating histones in a nucleosomal context. The PCAF complex could be considered as the human version of the yeast SAGA complex. Also known as a coactivator for p53/TP53-dependent transcriptional activation. Component of the ATAC complex, a complex with histone acetyltransferase activity on histones H3 and H4. {ECO:0000269|PubMed:11707411, ECO:0000269|PubMed:19103755}. |
O75781 | PALM | S64 | ochoa | Paralemmin-1 (Paralemmin) | Involved in plasma membrane dynamics and cell process formation. Isoform 1 and isoform 2 are necessary for axonal and dendritic filopodia induction, for dendritic spine maturation and synapse formation in a palmitoylation-dependent manner. {ECO:0000269|PubMed:14978216}. |
O95239 | KIF4A | S953 | ochoa | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95453 | PARN | T589 | ochoa | Poly(A)-specific ribonuclease PARN (EC 3.1.13.4) (Deadenylating nuclease) (Deadenylation nuclease) (Polyadenylate-specific ribonuclease) | 3'-exoribonuclease that has a preference for poly(A) tails of mRNAs, thereby efficiently degrading poly(A) tails. Exonucleolytic degradation of the poly(A) tail is often the first step in the decay of eukaryotic mRNAs and is also used to silence certain maternal mRNAs translationally during oocyte maturation and early embryonic development. Interacts with both the 3'-end poly(A) tail and the 5'-end cap structure during degradation, the interaction with the cap structure being required for an efficient degradation of poly(A) tails. Involved in nonsense-mediated mRNA decay, a critical process of selective degradation of mRNAs that contain premature stop codons. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly via its interaction with KHSRP. Probably mediates the removal of poly(A) tails of AREs mRNAs, which constitutes the first step of destabilization (PubMed:10882133, PubMed:11359775, PubMed:12748283, PubMed:15175153, PubMed:9736620). Also able to recognize and trim poly(A) tails of microRNAs such as MIR21 and H/ACA box snoRNAs (small nucleolar RNAs) leading to microRNAs degradation or snoRNA increased stability (PubMed:22442037, PubMed:25049417). {ECO:0000269|PubMed:10882133, ECO:0000269|PubMed:11359775, ECO:0000269|PubMed:12748283, ECO:0000269|PubMed:15175153, ECO:0000269|PubMed:22442037, ECO:0000269|PubMed:25049417, ECO:0000269|PubMed:9736620}. |
P10809 | HSPD1 | Y385 | ochoa | 60 kDa heat shock protein, mitochondrial (EC 5.6.1.7) (60 kDa chaperonin) (Chaperonin 60) (CPN60) (Heat shock protein 60) (HSP-60) (Hsp60) (Heat shock protein family D member 1) (HuCHA60) (Mitochondrial matrix protein P1) (P60 lymphocyte protein) | Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix (PubMed:11422376, PubMed:1346131). The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable). {ECO:0000269|PubMed:11422376, ECO:0000269|PubMed:1346131, ECO:0000305|PubMed:25918392}. |
P11388 | TOP2A | S1476 | ochoa | DNA topoisomerase 2-alpha (EC 5.6.2.2) (DNA topoisomerase II, alpha isozyme) | Key decatenating enzyme that alters DNA topology by binding to two double-stranded DNA molecules, generating a double-stranded break in one of the strands, passing the intact strand through the broken strand, and religating the broken strand (PubMed:17567603, PubMed:18790802, PubMed:22013166, PubMed:22323612). May play a role in regulating the period length of BMAL1 transcriptional oscillation (By similarity). {ECO:0000250|UniProtKB:Q01320, ECO:0000269|PubMed:17567603, ECO:0000269|PubMed:18790802, ECO:0000269|PubMed:22013166, ECO:0000269|PubMed:22323612}. |
P17480 | UBTF | S435 | ochoa | Nucleolar transcription factor 1 (Autoantigen NOR-90) (Upstream-binding factor 1) (UBF-1) | Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I (Pol I) through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element and can activate Pol I promoter escape. {ECO:0000269|PubMed:11250903, ECO:0000269|PubMed:11283244, ECO:0000269|PubMed:16858408, ECO:0000269|PubMed:28777933, ECO:0000269|PubMed:7982918}. |
P30279 | CCND2 | S271 | ochoa | G1/S-specific cyclin-D2 | Regulatory component of the cyclin D2-CDK4 (DC) complex that phosphorylates and inhibits members of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G(1)/S transition (PubMed:18827403, PubMed:8114739). Phosphorylation of RB1 allows dissociation of the transcription factor E2F from the RB/E2F complex and the subsequent transcription of E2F target genes which are responsible for the progression through the G(1) phase (PubMed:18827403, PubMed:8114739). Hypophosphorylates RB1 in early G(1) phase (PubMed:18827403, PubMed:8114739). Cyclin D-CDK4 complexes are major integrators of various mitogenenic and antimitogenic signals (PubMed:18827403, PubMed:8114739). {ECO:0000269|PubMed:18827403, ECO:0000269|PubMed:8114739}. |
P45983 | MAPK8 | S284 | psp | Mitogen-activated protein kinase 8 (MAP kinase 8) (MAPK 8) (EC 2.7.11.24) (JNK-46) (Stress-activated protein kinase 1c) (SAPK1c) (Stress-activated protein kinase JNK1) (c-Jun N-terminal kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell proliferation, differentiation, migration, transformation and programmed cell death. Extracellular stimuli such as pro-inflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway (PubMed:28943315). In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK8/JNK1. In turn, MAPK8/JNK1 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN, JDP2 and ATF2 and thus regulates AP-1 transcriptional activity (PubMed:18307971). Phosphorylates the replication licensing factor CDT1, inhibiting the interaction between CDT1 and the histone H4 acetylase HBO1 to replication origins (PubMed:21856198). Loss of this interaction abrogates the acetylation required for replication initiation (PubMed:21856198). Promotes stressed cell apoptosis by phosphorylating key regulatory factors including p53/TP53 and Yes-associates protein YAP1 (PubMed:21364637). In T-cells, MAPK8 and MAPK9 are required for polarized differentiation of T-helper cells into Th1 cells. Contributes to the survival of erythroid cells by phosphorylating the antagonist of cell death BAD upon EPO stimulation (PubMed:21095239). Mediates starvation-induced BCL2 phosphorylation, BCL2 dissociation from BECN1, and thus activation of autophagy (PubMed:18570871). Phosphorylates STMN2 and hence regulates microtubule dynamics, controlling neurite elongation in cortical neurons (By similarity). In the developing brain, through its cytoplasmic activity on STMN2, negatively regulates the rate of exit from multipolar stage and of radial migration from the ventricular zone (By similarity). Phosphorylates several other substrates including heat shock factor protein 4 (HSF4), the deacetylase SIRT1, ELK1, or the E3 ligase ITCH (PubMed:16581800, PubMed:17296730, PubMed:20027304). Phosphorylates the CLOCK-BMAL1 heterodimer and plays a role in the regulation of the circadian clock (PubMed:22441692). Phosphorylates the heat shock transcription factor HSF1, suppressing HSF1-induced transcriptional activity (PubMed:10747973). Phosphorylates POU5F1, which results in the inhibition of POU5F1's transcriptional activity and enhances its proteasomal degradation (By similarity). Phosphorylates JUND and this phosphorylation is inhibited in the presence of MEN1 (PubMed:22327296). In neurons, phosphorylates SYT4 which captures neuronal dense core vesicles at synapses (By similarity). Phosphorylates EIF4ENIF1/4-ET in response to oxidative stress, promoting P-body assembly (PubMed:22966201). Phosphorylates SIRT6 in response to oxidative stress, stimulating its mono-ADP-ribosyltransferase activity (PubMed:27568560). Phosphorylates NLRP3, promoting assembly of the NLRP3 inflammasome (PubMed:28943315). Phosphorylates ALKBH5 in response to reactive oxygen species (ROS), promoting ALKBH5 sumoylation and inactivation (PubMed:34048572). {ECO:0000250|UniProtKB:P49185, ECO:0000250|UniProtKB:Q91Y86, ECO:0000269|PubMed:10747973, ECO:0000269|PubMed:16581800, ECO:0000269|PubMed:17296730, ECO:0000269|PubMed:18307971, ECO:0000269|PubMed:18570871, ECO:0000269|PubMed:20027304, ECO:0000269|PubMed:21095239, ECO:0000269|PubMed:21364637, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:22327296, ECO:0000269|PubMed:22441692, ECO:0000269|PubMed:22966201, ECO:0000269|PubMed:27568560, ECO:0000269|PubMed:28943315, ECO:0000269|PubMed:34048572}.; FUNCTION: JNK1 isoforms display different binding patterns: beta-1 preferentially binds to c-Jun, whereas alpha-1, alpha-2, and beta-2 have a similar low level of binding to both c-Jun or ATF2. However, there is no correlation between binding and phosphorylation, which is achieved at about the same efficiency by all isoforms. |
Q03164 | KMT2A | S3565 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03188 | CENPC | S250 | ochoa | Centromere protein C (CENP-C) (Centromere autoantigen C) (Centromere protein C 1) (CENP-C 1) (Interphase centromere complex protein 7) | Component of the CENPA-NAC (nucleosome-associated) complex, a complex that plays a central role in assembly of kinetochore proteins, mitotic progression and chromosome segregation. The CENPA-NAC complex recruits the CENPA-CAD (nucleosome distal) complex and may be involved in incorporation of newly synthesized CENPA into centromeres. CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. {ECO:0000269|PubMed:19482874, ECO:0000269|PubMed:21529714}. |
Q12874 | SF3A3 | S369 | ochoa | Splicing factor 3A subunit 3 (SF3a60) (Spliceosome-associated protein 61) (SAP 61) | Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310, PubMed:8022796). The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing (PubMed:10882114, PubMed:11533230, PubMed:32494006, PubMed:34822310). Within the 17S U2 SnRNP complex, SF3A3 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex (PubMed:10882114, PubMed:11533230). Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes (PubMed:29360106, PubMed:30315277). {ECO:0000269|PubMed:10882114, ECO:0000269|PubMed:11533230, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:30315277, ECO:0000269|PubMed:32494006, ECO:0000269|PubMed:34822310, ECO:0000269|PubMed:8022796}. |
Q13129 | RLF | S1022 | ochoa | Zinc finger protein Rlf (Rearranged L-myc fusion gene protein) (Zn-15-related protein) | May be involved in transcriptional regulation. |
Q13428 | TCOF1 | S349 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13428 | TCOF1 | S419 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13596 | SNX1 | T41 | ochoa | Sorting nexin-1 | Involved in several stages of intracellular trafficking. Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) or phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) (PubMed:12198132). Acts in part as component of the retromer membrane-deforming SNX-BAR subcomplex. The SNX-BAR retromer mediates retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN) and is involved in endosome-to-plasma membrane transport for cargo protein recycling. The SNX-BAR subcomplex functions to deform the donor membrane into a tubular profile called endosome-to-TGN transport carrier (ETC) (Probable). Can sense membrane curvature and has in vitro vesicle-to-membrane remodeling activity (PubMed:19816406, PubMed:23085988). Involved in retrograde endosome-to-TGN transport of lysosomal enzyme receptors (IGF2R, M6PR and SORT1) and Shiginella dysenteria toxin stxB. Plays a role in targeting ligand-activated EGFR to the lysosomes for degradation after endocytosis from the cell surface and release from the Golgi (PubMed:12198132, PubMed:15498486, PubMed:17101778, PubMed:17550970, PubMed:18088323, PubMed:21040701). Involvement in retromer-independent endocytic trafficking of P2RY1 and lysosomal degradation of protease-activated receptor-1/F2R (PubMed:16407403, PubMed:20070609). Promotes KALRN- and RHOG-dependent but retromer-independent membrane remodeling such as lamellipodium formation; the function is dependent on GEF activity of KALRN (PubMed:20604901). Required for endocytosis of DRD5 upon agonist stimulation but not for basal receptor trafficking (PubMed:23152498). {ECO:0000269|PubMed:12198132, ECO:0000269|PubMed:15498486, ECO:0000269|PubMed:16407403, ECO:0000269|PubMed:17101778, ECO:0000269|PubMed:17550970, ECO:0000269|PubMed:18088323, ECO:0000269|PubMed:19816406, ECO:0000269|PubMed:20070609, ECO:0000269|PubMed:20604901, ECO:0000269|PubMed:21040701, ECO:0000269|PubMed:23085988, ECO:0000269|PubMed:23152498, ECO:0000303|PubMed:15498486}. |
Q13823 | GNL2 | S582 | ochoa | Nucleolar GTP-binding protein 2 (Autoantigen NGP-1) | GTPase that associates with pre-60S ribosomal subunits in the nucleolus and is required for their nuclear export and maturation (PubMed:32669547). May promote cell proliferation possibly by increasing p53/TP53 protein levels, and consequently those of its downstream product CDKN1A/p21, and decreasing RPL23A protein levels (PubMed:26203195). {ECO:0000269|PubMed:26203195, ECO:0000269|PubMed:32669547}. |
Q13829 | TNFAIP1 | S280 | ochoa|psp | BTB/POZ domain-containing adapter for CUL3-mediated RhoA degradation protein 2 (hBACURD2) (BTB/POZ domain-containing protein TNFAIP1) (Protein B12) (Tumor necrosis factor, alpha-induced protein 1, endothelial) | Substrate-specific adapter of a BCR (BTB-CUL3-RBX1) E3 ubiquitin-protein ligase complex involved in regulation of cytoskeleton structure. The BCR(TNFAIP1) E3 ubiquitin ligase complex mediates the ubiquitination of RHOA, leading to its degradation by the proteasome, thereby regulating the actin cytoskeleton and cell migration. Its interaction with RHOB may regulate apoptosis. May enhance the PCNA-dependent DNA polymerase delta activity. {ECO:0000269|PubMed:19637314, ECO:0000269|PubMed:19782033}. |
Q14527 | HLTF | S400 | ochoa | Helicase-like transcription factor (EC 2.3.2.27) (EC 3.6.4.-) (DNA-binding protein/plasminogen activator inhibitor 1 regulator) (HIP116) (RING finger protein 80) (RING-type E3 ubiquitin transferase HLTF) (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 3) (Sucrose nonfermenting protein 2-like 3) | Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. {ECO:0000250, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:18316726, ECO:0000269|PubMed:18719106, ECO:0000269|PubMed:7876228, ECO:0000269|PubMed:8672239, ECO:0000269|PubMed:9126292}. |
Q14839 | CHD4 | S105 | ochoa | Chromodomain-helicase-DNA-binding protein 4 (CHD-4) (EC 3.6.4.-) (ATP-dependent helicase CHD4) (Mi-2 autoantigen 218 kDa protein) (Mi2-beta) | ATP-dependent chromatin-remodeling factor that binds and distorts nucleosomal DNA (PubMed:28977666, PubMed:32543371). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:17626165, PubMed:28977666, PubMed:9804427). Localizes to acetylated damaged chromatin in a ZMYND8-dependent manner, to promote transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309). Involved in neurogenesis (By similarity). {ECO:0000250|UniProtKB:Q6PDQ2, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:17626165, ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:28977666, ECO:0000269|PubMed:32543371, ECO:0000269|PubMed:9804427}. |
Q15361 | TTF1 | S872 | ochoa | Transcription termination factor 1 (TTF-1) (RNA polymerase I termination factor) (Transcription termination factor I) (TTF-I) | Multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. Plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. Interaction with BAZ2A/TIP5 recovers DNA-binding activity. {ECO:0000250|UniProtKB:Q62187, ECO:0000269|PubMed:7597036}. |
Q15910 | EZH2 | S408 | ochoa | Histone-lysine N-methyltransferase EZH2 (EC 2.1.1.356) (ENX-1) (Enhancer of zeste homolog 2) (Lysine N-methyltransferase 6) | Polycomb group (PcG) protein. Catalytic subunit of the PRC2/EED-EZH2 complex, which methylates 'Lys-9' (H3K9me) and 'Lys-27' (H3K27me) of histone H3, leading to transcriptional repression of the affected target gene. Able to mono-, di- and trimethylate 'Lys-27' of histone H3 to form H3K27me1, H3K27me2 and H3K27me3, respectively. Displays a preference for substrates with less methylation, loses activity when progressively more methyl groups are incorporated into H3K27, H3K27me0 > H3K27me1 > H3K27me2 (PubMed:22323599, PubMed:30923826). Compared to EZH1-containing complexes, it is more abundant in embryonic stem cells and plays a major role in forming H3K27me3, which is required for embryonic stem cell identity and proper differentiation. The PRC2/EED-EZH2 complex may also serve as a recruiting platform for DNA methyltransferases, thereby linking two epigenetic repression systems. Genes repressed by the PRC2/EED-EZH2 complex include HOXC8, HOXA9, MYT1, CDKN2A and retinoic acid target genes. EZH2 can also methylate non-histone proteins such as the transcription factor GATA4 and the nuclear receptor RORA. Regulates the circadian clock via histone methylation at the promoter of the circadian genes. Essential for the CRY1/2-mediated repression of the transcriptional activation of PER1/2 by the CLOCK-BMAL1 heterodimer; involved in the di and trimethylation of 'Lys-27' of histone H3 on PER1/2 promoters which is necessary for the CRY1/2 proteins to inhibit transcription. {ECO:0000269|PubMed:14532106, ECO:0000269|PubMed:15225548, ECO:0000269|PubMed:15231737, ECO:0000269|PubMed:15385962, ECO:0000269|PubMed:16179254, ECO:0000269|PubMed:16357870, ECO:0000269|PubMed:16618801, ECO:0000269|PubMed:16717091, ECO:0000269|PubMed:16936726, ECO:0000269|PubMed:17210787, ECO:0000269|PubMed:17344414, ECO:0000269|PubMed:18285464, ECO:0000269|PubMed:19026781, ECO:0000269|PubMed:20935635, ECO:0000269|PubMed:22323599, ECO:0000269|PubMed:23063525, ECO:0000269|PubMed:24474760, ECO:0000269|PubMed:30026490, ECO:0000269|PubMed:30923826}. |
Q16643 | DBN1 | S274 | ochoa | Drebrin (Developmentally-regulated brain protein) | Actin cytoskeleton-organizing protein that plays a role in the formation of cell projections (PubMed:20215400). Required for actin polymerization at immunological synapses (IS) and for the recruitment of the chemokine receptor CXCR4 to IS (PubMed:20215400). Plays a role in dendritic spine morphogenesis and organization, including the localization of the dopamine receptor DRD1 to the dendritic spines (By similarity). Involved in memory-related synaptic plasticity in the hippocampus (By similarity). {ECO:0000250|UniProtKB:Q9QXS6, ECO:0000269|PubMed:20215400}. |
Q56P03 | EAPP | S111 | ochoa | E2F-associated phosphoprotein (EAPP) | May play an important role in the fine-tuning of both major E2F1 activities, the regulation of the cell-cycle and the induction of apoptosis. Promotes S-phase entry, and inhibits p14(ARP) expression. {ECO:0000269|PubMed:15716352}. |
Q5BKY9 | FAM133B | S196 | ochoa | Protein FAM133B | None |
Q5T1M5 | FKBP15 | S1012 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5TCZ1 | SH3PXD2A | S797 | ochoa | SH3 and PX domain-containing protein 2A (Adapter protein TKS5) (Five SH3 domain-containing protein) (SH3 multiple domains protein 1) (Tyrosine kinase substrate with five SH3 domains) | Adapter protein involved in invadopodia and podosome formation, extracellular matrix degradation and invasiveness of some cancer cells (PubMed:27789576). Binds matrix metalloproteinases (ADAMs), NADPH oxidases (NOXs) and phosphoinositides. Acts as an organizer protein that allows NOX1- or NOX3-dependent reactive oxygen species (ROS) generation and ROS localization. In association with ADAM12, mediates the neurotoxic effect of amyloid-beta peptide. {ECO:0000269|PubMed:12615925, ECO:0000269|PubMed:15710328, ECO:0000269|PubMed:15710903, ECO:0000269|PubMed:19755710, ECO:0000269|PubMed:20609497, ECO:0000269|PubMed:27789576}. |
Q641Q2 | WASHC2A | S763 | ochoa | WASH complex subunit 2A | Acts at least in part as component of the WASH core complex whose assembly at the surface of endosomes inhibits WASH nucleation-promoting factor (NPF) activity in recruiting and activating the Arp2/3 complex to induce actin polymerization and is involved in the fission of tubules that serve as transport intermediates during endosome sorting. Mediates the recruitment of the WASH core complex to endosome membranes via binding to phospholipids and VPS35 of the retromer CSC. Mediates the recruitment of the F-actin-capping protein dimer to the WASH core complex probably promoting localized F-actin polymerization needed for vesicle scission. Via its C-terminus binds various phospholipids, most strongly phosphatidylinositol 4-phosphate (PtdIns-(4)P), phosphatidylinositol 5-phosphate (PtdIns-(5)P) and phosphatidylinositol 3,5-bisphosphate (PtdIns-(3,5)P2). Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1. Required for the association of DNAJC13, ENTR1, ANKRD50 with retromer CSC subunit VPS35. Required for the endosomal recruitment of CCC complex subunits COMMD1 and CCDC93 as well as the retriever complex subunit VPS35L. {ECO:0000269|PubMed:25355947, ECO:0000269|PubMed:28892079}. |
Q6NV74 | CRACDL | S75 | ochoa | CRACD-like protein | None |
Q6PL24 | TMED8 | S39 | ochoa | Protein TMED8 | None |
Q86UZ6 | ZBTB46 | S326 | ochoa | Zinc finger and BTB domain-containing protein 46 (BTB-ZF protein expressed in effector lymphocytes) (BZEL) (BTB/POZ domain-containing protein 4) (Zinc finger protein 340) | Functions as a transcriptional repressor for PRDM1. {ECO:0000250}. |
Q8IWB9 | TEX2 | S458 | ochoa | Testis-expressed protein 2 (Transmembrane protein 96) | During endoplasmic reticulum (ER) stress or when cellular ceramide levels increase, may induce contacts between the ER and medial-Golgi complex to facilitate non-vesicular transport of ceramides from the ER to the Golgi complex where they are converted to complex sphingolipids, preventing toxic ceramide accumulation. {ECO:0000269|PubMed:28011845}. |
Q8IX01 | SUGP2 | S1047 | ochoa | SURP and G-patch domain-containing protein 2 (Arginine/serine-rich-splicing factor 14) (Splicing factor, arginine/serine-rich 14) | May play a role in mRNA splicing. {ECO:0000305}. |
Q8IZ21 | PHACTR4 | S451 | ochoa | Phosphatase and actin regulator 4 | Regulator of protein phosphatase 1 (PP1) required for neural tube and optic fissure closure, and enteric neural crest cell (ENCCs) migration during development. Acts as an activator of PP1 by interacting with PPP1CA and preventing phosphorylation of PPP1CA at 'Thr-320'. During neural tube closure, localizes to the ventral neural tube and activates PP1, leading to down-regulate cell proliferation within cranial neural tissue and the neural retina. Also acts as a regulator of migration of enteric neural crest cells (ENCCs) by activating PP1, leading to dephosphorylation and subsequent activation of cofilin (COF1 or COF2) and repression of the integrin signaling through the RHO/ROCK pathway (By similarity). {ECO:0000250}. |
Q8NCF5 | NFATC2IP | S92 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NEN9 | PDZD8 | S496 | ochoa | PDZ domain-containing protein 8 (Sarcoma antigen NY-SAR-84/NY-SAR-104) | Molecular tethering protein that connects endoplasmic reticulum and mitochondria membranes (PubMed:29097544). PDZD8-dependent endoplasmic reticulum-mitochondria membrane tethering is essential for endoplasmic reticulum-mitochondria Ca(2+) transfer (PubMed:29097544). In neurons, involved in the regulation of dendritic Ca(2+) dynamics by regulating mitochondrial Ca(2+) uptake in neurons (PubMed:29097544). Plays an indirect role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987). May inhibit herpes simplex virus 1 infection at an early stage (PubMed:21549406). {ECO:0000269|PubMed:21549406, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:29097544}. |
Q8TF40 | FNIP1 | S946 | ochoa|psp | Folliculin-interacting protein 1 | Binding partner of the GTPase-activating protein FLCN: involved in the cellular response to amino acid availability by regulating the non-canonical mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3 (PubMed:17028174, PubMed:18663353, PubMed:24081491, PubMed:37079666). Required to promote FLCN recruitment to lysosomes and interaction with Rag GTPases, leading to activation of the non-canonical mTORC1 signaling (PubMed:24081491). In low-amino acid conditions, component of the lysosomal folliculin complex (LFC) on the membrane of lysosomes, which inhibits the GTPase-activating activity of FLCN, thereby inactivating mTORC1 and promoting nuclear translocation of TFEB and TFE3 (By similarity). Upon amino acid restimulation, disassembly of the LFC complex liberates the GTPase-activating activity of FLCN, leading to activation of mTORC1 and subsequent inactivation of TFEB and TFE3 (PubMed:37079666). Together with FLCN, regulates autophagy: following phosphorylation by ULK1, interacts with GABARAP and promotes autophagy (PubMed:25126726). In addition to its role in mTORC1 signaling, also acts as a co-chaperone of HSP90AA1/Hsp90: following gradual phosphorylation by CK2, inhibits the ATPase activity of HSP90AA1/Hsp90, leading to activate both kinase and non-kinase client proteins of HSP90AA1/Hsp90 (PubMed:27353360, PubMed:30699359). Acts as a scaffold to load client protein FLCN onto HSP90AA1/Hsp90 (PubMed:27353360). Competes with the activating co-chaperone AHSA1 for binding to HSP90AA1, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins (PubMed:27353360). Also acts as a core component of the reductive stress response by inhibiting activation of mitochondria in normal conditions: in response to reductive stress, the conserved Cys degron is reduced, leading to recognition and polyubiquitylation by the CRL2(FEM1B) complex, followed by proteasomal (By similarity). Required for B-cell development (PubMed:32905580). {ECO:0000250|UniProtKB:Q68FD7, ECO:0000250|UniProtKB:Q9P278, ECO:0000269|PubMed:17028174, ECO:0000269|PubMed:18663353, ECO:0000269|PubMed:24081491, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:27353360, ECO:0000269|PubMed:30699359, ECO:0000269|PubMed:32905580, ECO:0000269|PubMed:37079666}. |
Q8TF72 | SHROOM3 | S1021 | ochoa | Protein Shroom3 (Shroom-related protein) (hShrmL) | Controls cell shape changes in the neuroepithelium during neural tube closure. Induces apical constriction in epithelial cells by promoting the apical accumulation of F-actin and myosin II, and probably by bundling stress fibers (By similarity). Induces apicobasal cell elongation by redistributing gamma-tubulin and directing the assembly of robust apicobasal microtubule arrays (By similarity). {ECO:0000250|UniProtKB:Q27IV2, ECO:0000250|UniProtKB:Q9QXN0}. |
Q8WVC0 | LEO1 | S66 | ochoa | RNA polymerase-associated protein LEO1 (Replicative senescence down-regulated leo1-like protein) | Component of the PAF1 complex (PAF1C) which has multiple functions during transcription by RNA polymerase II and is implicated in regulation of development and maintenance of embryonic stem cell pluripotency. PAF1C associates with RNA polymerase II through interaction with POLR2A CTD non-phosphorylated and 'Ser-2'- and 'Ser-5'-phosphorylated forms and is involved in transcriptional elongation, acting both independently and synergistically with TCEA1 and in cooperation with the DSIF complex and HTATSF1. PAF1C is required for transcription of Hox and Wnt target genes. PAF1C is involved in hematopoiesis and stimulates transcriptional activity of KMT2A/MLL1; it promotes leukemogenesis through association with KMT2A/MLL1-rearranged oncoproteins, such as KMT2A/MLL1-MLLT3/AF9 and KMT2A/MLL1-MLLT1/ENL. PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1); UB2A/B-mediated H2B ubiquitination is proposed to be coupled to transcription. PAF1C is involved in mRNA 3' end formation probably through association with cleavage and poly(A) factors. In case of infection by influenza A strain H3N2, PAF1C associates with viral NS1 protein, thereby regulating gene transcription. Involved in polyadenylation of mRNA precursors. Connects PAF1C to Wnt signaling. {ECO:0000269|PubMed:15632063, ECO:0000269|PubMed:15791002, ECO:0000269|PubMed:19345177, ECO:0000269|PubMed:19952111, ECO:0000269|PubMed:20178742}. |
Q92545 | TMEM131 | S1553 | ochoa | Transmembrane protein 131 (Protein RW1) | Collagen binding transmembrane protein involved in collagen secretion by recruiting the ER-to-Golgi transport complex TRAPPIII (PubMed:32095531). May play a role in the immune response to viral infection. {ECO:0000250, ECO:0000269|PubMed:32095531}. |
Q92766 | RREB1 | S1585 | ochoa | Ras-responsive element-binding protein 1 (RREB-1) (Finger protein in nuclear bodies) (Raf-responsive zinc finger protein LZ321) (Zinc finger motif enhancer-binding protein 1) (Zep-1) | Transcription factor that binds specifically to the RAS-responsive elements (RRE) of gene promoters (PubMed:10390538, PubMed:15067362, PubMed:17550981, PubMed:8816445, PubMed:9305772). Represses the angiotensinogen gene (PubMed:15067362). Negatively regulates the transcriptional activity of AR (PubMed:17550981). Potentiates the transcriptional activity of NEUROD1 (PubMed:12482979). Promotes brown adipocyte differentiation (By similarity). May be involved in Ras/Raf-mediated cell differentiation by enhancing calcitonin expression (PubMed:8816445). {ECO:0000250|UniProtKB:Q3UH06, ECO:0000269|PubMed:10390538, ECO:0000269|PubMed:12482979, ECO:0000269|PubMed:15067362, ECO:0000269|PubMed:17550981, ECO:0000269|PubMed:8816445, ECO:0000269|PubMed:9305772}. |
Q96D09 | GPRASP2 | S330 | ochoa | G-protein coupled receptor-associated sorting protein 2 (GASP-2) | May play a role in regulation of a variety of G-protein coupled receptors. {ECO:0000269|PubMed:15086532}. |
Q96EZ8 | MCRS1 | S22 | ochoa | Microspherule protein 1 (58 kDa microspherule protein) (Cell cycle-regulated factor p78) (INO80 complex subunit J) (MCRS2) | Modulates the transcription repressor activity of DAXX by recruiting it to the nucleolus (PubMed:11948183). As part of the NSL complex, may be involved in acetylation of nucleosomal histone H4 on several lysine residues (PubMed:20018852). Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. May also be an inhibitor of TERT telomerase activity (PubMed:15044100). Binds to G-quadruplex structures in mRNA (PubMed:16571602). Binds to RNA homomer poly(G) and poly(U) (PubMed:16571602). Maintains RHEB at the lysosome in its active GTP-bound form and prevents its interaction with the mTORC1 complex inhibitor TSC2, ensuring activation of the mTORC1 complex by RHEB (PubMed:25816988). Stabilizes the minus ends of kinetochore fibers by protecting them from depolymerization, ensuring functional spindle assembly during mitosis (PubMed:22081094, PubMed:27192185). Following phosphorylation by TTK/MPS1, enhances recruitment of KIF2A to the minus ends of mitotic spindle microtubules which promotes chromosome alignment (PubMed:30785839). Regulates the morphology of microtubule minus ends in mitotic spindle by maintaining them in a closed conformation characterized by the presence of an electron-dense cap (PubMed:36350698). Regulates G2/M transition and spindle assembly during oocyte meiosis (By similarity). Mediates histone modifications and transcriptional regulation in germinal vesicle oocytes which are required for meiotic progression (By similarity). Also regulates microtubule nucleation and spindle assembly by activating aurora kinases during oocyte meiosis (By similarity). Contributes to the establishment of centriolar satellites and also plays a role in primary cilium formation by recruiting TTBK2 to the mother centriole which is necessary for removal of the CP110 cap from the mother centriole, an early step in ciliogenesis (PubMed:27263857). Required for epiblast development during early embryogenesis (By similarity). Essential for cell viability (PubMed:16547491). {ECO:0000250|UniProtKB:Q99L90, ECO:0000269|PubMed:11948183, ECO:0000269|PubMed:15044100, ECO:0000269|PubMed:16547491, ECO:0000269|PubMed:16571602, ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22081094, ECO:0000269|PubMed:25816988, ECO:0000269|PubMed:27192185, ECO:0000269|PubMed:27263857, ECO:0000269|PubMed:30785839, ECO:0000269|PubMed:36350698}. |
Q96GD3 | SCMH1 | S509 | ochoa | Polycomb protein SCMH1 (Sex comb on midleg homolog 1) | Associates with Polycomb group (PcG) multiprotein complexes; the complex class is required to maintain the transcriptionally repressive state of some genes. {ECO:0000250}. |
Q96GN5 | CDCA7L | S79 | ochoa | Cell division cycle-associated 7-like protein (Protein JPO2) (Transcription factor RAM2) | Plays a role in transcriptional regulation as a repressor that inhibits monoamine oxidase A (MAOA) activity and gene expression by binding to the promoter. Plays an important oncogenic role in mediating the full transforming effect of MYC in medulloblastoma cells. Involved in apoptotic signaling pathways; May act downstream of P38-kinase and BCL-2, but upstream of CASP3/caspase-3 as well as CCND1/cyclin D1 and E2F1. {ECO:0000269|PubMed:15654081, ECO:0000269|PubMed:15994933, ECO:0000269|PubMed:16829576}. |
Q96ST2 | IWS1 | S69 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q96ST2 | IWS1 | S400 | ochoa | Protein IWS1 homolog (IWS1-like protein) | Transcription factor which plays a key role in defining the composition of the RNA polymerase II (RNAPII) elongation complex and in modulating the production of mature mRNA transcripts. Acts as an assembly factor to recruit various factors to the RNAPII elongation complex and is recruited to the complex via binding to the transcription elongation factor SUPT6H bound to the C-terminal domain (CTD) of the RNAPII subunit RPB1 (POLR2A). The SUPT6H:IWS1:CTD complex recruits mRNA export factors (ALYREF/THOC4, EXOSC10) as well as histone modifying enzymes (such as SETD2) to ensure proper mRNA splicing, efficient mRNA export and elongation-coupled H3K36 methylation, a signature chromatin mark of active transcription. {ECO:0000269|PubMed:17184735, ECO:0000269|PubMed:17234882, ECO:0000269|PubMed:19141475}. |
Q9BZF1 | OSBPL8 | S314 | ochoa | Oxysterol-binding protein-related protein 8 (ORP-8) (OSBP-related protein 8) | Lipid transporter involved in lipid countertransport between the endoplasmic reticulum and the plasma membrane: specifically exchanges phosphatidylserine with phosphatidylinositol 4-phosphate (PI4P), delivering phosphatidylserine to the plasma membrane in exchange for PI4P, which is degraded by the SAC1/SACM1L phosphatase in the endoplasmic reticulum. Binds phosphatidylserine and PI4P in a mutually exclusive manner (PubMed:26206935). Binds oxysterol, 25-hydroxycholesterol and cholesterol (PubMed:17428193, PubMed:17991739, PubMed:21698267). {ECO:0000269|PubMed:17428193, ECO:0000269|PubMed:17991739, ECO:0000269|PubMed:21698267, ECO:0000269|PubMed:26206935}. |
Q9H2G2 | SLK | S818 | ochoa | STE20-like serine/threonine-protein kinase (STE20-like kinase) (hSLK) (EC 2.7.11.1) (CTCL tumor antigen se20-9) (STE20-related serine/threonine-protein kinase) (STE20-related kinase) (Serine/threonine-protein kinase 2) | Mediates apoptosis and actin stress fiber dissolution. {ECO:0000250}. |
Q9H4G0 | EPB41L1 | S650 | ochoa | Band 4.1-like protein 1 (Erythrocyte membrane protein band 4.1-like 1) (Neuronal protein 4.1) (4.1N) | May function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. |
Q9H6H4 | REEP4 | T196 | ochoa | Receptor expression-enhancing protein 4 | Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes. {ECO:0000269|PubMed:23911198}. |
Q9NU22 | MDN1 | S4754 | ochoa | Midasin (Dynein-related AAA-ATPase MDN1) (MIDAS-containing protein) | Nuclear chaperone required for maturation and nuclear export of pre-60S ribosome subunits (PubMed:27814492). Functions at successive maturation steps to remove ribosomal factors at critical transition points, first driving the exit of early pre-60S particles from the nucleolus and then driving late pre-60S particles from the nucleus (By similarity). At an early stage in 60S maturation, mediates the dissociation of the PeBoW complex (PES1-BOP1-WDR12) from early pre-60S particles, rendering them competent for export from the nucleolus to the nucleoplasm (By similarity). Subsequently recruited to the nucleoplasmic particles through interaction with SUMO-conjugated PELP1 complex (PubMed:27814492). This binding is only possible if the 5S RNP at the central protuberance has undergone the rotation to complete its maturation (By similarity). {ECO:0000250|UniProtKB:Q12019, ECO:0000269|PubMed:27814492}. |
Q9UHI6 | DDX20 | S685 | ochoa | Probable ATP-dependent RNA helicase DDX20 (EC 3.6.1.15) (EC 3.6.4.13) (Component of gems 3) (DEAD box protein 20) (DEAD box protein DP 103) (Gemin-3) | The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs). {ECO:0000269|PubMed:18984161}. |
Q9UKE5 | TNIK | S766 | ochoa | TRAF2 and NCK-interacting protein kinase (EC 2.7.11.1) | Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. More generally, it may play a role in cytoskeletal rearrangements and regulate cell spreading. Phosphorylates SMAD1 on Thr-322. Activator of the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. MAP4Ks act in parallel to and are partially redundant with STK3/MST2 and STK4/MST2 in the phosphorylation and activation of LATS1/2, and establish MAP4Ks as components of the expanded Hippo pathway (PubMed:26437443). {ECO:0000269|PubMed:10521462, ECO:0000269|PubMed:15342639, ECO:0000269|PubMed:19061864, ECO:0000269|PubMed:19816403, ECO:0000269|PubMed:20159449, ECO:0000269|PubMed:21690388, ECO:0000269|PubMed:26437443}. |
Q9UKL3 | CASP8AP2 | S942 | ochoa | CASP8-associated protein 2 (FLICE-associated huge protein) | Participates in TNF-alpha-induced blockade of glucocorticoid receptor (GR) transactivation at the nuclear receptor coactivator level, upstream and independently of NF-kappa-B. Suppresses both NCOA2- and NCOA3-induced enhancement of GR transactivation. Involved in TNF-alpha-induced activation of NF-kappa-B via a TRAF2-dependent pathway. Acts as a downstream mediator for CASP8-induced activation of NF-kappa-B. Required for the activation of CASP8 in FAS-mediated apoptosis. Required for histone gene transcription and progression through S phase. {ECO:0000269|PubMed:12477726, ECO:0000269|PubMed:15698540, ECO:0000269|PubMed:17003125, ECO:0000269|PubMed:17245429}. |
Q9UMN6 | KMT2B | S844 | ochoa | Histone-lysine N-methyltransferase 2B (Lysine N-methyltransferase 2B) (EC 2.1.1.364) (Myeloid/lymphoid or mixed-lineage leukemia protein 4) (Trithorax homolog 2) (WW domain-binding protein 7) (WBP-7) | Histone methyltransferase that catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:17707229, PubMed:25561738). Likely plays a redundant role with KMT2C in enriching H3K4me1 marks on primed and active enhancer elements (PubMed:24081332). Plays a central role in beta-globin locus transcription regulation by being recruited by NFE2 (PubMed:17707229). Plays an important role in controlling bulk H3K4me during oocyte growth and preimplantation development (By similarity). Required during the transcriptionally active period of oocyte growth for the establishment and/or maintenance of bulk H3K4 trimethylation (H3K4me3), global transcriptional silencing that preceeds resumption of meiosis, oocyte survival and normal zygotic genome activation (By similarity). {ECO:0000250|UniProtKB:O08550, ECO:0000269|PubMed:17707229, ECO:0000269|PubMed:24081332, ECO:0000269|PubMed:25561738}. |
Q9Y520 | PRRC2C | S1269 | ochoa | Protein PRRC2C (BAT2 domain-containing protein 1) (HBV X-transactivated gene 2 protein) (HBV XAg-transactivated protein 2) (HLA-B-associated transcript 2-like 2) (Proline-rich and coiled-coil-containing protein 2C) | Required for efficient formation of stress granules. {ECO:0000269|PubMed:29395067}. |
Q9Y6X9 | MORC2 | S779 | ochoa | ATPase MORC2 (EC 3.6.1.-) (MORC family CW-type zinc finger protein 2) (Zinc finger CW-type coiled-coil domain protein 1) | Essential for epigenetic silencing by the HUSH (human silencing hub) complex. Recruited by HUSH to target site in heterochromatin, the ATPase activity and homodimerization are critical for HUSH-mediated silencing (PubMed:28581500, PubMed:29440755, PubMed:32693025). Represses germ cell-related genes and L1 retrotransposons in collaboration with SETDB1 and the HUSH complex, the silencing is dependent of repressive epigenetic modifications, such as H3K9me3 mark. Silencing events often occur within introns of transcriptionally active genes, and lead to the down-regulation of host gene expression (PubMed:29211708). During DNA damage response, regulates chromatin remodeling through ATP hydrolysis. Upon DNA damage, is phosphorylated by PAK1, both colocalize to chromatin and induce H2AX expression. ATPase activity is required and dependent of phosphorylation by PAK1 and presence of DNA (PubMed:23260667). Recruits histone deacetylases, such as HDAC4, to promoter regions, causing local histone H3 deacetylation and transcriptional repression of genes such as CA9 (PubMed:20110259, PubMed:20225202). Exhibits a cytosolic function in lipogenesis, adipogenic differentiation, and lipid homeostasis by increasing the activity of ACLY, possibly preventing its dephosphorylation (PubMed:24286864). {ECO:0000269|PubMed:20110259, ECO:0000269|PubMed:20225202, ECO:0000269|PubMed:23260667, ECO:0000269|PubMed:24286864, ECO:0000269|PubMed:28581500, ECO:0000269|PubMed:29211708, ECO:0000269|PubMed:29440755, ECO:0000269|PubMed:32693025}. |
P35568 | IRS1 | S99 | SIGNOR | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
Q13144 | EIF2B5 | S527 | Sugiyama | Translation initiation factor eIF2B subunit epsilon (eIF2B GDP-GTP exchange factor subunit epsilon) | Acts as a component of the translation initiation factor 2B (eIF2B) complex, which catalyzes the exchange of GDP for GTP on eukaryotic initiation factor 2 (eIF2) gamma subunit (PubMed:25858979, PubMed:27023709, PubMed:31048492). Its guanine nucleotide exchange factor activity is repressed when bound to eIF2 complex phosphorylated on the alpha subunit, thereby limiting the amount of methionyl-initiator methionine tRNA available to the ribosome and consequently global translation is repressed (PubMed:25858979, PubMed:31048492). {ECO:0000269|PubMed:25858979, ECO:0000269|PubMed:27023709, ECO:0000269|PubMed:31048492}. |
O14647 | CHD2 | S132 | ochoa | Chromodomain-helicase-DNA-binding protein 2 (CHD-2) (EC 3.6.4.-) (ATP-dependent helicase CHD2) | ATP-dependent chromatin-remodeling factor that specifically binds to the promoter of target genes, leading to chromatin remodeling, possibly by promoting deposition of histone H3.3. Involved in myogenesis via interaction with MYOD1: binds to myogenic gene regulatory sequences and mediates incorporation of histone H3.3 prior to the onset of myogenic gene expression, promoting their expression (By similarity). {ECO:0000250}. |
O75940 | SMNDC1 | S63 | ochoa | Survival of motor neuron-related-splicing factor 30 (30 kDa splicing factor SMNrp) (SMN-related protein) (Survival motor neuron domain-containing protein 1) | Involved in spliceosome assembly. {ECO:0000269|PubMed:11331295, ECO:0000269|PubMed:11331595, ECO:0000269|PubMed:9817934}. |
O95359 | TACC2 | S1949 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
P05814 | CSN2 | S25 | psp | Beta-casein | Important role in determination of the surface properties of the casein micelles. |
P08648 | ITGA5 | S128 | ochoa | Integrin alpha-5 (CD49 antigen-like family member E) (Fibronectin receptor subunit alpha) (Integrin alpha-F) (VLA-5) (CD antigen CD49e) [Cleaved into: Integrin alpha-5 heavy chain; Integrin alpha-5 light chain] | Integrin alpha-5/beta-1 (ITGA5:ITGB1) is a receptor for fibronectin and fibrinogen. It recognizes the sequence R-G-D in its ligands. ITGA5:ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1 (PubMed:18635536, PubMed:25398877). ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1 (PubMed:12807887, PubMed:17158881). ITGA5:ITGB1 acts as a receptor for fibronectin (FN1) and mediates R-G-D-dependent cell adhesion to FN1 (PubMed:33962943). ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling (PubMed:29030430). ITGA5:ITGB3 is a receptor for soluble CD40LG and is required for CD40/CD40LG signaling (PubMed:31331973). {ECO:0000269|PubMed:12807887, ECO:0000269|PubMed:17158881, ECO:0000269|PubMed:18635536, ECO:0000269|PubMed:25398877, ECO:0000269|PubMed:29030430, ECO:0000269|PubMed:31331973, ECO:0000269|PubMed:33962943}.; FUNCTION: (Microbial infection) Integrin ITGA5:ITGB1 acts as a receptor for Human metapneumovirus. {ECO:0000269|PubMed:12907437}.; FUNCTION: (Microbial infection) Integrin ITGA2:ITGB1 acts as a receptor for Human parvovirus B19. {ECO:0000269|PubMed:24478423}.; FUNCTION: (Microbial infection) In case of HIV-1 infection, the interaction with extracellular viral Tat protein seems to enhance angiogenesis in Kaposi's sarcoma lesions. {ECO:0000269|PubMed:10397733}. |
P12270 | TPR | S530 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P12270 | TPR | S1187 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P14317 | HCLS1 | S314 | ochoa | Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific LYN substrate 1) (LckBP1) (p75) | Substrate of the antigen receptor-coupled tyrosine kinase. Plays a role in antigen receptor signaling for both clonal expansion and deletion in lymphoid cells. May also be involved in the regulation of gene expression. |
P17936 | IGFBP3 | S140 | ochoa|psp | Insulin-like growth factor-binding protein 3 (IBP-3) (IGF-binding protein 3) (IGFBP-3) | Multifunctional protein that plays a critical role in regulating the availability of IGFs such as IGF1 and IGF2 to their receptors and thereby regulates IGF-mediated cellular processes including proliferation, differentiation, and apoptosis in a cell-type specific manner (PubMed:10874028, PubMed:19556345). Also exhibits IGF-independent antiproliferative and apoptotic effects mediated by its receptor TMEM219/IGFBP-3R (PubMed:20353938). Inhibits the positive effect of humanin on insulin sensitivity (PubMed:19623253). Promotes testicular germ cell apoptosis (PubMed:19952275). Acts via LRP-1/alpha2M receptor, also known as TGF-beta type V receptor, to mediate cell growth inhibition independent of IGF1 (PubMed:9252371). Mechanistically, induces serine-specific dephosphorylation of IRS1 or IRS2 upon ligation to its receptor, leading to the inhibitory cascade (PubMed:15371331). In the nucleus, interacts with transcription factors such as retinoid X receptor-alpha/RXRA to regulate transcriptional signaling and apoptosis (PubMed:10874028). {ECO:0000269|PubMed:10874028, ECO:0000269|PubMed:15371331, ECO:0000269|PubMed:19159218, ECO:0000269|PubMed:19556345, ECO:0000269|PubMed:19623253, ECO:0000269|PubMed:19952275, ECO:0000269|PubMed:20353938}. |
P18583 | SON | S1784 | ochoa | Protein SON (Bax antagonist selected in saccharomyces 1) (BASS1) (Negative regulatory element-binding protein) (NRE-binding protein) (Protein DBP-5) (SON3) | RNA-binding protein that acts as a mRNA splicing cofactor by promoting efficient splicing of transcripts that possess weak splice sites. Specifically promotes splicing of many cell-cycle and DNA-repair transcripts that possess weak splice sites, such as TUBG1, KATNB1, TUBGCP2, AURKB, PCNT, AKT1, RAD23A, and FANCG. Probably acts by facilitating the interaction between Serine/arginine-rich proteins such as SRSF2 and the RNA polymerase II. Also binds to DNA; binds to the consensus DNA sequence: 5'-GA[GT]AN[CG][AG]CC-3'. May indirectly repress hepatitis B virus (HBV) core promoter activity and transcription of HBV genes and production of HBV virions. Essential for correct RNA splicing of multiple genes critical for brain development, neuronal migration and metabolism, including TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1 (PubMed:27545680). {ECO:0000269|PubMed:20581448, ECO:0000269|PubMed:21504830, ECO:0000269|PubMed:27545680}. |
P21127 | CDK11B | S285 | ochoa | Cyclin-dependent kinase 11B (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 1) (CLK-1) (Cell division protein kinase 11B) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L1) (p58 CLK-1) | Plays multiple roles in cell cycle progression, cytokinesis and apoptosis. Involved in pre-mRNA splicing in a kinase activity-dependent manner. Isoform 7 may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090, ECO:0000269|PubMed:18216018, ECO:0000269|PubMed:2217177}. |
P29374 | ARID4A | S455 | ochoa | AT-rich interactive domain-containing protein 4A (ARID domain-containing protein 4A) (Retinoblastoma-binding protein 1) (RBBP-1) | DNA-binding protein which modulates activity of several transcription factors including RB1 (retinoblastoma-associated protein) and AR (androgen receptor) (By similarity). May function as part of an mSin3A repressor complex (PubMed:14581478). Has no intrinsic transcriptional activity (By similarity). Plays a role in the regulation of epigenetic modifications at the PWS/AS imprinting center near the SNRPN promoter, where it might function as part of a complex with RB1 and ARID4B (By similarity). Involved in spermatogenesis, together with ARID4B, where it acts as a transcriptional coactivator for AR and enhances expression of genes required for sperm maturation. Regulates expression of the tight junction protein CLDN3 in the testis, which is important for integrity of the blood-testis barrier (By similarity). Plays a role in myeloid homeostasis where it regulates the histone methylation state of bone marrow cells and expression of various genes involved in hematopoiesis. May function as a leukemia suppressor (By similarity). {ECO:0000250|UniProtKB:F8VPQ2, ECO:0000269|PubMed:14581478}. |
P30203 | CD6 | S562 | psp | T-cell differentiation antigen CD6 (T12) (TP120) (CD antigen CD6) [Cleaved into: Soluble CD6] | Cell adhesion molecule that mediates cell-cell contacts and regulates T-cell responses via its interaction with ALCAM/CD166 (PubMed:15048703, PubMed:15294938, PubMed:16352806, PubMed:16914752, PubMed:24584089, PubMed:24945728). Contributes to signaling cascades triggered by activation of the TCR/CD3 complex (PubMed:24584089). Functions as a costimulatory molecule; promotes T-cell activation and proliferation (PubMed:15294938, PubMed:16352806, PubMed:16914752). Contributes to the formation and maturation of the immunological synapse (PubMed:15294938, PubMed:16352806). Functions as a calcium-dependent pattern receptor that binds and aggregates both Gram-positive and Gram-negative bacteria. Binds both lipopolysaccharide (LPS) from Gram-negative bacteria and lipoteichoic acid from Gram-positive bacteria (PubMed:17601777). LPS binding leads to the activation of signaling cascades and down-stream MAP kinases (PubMed:17601777). Mediates activation of the inflammatory response and the secretion of pro-inflammatory cytokines in response to LPS (PubMed:17601777). {ECO:0000269|PubMed:15048703, ECO:0000269|PubMed:15294938, ECO:0000269|PubMed:16352806, ECO:0000269|PubMed:16914752, ECO:0000269|PubMed:17601777, ECO:0000269|PubMed:24584089, ECO:0000269|PubMed:24945728}. |
P35251 | RFC1 | S73 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35659 | DEK | S303 | ochoa | Protein DEK | Involved in chromatin organization. {ECO:0000269|PubMed:17524367}. |
P47710 | CSN1S1 | S91 | psp | Alpha-S1-casein [Cleaved into: Casoxin-D] | Important role in the capacity of milk to transport calcium phosphate.; FUNCTION: Casoxin D acts as opioid antagonist and has vasorelaxing activity mediated by bradykinin B1 receptors. |
Q01831 | XPC | S399 | ochoa | DNA repair protein complementing XP-C cells (Xeroderma pigmentosum group C-complementing protein) (p125) | Involved in global genome nucleotide excision repair (GG-NER) by acting as damage sensing and DNA-binding factor component of the XPC complex (PubMed:10734143, PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19609301, PubMed:19941824, PubMed:20028083, PubMed:20649465, PubMed:20798892, PubMed:9734359). Has only a low DNA repair activity by itself which is stimulated by RAD23B and RAD23A. Has a preference to bind DNA containing a short single-stranded segment but not to damaged oligonucleotides (PubMed:10734143, PubMed:19609301, PubMed:20649465). This feature is proposed to be related to a dynamic sensor function: XPC can rapidly screen duplex DNA for non-hydrogen-bonded bases by forming a transient nucleoprotein intermediate complex which matures into a stable recognition complex through an intrinsic single-stranded DNA-binding activity (PubMed:10734143, PubMed:19609301, PubMed:20649465). The XPC complex is proposed to represent the first factor bound at the sites of DNA damage and together with other core recognition factors, XPA, RPA and the TFIIH complex, is part of the pre-incision (or initial recognition) complex (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The XPC complex recognizes a wide spectrum of damaged DNA characterized by distortions of the DNA helix such as single-stranded loops, mismatched bubbles or single-stranded overhangs (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). The orientation of XPC complex binding appears to be crucial for inducing a productive NER (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). XPC complex is proposed to recognize and to interact with unpaired bases on the undamaged DNA strand which is followed by recruitment of the TFIIH complex and subsequent scanning for lesions in the opposite strand in a 5'-to-3' direction by the NER machinery (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). Cyclobutane pyrimidine dimers (CPDs) which are formed upon UV-induced DNA damage esacpe detection by the XPC complex due to a low degree of structural perurbation. Instead they are detected by the UV-DDB complex which in turn recruits and cooperates with the XPC complex in the respective DNA repair (PubMed:10873465, PubMed:12509299, PubMed:12547395, PubMed:19941824, PubMed:20028083, PubMed:20798892, PubMed:9734359). In vitro, the XPC:RAD23B dimer is sufficient to initiate NER; it preferentially binds to cisplatin and UV-damaged double-stranded DNA and also binds to a variety of chemically and structurally diverse DNA adducts (PubMed:20028083). XPC:RAD23B contacts DNA both 5' and 3' of a cisplatin lesion with a preference for the 5' side. XPC:RAD23B induces a bend in DNA upon binding. XPC:RAD23B stimulates the activity of DNA glycosylases TDG and SMUG1 (PubMed:20028083). {ECO:0000269|PubMed:10734143, ECO:0000269|PubMed:10873465, ECO:0000269|PubMed:12509299, ECO:0000269|PubMed:12547395, ECO:0000269|PubMed:19609301, ECO:0000269|PubMed:19941824, ECO:0000269|PubMed:20028083, ECO:0000269|PubMed:20649465, ECO:0000269|PubMed:20798892, ECO:0000269|PubMed:9734359}.; FUNCTION: In absence of DNA repair, the XPC complex also acts as a transcription coactivator: XPC interacts with the DNA-binding transcription factor E2F1 at a subset of promoters to recruit KAT2A and histone acetyltransferase complexes (HAT) (PubMed:29973595, PubMed:31527837). KAT2A recruitment specifically promotes acetylation of histone variant H2A.Z.1/H2A.Z, but not H2A.Z.2/H2A.V, thereby promoting expression of target genes (PubMed:31527837). {ECO:0000269|PubMed:29973595, ECO:0000269|PubMed:31527837}. |
Q0ZGT2 | NEXN | S162 | ochoa | Nexilin (F-actin-binding protein) (Nelin) | Involved in regulating cell migration through association with the actin cytoskeleton. Has an essential role in the maintenance of Z line and sarcomere integrity. {ECO:0000269|PubMed:12053183, ECO:0000269|PubMed:15823560, ECO:0000269|PubMed:19881492}. |
Q12802 | AKAP13 | S1647 | ochoa | A-kinase anchor protein 13 (AKAP-13) (AKAP-Lbc) (Breast cancer nuclear receptor-binding auxiliary protein) (Guanine nucleotide exchange factor Lbc) (Human thyroid-anchoring protein 31) (Lymphoid blast crisis oncogene) (LBC oncogene) (Non-oncogenic Rho GTPase-specific GTP exchange factor) (Protein kinase A-anchoring protein 13) (PRKA13) (p47) | Scaffold protein that plays an important role in assembling signaling complexes downstream of several types of G protein-coupled receptors. Activates RHOA in response to signaling via G protein-coupled receptors via its function as Rho guanine nucleotide exchange factor (PubMed:11546812, PubMed:15229649, PubMed:23090968, PubMed:24993829, PubMed:25186459). May also activate other Rho family members (PubMed:11546812). Part of a kinase signaling complex that links ADRA1A and ADRA1B adrenergic receptor signaling to the activation of downstream p38 MAP kinases, such as MAPK11 and MAPK14 (PubMed:17537920, PubMed:21224381, PubMed:23716597). Part of a signaling complex that links ADRA1B signaling to the activation of RHOA and IKBKB/IKKB, leading to increased NF-kappa-B transcriptional activity (PubMed:23090968). Part of a RHOA-dependent signaling cascade that mediates responses to lysophosphatidic acid (LPA), a signaling molecule that activates G-protein coupled receptors and potentiates transcriptional activation of the glucocorticoid receptor NR3C1 (PubMed:16469733). Part of a signaling cascade that stimulates MEF2C-dependent gene expression in response to lysophosphatidic acid (LPA) (By similarity). Part of a signaling pathway that activates MAPK11 and/or MAPK14 and leads to increased transcription activation of the estrogen receptors ESR1 and ESR2 (PubMed:11579095, PubMed:9627117). Part of a signaling cascade that links cAMP and EGFR signaling to BRAF signaling and to PKA-mediated phosphorylation of KSR1, leading to the activation of downstream MAP kinases, such as MAPK1 or MAPK3 (PubMed:21102438). Functions as a scaffold protein that anchors cAMP-dependent protein kinase (PKA) and PRKD1. This promotes activation of PRKD1, leading to increased phosphorylation of HDAC5 and ultimately cardiomyocyte hypertrophy (By similarity). Has no guanine nucleotide exchange activity on CDC42, Ras or Rac (PubMed:11546812). Required for normal embryonic heart development, and in particular for normal sarcomere formation in the developing cardiomyocytes (By similarity). Plays a role in cardiomyocyte growth and cardiac hypertrophy in response to activation of the beta-adrenergic receptor by phenylephrine or isoproterenol (PubMed:17537920, PubMed:23090968). Required for normal adaptive cardiac hypertrophy in response to pressure overload (PubMed:23716597). Plays a role in osteogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q394, ECO:0000269|PubMed:11546812, ECO:0000269|PubMed:11579095, ECO:0000269|PubMed:17537920, ECO:0000269|PubMed:21224381, ECO:0000269|PubMed:23716597, ECO:0000269|PubMed:24993829, ECO:0000269|PubMed:25186459, ECO:0000269|PubMed:9627117, ECO:0000269|PubMed:9891067}. |
Q13428 | TCOF1 | S696 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q13610 | PWP1 | S59 | ochoa | Periodic tryptophan protein 1 homolog (Keratinocyte protein IEF SSP 9502) | Chromatin-associated factor that regulates transcription (PubMed:29065309). Regulates Pol I-mediated rRNA biogenesis and, probably, Pol III-mediated transcription (PubMed:29065309). Regulates the epigenetic status of rDNA (PubMed:29065309). {ECO:0000269|PubMed:29065309}. |
Q14669 | TRIP12 | S102 | ochoa | E3 ubiquitin-protein ligase TRIP12 (EC 2.3.2.26) (E3 ubiquitin-protein ligase for Arf) (ULF) (HECT-type E3 ubiquitin transferase TRIP12) (Thyroid receptor-interacting protein 12) (TR-interacting protein 12) (TRIP-12) | E3 ubiquitin-protein ligase involved in ubiquitin fusion degradation (UFD) pathway and regulation of DNA repair (PubMed:19028681, PubMed:22884692). Part of the ubiquitin fusion degradation (UFD) pathway, a process that mediates ubiquitination of protein at their N-terminus, regardless of the presence of lysine residues in target proteins (PubMed:19028681). Acts as a key regulator of DNA damage response by acting as a suppressor of RNF168, an E3 ubiquitin-protein ligase that promotes accumulation of 'Lys-63'-linked histone H2A and H2AX at DNA damage sites, thereby acting as a guard against excessive spreading of ubiquitinated chromatin at damaged chromosomes (PubMed:22884692). In normal cells, mediates ubiquitination and degradation of isoform p19ARF/ARF of CDKN2A, a lysine-less tumor suppressor required for p53/TP53 activation under oncogenic stress (PubMed:20208519). In cancer cells, however, isoform p19ARF/ARF and TRIP12 are located in different cell compartments, preventing isoform p19ARF/ARF ubiquitination and degradation (PubMed:20208519). Does not mediate ubiquitination of isoform p16-INK4a of CDKN2A (PubMed:20208519). Also catalyzes ubiquitination of NAE1 and SMARCE1, leading to their degradation (PubMed:18627766). Ubiquitination and degradation of target proteins is regulated by interaction with proteins such as MYC, TRADD or SMARCC1, which disrupt the interaction between TRIP12 and target proteins (PubMed:20829358). Mediates ubiquitination of ASXL1: following binding to N(6)-methyladenosine methylated DNA, ASXL1 is ubiquitinated by TRIP12, leading to its degradation and subsequent inactivation of the PR-DUB complex (PubMed:30982744). {ECO:0000269|PubMed:18627766, ECO:0000269|PubMed:19028681, ECO:0000269|PubMed:20208519, ECO:0000269|PubMed:20829358, ECO:0000269|PubMed:22884692, ECO:0000269|PubMed:30982744}. |
Q14966 | ZNF638 | S630 | ochoa | Zinc finger protein 638 (Cutaneous T-cell lymphoma-associated antigen se33-1) (CTCL-associated antigen se33-1) (Nuclear protein 220) (Zinc finger matrin-like protein) | Transcription factor that binds to cytidine clusters in double-stranded DNA (PubMed:30487602, PubMed:8647861). Plays a key role in the silencing of unintegrated retroviral DNA: some part of the retroviral DNA formed immediately after infection remains unintegrated in the host genome and is transcriptionally repressed (PubMed:30487602). Mediates transcriptional repression of unintegrated viral DNA by specifically binding to the cytidine clusters of retroviral DNA and mediating the recruitment of chromatin silencers, such as the HUSH complex, SETDB1 and the histone deacetylases HDAC1 and HDAC4 (PubMed:30487602). Acts as an early regulator of adipogenesis by acting as a transcription cofactor of CEBPs (CEBPA, CEBPD and/or CEBPG), controlling the expression of PPARG and probably of other proadipogenic genes, such as SREBF1 (By similarity). May also regulate alternative splicing of target genes during adipogenesis (By similarity). {ECO:0000250|UniProtKB:Q61464, ECO:0000269|PubMed:30487602, ECO:0000269|PubMed:8647861}. |
Q14978 | NOLC1 | S87 | ochoa | Nucleolar and coiled-body phosphoprotein 1 (140 kDa nucleolar phosphoprotein) (Nopp140) (Hepatitis C virus NS5A-transactivated protein 13) (HCV NS5A-transactivated protein 13) (Nucleolar 130 kDa protein) (Nucleolar phosphoprotein p130) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:10567578, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with TCOF1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). Involved in nucleologenesis, possibly by playing a role in the maintenance of the fundamental structure of the fibrillar center and dense fibrillar component in the nucleolus (PubMed:9016786). It has intrinsic GTPase and ATPase activities (PubMed:9016786). {ECO:0000269|PubMed:10567578, ECO:0000269|PubMed:26399832, ECO:0000269|PubMed:9016786}. |
Q5JQS6 | GCSAML | S64 | ochoa | Germinal center-associated signaling and motility-like protein | None |
Q5THJ4 | VPS13D | S2436 | ochoa | Intermembrane lipid transfer protein VPS13D (Vacuolar protein sorting-associated protein 13D) | Mediates the transfer of lipids between membranes at organelle contact sites (By similarity). Functions in promoting mitochondrial clearance by mitochondrial autophagy (mitophagy), also possibly by positively regulating mitochondrial fission (PubMed:29307555, PubMed:29604224). Mitophagy plays an important role in regulating cell health and mitochondrial size and homeostasis. {ECO:0000250|UniProtKB:Q07878, ECO:0000269|PubMed:29307555, ECO:0000269|PubMed:29604224}. |
Q5VWJ9 | SNX30 | S29 | ochoa | Sorting nexin-30 | Involved in the regulation of endocytosis and in several stages of intracellular trafficking (PubMed:32513819). Together with SNX4, involved in autophagosome assembly (PubMed:32513819). {ECO:0000269|PubMed:32513819}. |
Q6P6C2 | ALKBH5 | Y71 | ochoa | RNA demethylase ALKBH5 (EC 1.14.11.53) (Alkylated DNA repair protein alkB homolog 5) (Alpha-ketoglutarate-dependent dioxygenase alkB homolog 5) | Dioxygenase that specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178, PubMed:34048572, PubMed:36944332, PubMed:37257451, PubMed:37369679). Demethylates RNA by oxidative demethylation, which requires molecular oxygen, alpha-ketoglutarate and iron (PubMed:21264265, PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178). Demethylation of m6A mRNA affects mRNA processing, translation and export (PubMed:23177736, PubMed:34048572, PubMed:36944332, PubMed:37257451). Can also demethylate N(6)-methyladenosine in single-stranded DNA (in vitro) (PubMed:24616105). Required for the late meiotic and haploid phases of spermatogenesis by mediating m6A demethylation in spermatocytes and round spermatids: m6A demethylation of target transcripts is required for correct splicing and the production of longer 3'-UTR mRNAs in male germ cells (By similarity). Involved in paraspeckle assembly, a nuclear membraneless organelle, by undergoing liquid-liquid phase separation (PubMed:37369679, PubMed:37474102). Paraspeckle assembly is coupled with m6A demethylation of RNAs, such as NEAT1 non-coding RNA (PubMed:37474102). Also acts as a negative regulator of T-cell development: inhibits gamma-delta T-cell proliferation via demethylation of JAG1 and NOTCH2 transcripts (By similarity). Inhibits regulatory T-cell (Treg) recruitment by mediating demethylation and destabilization of CCL28 mRNAs (By similarity). {ECO:0000250|UniProtKB:Q3TSG4, ECO:0000269|PubMed:21264265, ECO:0000269|PubMed:23177736, ECO:0000269|PubMed:24489119, ECO:0000269|PubMed:24616105, ECO:0000269|PubMed:24778178, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:36944332, ECO:0000269|PubMed:37257451, ECO:0000269|PubMed:37369679, ECO:0000269|PubMed:37474102}. |
Q6QNY0 | BLOC1S3 | S34 | ochoa | Biogenesis of lysosome-related organelles complex 1 subunit 3 (BLOC-1 subunit 3) | Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Plays a role in intracellular vesicle trafficking. {ECO:0000269|PubMed:16385460, ECO:0000269|PubMed:17182842}. |
Q6ZNB6 | NFXL1 | S109 | ochoa | NF-X1-type zinc finger protein NFXL1 (Ovarian zinc finger protein) (hOZFP) | None |
Q76I76 | SSH2 | S1218 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7Z6E9 | RBBP6 | S247 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q86V48 | LUZP1 | S575 | ochoa | Leucine zipper protein 1 (Filamin mechanobinding actin cross-linking protein) (Fimbacin) | F-actin cross-linking protein (PubMed:30990684). Stabilizes actin and acts as a negative regulator of primary cilium formation (PubMed:32496561). Positively regulates the phosphorylation of both myosin II and protein phosphatase 1 regulatory subunit PPP1R12A/MYPT1 and promotes the assembly of myosin II stacks within actin stress fibers (PubMed:38832964). Inhibits the phosphorylation of myosin light chain MYL9 by DAPK3 and suppresses the constriction velocity of the contractile ring during cytokinesis (PubMed:38009294). Binds to microtubules and promotes epithelial cell apical constriction by up-regulating levels of diphosphorylated myosin light chain (MLC) through microtubule-dependent inhibition of MLC dephosphorylation by myosin phosphatase (By similarity). Involved in regulation of cell migration, nuclear size and centriole number, probably through regulation of the actin cytoskeleton (By similarity). Component of the CERF-1 and CERF-5 chromatin remodeling complexes in embryonic stem cells where it acts to stabilize the complexes (By similarity). Plays a role in embryonic brain and cardiovascular development (By similarity). {ECO:0000250|UniProtKB:Q8R4U7, ECO:0000269|PubMed:30990684, ECO:0000269|PubMed:32496561, ECO:0000269|PubMed:38009294, ECO:0000269|PubMed:38832964}. |
Q8IWU2 | LMTK2 | S1310 | ochoa | Serine/threonine-protein kinase LMTK2 (EC 2.7.11.1) (Apoptosis-associated tyrosine kinase 2) (Brain-enriched kinase) (hBREK) (CDK5/p35-regulated kinase) (CPRK) (Kinase/phosphatase/inhibitor 2) (Lemur tyrosine kinase 2) (Serine/threonine-protein kinase KPI-2) | Phosphorylates PPP1C, phosphorylase b and CFTR. |
Q8N201 | INTS1 | S1144 | ochoa | Integrator complex subunit 1 (Int1) | Component of the integrator complex, a multiprotein complex that terminates RNA polymerase II (Pol II) transcription in the promoter-proximal region of genes (PubMed:25201415, PubMed:33243860, PubMed:38570683). The integrator complex provides a quality checkpoint during transcription elongation by driving premature transcription termination of transcripts that are unfavorably configured for transcriptional elongation: the complex terminates transcription by (1) catalyzing dephosphorylation of the C-terminal domain (CTD) of Pol II subunit POLR2A/RPB1 and SUPT5H/SPT5, (2) degrading the exiting nascent RNA transcript via endonuclease activity and (3) promoting the release of Pol II from bound DNA (PubMed:33243860). The integrator complex is also involved in terminating the synthesis of non-coding Pol II transcripts, such as enhancer RNAs (eRNAs), small nuclear RNAs (snRNAs), telomerase RNAs and long non-coding RNAs (lncRNAs) (PubMed:16239144, PubMed:26308897, PubMed:30737432). Within the integrator complex, INTS1 is involved in the post-termination step: INTS1 displaces INTS3 and the SOSS factors, allowing the integrator complex to return to the closed conformation, ready to bind to the paused elongation complex for another termination cycle (PubMed:38570683). Mediates recruitment of cytoplasmic dynein to the nuclear envelope, probably as component of the integrator complex (PubMed:23904267). {ECO:0000269|PubMed:16239144, ECO:0000269|PubMed:23904267, ECO:0000269|PubMed:25201415, ECO:0000269|PubMed:26308897, ECO:0000269|PubMed:30737432, ECO:0000269|PubMed:33243860, ECO:0000269|PubMed:38570683}. |
Q8N573 | OXR1 | S204 | ochoa | Oxidation resistance protein 1 | May be involved in protection from oxidative damage. {ECO:0000269|PubMed:11114193, ECO:0000269|PubMed:15060142}. |
Q92619 | ARHGAP45 | S880 | ochoa | Rho GTPase-activating protein 45 [Cleaved into: Minor histocompatibility antigen HA-1 (mHag HA-1)] | Contains a GTPase activator for the Rho-type GTPases (RhoGAP) domain that would be able to negatively regulate the actin cytoskeleton as well as cell spreading. However, also contains N-terminally a BAR-domin which is able to play an autoinhibitory effect on this RhoGAP activity. {ECO:0000269|PubMed:24086303}.; FUNCTION: Precursor of the histocompatibility antigen HA-1. More generally, minor histocompatibility antigens (mHags) refer to immunogenic peptide which, when complexed with MHC, can generate an immune response after recognition by specific T-cells. The peptides are derived from polymorphic intracellular proteins, which are cleaved by normal pathways of antigen processing. The binding of these peptides to MHC class I or class II molecules and its expression on the cell surface can stimulate T-cell responses and thereby trigger graft rejection or graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation from HLA-identical sibling donor. GVHD is a frequent complication after bone marrow transplantation (BMT), due to mismatch of minor histocompatibility antigen in HLA-matched sibling marrow transplants. Specifically, mismatching for mHag HA-1 which is recognized as immunodominant, is shown to be associated with the development of severe GVHD after HLA-identical BMT. HA-1 is presented to the cell surface by MHC class I HLA-A*0201, but also by other HLA-A alleles. This complex specifically elicits donor-cytotoxic T-lymphocyte (CTL) reactivity against hematologic malignancies after treatment by HLA-identical allogenic BMT. It induces cell recognition and lysis by CTL. {ECO:0000269|PubMed:12601144, ECO:0000269|PubMed:8260714, ECO:0000269|PubMed:8532022, ECO:0000269|PubMed:9798702}. |
Q96AY2 | EME1 | S87 | ochoa | Structure-specific endonuclease subunit EME1 (Crossover junction endonuclease EME1) (Essential meiotic structure-specific endonuclease 1) (MMS4 homolog) (hMMS4) | Non-catalytic subunit of the structure-specific, heterodimeric DNA endonuclease MUS81-EME1 which is involved in the maintenance of genome stability. In the complex, EME1 is required for DNA cleavage, participating in DNA recognition and bending (PubMed:12686547, PubMed:12721304, PubMed:14617801, PubMed:17289582, PubMed:24733841, PubMed:24813886, PubMed:35290797, PubMed:39015284). MUS81-EME1 cleaves 3'-flaps and nicked Holliday junctions, and exhibit limited endonuclease activity with 5' flaps and nicked double-stranded DNAs (PubMed:24733841, PubMed:35290797). Active during prometaphase, MUS81-EME1 resolves mitotic recombination intermediates, including Holliday junctions, which form during homologous recombination (PubMed:14617801, PubMed:24813886). {ECO:0000269|PubMed:12686547, ECO:0000269|PubMed:12721304, ECO:0000269|PubMed:14617801, ECO:0000269|PubMed:17289582, ECO:0000269|PubMed:24733841, ECO:0000269|PubMed:24813886, ECO:0000269|PubMed:35290797, ECO:0000269|PubMed:39015284}. |
Q96D71 | REPS1 | S120 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96FS4 | SIPA1 | S772 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q9BZ95 | NSD3 | S587 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9H0G5 | NSRP1 | S293 | ochoa | Nuclear speckle splicing regulatory protein 1 (Coiled-coil domain-containing protein 55) (Nuclear speckle-related protein 70) (NSrp70) | RNA-binding protein that mediates pre-mRNA alternative splicing regulation. {ECO:0000269|PubMed:21296756}. |
Q9H2P0 | ADNP | S972 | ochoa | Activity-dependent neuroprotector homeobox protein (Activity-dependent neuroprotective protein) | May be involved in transcriptional regulation. May mediate some of the neuroprotective peptide VIP-associated effects involving normal growth and cancer proliferation. Positively modulates WNT-beta-catenin/CTNN1B signaling, acting by regulating phosphorylation of, and thereby stabilizing, CTNNB1. May be required for neural induction and neuronal differentiation. May be involved in erythroid differentiation (By similarity). {ECO:0000250|UniProtKB:Q9Z103}. |
Q9H7N4 | SCAF1 | S1198 | ochoa | Splicing factor, arginine/serine-rich 19 (SR-related C-terminal domain-associated factor 1) (SR-related and CTD-associated factor 1) (SR-related-CTD-associated factor) (SCAF) (Serine arginine-rich pre-mRNA splicing factor SR-A1) (SR-A1) | May function in pre-mRNA splicing. {ECO:0000250}. |
Q9HB58 | SP110 | S348 | ochoa | Sp110 nuclear body protein (Interferon-induced protein 41/75) (Speckled 110 kDa) (Transcriptional coactivator Sp110) | Transcription factor. May be a nuclear hormone receptor coactivator. Enhances transcription of genes with retinoic acid response elements (RARE). |
Q9HCG8 | CWC22 | S831 | ochoa | Pre-mRNA-splicing factor CWC22 homolog (Nucampholin homolog) (fSAPb) | Required for pre-mRNA splicing as component of the spliceosome (PubMed:11991638, PubMed:12226669, PubMed:22961380, PubMed:28076346, PubMed:28502770, PubMed:29301961, PubMed:29360106). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). Promotes exon-junction complex (EJC) assembly (PubMed:22959432, PubMed:22961380). Hinders EIF4A3 from non-specifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs. Through its role in EJC assembly, required for nonsense-mediated mRNA decay. {ECO:0000269|PubMed:11991638, ECO:0000269|PubMed:12226669, ECO:0000269|PubMed:22959432, ECO:0000269|PubMed:22961380, ECO:0000269|PubMed:23236153, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000305|PubMed:33509932}. |
Q9HCK1 | ZDBF2 | S536 | ochoa | DBF4-type zinc finger-containing protein 2 | None |
Q9NRU3 | CNNM1 | S852 | ochoa | Metal transporter CNNM1 (Ancient conserved domain-containing protein 1) (Cyclin-M1) | Probable metal transporter. {ECO:0000250}. |
Q9UHY8 | FEZ2 | S219 | ochoa | Fasciculation and elongation protein zeta-2 (Zygin II) (Zygin-2) | Involved in axonal outgrowth and fasciculation. {ECO:0000250}. |
Q9UKJ3 | GPATCH8 | S1109 | ochoa | G patch domain-containing protein 8 | None |
Q9UQ88 | CDK11A | S273 | ochoa | Cyclin-dependent kinase 11A (EC 2.7.11.22) (Cell division cycle 2-like protein kinase 2) (Cell division protein kinase 11A) (Galactosyltransferase-associated protein kinase p58/GTA) (PITSLRE serine/threonine-protein kinase CDC2L2) | Appears to play multiple roles in cell cycle progression, cytokinesis and apoptosis. The p110 isoforms have been suggested to be involved in pre-mRNA splicing, potentially by phosphorylating the splicing protein SFRS7. The p58 isoform may act as a negative regulator of normal cell cycle progression. {ECO:0000269|PubMed:12501247, ECO:0000269|PubMed:12624090}. |
Q9Y3E1 | HDGFL3 | S180 | ochoa | Hepatoma-derived growth factor-related protein 3 (HRP-3) (Hepatoma-derived growth factor 2) (HDGF-2) | Enhances DNA synthesis and may play a role in cell proliferation. {ECO:0000269|PubMed:10581169}. |
Q9Y6X4 | FAM169A | S449 | ochoa | Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) | None |
Q9Y6X4 | FAM169A | S637 | ochoa | Soluble lamin-associated protein of 75 kDa (SLAP75) (Protein FAM169A) | None |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-163765 | ChREBP activates metabolic gene expression | 0.000030 | 4.529 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.000035 | 4.453 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.000202 | 3.696 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.000183 | 3.738 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.000406 | 3.392 |
R-HSA-4839726 | Chromatin organization | 0.000413 | 3.384 |
R-HSA-75153 | Apoptotic execution phase | 0.000470 | 3.328 |
R-HSA-5368598 | Negative regulation of TCF-dependent signaling by DVL-interacting proteins | 0.001221 | 2.913 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.001193 | 2.923 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.001189 | 2.925 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.002262 | 2.646 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.002479 | 2.606 |
R-HSA-1640170 | Cell Cycle | 0.004728 | 2.325 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.007714 | 2.113 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.007714 | 2.113 |
R-HSA-9664420 | Killing mechanisms | 0.009752 | 2.011 |
R-HSA-9673324 | WNT5:FZD7-mediated leishmania damping | 0.009752 | 2.011 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.010856 | 1.964 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.011849 | 1.926 |
R-HSA-201688 | WNT mediated activation of DVL | 0.013680 | 1.864 |
R-HSA-2028269 | Signaling by Hippo | 0.013404 | 1.873 |
R-HSA-9669937 | Drug resistance of KIT mutants | 0.040099 | 1.397 |
R-HSA-9669921 | KIT mutants bind TKIs | 0.040099 | 1.397 |
R-HSA-9669926 | Nilotinib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.040099 | 1.397 |
R-HSA-9669929 | Regorafenib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-9669917 | Imatinib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-9669936 | Sorafenib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-9669934 | Sunitinib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-9669914 | Dasatinib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-9669924 | Masitinib-resistant KIT mutants | 0.040099 | 1.397 |
R-HSA-5602566 | TICAM1 deficiency - HSE | 0.078593 | 1.105 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 0.078593 | 1.105 |
R-HSA-163282 | Mitochondrial transcription initiation | 0.115545 | 0.937 |
R-HSA-9669935 | Signaling by juxtamembrane domain KIT mutants | 0.115545 | 0.937 |
R-HSA-9680187 | Signaling by extracellular domain mutants of KIT | 0.115545 | 0.937 |
R-HSA-5602571 | TRAF3 deficiency - HSE | 0.115545 | 0.937 |
R-HSA-5619109 | Defective SLC6A2 causes orthostatic intolerance (OI) | 0.115545 | 0.937 |
R-HSA-9669933 | Signaling by kinase domain mutants of KIT | 0.115545 | 0.937 |
R-HSA-74713 | IRS activation | 0.033944 | 1.469 |
R-HSA-3560796 | Defective PAPSS2 causes SEMD-PA | 0.151017 | 0.821 |
R-HSA-5619089 | Defective SLC6A5 causes hyperekplexia 3 (HKPX3) | 0.151017 | 0.821 |
R-HSA-3645790 | TGFBR2 Kinase Domain Mutants in Cancer | 0.151017 | 0.821 |
R-HSA-3656535 | TGFBR1 LBD Mutants in Cancer | 0.151017 | 0.821 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.063997 | 1.194 |
R-HSA-8941237 | Invadopodia formation | 0.185069 | 0.733 |
R-HSA-163615 | PKA activation | 0.015516 | 1.809 |
R-HSA-9013957 | TLR3-mediated TICAM1-dependent programmed cell death | 0.217757 | 0.662 |
R-HSA-9754119 | Drug-mediated inhibition of CDK4/CDK6 activity | 0.217757 | 0.662 |
R-HSA-165181 | Inhibition of TSC complex formation by PKB | 0.217757 | 0.662 |
R-HSA-3656532 | TGFBR1 KD Mutants in Cancer | 0.217757 | 0.662 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.100004 | 1.000 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.100004 | 1.000 |
R-HSA-399710 | Activation of AMPA receptors | 0.249136 | 0.604 |
R-HSA-9673768 | Signaling by membrane-tethered fusions of PDGFRA or PDGFRB | 0.249136 | 0.604 |
R-HSA-3656534 | Loss of Function of TGFBR1 in Cancer | 0.249136 | 0.604 |
R-HSA-3304356 | SMAD2/3 Phosphorylation Motif Mutants in Cancer | 0.249136 | 0.604 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.069688 | 1.157 |
R-HSA-176417 | Phosphorylation of Emi1 | 0.279258 | 0.554 |
R-HSA-5603029 | IkBA variant leads to EDA-ID | 0.279258 | 0.554 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.028047 | 1.552 |
R-HSA-418457 | cGMP effects | 0.168582 | 0.773 |
R-HSA-2980767 | Activation of NIMA Kinases NEK9, NEK6, NEK7 | 0.308173 | 0.511 |
R-HSA-177539 | Autointegration results in viral DNA circles | 0.308173 | 0.511 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.308173 | 0.511 |
R-HSA-5579026 | Defective CYP11A1 causes AICSR | 0.308173 | 0.511 |
R-HSA-9669938 | Signaling by KIT in disease | 0.108837 | 0.963 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.108837 | 0.963 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.045756 | 1.340 |
R-HSA-2173791 | TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition) | 0.183117 | 0.737 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.017498 | 1.757 |
R-HSA-159782 | Removal of aminoterminal propeptides from gamma-carboxylated proteins | 0.335930 | 0.474 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.335930 | 0.474 |
R-HSA-2562578 | TRIF-mediated programmed cell death | 0.335930 | 0.474 |
R-HSA-72731 | Recycling of eIF2:GDP | 0.335930 | 0.474 |
R-HSA-112412 | SOS-mediated signalling | 0.335930 | 0.474 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.335930 | 0.474 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.095769 | 1.019 |
R-HSA-4641258 | Degradation of DVL | 0.108550 | 0.964 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.108550 | 0.964 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.154512 | 0.811 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.154512 | 0.811 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.362575 | 0.441 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.362575 | 0.441 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.362575 | 0.441 |
R-HSA-3928664 | Ephrin signaling | 0.242627 | 0.615 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.242627 | 0.615 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.051501 | 1.288 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.074265 | 1.129 |
R-HSA-380287 | Centrosome maturation | 0.057137 | 1.243 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.102574 | 0.989 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.184326 | 0.734 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.257680 | 0.589 |
R-HSA-170984 | ARMS-mediated activation | 0.388152 | 0.411 |
R-HSA-9613354 | Lipophagy | 0.388152 | 0.411 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.388152 | 0.411 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.107956 | 0.967 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.194582 | 0.711 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.194582 | 0.711 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.151034 | 0.821 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.272745 | 0.564 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.272745 | 0.564 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.272745 | 0.564 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.272745 | 0.564 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.215491 | 0.667 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.215491 | 0.667 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.412705 | 0.384 |
R-HSA-5696394 | DNA Damage Recognition in GG-NER | 0.226118 | 0.646 |
R-HSA-390522 | Striated Muscle Contraction | 0.226118 | 0.646 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.226118 | 0.646 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.302815 | 0.519 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.317774 | 0.498 |
R-HSA-9938206 | Developmental Lineage of Mammary Stem Cells | 0.317774 | 0.498 |
R-HSA-933543 | NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 | 0.436273 | 0.360 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.436273 | 0.360 |
R-HSA-4839744 | Signaling by APC mutants | 0.436273 | 0.360 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.436273 | 0.360 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.436273 | 0.360 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.436273 | 0.360 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.168740 | 0.773 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.168740 | 0.773 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.149941 | 0.824 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.189148 | 0.723 |
R-HSA-933542 | TRAF6 mediated NF-kB activation | 0.347445 | 0.459 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.458898 | 0.338 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.458898 | 0.338 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.458898 | 0.338 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.059220 | 1.228 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.291514 | 0.535 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.362121 | 0.441 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.302578 | 0.519 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.480615 | 0.318 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.480615 | 0.318 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.480615 | 0.318 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.480615 | 0.318 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.480615 | 0.318 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.209658 | 0.678 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.239803 | 0.620 |
R-HSA-191859 | snRNP Assembly | 0.295049 | 0.530 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.295049 | 0.530 |
R-HSA-170660 | Adenylate cyclase activating pathway | 0.501462 | 0.300 |
R-HSA-9661069 | Defective binding of RB1 mutants to E2F1,(E2F2, E2F3) | 0.501462 | 0.300 |
R-HSA-9615710 | Late endosomal microautophagy | 0.419441 | 0.377 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.419441 | 0.377 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.309361 | 0.510 |
R-HSA-1433559 | Regulation of KIT signaling | 0.521474 | 0.283 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.349951 | 0.456 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.447110 | 0.350 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.540684 | 0.267 |
R-HSA-170670 | Adenylate cyclase inhibitory pathway | 0.540684 | 0.267 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.540684 | 0.267 |
R-HSA-168927 | TICAM1, RIP1-mediated IKK complex recruitment | 0.540684 | 0.267 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.423554 | 0.373 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.474022 | 0.324 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.474022 | 0.324 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.444927 | 0.352 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.487178 | 0.312 |
R-HSA-1362300 | Transcription of E2F targets under negative control by p107 (RBL1) and p130 (RBL... | 0.559123 | 0.252 |
R-HSA-5656121 | Translesion synthesis by POLI | 0.559123 | 0.252 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.559123 | 0.252 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.559123 | 0.252 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.455496 | 0.342 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.512863 | 0.290 |
R-HSA-212300 | PRC2 methylates histones and DNA | 0.525383 | 0.280 |
R-HSA-427359 | SIRT1 negatively regulates rRNA expression | 0.537685 | 0.269 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.526842 | 0.278 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.016357 | 1.786 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.168986 | 0.772 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.168986 | 0.772 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.032209 | 1.492 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.060559 | 1.218 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.184326 | 0.734 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.222503 | 0.653 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.113497 | 0.945 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.458898 | 0.338 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.066280 | 1.179 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.241443 | 0.617 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.018928 | 1.723 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.083749 | 1.077 |
R-HSA-9664873 | Pexophagy | 0.412705 | 0.384 |
R-HSA-9619229 | Activation of RAC1 downstream of NMDARs | 0.087457 | 1.058 |
R-HSA-418885 | DCC mediated attractive signaling | 0.183117 | 0.737 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.183117 | 0.737 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.078034 | 1.108 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.030450 | 1.516 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.395819 | 0.403 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.227613 | 0.643 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.060092 | 1.221 |
R-HSA-198203 | PI3K/AKT activation | 0.412705 | 0.384 |
R-HSA-110312 | Translesion synthesis by REV1 | 0.540684 | 0.267 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.559123 | 0.252 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.021866 | 1.660 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.054148 | 1.266 |
R-HSA-9613829 | Chaperone Mediated Autophagy | 0.242627 | 0.615 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.112558 | 0.949 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.016361 | 1.786 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.333200 | 0.477 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.024441 | 1.612 |
R-HSA-191650 | Regulation of gap junction activity | 0.217757 | 0.662 |
R-HSA-8852405 | Signaling by MST1 | 0.279258 | 0.554 |
R-HSA-1810476 | RIP-mediated NFkB activation via ZBP1 | 0.183117 | 0.737 |
R-HSA-429947 | Deadenylation of mRNA | 0.126420 | 0.898 |
R-HSA-164940 | Nef mediated downregulation of MHC class I complex cell surface expression | 0.362575 | 0.441 |
R-HSA-69091 | Polymerase switching | 0.480615 | 0.318 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.480615 | 0.318 |
R-HSA-69109 | Leading Strand Synthesis | 0.480615 | 0.318 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.325232 | 0.488 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.258536 | 0.587 |
R-HSA-4641265 | Repression of WNT target genes | 0.140192 | 0.853 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.048120 | 1.318 |
R-HSA-193648 | NRAGE signals death through JNK | 0.124904 | 0.903 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.108699 | 0.964 |
R-HSA-162592 | Integration of provirus | 0.458898 | 0.338 |
R-HSA-5620971 | Pyroptosis | 0.052572 | 1.279 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.036756 | 1.435 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.269484 | 0.569 |
R-HSA-9860927 | Turbulent (oscillatory, disturbed) flow shear stress activates signaling by PIEZ... | 0.247653 | 0.606 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.258536 | 0.587 |
R-HSA-72172 | mRNA Splicing | 0.081124 | 1.091 |
R-HSA-75944 | Transcription from mitochondrial promoters | 0.151017 | 0.821 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.069688 | 1.157 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.018112 | 1.742 |
R-HSA-9764562 | Regulation of CDH1 mRNA translation by microRNAs | 0.168582 | 0.773 |
R-HSA-8849473 | PTK6 Expression | 0.335930 | 0.474 |
R-HSA-5689901 | Metalloprotease DUBs | 0.144938 | 0.839 |
R-HSA-9930044 | Nuclear RNA decay | 0.215491 | 0.667 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.123444 | 0.909 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.196139 | 0.707 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.433366 | 0.363 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.474022 | 0.324 |
R-HSA-5693538 | Homology Directed Repair | 0.022071 | 1.656 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.377505 | 0.423 |
R-HSA-418990 | Adherens junctions interactions | 0.384215 | 0.415 |
R-HSA-421270 | Cell-cell junction organization | 0.320380 | 0.494 |
R-HSA-8937144 | Aryl hydrocarbon receptor signalling | 0.279258 | 0.554 |
R-HSA-446728 | Cell junction organization | 0.168075 | 0.774 |
R-HSA-4086400 | PCP/CE pathway | 0.467862 | 0.330 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.023059 | 1.637 |
R-HSA-74749 | Signal attenuation | 0.100004 | 1.000 |
R-HSA-3304351 | Signaling by TGF-beta Receptor Complex in Cancer | 0.308173 | 0.511 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.129058 | 0.889 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.129058 | 0.889 |
R-HSA-392154 | Nitric oxide stimulates guanylate cyclase | 0.419441 | 0.377 |
R-HSA-68877 | Mitotic Prometaphase | 0.165341 | 0.782 |
R-HSA-3134975 | Regulation of innate immune responses to cytosolic DNA | 0.212669 | 0.672 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.500126 | 0.301 |
R-HSA-445144 | Signal transduction by L1 | 0.272745 | 0.564 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.276179 | 0.559 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.522100 | 0.282 |
R-HSA-196780 | Biotin transport and metabolism | 0.044150 | 1.355 |
R-HSA-1500931 | Cell-Cell communication | 0.220896 | 0.656 |
R-HSA-163560 | Triglyceride catabolism | 0.525383 | 0.280 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.491749 | 0.308 |
R-HSA-373756 | SDK interactions | 0.078593 | 1.105 |
R-HSA-9854907 | Regulation of MITF-M dependent genes involved in metabolism | 0.018266 | 1.738 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 0.115545 | 0.937 |
R-HSA-3642278 | Loss of Function of TGFBR2 in Cancer | 0.151017 | 0.821 |
R-HSA-3371599 | Defective HLCS causes multiple carboxylase deficiency | 0.063997 | 1.194 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 0.185069 | 0.733 |
R-HSA-139910 | Activation of BMF and translocation to mitochondria | 0.185069 | 0.733 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.185069 | 0.733 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.185069 | 0.733 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.015516 | 1.809 |
R-HSA-9705677 | SARS-CoV-2 targets PDZ proteins in cell-cell junction | 0.217757 | 0.662 |
R-HSA-425561 | Sodium/Calcium exchangers | 0.126426 | 0.898 |
R-HSA-3304349 | Loss of Function of SMAD2/3 in Cancer | 0.279258 | 0.554 |
R-HSA-69478 | G2/M DNA replication checkpoint | 0.308173 | 0.511 |
R-HSA-2395516 | Electron transport from NADPH to Ferredoxin | 0.335930 | 0.474 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.129058 | 0.889 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.226118 | 0.646 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.142993 | 0.845 |
R-HSA-9634597 | GPER1 signaling | 0.198726 | 0.702 |
R-HSA-350054 | Notch-HLH transcription pathway | 0.317774 | 0.498 |
R-HSA-202670 | ERKs are inactivated | 0.458898 | 0.338 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.458898 | 0.338 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.458898 | 0.338 |
R-HSA-5260271 | Diseases of Immune System | 0.302578 | 0.519 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.302578 | 0.519 |
R-HSA-2691230 | Signaling by NOTCH1 HD Domain Mutants in Cancer | 0.480615 | 0.318 |
R-HSA-2691232 | Constitutive Signaling by NOTCH1 HD Domain Mutants | 0.480615 | 0.318 |
R-HSA-877312 | Regulation of IFNG signaling | 0.480615 | 0.318 |
R-HSA-9820865 | Z-decay: degradation of maternal mRNAs by zygotically expressed factors | 0.480615 | 0.318 |
R-HSA-8949613 | Cristae formation | 0.391084 | 0.408 |
R-HSA-9659787 | Aberrant regulation of mitotic G1/S transition in cancer due to RB1 defects | 0.501462 | 0.300 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.419441 | 0.377 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.419441 | 0.377 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.369031 | 0.433 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.447110 | 0.350 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.559123 | 0.252 |
R-HSA-9603798 | Class I peroxisomal membrane protein import | 0.559123 | 0.252 |
R-HSA-9843970 | Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex | 0.500126 | 0.301 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.500126 | 0.301 |
R-HSA-8875878 | MET promotes cell motility | 0.549765 | 0.260 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.558894 | 0.253 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.376672 | 0.424 |
R-HSA-5358508 | Mismatch Repair | 0.242627 | 0.615 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.049957 | 1.301 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.522100 | 0.282 |
R-HSA-112040 | G-protein mediated events | 0.036756 | 1.435 |
R-HSA-8985947 | Interleukin-9 signaling | 0.362575 | 0.441 |
R-HSA-8984722 | Interleukin-35 Signalling | 0.480615 | 0.318 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.558894 | 0.253 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.077988 | 1.108 |
R-HSA-2173789 | TGF-beta receptor signaling activates SMADs | 0.346929 | 0.460 |
R-HSA-844456 | The NLRP3 inflammasome | 0.076915 | 1.114 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.034605 | 1.461 |
R-HSA-1538133 | G0 and Early G1 | 0.204975 | 0.688 |
R-HSA-73894 | DNA Repair | 0.069052 | 1.161 |
R-HSA-68886 | M Phase | 0.072372 | 1.140 |
R-HSA-392517 | Rap1 signalling | 0.076915 | 1.114 |
R-HSA-6803211 | TP53 Regulates Transcription of Death Receptors and Ligands | 0.168582 | 0.773 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.395819 | 0.403 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.054273 | 1.265 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.178787 | 0.748 |
R-HSA-8979227 | Triglyceride metabolism | 0.295049 | 0.530 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.247329 | 0.607 |
R-HSA-68882 | Mitotic Anaphase | 0.499256 | 0.302 |
R-HSA-448706 | Interleukin-1 processing | 0.087457 | 1.058 |
R-HSA-3270619 | IRF3-mediated induction of type I IFN | 0.044150 | 1.355 |
R-HSA-174362 | Transport and metabolism of PAPS | 0.183117 | 0.737 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.335930 | 0.474 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.388152 | 0.411 |
R-HSA-9020958 | Interleukin-21 signaling | 0.388152 | 0.411 |
R-HSA-9013700 | NOTCH4 Activation and Transmission of Signal to the Nucleus | 0.388152 | 0.411 |
R-HSA-3214815 | HDACs deacetylate histones | 0.119124 | 0.924 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.226118 | 0.646 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.144441 | 0.840 |
R-HSA-75035 | Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 0.501462 | 0.300 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.460664 | 0.337 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.500126 | 0.301 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.549765 | 0.260 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.504558 | 0.297 |
R-HSA-9660826 | Purinergic signaling in leishmaniasis infection | 0.182335 | 0.739 |
R-HSA-9664424 | Cell recruitment (pro-inflammatory response) | 0.182335 | 0.739 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.481426 | 0.317 |
R-HSA-199991 | Membrane Trafficking | 0.556530 | 0.255 |
R-HSA-8866654 | E3 ubiquitin ligases ubiquitinate target proteins | 0.232727 | 0.633 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.362121 | 0.441 |
R-HSA-418360 | Platelet calcium homeostasis | 0.419441 | 0.377 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.485414 | 0.314 |
R-HSA-6790901 | rRNA modification in the nucleus and cytosol | 0.555795 | 0.255 |
R-HSA-1606322 | ZBP1(DAI) mediated induction of type I IFNs | 0.069688 | 1.157 |
R-HSA-69186 | Lagging Strand Synthesis | 0.287798 | 0.541 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.447110 | 0.350 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.269482 | 0.569 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.491749 | 0.308 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.540251 | 0.267 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.239803 | 0.620 |
R-HSA-68875 | Mitotic Prophase | 0.187742 | 0.726 |
R-HSA-162587 | HIV Life Cycle | 0.291609 | 0.535 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.019757 | 1.704 |
R-HSA-3371556 | Cellular response to heat stress | 0.475696 | 0.323 |
R-HSA-373755 | Semaphorin interactions | 0.331584 | 0.479 |
R-HSA-193670 | p75NTR negatively regulates cell cycle via SC1 | 0.025610 | 1.592 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.043175 | 1.365 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 0.185069 | 0.733 |
R-HSA-9960525 | CASP5-mediated substrate cleavage | 0.185069 | 0.733 |
R-HSA-3323169 | Defects in biotin (Btn) metabolism | 0.087457 | 1.058 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.140192 | 0.853 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.279258 | 0.554 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 0.154259 | 0.812 |
R-HSA-175567 | Integration of viral DNA into host genomic DNA | 0.308173 | 0.511 |
R-HSA-164843 | 2-LTR circle formation | 0.412705 | 0.384 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.436273 | 0.360 |
R-HSA-5693548 | Sensing of DNA Double Strand Breaks | 0.458898 | 0.338 |
R-HSA-416550 | Sema4D mediated inhibition of cell attachment and migration | 0.458898 | 0.338 |
R-HSA-180689 | APOBEC3G mediated resistance to HIV-1 infection | 0.458898 | 0.338 |
R-HSA-418359 | Reduction of cytosolic Ca++ levels | 0.458898 | 0.338 |
R-HSA-3214847 | HATs acetylate histones | 0.168501 | 0.773 |
R-HSA-69481 | G2/M Checkpoints | 0.132957 | 0.876 |
R-HSA-159854 | Gamma-carboxylation, transport, and amino-terminal cleavage of proteins | 0.480615 | 0.318 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.369031 | 0.433 |
R-HSA-434316 | Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion | 0.559123 | 0.252 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.536609 | 0.270 |
R-HSA-69242 | S Phase | 0.370372 | 0.431 |
R-HSA-373752 | Netrin-1 signaling | 0.357993 | 0.446 |
R-HSA-111885 | Opioid Signalling | 0.195615 | 0.709 |
R-HSA-5218859 | Regulated Necrosis | 0.377505 | 0.423 |
R-HSA-162906 | HIV Infection | 0.430602 | 0.366 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.414045 | 0.383 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.414045 | 0.383 |
R-HSA-169893 | Prolonged ERK activation events | 0.559123 | 0.252 |
R-HSA-112043 | PLC beta mediated events | 0.025106 | 1.600 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.313268 | 0.504 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.079445 | 1.100 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.362121 | 0.441 |
R-HSA-438064 | Post NMDA receptor activation events | 0.357196 | 0.447 |
R-HSA-111933 | Calmodulin induced events | 0.033361 | 1.477 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.466018 | 0.332 |
R-HSA-1059683 | Interleukin-6 signaling | 0.154259 | 0.812 |
R-HSA-442729 | CREB1 phosphorylation through the activation of CaMKII/CaMKK/CaMKIV cascasde | 0.362575 | 0.441 |
R-HSA-200425 | Carnitine shuttle | 0.332657 | 0.478 |
R-HSA-110362 | POLB-Dependent Long Patch Base Excision Repair | 0.458898 | 0.338 |
R-HSA-9842663 | Signaling by LTK | 0.480615 | 0.318 |
R-HSA-2559583 | Cellular Senescence | 0.121238 | 0.916 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.507050 | 0.295 |
R-HSA-1566948 | Elastic fibre formation | 0.280478 | 0.552 |
R-HSA-111997 | CaM pathway | 0.033361 | 1.477 |
R-HSA-8869496 | TFAP2A acts as a transcriptional repressor during retinoic acid induced cell dif... | 0.053219 | 1.274 |
R-HSA-9635465 | Suppression of apoptosis | 0.113013 | 0.947 |
R-HSA-8941332 | RUNX2 regulates genes involved in cell migration | 0.113013 | 0.947 |
R-HSA-8941856 | RUNX3 regulates NOTCH signaling | 0.140192 | 0.853 |
R-HSA-2408550 | Metabolism of ingested H2SeO4 and H2SeO3 into H2Se | 0.227613 | 0.643 |
R-HSA-622312 | Inflammasomes | 0.164277 | 0.784 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.143556 | 0.843 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.302815 | 0.519 |
R-HSA-180746 | Nuclear import of Rev protein | 0.236843 | 0.626 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.391084 | 0.408 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.322417 | 0.492 |
R-HSA-5676934 | Protein repair | 0.540684 | 0.267 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.512863 | 0.290 |
R-HSA-983189 | Kinesins | 0.526842 | 0.278 |
R-HSA-162594 | Early Phase of HIV Life Cycle | 0.287798 | 0.541 |
R-HSA-2644603 | Signaling by NOTCH1 in Cancer | 0.526842 | 0.278 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.078034 | 1.108 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.217628 | 0.662 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.324754 | 0.488 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.351747 | 0.454 |
R-HSA-9658195 | Leishmania infection | 0.351747 | 0.454 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.122051 | 0.913 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.184326 | 0.734 |
R-HSA-9843745 | Adipogenesis | 0.557607 | 0.254 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.369031 | 0.433 |
R-HSA-69190 | DNA strand elongation | 0.460664 | 0.337 |
R-HSA-6794361 | Neurexins and neuroligins | 0.232727 | 0.633 |
R-HSA-5688426 | Deubiquitination | 0.104907 | 0.979 |
R-HSA-111996 | Ca-dependent events | 0.056631 | 1.247 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.155534 | 0.808 |
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.115799 | 0.936 |
R-HSA-9708296 | tRNA-derived small RNA (tsRNA or tRNA-related fragment, tRF) biogenesis | 0.151017 | 0.821 |
R-HSA-9960519 | CASP4-mediated substrate cleavage | 0.185069 | 0.733 |
R-HSA-390696 | Adrenoceptors | 0.075432 | 1.122 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 0.279258 | 0.554 |
R-HSA-111457 | Release of apoptotic factors from the mitochondria | 0.279258 | 0.554 |
R-HSA-444821 | Relaxin receptors | 0.279258 | 0.554 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.084456 | 1.073 |
R-HSA-9029558 | NR1H2 & NR1H3 regulate gene expression linked to lipogenesis | 0.154259 | 0.812 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.183117 | 0.737 |
R-HSA-8948747 | Regulation of PTEN localization | 0.335930 | 0.474 |
R-HSA-1489509 | DAG and IP3 signaling | 0.068865 | 1.162 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.242627 | 0.615 |
R-HSA-9020956 | Interleukin-27 signaling | 0.412705 | 0.384 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.412705 | 0.384 |
R-HSA-9820962 | Assembly and release of respiratory syncytial virus (RSV) virions | 0.412705 | 0.384 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.302578 | 0.519 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.313662 | 0.504 |
R-HSA-8852135 | Protein ubiquitination | 0.254914 | 0.594 |
R-HSA-69275 | G2/M Transition | 0.140679 | 0.852 |
R-HSA-9857492 | Protein lipoylation | 0.540684 | 0.267 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.147512 | 0.831 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.259087 | 0.587 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.224949 | 0.648 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.425444 | 0.371 |
R-HSA-445717 | Aquaporin-mediated transport | 0.313268 | 0.504 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.026856 | 1.571 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.275074 | 0.561 |
R-HSA-1266695 | Interleukin-7 signaling | 0.135569 | 0.868 |
R-HSA-111932 | CaMK IV-mediated phosphorylation of CREB | 0.412705 | 0.384 |
R-HSA-74160 | Gene expression (Transcription) | 0.311341 | 0.507 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.026856 | 1.571 |
R-HSA-5689880 | Ub-specific processing proteases | 0.387437 | 0.412 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.388152 | 0.411 |
R-HSA-2122947 | NOTCH1 Intracellular Domain Regulates Transcription | 0.207084 | 0.684 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.433366 | 0.363 |
R-HSA-162909 | Host Interactions of HIV factors | 0.496653 | 0.304 |
R-HSA-9006936 | Signaling by TGFB family members | 0.443828 | 0.353 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.078034 | 1.108 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.269482 | 0.569 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.184809 | 0.733 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.318228 | 0.497 |
R-HSA-1834941 | STING mediated induction of host immune responses | 0.076915 | 1.114 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.331584 | 0.479 |
R-HSA-8848021 | Signaling by PTK6 | 0.331584 | 0.479 |
R-HSA-9675135 | Diseases of DNA repair | 0.380034 | 0.420 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.262556 | 0.581 |
R-HSA-9036866 | Expression and Processing of Neurotrophins | 0.185069 | 0.733 |
R-HSA-167060 | NGF processing | 0.185069 | 0.733 |
R-HSA-9825895 | Regulation of MITF-M-dependent genes involved in DNA replication, damage repair ... | 0.075432 | 1.122 |
R-HSA-9007892 | Interleukin-38 signaling | 0.217757 | 0.662 |
R-HSA-3134963 | DEx/H-box helicases activate type I IFN and inflammatory cytokines production | 0.249136 | 0.604 |
R-HSA-2660825 | Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.279258 | 0.554 |
R-HSA-9758919 | Epithelial-Mesenchymal Transition (EMT) during gastrulation | 0.279258 | 0.554 |
R-HSA-2660826 | Constitutive Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation Mutant | 0.279258 | 0.554 |
R-HSA-8964011 | HDL clearance | 0.308173 | 0.511 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.197825 | 0.704 |
R-HSA-5336415 | Uptake and function of diphtheria toxin | 0.335930 | 0.474 |
R-HSA-9834752 | Respiratory syncytial virus genome replication | 0.388152 | 0.411 |
R-HSA-8949215 | Mitochondrial calcium ion transport | 0.302815 | 0.519 |
R-HSA-912694 | Regulation of IFNA/IFNB signaling | 0.317774 | 0.498 |
R-HSA-1483248 | Synthesis of PIPs at the ER membrane | 0.436273 | 0.360 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.280478 | 0.552 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.480615 | 0.318 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.480615 | 0.318 |
R-HSA-9005895 | Pervasive developmental disorders | 0.480615 | 0.318 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.380034 | 0.420 |
R-HSA-399956 | CRMPs in Sema3A signaling | 0.521474 | 0.283 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.521474 | 0.283 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.474022 | 0.324 |
R-HSA-9733458 | Induction of Cell-Cell Fusion | 0.559123 | 0.252 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.521839 | 0.282 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.333918 | 0.476 |
R-HSA-2894862 | Constitutive Signaling by NOTCH1 HD+PEST Domain Mutants | 0.526842 | 0.278 |
R-HSA-2894858 | Signaling by NOTCH1 HD+PEST Domain Mutants in Cancer | 0.526842 | 0.278 |
R-HSA-2644602 | Signaling by NOTCH1 PEST Domain Mutants in Cancer | 0.526842 | 0.278 |
R-HSA-2644606 | Constitutive Signaling by NOTCH1 PEST Domain Mutants | 0.526842 | 0.278 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.419441 | 0.377 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.559123 | 0.252 |
R-HSA-9945266 | Differentiation of T cells | 0.559123 | 0.252 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.441145 | 0.355 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.546262 | 0.263 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.544342 | 0.264 |
R-HSA-9758274 | Regulation of NF-kappa B signaling | 0.559123 | 0.252 |
R-HSA-180786 | Extension of Telomeres | 0.516961 | 0.287 |
R-HSA-6783589 | Interleukin-6 family signaling | 0.347445 | 0.459 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.467862 | 0.330 |
R-HSA-1606341 | IRF3 mediated activation of type 1 IFN | 0.249136 | 0.604 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.183117 | 0.737 |
R-HSA-442380 | Zinc influx into cells by the SLC39 gene family | 0.388152 | 0.411 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.215491 | 0.667 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.302815 | 0.519 |
R-HSA-163685 | Integration of energy metabolism | 0.102073 | 0.991 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.291514 | 0.535 |
R-HSA-6793080 | rRNA modification in the mitochondrion | 0.501462 | 0.300 |
R-HSA-180024 | DARPP-32 events | 0.419441 | 0.377 |
R-HSA-447115 | Interleukin-12 family signaling | 0.357196 | 0.447 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.154512 | 0.811 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.064637 | 1.190 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.376672 | 0.424 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.397174 | 0.401 |
R-HSA-5357801 | Programmed Cell Death | 0.025464 | 1.594 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.376672 | 0.424 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.414045 | 0.383 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.506970 | 0.295 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.551647 | 0.258 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.112175 | 0.950 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.308141 | 0.511 |
R-HSA-8849468 | PTK6 Regulates Proteins Involved in RNA Processing | 0.249136 | 0.604 |
R-HSA-9010642 | ROBO receptors bind AKAP5 | 0.362575 | 0.441 |
R-HSA-6804115 | TP53 regulates transcription of additional cell cycle genes whose exact role in ... | 0.317774 | 0.498 |
R-HSA-9830674 | Formation of the ureteric bud | 0.332657 | 0.478 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.391084 | 0.408 |
R-HSA-75109 | Triglyceride biosynthesis | 0.391084 | 0.408 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.405344 | 0.392 |
R-HSA-205043 | NRIF signals cell death from the nucleus | 0.521474 | 0.283 |
R-HSA-69183 | Processive synthesis on the lagging strand | 0.540684 | 0.267 |
R-HSA-9673770 | Signaling by PDGFRA extracellular domain mutants | 0.540684 | 0.267 |
R-HSA-9673767 | Signaling by PDGFRA transmembrane, juxtamembrane and kinase domain mutants | 0.540684 | 0.267 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.168501 | 0.773 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.461586 | 0.336 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.430897 | 0.366 |
R-HSA-6804757 | Regulation of TP53 Degradation | 0.258536 | 0.587 |
R-HSA-9839389 | TGFBR3 regulates TGF-beta signaling | 0.335930 | 0.474 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.108550 | 0.964 |
R-HSA-9662361 | Sensory processing of sound by outer hair cells of the cochlea | 0.486673 | 0.313 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.143556 | 0.843 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.254914 | 0.594 |
R-HSA-9686114 | Non-canonical inflammasome activation | 0.521474 | 0.283 |
R-HSA-6806003 | Regulation of TP53 Expression and Degradation | 0.291514 | 0.535 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.474022 | 0.324 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.312680 | 0.505 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.117505 | 0.930 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.212669 | 0.672 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.436273 | 0.360 |
R-HSA-198323 | AKT phosphorylates targets in the cytosol | 0.480615 | 0.318 |
R-HSA-389357 | CD28 dependent PI3K/Akt signaling | 0.391084 | 0.408 |
R-HSA-1483213 | Synthesis of PE | 0.391084 | 0.408 |
R-HSA-8876725 | Protein methylation | 0.540684 | 0.267 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.487178 | 0.312 |
R-HSA-140534 | Caspase activation via Death Receptors in the presence of ligand | 0.559123 | 0.252 |
R-HSA-446652 | Interleukin-1 family signaling | 0.264611 | 0.577 |
R-HSA-982772 | Growth hormone receptor signaling | 0.332657 | 0.478 |
R-HSA-6807070 | PTEN Regulation | 0.111853 | 0.951 |
R-HSA-425410 | Metal ion SLC transporters | 0.401906 | 0.396 |
R-HSA-2586552 | Signaling by Leptin | 0.412705 | 0.384 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.432149 | 0.364 |
R-HSA-171286 | Synthesis and processing of ENV and VPU | 0.151017 | 0.821 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.388152 | 0.411 |
R-HSA-391160 | Signal regulatory protein family interactions | 0.521474 | 0.283 |
R-HSA-3296482 | Defects in vitamin and cofactor metabolism | 0.512863 | 0.290 |
R-HSA-109581 | Apoptosis | 0.037097 | 1.431 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.124904 | 0.903 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.382605 | 0.417 |
R-HSA-9701898 | STAT3 nuclear events downstream of ALK signaling | 0.183117 | 0.737 |
R-HSA-9926550 | Regulation of MITF-M-dependent genes involved in extracellular matrix, focal adh... | 0.242627 | 0.615 |
R-HSA-381042 | PERK regulates gene expression | 0.512863 | 0.290 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.532235 | 0.274 |
R-HSA-9614085 | FOXO-mediated transcription | 0.297058 | 0.527 |
R-HSA-9823730 | Formation of definitive endoderm | 0.272745 | 0.564 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 0.480615 | 0.318 |
R-HSA-417957 | P2Y receptors | 0.521474 | 0.283 |
R-HSA-435354 | Zinc transporters | 0.521474 | 0.283 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.204975 | 0.688 |
R-HSA-9008059 | Interleukin-37 signaling | 0.062123 | 1.207 |
R-HSA-201556 | Signaling by ALK | 0.291514 | 0.535 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.474022 | 0.324 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.487178 | 0.312 |
R-HSA-73887 | Death Receptor Signaling | 0.275320 | 0.560 |
R-HSA-73942 | DNA Damage Reversal | 0.540684 | 0.267 |
R-HSA-9830369 | Kidney development | 0.368327 | 0.434 |
R-HSA-9831926 | Nephron development | 0.242627 | 0.615 |
R-HSA-6803207 | TP53 Regulates Transcription of Caspase Activators and Caspases | 0.559123 | 0.252 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.349951 | 0.456 |
R-HSA-9648895 | Response of EIF2AK1 (HRI) to heme deficiency | 0.332657 | 0.478 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.516961 | 0.287 |
R-HSA-9020591 | Interleukin-12 signaling | 0.450098 | 0.347 |
R-HSA-69541 | Stabilization of p53 | 0.561621 | 0.251 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.561621 | 0.251 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.561621 | 0.251 |
R-HSA-9820965 | Respiratory syncytial virus (RSV) genome replication, transcription and translat... | 0.561621 | 0.251 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.561687 | 0.251 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.564170 | 0.249 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.565208 | 0.248 |
R-HSA-8868766 | rRNA processing in the mitochondrion | 0.573252 | 0.242 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.573252 | 0.242 |
R-HSA-5655862 | Translesion synthesis by POLK | 0.576824 | 0.239 |
R-HSA-9912633 | Antigen processing: Ub, ATP-independent proteasomal degradation | 0.576824 | 0.239 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.576824 | 0.239 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.576824 | 0.239 |
R-HSA-918233 | TRAF3-dependent IRF activation pathway | 0.576824 | 0.239 |
R-HSA-1566977 | Fibronectin matrix formation | 0.576824 | 0.239 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.576824 | 0.239 |
R-HSA-399997 | Acetylcholine regulates insulin secretion | 0.576824 | 0.239 |
R-HSA-432047 | Passive transport by Aquaporins | 0.576824 | 0.239 |
R-HSA-1483148 | Synthesis of PG | 0.576824 | 0.239 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.576824 | 0.239 |
R-HSA-196783 | Coenzyme A biosynthesis | 0.576824 | 0.239 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.576824 | 0.239 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.580219 | 0.236 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.580280 | 0.236 |
R-HSA-72312 | rRNA processing | 0.581803 | 0.235 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.584657 | 0.233 |
R-HSA-9820841 | M-decay: degradation of maternal mRNAs by maternally stored factors | 0.584657 | 0.233 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.584657 | 0.233 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.584657 | 0.233 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.584678 | 0.233 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.593814 | 0.226 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.593814 | 0.226 |
R-HSA-139853 | Elevation of cytosolic Ca2+ levels | 0.593814 | 0.226 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.593814 | 0.226 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 0.593814 | 0.226 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.593814 | 0.226 |
R-HSA-8953854 | Metabolism of RNA | 0.595424 | 0.225 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.595835 | 0.225 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.595835 | 0.225 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.596262 | 0.225 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.600508 | 0.221 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.601100 | 0.221 |
R-HSA-9662360 | Sensory processing of sound by inner hair cells of the cochlea | 0.601613 | 0.221 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.606786 | 0.217 |
R-HSA-909733 | Interferon alpha/beta signaling | 0.607909 | 0.216 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.607909 | 0.216 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.608822 | 0.216 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.610124 | 0.215 |
R-HSA-418217 | G beta:gamma signalling through PLC beta | 0.610124 | 0.215 |
R-HSA-500657 | Presynaptic function of Kainate receptors | 0.610124 | 0.215 |
R-HSA-6804760 | Regulation of TP53 Activity through Methylation | 0.610124 | 0.215 |
R-HSA-210993 | Tie2 Signaling | 0.610124 | 0.215 |
R-HSA-418038 | Nucleotide-like (purinergic) receptors | 0.610124 | 0.215 |
R-HSA-156711 | Polo-like kinase mediated events | 0.610124 | 0.215 |
R-HSA-111471 | Apoptotic factor-mediated response | 0.610124 | 0.215 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.610124 | 0.215 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.611916 | 0.213 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.613884 | 0.212 |
R-HSA-373760 | L1CAM interactions | 0.614651 | 0.211 |
R-HSA-9710421 | Defective pyroptosis | 0.617510 | 0.209 |
R-HSA-8854214 | TBC/RABGAPs | 0.617510 | 0.209 |
R-HSA-9637690 | Response of Mtb to phagocytosis | 0.617510 | 0.209 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.619046 | 0.208 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.619046 | 0.208 |
R-HSA-157118 | Signaling by NOTCH | 0.620751 | 0.207 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.621324 | 0.207 |
R-HSA-937041 | IKK complex recruitment mediated by RIP1 | 0.625779 | 0.204 |
R-HSA-167242 | Abortive elongation of HIV-1 transcript in the absence of Tat | 0.625779 | 0.204 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.625779 | 0.204 |
R-HSA-9856532 | Mechanical load activates signaling by PIEZO1 and integrins in osteocytes | 0.625779 | 0.204 |
R-HSA-429958 | mRNA decay by 3' to 5' exoribonuclease | 0.625779 | 0.204 |
R-HSA-1912420 | Pre-NOTCH Processing in Golgi | 0.625779 | 0.204 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.627928 | 0.202 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.628008 | 0.202 |
R-HSA-69231 | Cyclin D associated events in G1 | 0.628008 | 0.202 |
R-HSA-69236 | G1 Phase | 0.628008 | 0.202 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.628008 | 0.202 |
R-HSA-375280 | Amine ligand-binding receptors | 0.628008 | 0.202 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.634463 | 0.198 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.634463 | 0.198 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.635954 | 0.197 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.637664 | 0.195 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.638281 | 0.195 |
R-HSA-774815 | Nucleosome assembly | 0.638281 | 0.195 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.638281 | 0.195 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.638281 | 0.195 |
R-HSA-6783310 | Fanconi Anemia Pathway | 0.638281 | 0.195 |
R-HSA-196108 | Pregnenolone biosynthesis | 0.640807 | 0.193 |
R-HSA-6807004 | Negative regulation of MET activity | 0.640807 | 0.193 |
R-HSA-1362409 | Mitochondrial iron-sulfur cluster biogenesis | 0.640807 | 0.193 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.640807 | 0.193 |
R-HSA-1181150 | Signaling by NODAL | 0.640807 | 0.193 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.647319 | 0.189 |
R-HSA-73886 | Chromosome Maintenance | 0.647319 | 0.189 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.648329 | 0.188 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.648329 | 0.188 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.651882 | 0.186 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.651882 | 0.186 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.651882 | 0.186 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.651882 | 0.186 |
R-HSA-9609690 | HCMV Early Events | 0.653482 | 0.185 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.653639 | 0.185 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.653639 | 0.185 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.654488 | 0.184 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 0.655233 | 0.184 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.655233 | 0.184 |
R-HSA-2979096 | NOTCH2 Activation and Transmission of Signal to the Nucleus | 0.655233 | 0.184 |
R-HSA-198753 | ERK/MAPK targets | 0.655233 | 0.184 |
R-HSA-9824594 | Regulation of MITF-M-dependent genes involved in apoptosis | 0.655233 | 0.184 |
R-HSA-210991 | Basigin interactions | 0.655233 | 0.184 |
R-HSA-437239 | Recycling pathway of L1 | 0.658155 | 0.182 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.658155 | 0.182 |
R-HSA-6811440 | Retrograde transport at the Trans-Golgi-Network | 0.658155 | 0.182 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.658155 | 0.182 |
R-HSA-1483191 | Synthesis of PC | 0.658155 | 0.182 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.660319 | 0.180 |
R-HSA-162582 | Signal Transduction | 0.661582 | 0.179 |
R-HSA-5610787 | Hedgehog 'off' state | 0.665723 | 0.177 |
R-HSA-9609646 | HCMV Infection | 0.666702 | 0.176 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.667759 | 0.175 |
R-HSA-389356 | Co-stimulation by CD28 | 0.667759 | 0.175 |
R-HSA-5689603 | UCH proteinases | 0.668175 | 0.175 |
R-HSA-76066 | RNA Polymerase III Transcription Initiation From Type 2 Promoter | 0.669079 | 0.175 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 0.669079 | 0.175 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.669079 | 0.175 |
R-HSA-438066 | Unblocking of NMDA receptors, glutamate binding and activation | 0.669079 | 0.175 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.669079 | 0.175 |
R-HSA-9694614 | Attachment and Entry | 0.669079 | 0.175 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.669079 | 0.175 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.669079 | 0.175 |
R-HSA-175474 | Assembly Of The HIV Virion | 0.669079 | 0.175 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.673265 | 0.172 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.673387 | 0.172 |
R-HSA-9024446 | NR1H2 and NR1H3-mediated signaling | 0.675896 | 0.170 |
R-HSA-9766229 | Degradation of CDH1 | 0.677145 | 0.169 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.677145 | 0.169 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.677145 | 0.169 |
R-HSA-194138 | Signaling by VEGF | 0.678190 | 0.169 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.679441 | 0.168 |
R-HSA-76061 | RNA Polymerase III Transcription Initiation From Type 1 Promoter | 0.682371 | 0.166 |
R-HSA-2173788 | Downregulation of TGF-beta receptor signaling | 0.682371 | 0.166 |
R-HSA-8964038 | LDL clearance | 0.682371 | 0.166 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.682371 | 0.166 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.682371 | 0.166 |
R-HSA-9659379 | Sensory processing of sound | 0.690940 | 0.161 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.692262 | 0.160 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.692668 | 0.159 |
R-HSA-400451 | Free fatty acids regulate insulin secretion | 0.695129 | 0.158 |
R-HSA-8854691 | Interleukin-20 family signaling | 0.695129 | 0.158 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.695129 | 0.158 |
R-HSA-9937008 | Mitochondrial mRNA modification | 0.695129 | 0.158 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.695129 | 0.158 |
R-HSA-912446 | Meiotic recombination | 0.695267 | 0.158 |
R-HSA-6806834 | Signaling by MET | 0.698262 | 0.156 |
R-HSA-9833482 | PKR-mediated signaling | 0.698262 | 0.156 |
R-HSA-72187 | mRNA 3'-end processing | 0.704008 | 0.152 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.704008 | 0.152 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.705453 | 0.152 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.705620 | 0.151 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.707376 | 0.150 |
R-HSA-418592 | ADP signalling through P2Y purinoceptor 1 | 0.707376 | 0.150 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.707376 | 0.150 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.707376 | 0.150 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.707376 | 0.150 |
R-HSA-8963889 | Assembly of active LPL and LIPC lipase complexes | 0.707376 | 0.150 |
R-HSA-418346 | Platelet homeostasis | 0.711160 | 0.148 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.712540 | 0.147 |
R-HSA-445355 | Smooth Muscle Contraction | 0.712540 | 0.147 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.712540 | 0.147 |
R-HSA-69239 | Synthesis of DNA | 0.717268 | 0.144 |
R-HSA-211000 | Gene Silencing by RNA | 0.717268 | 0.144 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.719131 | 0.143 |
R-HSA-420029 | Tight junction interactions | 0.719131 | 0.143 |
R-HSA-3214842 | HDMs demethylate histones | 0.719131 | 0.143 |
R-HSA-9620244 | Long-term potentiation | 0.719131 | 0.143 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.720865 | 0.142 |
R-HSA-9610379 | HCMV Late Events | 0.720905 | 0.142 |
R-HSA-9909396 | Circadian clock | 0.723716 | 0.140 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.729197 | 0.137 |
R-HSA-8874081 | MET activates PTK2 signaling | 0.730415 | 0.136 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.730415 | 0.136 |
R-HSA-9703465 | Signaling by FLT3 fusion proteins | 0.730415 | 0.136 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.730415 | 0.136 |
R-HSA-1660514 | Synthesis of PIPs at the Golgi membrane | 0.730415 | 0.136 |
R-HSA-5357769 | Caspase activation via extrinsic apoptotic signalling pathway | 0.730415 | 0.136 |
R-HSA-877300 | Interferon gamma signaling | 0.730784 | 0.136 |
R-HSA-397014 | Muscle contraction | 0.732634 | 0.135 |
R-HSA-1500620 | Meiosis | 0.732903 | 0.135 |
R-HSA-9675108 | Nervous system development | 0.736808 | 0.133 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.736904 | 0.133 |
R-HSA-5578775 | Ion homeostasis | 0.736904 | 0.133 |
R-HSA-3299685 | Detoxification of Reactive Oxygen Species | 0.736904 | 0.133 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.736904 | 0.133 |
R-HSA-177929 | Signaling by EGFR | 0.736904 | 0.133 |
R-HSA-75893 | TNF signaling | 0.736904 | 0.133 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.739442 | 0.131 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.739442 | 0.131 |
R-HSA-167243 | Tat-mediated HIV elongation arrest and recovery | 0.741246 | 0.130 |
R-HSA-167238 | Pausing and recovery of Tat-mediated HIV elongation | 0.741246 | 0.130 |
R-HSA-73728 | RNA Polymerase I Promoter Opening | 0.741246 | 0.130 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.741246 | 0.130 |
R-HSA-8866652 | Synthesis of active ubiquitin: roles of E1 and E2 enzymes | 0.741246 | 0.130 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.741246 | 0.130 |
R-HSA-9828806 | Maturation of hRSV A proteins | 0.741246 | 0.130 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.744626 | 0.128 |
R-HSA-6791312 | TP53 Regulates Transcription of Cell Cycle Genes | 0.744626 | 0.128 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.745853 | 0.127 |
R-HSA-167287 | HIV elongation arrest and recovery | 0.751643 | 0.124 |
R-HSA-113418 | Formation of the Early Elongation Complex | 0.751643 | 0.124 |
R-HSA-167290 | Pausing and recovery of HIV elongation | 0.751643 | 0.124 |
R-HSA-167158 | Formation of the HIV-1 Early Elongation Complex | 0.751643 | 0.124 |
R-HSA-5576892 | Phase 0 - rapid depolarisation | 0.751643 | 0.124 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.751643 | 0.124 |
R-HSA-451326 | Activation of kainate receptors upon glutamate binding | 0.751643 | 0.124 |
R-HSA-9638334 | Iron assimilation using enterobactin | 0.751643 | 0.124 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.752152 | 0.124 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.754394 | 0.122 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.755472 | 0.122 |
R-HSA-9645723 | Diseases of programmed cell death | 0.758298 | 0.120 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.761623 | 0.118 |
R-HSA-209968 | Thyroxine biosynthesis | 0.761623 | 0.118 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.761623 | 0.118 |
R-HSA-1592389 | Activation of Matrix Metalloproteinases | 0.761623 | 0.118 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.762718 | 0.118 |
R-HSA-1236974 | ER-Phagosome pathway | 0.764333 | 0.117 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.766632 | 0.115 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.769983 | 0.114 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.771202 | 0.113 |
R-HSA-114452 | Activation of BH3-only proteins | 0.771202 | 0.113 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.773593 | 0.111 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.773593 | 0.111 |
R-HSA-450294 | MAP kinase activation | 0.773593 | 0.111 |
R-HSA-1442490 | Collagen degradation | 0.773593 | 0.111 |
R-HSA-422475 | Axon guidance | 0.776959 | 0.110 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.780371 | 0.108 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.780371 | 0.108 |
R-HSA-186797 | Signaling by PDGF | 0.780371 | 0.108 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.780371 | 0.108 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.780397 | 0.108 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.780397 | 0.108 |
R-HSA-2129379 | Molecules associated with elastic fibres | 0.780397 | 0.108 |
R-HSA-5694530 | Cargo concentration in the ER | 0.780397 | 0.108 |
R-HSA-9833109 | Evasion by RSV of host interferon responses | 0.780397 | 0.108 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.780397 | 0.108 |
R-HSA-186763 | Downstream signal transduction | 0.780397 | 0.108 |
R-HSA-182971 | EGFR downregulation | 0.780397 | 0.108 |
R-HSA-9007101 | Rab regulation of trafficking | 0.783214 | 0.106 |
R-HSA-70326 | Glucose metabolism | 0.783214 | 0.106 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.786972 | 0.104 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.787259 | 0.104 |
R-HSA-418555 | G alpha (s) signalling events | 0.788967 | 0.103 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.789222 | 0.103 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.789222 | 0.103 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.793397 | 0.101 |
R-HSA-2428924 | IGF1R signaling cascade | 0.793397 | 0.101 |
R-HSA-354192 | Integrin signaling | 0.797694 | 0.098 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.797694 | 0.098 |
R-HSA-397795 | G-protein beta:gamma signalling | 0.797694 | 0.098 |
R-HSA-1474290 | Collagen formation | 0.798011 | 0.098 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.799409 | 0.097 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.799650 | 0.097 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.803215 | 0.095 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.804639 | 0.094 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.805826 | 0.094 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.805826 | 0.094 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.805826 | 0.094 |
R-HSA-199220 | Vitamin B5 (pantothenate) metabolism | 0.805826 | 0.094 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.805826 | 0.094 |
R-HSA-166520 | Signaling by NTRKs | 0.808751 | 0.092 |
R-HSA-5673000 | RAF activation | 0.813631 | 0.090 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.813631 | 0.090 |
R-HSA-6814122 | Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding | 0.813631 | 0.090 |
R-HSA-983170 | Antigen Presentation: Folding, assembly and peptide loading of class I MHC | 0.813631 | 0.090 |
R-HSA-1980145 | Signaling by NOTCH2 | 0.813631 | 0.090 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.813631 | 0.090 |
R-HSA-392518 | Signal amplification | 0.813631 | 0.090 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.813631 | 0.090 |
R-HSA-901042 | Calnexin/calreticulin cycle | 0.813631 | 0.090 |
R-HSA-5365859 | RA biosynthesis pathway | 0.813631 | 0.090 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 0.813631 | 0.090 |
R-HSA-157579 | Telomere Maintenance | 0.818154 | 0.087 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.818154 | 0.087 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.821123 | 0.086 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.821123 | 0.086 |
R-HSA-169911 | Regulation of Apoptosis | 0.821123 | 0.086 |
R-HSA-187687 | Signalling to ERKs | 0.821123 | 0.086 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.821392 | 0.085 |
R-HSA-422356 | Regulation of insulin secretion | 0.822915 | 0.085 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.824176 | 0.084 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.824176 | 0.084 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.824176 | 0.084 |
R-HSA-69206 | G1/S Transition | 0.824176 | 0.084 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.824912 | 0.084 |
R-HSA-3371511 | HSF1 activation | 0.828314 | 0.082 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.828314 | 0.082 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.828314 | 0.082 |
R-HSA-9682385 | FLT3 signaling in disease | 0.828314 | 0.082 |
R-HSA-8853659 | RET signaling | 0.828314 | 0.082 |
R-HSA-69205 | G1/S-Specific Transcription | 0.828314 | 0.082 |
R-HSA-204005 | COPII-mediated vesicle transport | 0.828460 | 0.082 |
R-HSA-448424 | Interleukin-17 signaling | 0.828460 | 0.082 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.832118 | 0.080 |
R-HSA-70171 | Glycolysis | 0.832118 | 0.080 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.833754 | 0.079 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.833754 | 0.079 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.835217 | 0.078 |
R-HSA-4641257 | Degradation of AXIN | 0.835217 | 0.078 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.835217 | 0.078 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.835217 | 0.078 |
R-HSA-8948216 | Collagen chain trimerization | 0.835217 | 0.078 |
R-HSA-196757 | Metabolism of folate and pterines | 0.835217 | 0.078 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.836325 | 0.078 |
R-HSA-9020702 | Interleukin-1 signaling | 0.836564 | 0.078 |
R-HSA-195721 | Signaling by WNT | 0.837728 | 0.077 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.838901 | 0.076 |
R-HSA-9612973 | Autophagy | 0.839210 | 0.076 |
R-HSA-1483255 | PI Metabolism | 0.840908 | 0.075 |
R-HSA-6785470 | tRNA processing in the mitochondrion | 0.841842 | 0.075 |
R-HSA-74217 | Purine salvage | 0.841842 | 0.075 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.841842 | 0.075 |
R-HSA-913531 | Interferon Signaling | 0.843128 | 0.074 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.843903 | 0.074 |
R-HSA-4086398 | Ca2+ pathway | 0.843903 | 0.074 |
R-HSA-167200 | Formation of HIV-1 elongation complex containing HIV-1 Tat | 0.848201 | 0.072 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.848201 | 0.072 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.848201 | 0.072 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.848201 | 0.072 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.848763 | 0.071 |
R-HSA-1236394 | Signaling by ERBB4 | 0.848763 | 0.071 |
R-HSA-1474244 | Extracellular matrix organization | 0.850083 | 0.071 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.853346 | 0.069 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.853346 | 0.069 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.853486 | 0.069 |
R-HSA-167152 | Formation of HIV elongation complex in the absence of HIV Tat | 0.854305 | 0.068 |
R-HSA-167246 | Tat-mediated elongation of the HIV-1 transcript | 0.854305 | 0.068 |
R-HSA-167169 | HIV Transcription Elongation | 0.854305 | 0.068 |
R-HSA-5696395 | Formation of Incision Complex in GG-NER | 0.854305 | 0.068 |
R-HSA-3371568 | Attenuation phase | 0.854305 | 0.068 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.854305 | 0.068 |
R-HSA-451927 | Interleukin-2 family signaling | 0.854305 | 0.068 |
R-HSA-202433 | Generation of second messenger molecules | 0.854305 | 0.068 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.854305 | 0.068 |
R-HSA-1474228 | Degradation of the extracellular matrix | 0.855011 | 0.068 |
R-HSA-5617833 | Cilium Assembly | 0.856060 | 0.067 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.860164 | 0.065 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.860164 | 0.065 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.860164 | 0.065 |
R-HSA-9607240 | FLT3 Signaling | 0.860164 | 0.065 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.860164 | 0.065 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.860164 | 0.065 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.865788 | 0.063 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.865788 | 0.063 |
R-HSA-6811438 | Intra-Golgi traffic | 0.865788 | 0.063 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.865788 | 0.063 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.865788 | 0.063 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.865788 | 0.063 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.865788 | 0.063 |
R-HSA-9609736 | Assembly and cell surface presentation of NMDA receptors | 0.865788 | 0.063 |
R-HSA-216083 | Integrin cell surface interactions | 0.866857 | 0.062 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.868604 | 0.061 |
R-HSA-991365 | Activation of GABAB receptors | 0.871186 | 0.060 |
R-HSA-977444 | GABA B receptor activation | 0.871186 | 0.060 |
R-HSA-165159 | MTOR signalling | 0.871186 | 0.060 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.871854 | 0.060 |
R-HSA-5619102 | SLC transporter disorders | 0.874478 | 0.058 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.875012 | 0.058 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.876367 | 0.057 |
R-HSA-5358351 | Signaling by Hedgehog | 0.878104 | 0.056 |
R-HSA-212436 | Generic Transcription Pathway | 0.879303 | 0.056 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.881129 | 0.055 |
R-HSA-9907900 | Proteasome assembly | 0.881340 | 0.055 |
R-HSA-5683826 | Surfactant metabolism | 0.881340 | 0.055 |
R-HSA-3214858 | RMTs methylate histone arginines | 0.881340 | 0.055 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.886113 | 0.053 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.886113 | 0.053 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.886113 | 0.053 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.886113 | 0.053 |
R-HSA-3560782 | Diseases associated with glycosaminoglycan metabolism | 0.886113 | 0.053 |
R-HSA-9824272 | Somitogenesis | 0.886113 | 0.053 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.886113 | 0.053 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.886676 | 0.052 |
R-HSA-1632852 | Macroautophagy | 0.886983 | 0.052 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.890297 | 0.050 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.890695 | 0.050 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.890695 | 0.050 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.890695 | 0.050 |
R-HSA-6802949 | Signaling by RAS mutants | 0.890695 | 0.050 |
R-HSA-72695 | Formation of the ternary complex, and subsequently, the 43S complex | 0.890695 | 0.050 |
R-HSA-6781823 | Formation of TC-NER Pre-Incision Complex | 0.890695 | 0.050 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.890695 | 0.050 |
R-HSA-9734767 | Developmental Cell Lineages | 0.892648 | 0.049 |
R-HSA-8953897 | Cellular responses to stimuli | 0.894024 | 0.049 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.894974 | 0.048 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.895092 | 0.048 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.895294 | 0.048 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.897219 | 0.047 |
R-HSA-9031628 | NGF-stimulated transcription | 0.899313 | 0.046 |
R-HSA-70263 | Gluconeogenesis | 0.899313 | 0.046 |
R-HSA-8963899 | Plasma lipoprotein remodeling | 0.899313 | 0.046 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.900525 | 0.046 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.900525 | 0.046 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.900777 | 0.045 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.900777 | 0.045 |
R-HSA-73893 | DNA Damage Bypass | 0.903365 | 0.044 |
R-HSA-157858 | Gap junction trafficking and regulation | 0.903365 | 0.044 |
R-HSA-532668 | N-glycan trimming in the ER and Calnexin/Calreticulin cycle | 0.903365 | 0.044 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.903732 | 0.044 |
R-HSA-9663891 | Selective autophagy | 0.906842 | 0.042 |
R-HSA-109704 | PI3K Cascade | 0.907253 | 0.042 |
R-HSA-5653656 | Vesicle-mediated transport | 0.908462 | 0.042 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.910985 | 0.040 |
R-HSA-9864848 | Complex IV assembly | 0.910985 | 0.040 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.910985 | 0.040 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.910985 | 0.040 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.910985 | 0.040 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.910985 | 0.040 |
R-HSA-73884 | Base Excision Repair | 0.912783 | 0.040 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.914041 | 0.039 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.914568 | 0.039 |
R-HSA-68949 | Orc1 removal from chromatin | 0.914568 | 0.039 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.914568 | 0.039 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.914568 | 0.039 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.915618 | 0.038 |
R-HSA-1221632 | Meiotic synapsis | 0.918006 | 0.037 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.918006 | 0.037 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.918006 | 0.037 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.918006 | 0.037 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.918367 | 0.037 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.918880 | 0.037 |
R-HSA-2132295 | MHC class II antigen presentation | 0.918880 | 0.037 |
R-HSA-69306 | DNA Replication | 0.919240 | 0.037 |
R-HSA-449147 | Signaling by Interleukins | 0.920727 | 0.036 |
R-HSA-74752 | Signaling by Insulin receptor | 0.921031 | 0.036 |
R-HSA-391251 | Protein folding | 0.921031 | 0.036 |
R-HSA-72649 | Translation initiation complex formation | 0.921306 | 0.036 |
R-HSA-9754678 | SARS-CoV-2 modulates host translation machinery | 0.921306 | 0.036 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.923614 | 0.035 |
R-HSA-418597 | G alpha (z) signalling events | 0.924474 | 0.034 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.924474 | 0.034 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.926116 | 0.033 |
R-HSA-9837999 | Mitochondrial protein degradation | 0.926116 | 0.033 |
R-HSA-597592 | Post-translational protein modification | 0.926987 | 0.033 |
R-HSA-72702 | Ribosomal scanning and start codon recognition | 0.927514 | 0.033 |
R-HSA-209776 | Metabolism of amine-derived hormones | 0.927514 | 0.033 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.927514 | 0.033 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.927819 | 0.033 |
R-HSA-8951664 | Neddylation | 0.929014 | 0.032 |
R-HSA-114608 | Platelet degranulation | 0.929908 | 0.032 |
R-HSA-112399 | IRS-mediated signalling | 0.930432 | 0.031 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.933168 | 0.030 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.933168 | 0.030 |
R-HSA-72662 | Activation of the mRNA upon binding of the cap-binding complex and eIFs, and sub... | 0.933232 | 0.030 |
R-HSA-6782135 | Dual incision in TC-NER | 0.933232 | 0.030 |
R-HSA-9029569 | NR1H3 & NR1H2 regulate gene expression linked to cholesterol transport and efflu... | 0.933232 | 0.030 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.936937 | 0.028 |
R-HSA-9679506 | SARS-CoV Infections | 0.937113 | 0.028 |
R-HSA-1474165 | Reproduction | 0.937720 | 0.028 |
R-HSA-977443 | GABA receptor activation | 0.938501 | 0.028 |
R-HSA-351202 | Metabolism of polyamines | 0.938501 | 0.028 |
R-HSA-5362517 | Signaling by Retinoic Acid | 0.938501 | 0.028 |
R-HSA-5576891 | Cardiac conduction | 0.939543 | 0.027 |
R-HSA-211976 | Endogenous sterols | 0.940977 | 0.026 |
R-HSA-8956321 | Nucleotide salvage | 0.940977 | 0.026 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.940977 | 0.026 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.940988 | 0.026 |
R-HSA-8957322 | Metabolism of steroids | 0.942188 | 0.026 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.943043 | 0.025 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.943354 | 0.025 |
R-HSA-1268020 | Mitochondrial protein import | 0.943354 | 0.025 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.943354 | 0.025 |
R-HSA-9707616 | Heme signaling | 0.943354 | 0.025 |
R-HSA-1483257 | Phospholipid metabolism | 0.944534 | 0.025 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.945718 | 0.024 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.947649 | 0.023 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.948969 | 0.023 |
R-HSA-1234174 | Cellular response to hypoxia | 0.949926 | 0.022 |
R-HSA-72306 | tRNA processing | 0.950299 | 0.022 |
R-HSA-9833110 | RSV-host interactions | 0.950693 | 0.022 |
R-HSA-196071 | Metabolism of steroid hormones | 0.953878 | 0.021 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.954257 | 0.020 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.954257 | 0.020 |
R-HSA-3371497 | HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of lig... | 0.955736 | 0.020 |
R-HSA-167172 | Transcription of the HIV genome | 0.955736 | 0.020 |
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes | 0.955736 | 0.020 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.956583 | 0.019 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.956987 | 0.019 |
R-HSA-2672351 | Stimuli-sensing channels | 0.956987 | 0.019 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.958437 | 0.018 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.959231 | 0.018 |
R-HSA-202403 | TCR signaling | 0.959839 | 0.018 |
R-HSA-5632684 | Hedgehog 'on' state | 0.960874 | 0.017 |
R-HSA-9638482 | Metal ion assimilation from the host | 0.960874 | 0.017 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.961948 | 0.017 |
R-HSA-499943 | Interconversion of nucleotide di- and triphosphates | 0.962450 | 0.017 |
R-HSA-112316 | Neuronal System | 0.963324 | 0.016 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.963963 | 0.016 |
R-HSA-1280218 | Adaptive Immune System | 0.964285 | 0.016 |
R-HSA-71403 | Citric acid cycle (TCA cycle) | 0.966809 | 0.015 |
R-HSA-917937 | Iron uptake and transport | 0.966809 | 0.015 |
R-HSA-9758941 | Gastrulation | 0.967064 | 0.015 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.969044 | 0.014 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.969992 | 0.013 |
R-HSA-5619084 | ABC transporter disorders | 0.970663 | 0.013 |
R-HSA-191273 | Cholesterol biosynthesis | 0.970663 | 0.013 |
R-HSA-5579029 | Metabolic disorders of biological oxidation enzymes | 0.971845 | 0.012 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.972672 | 0.012 |
R-HSA-1989781 | PPARA activates gene expression | 0.972672 | 0.012 |
R-HSA-977225 | Amyloid fiber formation | 0.974070 | 0.011 |
R-HSA-109582 | Hemostasis | 0.974219 | 0.011 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.974332 | 0.011 |
R-HSA-9635486 | Infection with Mycobacterium tuberculosis | 0.974404 | 0.011 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.975047 | 0.011 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.975115 | 0.011 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.975619 | 0.011 |
R-HSA-2262752 | Cellular responses to stress | 0.975973 | 0.011 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.976118 | 0.010 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.976133 | 0.010 |
R-HSA-6809371 | Formation of the cornified envelope | 0.976955 | 0.010 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.978006 | 0.010 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.978893 | 0.009 |
R-HSA-163841 | Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation | 0.979744 | 0.009 |
R-HSA-8939211 | ESR-mediated signaling | 0.979863 | 0.009 |
R-HSA-70268 | Pyruvate metabolism | 0.980561 | 0.009 |
R-HSA-376176 | Signaling by ROBO receptors | 0.980606 | 0.009 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.980857 | 0.008 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.981987 | 0.008 |
R-HSA-202424 | Downstream TCR signaling | 0.982820 | 0.008 |
R-HSA-5683057 | MAPK family signaling cascades | 0.983125 | 0.007 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.984020 | 0.007 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.984053 | 0.007 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.984816 | 0.007 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.985429 | 0.006 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.985519 | 0.006 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.987123 | 0.006 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.987123 | 0.006 |
R-HSA-168255 | Influenza Infection | 0.987680 | 0.005 |
R-HSA-9664417 | Leishmania phagocytosis | 0.988242 | 0.005 |
R-HSA-9664407 | Parasite infection | 0.988242 | 0.005 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.988242 | 0.005 |
R-HSA-192105 | Synthesis of bile acids and bile salts | 0.989079 | 0.005 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.989520 | 0.005 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.989943 | 0.004 |
R-HSA-416476 | G alpha (q) signalling events | 0.990575 | 0.004 |
R-HSA-9711123 | Cellular response to chemical stress | 0.991601 | 0.004 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.992147 | 0.003 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.992768 | 0.003 |
R-HSA-9609507 | Protein localization | 0.992895 | 0.003 |
R-HSA-194068 | Bile acid and bile salt metabolism | 0.993341 | 0.003 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.993868 | 0.003 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.994073 | 0.003 |
R-HSA-9711097 | Cellular response to starvation | 0.994073 | 0.003 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.994116 | 0.003 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.994406 | 0.002 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.995011 | 0.002 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.995236 | 0.002 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.996931 | 0.001 |
R-HSA-611105 | Respiratory electron transport | 0.997252 | 0.001 |
R-HSA-6798695 | Neutrophil degranulation | 0.997540 | 0.001 |
R-HSA-1266738 | Developmental Biology | 0.997836 | 0.001 |
R-HSA-375276 | Peptide ligand-binding receptors | 0.997955 | 0.001 |
R-HSA-983712 | Ion channel transport | 0.998170 | 0.001 |
R-HSA-15869 | Metabolism of nucleotides | 0.998232 | 0.001 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.998292 | 0.001 |
R-HSA-9948299 | Ribosome-associated quality control | 0.998295 | 0.001 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.998363 | 0.001 |
R-HSA-1630316 | Glycosaminoglycan metabolism | 0.998423 | 0.001 |
R-HSA-9824446 | Viral Infection Pathways | 0.998559 | 0.001 |
R-HSA-418594 | G alpha (i) signalling events | 0.998692 | 0.001 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.998723 | 0.001 |
R-HSA-428157 | Sphingolipid metabolism | 0.998829 | 0.001 |
R-HSA-6805567 | Keratinization | 0.999064 | 0.000 |
R-HSA-388396 | GPCR downstream signalling | 0.999164 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999312 | 0.000 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.999444 | 0.000 |
R-HSA-211897 | Cytochrome P450 - arranged by substrate type | 0.999507 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999553 | 0.000 |
R-HSA-198933 | Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell | 0.999607 | 0.000 |
R-HSA-5663205 | Infectious disease | 0.999687 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999737 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.999743 | 0.000 |
R-HSA-3781865 | Diseases of glycosylation | 0.999766 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999836 | 0.000 |
R-HSA-9640148 | Infection with Enterobacteria | 0.999894 | 0.000 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.999909 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999916 | 0.000 |
R-HSA-211945 | Phase I - Functionalization of compounds | 0.999939 | 0.000 |
R-HSA-1428517 | Aerobic respiration and respiratory electron transport | 0.999958 | 0.000 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.999977 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999978 | 0.000 |
R-HSA-1643685 | Disease | 0.999987 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999988 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999989 | 0.000 |
R-HSA-72766 | Translation | 0.999990 | 0.000 |
R-HSA-168256 | Immune System | 0.999998 | 0.000 |
R-HSA-168249 | Innate Immune System | 1.000000 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 1.000000 | 0.000 |
R-HSA-211859 | Biological oxidations | 1.000000 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-381753 | Olfactory Signaling Pathway | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
R-HSA-9709957 | Sensory Perception | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
GRK1 |
0.777 | 0.405 | -2 | 0.463 |
BMPR1B |
0.774 | 0.364 | 1 | 0.402 |
BMPR1A |
0.766 | 0.360 | 1 | 0.458 |
CK2A2 |
0.764 | 0.295 | 1 | 0.328 |
MOS |
0.763 | 0.504 | 1 | 0.348 |
CDC7 |
0.760 | 0.412 | 1 | 0.435 |
GRK7 |
0.759 | 0.286 | 1 | 0.230 |
KIS |
0.755 | 0.109 | 1 | 0.107 |
FAM20C |
0.755 | 0.173 | 2 | 0.704 |
ALK2 |
0.753 | 0.358 | -2 | 0.332 |
CK2A1 |
0.752 | 0.248 | 1 | 0.301 |
COT |
0.751 | 0.092 | 2 | 0.848 |
GRK6 |
0.746 | 0.231 | 1 | 0.269 |
IKKB |
0.745 | 0.002 | -2 | 0.250 |
GRK4 |
0.745 | 0.238 | -2 | 0.395 |
TGFBR1 |
0.744 | 0.153 | -2 | 0.307 |
ACVR2B |
0.743 | 0.223 | -2 | 0.285 |
IKKA |
0.741 | 0.047 | -2 | 0.257 |
CLK3 |
0.741 | 0.065 | 1 | 0.218 |
DSTYK |
0.740 | 0.073 | 2 | 0.868 |
GRK5 |
0.739 | 0.197 | -3 | 0.862 |
CAMK2G |
0.738 | 0.076 | 2 | 0.860 |
ACVR2A |
0.736 | 0.148 | -2 | 0.270 |
ATM |
0.734 | 0.056 | 1 | 0.182 |
PIM3 |
0.734 | 0.044 | -3 | 0.828 |
GRK3 |
0.733 | 0.115 | -2 | 0.374 |
RAF1 |
0.732 | 0.020 | 1 | 0.191 |
CAMK2B |
0.730 | 0.092 | 2 | 0.858 |
PRPK |
0.730 | 0.013 | -1 | 0.759 |
NDR2 |
0.729 | 0.021 | -3 | 0.823 |
GRK2 |
0.729 | 0.073 | -2 | 0.340 |
GCN2 |
0.728 | -0.070 | 2 | 0.772 |
ALK4 |
0.727 | 0.095 | -2 | 0.300 |
IKKE |
0.727 | -0.115 | 1 | 0.100 |
TBK1 |
0.726 | -0.131 | 1 | 0.100 |
MTOR |
0.724 | -0.107 | 1 | 0.119 |
BMPR2 |
0.724 | 0.006 | -2 | 0.271 |
CAMK1B |
0.721 | -0.033 | -3 | 0.850 |
ATR |
0.721 | -0.063 | 1 | 0.151 |
PDHK4 |
0.720 | -0.150 | 1 | 0.160 |
TGFBR2 |
0.720 | -0.047 | -2 | 0.288 |
TTBK2 |
0.720 | 0.061 | 2 | 0.660 |
CAMK2A |
0.719 | 0.060 | 2 | 0.868 |
MAPKAPK2 |
0.719 | 0.020 | -3 | 0.712 |
ERK5 |
0.718 | -0.083 | 1 | 0.121 |
HUNK |
0.718 | -0.017 | 2 | 0.775 |
PLK3 |
0.718 | 0.011 | 2 | 0.788 |
PIM1 |
0.717 | 0.007 | -3 | 0.777 |
CK1E |
0.717 | 0.145 | -3 | 0.610 |
JNK3 |
0.717 | -0.015 | 1 | 0.100 |
SKMLCK |
0.717 | -0.037 | -2 | 0.262 |
MLK1 |
0.717 | -0.059 | 2 | 0.768 |
CDK1 |
0.716 | -0.021 | 1 | 0.094 |
NEK6 |
0.716 | -0.091 | -2 | 0.251 |
JNK2 |
0.716 | -0.024 | 1 | 0.082 |
RSK2 |
0.716 | -0.020 | -3 | 0.763 |
NEK7 |
0.715 | -0.123 | -3 | 0.823 |
LATS1 |
0.715 | 0.060 | -3 | 0.841 |
AURA |
0.715 | -0.030 | -2 | 0.172 |
PDHK1 |
0.715 | -0.165 | 1 | 0.149 |
MARK4 |
0.715 | -0.043 | 4 | 0.849 |
NLK |
0.714 | -0.099 | 1 | 0.128 |
PKN3 |
0.714 | -0.057 | -3 | 0.806 |
PLK1 |
0.714 | -0.058 | -2 | 0.233 |
CDKL1 |
0.713 | -0.037 | -3 | 0.798 |
CK1D |
0.713 | 0.152 | -3 | 0.559 |
BCKDK |
0.713 | -0.090 | -1 | 0.723 |
LATS2 |
0.713 | -0.016 | -5 | 0.788 |
MST4 |
0.713 | -0.073 | 2 | 0.818 |
CDK8 |
0.713 | -0.071 | 1 | 0.087 |
ULK2 |
0.712 | -0.189 | 2 | 0.732 |
NDR1 |
0.712 | -0.064 | -3 | 0.816 |
CAMK2D |
0.712 | -0.055 | -3 | 0.804 |
CAMLCK |
0.711 | -0.070 | -2 | 0.229 |
DLK |
0.710 | -0.074 | 1 | 0.156 |
PRKX |
0.710 | 0.001 | -3 | 0.674 |
DYRK2 |
0.710 | -0.058 | 1 | 0.097 |
CLK2 |
0.710 | 0.027 | -3 | 0.749 |
DNAPK |
0.710 | -0.041 | 1 | 0.087 |
RIPK3 |
0.710 | -0.093 | 3 | 0.681 |
NIK |
0.709 | -0.116 | -3 | 0.862 |
RSK4 |
0.709 | 0.015 | -3 | 0.736 |
DAPK2 |
0.709 | -0.042 | -3 | 0.849 |
NUAK2 |
0.709 | -0.061 | -3 | 0.822 |
CHAK2 |
0.709 | -0.080 | -1 | 0.701 |
PRKD1 |
0.709 | -0.076 | -3 | 0.788 |
P38G |
0.709 | -0.045 | 1 | 0.065 |
HIPK4 |
0.708 | -0.079 | 1 | 0.122 |
PKACG |
0.708 | -0.072 | -2 | 0.204 |
AURC |
0.708 | -0.052 | -2 | 0.170 |
P38B |
0.708 | -0.053 | 1 | 0.078 |
PKACB |
0.708 | -0.030 | -2 | 0.168 |
P70S6KB |
0.708 | -0.026 | -3 | 0.781 |
DYRK4 |
0.707 | -0.032 | 1 | 0.090 |
YSK4 |
0.707 | -0.092 | 1 | 0.122 |
MSK2 |
0.707 | -0.038 | -3 | 0.733 |
HIPK2 |
0.707 | -0.034 | 1 | 0.079 |
SRPK1 |
0.706 | -0.040 | -3 | 0.753 |
PLK2 |
0.706 | 0.067 | -3 | 0.832 |
AMPKA1 |
0.706 | -0.057 | -3 | 0.825 |
ULK1 |
0.706 | -0.149 | -3 | 0.795 |
CDK19 |
0.706 | -0.076 | 1 | 0.076 |
P38D |
0.706 | -0.046 | 1 | 0.075 |
TLK1 |
0.706 | 0.018 | -2 | 0.323 |
MSK1 |
0.706 | -0.026 | -3 | 0.734 |
MLK3 |
0.705 | -0.057 | 2 | 0.702 |
PKN2 |
0.705 | -0.095 | -3 | 0.815 |
TSSK2 |
0.705 | -0.049 | -5 | 0.837 |
CDKL5 |
0.705 | -0.063 | -3 | 0.785 |
ANKRD3 |
0.704 | -0.104 | 1 | 0.136 |
BRAF |
0.704 | 0.070 | -4 | 0.858 |
MASTL |
0.704 | -0.174 | -2 | 0.250 |
WNK1 |
0.704 | -0.143 | -2 | 0.250 |
PASK |
0.704 | 0.077 | -3 | 0.842 |
P90RSK |
0.704 | -0.056 | -3 | 0.768 |
MEKK3 |
0.704 | 0.015 | 1 | 0.112 |
RSK3 |
0.703 | -0.056 | -3 | 0.756 |
JNK1 |
0.703 | -0.015 | 1 | 0.092 |
TLK2 |
0.703 | -0.077 | 1 | 0.119 |
ERK1 |
0.703 | -0.060 | 1 | 0.070 |
PAK1 |
0.702 | -0.081 | -2 | 0.203 |
ICK |
0.702 | -0.087 | -3 | 0.825 |
CDK17 |
0.702 | -0.059 | 1 | 0.070 |
PRKD2 |
0.701 | -0.076 | -3 | 0.742 |
CDK18 |
0.701 | -0.063 | 1 | 0.078 |
MAPKAPK3 |
0.701 | -0.080 | -3 | 0.743 |
PKCD |
0.700 | -0.104 | 2 | 0.748 |
MLK4 |
0.700 | -0.061 | 2 | 0.675 |
MEK1 |
0.700 | -0.094 | 2 | 0.808 |
CDK3 |
0.700 | -0.036 | 1 | 0.082 |
ALPHAK3 |
0.700 | 0.303 | -1 | 0.739 |
WNK3 |
0.700 | -0.209 | 1 | 0.123 |
CAMK4 |
0.699 | -0.092 | -3 | 0.793 |
MYLK4 |
0.699 | -0.049 | -2 | 0.223 |
SRPK3 |
0.699 | -0.027 | -3 | 0.729 |
QSK |
0.699 | -0.054 | 4 | 0.824 |
P38A |
0.699 | -0.081 | 1 | 0.086 |
PRP4 |
0.698 | 0.003 | -3 | 0.785 |
AURB |
0.698 | -0.070 | -2 | 0.165 |
MARK3 |
0.698 | -0.041 | 4 | 0.789 |
DRAK1 |
0.698 | -0.074 | 1 | 0.152 |
RIPK1 |
0.698 | -0.147 | 1 | 0.119 |
SRPK2 |
0.698 | -0.034 | -3 | 0.676 |
CDK5 |
0.697 | -0.062 | 1 | 0.111 |
AMPKA2 |
0.697 | -0.073 | -3 | 0.794 |
MLK2 |
0.697 | -0.176 | 2 | 0.764 |
CK1A2 |
0.697 | 0.085 | -3 | 0.558 |
CDK7 |
0.697 | -0.087 | 1 | 0.106 |
HIPK1 |
0.697 | -0.047 | 1 | 0.094 |
PKR |
0.697 | -0.112 | 1 | 0.142 |
MARK2 |
0.696 | -0.045 | 4 | 0.757 |
CLK4 |
0.696 | -0.052 | -3 | 0.764 |
NIM1 |
0.696 | -0.131 | 3 | 0.738 |
ERK2 |
0.695 | -0.072 | 1 | 0.076 |
CDK13 |
0.695 | -0.090 | 1 | 0.098 |
NEK9 |
0.695 | -0.230 | 2 | 0.779 |
SMG1 |
0.694 | -0.104 | 1 | 0.119 |
CDK2 |
0.694 | -0.060 | 1 | 0.103 |
SIK |
0.694 | -0.062 | -3 | 0.739 |
DYRK1B |
0.694 | -0.059 | 1 | 0.087 |
PAK2 |
0.694 | -0.106 | -2 | 0.201 |
PAK3 |
0.693 | -0.130 | -2 | 0.191 |
TSSK1 |
0.693 | -0.101 | -3 | 0.840 |
CK1G1 |
0.692 | 0.034 | -3 | 0.621 |
CDK16 |
0.692 | -0.056 | 1 | 0.079 |
MARK1 |
0.692 | -0.061 | 4 | 0.807 |
QIK |
0.692 | -0.129 | -3 | 0.802 |
PERK |
0.692 | -0.074 | -2 | 0.298 |
BRSK1 |
0.692 | -0.067 | -3 | 0.767 |
PKACA |
0.691 | -0.049 | -2 | 0.146 |
ZAK |
0.691 | -0.102 | 1 | 0.117 |
PAK6 |
0.691 | -0.095 | -2 | 0.151 |
PKG2 |
0.690 | -0.089 | -2 | 0.164 |
TTBK1 |
0.690 | -0.037 | 2 | 0.588 |
GAK |
0.690 | 0.025 | 1 | 0.159 |
SGK3 |
0.690 | -0.071 | -3 | 0.743 |
IRE1 |
0.689 | -0.160 | 1 | 0.111 |
MEKK2 |
0.689 | -0.091 | 2 | 0.751 |
CDK12 |
0.688 | -0.091 | 1 | 0.085 |
NUAK1 |
0.688 | -0.101 | -3 | 0.769 |
CHK1 |
0.688 | -0.078 | -3 | 0.791 |
PIM2 |
0.688 | -0.037 | -3 | 0.733 |
VRK2 |
0.688 | -0.253 | 1 | 0.160 |
DYRK1A |
0.688 | -0.069 | 1 | 0.112 |
PLK4 |
0.687 | -0.142 | 2 | 0.593 |
TAO3 |
0.687 | -0.073 | 1 | 0.116 |
IRE2 |
0.687 | -0.137 | 2 | 0.689 |
PKCG |
0.687 | -0.107 | 2 | 0.693 |
AKT2 |
0.687 | -0.050 | -3 | 0.683 |
MST2 |
0.687 | -0.028 | 1 | 0.133 |
TAK1 |
0.687 | 0.021 | 1 | 0.160 |
PRKD3 |
0.687 | -0.085 | -3 | 0.725 |
CLK1 |
0.686 | -0.066 | -3 | 0.735 |
PKCB |
0.686 | -0.098 | 2 | 0.689 |
MEKK1 |
0.686 | -0.144 | 1 | 0.115 |
DAPK3 |
0.686 | -0.001 | -3 | 0.786 |
GSK3A |
0.685 | 0.008 | 4 | 0.432 |
CAMK1G |
0.685 | -0.076 | -3 | 0.741 |
MNK2 |
0.684 | -0.135 | -2 | 0.179 |
MELK |
0.684 | -0.138 | -3 | 0.773 |
MEK5 |
0.684 | -0.173 | 2 | 0.776 |
DYRK3 |
0.684 | -0.074 | 1 | 0.092 |
MST3 |
0.684 | -0.086 | 2 | 0.786 |
CAMKK1 |
0.684 | -0.115 | -2 | 0.225 |
MPSK1 |
0.684 | -0.040 | 1 | 0.101 |
DAPK1 |
0.683 | -0.005 | -3 | 0.772 |
CDK14 |
0.683 | -0.081 | 1 | 0.078 |
MNK1 |
0.683 | -0.110 | -2 | 0.192 |
PKCA |
0.683 | -0.118 | 2 | 0.680 |
CDK9 |
0.683 | -0.105 | 1 | 0.096 |
HIPK3 |
0.682 | -0.089 | 1 | 0.087 |
HRI |
0.682 | -0.170 | -2 | 0.252 |
MAPKAPK5 |
0.682 | -0.113 | -3 | 0.691 |
PINK1 |
0.682 | -0.174 | 1 | 0.119 |
NEK2 |
0.681 | -0.208 | 2 | 0.745 |
PKCH |
0.681 | -0.125 | 2 | 0.670 |
CHAK1 |
0.679 | -0.184 | 2 | 0.688 |
SNRK |
0.679 | -0.157 | 2 | 0.633 |
BRSK2 |
0.679 | -0.130 | -3 | 0.782 |
SMMLCK |
0.679 | -0.088 | -3 | 0.800 |
PKCZ |
0.679 | -0.150 | 2 | 0.715 |
AKT1 |
0.678 | -0.067 | -3 | 0.693 |
EEF2K |
0.678 | 0.008 | 3 | 0.750 |
PAK5 |
0.678 | -0.109 | -2 | 0.145 |
DCAMKL1 |
0.678 | -0.107 | -3 | 0.763 |
P70S6K |
0.677 | -0.055 | -3 | 0.690 |
PHKG1 |
0.677 | -0.159 | -3 | 0.799 |
SSTK |
0.677 | -0.084 | 4 | 0.810 |
CK1A |
0.677 | 0.107 | -3 | 0.479 |
CAMK1D |
0.677 | -0.044 | -3 | 0.668 |
CDK10 |
0.677 | -0.072 | 1 | 0.077 |
CAMKK2 |
0.677 | -0.127 | -2 | 0.207 |
NEK8 |
0.676 | -0.136 | 2 | 0.759 |
SYK |
0.676 | 0.329 | -1 | 0.815 |
GCK |
0.676 | -0.084 | 1 | 0.104 |
PAK4 |
0.676 | -0.097 | -2 | 0.149 |
WNK4 |
0.675 | -0.190 | -2 | 0.235 |
NEK5 |
0.675 | -0.207 | 1 | 0.116 |
GSK3B |
0.674 | -0.025 | 4 | 0.421 |
MAK |
0.674 | -0.057 | -2 | 0.180 |
NEK11 |
0.673 | -0.148 | 1 | 0.104 |
TAO2 |
0.672 | -0.134 | 2 | 0.803 |
PDK1 |
0.671 | -0.134 | 1 | 0.135 |
ERK7 |
0.670 | -0.058 | 2 | 0.489 |
DCAMKL2 |
0.669 | -0.118 | -3 | 0.785 |
MINK |
0.669 | -0.135 | 1 | 0.096 |
SGK1 |
0.669 | -0.036 | -3 | 0.608 |
PKCT |
0.669 | -0.140 | 2 | 0.676 |
MST1 |
0.669 | -0.107 | 1 | 0.102 |
HPK1 |
0.668 | -0.114 | 1 | 0.095 |
LKB1 |
0.668 | -0.142 | -3 | 0.799 |
CDK6 |
0.667 | -0.091 | 1 | 0.077 |
AKT3 |
0.667 | -0.053 | -3 | 0.622 |
IRAK4 |
0.667 | -0.207 | 1 | 0.119 |
TNIK |
0.666 | -0.121 | 3 | 0.761 |
TTK |
0.666 | -0.011 | -2 | 0.281 |
CDK4 |
0.666 | -0.094 | 1 | 0.080 |
IRAK1 |
0.665 | -0.196 | -1 | 0.628 |
PDHK3_TYR |
0.664 | 0.115 | 4 | 0.899 |
SLK |
0.664 | -0.134 | -2 | 0.208 |
PDHK1_TYR |
0.664 | 0.164 | -1 | 0.828 |
EPHA6 |
0.664 | 0.209 | -1 | 0.844 |
MRCKA |
0.663 | -0.077 | -3 | 0.737 |
OSR1 |
0.663 | -0.053 | 2 | 0.742 |
HGK |
0.663 | -0.169 | 3 | 0.755 |
PHKG2 |
0.663 | -0.171 | -3 | 0.771 |
MAP2K6_TYR |
0.662 | 0.145 | -1 | 0.809 |
MAP3K15 |
0.662 | -0.175 | 1 | 0.105 |
EPHA4 |
0.662 | 0.251 | 2 | 0.796 |
MRCKB |
0.662 | -0.078 | -3 | 0.721 |
CK1G2 |
0.662 | 0.127 | -3 | 0.531 |
PDHK4_TYR |
0.662 | 0.119 | 2 | 0.869 |
RIPK2 |
0.661 | -0.183 | 1 | 0.106 |
ROCK2 |
0.661 | -0.078 | -3 | 0.769 |
BMPR2_TYR |
0.660 | 0.077 | -1 | 0.831 |
LRRK2 |
0.660 | -0.181 | 2 | 0.795 |
PKCI |
0.660 | -0.155 | 2 | 0.683 |
VRK1 |
0.660 | -0.184 | 2 | 0.782 |
MOK |
0.659 | -0.081 | 1 | 0.089 |
MAP2K4_TYR |
0.659 | 0.105 | -1 | 0.804 |
PKCE |
0.659 | -0.106 | 2 | 0.673 |
YANK3 |
0.659 | -0.014 | 2 | 0.413 |
KHS2 |
0.658 | -0.104 | 1 | 0.089 |
CAMK1A |
0.658 | -0.068 | -3 | 0.643 |
NEK4 |
0.658 | -0.242 | 1 | 0.091 |
TXK |
0.658 | 0.135 | 1 | 0.268 |
SBK |
0.658 | -0.026 | -3 | 0.564 |
KHS1 |
0.657 | -0.141 | 1 | 0.094 |
LOK |
0.657 | -0.192 | -2 | 0.191 |
EPHB2 |
0.657 | 0.227 | -1 | 0.811 |
EPHB4 |
0.656 | 0.152 | -1 | 0.817 |
MEKK6 |
0.656 | -0.212 | 1 | 0.105 |
PKN1 |
0.656 | -0.114 | -3 | 0.702 |
DMPK1 |
0.655 | -0.059 | -3 | 0.748 |
MEK2 |
0.655 | -0.205 | 2 | 0.759 |
PBK |
0.655 | -0.116 | 1 | 0.124 |
CK1G3 |
0.655 | 0.078 | -3 | 0.435 |
YSK1 |
0.654 | -0.173 | 2 | 0.748 |
STK33 |
0.654 | -0.155 | 2 | 0.590 |
FER |
0.653 | 0.176 | 1 | 0.301 |
SRMS |
0.653 | 0.181 | 1 | 0.305 |
CHK2 |
0.653 | -0.075 | -3 | 0.625 |
PKG1 |
0.653 | -0.110 | -2 | 0.125 |
NEK1 |
0.653 | -0.248 | 1 | 0.109 |
BLK |
0.652 | 0.149 | -1 | 0.770 |
PTK2 |
0.652 | 0.140 | -1 | 0.842 |
FYN |
0.652 | 0.130 | -1 | 0.744 |
EPHA5 |
0.652 | 0.228 | 2 | 0.783 |
EGFR |
0.649 | 0.049 | 1 | 0.138 |
EPHB1 |
0.649 | 0.136 | 1 | 0.282 |
EPHB3 |
0.649 | 0.165 | -1 | 0.800 |
BIKE |
0.649 | -0.089 | 1 | 0.119 |
TESK1_TYR |
0.649 | -0.066 | 3 | 0.819 |
MAP2K7_TYR |
0.649 | -0.103 | 2 | 0.834 |
INSRR |
0.649 | 0.058 | 3 | 0.687 |
ROCK1 |
0.648 | -0.086 | -3 | 0.734 |
ASK1 |
0.648 | -0.156 | 1 | 0.117 |
LCK |
0.647 | 0.096 | -1 | 0.762 |
HASPIN |
0.647 | -0.081 | -1 | 0.536 |
BUB1 |
0.646 | -0.113 | -5 | 0.803 |
CRIK |
0.646 | -0.055 | -3 | 0.691 |
PINK1_TYR |
0.646 | -0.121 | 1 | 0.169 |
EPHA7 |
0.645 | 0.150 | 2 | 0.779 |
FLT1 |
0.645 | 0.045 | -1 | 0.858 |
MYO3A |
0.645 | -0.140 | 1 | 0.090 |
YES1 |
0.644 | 0.018 | -1 | 0.742 |
JAK3 |
0.644 | -0.023 | 1 | 0.135 |
STLK3 |
0.644 | -0.131 | 1 | 0.103 |
ERBB4 |
0.643 | 0.087 | 1 | 0.184 |
HCK |
0.643 | 0.053 | -1 | 0.756 |
PKMYT1_TYR |
0.643 | -0.113 | 3 | 0.787 |
FGR |
0.642 | -0.019 | 1 | 0.158 |
EPHA8 |
0.641 | 0.114 | -1 | 0.788 |
FGFR2 |
0.641 | -0.019 | 3 | 0.733 |
ZAP70 |
0.640 | 0.103 | -1 | 0.692 |
RET |
0.639 | -0.163 | 1 | 0.126 |
FRK |
0.639 | 0.089 | -1 | 0.777 |
ITK |
0.639 | 0.014 | -1 | 0.720 |
ERBB2 |
0.638 | 0.010 | 1 | 0.151 |
ABL2 |
0.638 | -0.037 | -1 | 0.735 |
MET |
0.638 | 0.035 | 3 | 0.703 |
FGFR3 |
0.638 | 0.011 | 3 | 0.710 |
TAO1 |
0.638 | -0.179 | 1 | 0.084 |
NEK3 |
0.638 | -0.258 | 1 | 0.087 |
EPHA2 |
0.637 | 0.121 | -1 | 0.795 |
KIT |
0.637 | -0.042 | 3 | 0.712 |
BMX |
0.637 | 0.036 | -1 | 0.649 |
MYO3B |
0.637 | -0.176 | 2 | 0.760 |
EPHA3 |
0.637 | 0.073 | 2 | 0.761 |
CSF1R |
0.637 | -0.089 | 3 | 0.708 |
TEC |
0.637 | 0.068 | -1 | 0.651 |
MST1R |
0.636 | -0.127 | 3 | 0.726 |
TYK2 |
0.635 | -0.200 | 1 | 0.136 |
SRC |
0.635 | 0.052 | -1 | 0.730 |
FGFR4 |
0.634 | 0.003 | -1 | 0.758 |
JAK2 |
0.634 | -0.178 | 1 | 0.131 |
AAK1 |
0.634 | -0.083 | 1 | 0.089 |
YANK2 |
0.634 | -0.022 | 2 | 0.432 |
TYRO3 |
0.633 | -0.088 | 3 | 0.714 |
ABL1 |
0.633 | -0.057 | -1 | 0.722 |
FLT3 |
0.633 | -0.081 | 3 | 0.704 |
LYN |
0.633 | 0.054 | 3 | 0.645 |
ROS1 |
0.633 | -0.102 | 3 | 0.688 |
MERTK |
0.633 | -0.004 | 3 | 0.707 |
KDR |
0.632 | -0.065 | 3 | 0.680 |
FGFR1 |
0.632 | -0.072 | 3 | 0.702 |
LIMK2_TYR |
0.631 | -0.200 | -3 | 0.857 |
DDR1 |
0.630 | -0.145 | 4 | 0.812 |
TEK |
0.629 | -0.006 | 3 | 0.666 |
LIMK1_TYR |
0.628 | -0.214 | 2 | 0.805 |
NTRK1 |
0.628 | -0.065 | -1 | 0.775 |
INSR |
0.625 | -0.056 | 3 | 0.661 |
BTK |
0.625 | -0.052 | -1 | 0.666 |
FLT4 |
0.625 | -0.072 | 3 | 0.685 |
LTK |
0.625 | -0.051 | 3 | 0.672 |
PDGFRB |
0.625 | -0.162 | 3 | 0.718 |
ALK |
0.624 | -0.038 | 3 | 0.648 |
NEK10_TYR |
0.624 | -0.191 | 1 | 0.092 |
PTK6 |
0.624 | -0.046 | -1 | 0.644 |
NTRK3 |
0.624 | -0.060 | -1 | 0.732 |
MATK |
0.624 | -0.025 | -1 | 0.668 |
PTK2B |
0.623 | 0.001 | -1 | 0.673 |
TNK2 |
0.622 | -0.084 | 3 | 0.682 |
AXL |
0.621 | -0.103 | 3 | 0.705 |
IGF1R |
0.621 | -0.017 | 3 | 0.615 |
EPHA1 |
0.620 | -0.019 | 3 | 0.673 |
CSK |
0.620 | -0.070 | 2 | 0.779 |
JAK1 |
0.619 | -0.176 | 1 | 0.099 |
NTRK2 |
0.618 | -0.124 | 3 | 0.686 |
WEE1_TYR |
0.616 | -0.111 | -1 | 0.645 |
PDGFRA |
0.615 | -0.202 | 3 | 0.711 |
TNNI3K_TYR |
0.614 | -0.166 | 1 | 0.113 |
DDR2 |
0.611 | -0.127 | 3 | 0.672 |
FES |
0.608 | 0.010 | -1 | 0.629 |
TNK1 |
0.605 | -0.240 | 3 | 0.700 |
MUSK |
0.603 | -0.128 | 1 | 0.116 |