Motif 478 (n=482)
Position-wise Probabilities
Download
uniprot | genes | site | source | protein | function |
---|---|---|---|---|---|
A0A0B4J1V8 | PPAN-P2RY11 | S228 | ochoa | HCG2039996 (PPAN-P2RY11 readthrough) | None |
A1L170 | C1orf226 | S211 | ochoa | Uncharacterized protein C1orf226 | None |
A1L170 | C1orf226 | S225 | ochoa | Uncharacterized protein C1orf226 | None |
A6NDB9 | PALM3 | S143 | ochoa | Paralemmin-3 | ATP-binding protein, which may act as a adapter in the Toll-like receptor (TLR) signaling. {ECO:0000269|PubMed:21187075}. |
F8WAN1 | SPECC1L-ADORA2A | S380 | ochoa | SPECC1L-ADORA2A readthrough (NMD candidate) | None |
O14639 | ABLIM1 | S355 | ochoa | Actin-binding LIM protein 1 (abLIM-1) (Actin-binding LIM protein family member 1) (Actin-binding double zinc finger protein) (LIMAB1) (Limatin) | May act as scaffold protein (By similarity). May play a role in the development of the retina. Has been suggested to play a role in axon guidance. {ECO:0000250, ECO:0000269|PubMed:9245787}. |
O14713 | ITGB1BP1 | S25 | ochoa|psp | Integrin beta-1-binding protein 1 (Integrin cytoplasmic domain-associated protein 1) (ICAP-1) | Key regulator of the integrin-mediated cell-matrix interaction signaling by binding to the ITGB1 cytoplasmic tail and preventing the activation of integrin alpha-5/beta-1 (heterodimer of ITGA5 and ITGB1) by talin or FERMT1. Plays a role in cell proliferation, differentiation, spreading, adhesion and migration in the context of mineralization and bone development and angiogenesis. Stimulates cellular proliferation in a fibronectin-dependent manner. Involved in the regulation of beta-1 integrin-containing focal adhesion (FA) site dynamics by controlling its assembly rate during cell adhesion; inhibits beta-1 integrin clustering within FA by directly competing with talin TLN1, and hence stimulates osteoblast spreading and migration in a fibronectin- and/or collagen-dependent manner. Acts as a guanine nucleotide dissociation inhibitor (GDI) by regulating Rho family GTPases during integrin-mediated cell matrix adhesion; reduces the level of active GTP-bound form of both CDC42 and RAC1 GTPases upon cell adhesion to fibronectin. Stimulates the release of active CDC42 from the membranes to maintain it in an inactive cytoplasmic pool. Participates in the translocation of the Rho-associated protein kinase ROCK1 to membrane ruffles at cell leading edges of the cell membrane, leading to an increase of myoblast cell migration on laminin. Plays a role in bone mineralization at a late stage of osteoblast differentiation; modulates the dynamic formation of focal adhesions into fibrillar adhesions, which are adhesive structures responsible for fibronectin deposition and fibrillogenesis. Plays a role in blood vessel development; acts as a negative regulator of angiogenesis by attenuating endothelial cell proliferation and migration, lumen formation and sprouting angiogenesis by promoting AKT phosphorylation and inhibiting ERK1/2 phosphorylation through activation of the Notch signaling pathway. Promotes transcriptional activity of the MYC promoter. {ECO:0000269|PubMed:11741838, ECO:0000269|PubMed:11807099, ECO:0000269|PubMed:11919189, ECO:0000269|PubMed:12473654, ECO:0000269|PubMed:15703214, ECO:0000269|PubMed:17916086, ECO:0000269|PubMed:20616313, ECO:0000269|PubMed:21768292, ECO:0000269|Ref.19}. |
O15020 | SPTBN2 | S2162 | ochoa | Spectrin beta chain, non-erythrocytic 2 (Beta-III spectrin) (Spinocerebellar ataxia 5 protein) | Probably plays an important role in neuronal membrane skeleton. |
O15068 | MCF2L | S963 | ochoa | Guanine nucleotide exchange factor DBS (DBL's big sister) (MCF2-transforming sequence-like protein) | Guanine nucleotide exchange factor that catalyzes guanine nucleotide exchange on RHOA and CDC42, and thereby contributes to the regulation of RHOA and CDC42 signaling pathways (By similarity). Seems to lack activity with RAC1. Becomes activated and highly tumorigenic by truncation of the N-terminus (By similarity). Isoform 5 activates CDC42 (PubMed:15157669). {ECO:0000250|UniProtKB:Q63406, ECO:0000269|PubMed:15157669}.; FUNCTION: [Isoform 3]: Does not catalyze guanine nucleotide exchange on CDC42 (PubMed:15157669). {ECO:0000269|PubMed:15157669}. |
O15211 | RGL2 | S736 | ochoa | Ral guanine nucleotide dissociation stimulator-like 2 (RalGDS-like 2) (RalGDS-like factor) (Ras-associated protein RAB2L) | Probable guanine nucleotide exchange factor. Putative effector of Ras and/or Rap. Associates with the GTP-bound form of Rap 1A and H-Ras in vitro (By similarity). {ECO:0000250}. |
O43182 | ARHGAP6 | S927 | ochoa | Rho GTPase-activating protein 6 (Rho-type GTPase-activating protein 6) (Rho-type GTPase-activating protein RhoGAPX-1) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology. {ECO:0000269|PubMed:10699171}. |
O43318 | MAP3K7 | S363 | ochoa | Mitogen-activated protein kinase kinase kinase 7 (EC 2.7.11.25) (Transforming growth factor-beta-activated kinase 1) (TGF-beta-activated kinase 1) | Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway (PubMed:10094049, PubMed:11460167, PubMed:12589052, PubMed:16845370, PubMed:16893890, PubMed:21512573, PubMed:8663074, PubMed:9079627). Plays an important role in the cascades of cellular responses evoked by changes in the environment (PubMed:10094049, PubMed:11460167, PubMed:12589052, PubMed:16845370, PubMed:16893890, PubMed:21512573, PubMed:8663074, PubMed:9079627). Mediates signal transduction of TRAF6, various cytokines including interleukin-1 (IL-1), transforming growth factor-beta (TGFB), TGFB-related factors like BMP2 and BMP4, toll-like receptors (TLR), tumor necrosis factor receptor CD40 and B-cell receptor (BCR) (PubMed:16893890, PubMed:9079627). Once activated, acts as an upstream activator of the MKK/JNK signal transduction cascade and the p38 MAPK signal transduction cascade through the phosphorylation and activation of several MAP kinase kinases like MAP2K1/MEK1, MAP2K3/MKK3, MAP2K6/MKK6 and MAP2K7/MKK7 (PubMed:11460167, PubMed:8663074). These MAP2Ks in turn activate p38 MAPKs and c-jun N-terminal kinases (JNKs); both p38 MAPK and JNK pathways control the transcription factors activator protein-1 (AP-1) (PubMed:11460167, PubMed:12589052, PubMed:8663074). Independently of MAP2Ks and p38 MAPKs, acts as a key activator of NF-kappa-B by promoting activation of the I-kappa-B-kinase (IKK) core complex (PubMed:12589052, PubMed:8663074). Mechanistically, recruited to polyubiquitin chains of RIPK2 and IKBKG/NEMO via TAB2/MAP3K7IP2 and TAB3/MAP3K7IP3, and catalyzes phosphorylation and activation of IKBKB/IKKB component of the IKK complex, leading to NF-kappa-B activation (PubMed:10094049, PubMed:11460167). In osmotic stress signaling, plays a major role in the activation of MAPK8/JNK1, but not that of NF-kappa-B (PubMed:16893890). Promotes TRIM5 capsid-specific restriction activity (PubMed:21512573). Phosphorylates RIPK1 at 'Ser-321' which positively regulates RIPK1 interaction with RIPK3 to promote necroptosis but negatively regulates RIPK1 kinase activity and its interaction with FADD to mediate apoptosis (By similarity). Phosphorylates STING1 in response to cGAMP-activation, promoting association between STEEP1 and STING1 and STING1 translocation to COPII vesicles (PubMed:37832545). {ECO:0000250|UniProtKB:Q62073, ECO:0000269|PubMed:10094049, ECO:0000269|PubMed:11460167, ECO:0000269|PubMed:12589052, ECO:0000269|PubMed:16845370, ECO:0000269|PubMed:16893890, ECO:0000269|PubMed:21512573, ECO:0000269|PubMed:37832545, ECO:0000269|PubMed:8663074, ECO:0000269|PubMed:9079627}. |
O43663 | PRC1 | S501 | ochoa | Protein regulator of cytokinesis 1 | Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}. |
O43663 | PRC1 | S589 | ochoa | Protein regulator of cytokinesis 1 | Key regulator of cytokinesis that cross-links antiparrallel microtubules at an average distance of 35 nM. Essential for controlling the spatiotemporal formation of the midzone and successful cytokinesis. Required for KIF14 localization to the central spindle and midbody. Required to recruit PLK1 to the spindle. Stimulates PLK1 phosphorylation of RACGAP1 to allow recruitment of ECT2 to the central spindle. Acts as an oncogene for promoting bladder cancer cells proliferation, apoptosis inhibition and carcinogenic progression (PubMed:17409436). {ECO:0000269|PubMed:12082078, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:16431929, ECO:0000269|PubMed:17409436, ECO:0000269|PubMed:19468300, ECO:0000269|PubMed:20691902, ECO:0000269|PubMed:9885575}. |
O75140 | DEPDC5 | S570 | ochoa | GATOR1 complex protein DEPDC5 (DEP domain-containing protein 5) | As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the mTORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:31548394, PubMed:35338845). In response to amino acid depletion, the GATOR1 complex has GTPase activating protein (GAP) activity and strongly increases GTP hydrolysis by RagA/RRAGA (or RagB/RRAGB) within heterodimeric Rag complexes, thereby turning them into their inactive GDP-bound form, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling (PubMed:23723238, PubMed:25457612, PubMed:29590090, PubMed:29769719, PubMed:35338845). In the presence of abundant amino acids, the GATOR1 complex is negatively regulated by GATOR2, the other GATOR subcomplex, in this amino acid-sensing branch of the TORC1 pathway (PubMed:23723238, PubMed:25457612, PubMed:29769719). Within the GATOR1 complex, DEPDC5 mediates direct interaction with the nucleotide-binding pocket of small GTPases Rag (RagA/RRAGA, RagB/RRAGB, RagC/RRAGC and/or RagD/RRAGD) and coordinates their nucleotide loading states by promoting RagA/RRAGA or RagB/RRAGB into their GDP-binding state and RagC/RRAGC or RagD/RRAGD into their GTP-binding state (PubMed:29590090, PubMed:35338845). However, it does not execute the GAP activity, which is mediated by NPRL2 (PubMed:29590090). {ECO:0000269|PubMed:23723238, ECO:0000269|PubMed:25457612, ECO:0000269|PubMed:29590090, ECO:0000269|PubMed:29769719, ECO:0000269|PubMed:31548394, ECO:0000269|PubMed:35338845}. |
O75962 | TRIO | S2417 | ochoa | Triple functional domain protein (EC 2.7.11.1) (PTPRF-interacting protein) | Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases (PubMed:22155786, PubMed:27418539, PubMed:8643598). Involved in coordinating actin remodeling, which is necessary for cell migration and growth (PubMed:10341202, PubMed:22155786). Plays a key role in the regulation of neurite outgrowth and lamellipodia formation (PubMed:32109419). In developing hippocampal neurons, limits dendrite formation, without affecting the establishment of axon polarity. Once dendrites are formed, involved in the control of synaptic function by regulating the endocytosis of AMPA-selective glutamate receptors (AMPARs) at CA1 excitatory synapses (By similarity). May act as a regulator of adipogenesis (By similarity). {ECO:0000250|UniProtKB:F1M0Z1, ECO:0000269|PubMed:10341202, ECO:0000269|PubMed:22155786, ECO:0000269|PubMed:27418539, ECO:0000269|PubMed:32109419, ECO:0000269|PubMed:8643598}. |
O94887 | FARP2 | S387 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O94966 | USP19 | S62 | ochoa | Ubiquitin carboxyl-terminal hydrolase 19 (EC 3.4.19.12) (Deubiquitinating enzyme 19) (Ubiquitin thioesterase 19) (Ubiquitin-specific-processing protease 19) (Zinc finger MYND domain-containing protein 9) | Deubiquitinating enzyme that regulates the degradation of various proteins by removing ubiquitin moieties, thereby preventing their proteasomal degradation. Stabilizes RNF123, which promotes CDKN1B degradation and contributes to cell proliferation (By similarity). Decreases the levels of ubiquitinated proteins during skeletal muscle formation and acts to repress myogenesis. Modulates transcription of major myofibrillar proteins. Also involved in turnover of endoplasmic-reticulum-associated degradation (ERAD) substrates (PubMed:19465887, PubMed:24356957). Mechanistically, deubiquitinates and thereby stabilizes several E3 ligases involved in the ERAD pathway including SYVN1 or MARCHF6 (PubMed:24356957). Regulates the stability of other E3 ligases including BIRC2/c-IAP1 and BIRC3/c-IAP2 by preventing their ubiquitination (PubMed:21849505). Required for cells to mount an appropriate response to hypoxia by rescuing HIF1A from degradation in a non-catalytic manner and by mediating the deubiquitination of FUNDC1 (PubMed:22128162, PubMed:33978709). Attenuates mitochondrial damage and ferroptosis by targeting and stabilizing NADPH oxidase 4/NOX4 (PubMed:38943386). Negatively regulates TNF-alpha- and IL-1beta-triggered NF-kappa-B activation by hydrolyzing 'Lys-27'- and 'Lys-63'-linked polyubiquitin chains from MAP3K7 (PubMed:31127032). Modulates also the protein level and aggregation of polyQ-expanded huntingtin/HTT through HSP90AA1 (PubMed:33094816). {ECO:0000250|UniProtKB:Q3UJD6, ECO:0000250|UniProtKB:Q6J1Y9, ECO:0000269|PubMed:19465887, ECO:0000269|PubMed:21849505, ECO:0000269|PubMed:22128162, ECO:0000269|PubMed:22689415, ECO:0000269|PubMed:24356957, ECO:0000269|PubMed:31127032, ECO:0000269|PubMed:33094816, ECO:0000269|PubMed:33978709, ECO:0000269|PubMed:38943386}. |
O95136 | S1PR2 | S331 | ochoa | Sphingosine 1-phosphate receptor 2 (S1P receptor 2) (S1P2) (Endothelial differentiation G-protein coupled receptor 5) (Sphingosine 1-phosphate receptor Edg-5) (S1P receptor Edg-5) | Receptor for the lysosphingolipid sphingosine 1-phosphate (S1P) (PubMed:10617617, PubMed:25274307). S1P is a bioactive lysophospholipid that elicits diverse physiological effects on most types of cells and tissues (PubMed:10617617). When expressed in rat HTC4 hepatoma cells, is capable of mediating S1P-induced cell proliferation and suppression of apoptosis (PubMed:10617617). Receptor for the chemokine-like protein FAM19A5 (PubMed:29453251). Mediates the inhibitory effect of FAM19A5 on vascular smooth muscle cell proliferation and migration (By similarity). In lymphoid follicles, couples the binding of S1P to the activation of GNA13 and downstream inhibition of AKT activation leading to suppression of germinal center (GC) B cell growth and migration outside the GC niche. {ECO:0000250|UniProtKB:P47752, ECO:0000269|PubMed:10617617, ECO:0000269|PubMed:25274307, ECO:0000269|PubMed:29453251}. |
O95782 | AP2A1 | S637 | ochoa | AP-2 complex subunit alpha-1 (100 kDa coated vesicle protein A) (Adaptor protein complex AP-2 subunit alpha-1) (Adaptor-related protein complex 2 subunit alpha-1) (Alpha-adaptin A) (Alpha1-adaptin) (Clathrin assembly protein complex 2 alpha-A large chain) (Plasma membrane adaptor HA2/AP2 adaptin alpha A subunit) | Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. During long-term potentiation in hippocampal neurons, AP-2 is responsible for the endocytosis of ADAM10 (PubMed:23676497). The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif (By similarity). {ECO:0000250, ECO:0000269|PubMed:14745134, ECO:0000269|PubMed:15473838, ECO:0000269|PubMed:19033387, ECO:0000269|PubMed:23676497}. |
P01100 | FOS | S362 | ochoa|psp | Protein c-Fos (Cellular oncogene fos) (Fos proto-oncogene, AP-1 transcription factor subunit) (G0/G1 switch regulatory protein 7) (Proto-oncogene c-Fos) (Transcription factor AP-1 subunit c-Fos) | Nuclear phosphoprotein which forms a tight but non-covalently linked complex with the JUN/AP-1 transcription factor. In the heterodimer, FOS and JUN/AP-1 basic regions each seems to interact with symmetrical DNA half sites. On TGF-beta activation, forms a multimeric SMAD3/SMAD4/JUN/FOS complex at the AP1/SMAD-binding site to regulate TGF-beta-mediated signaling. Has a critical function in regulating the development of cells destined to form and maintain the skeleton. It is thought to have an important role in signal transduction, cell proliferation and differentiation. In growing cells, activates phospholipid synthesis, possibly by activating CDS1 and PI4K2A. This activity requires Tyr-dephosphorylation and association with the endoplasmic reticulum. {ECO:0000269|PubMed:16055710, ECO:0000269|PubMed:17160021, ECO:0000269|PubMed:22105363, ECO:0000269|PubMed:7588633, ECO:0000269|PubMed:9732876}. |
P02545 | LMNA | S603 | ochoa | Prelamin-A/C [Cleaved into: Lamin-A/C (70 kDa lamin) (Renal carcinoma antigen NY-REN-32)] | [Lamin-A/C]: Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:2188730, PubMed:22431096, PubMed:2344612, PubMed:23666920, PubMed:24741066, PubMed:31434876, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:24741066, PubMed:31548606, PubMed:37788673, PubMed:37832547). Lamin A and C also regulate matrix stiffness by conferring nuclear mechanical properties (PubMed:23990565, PubMed:25127216). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:2188730, PubMed:2344612). Lamin A and C are present in equal amounts in the lamina of mammals (PubMed:10080180, PubMed:10580070, PubMed:10587585, PubMed:10814726, PubMed:11799477, PubMed:12075506, PubMed:12927431, PubMed:15317753, PubMed:18551513, PubMed:18611980, PubMed:22431096, PubMed:23666920, PubMed:31548606). Also invoved in DNA repair: recruited by DNA repair proteins XRCC4 and IFFO1 to the DNA double-strand breaks (DSBs) to prevent chromosome translocation by immobilizing broken DNA ends (PubMed:31548606). Required for normal development of peripheral nervous system and skeletal muscle and for muscle satellite cell proliferation (PubMed:10080180, PubMed:10814726, PubMed:11799477, PubMed:18551513, PubMed:22431096). Required for osteoblastogenesis and bone formation (PubMed:12075506, PubMed:15317753, PubMed:18611980). Also prevents fat infiltration of muscle and bone marrow, helping to maintain the volume and strength of skeletal muscle and bone (PubMed:10587585). Required for cardiac homeostasis (PubMed:10580070, PubMed:12927431, PubMed:18611980, PubMed:23666920). {ECO:0000269|PubMed:10080180, ECO:0000269|PubMed:10580070, ECO:0000269|PubMed:10587585, ECO:0000269|PubMed:10814726, ECO:0000269|PubMed:11799477, ECO:0000269|PubMed:12075506, ECO:0000269|PubMed:12927431, ECO:0000269|PubMed:15317753, ECO:0000269|PubMed:18551513, ECO:0000269|PubMed:18611980, ECO:0000269|PubMed:2188730, ECO:0000269|PubMed:22431096, ECO:0000269|PubMed:2344612, ECO:0000269|PubMed:23666920, ECO:0000269|PubMed:23990565, ECO:0000269|PubMed:24741066, ECO:0000269|PubMed:25127216, ECO:0000269|PubMed:31434876, ECO:0000269|PubMed:31548606, ECO:0000269|PubMed:37788673, ECO:0000269|PubMed:37832547}.; FUNCTION: [Prelamin-A/C]: Prelamin-A/C can accelerate smooth muscle cell senescence (PubMed:20458013). It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure, genomic instability, and premature senescence (PubMed:20458013). {ECO:0000269|PubMed:20458013}. |
P02671 | FGA | S365 | ochoa | Fibrinogen alpha chain [Cleaved into: Fibrinopeptide A; Fibrinogen alpha chain] | Cleaved by the protease thrombin to yield monomers which, together with fibrinogen beta (FGB) and fibrinogen gamma (FGG), polymerize to form an insoluble fibrin matrix. Fibrin has a major function in hemostasis as one of the primary components of blood clots. In addition, functions during the early stages of wound repair to stabilize the lesion and guide cell migration during re-epithelialization. Was originally thought to be essential for platelet aggregation, based on in vitro studies using anticoagulated blood. However, subsequent studies have shown that it is not absolutely required for thrombus formation in vivo. Enhances expression of SELP in activated platelets via an ITGB3-dependent pathway. Maternal fibrinogen is essential for successful pregnancy. Fibrin deposition is also associated with infection, where it protects against IFNG-mediated hemorrhage. May also facilitate the immune response via both innate and T-cell mediated pathways. {ECO:0000250|UniProtKB:E9PV24}. |
P04792 | HSPB1 | S187 | ochoa | Heat shock protein beta-1 (HspB1) (28 kDa heat shock protein) (Estrogen-regulated 24 kDa protein) (Heat shock 27 kDa protein) (HSP 27) (Heat shock protein family B member 1) (Stress-responsive protein 27) (SRP27) | Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (PubMed:10383393, PubMed:20178975). Plays a role in stress resistance and actin organization (PubMed:19166925). Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins (PubMed:23728742). {ECO:0000269|PubMed:10383393, ECO:0000269|PubMed:19166925, ECO:0000269|PubMed:20178975, ECO:0000269|PubMed:23728742}. |
P08047 | SP1 | S47 | ochoa | Transcription factor Sp1 | Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Also binds the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component BMAL1 (PubMed:10391891, PubMed:11371615, PubMed:11904305, PubMed:14593115, PubMed:16377629, PubMed:16478997, PubMed:16943418, PubMed:17049555, PubMed:18171990, PubMed:18199680, PubMed:18239466, PubMed:18513490, PubMed:18619531, PubMed:19193796, PubMed:20091743, PubMed:21046154, PubMed:21798247). Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112 (By similarity). {ECO:0000250|UniProtKB:O89090, ECO:0000250|UniProtKB:Q01714, ECO:0000269|PubMed:10391891, ECO:0000269|PubMed:11371615, ECO:0000269|PubMed:11904305, ECO:0000269|PubMed:14593115, ECO:0000269|PubMed:16377629, ECO:0000269|PubMed:16478997, ECO:0000269|PubMed:16943418, ECO:0000269|PubMed:17049555, ECO:0000269|PubMed:18171990, ECO:0000269|PubMed:18199680, ECO:0000269|PubMed:18239466, ECO:0000269|PubMed:18513490, ECO:0000269|PubMed:18619531, ECO:0000269|PubMed:19193796, ECO:0000269|PubMed:20091743, ECO:0000269|PubMed:21046154, ECO:0000269|PubMed:21798247}. |
P10398 | ARAF | S250 | ochoa | Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) | Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}. |
P12268 | IMPDH2 | S496 | ochoa | Inosine-5'-monophosphate dehydrogenase 2 (IMP dehydrogenase 2) (IMPD 2) (IMPDH 2) (EC 1.1.1.205) (Inosine-5'-monophosphate dehydrogenase type II) (IMP dehydrogenase II) (IMPDH-II) | Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth (PubMed:7763314, PubMed:7903306). Could also have a single-stranded nucleic acid-binding activity and could play a role in RNA and/or DNA metabolism (PubMed:14766016). It may also have a role in the development of malignancy and the growth progression of some tumors. {ECO:0000269|PubMed:14766016, ECO:0000269|PubMed:7763314, ECO:0000269|PubMed:7903306}. |
P15822 | HIVEP1 | S2341 | ochoa | Zinc finger protein 40 (Cirhin interaction protein) (CIRIP) (Gate keeper of apoptosis-activating protein) (GAAP) (Human immunodeficiency virus type I enhancer-binding protein 1) (HIV-EP1) (Major histocompatibility complex-binding protein 1) (MBP-1) (Positive regulatory domain II-binding factor 1) (PRDII-BF1) | This protein specifically binds to the DNA sequence 5'-GGGACTTTCC-3' which is found in the enhancer elements of numerous viral promoters such as those of SV40, CMV, or HIV-1. In addition, related sequences are found in the enhancer elements of a number of cellular promoters, including those of the class I MHC, interleukin-2 receptor, and interferon-beta genes. It may act in T-cell activation. Involved in activating HIV-1 gene expression. Isoform 2 and isoform 3 also bind to the IPCS (IRF1 and p53 common sequence) DNA sequence in the promoter region of interferon regulatory factor 1 and p53 genes and are involved in transcription regulation of these genes. Isoform 2 does not activate HIV-1 gene expression. Isoform 2 and isoform 3 may be involved in apoptosis. |
P15923 | TCF3 | Y340 | ochoa | Transcription factor E2-alpha (Class B basic helix-loop-helix protein 21) (bHLHb21) (Immunoglobulin enhancer-binding factor E12/E47) (Immunoglobulin transcription factor 1) (Kappa-E2-binding factor) (Transcription factor 3) (TCF-3) (Transcription factor ITF-1) | Transcriptional regulator involved in the initiation of neuronal differentiation and mesenchymal to epithelial transition (By similarity). Heterodimers between TCF3 and tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation (By similarity). Together with TCF15, required for the mesenchymal to epithelial transition (By similarity). Dimers bind DNA on E-box motifs: 5'-CANNTG-3' (By similarity). Binds to the kappa-E2 site in the kappa immunoglobulin gene enhancer (PubMed:2493990). Binds to IEB1 and IEB2, which are short DNA sequences in the insulin gene transcription control region (By similarity). {ECO:0000250|UniProtKB:P15806, ECO:0000269|PubMed:2493990}.; FUNCTION: [Isoform E47]: Facilitates ATOH7 binding to DNA at the consensus sequence 5'-CAGGTG-3', and positively regulates transcriptional activity. {ECO:0000269|PubMed:31696227}. |
P20290 | BTF3 | S149 | ochoa | Transcription factor BTF3 (Nascent polypeptide-associated complex subunit beta) (NAC-beta) (RNA polymerase B transcription factor 3) | When associated with NACA, prevents inappropriate targeting of non-secretory polypeptides to the endoplasmic reticulum (ER). Binds to nascent polypeptide chains as they emerge from the ribosome and blocks their interaction with the signal recognition particle (SRP), which normally targets nascent secretory peptides to the ER. BTF3 is also a general transcription factor that can form a stable complex with RNA polymerase II. Required for the initiation of transcription. {ECO:0000269|PubMed:10982809}. |
P21359 | NF1 | S2484 | ochoa | Neurofibromin (Neurofibromatosis-related protein NF-1) [Cleaved into: Neurofibromin truncated] | Stimulates the GTPase activity of Ras. NF1 shows greater affinity for Ras GAP, but lower specific activity. May be a regulator of Ras activity. {ECO:0000269|PubMed:2121371, ECO:0000269|PubMed:8417346}. |
P24534 | EEF1B2 | S31 | ochoa | Elongation factor 1-beta (EF-1-beta) (eEF-1B alpha) | Catalytic subunit of the guanine nucleotide exchange factor (GEF) (eEF1B subcomplex) of the eukaryotic elongation factor 1 complex (eEF1) (By similarity). Stimulates the exchange of GDP for GTP on elongation factor 1A (eEF1A), probably by displacing GDP from the nucleotide binding pocket in eEF1A (By similarity). {ECO:0000250|UniProtKB:P32471}. |
P33241 | LSP1 | S177 | ochoa | Lymphocyte-specific protein 1 (47 kDa actin-binding protein) (52 kDa phosphoprotein) (pp52) (Lymphocyte-specific antigen WP34) | May play a role in mediating neutrophil activation and chemotaxis. {ECO:0000250}. |
P48436 | SOX9 | S211 | ochoa|psp | Transcription factor SOX-9 | Transcription factor that plays a key role in chondrocytes differentiation and skeletal development (PubMed:24038782). Specifically binds the 5'-ACAAAG-3' DNA motif present in enhancers and super-enhancers and promotes expression of genes important for chondrogenesis, including cartilage matrix protein-coding genes COL2A1, COL4A2, COL9A1, COL11A2 and ACAN, SOX5 and SOX6 (PubMed:8640233). Also binds to some promoter regions (By similarity). Plays a central role in successive steps of chondrocyte differentiation (By similarity). Absolutely required for precartilaginous condensation, the first step in chondrogenesis during which skeletal progenitors differentiate into prechondrocytes (By similarity). Together with SOX5 and SOX6, required for overt chondrogenesis when condensed prechondrocytes differentiate into early stage chondrocytes, the second step in chondrogenesis (By similarity). Later, required to direct hypertrophic maturation and block osteoblast differentiation of growth plate chondrocytes: maintains chondrocyte columnar proliferation, delays prehypertrophy and then prevents osteoblastic differentiation of chondrocytes by lowering beta-catenin (CTNNB1) signaling and RUNX2 expression (By similarity). Also required for chondrocyte hypertrophy, both indirectly, by keeping the lineage fate of chondrocytes, and directly, by remaining present in upper hypertrophic cells and transactivating COL10A1 along with MEF2C (By similarity). Low lipid levels are the main nutritional determinant for chondrogenic commitment of skeletal progenitor cells: when lipids levels are low, FOXO (FOXO1 and FOXO3) transcription factors promote expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Mechanistically, helps, but is not required, to remove epigenetic signatures of transcriptional repression and deposit active promoter and enhancer marks at chondrocyte-specific genes (By similarity). Acts in cooperation with the Hedgehog pathway-dependent GLI (GLI1 and GLI3) transcription factors (By similarity). In addition to cartilage development, also acts as a regulator of proliferation and differentiation in epithelial stem/progenitor cells: involved in the lung epithelium during branching morphogenesis, by balancing proliferation and differentiation and regulating the extracellular matrix (By similarity). Controls epithelial branching during kidney development (By similarity). {ECO:0000250|UniProtKB:Q04887, ECO:0000269|PubMed:24038782, ECO:0000269|PubMed:8640233}. |
P48681 | NES | S311 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49321 | NASP | S680 | ochoa | Nuclear autoantigenic sperm protein (NASP) | Component of the histone chaperone network (PubMed:22195965). Binds and stabilizes histone H3-H4 not bound to chromatin to maintain a soluble reservoir and modulate degradation by chaperone-mediated autophagy (PubMed:22195965). Required for DNA replication, normal cell cycle progression and cell proliferation. Forms a cytoplasmic complex with HSP90 and H1 linker histones and stimulates HSP90 ATPase activity. NASP and H1 histone are subsequently released from the complex and translocate to the nucleus where the histone is released for binding to DNA. {ECO:0000250|UniProtKB:Q99MD9, ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 1]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}.; FUNCTION: [Isoform 2]: Stabilizes soluble histone H3-H4. {ECO:0000269|PubMed:22195965}. |
P49757 | NUMB | S229 | ochoa | Protein numb homolog (h-Numb) (Protein S171) | Regulates clathrin-mediated receptor endocytosis (PubMed:18657069). Plays a role in the process of neurogenesis (By similarity). Required throughout embryonic neurogenesis to maintain neural progenitor cells, also called radial glial cells (RGCs), by allowing their daughter cells to choose progenitor over neuronal cell fate (By similarity). Not required for the proliferation of neural progenitor cells before the onset of neurogenesis. Also involved postnatally in the subventricular zone (SVZ) neurogenesis by regulating SVZ neuroblasts survival and ependymal wall integrity (By similarity). May also mediate local repair of brain ventricular wall damage (By similarity). {ECO:0000250|UniProtKB:Q9QZS3, ECO:0000269|PubMed:18657069}. |
P51587 | BRCA2 | S193 | psp | Breast cancer type 2 susceptibility protein (Fanconi anemia group D1 protein) | Involved in double-strand break repair and/or homologous recombination. Binds RAD51 and potentiates recombinational DNA repair by promoting assembly of RAD51 onto single-stranded DNA (ssDNA). Acts by targeting RAD51 to ssDNA over double-stranded DNA, enabling RAD51 to displace replication protein-A (RPA) from ssDNA and stabilizing RAD51-ssDNA filaments by blocking ATP hydrolysis. Part of a PALB2-scaffolded HR complex containing RAD51C and which is thought to play a role in DNA repair by HR. May participate in S phase checkpoint activation. Binds selectively to ssDNA, and to ssDNA in tailed duplexes and replication fork structures. May play a role in the extension step after strand invasion at replication-dependent DNA double-strand breaks; together with PALB2 is involved in both POLH localization at collapsed replication forks and DNA polymerization activity. In concert with NPM1, regulates centrosome duplication. Interacts with the TREX-2 complex (transcription and export complex 2) subunits PCID2 and SEM1, and is required to prevent R-loop-associated DNA damage and thus transcription-associated genomic instability. Silencing of BRCA2 promotes R-loop accumulation at actively transcribed genes in replicating and non-replicating cells, suggesting that BRCA2 mediates the control of R-loop associated genomic instability, independently of its known role in homologous recombination (PubMed:24896180). {ECO:0000269|PubMed:15115758, ECO:0000269|PubMed:15199141, ECO:0000269|PubMed:15671039, ECO:0000269|PubMed:18317453, ECO:0000269|PubMed:20729832, ECO:0000269|PubMed:20729858, ECO:0000269|PubMed:20729859, ECO:0000269|PubMed:21084279, ECO:0000269|PubMed:21719596, ECO:0000269|PubMed:24485656, ECO:0000269|PubMed:24896180}. |
P53667 | LIMK1 | S298 | ochoa | LIM domain kinase 1 (LIMK-1) (EC 2.7.11.1) | Serine/threonine-protein kinase that plays an essential role in the regulation of actin filament dynamics. Acts downstream of several Rho family GTPase signal transduction pathways (PubMed:10436159, PubMed:11832213, PubMed:12807904, PubMed:15660133, PubMed:16230460, PubMed:18028908, PubMed:22328514, PubMed:23633677). Activated by upstream kinases including ROCK1, PAK1 and PAK4, which phosphorylate LIMK1 on a threonine residue located in its activation loop (PubMed:10436159). LIMK1 subsequently phosphorylates and inactivates the actin binding/depolymerizing factors cofilin-1/CFL1, cofilin-2/CFL2 and destrin/DSTN, thereby preventing the cleavage of filamentous actin (F-actin), and stabilizing the actin cytoskeleton (PubMed:11832213, PubMed:15660133, PubMed:16230460, PubMed:23633677). In this way LIMK1 regulates several actin-dependent biological processes including cell motility, cell cycle progression, and differentiation (PubMed:11832213, PubMed:15660133, PubMed:16230460, PubMed:23633677). Phosphorylates TPPP on serine residues, thereby promoting microtubule disassembly (PubMed:18028908). Stimulates axonal outgrowth and may be involved in brain development (PubMed:18028908). {ECO:0000269|PubMed:10436159, ECO:0000269|PubMed:11832213, ECO:0000269|PubMed:12807904, ECO:0000269|PubMed:15660133, ECO:0000269|PubMed:16230460, ECO:0000269|PubMed:18028908, ECO:0000269|PubMed:22328514, ECO:0000269|PubMed:23633677}.; FUNCTION: [Isoform 3]: Has a dominant negative effect on actin cytoskeletal changes. Required for atypical chemokine receptor ACKR2-induced phosphorylation of cofilin (CFL1). {ECO:0000269|PubMed:10196227}. |
Q00587 | CDC42EP1 | S62 | ochoa | Cdc42 effector protein 1 (Binder of Rho GTPases 5) (Serum protein MSE55) | Probably involved in the organization of the actin cytoskeleton. Induced membrane extensions in fibroblasts. {ECO:0000269|PubMed:10430899}. |
Q02952 | AKAP12 | S557 | ochoa | A-kinase anchor protein 12 (AKAP-12) (A-kinase anchor protein 250 kDa) (AKAP 250) (Gravin) (Myasthenia gravis autoantigen) | Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA) and protein kinase C (PKC). |
Q03164 | KMT2A | S912 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03164 | KMT2A | S926 | ochoa | Histone-lysine N-methyltransferase 2A (Lysine N-methyltransferase 2A) (EC 2.1.1.364) (ALL-1) (CXXC-type zinc finger protein 7) (Cysteine methyltransferase KMT2A) (EC 2.1.1.-) (Myeloid/lymphoid or mixed-lineage leukemia) (Myeloid/lymphoid or mixed-lineage leukemia protein 1) (Trithorax-like protein) (Zinc finger protein HRX) [Cleaved into: MLL cleavage product N320 (N-terminal cleavage product of 320 kDa) (p320); MLL cleavage product C180 (C-terminal cleavage product of 180 kDa) (p180)] | Histone methyltransferase that plays an essential role in early development and hematopoiesis (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:26886794). Catalytic subunit of the MLL1/MLL complex, a multiprotein complex that mediates both methylation of 'Lys-4' of histone H3 (H3K4me) complex and acetylation of 'Lys-16' of histone H4 (H4K16ac) (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:24235145, PubMed:26886794). Catalyzes methyl group transfer from S-adenosyl-L-methionine to the epsilon-amino group of 'Lys-4' of histone H3 (H3K4) via a non-processive mechanism. Part of chromatin remodeling machinery predominantly forms H3K4me1 and H3K4me2 methylation marks at active chromatin sites where transcription and DNA repair take place (PubMed:12453419, PubMed:15960975, PubMed:19187761, PubMed:19556245, PubMed:20677832, PubMed:21220120, PubMed:25561738, PubMed:26886794). Has weak methyltransferase activity by itself, and requires other component of the MLL1/MLL complex to obtain full methyltransferase activity (PubMed:19187761, PubMed:26886794). Has no activity toward histone H3 phosphorylated on 'Thr-3', less activity toward H3 dimethylated on 'Arg-8' or 'Lys-9', while it has higher activity toward H3 acetylated on 'Lys-9' (PubMed:19187761). Binds to unmethylated CpG elements in the promoter of target genes and helps maintain them in the nonmethylated state (PubMed:20010842). Required for transcriptional activation of HOXA9 (PubMed:12453419, PubMed:20010842, PubMed:20677832). Promotes PPP1R15A-induced apoptosis (PubMed:10490642). Plays a critical role in the control of circadian gene expression and is essential for the transcriptional activation mediated by the CLOCK-BMAL1 heterodimer (By similarity). Establishes a permissive chromatin state for circadian transcription by mediating a rhythmic methylation of 'Lys-4' of histone H3 (H3K4me) and this histone modification directs the circadian acetylation at H3K9 and H3K14 allowing the recruitment of CLOCK-BMAL1 to chromatin (By similarity). Also has auto-methylation activity on Cys-3882 in absence of histone H3 substrate (PubMed:24235145). {ECO:0000250|UniProtKB:P55200, ECO:0000269|PubMed:10490642, ECO:0000269|PubMed:12453419, ECO:0000269|PubMed:15960975, ECO:0000269|PubMed:19187761, ECO:0000269|PubMed:19556245, ECO:0000269|PubMed:20010842, ECO:0000269|PubMed:21220120, ECO:0000269|PubMed:24235145, ECO:0000269|PubMed:26886794, ECO:0000305|PubMed:20677832}. |
Q03252 | LMNB2 | S544 | ochoa | Lamin-B2 | Lamins are intermediate filament proteins that assemble into a filamentous meshwork, and which constitute the major components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane (PubMed:33033404). Lamins provide a framework for the nuclear envelope, bridging the nuclear envelope and chromatin, thereby playing an important role in nuclear assembly, chromatin organization, nuclear membrane and telomere dynamics (PubMed:33033404). The structural integrity of the lamina is strictly controlled by the cell cycle, as seen by the disintegration and formation of the nuclear envelope in prophase and telophase, respectively (PubMed:33033404). {ECO:0000269|PubMed:33033404}. |
Q04912 | MST1R | S1031 | ochoa | Macrophage-stimulating protein receptor (MSP receptor) (EC 2.7.10.1) (CDw136) (Protein-tyrosine kinase 8) (p185-Ron) (CD antigen CD136) [Cleaved into: Macrophage-stimulating protein receptor alpha chain; Macrophage-stimulating protein receptor beta chain] | Receptor tyrosine kinase that transduces signals from the extracellular matrix into the cytoplasm by binding to MST1 ligand. Regulates many physiological processes including cell survival, migration and differentiation. Ligand binding at the cell surface induces autophosphorylation of RON on its intracellular domain that provides docking sites for downstream signaling molecules. Following activation by ligand, interacts with the PI3-kinase subunit PIK3R1, PLCG1 or the adapter GAB1. Recruitment of these downstream effectors by RON leads to the activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or PLCgamma-PKC. RON signaling activates the wound healing response by promoting epithelial cell migration, proliferation as well as survival at the wound site. Also plays a role in the innate immune response by regulating the migration and phagocytic activity of macrophages. Alternatively, RON can also promote signals such as cell migration and proliferation in response to growth factors other than MST1 ligand. {ECO:0000269|PubMed:18836480, ECO:0000269|PubMed:7939629, ECO:0000269|PubMed:9764835}. |
Q05209 | PTPN12 | S661 | ochoa | Tyrosine-protein phosphatase non-receptor type 12 (EC 3.1.3.48) (PTP-PEST) (Protein-tyrosine phosphatase G1) (PTPG1) | Dephosphorylates a range of proteins, and thereby regulates cellular signaling cascades (PubMed:18559503). Dephosphorylates cellular tyrosine kinases, such as ERBB2 and PTK2B/PYK2, and thereby regulates signaling via ERBB2 and PTK2B/PYK2 (PubMed:17329398, PubMed:27134172). Selectively dephosphorylates ERBB2 phosphorylated at 'Tyr-1112', 'Tyr-1196', and/or 'Tyr-1248' (PubMed:27134172). {ECO:0000269|PubMed:17329398, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:27134172}. |
Q09666 | AHNAK | S5530 | ochoa | Neuroblast differentiation-associated protein AHNAK (Desmoyokin) | May be required for neuronal cell differentiation. |
Q12830 | BPTF | S2459 | ochoa | Nucleosome-remodeling factor subunit BPTF (Bromodomain and PHD finger-containing transcription factor) (Fetal Alz-50 clone 1 protein) (Fetal Alzheimer antigen) | Regulatory subunit of the ATP-dependent NURF-1 and NURF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:14609955, PubMed:28801535). The NURF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NURF-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NURF-1 ISWI chromatin-remodeling complex, binds to the promoters of En1 and En2 to positively regulate their expression and promote brain development (PubMed:14609955). Histone-binding protein which binds to H3 tails trimethylated on 'Lys-4' (H3K4me3), which mark transcription start sites of active genes (PubMed:16728976, PubMed:16728978). Binds to histone H3 tails dimethylated on 'Lys-4' (H3K4Me2) to a lesser extent (PubMed:16728976, PubMed:16728978, PubMed:18042461). May also regulate transcription through direct binding to DNA or transcription factors (PubMed:10575013). {ECO:0000269|PubMed:10575013, ECO:0000269|PubMed:14609955, ECO:0000269|PubMed:16728976, ECO:0000269|PubMed:16728978, ECO:0000269|PubMed:18042461, ECO:0000269|PubMed:28801535}. |
Q13330 | MTA1 | S446 | ochoa | Metastasis-associated protein MTA1 | Transcriptional coregulator which can act as both a transcriptional corepressor and coactivator (PubMed:16617102, PubMed:17671180, PubMed:17922032, PubMed:21965678, PubMed:24413532). Acts as a component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin (PubMed:16428440, PubMed:28977666). In the NuRD complex, regulates transcription of its targets by modifying the acetylation status of the target chromatin and cofactor accessibility to the target DNA (PubMed:17671180). In conjunction with other components of NuRD, acts as a transcriptional corepressor of BRCA1, ESR1, TFF1 and CDKN1A (PubMed:17922032, PubMed:24413532). Acts as a transcriptional coactivator of BCAS3, and SUMO2, independent of the NuRD complex (PubMed:16617102, PubMed:17671180, PubMed:21965678). Stimulates the expression of WNT1 by inhibiting the expression of its transcriptional corepressor SIX3 (By similarity). Regulates p53-dependent and -independent DNA repair processes following genotoxic stress (PubMed:19837670). Regulates the stability and function of p53/TP53 by inhibiting its ubiquitination by COP1 and MDM2 thereby regulating the p53-dependent DNA repair (PubMed:19837670). Plays a role in the regulation of the circadian clock and is essential for the generation and maintenance of circadian rhythms under constant light and for normal entrainment of behavior to light-dark (LD) cycles (By similarity). Positively regulates the CLOCK-BMAL1 heterodimer mediated transcriptional activation of its own transcription and the transcription of CRY1 (By similarity). Regulates deacetylation of BMAL1 by regulating SIRT1 expression, resulting in derepressing CRY1-mediated transcription repression (By similarity). With TFCP2L1, promotes establishment and maintenance of pluripotency in embryonic stem cells (ESCs) and inhibits endoderm differentiation (By similarity). {ECO:0000250|UniProtKB:Q8K4B0, ECO:0000269|PubMed:16428440, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:17671180, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:19837670, ECO:0000269|PubMed:21965678, ECO:0000269|PubMed:24413532}.; FUNCTION: [Isoform Short]: Binds to ESR1 and sequesters it in the cytoplasm and enhances its non-genomic responses. {ECO:0000269|PubMed:15077195}. |
Q13428 | TCOF1 | S571 | ochoa | Treacle protein (Treacher Collins syndrome protein) | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (PubMed:12777385, PubMed:26399832). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification (PubMed:26399832). {ECO:0000269|PubMed:12777385, ECO:0000269|PubMed:26399832}. |
Q14103 | HNRNPD | S71 | ochoa | Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) (AU-rich element RNA-binding protein 1) | Binds with high affinity to RNA molecules that contain AU-rich elements (AREs) found within the 3'-UTR of many proto-oncogenes and cytokine mRNAs. Also binds to double- and single-stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'-UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' repeats more tightly than the telomeric single-stranded DNA 5'-TTAGGG-3' repeats. Binding of RRM1 to DNA inhibits the formation of DNA quadruplex structure which may play a role in telomere elongation. May be involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. May play a role in the regulation of the rhythmic expression of circadian clock core genes. Directly binds to the 3'UTR of CRY1 mRNA and induces CRY1 rhythmic translation. May also be involved in the regulation of PER2 translation. {ECO:0000269|PubMed:10080887, ECO:0000269|PubMed:11051545, ECO:0000269|PubMed:24423872}. |
Q14135 | VGLL4 | S262 | ochoa | Transcription cofactor vestigial-like protein 4 (Vgl-4) | May act as a specific coactivator for the mammalian TEFs. {ECO:0000250}. |
Q14153 | FAM53B | S167 | ochoa | Protein FAM53B (Protein simplet) | Acts as a regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) nuclear localization. {ECO:0000269|PubMed:25183871}. |
Q14676 | MDC1 | S986 | ochoa | Mediator of DNA damage checkpoint protein 1 (Nuclear factor with BRCT domains 1) | Histone reader protein required for checkpoint-mediated cell cycle arrest in response to DNA damage within both the S phase and G2/M phases of the cell cycle (PubMed:12475977, PubMed:12499369, PubMed:12551934, PubMed:12607003, PubMed:12607004, PubMed:12607005, PubMed:12611903, PubMed:14695167, PubMed:15201865, PubMed:15377652, PubMed:16049003, PubMed:16377563, PubMed:30898438). Specifically recognizes and binds histone H2AX phosphorylated at 'Ser-139', a marker of DNA damage, serving as a scaffold for the recruitment of DNA repair and signal transduction proteins to discrete foci of DNA damage sites (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:30898438). Also required for downstream events subsequent to the recruitment of these proteins (PubMed:12607005, PubMed:15201865, PubMed:16049003, PubMed:16377563, PubMed:18582474). These include phosphorylation and activation of the ATM, CHEK1 and CHEK2 kinases, and stabilization of TP53/p53 and apoptosis (PubMed:12499369, PubMed:12551934, PubMed:12607004). ATM and CHEK2 may also be activated independently by a parallel pathway mediated by TP53BP1 (PubMed:12499369, PubMed:12551934, PubMed:12607004). Required for chromosomal stability during mitosis by promoting recruitment of TOPBP1 to DNA double strand breaks (DSBs): TOPBP1 forms filamentous assemblies that bridge MDC1 and tether broken chromosomes during mitosis (PubMed:30898438). Required for the repair of DSBs via homologous recombination by promoting recruitment of NBN component of the MRN complex to DSBs (PubMed:18411307, PubMed:18582474, PubMed:18583988, PubMed:18678890). {ECO:0000269|PubMed:12475977, ECO:0000269|PubMed:12499369, ECO:0000269|PubMed:12551934, ECO:0000269|PubMed:12607003, ECO:0000269|PubMed:12607004, ECO:0000269|PubMed:12607005, ECO:0000269|PubMed:12611903, ECO:0000269|PubMed:14695167, ECO:0000269|PubMed:15201865, ECO:0000269|PubMed:15377652, ECO:0000269|PubMed:16049003, ECO:0000269|PubMed:16377563, ECO:0000269|PubMed:18411307, ECO:0000269|PubMed:18582474, ECO:0000269|PubMed:18583988, ECO:0000269|PubMed:18678890, ECO:0000269|PubMed:30898438}. |
Q14739 | LBR | S59 | ochoa | Delta(14)-sterol reductase LBR (Delta-14-SR) (EC 1.3.1.70) (3-beta-hydroxysterol Delta (14)-reductase) (C-14 sterol reductase) (C14SR) (Integral nuclear envelope inner membrane protein) (LMN2R) (Lamin-B receptor) (Sterol C14-reductase) | Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis (PubMed:12618959, PubMed:16784888, PubMed:21327084, PubMed:27336722, PubMed:9630650). Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane (PubMed:10828963). {ECO:0000250|UniProtKB:Q3U9G9, ECO:0000269|PubMed:10828963, ECO:0000269|PubMed:12618959, ECO:0000269|PubMed:16784888, ECO:0000269|PubMed:21327084, ECO:0000269|PubMed:27336722, ECO:0000269|PubMed:9630650}. |
Q2KJY2 | KIF26B | S1762 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q32P44 | EML3 | S186 | ochoa | Echinoderm microtubule-associated protein-like 3 (EMAP-3) | Regulates mitotic spindle assembly, microtubule (MT)-kinetochore attachment and chromosome separation via recruitment of HAUS augmin-like complex and TUBG1 to the existing MTs and promoting MT-based MT nucleation (PubMed:30723163). Required for proper alignnment of chromosomes during metaphase (PubMed:18445686). {ECO:0000269|PubMed:18445686, ECO:0000269|PubMed:30723163}. |
Q3MIN7 | RGL3 | S40 | ochoa | Ral guanine nucleotide dissociation stimulator-like 3 (RalGDS-like 3) | Guanine nucleotide exchange factor (GEF) for Ral-A. Potential effector of GTPase HRas and Ras-related protein M-Ras. Negatively regulates Elk-1-dependent gene induction downstream of HRas and MEKK1 (By similarity). {ECO:0000250}. |
Q3V6T2 | CCDC88A | S1690 | psp | Girdin (Akt phosphorylation enhancer) (APE) (Coiled-coil domain-containing protein 88A) (G alpha-interacting vesicle-associated protein) (GIV) (Girders of actin filament) (Hook-related protein 1) (HkRP1) | Bifunctional modulator of guanine nucleotide-binding proteins (G proteins) (PubMed:19211784, PubMed:27621449). Acts as a non-receptor guanine nucleotide exchange factor which binds to and activates guanine nucleotide-binding protein G(i) alpha subunits (PubMed:19211784, PubMed:21954290, PubMed:23509302, PubMed:25187647). Also acts as a guanine nucleotide dissociation inhibitor for guanine nucleotide-binding protein G(s) subunit alpha GNAS (PubMed:27621449). Essential for cell migration (PubMed:16139227, PubMed:19211784, PubMed:20462955, PubMed:21954290). Interacts in complex with G(i) alpha subunits with the EGFR receptor, retaining EGFR at the cell membrane following ligand stimulation and promoting EGFR signaling which triggers cell migration (PubMed:20462955). Binding to Gi-alpha subunits displaces the beta and gamma subunits from the heterotrimeric G-protein complex which enhances phosphoinositide 3-kinase (PI3K)-dependent phosphorylation and kinase activity of AKT1/PKB (PubMed:19211784). Phosphorylation of AKT1/PKB induces the phosphorylation of downstream effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation (By similarity). Binds in its tyrosine-phosphorylated form to the phosphatidylinositol 3-kinase (PI3K) regulatory subunit PIK3R1 which enables recruitment of PIK3R1 to the EGFR receptor, enhancing PI3K activity and cell migration (PubMed:21954290). Plays a role as a key modulator of the AKT-mTOR signaling pathway, controlling the tempo of the process of newborn neuron integration during adult neurogenesis, including correct neuron positioning, dendritic development and synapse formation (By similarity). Inhibition of G(s) subunit alpha GNAS leads to reduced cellular levels of cAMP and suppression of cell proliferation (PubMed:27621449). Essential for the integrity of the actin cytoskeleton (PubMed:16139227, PubMed:19211784). Required for formation of actin stress fibers and lamellipodia (PubMed:15882442). May be involved in membrane sorting in the early endosome (PubMed:15882442). Plays a role in ciliogenesis and cilium morphology and positioning and this may partly be through regulation of the localization of scaffolding protein CROCC/Rootletin (PubMed:27623382). {ECO:0000250|UniProtKB:Q5SNZ0, ECO:0000269|PubMed:15882442, ECO:0000269|PubMed:16139227, ECO:0000269|PubMed:19211784, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:21954290, ECO:0000269|PubMed:23509302, ECO:0000269|PubMed:25187647, ECO:0000269|PubMed:27621449, ECO:0000269|PubMed:27623382}. |
Q53EL6 | PDCD4 | S82 | ochoa|psp | Programmed cell death protein 4 (Neoplastic transformation inhibitor protein) (Nuclear antigen H731-like) (Protein 197/15a) | Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity). {ECO:0000250, ECO:0000269|PubMed:16357133, ECO:0000269|PubMed:16449643, ECO:0000269|PubMed:17053147, ECO:0000269|PubMed:18296639, ECO:0000269|PubMed:19153607, ECO:0000269|PubMed:19204291}. |
Q5BKZ1 | ZNF326 | S118 | ochoa | DBIRD complex subunit ZNF326 (Zinc finger protein 326) (Zinc finger protein interacting with mRNPs and DBC1) | Core component of the DBIRD complex, a multiprotein complex that acts at the interface between core mRNP particles and RNA polymerase II (RNAPII) and integrates transcript elongation with the regulation of alternative splicing: the DBIRD complex affects local transcript elongation rates and alternative splicing of a large set of exons embedded in (A + T)-rich DNA regions. May play a role in neuronal differentiation and is able to bind DNA and activate expression in vitro. {ECO:0000269|PubMed:22446626}. |
Q5JTC6 | AMER1 | S674 | ochoa | APC membrane recruitment protein 1 (Amer1) (Protein FAM123B) (Wilms tumor gene on the X chromosome protein) | Regulator of the canonical Wnt signaling pathway. Acts by specifically binding phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), translocating to the cell membrane and interacting with key regulators of the canonical Wnt signaling pathway, such as components of the beta-catenin destruction complex. Acts both as a positive and negative regulator of the Wnt signaling pathway, depending on the context: acts as a positive regulator by promoting LRP6 phosphorylation. Also acts as a negative regulator by acting as a scaffold protein for the beta-catenin destruction complex and promoting stabilization of Axin at the cell membrane. Promotes CTNNB1 ubiquitination and degradation. Involved in kidney development. {ECO:0000269|PubMed:17510365, ECO:0000269|PubMed:17925383, ECO:0000269|PubMed:19416806, ECO:0000269|PubMed:21304492, ECO:0000269|PubMed:21498506}. |
Q5QP82 | DCAF10 | S80 | ochoa | DDB1- and CUL4-associated factor 10 (WD repeat-containing protein 32) | May function as a substrate receptor for CUL4-DDB1 E3 ubiquitin-protein ligase complex. {ECO:0000269|PubMed:16949367}. |
Q5T4S7 | UBR4 | S2885 | ochoa | E3 ubiquitin-protein ligase UBR4 (EC 2.3.2.27) (600 kDa retinoblastoma protein-associated factor) (p600) (N-recognin-4) (Retinoblastoma-associated factor of 600 kDa) (RBAF600) | E3 ubiquitin-protein ligase involved in different protein quality control pathways in the cytoplasm (PubMed:25582440, PubMed:29033132, PubMed:34893540, PubMed:37891180, PubMed:38030679, PubMed:38182926, PubMed:38297121). Component of the N-end rule pathway: ubiquitinates proteins bearing specific N-terminal residues that are destabilizing according to the N-end rule, leading to their degradation (PubMed:34893540, PubMed:37891180, PubMed:38030679). Recognizes both type-1 and type-2 N-degrons, containing positively charged amino acids (Arg, Lys and His) and bulky and hydrophobic amino acids, respectively (PubMed:38030679). Does not ubiquitinate proteins that are acetylated at the N-terminus (PubMed:37891180). Together with UBR5, part of a cytoplasm protein quality control pathway that prevents protein aggregation by catalyzing assembly of heterotypic 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on aggregated proteins, leading to substrate recognition by the segregase p97/VCP and degradation by the proteasome: UBR4 probably synthesizes mixed chains containing multiple linkages, while UBR5 is likely branching multiple 'Lys-48'-linked chains of substrates initially modified (PubMed:29033132). Together with KCMF1, part of a protein quality control pathway that catalyzes ubiquitination and degradation of proteins that have been oxidized in response to reactive oxygen species (ROS): recognizes proteins with an Arg-CysO3(H) degron at the N-terminus, and mediates assembly of heterotypic 'Lys-63'-/'Lys-27'-linked branched ubiquitin chains on oxidized proteins, leading to their degradation by autophagy (PubMed:34893540). Catalytic component of the SIFI complex, a multiprotein complex required to inhibit the mitochondrial stress response after a specific stress event has been resolved: ubiquitinates and degrades (1) components of the HRI-mediated signaling of the integrated stress response, such as DELE1 and EIF2AK1/HRI, as well as (2) unimported mitochondrial precursors (PubMed:38297121). Within the SIFI complex, UBR4 initiates ubiquitin chain that are further elongated or branched by KCMF1 (PubMed:38297121). Mediates ubiquitination of ACLY, leading to its subsequent degradation (PubMed:23932781). Together with clathrin, forms meshwork structures involved in membrane morphogenesis and cytoskeletal organization (PubMed:16214886). {ECO:0000269|PubMed:16214886, ECO:0000269|PubMed:23932781, ECO:0000269|PubMed:25582440, ECO:0000269|PubMed:29033132, ECO:0000269|PubMed:34893540, ECO:0000269|PubMed:37891180, ECO:0000269|PubMed:38030679, ECO:0000269|PubMed:38182926, ECO:0000269|PubMed:38297121}. |
Q5TZA2 | CROCC | S483 | ochoa | Rootletin (Ciliary rootlet coiled-coil protein) | Major structural component of the ciliary rootlet, a cytoskeletal-like structure in ciliated cells which originates from the basal body at the proximal end of a cilium and extends proximally toward the cell nucleus (By similarity). Furthermore, is required for the correct positioning of the cilium basal body relative to the cell nucleus, to allow for ciliogenesis (PubMed:27623382). Contributes to centrosome cohesion before mitosis (PubMed:16203858). {ECO:0000250|UniProtKB:Q8CJ40, ECO:0000269|PubMed:16203858, ECO:0000269|PubMed:27623382}. |
Q5VV41 | ARHGEF16 | S565 | ochoa | Rho guanine nucleotide exchange factor 16 (Ephexin-4) | Guanyl-nucleotide exchange factor of the RHOG GTPase stimulating the exchange of RHOG-associated GDP for GTP. May play a role in chemotactic cell migration by mediating the activation of RAC1 by EPHA2. May also activate CDC42 and mediate activation of CDC42 by the viral protein HPV16 E6. {ECO:0000269|PubMed:20679435}. |
Q5VWJ9 | SNX30 | S28 | ochoa | Sorting nexin-30 | Involved in the regulation of endocytosis and in several stages of intracellular trafficking (PubMed:32513819). Together with SNX4, involved in autophagosome assembly (PubMed:32513819). {ECO:0000269|PubMed:32513819}. |
Q658Y4 | FAM91A1 | S355 | ochoa | Protein FAM91A1 | As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1. {ECO:0000269|PubMed:29426865}. |
Q66K14 | TBC1D9B | S407 | ochoa | TBC1 domain family member 9B | May act as a GTPase-activating protein for Rab family protein(s). |
Q676U5 | ATG16L1 | S278 | ochoa|psp | Autophagy-related protein 16-1 (APG16-like 1) | Plays an essential role in both canonical and non-canonical autophagy: interacts with ATG12-ATG5 to mediate the lipidation to ATG8 family proteins (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAPL1, GABARAPL2 and GABARAP) (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576, PubMed:29317426, PubMed:30778222, PubMed:33909989). Acts as a molecular hub, coordinating autophagy pathways via distinct domains that support either canonical or non-canonical signaling (PubMed:29317426, PubMed:30778222). During canonical autophagy, interacts with ATG12-ATG5 to mediate the conjugation of phosphatidylethanolamine (PE) to ATG8 proteins, to produce a membrane-bound activated form of ATG8 (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). Thereby, controls the elongation of the nascent autophagosomal membrane (PubMed:23376921, PubMed:23392225, PubMed:24553140, PubMed:24954904, PubMed:27273576). As part of the ATG8 conjugation system with ATG5 and ATG12, required for recruitment of LRRK2 to stressed lysosomes and induction of LRRK2 kinase activity in response to lysosomal stress (By similarity). Also involved in non-canonical autophagy, a parallel pathway involving conjugation of ATG8 proteins to single membranes at endolysosomal compartments, probably by catalyzing conjugation of phosphatidylserine (PS) to ATG8 (PubMed:33909989). Non-canonical autophagy plays a key role in epithelial cells to limit lethal infection by influenza A (IAV) virus (By similarity). Regulates mitochondrial antiviral signaling (MAVS)-dependent type I interferon (IFN-I) production (PubMed:22749352, PubMed:25645662). Negatively regulates NOD1- and NOD2-driven inflammatory cytokine response (PubMed:24238340). Instead, promotes an autophagy-dependent antibacterial pathway together with NOD1 or NOD2 (PubMed:20637199). Plays a role in regulating morphology and function of Paneth cell (PubMed:18849966). {ECO:0000250|UniProtKB:Q8C0J2, ECO:0000269|PubMed:18849966, ECO:0000269|PubMed:20637199, ECO:0000269|PubMed:22749352, ECO:0000269|PubMed:23376921, ECO:0000269|PubMed:23392225, ECO:0000269|PubMed:24238340, ECO:0000269|PubMed:24553140, ECO:0000269|PubMed:24954904, ECO:0000269|PubMed:25645662, ECO:0000269|PubMed:27273576, ECO:0000269|PubMed:29317426, ECO:0000269|PubMed:30778222, ECO:0000269|PubMed:33909989}. |
Q68DK2 | ZFYVE26 | S1768 | ochoa | Zinc finger FYVE domain-containing protein 26 (FYVE domain-containing centrosomal protein) (FYVE-CENT) (Spastizin) | Phosphatidylinositol 3-phosphate-binding protein required for the abscission step in cytokinesis: recruited to the midbody during cytokinesis and acts as a regulator of abscission. May also be required for efficient homologous recombination DNA double-strand break repair. {ECO:0000269|PubMed:20208530}. |
Q69YQ0 | SPECC1L | S380 | ochoa | Cytospin-A (Renal carcinoma antigen NY-REN-22) (Sperm antigen with calponin homology and coiled-coil domains 1-like) (SPECC1-like protein) | Involved in cytokinesis and spindle organization. May play a role in actin cytoskeleton organization and microtubule stabilization and hence required for proper cell adhesion and migration. {ECO:0000269|PubMed:21703590}. |
Q6AI08 | HEATR6 | S385 | ochoa | HEAT repeat-containing protein 6 (Amplified in breast cancer protein 1) | Amplification-dependent oncogene. |
Q6GQQ9 | OTUD7B | S449 | ochoa | OTU domain-containing protein 7B (EC 3.4.19.12) (Cellular zinc finger anti-NF-kappa-B protein) (Cezanne) (Zinc finger A20 domain-containing protein 1) (Zinc finger protein Cezanne) | Negative regulator of the non-canonical NF-kappa-B pathway that acts by mediating deubiquitination of TRAF3, an inhibitor of the NF-kappa-B pathway, thereby acting as a negative regulator of B-cell responses (PubMed:18178551). In response to non-canonical NF-kappa-B stimuli, deubiquitinates 'Lys-48'-linked polyubiquitin chains of TRAF3, preventing TRAF3 proteolysis and over-activation of non-canonical NF-kappa-B (By similarity). Negatively regulates mucosal immunity against infections (By similarity). Deubiquitinates ZAP70, and thereby regulates T cell receptor (TCR) signaling that leads to the activation of NF-kappa-B (PubMed:26903241). Plays a role in T cell homeostasis and is required for normal T cell responses, including production of IFNG and IL2 (By similarity). Mediates deubiquitination of EGFR (PubMed:22179831). Has deubiquitinating activity toward 'Lys-11', 'Lys-48' and 'Lys-63'-linked polyubiquitin chains (PubMed:11463333, PubMed:20622874, PubMed:23827681, PubMed:27732584). Has a much higher catalytic rate with 'Lys-11'-linked polyubiquitin chains (in vitro); however the physiological significance of these data are unsure (PubMed:27732584). Hydrolyzes both linear and branched forms of polyubiquitin (PubMed:12682062). Acts as a regulator of mTORC1 and mTORC2 assembly by mediating 'Lys-63'-linked deubiquitination of MLST8, thereby promoting assembly of the mTORC2 complex, while inibiting formation of the mTORC1 complex (PubMed:28489822). {ECO:0000250|UniProtKB:B2RUR8, ECO:0000269|PubMed:11463333, ECO:0000269|PubMed:12682062, ECO:0000269|PubMed:18178551, ECO:0000269|PubMed:20622874, ECO:0000269|PubMed:22179831, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:27732584, ECO:0000269|PubMed:28489822}. |
Q6PJF5 | RHBDF2 | S313 | ochoa | Inactive rhomboid protein 2 (iRhom2) (Rhomboid 5 homolog 2) (Rhomboid family member 2) (Rhomboid veinlet-like protein 5) (Rhomboid veinlet-like protein 6) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000250|UniProtKB:Q80WQ6}. |
Q71RC2 | LARP4 | S568 | ochoa | La-related protein 4 (La ribonucleoprotein domain family member 4) | RNA binding protein that binds to the poly-A tract of mRNA molecules (PubMed:21098120). Associates with the 40S ribosomal subunit and with polysomes (PubMed:21098120). Plays a role in the regulation of mRNA translation (PubMed:21098120). Plays a role in the regulation of cell morphology and cytoskeletal organization (PubMed:21834987, PubMed:27615744). {ECO:0000269|PubMed:21098120, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:27615744}. |
Q76N32 | CEP68 | S237 | ochoa | Centrosomal protein of 68 kDa (Cep68) | Involved in maintenance of centrosome cohesion, probably as part of a linker structure which prevents centrosome splitting (PubMed:18042621). Required for localization of CDK5RAP2 to the centrosome during interphase (PubMed:24554434, PubMed:25503564). Contributes to CROCC/rootletin filament formation (PubMed:30404835). {ECO:0000269|PubMed:18042621, ECO:0000269|PubMed:24554434, ECO:0000269|PubMed:25503564, ECO:0000269|PubMed:30404835}. |
Q7Z2Z1 | TICRR | S1045 | ochoa | Treslin (TopBP1-interacting checkpoint and replication regulator) (TopBP1-interacting, replication-stimulating protein) | Regulator of DNA replication and S/M and G2/M checkpoints. Regulates the triggering of DNA replication initiation via its interaction with TOPBP1 by participating in CDK2-mediated loading of CDC45L onto replication origins. Required for the transition from pre-replication complex (pre-RC) to pre-initiation complex (pre-IC). Required to prevent mitotic entry after treatment with ionizing radiation. {ECO:0000269|PubMed:20116089}. |
Q7Z7B0 | FILIP1 | S967 | ochoa | Filamin-A-interacting protein 1 (FILIP) | By acting through a filamin-A/F-actin axis, it controls the start of neocortical cell migration from the ventricular zone. May be able to induce the degradation of filamin-A. {ECO:0000250|UniProtKB:Q8K4T4}. |
Q86TC9 | MYPN | S243 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86VY9 | TMEM200A | S362 | ochoa | Transmembrane protein 200A | None |
Q86X27 | RALGPS2 | S296 | ochoa | Ras-specific guanine nucleotide-releasing factor RalGPS2 (Ral GEF with PH domain and SH3-binding motif 2) (RalA exchange factor RalGPS2) | Guanine nucleotide exchange factor for the small GTPase RALA. May be involved in cytoskeletal organization. May also be involved in the stimulation of transcription in a Ras-independent fashion (By similarity). {ECO:0000250}. |
Q86XD5 | FAM131B | S105 | ochoa | Protein FAM131B | None |
Q86XR8 | CEP57 | S22 | ochoa | Centrosomal protein of 57 kDa (Cep57) (FGF2-interacting protein) (Testis-specific protein 57) (Translokin) | Centrosomal protein which may be required for microtubule attachment to centrosomes. May act by forming ring-like structures around microtubules. Mediates nuclear translocation and mitogenic activity of the internalized growth factor FGF2, but that of FGF1. {ECO:0000269|PubMed:22321063}. |
Q8IVB4 | SLC9A9 | S600 | ochoa | Sodium/hydrogen exchanger 9 (Na(+)/H(+) exchanger 9) (NHE-9) (Solute carrier family 9 member 9) | Endosomal Na(+), K(+)/H(+) antiporter. Mediates the electroneutral exchange of endosomal luminal H(+) for a cytosolic Na(+) or K(+) (Probable). By facilitating proton efflux, SLC9A9 counteracts the acidity generated by vacuolar (V)-ATPase, thereby limiting luminal acidification. Regulates organellar pH and consequently, e.g., endosome maturation and endocytic trafficking of plasma membrane receptors and neurotransporters (PubMed:15522866, PubMed:24065030, PubMed:28130443). Promotes the recycling of transferrin receptors back to the cell surface to facilitate additional iron uptake in the brain (PubMed:28130443). Regulates synaptic transmission by regulating the luminal pH of axonal endosomes (By similarity). Regulates phagosome lumenal pH, thus affecting phagosome maturation, and consequently, microbicidal activity in macrophages (By similarity). Can also be active at the cell surface of specialized cells, e.g., in the inner ear hair bundles uses the high K(+) of the endolymph to regulate intracelular pH (By similarity). {ECO:0000250|UniProtKB:Q8BZ00, ECO:0000269|PubMed:15522866, ECO:0000269|PubMed:24065030, ECO:0000269|PubMed:28130443, ECO:0000305|PubMed:15522866}. |
Q8IWZ3 | ANKHD1 | S1658 | ochoa | Ankyrin repeat and KH domain-containing protein 1 (HIV-1 Vpr-binding ankyrin repeat protein) (Multiple ankyrin repeats single KH domain) (hMASK) | May play a role as a scaffolding protein that may be associated with the abnormal phenotype of leukemia cells. Isoform 2 may possess an antiapoptotic effect and protect cells during normal cell survival through its regulation of caspases. {ECO:0000269|PubMed:16098192}. |
Q8N697 | SLC15A4 | S279 | ochoa | Solute carrier family 15 member 4 (Peptide transporter 4) (Peptide/histidine transporter 1) (hPHT1) | Proton-coupled amino-acid transporter that mediates the transmembrane transport of L-histidine and some di- and tripeptides from inside the lysosome to the cytosol, and plays a key role in innate immune response (PubMed:16289537, PubMed:25238095, PubMed:29224352). Able to transport a variety of di- and tripeptides, including carnosine and some peptidoglycans (PubMed:29224352, PubMed:31073693). Transporter activity is pH-dependent and maximized in the acidic lysosomal environment (By similarity). Involved in the detection of microbial pathogens by toll-like receptors (TLRs) and NOD-like receptors (NLRs), probably by mediating transport of bacterial peptidoglycans across the endolysosomal membrane: catalyzes the transport of certain bacterial peptidoglycans, such as muramyl dipeptide (MDP), the NOD2 ligand, and L-alanyl-gamma-D-glutamyl-meso-2,6-diaminoheptanedioate (tri-DAP), the NOD1 ligand (PubMed:25238095, PubMed:29224352). Required for TLR7, TLR8 and TLR9-mediated type I interferon (IFN-I) productions in plasmacytoid dendritic cells (pDCs) (PubMed:25238095). Independently of its transporter activity, also promotes the recruitment of innate immune adapter TASL to endolysosome downstream of TLR7, TLR8 and TLR9: TASL recruitment leads to the specific recruitment and activation of IRF5 (PubMed:32433612). Required for isotype class switch recombination to IgG2c isotype in response to TLR9 stimulation (By similarity). Required for mast cell secretory-granule homeostasis by limiting mast cell functions and inflammatory responses (By similarity). {ECO:0000250|UniProtKB:O09014, ECO:0000250|UniProtKB:Q91W98, ECO:0000269|PubMed:16289537, ECO:0000269|PubMed:25238095, ECO:0000269|PubMed:29224352, ECO:0000269|PubMed:31073693, ECO:0000269|PubMed:32433612}. |
Q8N8Z6 | DCBLD1 | S683 | psp | Discoidin, CUB and LCCL domain-containing protein 1 | None |
Q8NCF5 | NFATC2IP | S161 | ochoa | NFATC2-interacting protein (45 kDa NF-AT-interacting protein) (45 kDa NFAT-interacting protein) (Nuclear factor of activated T-cells, cytoplasmic 2-interacting protein) | In T-helper 2 (Th2) cells, regulates the magnitude of NFAT-driven transcription of a specific subset of cytokine genes, including IL3, IL4, IL5 and IL13, but not IL2. Recruits PRMT1 to the IL4 promoter; this leads to enhancement of histone H4 'Arg-3'-methylation and facilitates subsequent histone acetylation at the IL4 locus, thus promotes robust cytokine expression (By similarity). Down-regulates formation of poly-SUMO chains by UBE2I/UBC9 (By similarity). {ECO:0000250}. |
Q8NDX5 | PHC3 | S286 | ochoa | Polyhomeotic-like protein 3 (Early development regulatory protein 3) (Homolog of polyhomeotic 3) (hPH3) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:12167701}. |
Q8NE01 | CNNM3 | S688 | ochoa | Metal transporter CNNM3 (Ancient conserved domain-containing protein 3) (Cyclin-M3) | Probable metal transporter. {ECO:0000250}. |
Q8NEL9 | DDHD1 | S711 | ochoa | Phospholipase DDHD1 (EC 3.1.1.111) (EC 3.1.1.32) (DDHD domain-containing protein 1) (Phosphatidic acid-preferring phospholipase A1 homolog) (PA-PLA1) (EC 3.1.1.118) (Phospholipid sn-1 acylhydrolase) | Phospholipase A1 (PLA1) that hydrolyzes ester bonds at the sn-1 position of glycerophospholipids producing a free fatty acid and a lysophospholipid (Probable) (PubMed:20359546, PubMed:22922100). Prefers phosphatidate (1,2-diacyl-sn-glycero-3-phosphate, PA) as substrate in vitro, but can efficiently hydrolyze phosphatidylinositol (1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol), PI), as well as a range of other glycerophospholipid substrates such as phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine, PC), phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine, PE), phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine, PS) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol), PG) (Probable) (PubMed:20359546). Involved in the regulation of the endogenous content of polyunsaturated PI and PS lipids in the nervous system. Changes in these lipids extend to downstream metabolic products like PI phosphates PIP and PIP2, which play fundamental roles in cell biology (By similarity). Regulates mitochondrial morphology (PubMed:24599962). These dynamic changes may be due to PA hydrolysis at the mitochondrial surface (PubMed:24599962). May play a regulatory role in spermatogenesis or sperm function (PubMed:24599962). {ECO:0000250|UniProtKB:Q80YA3, ECO:0000269|PubMed:20359546, ECO:0000269|PubMed:22922100, ECO:0000269|PubMed:24599962, ECO:0000303|PubMed:24599962, ECO:0000305|PubMed:37189713}. |
Q8NEY1 | NAV1 | S1253 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NF50 | DOCK8 | S936 | ochoa | Dedicator of cytokinesis protein 8 | Guanine nucleotide exchange factor (GEF) which specifically activates small GTPase CDC42 by exchanging bound GDP for free GTP (PubMed:22461490, PubMed:28028151). During immune responses, required for interstitial dendritic cell (DC) migration by locally activating CDC42 at the leading edge membrane of DC (By similarity). Required for CD4(+) T-cell migration in response to chemokine stimulation by promoting CDC42 activation at T cell leading edge membrane (PubMed:28028151). Is involved in NK cell cytotoxicity by controlling polarization of microtubule-organizing center (MTOC), and possibly regulating CCDC88B-mediated lytic granule transport to MTOC during cell killing (PubMed:25762780). {ECO:0000250|UniProtKB:Q8C147, ECO:0000269|PubMed:22461490, ECO:0000269|PubMed:25762780, ECO:0000269|PubMed:28028151}. |
Q8NFH5 | NUP35 | S247 | ochoa | Nucleoporin NUP35 (35 kDa nucleoporin) (Mitotic phosphoprotein 44) (MP-44) (Nuclear pore complex protein Nup53) (Nucleoporin NUP53) | Functions as a component of the nuclear pore complex (NPC). NPC components, collectively referred to as nucleoporins (NUPs), can play the role of both NPC structural components and of docking or interaction partners for transiently associated nuclear transport factors. May play a role in the association of MAD1 with the NPC. {ECO:0000269|PubMed:15703211}. |
Q8TDJ6 | DMXL2 | S932 | ochoa | DmX-like protein 2 (Rabconnectin-3) | May serve as a scaffold protein for MADD and RAB3GA on synaptic vesicles (PubMed:11809763). Plays a role in the brain as a key controller of neuronal and endocrine homeostatic processes (By similarity). {ECO:0000250|UniProtKB:Q8BPN8, ECO:0000269|PubMed:11809763}. |
Q8TDZ2 | MICAL1 | S613 | ochoa | [F-actin]-monooxygenase MICAL1 (EC 1.14.13.225) (EC 1.6.3.1) (Molecule interacting with CasL protein 1) (MICAL-1) (NEDD9-interacting protein with calponin homology and LIM domains) | Monooxygenase that promotes depolymerization of F-actin by mediating oxidation of specific methionine residues on actin to form methionine-sulfoxide, resulting in actin filament disassembly and preventing repolymerization (PubMed:29343822). In the absence of actin, it also functions as a NADPH oxidase producing H(2)O(2) (PubMed:21864500, PubMed:26845023, PubMed:29343822). Acts as a cytoskeletal regulator that connects NEDD9 to intermediate filaments. Also acts as a negative regulator of apoptosis via its interaction with STK38 and STK38L; acts by antagonizing STK38 and STK38L activation by MST1/STK4. Involved in regulation of lamina-specific connectivity in the nervous system such as the development of lamina-restricted hippocampal connections. Through redox regulation of the actin cytoskeleton controls the intracellular distribution of secretory vesicles containing L1/neurofascin/NgCAM family proteins in neurons, thereby regulating their cell surface levels (By similarity). May act as Rab effector protein and play a role in vesicle trafficking. Promotes endosomal tubule extension by associating with RAB8 (RAB8A or RAB8B), RAB10 and GRAF (GRAF1/ARHGAP26 or GRAF2/ARHGAP10) on the endosomal membrane which may connect GRAFs to Rabs, thereby participating in neosynthesized Rab8-Rab10-Rab11-dependent protein export (PubMed:32344433). {ECO:0000250|UniProtKB:Q8VDP3, ECO:0000269|PubMed:18305261, ECO:0000269|PubMed:21864500, ECO:0000269|PubMed:26845023, ECO:0000269|PubMed:28230050, ECO:0000269|PubMed:29343822, ECO:0000269|PubMed:32344433, ECO:0000305|PubMed:27552051}. |
Q8TER5 | ARHGEF40 | S409 | ochoa | Rho guanine nucleotide exchange factor 40 (Protein SOLO) | May act as a guanine nucleotide exchange factor (GEF). {ECO:0000250}. |
Q8WUM0 | NUP133 | S480 | ochoa | Nuclear pore complex protein Nup133 (133 kDa nucleoporin) (Nucleoporin Nup133) | Involved in poly(A)+ RNA transport. Involved in nephrogenesis (PubMed:30179222). {ECO:0000269|PubMed:11684705, ECO:0000269|PubMed:30179222}. |
Q8WUM4 | PDCD6IP | S718 | ochoa|psp | Programmed cell death 6-interacting protein (PDCD6-interacting protein) (ALG-2-interacting protein 1) (ALG-2-interacting protein X) (Hp95) | Multifunctional protein involved in endocytosis, multivesicular body biogenesis, membrane repair, cytokinesis, apoptosis and maintenance of tight junction integrity. Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway requires the sequential function of ESCRT-O, -I,-II and -III complexes (PubMed:14739459). The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis (PubMed:17556548, PubMed:17853893). Adapter for a subset of ESCRT-III proteins, such as CHMP4, to function at distinct membranes. Required for completion of cytokinesis (PubMed:17556548, PubMed:17853893, PubMed:18641129). May play a role in the regulation of both apoptosis and cell proliferation. Regulates exosome biogenesis in concert with SDC1/4 and SDCBP (PubMed:22660413). By interacting with F-actin, PARD3 and TJP1 secures the proper assembly and positioning of actomyosin-tight junction complex at the apical sides of adjacent epithelial cells that defines a spatial membrane domain essential for the maintenance of epithelial cell polarity and barrier (By similarity). {ECO:0000250|UniProtKB:Q9WU78, ECO:0000269|PubMed:14739459, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:17853893, ECO:0000269|PubMed:18641129, ECO:0000269|PubMed:22660413}.; FUNCTION: (Microbial infection) Involved in HIV-1 virus budding. Can replace TSG101 it its role of supporting HIV-1 release; this function requires the interaction with CHMP4B. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as enveloped virus budding (HIV-1 and other lentiviruses). {ECO:0000269|PubMed:14505569, ECO:0000269|PubMed:14505570, ECO:0000269|PubMed:14519844, ECO:0000269|PubMed:17556548, ECO:0000269|PubMed:18641129}. |
Q8WV41 | SNX33 | S61 | ochoa | Sorting nexin-33 (SH3 and PX domain-containing protein 3) | Plays a role in the reorganization of the cytoskeleton, endocytosis and cellular vesicle trafficking via its interactions with membranes, WASL, DNM1 and DNM2. Acts both during interphase and at the end of mitotic cell divisions. Required for efficient progress through mitosis and cytokinesis. Required for normal formation of the cleavage furrow at the end of mitosis. Modulates endocytosis of cell-surface proteins, such as APP and PRNP; this then modulates the secretion of APP and PRNP peptides. Promotes membrane tubulation (in vitro). May promote the formation of macropinosomes. {ECO:0000269|PubMed:18353773, ECO:0000269|PubMed:18419754, ECO:0000269|PubMed:19487689, ECO:0000269|PubMed:20964629, ECO:0000269|PubMed:21048941, ECO:0000269|PubMed:22718350}. |
Q8WXH0 | SYNE2 | S6447 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q92560 | BAP1 | S585 | ochoa|psp | Ubiquitin carboxyl-terminal hydrolase BAP1 (EC 3.4.19.12) (BRCA1-associated protein 1) (Cerebral protein 6) | Deubiquitinating enzyme that plays a key role in chromatin by mediating deubiquitination of histone H2A and HCFC1 (PubMed:12485996, PubMed:18757409, PubMed:20436459, PubMed:25451922, PubMed:35051358). Catalytic component of the polycomb repressive deubiquitinase (PR-DUB) complex, a complex that specifically mediates deubiquitination of histone H2A monoubiquitinated at 'Lys-120' (H2AK119ub1) (PubMed:20436459, PubMed:25451922, PubMed:30664650, PubMed:35051358). Does not deubiquitinate monoubiquitinated histone H2B (PubMed:20436459, PubMed:30664650). The PR-DUB complex is an epigenetic regulator of gene expression and acts as a transcriptional coactivator, affecting genes involved in development, cell communication, signaling, cell proliferation and cell viability (PubMed:20805357, PubMed:30664650, PubMed:36180891). Antagonizes PRC1 mediated H2AK119ub1 monoubiquitination (PubMed:30664650). As part of the PR-DUB complex, associates with chromatin enriched in histone marks H3K4me1, H3K4me3, and H3K27Ac, but not in H3K27me3 (PubMed:36180891). Recruited to specific gene-regulatory regions by YY1 (PubMed:20805357). Acts as a regulator of cell growth by mediating deubiquitination of HCFC1 N-terminal and C-terminal chains, with some specificity toward 'Lys-48'-linked polyubiquitin chains compared to 'Lys-63'-linked polyubiquitin chains (PubMed:19188440, PubMed:19815555). Deubiquitination of HCFC1 does not lead to increase stability of HCFC1 (PubMed:19188440, PubMed:19815555). Interferes with the BRCA1 and BARD1 heterodimer activity by inhibiting their ability to mediate ubiquitination and autoubiquitination (PubMed:19117993). It however does not mediate deubiquitination of BRCA1 and BARD1 (PubMed:19117993). Able to mediate autodeubiquitination via intramolecular interactions to counteract monoubiquitination at the nuclear localization signal (NLS), thereby protecting it from cytoplasmic sequestration (PubMed:24703950). Negatively regulates epithelial-mesenchymal transition (EMT) of trophoblast stem cells during placental development by regulating genes involved in epithelial cell integrity, cell adhesion and cytoskeletal organization (PubMed:34170818). {ECO:0000269|PubMed:12485996, ECO:0000269|PubMed:18757409, ECO:0000269|PubMed:19117993, ECO:0000269|PubMed:19188440, ECO:0000269|PubMed:19815555, ECO:0000269|PubMed:20436459, ECO:0000269|PubMed:20805357, ECO:0000269|PubMed:24703950, ECO:0000269|PubMed:25451922, ECO:0000269|PubMed:30664650, ECO:0000269|PubMed:34170818, ECO:0000269|PubMed:35051358, ECO:0000269|PubMed:36180891}. |
Q92844 | TANK | S117 | ochoa | TRAF family member-associated NF-kappa-B activator (TRAF-interacting protein) (I-TRAF) | Adapter protein involved in I-kappa-B-kinase (IKK) regulation which constitutively binds TBK1 and IKBKE playing a role in antiviral innate immunity. Acts as a regulator of TRAF function by maintaining them in a latent state. Blocks TRAF2 binding to LMP1 and inhibits LMP1-mediated NF-kappa-B activation. Negatively regulates NF-kappaB signaling and cell survival upon DNA damage (PubMed:25861989). Plays a role as an adapter to assemble ZC3H12A, USP10 in a deubiquitination complex which plays a negative feedback response to attenuate NF-kappaB activation through the deubiquitination of IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Promotes UBP10-induced deubiquitination of TRAF6 in response to DNA damage (PubMed:25861989). May control negatively TRAF2-mediated NF-kappa-B activation signaled by CD40, TNFR1 and TNFR2. {ECO:0000269|PubMed:12133833, ECO:0000269|PubMed:21931631, ECO:0000269|PubMed:25861989}. |
Q92870 | APBB2 | S217 | ochoa | Amyloid beta precursor protein binding family B member 2 (Amyloid-beta (A4) precursor protein-binding family B member 2) (Protein Fe65-like 1) | Plays a role in the maintenance of lens transparency, and may also play a role in muscle cell strength (By similarity). Involved in hippocampal neurite branching and neuromuscular junction formation, as a result plays a role in spatial memory functioning (By similarity). Activates transcription of APP (PubMed:14527950). {ECO:0000250|UniProtKB:Q9DBR4, ECO:0000269|PubMed:14527950}. |
Q92945 | KHSRP | S120 | ochoa | Far upstream element-binding protein 2 (FUSE-binding protein 2) (KH type-splicing regulatory protein) (KSRP) (p75) | Binds to the dendritic targeting element and may play a role in mRNA trafficking (By similarity). Part of a ternary complex that binds to the downstream control sequence (DCS) of the pre-mRNA. Mediates exon inclusion in transcripts that are subject to tissue-specific alternative splicing. May interact with single-stranded DNA from the far-upstream element (FUSE). May activate gene expression. Also involved in degradation of inherently unstable mRNAs that contain AU-rich elements (AREs) in their 3'-UTR, possibly by recruiting degradation machinery to ARE-containing mRNAs. {ECO:0000250, ECO:0000269|PubMed:11003644, ECO:0000269|PubMed:8940189, ECO:0000269|PubMed:9136930}. |
Q96AY4 | TTC28 | S2108 | ochoa | Tetratricopeptide repeat protein 28 (TPR repeat protein 28) (TPR repeat-containing big gene cloned at Keio) | During mitosis, may be involved in the condensation of spindle midzone microtubules, leading to the formation of midbody. {ECO:0000269|PubMed:23036704}. |
Q96GU1 | PAGE5 | S28 | ochoa | P antigen family member 5 (PAGE-5) (Cancer/testis antigen 16.1) (CT16.1) (G antigen family E member 1) (Prostate-associated gene 5 protein) | None |
Q96L73 | NSD1 | Y936 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96L73 | NSD1 | S965 | ochoa | Histone-lysine N-methyltransferase, H3 lysine-36 specific (EC 2.1.1.357) (Androgen receptor coactivator 267 kDa protein) (Androgen receptor-associated protein of 267 kDa) (H3-K36-HMTase) (Lysine N-methyltransferase 3B) (Nuclear receptor-binding SET domain-containing protein 1) (NR-binding SET domain-containing protein) | Histone methyltransferase that dimethylates Lys-36 of histone H3 (H3K36me2). Transcriptional intermediary factor capable of both negatively or positively influencing transcription, depending on the cellular context. {ECO:0000269|PubMed:21196496}. |
Q96T37 | RBM15 | S767 | ochoa | RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) | RNA-binding protein that acts as a key regulator of N6-methyladenosine (m6A) methylation of RNAs, thereby regulating different processes, such as hematopoietic cell homeostasis, alternative splicing of mRNAs and X chromosome inactivation mediated by Xist RNA (PubMed:27602518). Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (By similarity). Plays a key role in m6A methylation, possibly by binding target RNAs and recruiting the WMM complex (PubMed:27602518). Involved in random X inactivation mediated by Xist RNA: acts by binding Xist RNA and recruiting the WMM complex, which mediates m6A methylation, leading to target YTHDC1 reader on Xist RNA and promoting transcription repression activity of Xist (PubMed:27602518). Required for the development of multiple tissues, such as the maintenance of the homeostasis of long-term hematopoietic stem cells and for megakaryocyte (MK) and B-cell differentiation (By similarity). Regulates megakaryocyte differentiation by regulating alternative splicing of genes important for megakaryocyte differentiation; probably regulates alternative splicing via m6A regulation (PubMed:26575292). Required for placental vascular branching morphogenesis and embryonic development of the heart and spleen (By similarity). Acts as a regulator of thrombopoietin response in hematopoietic stem cells by regulating alternative splicing of MPL (By similarity). May also function as an mRNA export factor, stimulating export and expression of RTE-containing mRNAs which are present in many retrotransposons that require to be exported prior to splicing (PubMed:17001072, PubMed:19786495). High affinity binding of pre-mRNA to RBM15 may allow targeting of the mRNP to the export helicase DBP5 in a manner that is independent of splicing-mediated NXF1 deposition, resulting in export prior to splicing (PubMed:17001072, PubMed:19786495). May be implicated in HOX gene regulation (PubMed:11344311). {ECO:0000250|UniProtKB:Q0VBL3, ECO:0000269|PubMed:17001072, ECO:0000269|PubMed:19786495, ECO:0000269|PubMed:26575292, ECO:0000269|PubMed:27602518, ECO:0000305|PubMed:11344311}. |
Q9BY11 | PACSIN1 | S337 | ochoa | Protein kinase C and casein kinase substrate in neurons protein 1 (Syndapin-1) | Plays a role in the reorganization of the microtubule cytoskeleton via its interaction with MAPT; this decreases microtubule stability and inhibits MAPT-induced microtubule polymerization. Plays a role in cellular transport processes by recruiting DNM1, DNM2 and DNM3 to membranes. Plays a role in the reorganization of the actin cytoskeleton and in neuron morphogenesis via its interaction with COBL and WASL, and by recruiting COBL to the cell cortex. Plays a role in the regulation of neurite formation, neurite branching and the regulation of neurite length. Required for normal synaptic vesicle endocytosis; this process retrieves previously released neurotransmitters to accommodate multiple cycles of neurotransmission. Required for normal excitatory and inhibitory synaptic transmission (By similarity). Binds to membranes via its F-BAR domain and mediates membrane tubulation. {ECO:0000250, ECO:0000269|PubMed:19549836, ECO:0000269|PubMed:22573331, ECO:0000269|PubMed:23236520}. |
Q9BZZ5 | API5 | S457 | ochoa | Apoptosis inhibitor 5 (API-5) (Antiapoptosis clone 11 protein) (AAC-11) (Cell migration-inducing gene 8 protein) (Fibroblast growth factor 2-interacting factor) (FIF) (Protein XAGL) | Antiapoptotic factor that may have a role in protein assembly. Negatively regulates ACIN1. By binding to ACIN1, it suppresses ACIN1 cleavage from CASP3 and ACIN1-mediated DNA fragmentation. Also known to efficiently suppress E2F1-induced apoptosis. Its depletion enhances the cytotoxic action of the chemotherapeutic drugs. {ECO:0000269|PubMed:10780674, ECO:0000269|PubMed:17112319, ECO:0000269|PubMed:19387494}. |
Q9C0B9 | ZCCHC2 | S640 | ochoa | Zinc finger CCHC domain-containing protein 2 | None |
Q9C0F1 | CEP44 | S331 | ochoa | Centrosomal protein of 44 kDa (Cep44) (HBV PreS1-transactivated protein 3) (PS1TP3) | Centriole-enriched microtubule-binding protein involved in centriole biogenesis. In collaboration with CEP295 and POC1B, is required for the centriole-to-centrosome conversion by ensuring the formation of bona fide centriole wall (PubMed:32060285). Functions as a linker component that maintains centrosome cohesion. Associates with CROCC and regulates its stability and localization to the centrosome (PubMed:31974111). {ECO:0000269|PubMed:31974111, ECO:0000269|PubMed:32060285}. |
Q9GZV5 | WWTR1 | S93 | ochoa|psp | WW domain-containing transcription regulator protein 1 (Transcriptional coactivator with PDZ-binding motif) | Transcriptional coactivator which acts as a downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis (PubMed:11118213, PubMed:18227151, PubMed:23911299). The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ (PubMed:18227151). WWTR1 enhances PAX8 and NKX2-1/TTF1-dependent gene activation (PubMed:19010321). In conjunction with YAP1, involved in the regulation of TGFB1-dependent SMAD2 and SMAD3 nuclear accumulation (PubMed:18568018). Plays a key role in coupling SMADs to the transcriptional machinery such as the mediator complex (PubMed:18568018). Regulates embryonic stem-cell self-renewal, promotes cell proliferation and epithelial-mesenchymal transition (PubMed:18227151, PubMed:18568018). {ECO:0000269|PubMed:11118213, ECO:0000269|PubMed:18227151, ECO:0000269|PubMed:18568018, ECO:0000269|PubMed:19010321, ECO:0000269|PubMed:23911299}. |
Q9H0B6 | KLC2 | S507 | ochoa | Kinesin light chain 2 (KLC 2) | Kinesin is a microtubule-associated force-producing protein that plays a role in organelle transport. The light chain functions in coupling of cargo to the heavy chain or in the modulation of its ATPase activity (Probable). Through binding with PLEKHM2 and ARL8B, recruits kinesin-1 to lysosomes and hence direct lysosomes movement toward microtubule plus ends (PubMed:22172677). {ECO:0000269|PubMed:22172677, ECO:0000305|PubMed:22172677}. |
Q9H987 | SYNPO2L | S369 | ochoa | Synaptopodin 2-like protein | Actin-associated protein that may play a role in modulating actin-based shape. {ECO:0000250}. |
Q9HAP2 | MLXIP | S27 | ochoa | MLX-interacting protein (Class E basic helix-loop-helix protein 36) (bHLHe36) (Transcriptional activator MondoA) | Binds DNA as a heterodimer with MLX and activates transcription. Binds to the canonical E box sequence 5'-CACGTG-3'. Plays a role in transcriptional activation of glycolytic target genes. Involved in glucose-responsive gene regulation. {ECO:0000250|UniProtKB:Q2VPU4, ECO:0000269|PubMed:12446771, ECO:0000269|PubMed:16782875}. |
Q9HAW4 | CLSPN | S798 | ochoa | Claspin (hClaspin) | Required for checkpoint mediated cell cycle arrest in response to inhibition of DNA replication or to DNA damage induced by both ionizing and UV irradiation (PubMed:12766152, PubMed:15190204, PubMed:15707391, PubMed:16123041). Adapter protein which binds to BRCA1 and the checkpoint kinase CHEK1 and facilitates the ATR-dependent phosphorylation of both proteins (PubMed:12766152, PubMed:15096610, PubMed:15707391, PubMed:16123041). Also required to maintain normal rates of replication fork progression during unperturbed DNA replication. Binds directly to DNA, with particular affinity for branched or forked molecules and interacts with multiple protein components of the replisome such as the MCM2-7 complex and TIMELESS (PubMed:15226314, PubMed:34694004, PubMed:35585232). Important for initiation of DNA replication, recruits kinase CDC7 to phosphorylate MCM2-7 components (PubMed:27401717). {ECO:0000269|PubMed:12766152, ECO:0000269|PubMed:15096610, ECO:0000269|PubMed:15190204, ECO:0000269|PubMed:15226314, ECO:0000269|PubMed:15707391, ECO:0000269|PubMed:16123041, ECO:0000269|PubMed:27401717, ECO:0000269|PubMed:34694004, ECO:0000269|PubMed:35585232}. |
Q9HBI1 | PARVB | S39 | ochoa | Beta-parvin (Affixin) | Adapter protein that plays a role in integrin signaling via ILK and in activation of the GTPases CDC42 and RAC1 by guanine exchange factors, such as ARHGEF6. Is involved in the reorganization of the actin cytoskeleton and formation of lamellipodia. Plays a role in cell adhesion, cell spreading, establishment or maintenance of cell polarity, and cell migration. {ECO:0000269|PubMed:11402068, ECO:0000269|PubMed:15005707, ECO:0000269|PubMed:15159419, ECO:0000269|PubMed:15284246, ECO:0000269|PubMed:18325335}. |
Q9HC52 | CBX8 | S256 | ochoa | Chromobox protein homolog 8 (Polycomb 3 homolog) (Pc3) (hPc3) (Rectachrome 1) | Component of a Polycomb group (PcG) multiprotein PRC1-like complex, a complex class required to maintain the transcriptionally repressive state of many genes, including Hox genes, throughout development. PcG PRC1 complex acts via chromatin remodeling and modification of histones; it mediates monoubiquitination of histone H2A 'Lys-119', rendering chromatin heritably changed in its expressibility. {ECO:0000269|PubMed:21282530}. |
Q9HCH5 | SYTL2 | S481 | ochoa | Synaptotagmin-like protein 2 (Breast cancer-associated antigen SGA-72M) (Exophilin-4) | Isoform 1 acts as a RAB27A effector protein and plays a role in cytotoxic granule exocytosis in lymphocytes. It is required for cytotoxic granule docking at the immunologic synapse. Isoform 4 binds phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) and promotes the recruitment of glucagon-containing granules to the cell membrane in pancreatic alpha cells. Binding to PS is inhibited by Ca(2+) while binding to PIP2 is Ca(2+) insensitive. {ECO:0000269|PubMed:17182843, ECO:0000269|PubMed:18266782, ECO:0000269|PubMed:18812475}. |
Q9NP74 | PALMD | S503 | ochoa | Palmdelphin (Paralemmin-like protein) | None |
Q9NQ55 | PPAN | S228 | ochoa | Suppressor of SWI4 1 homolog (Ssf-1) (Brix domain-containing protein 3) (Peter Pan homolog) | May have a role in cell growth. |
Q9NR09 | BIRC6 | S449 | ochoa | Dual E2 ubiquitin-conjugating enzyme/E3 ubiquitin-protein ligase BIRC6 (EC 2.3.2.24) (BIR repeat-containing ubiquitin-conjugating enzyme) (BRUCE) (Baculoviral IAP repeat-containing protein 6) (Ubiquitin-conjugating BIR domain enzyme apollon) (APOLLON) | Anti-apoptotic protein known as inhibitor of apoptosis (IAP) which can regulate cell death by controlling caspases and by acting as an E3 ubiquitin-protein ligase (PubMed:14765125, PubMed:15200957, PubMed:18329369). Unlike most IAPs, does not contain a RING domain and it is not a RING-type E3 ligase (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Instead acts as a dual E2/E3 enzyme that combines ubiquitin conjugating (E2) and ubiquitin ligase (E3) activities in a single polypeptide (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitination is mediated by a non-canonical E1 ubiquitin activating enzyme UBA6 (PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates CASP3, CASP7 and CASP9 and inhibits their caspase activity; also ubiquitinates their procaspases but to a weaker extent (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). Ubiquitinates pro-apoptotic factors DIABLO/SMAC and HTRA2 (PubMed:15200957, PubMed:36758104, PubMed:36758105, PubMed:36758106). DIABLO/SMAC antagonizes the caspase inhibition activity of BIRC6 by competing for the same binding sites as the caspases (PubMed:18329369, PubMed:36758106). Ubiquitinates the autophagy protein MAP1LC3B; this activity is also inhibited by DIABLO/SMAC (PubMed:36758105). Important regulator for the final stages of cytokinesis (PubMed:18329369). Crucial for normal vesicle targeting to the site of abscission, but also for the integrity of the midbody and the midbody ring, and its striking ubiquitin modification (PubMed:18329369). {ECO:0000269|PubMed:14765125, ECO:0000269|PubMed:15200957, ECO:0000269|PubMed:18329369, ECO:0000269|PubMed:36758104, ECO:0000269|PubMed:36758105, ECO:0000269|PubMed:36758106}. |
Q9NRR3 | CDC42SE2 | S43 | ochoa | CDC42 small effector protein 2 (Small effector of CDC42 protein 2) | Probably involved in the organization of the actin cytoskeleton by acting downstream of CDC42, inducing actin filament assembly. Alters CDC42-induced cell shape changes. In activated T-cells, may play a role in CDC42-mediated F-actin accumulation at the immunological synapse. May play a role in early contractile events in phagocytosis in macrophages. {ECO:0000269|PubMed:10816584, ECO:0000269|PubMed:15840583}. |
Q9NSY1 | BMP2K | S1064 | ochoa | BMP-2-inducible protein kinase (BIKe) (EC 2.7.11.1) | May be involved in osteoblast differentiation. {ECO:0000250|UniProtKB:Q91Z96}. |
Q9NVP1 | DDX18 | S74 | ochoa | ATP-dependent RNA helicase DDX18 (EC 3.6.4.13) (DEAD box protein 18) (Myc-regulated DEAD box protein) (MrDb) | ATP-dependent RNA helicase that plays a role in the regulation of R-loop homeostasis in both endogenous R-loop-prone regions and at sites of DNA damage. At endogenous loci such as actively transcribed genes, may act as a helicase to resolve the formation of R-loop during transcription and prevent the interference of R-loop with DNA-replication machinery. Also participates in the removal of DNA-lesion-associated R-loop (PubMed:35858569). Plays an essential role for establishing pluripotency during embryogenesis and for pluripotency maintenance in embryonic stem cells. Mechanistically, prevents the polycomb repressive complex 2 (PRC2) from accessing rDNA loci and protects the active chromatin status in nucleolus (By similarity). {ECO:0000250|UniProtKB:Q8K363, ECO:0000269|PubMed:35858569}. |
Q9NWQ8 | PAG1 | S339 | ochoa | Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (Csk-binding protein) (Transmembrane adapter protein PAG) (Transmembrane phosphoprotein Cbp) | Negatively regulates TCR (T-cell antigen receptor)-mediated signaling in T-cells and FCER1 (high affinity immunoglobulin epsilon receptor)-mediated signaling in mast cells. Promotes CSK activation and recruitment to lipid rafts, which results in LCK inhibition. Inhibits immunological synapse formation by preventing dynamic arrangement of lipid raft proteins. May be involved in cell adhesion signaling. {ECO:0000269|PubMed:10790433}. |
Q9NYP7 | ELOVL5 | S273 | ochoa | Very long chain fatty acid elongase 5 (EC 2.3.1.199) (3-keto acyl-CoA synthase ELOVL5) (ELOVL fatty acid elongase 5) (ELOVL FA elongase 5) (Elongation of very long chain fatty acids protein 5) (Fatty acid elongase 1) (hELO1) (Very long chain 3-ketoacyl-CoA synthase 5) (Very long chain 3-oxoacyl-CoA synthase 5) | Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that acts specifically toward polyunsaturated acyl-CoA with the higher activity toward C18:3(n-6) acyl-CoA. May participate in the production of monounsaturated and of polyunsaturated VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators (By similarity) (PubMed:10970790, PubMed:20937905). In conditions where the essential linoleic and alpha linoleic fatty acids are lacking it is also involved in the synthesis of Mead acid from oleic acid (By similarity). {ECO:0000250|UniProtKB:Q8BHI7, ECO:0000255|HAMAP-Rule:MF_03205, ECO:0000269|PubMed:10970790, ECO:0000269|PubMed:20937905}. |
Q9NZ72 | STMN3 | S53 | ochoa | Stathmin-3 (SCG10-like protein) | Exhibits microtubule-destabilizing activity, which is antagonized by STAT3. {ECO:0000250}. |
Q9P1T7 | MDFIC | S128 | ochoa | MyoD family inhibitor domain-containing protein (I-mfa domain-containing protein) (hIC) | Required to control the activity of various transcription factors through their sequestration in the cytoplasm. Retains nuclear Zic proteins ZIC1, ZIC2 and ZIC3 in the cytoplasm and inhibits their transcriptional activation (By similarity). Modulates the expression from cellular promoters. Binds to the axin complex, resulting in an increase in the level of free beta-catenin (PubMed:12192039). Affects axin regulation of the WNT and JNK signaling pathways (PubMed:12192039). Involved in the development of lymphatic vessel valves (By similarity). Required to promote lymphatic endothelial cell migration, in a process that involves down-regulation of integrin beta 1 activation and control of cell adhesion to the extracellular matrix (PubMed:35235341). Regulates the activity of mechanosensitive Piezo channel (PubMed:37590348). {ECO:0000250|UniProtKB:Q8BX65, ECO:0000269|PubMed:12192039, ECO:0000269|PubMed:35235341, ECO:0000269|PubMed:37590348}.; FUNCTION: (Microbial infection) Modulates the expression from viral promoters. Down-regulates Tat-dependent transcription of the human immunodeficiency virus type 1 (HIV-1) LTR by interacting with HIV-1 Tat and Rev and impairing their nuclear import, probably by rendering the NLS domains inaccessible to importin-beta (PubMed:12944466, PubMed:16260749, Ref.6). Also stimulates activation of human T-cell leukemia virus type I (HTLV-I) LTR (PubMed:10671520). {ECO:0000269|PubMed:10671520, ECO:0000269|PubMed:12944466, ECO:0000269|PubMed:16260749, ECO:0000269|Ref.6}. |
Q9P244 | LRFN1 | S584 | ochoa | Leucine-rich repeat and fibronectin type III domain-containing protein 1 (Synaptic adhesion-like molecule 2) | Promotes neurite outgrowth in hippocampal neurons. Involved in the regulation and maintenance of excitatory synapses. Induces the clustering of excitatory postsynaptic proteins, including DLG4, DLGAP1, GRIA1 and GRIN1 (By similarity). {ECO:0000250}. |
Q9UBC2 | EPS15L1 | S362 | ochoa | Epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) | Seems to be a constitutive component of clathrin-coated pits that is required for receptor-mediated endocytosis. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2. {ECO:0000269|PubMed:22648170, ECO:0000269|PubMed:9407958}. |
Q9UGP4 | LIMD1 | S199 | ochoa | LIM domain-containing protein 1 | Adapter or scaffold protein which participates in the assembly of numerous protein complexes and is involved in several cellular processes such as cell fate determination, cytoskeletal organization, repression of gene transcription, cell-cell adhesion, cell differentiation, proliferation and migration. Positively regulates microRNA (miRNA)-mediated gene silencing and is essential for P-body formation and integrity. Acts as a hypoxic regulator by bridging an association between the prolyl hydroxylases and VHL enabling efficient degradation of HIF1A. Acts as a transcriptional corepressor for SNAI1- and SNAI2/SLUG-dependent repression of E-cadherin transcription. Negatively regulates the Hippo signaling pathway and antagonizes phosphorylation of YAP1. Inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. Regulates osteoblast development, function, differentiation and stress osteoclastogenesis. Enhances the ability of TRAF6 to activate adapter protein complex 1 (AP-1) and negatively regulates the canonical Wnt receptor signaling pathway in osteoblasts. May act as a tumor suppressor by inhibiting cell proliferation. {ECO:0000269|PubMed:15542589, ECO:0000269|PubMed:20303269, ECO:0000269|PubMed:20616046, ECO:0000269|PubMed:21834987, ECO:0000269|PubMed:22286099}. |
Q9UHB7 | AFF4 | S514 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UIF8 | BAZ2B | S540 | ochoa | Bromodomain adjacent to zinc finger domain protein 2B (hWALp4) | Regulatory subunit of the ATP-dependent BRF-1 and BRF-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). The BRF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the BRF-5 ISWI chromatin remodeling complex (PubMed:28801535). Chromatin reader protein, which may play a role in transcriptional regulation via interaction with ISWI (By similarity) (PubMed:10662543). Involved in positively modulating the rate of age-related behavioral deterioration (By similarity). Represses the expression of mitochondrial function-related genes, perhaps by occupying their promoter regions, working in concert with histone methyltransferase EHMT1 (By similarity). {ECO:0000250|UniProtKB:A2AUY4, ECO:0000269|PubMed:28801535, ECO:0000303|PubMed:10662543}. |
Q9UIF9 | BAZ2A | S26 | ochoa | Bromodomain adjacent to zinc finger domain protein 2A (Transcription termination factor I-interacting protein 5) (TTF-I-interacting protein 5) (Tip5) (hWALp3) | Regulatory subunit of the ATP-dependent NoRC-1 and NoRC-5 ISWI chromatin remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:28801535). Both complexes regulate the spacing of nucleosomes along the chromatin and have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Directly stimulates the ATPase activity of SMARCA5 in the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). The NoRC-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the NoRC-5 ISWI chromatin remodeling complex (PubMed:28801535). Within the NoRC-5 ISWI chromatin remodeling complex, mediates silencing of a fraction of rDNA by recruiting histone-modifying enzymes and DNA methyltransferases, leading to heterochromatin formation and transcriptional silencing (By similarity). In the complex, it plays a central role by being recruited to rDNA and by targeting chromatin modifying enzymes such as HDAC1, leading to repress RNA polymerase I transcription (By similarity). Recruited to rDNA via its interaction with TTF1 and its ability to recognize and bind histone H4 acetylated on 'Lys-16' (H4K16ac), leading to deacetylation of H4K5ac, H4K8ac, H4K12ac but not H4K16ac (By similarity). Specifically binds pRNAs, 150-250 nucleotide RNAs that are complementary in sequence to the rDNA promoter; pRNA-binding is required for heterochromatin formation and rDNA silencing (By similarity). {ECO:0000250|UniProtKB:Q91YE5, ECO:0000269|PubMed:28801535}. |
Q9UJF2 | RASAL2 | S829 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJF2 | RASAL2 | S916 | ochoa | Ras GTPase-activating protein nGAP (RAS protein activator-like 2) | Inhibitory regulator of the Ras-cyclic AMP pathway. |
Q9UJU6 | DBNL | S141 | ochoa | Drebrin-like protein (Cervical SH3P7) (Cervical mucin-associated protein) (Drebrin-F) (HPK1-interacting protein of 55 kDa) (HIP-55) (SH3 domain-containing protein 7) | Adapter protein that binds F-actin and DNM1, and thereby plays a role in receptor-mediated endocytosis. Plays a role in the reorganization of the actin cytoskeleton, formation of cell projections, such as neurites, in neuron morphogenesis and synapse formation via its interaction with WASL and COBL. Does not bind G-actin and promote actin polymerization by itself. Required for the formation of organized podosome rosettes (By similarity). May act as a common effector of antigen receptor-signaling pathways in leukocytes. Acts as a key component of the immunological synapse that regulates T-cell activation by bridging TCRs and the actin cytoskeleton to gene activation and endocytic processes. {ECO:0000250, ECO:0000269|PubMed:14729663}. |
Q9UMZ2 | SYNRG | S1073 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UNZ2 | NSFL1C | S102 | ochoa | NSFL1 cofactor p47 (UBX domain-containing protein 2C) (p97 cofactor p47) | Reduces the ATPase activity of VCP (By similarity). Necessary for the fragmentation of Golgi stacks during mitosis and for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). May play a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Inhibits the activity of CTSL (in vitro) (PubMed:15498563). Together with UBXN2B/p37, regulates the centrosomal levels of kinase AURKA/Aurora A during mitotic progression by promoting AURKA removal from centrosomes in prophase (PubMed:23649807). Also, regulates spindle orientation during mitosis (PubMed:23649807). {ECO:0000250|UniProtKB:O35987, ECO:0000269|PubMed:15498563, ECO:0000269|PubMed:23649807}. |
Q9UPN3 | MACF1 | S7279 | ochoa | Microtubule-actin cross-linking factor 1, isoforms 1/2/3/4/5 (620 kDa actin-binding protein) (ABP620) (Actin cross-linking family protein 7) (Macrophin-1) (Trabeculin-alpha) | [Isoform 2]: F-actin-binding protein which plays a role in cross-linking actin to other cytoskeletal proteins and also binds to microtubules (PubMed:15265687, PubMed:20937854). Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex (PubMed:20937854). Acts as a positive regulator of Wnt receptor signaling pathway and is involved in the translocation of AXIN1 and its associated complex (composed of APC, CTNNB1 and GSK3B) from the cytoplasm to the cell membrane (By similarity). Has actin-regulated ATPase activity and is essential for controlling focal adhesions (FAs) assembly and dynamics (By similarity). Interaction with CAMSAP3 at the minus ends of non-centrosomal microtubules tethers microtubules minus-ends to actin filaments, regulating focal adhesion size and cell migration (PubMed:27693509). May play role in delivery of transport vesicles containing GPI-linked proteins from the trans-Golgi network through its interaction with GOLGA4 (PubMed:15265687). Plays a key role in wound healing and epidermal cell migration (By similarity). Required for efficient upward migration of bulge cells in response to wounding and this function is primarily rooted in its ability to coordinate microtubule dynamics and polarize hair follicle stem cells (By similarity). As a regulator of actin and microtubule arrangement and stabilization, it plays an essential role in neurite outgrowth, branching and spine formation during brain development (By similarity). {ECO:0000250|UniProtKB:Q9QXZ0, ECO:0000269|PubMed:15265687, ECO:0000269|PubMed:20937854, ECO:0000269|PubMed:27693509}. |
Q9UQE7 | SMC3 | S1065 | ochoa|psp | Structural maintenance of chromosomes protein 3 (SMC protein 3) (SMC-3) (Basement membrane-associated chondroitin proteoglycan) (Bamacan) (Chondroitin sulfate proteoglycan 6) (Chromosome-associated polypeptide) (hCAP) | Central component of cohesin, a complex required for chromosome cohesion during the cell cycle. The cohesin complex may form a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. Cohesion is coupled to DNA replication and is involved in DNA repair. The cohesin complex also plays an important role in spindle pole assembly during mitosis and in chromosomes movement. {ECO:0000269|PubMed:11076961, ECO:0000269|PubMed:19907496}. |
Q9UQE7 | SMC3 | S1074 | ochoa | Structural maintenance of chromosomes protein 3 (SMC protein 3) (SMC-3) (Basement membrane-associated chondroitin proteoglycan) (Bamacan) (Chondroitin sulfate proteoglycan 6) (Chromosome-associated polypeptide) (hCAP) | Central component of cohesin, a complex required for chromosome cohesion during the cell cycle. The cohesin complex may form a large proteinaceous ring within which sister chromatids can be trapped. At anaphase, the complex is cleaved and dissociates from chromatin, allowing sister chromatids to segregate. Cohesion is coupled to DNA replication and is involved in DNA repair. The cohesin complex also plays an important role in spindle pole assembly during mitosis and in chromosomes movement. {ECO:0000269|PubMed:11076961, ECO:0000269|PubMed:19907496}. |
Q9UQR0 | SCML2 | S255 | ochoa | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9Y2J0 | RPH3A | S260 | ochoa | Rabphilin-3A (Exophilin-1) | Plays an essential role in docking and fusion steps of regulated exocytosis (By similarity). At the presynaptic level, RPH3A is recruited by RAB3A to the synaptic vesicle membrane in a GTP-dependent manner where it modulates synaptic vesicle trafficking and calcium-triggered neurotransmitter release (By similarity). In the post-synaptic compartment, forms a ternary complex with GRIN2A and DLG4 and regulates NMDA receptor stability. Also plays a role in the exocytosis of arginine vasopressin hormone (By similarity). {ECO:0000250|UniProtKB:P47709}. |
Q9Y485 | DMXL1 | S1896 | ochoa | DmX-like protein 1 (X-like 1 protein) | None |
Q9Y4F3 | MARF1 | S950 | ochoa | Meiosis regulator and mRNA stability factor 1 (Limkain-b1) (Meiosis arrest female protein 1) | Essential regulator of oogenesis required for female meiotic progression to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Probably acts via some RNA metabolic process, equivalent to the piRNA system in males, which mediates the repression of transposable elements during meiosis by forming complexes composed of RNAs and governs the methylation and subsequent repression of transposons. Also required to protect from DNA double-strand breaks (By similarity). {ECO:0000250}. |
Q9Y4G6 | TLN2 | S461 | ochoa | Talin-2 | As a major component of focal adhesion plaques that links integrin to the actin cytoskeleton, may play an important role in cell adhesion. Recruits PIP5K1C to focal adhesion plaques and strongly activates its kinase activity (By similarity). {ECO:0000250}. |
Q9Y6J0 | CABIN1 | S1740 | ochoa | Calcineurin-binding protein cabin-1 (Calcineurin inhibitor) (CAIN) | May be required for replication-independent chromatin assembly. May serve as a negative regulator of T-cell receptor (TCR) signaling via inhibition of calcineurin. Inhibition of activated calcineurin is dependent on both PKC and calcium signals. Acts as a negative regulator of p53/TP53 by keeping p53 in an inactive state on chromatin at promoters of a subset of it's target genes. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:9655484}. |
O43815 | STRN | S369 | Sugiyama | Striatin | Calmodulin-binding scaffolding protein which is the center of the striatin-interacting phosphatase and kinase (STRIPAK) complexes (PubMed:18782753). STRIPAK complexes have critical roles in protein (de)phosphorylation and are regulators of multiple signaling pathways including Hippo, MAPK, nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are involved in a variety of biological processes such as cell growth, differentiation, apoptosis, metabolism and immune regulation (Probable). {ECO:0000269|PubMed:18782753, ECO:0000305|PubMed:26876214}. |
P02686 | MBP | S141 | SIGNOR|EPSD | Myelin basic protein (MBP) (Myelin A1 protein) (Myelin membrane encephalitogenic protein) | The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cells and neural cells. Differential splicing events combined with optional post-translational modifications give a wide spectrum of isomers, with each of them potentially having a specialized function. Induces T-cell proliferation. {ECO:0000269|PubMed:8544862}. |
P14866 | HNRNPL | S539 | Sugiyama | Heterogeneous nuclear ribonucleoprotein L (hnRNP L) | Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements (PubMed:11809897, PubMed:22570490, PubMed:24164894, PubMed:25623890, PubMed:26051023). Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts (PubMed:2687284). Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter (PubMed:11809897). As part of a ribonucleoprotein complex composed at least of ZNF827, HNRNPK and the circular RNA circZNF827 that nucleates the complex on chromatin, may negatively regulate the transcription of genes involved in neuronal differentiation (PubMed:33174841). Regulates alternative splicing of a core group of genes involved in neuronal differentiation, likely by mediating H3K36me3-coupled transcription elongation and co-transcriptional RNA processing via interaction with CHD8. {ECO:0000269|PubMed:11809897, ECO:0000269|PubMed:22570490, ECO:0000269|PubMed:25623890, ECO:0000269|PubMed:26051023, ECO:0000269|PubMed:2687284, ECO:0000269|PubMed:33174841, ECO:0000269|PubMed:36537238}. |
Q9Y478 | PRKAB1 | S170 | Sugiyama | 5'-AMP-activated protein kinase subunit beta-1 (AMPK subunit beta-1) (AMPKb) | Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). |
P18846 | ATF1 | S38 | SIGNOR | Cyclic AMP-dependent transcription factor ATF-1 (cAMP-dependent transcription factor ATF-1) (Activating transcription factor 1) (Protein TREB36) | This protein binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), a sequence present in many viral and cellular promoters. Binds to the Tax-responsive element (TRE) of HTLV-I. Mediates PKA-induced stimulation of CRE-reporter genes. Represses the expression of FTH1 and other antioxidant detoxification genes. Triggers cell proliferation and transformation. {ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:20980392}. |
O00115 | DNASE2 | S58 | Sugiyama | Deoxyribonuclease-2-alpha (EC 3.1.22.1) (Acid DNase) (Deoxyribonuclease II alpha) (DNase II alpha) (Lysosomal DNase II) (R31240_2) | Hydrolyzes DNA under acidic conditions with a preference for double-stranded DNA. Plays a major role in the clearance of nucleic acids generated through apoptosis, hence preventing autoinflammation (PubMed:29259162, PubMed:31775019). Necessary for proper fetal development and for definitive erythropoiesis in fetal liver and bone marrow, where it degrades nuclear DNA expelled from erythroid precursor cells (PubMed:29259162). {ECO:0000269|PubMed:29259162, ECO:0000269|PubMed:31775019}. |
Q9UKI8 | TLK1 | S147 | Sugiyama | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
A0A0C4DFX4 | None | S243 | ochoa | Snf2 related CREBBP activator protein | None |
A0A0C4DFX4 | None | S2613 | ochoa | Snf2 related CREBBP activator protein | None |
A3KN83 | SBNO1 | S811 | ochoa | Protein strawberry notch homolog 1 (Monocyte protein 3) (MOP-3) | Plays a crucial role in the regulation of neural stem cells (NSCs) proliferation. Enhances the phosphorylation of GSK3B through the PI3K-Akt signaling pathway, thereby upregulating the Wnt/beta-catenin signaling pathway and promoting the proliferation of NSCs. Improves ischemic stroke recovery while inhibiting neuroinflammation through small extracellular vesicles (sEVs)-mediated mechanism. Enhances the secretion of sEVs from NSCs, which in turn inhibit both the MAPK and NF-kappaB pathways in microglia. This inhibition suppresses the pro-inflammatory M1 polarization of microglia, promoting a shift towards the M2 anti-inflammatory phenotype, which is beneficial for reducing neuroinflammation. {ECO:0000250|UniProtKB:Q689Z5}. |
A6NKT7 | RGPD3 | S768 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A6NKT7 | RGPD3 | S1264 | ochoa | RanBP2-like and GRIP domain-containing protein 3 | None |
A8MVS5 | HIDE1 | S205 | ochoa | Protein HIDE1 | None |
A8MW92 | PHF20L1 | S356 | ochoa | PHD finger protein 20-like protein 1 | Is a negative regulator of proteasomal degradation of a set of methylated proteins, including DNMT1 and SOX2 (PubMed:24492612, PubMed:29358331). Involved in the maintainance of embryonic stem cells pluripotency, through the regulation of SOX2 levels (By similarity). {ECO:0000250|UniProtKB:Q8CCJ9, ECO:0000269|PubMed:24492612, ECO:0000269|PubMed:29358331}. |
H0YC42 | None | S159 | ochoa | Tumor protein D52 | None |
I3L521 | None | S93 | ochoa | RNA-binding protein 7 (RNA-binding motif protein 7) | None |
O00151 | PDLIM1 | S118 | ochoa | PDZ and LIM domain protein 1 (C-terminal LIM domain protein 1) (Elfin) (LIM domain protein CLP-36) | Cytoskeletal protein that may act as an adapter that brings other proteins (like kinases) to the cytoskeleton (PubMed:10861853). Involved in assembly, disassembly and directioning of stress fibers in fibroblasts. Required for the localization of ACTN1 and PALLD to stress fibers. Required for cell migration and in maintaining cell polarity of fibroblasts (By similarity). {ECO:0000250|UniProtKB:P52944, ECO:0000269|PubMed:10861853}. |
O00204 | SULT2B1 | S338 | ochoa | Sulfotransferase 2B1 (EC 2.8.2.2) (Alcohol sulfotransferase) (Hydroxysteroid sulfotransferase 2) (Sulfotransferase family 2B member 1) (Sulfotransferase family cytosolic 2B member 1) (ST2B1) | Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation. Responsible for the sulfation of cholesterol (PubMed:12145317, PubMed:19589875). Catalyzes sulfation of the 3beta-hydroxyl groups of steroids, such as, pregnenolone and dehydroepiandrosterone (DHEA) (PubMed:12145317, PubMed:16855051, PubMed:21855633, PubMed:9799594). Preferentially sulfonates cholesterol, while it also has significant activity with pregnenolone and DHEA (PubMed:12145317, PubMed:21855633). Plays a role in epidermal cholesterol metabolism and in the regulation of epidermal proliferation and differentiation (PubMed:28575648). {ECO:0000269|PubMed:12145317, ECO:0000269|PubMed:16855051, ECO:0000269|PubMed:19589875, ECO:0000269|PubMed:21855633, ECO:0000269|PubMed:28575648, ECO:0000269|PubMed:9799594}.; FUNCTION: [Isoform 2]: Sulfonates pregnenolone but not cholesterol. {ECO:0000269|PubMed:12145317}. |
O00409 | FOXN3 | S85 | ochoa|psp | Forkhead box protein N3 (Checkpoint suppressor 1) | Acts as a transcriptional repressor. May be involved in DNA damage-inducible cell cycle arrests (checkpoints). {ECO:0000269|PubMed:16102918}. |
O00499 | BIN1 | S286 | ochoa | Myc box-dependent-interacting protein 1 (Amphiphysin II) (Amphiphysin-like protein) (Box-dependent myc-interacting protein 1) (Bridging integrator 1) | Is a key player in the control of plasma membrane curvature, membrane shaping and membrane remodeling. Required in muscle cells for the formation of T-tubules, tubular invaginations of the plasma membrane that function in depolarization-contraction coupling (PubMed:24755653). Is a negative regulator of endocytosis (By similarity). Is also involved in the regulation of intracellular vesicles sorting, modulation of BACE1 trafficking and the control of amyloid-beta production (PubMed:27179792). In neuronal circuits, endocytosis regulation may influence the internalization of PHF-tau aggregates (By similarity). May be involved in the regulation of MYC activity and the control cell proliferation (PubMed:8782822). Has actin bundling activity and stabilizes actin filaments against depolymerization in vitro (PubMed:28893863). {ECO:0000250|UniProtKB:O08839, ECO:0000269|PubMed:24755653, ECO:0000269|PubMed:27179792, ECO:0000269|PubMed:28893863, ECO:0000269|PubMed:8782822}. |
O14490 | DLGAP1 | S419 | ochoa | Disks large-associated protein 1 (DAP-1) (Guanylate kinase-associated protein) (hGKAP) (PSD-95/SAP90-binding protein 1) (SAP90/PSD-95-associated protein 1) (SAPAP1) | Part of the postsynaptic scaffold in neuronal cells. |
O14545 | TRAFD1 | S468 | ochoa | TRAF-type zinc finger domain-containing protein 1 (Protein FLN29) | Negative feedback regulator that controls excessive innate immune responses. Regulates both Toll-like receptor 4 (TLR4) and DDX58/RIG1-like helicases (RLH) pathways. May inhibit the LTR pathway by direct interaction with TRAF6 and attenuation of NF-kappa-B activation. May negatively regulate the RLH pathway downstream from MAVS and upstream of NF-kappa-B and IRF3 (By similarity). {ECO:0000250, ECO:0000269|PubMed:16221674}. |
O14654 | IRS4 | S427 | ochoa | Insulin receptor substrate 4 (IRS-4) (160 kDa phosphotyrosine protein) (py160) (Phosphoprotein of 160 kDa) (pp160) | Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin-stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kinase signaling in myoblasts. Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell through EPHB2 activation upon IGF1 stimulation. May play a role in the signal transduction in response to insulin and to a lesser extent in response to IL4 and GH on mitogenesis. Plays a role in growth, reproduction and glucose homeostasis. May act as negative regulators of the IGF1 signaling pathway by suppressing the function of IRS1 and IRS2. {ECO:0000269|PubMed:10531310, ECO:0000269|PubMed:10594015, ECO:0000269|PubMed:12639902, ECO:0000269|PubMed:17408801, ECO:0000269|PubMed:9553137}. |
O14681 | EI24 | S318 | ochoa | Etoposide-induced protein 2.4 homolog (p53-induced gene 8 protein) | Acts as a negative growth regulator via p53-mediated apoptosis pathway. Regulates formation of degradative autolysosomes during autophagy (By similarity). {ECO:0000250}. |
O14715 | RGPD8 | S767 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14715 | RGPD8 | S1263 | ochoa | RANBP2-like and GRIP domain-containing protein 8 (Ran-binding protein 2-like 3) (RanBP2-like 3) (RanBP2L3) | None |
O14917 | PCDH17 | S1026 | ochoa | Protocadherin-17 (Protocadherin-68) | Potential calcium-dependent cell-adhesion protein. |
O15164 | TRIM24 | S98 | ochoa | Transcription intermediary factor 1-alpha (TIF1-alpha) (EC 2.3.2.27) (E3 ubiquitin-protein ligase TRIM24) (RING finger protein 82) (RING-type E3 ubiquitin transferase TIF1-alpha) (Tripartite motif-containing protein 24) | Transcriptional coactivator that interacts with numerous nuclear receptors and coactivators and modulates the transcription of target genes. Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac). Has E3 protein-ubiquitin ligase activity. During the DNA damage response, participates in an autoregulatory feedback loop with TP53. Early in response to DNA damage, ATM kinase phosphorylates TRIM24 leading to its ubiquitination and degradation. After sufficient DNA repair has occurred, TP53 activates TRIM24 transcription, ultimately leading to TRIM24-mediated TP53 ubiquitination and degradation (PubMed:24820418). Plays a role in the regulation of cell proliferation and apoptosis, at least in part via its effects on p53/TP53 levels. Up-regulates ligand-dependent transcription activation by AR, GCR/NR3C1, thyroid hormone receptor (TR) and ESR1. Modulates transcription activation by retinoic acid (RA) receptors, including RARA. Plays a role in regulating retinoic acid-dependent proliferation of hepatocytes (By similarity). Also participates in innate immunity by mediating the specific 'Lys-63'-linked ubiquitination of TRAF3 leading to activation of downstream signal transduction of the type I IFN pathway (PubMed:32324863). Additionally, negatively regulates NLRP3/CASP1/IL-1beta-mediated pyroptosis and cell migration probably by ubiquitinating NLRP3 (PubMed:33724611). {ECO:0000250, ECO:0000269|PubMed:16322096, ECO:0000269|PubMed:19556538, ECO:0000269|PubMed:21164480, ECO:0000269|PubMed:24820418, ECO:0000269|PubMed:32324863, ECO:0000269|PubMed:33724611}. |
O15550 | KDM6A | S817 | ochoa | Lysine-specific demethylase 6A (EC 1.14.11.68) (Histone demethylase UTX) (Ubiquitously-transcribed TPR protein on the X chromosome) (Ubiquitously-transcribed X chromosome tetratricopeptide repeat protein) ([histone H3]-trimethyl-L-lysine(27) demethylase 6A) | Histone demethylase that specifically demethylates 'Lys-27' of histone H3, thereby playing a central role in histone code (PubMed:17713478, PubMed:17761849, PubMed:17851529). Demethylates trimethylated and dimethylated but not monomethylated H3 'Lys-27' (PubMed:17713478, PubMed:17761849, PubMed:17851529). Plays a central role in regulation of posterior development, by regulating HOX gene expression (PubMed:17851529). Demethylation of 'Lys-27' of histone H3 is concomitant with methylation of 'Lys-4' of histone H3, and regulates the recruitment of the PRC1 complex and monoubiquitination of histone H2A (PubMed:17761849). Plays a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression (By similarity). {ECO:0000250|UniProtKB:O70546, ECO:0000269|PubMed:17713478, ECO:0000269|PubMed:17761849, ECO:0000269|PubMed:17851529, ECO:0000269|PubMed:18003914}. |
O43149 | ZZEF1 | S1463 | ochoa | Zinc finger ZZ-type and EF-hand domain-containing protein 1 | Histone H3 reader which may act as a transcriptional coactivator for KLF6 and KLF9 transcription factors. {ECO:0000269|PubMed:33227311}. |
O43166 | SIPA1L1 | S1431 | ochoa | Signal-induced proliferation-associated 1-like protein 1 (SIPA1-like protein 1) (High-risk human papilloma viruses E6 oncoproteins targeted protein 1) (E6-targeted protein 1) | Stimulates the GTPase activity of RAP2A. Promotes reorganization of the actin cytoskeleton and recruits DLG4 to F-actin. Contributes to the regulation of dendritic spine morphogenesis (By similarity). {ECO:0000250}. |
O43242 | PSMD3 | S418 | ochoa | 26S proteasome non-ATPase regulatory subunit 3 (26S proteasome regulatory subunit RPN3) (26S proteasome regulatory subunit S3) (Proteasome subunit p58) | Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. {ECO:0000269|PubMed:1317798}. |
O43353 | RIPK2 | S345 | ochoa | Receptor-interacting serine/threonine-protein kinase 2 (EC 2.7.11.1) (CARD-containing interleukin-1 beta-converting enzyme-associated kinase) (CARD-containing IL-1 beta ICE-kinase) (RIP-like-interacting CLARP kinase) (Receptor-interacting protein 2) (RIP-2) (Tyrosine-protein kinase RIPK2) (EC 2.7.10.2) | Serine/threonine/tyrosine-protein kinase that plays an essential role in modulation of innate and adaptive immune responses (PubMed:14638696, PubMed:17054981, PubMed:21123652, PubMed:28656966, PubMed:9575181, PubMed:9642260). Acts as a key effector of NOD1 and NOD2 signaling pathways: upon activation by bacterial peptidoglycans, NOD1 and NOD2 oligomerize and recruit RIPK2 via CARD-CARD domains, leading to the formation of RIPK2 filaments (PubMed:17054981, PubMed:17562858, PubMed:21123652, PubMed:22607974, PubMed:28656966, PubMed:29452636, PubMed:30026309). Once recruited, RIPK2 autophosphorylates and undergoes 'Lys-63'-linked polyubiquitination by E3 ubiquitin ligases XIAP, BIRC2 and BIRC3, as well as 'Met-1'-linked (linear) polyubiquitination by the LUBAC complex, becoming a scaffolding protein for downstream effectors (PubMed:22607974, PubMed:28545134, PubMed:29452636, PubMed:30026309, PubMed:30279485, PubMed:30478312). 'Met-1'-linked polyubiquitin chains attached to RIPK2 recruit IKBKG/NEMO, which undergoes 'Lys-63'-linked polyubiquitination in a RIPK2-dependent process (PubMed:17562858, PubMed:22607974, PubMed:29452636, PubMed:30026309). 'Lys-63'-linked polyubiquitin chains attached to RIPK2 serve as docking sites for TAB2 and TAB3 and mediate the recruitment of MAP3K7/TAK1 to IKBKG/NEMO, inducing subsequent activation of IKBKB/IKKB (PubMed:18079694). In turn, NF-kappa-B is released from NF-kappa-B inhibitors and translocates into the nucleus where it activates the transcription of hundreds of genes involved in immune response, growth control, or protection against apoptosis (PubMed:18079694). The protein kinase activity is dispensable for the NOD1 and NOD2 signaling pathways (PubMed:29452636, PubMed:30026309). Contributes to the tyrosine phosphorylation of the guanine exchange factor ARHGEF2 through Src tyrosine kinase leading to NF-kappa-B activation by NOD2 (PubMed:21887730). Also involved in adaptive immunity: plays a role during engagement of the T-cell receptor (TCR) in promoting BCL10 phosphorylation and subsequent NF-kappa-B activation (PubMed:14638696). Plays a role in the inactivation of RHOA in response to NGFR signaling (PubMed:26646181). {ECO:0000269|PubMed:14638696, ECO:0000269|PubMed:17054981, ECO:0000269|PubMed:17562858, ECO:0000269|PubMed:18079694, ECO:0000269|PubMed:21123652, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:22607974, ECO:0000269|PubMed:26646181, ECO:0000269|PubMed:28545134, ECO:0000269|PubMed:28656966, ECO:0000269|PubMed:29452636, ECO:0000269|PubMed:30026309, ECO:0000269|PubMed:30279485, ECO:0000269|PubMed:30478312, ECO:0000269|PubMed:9575181, ECO:0000269|PubMed:9642260}. |
O43521 | BCL2L11 | S92 | ochoa | Bcl-2-like protein 11 (Bcl2-L-11) (Bcl2-interacting mediator of cell death) | Induces apoptosis and anoikis. Isoform BimL is more potent than isoform BimEL. Isoform Bim-alpha1, isoform Bim-alpha2 and isoform Bim-alpha3 induce apoptosis, although less potent than isoform BimEL, isoform BimL and isoform BimS. Isoform Bim-gamma induces apoptosis. Isoform Bim-alpha3 induces apoptosis possibly through a caspase-mediated pathway. Isoform BimAC and isoform BimABC lack the ability to induce apoptosis. {ECO:0000269|PubMed:11997495, ECO:0000269|PubMed:15486195, ECO:0000269|PubMed:15661735, ECO:0000269|PubMed:9430630}. |
O43524 | FOXO3 | S413 | ochoa|psp | Forkhead box protein O3 (AF6q21 protein) (Forkhead in rhabdomyosarcoma-like 1) | Transcriptional activator that recognizes and binds to the DNA sequence 5'-[AG]TAAA[TC]A-3' and regulates different processes, such as apoptosis and autophagy (PubMed:10102273, PubMed:16751106, PubMed:21329882, PubMed:30513302). Acts as a positive regulator of autophagy in skeletal muscle: in starved cells, enters the nucleus following dephosphorylation and binds the promoters of autophagy genes, such as GABARAP1L, MAP1LC3B and ATG12, thereby activating their expression, resulting in proteolysis of skeletal muscle proteins (By similarity). Triggers apoptosis in the absence of survival factors, including neuronal cell death upon oxidative stress (PubMed:10102273, PubMed:16751106). Participates in post-transcriptional regulation of MYC: following phosphorylation by MAPKAPK5, promotes induction of miR-34b and miR-34c expression, 2 post-transcriptional regulators of MYC that bind to the 3'UTR of MYC transcript and prevent its translation (PubMed:21329882). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription (PubMed:23283301). In response to metabolic stress, translocates into the mitochondria where it promotes mtDNA transcription. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation (By similarity). Also acts as a key regulator of regulatory T-cells (Treg) differentiation by activating expression of FOXP3 (PubMed:30513302). {ECO:0000250|UniProtKB:Q9WVH4, ECO:0000269|PubMed:10102273, ECO:0000269|PubMed:16751106, ECO:0000269|PubMed:21329882, ECO:0000269|PubMed:23283301, ECO:0000269|PubMed:30513302}. |
O43566 | RGS14 | S40 | ochoa | Regulator of G-protein signaling 14 (RGS14) | Regulates G protein-coupled receptor signaling cascades. Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits, thereby driving them into their inactive GDP-bound form. Besides, modulates signal transduction via G protein alpha subunits by functioning as a GDP-dissociation inhibitor (GDI). Has GDI activity on G(i) alpha subunits GNAI1 and GNAI3, but not on GNAI2 and G(o)-alpha subunit GNAO1. Has GAP activity on GNAI0, GNAI2 and GNAI3. May act as a scaffold integrating G protein and Ras/Raf MAPkinase signaling pathways. Inhibits platelet-derived growth factor (PDGF)-stimulated ERK1/ERK2 phosphorylation; a process depending on its interaction with HRAS and that is reversed by G(i) alpha subunit GNAI1. Acts as a positive modulator of microtubule polymerisation and spindle organization through a G(i)-alpha-dependent mechanism. Plays a role in cell division. Required for the nerve growth factor (NGF)-mediated neurite outgrowth. Involved in stress resistance. May be involved in visual memory processing capacity and hippocampal-based learning and memory. {ECO:0000269|PubMed:15917656, ECO:0000269|PubMed:17635935}. |
O43623 | SNAI2 | S92 | psp | Zinc finger protein SNAI2 (Neural crest transcription factor Slug) (Protein snail homolog 2) | Transcriptional repressor that modulates both activator-dependent and basal transcription. Involved in the generation and migration of neural crest cells. Plays a role in mediating RAF1-induced transcriptional repression of the TJ protein, occludin (OCLN) and subsequent oncogenic transformation of epithelial cells (By similarity). Represses BRCA2 expression by binding to its E2-box-containing silencer and recruiting CTBP1 and HDAC1 in breast cells. In epidermal keratinocytes, binds to the E-box in ITGA3 promoter and represses its transcription. Involved in the regulation of ITGB1 and ITGB4 expression and cell adhesion and proliferation in epidermal keratinocytes. Binds to E-box2 domain of BSG and activates its expression during TGFB1-induced epithelial-mesenchymal transition (EMT) in hepatocytes. Represses E-Cadherin/CDH1 transcription via E-box elements. Involved in osteoblast maturation. Binds to RUNX2 and SOC9 promoters and may act as a positive and negative transcription regulator, respectively, in osteoblasts. Binds to CXCL12 promoter via E-box regions in mesenchymal stem cells and osteoblasts. Plays an essential role in TWIST1-induced EMT and its ability to promote invasion and metastasis. {ECO:0000250, ECO:0000269|PubMed:10866665, ECO:0000269|PubMed:11912130, ECO:0000269|PubMed:15734731, ECO:0000269|PubMed:16707493, ECO:0000269|PubMed:19756381, ECO:0000269|PubMed:21182836}. |
O43847 | NRDC | S94 | ochoa | Nardilysin (EC 3.4.24.61) (N-arginine dibasic convertase) (NRD convertase) (NRD-C) (Nardilysin convertase) | Cleaves peptide substrates on the N-terminus of arginine residues in dibasic pairs. Is a critical activator of BACE1- and ADAM17-mediated pro-neuregulin ectodomain shedding, involved in the positive regulation of axonal maturation and myelination. Required for proper functioning of 2-oxoglutarate dehydrogenase (OGDH) (By similarity). {ECO:0000250|UniProtKB:Q8BHG1}. |
O60238 | BNIP3L | S85 | ochoa | BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (Adenovirus E1B19K-binding protein B5) (BCL2/adenovirus E1B 19 kDa protein-interacting protein 3A) (NIP3-like protein X) (NIP3L) | Induces apoptosis. Interacts with viral and cellular anti-apoptosis proteins. Can overcome the suppressors BCL-2 and BCL-XL, although high levels of BCL-XL expression will inhibit apoptosis. Inhibits apoptosis induced by BNIP3. Involved in mitochondrial quality control via its interaction with SPATA18/MIEAP: in response to mitochondrial damage, participates in mitochondrial protein catabolic process (also named MALM) leading to the degradation of damaged proteins inside mitochondria. The physical interaction of SPATA18/MIEAP, BNIP3 and BNIP3L/NIX at the mitochondrial outer membrane regulates the opening of a pore in the mitochondrial double membrane in order to mediate the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix. May function as a tumor suppressor. {ECO:0000269|PubMed:10381623, ECO:0000269|PubMed:21264228}. |
O60292 | SIPA1L3 | S146 | ochoa | Signal-induced proliferation-associated 1-like protein 3 (SIPA1-like protein 3) (SPA-1-like protein 3) | Plays a critical role in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization in the lens (PubMed:26231217). {ECO:0000269|PubMed:26231217}. |
O60307 | MAST3 | S134 | ochoa | Microtubule-associated serine/threonine-protein kinase 3 (EC 2.7.11.1) | None |
O60353 | FZD6 | S641 | ochoa | Frizzled-6 (Fz-6) (hFz6) | Receptor for Wnt proteins. Most of frizzled receptors are coupled to the beta-catenin canonical signaling pathway, which leads to the activation of disheveled proteins, inhibition of GSK-3 kinase, nuclear accumulation of beta-catenin and activation of Wnt target genes. A second signaling pathway involving PKC and calcium fluxes has been seen for some family members, but it is not yet clear if it represents a distinct pathway or if it can be integrated in the canonical pathway, as PKC seems to be required for Wnt-mediated inactivation of GSK-3 kinase. Both pathways seem to involve interactions with G-proteins. May be involved in transduction and intercellular transmission of polarity information during tissue morphogenesis and/or in differentiated tissues. Together with FZD3, is involved in the neural tube closure and plays a role in the regulation of the establishment of planar cell polarity (PCP), particularly in the orientation of asymmetric bundles of stereocilia on the apical faces of a subset of auditory and vestibular sensory cells located in the inner ear (By similarity). {ECO:0000250|UniProtKB:Q61089}. |
O60673 | REV3L | S2171 | ochoa | DNA polymerase zeta catalytic subunit (EC 2.7.7.7) (Protein reversionless 3-like) (REV3-like) (hREV3) | Catalytic subunit of the DNA polymerase zeta complex, an error-prone polymerase specialized in translesion DNA synthesis (TLS). Lacks an intrinsic 3'-5' exonuclease activity and thus has no proofreading function. {ECO:0000269|PubMed:24449906}. |
O60732 | MAGEC1 | S205 | ochoa | Melanoma-associated antigen C1 (Cancer/testis antigen 7.1) (CT7.1) (MAGE-C1 antigen) | None |
O75385 | ULK1 | S465 | ochoa | Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) | Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}. |
O75385 | ULK1 | S467 | ochoa | Serine/threonine-protein kinase ULK1 (EC 2.7.11.1) (Autophagy-related protein 1 homolog) (ATG1) (hATG1) (Unc-51-like kinase 1) | Serine/threonine-protein kinase involved in autophagy in response to starvation (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:23524951, PubMed:25040165, PubMed:29487085, PubMed:31123703). Acts upstream of phosphatidylinositol 3-kinase PIK3C3 to regulate the formation of autophagophores, the precursors of autophagosomes (PubMed:18936157, PubMed:21460634, PubMed:21795849, PubMed:25040165). Part of regulatory feedback loops in autophagy: acts both as a downstream effector and negative regulator of mammalian target of rapamycin complex 1 (mTORC1) via interaction with RPTOR (PubMed:21795849). Activated via phosphorylation by AMPK and also acts as a regulator of AMPK by mediating phosphorylation of AMPK subunits PRKAA1, PRKAB2 and PRKAG1, leading to negatively regulate AMPK activity (PubMed:21460634). May phosphorylate ATG13/KIAA0652 and RPTOR; however such data need additional evidences (PubMed:18936157). Plays a role early in neuronal differentiation and is required for granule cell axon formation (PubMed:11146101). Also phosphorylates SESN2 and SQSTM1 to regulate autophagy (PubMed:25040165, PubMed:37306101). Phosphorylates FLCN, promoting autophagy (PubMed:25126726). Phosphorylates AMBRA1 in response to autophagy induction, releasing AMBRA1 from the cytoskeletal docking site to induce autophagosome nucleation (PubMed:20921139). Phosphorylates ATG4B, leading to inhibit autophagy by decreasing both proteolytic activation and delipidation activities of ATG4B (PubMed:28821708). {ECO:0000269|PubMed:11146101, ECO:0000269|PubMed:18936157, ECO:0000269|PubMed:20921139, ECO:0000269|PubMed:21460634, ECO:0000269|PubMed:21795849, ECO:0000269|PubMed:23524951, ECO:0000269|PubMed:25040165, ECO:0000269|PubMed:25126726, ECO:0000269|PubMed:28821708, ECO:0000269|PubMed:29487085, ECO:0000269|PubMed:31123703, ECO:0000269|PubMed:37306101}. |
O75665 | OFD1 | S762 | ochoa | Centriole and centriolar satellite protein OFD1 (Oral-facial-digital syndrome 1 protein) (Protein 71-7A) | Component of the centrioles controlling mother and daughter centrioles length. Recruits to the centriole IFT88 and centriole distal appendage-specific proteins including CEP164 (By similarity). Involved in the biogenesis of the cilium, a centriole-associated function. The cilium is a cell surface projection found in many vertebrate cells required to transduce signals important for development and tissue homeostasis (PubMed:33934390). Plays an important role in development by regulating Wnt signaling and the specification of the left-right axis. Only OFD1 localized at the centriolar satellites is removed by autophagy, which is an important step in the ciliogenesis regulation (By similarity). {ECO:0000250|UniProtKB:Q80Z25, ECO:0000269|PubMed:33934390}. |
O75674 | TOM1L1 | S311 | ochoa | TOM1-like protein 1 (Src-activating and signaling molecule protein) (Target of Myb-like protein 1) | Probable adapter protein involved in signaling pathways. Interacts with the SH2 and SH3 domains of various signaling proteins when it is phosphorylated. May promote FYN activation, possibly by disrupting intramolecular SH3-dependent interactions (By similarity). {ECO:0000250}. |
O75995 | SASH3 | S26 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O75995 | SASH3 | S108 | ochoa | SAM and SH3 domain-containing protein 3 (SH3 protein expressed in lymphocytes homolog) | May function as a signaling adapter protein in lymphocytes. {ECO:0000250|UniProtKB:Q8K352}. |
O94818 | NOL4 | S236 | ochoa | Nucleolar protein 4 (Nucleolar-localized protein) | None |
O94875 | SORBS2 | S154 | ochoa | Sorbin and SH3 domain-containing protein 2 (Arg-binding protein 2) (ArgBP2) (Arg/Abl-interacting protein 2) (Sorbin) | Adapter protein that plays a role in the assembling of signaling complexes, being a link between ABL kinases and actin cytoskeleton. Can form complex with ABL1 and CBL, thus promoting ubiquitination and degradation of ABL1. May play a role in the regulation of pancreatic cell adhesion, possibly by acting on WASF1 phosphorylation, enhancing phosphorylation by ABL1, as well as dephosphorylation by PTPN12 (PubMed:18559503). Isoform 6 increases water and sodium absorption in the intestine and gall-bladder. {ECO:0000269|PubMed:12475393, ECO:0000269|PubMed:18559503, ECO:0000269|PubMed:9211900}. |
O94887 | FARP2 | S427 | ochoa | FERM, ARHGEF and pleckstrin domain-containing protein 2 (FERM domain-including RhoGEF) (FIR) (FERM, RhoGEF and pleckstrin domain-containing protein 2) (Pleckstrin homology domain-containing family C member 3) (PH domain-containing family C member 3) | Functions as a guanine nucleotide exchange factor that activates RAC1. May have relatively low activity. Plays a role in the response to class 3 semaphorins and remodeling of the actin cytoskeleton. Plays a role in TNFSF11-mediated osteoclast differentiation, especially in podosome rearrangement and reorganization of the actin cytoskeleton. Regulates the activation of ITGB3, integrin signaling and cell adhesion (By similarity). {ECO:0000250}. |
O94967 | WDR47 | S566 | ochoa | WD repeat-containing protein 47 (Neuronal enriched MAP-interacting protein) (Nemitin) | None |
O95155 | UBE4B | S76 | ochoa | Ubiquitin conjugation factor E4 B (EC 2.3.2.27) (Homozygously deleted in neuroblastoma 1) (RING-type E3 ubiquitin transferase E4 B) (Ubiquitin fusion degradation protein 2) | Ubiquitin-protein ligase that probably functions as an E3 ligase in conjunction with specific E1 and E2 ligases (By similarity). May also function as an E4 ligase mediating the assembly of polyubiquitin chains on substrates ubiquitinated by another E3 ubiquitin ligase (By similarity). May regulate myosin assembly in striated muscles together with STUB1 and VCP/p97 by targeting myosin chaperone UNC45B for proteasomal degradation (PubMed:17369820). {ECO:0000250|UniProtKB:P54860, ECO:0000250|UniProtKB:Q9ES00, ECO:0000269|PubMed:17369820}. |
O95239 | KIF4A | S1001 | ochoa|psp | Chromosome-associated kinesin KIF4A (Chromokinesin-A) | Iron-sulfur (Fe-S) cluster binding motor protein that has a role in chromosome segregation during mitosis (PubMed:29848660). Translocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition, an essential step for the formation of an organized central spindle midzone and midbody and for successful cytokinesis (PubMed:15297875, PubMed:15625105). May play a role in mitotic chromosomal positioning and bipolar spindle stabilization (By similarity). {ECO:0000250|UniProtKB:P33174, ECO:0000269|PubMed:15297875, ECO:0000269|PubMed:15625105, ECO:0000269|PubMed:29848660}. |
O95251 | KAT7 | S45 | ochoa | Histone acetyltransferase KAT7 (EC 2.3.1.48) (Histone acetyltransferase binding to ORC1) (Lysine acetyltransferase 7) (MOZ, YBF2/SAS3, SAS2 and TIP60 protein 2) (MYST-2) | Catalytic subunit of histone acetyltransferase HBO1 complexes, which specifically mediate acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby regulating various processes, such as gene transcription, protein ubiquitination, immune regulation, stem cell pluripotent and self-renewal maintenance and embryonic development (PubMed:16387653, PubMed:21753189, PubMed:24065767, PubMed:26620551, PubMed:31767635, PubMed:31827282). Some complexes also catalyze acetylation of histone H4 at 'Lys-5', 'Lys-8' and 'Lys-12' (H4K5ac, H4K8ac and H4K12ac, respectively), regulating DNA replication initiation, regulating DNA replication initiation (PubMed:10438470, PubMed:19187766, PubMed:20129055, PubMed:24065767). Specificity of the HBO1 complexes is determined by the scaffold subunit: complexes containing BRPF scaffold (BRPF1, BRD1/BRPF2 or BRPF3) direct KAT7/HBO1 specificity towards H3K14ac, while complexes containing JADE (JADE1, JADE2 and JADE3) scaffold direct KAT7/HBO1 specificity towards histone H4 (PubMed:19187766, PubMed:20129055, PubMed:24065767, PubMed:26620551). H3K14ac promotes transcriptional elongation by facilitating the processivity of RNA polymerase II (PubMed:31827282). Acts as a key regulator of hematopoiesis by forming a complex with BRD1/BRPF2, directing KAT7/HBO1 specificity towards H3K14ac and promoting erythroid differentiation (PubMed:21753189). H3K14ac is also required for T-cell development (By similarity). KAT7/HBO1-mediated acetylation facilitates two consecutive steps, licensing and activation, in DNA replication initiation: H3K14ac facilitates the activation of replication origins, and histone H4 acetylation (H4K5ac, H4K8ac and H4K12ac) facilitates chromatin loading of MCM complexes, promoting DNA replication licensing (PubMed:10438470, PubMed:11278932, PubMed:18832067, PubMed:19187766, PubMed:20129055, PubMed:21856198, PubMed:24065767, PubMed:26620551). Acts as a positive regulator of centromeric CENPA assembly: recruited to centromeres and mediates histone acetylation, thereby preventing centromere inactivation mediated by SUV39H1, possibly by increasing histone turnover/exchange (PubMed:27270040). Involved in nucleotide excision repair: phosphorylation by ATR in response to ultraviolet irradiation promotes its localization to DNA damage sites, where it mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites (PubMed:28719581). Acts as an inhibitor of NF-kappa-B independently of its histone acetyltransferase activity (PubMed:16997280). {ECO:0000250|UniProtKB:Q5SVQ0, ECO:0000269|PubMed:10438470, ECO:0000269|PubMed:11278932, ECO:0000269|PubMed:16387653, ECO:0000269|PubMed:16997280, ECO:0000269|PubMed:18832067, ECO:0000269|PubMed:19187766, ECO:0000269|PubMed:20129055, ECO:0000269|PubMed:21753189, ECO:0000269|PubMed:21856198, ECO:0000269|PubMed:24065767, ECO:0000269|PubMed:26620551, ECO:0000269|PubMed:27270040, ECO:0000269|PubMed:28719581, ECO:0000269|PubMed:31767635, ECO:0000269|PubMed:31827282}.; FUNCTION: Plays a central role in the maintenance of leukemia stem cells in acute myeloid leukemia (AML) (PubMed:31827282). Acts by mediating acetylation of histone H3 at 'Lys-14' (H3K14ac), thereby facilitating the processivity of RNA polymerase II to maintain the high expression of key genes, such as HOXA9 and HOXA10 that help to sustain the functional properties of leukemia stem cells (PubMed:31827282). {ECO:0000269|PubMed:31827282}. |
O95359 | TACC2 | S559 | ochoa | Transforming acidic coiled-coil-containing protein 2 (Anti-Zuai-1) (AZU-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). May play a role in organizing centrosomal microtubules. May act as a tumor suppressor protein. May represent a tumor progression marker. {ECO:0000250, ECO:0000269|PubMed:10749935}. |
O95490 | ADGRL2 | S1353 | ochoa | Adhesion G protein-coupled receptor L2 (Calcium-independent alpha-latrotoxin receptor 2) (CIRL-2) (Latrophilin homolog 1) (Latrophilin-2) (Lectomedin-1) | Orphan adhesion G-protein coupled receptor (aGPCR), which mediates synapse specificity (By similarity). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of downstream effectors (By similarity). Following G-protein coupled receptor activation, associates with cell adhesion molecules that are expressed at the surface of adjacent cells to direct synapse specificity. Specifically mediates the establishment of perforant-path synapses on CA1-region pyramidal neurons in the hippocampus. Localizes to postsynaptic spines in excitatory synapses in the S.lacunosum-moleculare and interacts with presynaptic cell adhesion molecules, such as teneurins, promoting synapse formation (By similarity). {ECO:0000250|UniProtKB:Q80TS3, ECO:0000250|UniProtKB:Q8JZZ7}. |
O95639 | CPSF4 | S200 | ochoa | Cleavage and polyadenylation specificity factor subunit 4 (Cleavage and polyadenylation specificity factor 30 kDa subunit) (CPSF 30 kDa subunit) (NS1 effector domain-binding protein 1) (Neb-1) (No arches homolog) | Component of the cleavage and polyadenylation specificity factor (CPSF) complex that play a key role in pre-mRNA 3'-end formation, recognizing the AAUAAA signal sequence and interacting with poly(A) polymerase and other factors to bring about cleavage and poly(A) addition. CPSF4 binds RNA polymers with a preference for poly(U). {ECO:0000269|PubMed:14749727, ECO:0000269|PubMed:9224719}. |
P00533 | EGFR | S1104 | ochoa | Epidermal growth factor receptor (EC 2.7.10.1) (Proto-oncogene c-ErbB-1) (Receptor tyrosine-protein kinase erbB-1) | Receptor tyrosine kinase binding ligands of the EGF family and activating several signaling cascades to convert extracellular cues into appropriate cellular responses (PubMed:10805725, PubMed:27153536, PubMed:2790960, PubMed:35538033). Known ligands include EGF, TGFA/TGF-alpha, AREG, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF (PubMed:12297049, PubMed:15611079, PubMed:17909029, PubMed:20837704, PubMed:27153536, PubMed:2790960, PubMed:7679104, PubMed:8144591, PubMed:9419975). Ligand binding triggers receptor homo- and/or heterodimerization and autophosphorylation on key cytoplasmic residues. The phosphorylated receptor recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades. Activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules (PubMed:27153536). May also activate the NF-kappa-B signaling cascade (PubMed:11116146). Also directly phosphorylates other proteins like RGS16, activating its GTPase activity and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling (PubMed:11602604). Also phosphorylates MUC1 and increases its interaction with SRC and CTNNB1/beta-catenin (PubMed:11483589). Positively regulates cell migration via interaction with CCDC88A/GIV which retains EGFR at the cell membrane following ligand stimulation, promoting EGFR signaling which triggers cell migration (PubMed:20462955). Plays a role in enhancing learning and memory performance (By similarity). Plays a role in mammalian pain signaling (long-lasting hypersensitivity) (By similarity). {ECO:0000250|UniProtKB:Q01279, ECO:0000269|PubMed:10805725, ECO:0000269|PubMed:11116146, ECO:0000269|PubMed:11483589, ECO:0000269|PubMed:11602604, ECO:0000269|PubMed:12297049, ECO:0000269|PubMed:12297050, ECO:0000269|PubMed:12620237, ECO:0000269|PubMed:12873986, ECO:0000269|PubMed:15374980, ECO:0000269|PubMed:15590694, ECO:0000269|PubMed:15611079, ECO:0000269|PubMed:17115032, ECO:0000269|PubMed:17909029, ECO:0000269|PubMed:19560417, ECO:0000269|PubMed:20462955, ECO:0000269|PubMed:20837704, ECO:0000269|PubMed:21258366, ECO:0000269|PubMed:27153536, ECO:0000269|PubMed:2790960, ECO:0000269|PubMed:35538033, ECO:0000269|PubMed:7679104, ECO:0000269|PubMed:8144591, ECO:0000269|PubMed:9419975}.; FUNCTION: Isoform 2 may act as an antagonist of EGF action.; FUNCTION: (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) in hepatocytes and facilitates its cell entry. Mediates HCV entry by promoting the formation of the CD81-CLDN1 receptor complexes that are essential for HCV entry and by enhancing membrane fusion of cells expressing HCV envelope glycoproteins. {ECO:0000269|PubMed:21516087}. |
P03372 | ESR1 | S282 | psp | Estrogen receptor (ER) (ER-alpha) (Estradiol receptor) (Nuclear receptor subfamily 3 group A member 1) | Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3 (PubMed:17922032). Maintains neuronal survival in response to ischemic reperfusion injury when in the presence of circulating estradiol (17-beta-estradiol/E2) (By similarity). {ECO:0000250|UniProtKB:P06211, ECO:0000269|PubMed:10681512, ECO:0000269|PubMed:10816575, ECO:0000269|PubMed:11477071, ECO:0000269|PubMed:11682626, ECO:0000269|PubMed:14764652, ECO:0000269|PubMed:15078875, ECO:0000269|PubMed:15891768, ECO:0000269|PubMed:16043358, ECO:0000269|PubMed:16617102, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:17922032, ECO:0000269|PubMed:17932106, ECO:0000269|PubMed:18247370, ECO:0000269|PubMed:19350539, ECO:0000269|PubMed:20074560, ECO:0000269|PubMed:20705611, ECO:0000269|PubMed:21330404, ECO:0000269|PubMed:22083956, ECO:0000269|PubMed:37478846, ECO:0000269|PubMed:7651415, ECO:0000269|PubMed:9328340}.; FUNCTION: [Isoform 3]: Involved in activation of NOS3 and endothelial nitric oxide production (PubMed:21937726). Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full-length receptor (PubMed:10970861). Binds to ERE and inhibits isoform 1 (PubMed:10970861). {ECO:0000269|PubMed:10970861, ECO:0000269|PubMed:21937726}. |
P04049 | RAF1 | Y232 | ochoa | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P04049 | RAF1 | S289 | ochoa|psp | RAF proto-oncogene serine/threonine-protein kinase (EC 2.7.11.1) (Proto-oncogene c-RAF) (cRaf) (Raf-1) | Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation. {ECO:0000269|PubMed:11427728, ECO:0000269|PubMed:11719507, ECO:0000269|PubMed:15385642, ECO:0000269|PubMed:15618521, ECO:0000269|PubMed:15849194, ECO:0000269|PubMed:16892053, ECO:0000269|PubMed:16924233, ECO:0000269|PubMed:9360956}. |
P05023 | ATP1A1 | S216 | ochoa | Sodium/potassium-transporting ATPase subunit alpha-1 (Na(+)/K(+) ATPase alpha-1 subunit) (EC 7.2.2.13) (Sodium pump subunit alpha-1) | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients (PubMed:29499166, PubMed:30388404). Could also be part of an osmosensory signaling pathway that senses body-fluid sodium levels and controls salt intake behavior as well as voluntary water intake to regulate sodium homeostasis (By similarity). {ECO:0000250|UniProtKB:Q8VDN2, ECO:0000269|PubMed:29499166, ECO:0000269|PubMed:30388404}. |
P07947 | YES1 | S28 | ochoa | Tyrosine-protein kinase Yes (EC 2.7.10.2) (Proto-oncogene c-Yes) (p61-Yes) | Non-receptor protein tyrosine kinase that is involved in the regulation of cell growth and survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation. Stimulation by receptor tyrosine kinases (RTKs) including EGFR, PDGFR, CSF1R and FGFR leads to recruitment of YES1 to the phosphorylated receptor, and activation and phosphorylation of downstream substrates. Upon EGFR activation, promotes the phosphorylation of PARD3 to favor epithelial tight junction assembly. Participates in the phosphorylation of specific junctional components such as CTNND1 by stimulating the FYN and FER tyrosine kinases at cell-cell contacts. Upon T-cell stimulation by CXCL12, phosphorylates collapsin response mediator protein 2/DPYSL2 and induces T-cell migration. Participates in CD95L/FASLG signaling pathway and mediates AKT-mediated cell migration. Plays a role in cell cycle progression by phosphorylating the cyclin-dependent kinase 4/CDK4 thus regulating the G1 phase. Also involved in G2/M progression and cytokinesis. Catalyzes phosphorylation of organic cation transporter OCT2 which induces its transport activity (PubMed:26979622). {ECO:0000269|PubMed:11901164, ECO:0000269|PubMed:18479465, ECO:0000269|PubMed:19276087, ECO:0000269|PubMed:21566460, ECO:0000269|PubMed:21713032, ECO:0000269|PubMed:26979622}. |
P0DJD0 | RGPD1 | S758 | ochoa | RANBP2-like and GRIP domain-containing protein 1 (Ran-binding protein 2-like 6) (RanBP2-like 6) (RanBP2L6) | None |
P0DJD1 | RGPD2 | S766 | ochoa | RANBP2-like and GRIP domain-containing protein 2 (Ran-binding protein 2-like 2) (RanBP2-like 2) (RanBP2L2) | None |
P0DMU7 | CT45A6 | S103 | ochoa | Cancer/testis antigen family 45 member A6 (Cancer/testis antigen 45-6) (Cancer/testis antigen 45A6) | None |
P0DMU8 | CT45A5 | S103 | ochoa | Cancer/testis antigen family 45 member A5 (Cancer/testis antigen 45-5) (Cancer/testis antigen 45A5) | None |
P0DMV0 | CT45A7 | S103 | ochoa | Cancer/testis antigen family 45 member A7 (Cancer/testis antigen 45A7) | None |
P10398 | ARAF | S257 | ochoa|psp | Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) | Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}. |
P10398 | ARAF | S262 | psp | Serine/threonine-protein kinase A-Raf (EC 2.7.11.1) (Proto-oncogene A-Raf) (Proto-oncogene A-Raf-1) (Proto-oncogene Pks) | Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May also regulate the TOR signaling cascade. Phosphorylates PFKFB2 (PubMed:36402789). {ECO:0000269|PubMed:22609986, ECO:0000269|PubMed:36402789}.; FUNCTION: [Isoform 2]: Serves as a positive regulator of myogenic differentiation by inducing cell cycle arrest, the expression of myogenin and other muscle-specific proteins, and myotube formation. {ECO:0000269|PubMed:22609986}. |
P10721 | KIT | S931 | ochoa | Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) (Piebald trait protein) (PBT) (Proto-oncogene c-Kit) (Tyrosine-protein kinase Kit) (p145 c-kit) (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog) (CD antigen CD117) | Tyrosine-protein kinase that acts as a cell-surface receptor for the cytokine KITLG/SCF and plays an essential role in the regulation of cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and in melanogenesis. In response to KITLG/SCF binding, KIT can activate several signaling pathways. Phosphorylates PIK3R1, PLCG1, SH2B2/APS and CBL. Activates the AKT1 signaling pathway by phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase. Activated KIT also transmits signals via GRB2 and activation of RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1. Promotes activation of STAT family members STAT1, STAT3, STAT5A and STAT5B. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. KIT signaling is modulated by protein phosphatases, and by rapid internalization and degradation of the receptor. Activated KIT promotes phosphorylation of the protein phosphatases PTPN6/SHP-1 and PTPRU, and of the transcription factors STAT1, STAT3, STAT5A and STAT5B. Promotes phosphorylation of PIK3R1, CBL, CRK (isoform Crk-II), LYN, MAPK1/ERK2 and/or MAPK3/ERK1, PLCG1, SRC and SHC1. {ECO:0000269|PubMed:10397721, ECO:0000269|PubMed:12444928, ECO:0000269|PubMed:12511554, ECO:0000269|PubMed:12878163, ECO:0000269|PubMed:17904548, ECO:0000269|PubMed:19265199, ECO:0000269|PubMed:21135090, ECO:0000269|PubMed:21640708, ECO:0000269|PubMed:7520444, ECO:0000269|PubMed:9528781}. |
P11532 | DMD | S3537 | ochoa | Dystrophin | Anchors the extracellular matrix to the cytoskeleton via F-actin. Ligand for dystroglycan. Component of the dystrophin-associated glycoprotein complex which accumulates at the neuromuscular junction (NMJ) and at a variety of synapses in the peripheral and central nervous systems and has a structural function in stabilizing the sarcolemma. Also implicated in signaling events and synaptic transmission. {ECO:0000250|UniProtKB:P11531, ECO:0000269|PubMed:16710609}. |
P12270 | TPR | S2061 | ochoa | Nucleoprotein TPR (Megator) (NPC-associated intranuclear protein) (Translocated promoter region protein) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs, plays a role in the establishment of nuclear-peripheral chromatin compartmentalization in interphase, and in the mitotic spindle checkpoint signaling during mitosis. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with NUP153, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Negatively regulates both the association of CTE-containing mRNA with large polyribosomes and translation initiation. Does not play any role in Rev response element (RRE)-mediated export of unspliced mRNAs. Implicated in nuclear export of mRNAs transcribed from heat shock gene promoters; associates both with chromatin in the HSP70 promoter and with mRNAs transcribed from this promoter under stress-induced conditions. Modulates the nucleocytoplasmic transport of activated MAPK1/ERK2 and huntingtin/HTT and may serve as a docking site for the XPO1/CRM1-mediated nuclear export complex. According to some authors, plays a limited role in the regulation of nuclear protein export (PubMed:11952838, PubMed:22253824). Also plays a role as a structural and functional element of the perinuclear chromatin distribution; involved in the formation and/or maintenance of NPC-associated perinuclear heterochromatin exclusion zones (HEZs). Finally, acts as a spatial regulator of the spindle-assembly checkpoint (SAC) response ensuring a timely and effective recruitment of spindle checkpoint proteins like MAD1L1 and MAD2L1 to unattached kinetochore during the metaphase-anaphase transition before chromosome congression. Its N-terminus is involved in activation of oncogenic kinases. {ECO:0000269|PubMed:11952838, ECO:0000269|PubMed:15654337, ECO:0000269|PubMed:17897941, ECO:0000269|PubMed:18794356, ECO:0000269|PubMed:18981471, ECO:0000269|PubMed:19273613, ECO:0000269|PubMed:20133940, ECO:0000269|PubMed:20407419, ECO:0000269|PubMed:21613532, ECO:0000269|PubMed:22253824, ECO:0000269|PubMed:9864356}. |
P13807 | GYS1 | T715 | ochoa | Glycogen [starch] synthase, muscle (EC 2.4.1.11) (Glycogen synthase 1) | Glycogen synthase participates in the glycogen biosynthetic process along with glycogenin and glycogen branching enzyme. Extends the primer composed of a few glucose units formed by glycogenin by adding new glucose units to it. In this context, glycogen synthase transfers the glycosyl residue from UDP-Glc to the non-reducing end of alpha-1,4-glucan. {ECO:0000269|PubMed:35835870}. |
P14859 | POU2F1 | S358 | ochoa | POU domain, class 2, transcription factor 1 (NF-A1) (Octamer-binding protein 1) (Oct-1) (Octamer-binding transcription factor 1) (OTF-1) | Transcription factor that binds to the octamer motif (5'-ATTTGCAT-3') and activates the promoters of the genes for some small nuclear RNAs (snRNA) and of genes such as those for histone H2B and immunoglobulins. Modulates transcription transactivation by NR3C1, AR and PGR. {ECO:0000269|PubMed:10480874, ECO:0000269|PubMed:1684878, ECO:0000269|PubMed:7859290}.; FUNCTION: (Microbial infection) In case of human herpes simplex virus (HSV) infection, POU2F1 forms a multiprotein-DNA complex with the viral transactivator protein VP16 and HCFC1 thereby enabling the transcription of the viral immediate early genes. {ECO:0000305|PubMed:12826401}. |
P15407 | FOSL1 | S253 | ochoa | Fos-related antigen 1 (FRA-1) | None |
P15884 | TCF4 | S54 | psp | Transcription factor 4 (TCF-4) (Class B basic helix-loop-helix protein 19) (bHLHb19) (Immunoglobulin transcription factor 2) (ITF-2) (SL3-3 enhancer factor 2) (SEF-2) | Transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5-motif. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3'). Binds to the E-box present in the somatostatin receptor 2 initiator element (SSTR2-INR) to activate transcription (By similarity). Preferentially binds to either 5'-ACANNTGT-3' or 5'-CCANNTGG-3'. {ECO:0000250}. |
P18846 | ATF1 | S186 | ochoa | Cyclic AMP-dependent transcription factor ATF-1 (cAMP-dependent transcription factor ATF-1) (Activating transcription factor 1) (Protein TREB36) | This protein binds the cAMP response element (CRE) (consensus: 5'-GTGACGT[AC][AG]-3'), a sequence present in many viral and cellular promoters. Binds to the Tax-responsive element (TRE) of HTLV-I. Mediates PKA-induced stimulation of CRE-reporter genes. Represses the expression of FTH1 and other antioxidant detoxification genes. Triggers cell proliferation and transformation. {ECO:0000269|PubMed:18794154, ECO:0000269|PubMed:20980392}. |
P19484 | TFEB | S97 | ochoa | Transcription factor EB (Class E basic helix-loop-helix protein 35) (bHLHe35) | Transcription factor that acts as a master regulator of lysosomal biogenesis, autophagy, lysosomal exocytosis, lipid catabolism, energy metabolism and immune response (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:30120233, PubMed:31672913, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823, PubMed:36749723, PubMed:37079666). Specifically recognizes and binds E-box sequences (5'-CANNTG-3'); efficient DNA-binding requires dimerization with itself or with another MiT/TFE family member such as TFE3 or MITF (PubMed:1748288, PubMed:19556463, PubMed:29146937). Involved in the cellular response to amino acid availability by acting downstream of MTOR: in the presence of nutrients, TFEB phosphorylation by MTOR promotes its cytosolic retention and subsequent inactivation (PubMed:21617040, PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Upon starvation or lysosomal stress, inhibition of MTOR induces TFEB dephosphorylation, resulting in nuclear localization and transcription factor activity (PubMed:22343943, PubMed:22576015, PubMed:22692423, PubMed:25720963, PubMed:32612235, PubMed:32753672, PubMed:35662396, PubMed:36697823). Specifically recognizes and binds the CLEAR-box sequence (5'-GTCACGTGAC-3') present in the regulatory region of many lysosomal genes, leading to activate their expression, thereby playing a central role in expression of lysosomal genes (PubMed:19556463, PubMed:22692423). Regulates lysosomal positioning in response to nutrient deprivation by promoting the expression of PIP4P1 (PubMed:29146937). Acts as a positive regulator of autophagy by promoting expression of genes involved in autophagy (PubMed:21617040, PubMed:22576015, PubMed:23434374, PubMed:27278822). In association with TFE3, activates the expression of CD40L in T-cells, thereby playing a role in T-cell-dependent antibody responses in activated CD4(+) T-cells and thymus-dependent humoral immunity (By similarity). Specifically recognizes the gamma-E3 box, a subset of E-boxes, present in the heavy-chain immunoglobulin enhancer (PubMed:2115126). Plays a role in the signal transduction processes required for normal vascularization of the placenta (By similarity). Involved in the immune response to infection by the bacteria S.aureus, S.typhimurium or S.enterica: infection promotes itaconate production, leading to alkylation, resulting in nuclear localization and transcription factor activity (PubMed:35662396). Itaconate-mediated alkylation activates TFEB-dependent lysosomal biogenesis, facilitating the bacteria clearance during the antibacterial innate immune response (PubMed:35662396). In association with ACSS2, promotes the expression of genes involved in lysosome biogenesis and both autophagy upon glucose deprivation (PubMed:28552616). {ECO:0000250|UniProtKB:Q9R210, ECO:0000269|PubMed:1748288, ECO:0000269|PubMed:19556463, ECO:0000269|PubMed:2115126, ECO:0000269|PubMed:21617040, ECO:0000269|PubMed:22343943, ECO:0000269|PubMed:22576015, ECO:0000269|PubMed:22692423, ECO:0000269|PubMed:23434374, ECO:0000269|PubMed:25720963, ECO:0000269|PubMed:27278822, ECO:0000269|PubMed:28552616, ECO:0000269|PubMed:29146937, ECO:0000269|PubMed:30120233, ECO:0000269|PubMed:31672913, ECO:0000269|PubMed:32612235, ECO:0000269|PubMed:32753672, ECO:0000269|PubMed:35662396, ECO:0000269|PubMed:36697823, ECO:0000269|PubMed:36749723, ECO:0000269|PubMed:37079666}. |
P25054 | APC | S2461 | ochoa | Adenomatous polyposis coli protein (Protein APC) (Deleted in polyposis 2.5) | Tumor suppressor. Promotes rapid degradation of CTNNB1 and participates in Wnt signaling as a negative regulator. APC activity is correlated with its phosphorylation state. Activates the GEF activity of SPATA13 and ARHGEF4. Plays a role in hepatocyte growth factor (HGF)-induced cell migration. Required for MMP9 up-regulation via the JNK signaling pathway in colorectal tumor cells. Associates with both microtubules and actin filaments, components of the cytoskeleton (PubMed:17293347). Plays a role in mediating the organization of F-actin into ordered bundles (PubMed:17293347). Functions downstream of Rho GTPases and DIAPH1 to selectively stabilize microtubules (By similarity). Acts as a mediator of ERBB2-dependent stabilization of microtubules at the cell cortex. It is required for the localization of MACF1 to the cell membrane and this localization of MACF1 is critical for its function in microtubule stabilization. {ECO:0000250|UniProtKB:Q61315, ECO:0000269|PubMed:10947987, ECO:0000269|PubMed:17293347, ECO:0000269|PubMed:17599059, ECO:0000269|PubMed:19151759, ECO:0000269|PubMed:19893577, ECO:0000269|PubMed:20937854}. |
P26045 | PTPN3 | S457 | ochoa | Tyrosine-protein phosphatase non-receptor type 3 (EC 3.1.3.48) (Protein-tyrosine phosphatase H1) (PTP-H1) | May act at junctions between the membrane and the cytoskeleton. Possesses tyrosine phosphatase activity. |
P27987 | ITPKB | S31 | ochoa | Inositol-trisphosphate 3-kinase B (EC 2.7.1.127) (Inositol 1,4,5-trisphosphate 3-kinase B) (IP3 3-kinase B) (IP3K B) (InsP 3-kinase B) | Catalyzes the phosphorylation of 1D-myo-inositol 1,4,5-trisphosphate (InsP3) into 1D-myo-inositol 1,3,4,5-tetrakisphosphate and participates to the regulation of calcium homeostasis. {ECO:0000269|PubMed:11846419, ECO:0000269|PubMed:12747803, ECO:0000269|PubMed:1654894}. |
P29590 | PML | S493 | ochoa | Protein PML (E3 SUMO-protein ligase PML) (EC 2.3.2.-) (Promyelocytic leukemia protein) (RING finger protein 71) (RING-type E3 SUMO transferase PML) (Tripartite motif-containing protein 19) (TRIM19) | Functions via its association with PML-nuclear bodies (PML-NBs) in a wide range of important cellular processes, including tumor suppression, transcriptional regulation, apoptosis, senescence, DNA damage response, and viral defense mechanisms. Acts as the scaffold of PML-NBs allowing other proteins to shuttle in and out, a process which is regulated by SUMO-mediated modifications and interactions. Inhibits EIF4E-mediated mRNA nuclear export by reducing EIF4E affinity for the 5' 7-methylguanosine (m7G) cap of target mRNAs (PubMed:11500381, PubMed:11575918, PubMed:18391071). Isoform PML-4 has a multifaceted role in the regulation of apoptosis and growth suppression: activates RB1 and inhibits AKT1 via interactions with PP1 and PP2A phosphatases respectively, negatively affects the PI3K pathway by inhibiting MTOR and activating PTEN, and positively regulates p53/TP53 by acting at different levels (by promoting its acetylation and phosphorylation and by inhibiting its MDM2-dependent degradation). Isoform PML-4 also: acts as a transcriptional repressor of TBX2 during cellular senescence and the repression is dependent on a functional RBL2/E2F4 repressor complex, regulates double-strand break repair in gamma-irradiation-induced DNA damage responses via its interaction with WRN, acts as a negative regulator of telomerase by interacting with TERT, and regulates PER2 nuclear localization and circadian function. Isoform PML-6 inhibits specifically the activity of the tetrameric form of PKM. The nuclear isoforms (isoform PML-1, isoform PML-2, isoform PML-3, isoform PML-4 and isoform PML-5) in concert with SATB1 are involved in local chromatin-loop remodeling and gene expression regulation at the MHC-I locus. Isoform PML-2 is required for efficient IFN-gamma induced MHC II gene transcription via regulation of CIITA. Cytoplasmic PML is involved in the regulation of the TGF-beta signaling pathway. PML also regulates transcription activity of ELF4 and can act as an important mediator for TNF-alpha- and IFN-alpha-mediated inhibition of endothelial cell network formation and migration. {ECO:0000269|PubMed:11500381, ECO:0000269|PubMed:11575918, ECO:0000269|PubMed:18391071}.; FUNCTION: Exhibits antiviral activity against both DNA and RNA viruses. The antiviral activity can involve one or several isoform(s) and can be enhanced by the permanent PML-NB-associated protein DAXX or by the recruitment of p53/TP53 within these structures. Isoform PML-4 restricts varicella zoster virus (VZV) via sequestration of virion capsids in PML-NBs thereby preventing their nuclear egress and inhibiting formation of infectious virus particles. The sumoylated isoform PML-4 restricts rabies virus by inhibiting viral mRNA and protein synthesis. The cytoplasmic isoform PML-14 can restrict herpes simplex virus-1 (HHV-1) replication by sequestering the viral E3 ubiquitin-protein ligase ICP0 in the cytoplasm. Isoform PML-6 shows restriction activity towards human cytomegalovirus (HHV-5) and influenza A virus strains PR8(H1N1) and ST364(H3N2). Sumoylated isoform PML-4 and isoform PML-12 show antiviral activity against encephalomyocarditis virus (EMCV) by promoting nuclear sequestration of viral polymerase (P3D-POL) within PML NBs. Isoform PML-3 exhibits antiviral activity against poliovirus by inducing apoptosis in infected cells through the recruitment and the activation of p53/TP53 in the PML-NBs. Isoform PML-3 represses human foamy virus (HFV) transcription by complexing the HFV transactivator, bel1/tas, preventing its binding to viral DNA. PML may positively regulate infectious hepatitis C viral (HCV) production and isoform PML-2 may enhance adenovirus transcription. Functions as an E3 SUMO-protein ligase that sumoylates (HHV-5) immediate early protein IE1, thereby participating in the antiviral response (PubMed:20972456, PubMed:28250117). Isoforms PML-3 and PML-6 display the highest levels of sumoylation activity (PubMed:20972456, PubMed:28250117). {ECO:0000269|PubMed:20972456, ECO:0000269|PubMed:28250117}. |
P30260 | CDC27 | S352 | ochoa | Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
P30260 | CDC27 | S357 | ochoa | Cell division cycle protein 27 homolog (Anaphase-promoting complex subunit 3) (APC3) (CDC27 homolog) (CDC27Hs) (H-NUC) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
P30304 | CDC25A | S76 | psp | M-phase inducer phosphatase 1 (EC 3.1.3.48) (Dual specificity phosphatase Cdc25A) | Tyrosine protein phosphatase which functions as a dosage-dependent inducer of mitotic progression (PubMed:12676925, PubMed:14559997, PubMed:1836978, PubMed:20360007). Directly dephosphorylates CDK1 and stimulates its kinase activity (PubMed:20360007). Also dephosphorylates CDK2 in complex with cyclin-E, in vitro (PubMed:20360007). {ECO:0000269|PubMed:12676925, ECO:0000269|PubMed:14559997, ECO:0000269|PubMed:1836978, ECO:0000269|PubMed:20360007}. |
P31321 | PRKAR1B | S71 | ochoa | cAMP-dependent protein kinase type I-beta regulatory subunit | Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. {ECO:0000269|PubMed:20819953}. |
P35251 | RFC1 | S1076 | ochoa | Replication factor C subunit 1 (Activator 1 140 kDa subunit) (A1 140 kDa subunit) (Activator 1 large subunit) (Activator 1 subunit 1) (DNA-binding protein PO-GA) (Replication factor C 140 kDa subunit) (RF-C 140 kDa subunit) (RFC140) (Replication factor C large subunit) | Subunit of the replication factor C (RFC) complex which acts during elongation of primed DNA templates by DNA polymerases delta and epsilon, and is necessary for ATP-dependent loading of proliferating cell nuclear antigen (PCNA) onto primed DNA (PubMed:9488738). This subunit binds to the primer-template junction. Binds the PO-B transcription element as well as other GA rich DNA sequences. Can bind single- or double-stranded DNA. {ECO:0000269|PubMed:8999859, ECO:0000269|PubMed:9488738}. |
P35520 | CBS | S61 | ochoa | Cystathionine beta-synthase (EC 4.2.1.22) (Beta-thionase) (Serine sulfhydrase) | Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:20506325, PubMed:23974653, PubMed:23981774). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity). {ECO:0000250|UniProtKB:P32232, ECO:0000269|PubMed:20506325, ECO:0000269|PubMed:23974653, ECO:0000269|PubMed:23981774}. |
P35568 | IRS1 | S604 | ochoa | Insulin receptor substrate 1 (IRS-1) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:7541045, PubMed:33991522, PubMed:38625937). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:19639489). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:11171109, PubMed:8265614). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:11171109, ECO:0000269|PubMed:16878150, ECO:0000269|PubMed:19639489, ECO:0000269|PubMed:38625937, ECO:0000269|PubMed:7541045, ECO:0000269|PubMed:8265614}. |
P35606 | COPB2 | S847 | ochoa | Coatomer subunit beta' (Beta'-coat protein) (Beta'-COP) (p102) | The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. {ECO:0000269|PubMed:34450031}.; FUNCTION: This coatomer complex protein, essential for Golgi budding and vesicular trafficking, is a selective binding protein (RACK) for protein kinase C, epsilon type. It binds to Golgi membranes in a GTP-dependent manner (By similarity). {ECO:0000250}. |
P39880 | CUX1 | S875 | ochoa | Homeobox protein cut-like 1 (CCAAT displacement protein) (CDP) (CDP/Cux p200) (Homeobox protein cux-1) [Cleaved into: CDP/Cux p110] | Transcription factor involved in the control of neuronal differentiation in the brain. Regulates dendrite development and branching, and dendritic spine formation in cortical layers II-III. Also involved in the control of synaptogenesis. In addition, it has probably a broad role in mammalian development as a repressor of developmentally regulated gene expression. May act by preventing binding of positively-activing CCAAT factors to promoters. Component of nf-munr repressor; binds to the matrix attachment regions (MARs) (5' and 3') of the immunoglobulin heavy chain enhancer. Represses T-cell receptor (TCR) beta enhancer function by binding to MARbeta, an ATC-rich DNA sequence located upstream of the TCR beta enhancer. Binds to the TH enhancer; may require the basic helix-loop-helix protein TCF4 as a coactivator. {ECO:0000250|UniProtKB:P53564}.; FUNCTION: [CDP/Cux p110]: Plays a role in cell cycle progression, in particular at the G1/S transition. As cells progress into S phase, a fraction of CUX1 molecules is proteolytically processed into N-terminally truncated proteins of 110 kDa. While CUX1 only transiently binds to DNA and carries the CCAAT-displacement activity, CDP/Cux p110 makes a stable interaction with DNA and stimulates expression of genes such as POLA1. {ECO:0000269|PubMed:15099520}. |
P40337 | VHL | S68 | ochoa|psp | von Hippel-Lindau disease tumor suppressor (Protein G7) (pVHL) | Involved in the ubiquitination and subsequent proteasomal degradation via the von Hippel-Lindau ubiquitination complex (PubMed:10944113, PubMed:17981124, PubMed:19584355). Seems to act as a target recruitment subunit in the E3 ubiquitin ligase complex and recruits hydroxylated hypoxia-inducible factor (HIF) under normoxic conditions (PubMed:10944113, PubMed:17981124). Involved in transcriptional repression through interaction with HIF1A, HIF1AN and histone deacetylases (PubMed:10944113, PubMed:17981124). Ubiquitinates, in an oxygen-responsive manner, ADRB2 (PubMed:19584355). Acts as a negative regulator of mTORC1 by promoting ubiquitination and degradation of RPTOR (PubMed:34290272). {ECO:0000269|PubMed:10944113, ECO:0000269|PubMed:17981124, ECO:0000269|PubMed:19584355, ECO:0000269|PubMed:34290272}. |
P42331 | ARHGAP25 | S395 | ochoa | Rho GTPase-activating protein 25 (Rho-type GTPase-activating protein 25) | GTPase activator for the Rho-type GTPases by converting them to an inactive GDP-bound state. {ECO:0000250}. |
P42695 | NCAPD3 | S1372 | ochoa | Condensin-2 complex subunit D3 (Non-SMC condensin II complex subunit D3) (hCAP-D3) | Regulatory subunit of the condensin-2 complex, a complex which establishes mitotic chromosome architecture and is involved in physical rigidity of the chromatid axis (PubMed:14532007). May promote the resolution of double-strand DNA catenanes (intertwines) between sister chromatids. Condensin-mediated compaction likely increases tension in catenated sister chromatids, providing directionality for type II topoisomerase-mediated strand exchanges toward chromatid decatenation. Specifically required for decatenation of centromeric ultrafine DNA bridges during anaphase. Early in neurogenesis, may play an essential role to ensure accurate mitotic chromosome condensation in neuron stem cells, ultimately affecting neuron pool and cortex size (PubMed:27737959). {ECO:0000269|PubMed:14532007, ECO:0000269|PubMed:27737959}. |
P43403 | ZAP70 | S289 | ochoa | Tyrosine-protein kinase ZAP-70 (EC 2.7.10.2) (70 kDa zeta-chain associated protein) (Syk-related tyrosine kinase) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates motility, adhesion and cytokine expression of mature T-cells, as well as thymocyte development. Also contributes to the development and activation of primary B-lymphocytes. When antigen presenting cells (APC) activate T-cell receptor (TCR), a serie of phosphorylations lead to the recruitment of ZAP70 to the doubly phosphorylated TCR component CD247/CD3Z through ITAM motif at the plasma membrane. This recruitment serves to localization to the stimulated TCR and to relieve its autoinhibited conformation. Release of ZAP70 active conformation is further stabilized by phosphorylation mediated by LCK. Subsequently, ZAP70 phosphorylates at least 2 essential adapter proteins: LAT and LCP2. In turn, a large number of signaling molecules are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation. Furthermore, ZAP70 controls cytoskeleton modifications, adhesion and mobility of T-lymphocytes, thus ensuring correct delivery of effectors to the APC. ZAP70 is also required for TCR-CD247/CD3Z internalization and degradation through interaction with the E3 ubiquitin-protein ligase CBL and adapter proteins SLA and SLA2. Thus, ZAP70 regulates both T-cell activation switch on and switch off by modulating TCR expression at the T-cell surface. During thymocyte development, ZAP70 promotes survival and cell-cycle progression of developing thymocytes before positive selection (when cells are still CD4/CD8 double negative). Additionally, ZAP70-dependent signaling pathway may also contribute to primary B-cells formation and activation through B-cell receptor (BCR). {ECO:0000269|PubMed:11353765, ECO:0000269|PubMed:12051764, ECO:0000269|PubMed:1423621, ECO:0000269|PubMed:20135127, ECO:0000269|PubMed:26903241, ECO:0000269|PubMed:38614099, ECO:0000269|PubMed:8124727, ECO:0000269|PubMed:8702662, ECO:0000269|PubMed:9489702}. |
P43405 | SYK | S295 | psp | Tyrosine-protein kinase SYK (EC 2.7.10.2) (Spleen tyrosine kinase) (p72-Syk) | Non-receptor tyrosine kinase which mediates signal transduction downstream of a variety of transmembrane receptors including classical immunoreceptors like the B-cell receptor (BCR). Regulates several biological processes including innate and adaptive immunity, cell adhesion, osteoclast maturation, platelet activation and vascular development (PubMed:12387735, PubMed:33782605). Assembles into signaling complexes with activated receptors at the plasma membrane via interaction between its SH2 domains and the receptor tyrosine-phosphorylated ITAM domains. The association with the receptor can also be indirect and mediated by adapter proteins containing ITAM or partial hemITAM domains. The phosphorylation of the ITAM domains is generally mediated by SRC subfamily kinases upon engagement of the receptor. More rarely signal transduction via SYK could be ITAM-independent. Direct downstream effectors phosphorylated by SYK include DEPTOR, VAV1, PLCG1, PI-3-kinase, LCP2 and BLNK (PubMed:12456653, PubMed:15388330, PubMed:34634301, PubMed:8657103). Initially identified as essential in B-cell receptor (BCR) signaling, it is necessary for the maturation of B-cells most probably at the pro-B to pre-B transition (PubMed:12456653). Activated upon BCR engagement, it phosphorylates and activates BLNK an adapter linking the activated BCR to downstream signaling adapters and effectors. It also phosphorylates and activates PLCG1 and the PKC signaling pathway. It also phosphorylates BTK and regulates its activity in B-cell antigen receptor (BCR)-coupled signaling. In addition to its function downstream of BCR also plays a role in T-cell receptor signaling. Also plays a crucial role in the innate immune response to fungal, bacterial and viral pathogens. It is for instance activated by the membrane lectin CLEC7A. Upon stimulation by fungal proteins, CLEC7A together with SYK activates immune cells inducing the production of ROS. Also activates the inflammasome and NF-kappa-B-mediated transcription of chemokines and cytokines in presence of pathogens. Regulates neutrophil degranulation and phagocytosis through activation of the MAPK signaling cascade (By similarity). Required for the stimulation of neutrophil phagocytosis by IL15 (PubMed:15123770). Also mediates the activation of dendritic cells by cell necrosis stimuli. Also involved in mast cells activation. Involved in interleukin-3/IL3-mediated signaling pathway in basophils (By similarity). Also functions downstream of receptors mediating cell adhesion (PubMed:12387735). Relays for instance, integrin-mediated neutrophils and macrophages activation and P-selectin receptor/SELPG-mediated recruitment of leukocytes to inflammatory loci. Also plays a role in non-immune processes. It is for instance involved in vascular development where it may regulate blood and lymphatic vascular separation. It is also required for osteoclast development and function. Functions in the activation of platelets by collagen, mediating PLCG2 phosphorylation and activation. May be coupled to the collagen receptor by the ITAM domain-containing FCER1G. Also activated by the membrane lectin CLEC1B that is required for activation of platelets by PDPN/podoplanin. Involved in platelet adhesion being activated by ITGB3 engaged by fibrinogen. Together with CEACAM20, enhances production of the cytokine CXCL8/IL-8 via the NFKB pathway and may thus have a role in the intestinal immune response (By similarity). {ECO:0000250|UniProtKB:P48025, ECO:0000269|PubMed:12387735, ECO:0000269|PubMed:12456653, ECO:0000269|PubMed:15123770, ECO:0000269|PubMed:15388330, ECO:0000269|PubMed:19909739, ECO:0000269|PubMed:33782605, ECO:0000269|PubMed:34634301, ECO:0000269|PubMed:8657103, ECO:0000269|PubMed:9535867}. |
P46821 | MAP1B | S1869 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P46821 | MAP1B | S2086 | ochoa | Microtubule-associated protein 1B (MAP-1B) [Cleaved into: MAP1B heavy chain; MAP1 light chain LC1] | Facilitates tyrosination of alpha-tubulin in neuronal microtubules (By similarity). Phosphorylated MAP1B is required for proper microtubule dynamics and plays a role in the cytoskeletal changes that accompany neuronal differentiation and neurite extension (PubMed:33268592). Possibly MAP1B binds to at least two tubulin subunits in the polymer, and this bridging of subunits might be involved in nucleating microtubule polymerization and in stabilizing microtubules. Acts as a positive cofactor in DAPK1-mediated autophagic vesicle formation and membrane blebbing. {ECO:0000250, ECO:0000269|PubMed:18195017, ECO:0000269|PubMed:33268592}. |
P48681 | NES | S346 | ochoa | Nestin | Required for brain and eye development. Promotes the disassembly of phosphorylated vimentin intermediate filaments (IF) during mitosis and may play a role in the trafficking and distribution of IF proteins and other cellular factors to daughter cells during progenitor cell division. Required for survival, renewal and mitogen-stimulated proliferation of neural progenitor cells (By similarity). {ECO:0000250}. |
P49790 | NUP153 | S607 | ochoa | Nuclear pore complex protein Nup153 (153 kDa nucleoporin) (Nucleoporin Nup153) | Component of the nuclear pore complex (NPC), a complex required for the trafficking across the nuclear envelope. Functions as a scaffolding element in the nuclear phase of the NPC essential for normal nucleocytoplasmic transport of proteins and mRNAs. Involved in the quality control and retention of unspliced mRNAs in the nucleus; in association with TPR, regulates the nuclear export of unspliced mRNA species bearing constitutive transport element (CTE) in a NXF1- and KHDRBS1-independent manner. Mediates TPR anchoring to the nuclear membrane at NPC. The repeat-containing domain may be involved in anchoring other components of the NPC to the pore membrane. Possible DNA-binding subunit of the nuclear pore complex (NPC). {ECO:0000269|PubMed:12802065, ECO:0000269|PubMed:15229283, ECO:0000269|PubMed:22253824}.; FUNCTION: (Microbial infection) Interacts with HIV-1 caspid protein P24 and thereby promotes the integration of the virus in the nucleus of non-dividing cells (in vitro). {ECO:0000269|PubMed:23523133, ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:29997211}.; FUNCTION: (Microbial infection) Binds HIV-2 protein vpx and thereby promotes the nuclear translocation of the lentiviral genome (in vitro). {ECO:0000269|PubMed:24130490, ECO:0000269|PubMed:31913756}. |
P49792 | RANBP2 | S767 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49792 | RANBP2 | S2239 | ochoa | E3 SUMO-protein ligase RanBP2 (EC 2.3.2.-) (358 kDa nucleoporin) (Nuclear pore complex protein Nup358) (Nucleoporin Nup358) (Ran-binding protein 2) (RanBP2) (p270) | E3 SUMO-protein ligase which facilitates SUMO1 and SUMO2 conjugation by UBE2I (PubMed:11792325, PubMed:12032081, PubMed:15378033, PubMed:15931224, PubMed:22194619). Involved in transport factor (Ran-GTP, karyopherin)-mediated protein import via the F-G repeat-containing domain which acts as a docking site for substrates (PubMed:7775481). Binds single-stranded RNA (in vitro) (PubMed:7775481). May bind DNA (PubMed:7775481). Component of the nuclear export pathway (PubMed:10078529). Specific docking site for the nuclear export factor exportin-1 (PubMed:10078529). Inhibits EIF4E-dependent mRNA export (PubMed:22902403). Sumoylates PML at 'Lys-490' which is essential for the proper assembly of PML-NB (PubMed:22155184). Recruits BICD2 to the nuclear envelope and cytoplasmic stacks of nuclear pore complex known as annulate lamellae during G2 phase of cell cycle (PubMed:20386726). Probable inactive PPIase with no peptidyl-prolyl cis-trans isomerase activity (PubMed:20676357, PubMed:23353830). {ECO:0000269|PubMed:11792325, ECO:0000269|PubMed:12032081, ECO:0000269|PubMed:15378033, ECO:0000269|PubMed:15931224, ECO:0000269|PubMed:20386726, ECO:0000269|PubMed:20676357, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22194619, ECO:0000269|PubMed:22902403, ECO:0000269|PubMed:23353830, ECO:0000269|PubMed:7775481, ECO:0000303|PubMed:10078529}. |
P49916 | LIG3 | S230 | ochoa | DNA ligase 3 (EC 6.5.1.1) (DNA ligase III) (Polydeoxyribonucleotide synthase [ATP] 3) | Isoform 3 functions as a heterodimer with DNA-repair protein XRCC1 in the nucleus and can correct defective DNA strand-break repair and sister chromatid exchange following treatment with ionizing radiation and alkylating agents. Isoform 1 is targeted to mitochondria, where it functions as a DNA ligase in mitochondrial base-excision DNA repair (PubMed:10207110, PubMed:24674627). {ECO:0000269|PubMed:10207110, ECO:0000269|PubMed:24674627}. |
P50616 | TOB1 | S152 | ochoa|psp | Protein Tob1 (Transducer of erbB-2 1) | Anti-proliferative protein; the function is mediated by association with deadenylase subunits of the CCR4-NOT complex (PubMed:23236473, PubMed:8632892). Mediates CPEB3-accelerated mRNA deadenylation by binding to CPEB3 and recruiting CNOT7 which leads to target mRNA deadenylation and decay (PubMed:21336257). {ECO:0000269|PubMed:21336257, ECO:0000269|PubMed:23236473, ECO:0000269|PubMed:8632892}. |
P50851 | LRBA | S1072 | ochoa | Lipopolysaccharide-responsive and beige-like anchor protein (Beige-like protein) (CDC4-like protein) | Involved in coupling signal transduction and vesicle trafficking to enable polarized secretion and/or membrane deposition of immune effector molecules (By similarity). Involved in phagophore growth during mitophagy by regulating ATG9A trafficking to mitochondria (PubMed:33773106). {ECO:0000250|UniProtKB:Q9ESE1, ECO:0000269|PubMed:33773106}. |
P51608 | MECP2 | S68 | ochoa | Methyl-CpG-binding protein 2 (MeCp-2 protein) (MeCp2) | Chromosomal protein that binds to methylated DNA. It can bind specifically to a single methyl-CpG pair. It is not influenced by sequences flanking the methyl-CpGs. Mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A. Binds both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC)-containing DNA, with a preference for 5-methylcytosine (5mC). {ECO:0000250|UniProtKB:Q9Z2D6}. |
P51810 | GPR143 | S331 | ochoa | G-protein coupled receptor 143 (Ocular albinism type 1 protein) | Receptor for tyrosine, L-DOPA and dopamine. After binding to L-DOPA, stimulates Ca(2+) influx into the cytoplasm, increases secretion of the neurotrophic factor SERPINF1 and relocalizes beta arrestin at the plasma membrane; this ligand-dependent signaling occurs through a G(q)-mediated pathway in melanocytic cells. Its activity is mediated by G proteins which activate the phosphoinositide signaling pathway. Also plays a role as an intracellular G protein-coupled receptor involved in melanosome biogenesis, organization and transport. {ECO:0000269|PubMed:10471510, ECO:0000269|PubMed:16524428, ECO:0000269|PubMed:18697795, ECO:0000269|PubMed:18828673, ECO:0000269|PubMed:19717472}. |
P52701 | MSH6 | S79 | ochoa | DNA mismatch repair protein Msh6 (hMSH6) (G/T mismatch-binding protein) (GTBP) (GTMBP) (MutS protein homolog 6) (MutS-alpha 160 kDa subunit) (p160) | Component of the post-replicative DNA mismatch repair system (MMR). Heterodimerizes with MSH2 to form MutS alpha, which binds to DNA mismatches thereby initiating DNA repair. When bound, MutS alpha bends the DNA helix and shields approximately 20 base pairs, and recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. After mismatch binding, forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. Recruited on chromatin in G1 and early S phase via its PWWP domain that specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. {ECO:0000269|PubMed:10078208, ECO:0000269|PubMed:10660545, ECO:0000269|PubMed:15064730, ECO:0000269|PubMed:21120944, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:9564049, ECO:0000269|PubMed:9822679, ECO:0000269|PubMed:9822680}. |
P53814 | SMTN | S502 | ochoa | Smoothelin | Structural protein of the cytoskeleton. |
P54296 | MYOM2 | S555 | ochoa | Myomesin-2 (165 kDa connectin-associated protein) (165 kDa titin-associated protein) (M-protein) (Myomesin family member 2) | Major component of the vertebrate myofibrillar M band. Binds myosin, titin, and light meromyosin. This binding is dose dependent. |
P67809 | YBX1 | S165 | ochoa|psp | Y-box-binding protein 1 (YB-1) (CCAAT-binding transcription factor I subunit A) (CBF-A) (DNA-binding protein B) (DBPB) (Enhancer factor I subunit A) (EFI-A) (Nuclease-sensitive element-binding protein 1) (Y-box transcription factor) | DNA- and RNA-binding protein involved in various processes, such as translational repression, RNA stabilization, mRNA splicing, DNA repair and transcription regulation (PubMed:10817758, PubMed:11698476, PubMed:14718551, PubMed:18809583, PubMed:31358969, PubMed:8188694). Predominantly acts as a RNA-binding protein: binds preferentially to the 5'-[CU]CUGCG-3' RNA motif and specifically recognizes mRNA transcripts modified by C5-methylcytosine (m5C) (PubMed:19561594, PubMed:31358969). Promotes mRNA stabilization: acts by binding to m5C-containing mRNAs and recruiting the mRNA stability maintainer ELAVL1, thereby preventing mRNA decay (PubMed:10817758, PubMed:11698476, PubMed:31358969). Component of the CRD-mediated complex that promotes MYC mRNA stability (PubMed:19029303). Contributes to the regulation of translation by modulating the interaction between the mRNA and eukaryotic initiation factors (By similarity). Plays a key role in RNA composition of extracellular exosomes by defining the sorting of small non-coding RNAs, such as tRNAs, Y RNAs, Vault RNAs and miRNAs (PubMed:27559612, PubMed:29073095). Probably sorts RNAs in exosomes by recognizing and binding C5-methylcytosine (m5C)-containing RNAs (PubMed:28341602, PubMed:29073095). Acts as a key effector of epidermal progenitors by preventing epidermal progenitor senescence: acts by regulating the translation of a senescence-associated subset of cytokine mRNAs, possibly by binding to m5C-containing mRNAs (PubMed:29712925). Also involved in pre-mRNA alternative splicing regulation: binds to splice sites in pre-mRNA and regulates splice site selection (PubMed:12604611). Binds to TSC22D1 transcripts, thereby inhibiting their translation and negatively regulating TGF-beta-mediated transcription of COL1A2 (By similarity). Also able to bind DNA: regulates transcription of the multidrug resistance gene MDR1 is enhanced in presence of the APEX1 acetylated form at 'Lys-6' and 'Lys-7' (PubMed:18809583). Binds to promoters that contain a Y-box (5'-CTGATTGGCCAA-3'), such as MDR1 and HLA class II genes (PubMed:18809583, PubMed:8188694). Promotes separation of DNA strands that contain mismatches or are modified by cisplatin (PubMed:14718551). Has endonucleolytic activity and can introduce nicks or breaks into double-stranded DNA, suggesting a role in DNA repair (PubMed:14718551). The secreted form acts as an extracellular mitogen and stimulates cell migration and proliferation (PubMed:19483673). {ECO:0000250|UniProtKB:P62960, ECO:0000250|UniProtKB:Q28618, ECO:0000269|PubMed:10817758, ECO:0000269|PubMed:11698476, ECO:0000269|PubMed:12604611, ECO:0000269|PubMed:14718551, ECO:0000269|PubMed:18809583, ECO:0000269|PubMed:19029303, ECO:0000269|PubMed:19483673, ECO:0000269|PubMed:19561594, ECO:0000269|PubMed:27559612, ECO:0000269|PubMed:28341602, ECO:0000269|PubMed:29073095, ECO:0000269|PubMed:29712925, ECO:0000269|PubMed:31358969, ECO:0000269|PubMed:8188694}. |
P78312 | FAM193A | S381 | ochoa | Protein FAM193A (Protein IT14) | None |
P98174 | FGD1 | S703 | ochoa | FYVE, RhoGEF and PH domain-containing protein 1 (Faciogenital dysplasia 1 protein) (Rho/Rac guanine nucleotide exchange factor FGD1) (Rho/Rac GEF) (Zinc finger FYVE domain-containing protein 3) | Activates CDC42, a member of the Ras-like family of Rho- and Rac proteins, by exchanging bound GDP for free GTP. Plays a role in regulating the actin cytoskeleton and cell shape. {ECO:0000269|PubMed:8969170}. |
Q01196 | RUNX1 | S423 | ochoa | Runt-related transcription factor 1 (Acute myeloid leukemia 1 protein) (Core-binding factor subunit alpha-2) (CBF-alpha-2) (Oncogene AML-1) (Polyomavirus enhancer-binding protein 2 alpha B subunit) (PEA2-alpha B) (PEBP2-alpha B) (SL3-3 enhancer factor 1 alpha B subunit) (SL3/AKV core-binding factor alpha B subunit) | Forms the heterodimeric complex core-binding factor (CBF) with CBFB. RUNX members modulate the transcription of their target genes through recognizing the core consensus binding sequence 5'-TGTGGT-3', or very rarely, 5'-TGCGGT-3', within their regulatory regions via their runt domain, while CBFB is a non-DNA-binding regulatory subunit that allosterically enhances the sequence-specific DNA-binding capacity of RUNX. The heterodimers bind to the core site of a number of enhancers and promoters, including murine leukemia virus, polyomavirus enhancer, T-cell receptor enhancers, LCK, IL3 and GM-CSF promoters (Probable). Essential for the development of normal hematopoiesis (PubMed:17431401). Acts synergistically with ELF4 to transactivate the IL-3 promoter and with ELF2 to transactivate the BLK promoter (PubMed:10207087, PubMed:14970218). Inhibits KAT6B-dependent transcriptional activation (By similarity). Involved in lineage commitment of immature T cell precursors. CBF complexes repress ZBTB7B transcription factor during cytotoxic (CD8+) T cell development. They bind to RUNX-binding sequence within the ZBTB7B locus acting as transcriptional silencer and allowing for cytotoxic T cell differentiation. CBF complexes binding to the transcriptional silencer is essential for recruitment of nuclear protein complexes that catalyze epigenetic modifications to establish epigenetic ZBTB7B silencing (By similarity). Controls the anergy and suppressive function of regulatory T-cells (Treg) by associating with FOXP3. Activates the expression of IL2 and IFNG and down-regulates the expression of TNFRSF18, IL2RA and CTLA4, in conventional T-cells (PubMed:17377532). Positively regulates the expression of RORC in T-helper 17 cells (By similarity). {ECO:0000250|UniProtKB:Q03347, ECO:0000269|PubMed:10207087, ECO:0000269|PubMed:11965546, ECO:0000269|PubMed:14970218, ECO:0000269|PubMed:17377532, ECO:0000269|PubMed:17431401, ECO:0000305}.; FUNCTION: Isoform AML-1G shows higher binding activities for target genes and binds TCR-beta-E2 and RAG-1 target site with threefold higher affinity than other isoforms. It is less effective in the context of neutrophil terminal differentiation. {ECO:0000250|UniProtKB:Q03347}.; FUNCTION: Isoform AML-1L interferes with the transactivation activity of RUNX1. {ECO:0000269|PubMed:9199349}. |
Q03001 | DST | S7420 | ochoa | Dystonin (230 kDa bullous pemphigoid antigen) (230/240 kDa bullous pemphigoid antigen) (Bullous pemphigoid antigen 1) (BPA) (Bullous pemphigoid antigen) (Dystonia musculorum protein) (Hemidesmosomal plaque protein) | Cytoskeletal linker protein. Acts as an integrator of intermediate filaments, actin and microtubule cytoskeleton networks. Required for anchoring either intermediate filaments to the actin cytoskeleton in neural and muscle cells or keratin-containing intermediate filaments to hemidesmosomes in epithelial cells. The proteins may self-aggregate to form filaments or a two-dimensional mesh. Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. Mediates docking of the dynein/dynactin motor complex to vesicle cargos for retrograde axonal transport through its interaction with TMEM108 and DCTN1 (By similarity). {ECO:0000250|UniProtKB:Q91ZU6}.; FUNCTION: [Isoform 3]: Plays a structural role in the assembly of hemidesmosomes of epithelial cells; anchors keratin-containing intermediate filaments to the inner plaque of hemidesmosomes. Required for the regulation of keratinocyte polarity and motility; mediates integrin ITGB4 regulation of RAC1 activity.; FUNCTION: [Isoform 6]: Required for bundling actin filaments around the nucleus. {ECO:0000250, ECO:0000269|PubMed:10428034, ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:19403692}.; FUNCTION: [Isoform 7]: Regulates the organization and stability of the microtubule network of sensory neurons to allow axonal transport. |
Q08357 | SLC20A2 | S256 | ochoa | Sodium-dependent phosphate transporter 2 (Gibbon ape leukemia virus receptor 2) (GLVR-2) (Phosphate transporter 2) (PiT-2) (Pit2) (hPit2) (Solute carrier family 20 member 2) | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion (PubMed:12205090, PubMed:15955065, PubMed:16790504, PubMed:17494632, PubMed:22327515, PubMed:28722801, PubMed:30704756). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity). {ECO:0000250|UniProtKB:Q80UP8, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:16790504, ECO:0000269|PubMed:17494632, ECO:0000269|PubMed:22327515, ECO:0000269|PubMed:28722801, ECO:0000269|PubMed:30704756}.; FUNCTION: (Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants. {ECO:0000269|PubMed:11435563, ECO:0000269|PubMed:12205090, ECO:0000269|PubMed:15955065, ECO:0000269|PubMed:8302848}. |
Q08378 | GOLGA3 | S278 | ochoa | Golgin subfamily A member 3 (Golgi complex-associated protein of 170 kDa) (GCP170) (Golgin-160) | Golgi auto-antigen; probably involved in maintaining Golgi structure. |
Q08881 | ITK | S514 | ochoa | Tyrosine-protein kinase ITK/TSK (EC 2.7.10.2) (Interleukin-2-inducible T-cell kinase) (IL-2-inducible T-cell kinase) (Kinase EMT) (T-cell-specific kinase) (Tyrosine-protein kinase Lyk) | Tyrosine kinase that plays an essential role in regulation of the adaptive immune response. Regulates the development, function and differentiation of conventional T-cells and nonconventional NKT-cells. When antigen presenting cells (APC) activate T-cell receptor (TCR), a series of phosphorylation lead to the recruitment of ITK to the cell membrane, in the vicinity of the stimulated TCR receptor, where it is phosphorylated by LCK. Phosphorylation leads to ITK autophosphorylation and full activation. Once activated, phosphorylates PLCG1, leading to the activation of this lipase and subsequent cleavage of its substrates. In turn, the endoplasmic reticulum releases calcium in the cytoplasm and the nuclear activator of activated T-cells (NFAT) translocates into the nucleus to perform its transcriptional duty. Phosphorylates 2 essential adapter proteins: the linker for activation of T-cells/LAT protein and LCP2. Then, a large number of signaling molecules such as VAV1 are recruited and ultimately lead to lymphokine production, T-cell proliferation and differentiation (PubMed:12186560, PubMed:12682224, PubMed:21725281). Required for TCR-mediated calcium response in gamma-delta T-cells, may also be involved in the modulation of the transcriptomic signature in the Vgamma2-positive subset of immature gamma-delta T-cells (By similarity). Phosphorylates TBX21 at 'Tyr-530' and mediates its interaction with GATA3 (By similarity). {ECO:0000250|UniProtKB:Q03526, ECO:0000269|PubMed:12186560, ECO:0000269|PubMed:12682224, ECO:0000269|PubMed:21725281}. |
Q12888 | TP53BP1 | S354 | ochoa | TP53-binding protein 1 (53BP1) (p53-binding protein 1) (p53BP1) | Double-strand break (DSB) repair protein involved in response to DNA damage, telomere dynamics and class-switch recombination (CSR) during antibody genesis (PubMed:12364621, PubMed:17190600, PubMed:21144835, PubMed:22553214, PubMed:23333306, PubMed:27153538, PubMed:28241136, PubMed:31135337, PubMed:37696958). Plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs and specifically counteracting the function of the homologous recombination (HR) repair protein BRCA1 (PubMed:22553214, PubMed:23333306, PubMed:23727112, PubMed:27153538, PubMed:31135337). In response to DSBs, phosphorylation by ATM promotes interaction with RIF1 and dissociation from NUDT16L1/TIRR, leading to recruitment to DSBs sites (PubMed:28241136). Recruited to DSBs sites by recognizing and binding histone H2A monoubiquitinated at 'Lys-15' (H2AK15Ub) and histone H4 dimethylated at 'Lys-20' (H4K20me2), two histone marks that are present at DSBs sites (PubMed:17190600, PubMed:23760478, PubMed:27153538, PubMed:28241136). Required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (PubMed:23345425). Participates in the repair and the orientation of the broken DNA ends during CSR (By similarity). In contrast, it is not required for classic NHEJ and V(D)J recombination (By similarity). Promotes NHEJ of dysfunctional telomeres via interaction with PAXIP1 (PubMed:23727112). {ECO:0000250|UniProtKB:P70399, ECO:0000269|PubMed:12364621, ECO:0000269|PubMed:17190600, ECO:0000269|PubMed:21144835, ECO:0000269|PubMed:22553214, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:23345425, ECO:0000269|PubMed:23727112, ECO:0000269|PubMed:23760478, ECO:0000269|PubMed:27153538, ECO:0000269|PubMed:28241136, ECO:0000269|PubMed:31135337, ECO:0000269|PubMed:37696958}. |
Q14004 | CDK13 | S328 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14004 | CDK13 | S337 | ochoa | Cyclin-dependent kinase 13 (EC 2.7.11.22) (EC 2.7.11.23) (CDC2-related protein kinase 5) (Cell division cycle 2-like protein kinase 5) (Cell division protein kinase 13) (hCDK13) (Cholinesterase-related cell division controller) | Cyclin-dependent kinase which displays CTD kinase activity and is required for RNA splicing. Has CTD kinase activity by hyperphosphorylating the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit RPB1, thereby acting as a key regulator of transcription elongation. Required for RNA splicing, probably by phosphorylating SRSF1/SF2. Required during hematopoiesis. In case of infection by HIV-1 virus, interacts with HIV-1 Tat protein acetylated at 'Lys-50' and 'Lys-51', thereby increasing HIV-1 mRNA splicing and promoting the production of the doubly spliced HIV-1 protein Nef. {ECO:0000269|PubMed:16721827, ECO:0000269|PubMed:1731328, ECO:0000269|PubMed:18480452, ECO:0000269|PubMed:20952539}. |
Q14134 | TRIM29 | S540 | ochoa | Tripartite motif-containing protein 29 (Ataxia telangiectasia group D-associated protein) | Plays a crucial role in the regulation of macrophage activation in response to viral or bacterial infections within the respiratory tract. Mechanistically, TRIM29 interacts with IKBKG/NEMO in the lysosome where it induces its 'Lys-48' ubiquitination and subsequent degradation. In turn, the expression of type I interferons and the production of pro-inflammatory cytokines are inhibited. Additionally, induces the 'Lys-48' ubiquitination of STING1 in a similar way, leading to its degradation. {ECO:0000269|PubMed:27695001, ECO:0000269|PubMed:29038422}. |
Q14157 | UBAP2L | S427 | ochoa | Ubiquitin-associated protein 2-like (Protein NICE-4) (RNA polymerase II degradation factor UBAP2L) | Recruits the ubiquitination machinery to RNA polymerase II for polyubiquitination, removal and degradation, when the transcription-coupled nucleotide excision repair (TC-NER) machinery fails to resolve DNA damage (PubMed:35633597). Plays an important role in the activity of long-term repopulating hematopoietic stem cells (LT-HSCs) (By similarity). Is a regulator of stress granule assembly, required for their efficient formation (PubMed:29395067, PubMed:35977029). Required for proper brain development and neocortex lamination (By similarity). {ECO:0000250|UniProtKB:Q80X50, ECO:0000269|PubMed:29395067, ECO:0000269|PubMed:35633597}. |
Q14244 | MAP7 | S242 | ochoa | Ensconsin (Epithelial microtubule-associated protein of 115 kDa) (E-MAP-115) (Microtubule-associated protein 7) (MAP-7) | Microtubule-stabilizing protein that may play an important role during reorganization of microtubules during polarization and differentiation of epithelial cells. Associates with microtubules in a dynamic manner. May play a role in the formation of intercellular contacts. Colocalization with TRPV4 results in the redistribution of TRPV4 toward the membrane and may link cytoskeletal microfilaments. {ECO:0000269|PubMed:11719555, ECO:0000269|PubMed:8408219, ECO:0000269|PubMed:9989799}. |
Q14671 | PUM1 | S197 | ochoa | Pumilio homolog 1 (HsPUM) (Pumilio-1) | Sequence-specific RNA-binding protein that acts as a post-transcriptional repressor by binding the 3'-UTR of mRNA targets. Binds to an RNA consensus sequence, the Pumilio Response Element (PRE), 5'-UGUANAUA-3', that is related to the Nanos Response Element (NRE) (PubMed:18328718, PubMed:21397187, PubMed:21572425, PubMed:21653694). Mediates post-transcriptional repression of transcripts via different mechanisms: acts via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation (PubMed:22955276). Also mediates deadenylation-independent repression by promoting accessibility of miRNAs (PubMed:18776931, PubMed:20818387, PubMed:20860814, PubMed:22345517). Following growth factor stimulation, phosphorylated and binds to the 3'-UTR of CDKN1B/p27 mRNA, inducing a local conformational change that exposes miRNA-binding sites, promoting association of miR-221 and miR-222, efficient suppression of CDKN1B/p27 expression, and rapid entry to the cell cycle (PubMed:20818387). Acts as a post-transcriptional repressor of E2F3 mRNAs by binding to its 3'-UTR and facilitating miRNA regulation (PubMed:22345517, PubMed:29474920). Represses a program of genes necessary to maintain genomic stability such as key mitotic, DNA repair and DNA replication factors. Its ability to repress those target mRNAs is regulated by the lncRNA NORAD (non-coding RNA activated by DNA damage) which, due to its high abundance and multitude of PUMILIO binding sites, is able to sequester a significant fraction of PUM1 and PUM2 in the cytoplasm (PubMed:26724866). Involved in neuronal functions by regulating ATXN1 mRNA levels: acts by binding to the 3'-UTR of ATXN1 transcripts, leading to their down-regulation independently of the miRNA machinery (PubMed:25768905, PubMed:29474920). Plays a role in cytoplasmic sensing of viral infection (PubMed:25340845). In testis, acts as a post-transcriptional regulator of spermatogenesis by binding to the 3'-UTR of mRNAs coding for regulators of p53/TP53. Involved in embryonic stem cell renewal by facilitating the exit from the ground state: acts by targeting mRNAs coding for naive pluripotency transcription factors and accelerates their down-regulation at the onset of differentiation (By similarity). Binds specifically to miRNA MIR199A precursor, with PUM2, regulates miRNA MIR199A expression at a postranscriptional level (PubMed:28431233). {ECO:0000250|UniProtKB:Q80U78, ECO:0000269|PubMed:18328718, ECO:0000269|PubMed:18776931, ECO:0000269|PubMed:20818387, ECO:0000269|PubMed:20860814, ECO:0000269|PubMed:21397187, ECO:0000269|PubMed:21572425, ECO:0000269|PubMed:21653694, ECO:0000269|PubMed:22345517, ECO:0000269|PubMed:22955276, ECO:0000269|PubMed:25340845, ECO:0000269|PubMed:25768905, ECO:0000269|PubMed:26724866, ECO:0000269|PubMed:28431233, ECO:0000269|PubMed:29474920}. |
Q14687 | GSE1 | S83 | ochoa | Genetic suppressor element 1 | None |
Q14694 | USP10 | S353 | ochoa | Ubiquitin carboxyl-terminal hydrolase 10 (EC 3.4.19.12) (Deubiquitinating enzyme 10) (Ubiquitin thioesterase 10) (Ubiquitin-specific-processing protease 10) | Hydrolase that can remove conjugated ubiquitin from target proteins such as p53/TP53, RPS2/us5, RPS3/us3, RPS10/eS10, BECN1, SNX3 and CFTR (PubMed:11439350, PubMed:18632802, PubMed:31981475). Acts as an essential regulator of p53/TP53 stability: in unstressed cells, specifically deubiquitinates p53/TP53 in the cytoplasm, leading to counteract MDM2 action and stabilize p53/TP53 (PubMed:20096447). Following DNA damage, translocates to the nucleus and deubiquitinates p53/TP53, leading to regulate the p53/TP53-dependent DNA damage response (PubMed:20096447). Component of a regulatory loop that controls autophagy and p53/TP53 levels: mediates deubiquitination of BECN1, a key regulator of autophagy, leading to stabilize the PIK3C3/VPS34-containing complexes (PubMed:21962518). In turn, PIK3C3/VPS34-containing complexes regulate USP10 stability, suggesting the existence of a regulatory system by which PIK3C3/VPS34-containing complexes regulate p53/TP53 protein levels via USP10 and USP13 (PubMed:21962518). Does not deubiquitinate MDM2 (PubMed:20096447). Plays a key role in 40S ribosome subunit recycling when a ribosome has stalled during translation: acts both by inhibiting formation of stress granules, which store stalled translation pre-initiation complexes, and mediating deubiquitination of 40S ribosome subunits (PubMed:27022092, PubMed:31981475, PubMed:34348161, PubMed:34469731). Acts as a negative regulator of stress granules formation by lowering G3BP1 and G3BP2 valence, thereby preventing G3BP1 and G3BP2 ability to undergo liquid-liquid phase separation (LLPS) and assembly of stress granules (PubMed:11439350, PubMed:27022092, PubMed:32302570). Promotes 40S ribosome subunit recycling following ribosome dissociation in response to ribosome stalling by mediating deubiquitination of 40S ribosomal proteins RPS2/us5, RPS3/us3 and RPS10/eS10, thereby preventing their degradation by the proteasome (PubMed:31981475, PubMed:34348161, PubMed:34469731). Part of a ribosome quality control that takes place when ribosomes have stalled during translation initiation (iRQC): USP10 acts by removing monoubiquitination of RPS2/us5 and RPS3/us3, promoting 40S ribosomal subunit recycling (PubMed:34469731). Deubiquitinates CFTR in early endosomes, enhancing its endocytic recycling (PubMed:19398555). Involved in a TANK-dependent negative feedback response to attenuate NF-kappa-B activation via deubiquitinating IKBKG or TRAF6 in response to interleukin-1-beta (IL1B) stimulation or upon DNA damage (PubMed:25861989). Deubiquitinates TBX21 leading to its stabilization (PubMed:24845384). Plays a negative role in the RLR signaling pathway upon RNA virus infection by blocking the RIGI-mediated MAVS activation. Mechanistically, removes the unanchored 'Lys-63'-linked polyubiquitin chains of MAVS to inhibit its aggregation, essential for its activation (PubMed:37582970). {ECO:0000269|PubMed:11439350, ECO:0000269|PubMed:18632802, ECO:0000269|PubMed:19398555, ECO:0000269|PubMed:20096447, ECO:0000269|PubMed:21962518, ECO:0000269|PubMed:24845384, ECO:0000269|PubMed:25861989, ECO:0000269|PubMed:27022092, ECO:0000269|PubMed:31981475, ECO:0000269|PubMed:32302570, ECO:0000269|PubMed:34348161, ECO:0000269|PubMed:34469731, ECO:0000269|PubMed:37582970}. |
Q14980 | NUMA1 | S191 | ochoa | Nuclear mitotic apparatus protein 1 (Nuclear matrix protein-22) (NMP-22) (Nuclear mitotic apparatus protein) (NuMA protein) (SP-H antigen) | Microtubule (MT)-binding protein that plays a role in the formation and maintenance of the spindle poles and the alignement and the segregation of chromosomes during mitotic cell division (PubMed:17172455, PubMed:19255246, PubMed:24996901, PubMed:26195665, PubMed:27462074, PubMed:7769006). Functions to tether the minus ends of MTs at the spindle poles, which is critical for the establishment and maintenance of the spindle poles (PubMed:11956313, PubMed:12445386). Plays a role in the establishment of the mitotic spindle orientation during metaphase and elongation during anaphase in a dynein-dynactin-dependent manner (PubMed:23870127, PubMed:24109598, PubMed:24996901, PubMed:26765568). In metaphase, part of a ternary complex composed of GPSM2 and G(i) alpha proteins, that regulates the recruitment and anchorage of the dynein-dynactin complex in the mitotic cell cortex regions situated above the two spindle poles, and hence regulates the correct oritentation of the mitotic spindle (PubMed:22327364, PubMed:23027904, PubMed:23921553). During anaphase, mediates the recruitment and accumulation of the dynein-dynactin complex at the cell membrane of the polar cortical region through direct association with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and hence participates in the regulation of the spindle elongation and chromosome segregation (PubMed:22327364, PubMed:23921553, PubMed:24371089, PubMed:24996901). Also binds to other polyanionic phosphoinositides, such as phosphatidylinositol 3-phosphate (PIP), lysophosphatidic acid (LPA) and phosphatidylinositol triphosphate (PIP3), in vitro (PubMed:24371089, PubMed:24996901). Also required for proper orientation of the mitotic spindle during asymmetric cell divisions (PubMed:21816348). Plays a role in mitotic MT aster assembly (PubMed:11163243, PubMed:11229403, PubMed:12445386). Involved in anastral spindle assembly (PubMed:25657325). Positively regulates TNKS protein localization to spindle poles in mitosis (PubMed:16076287). Highly abundant component of the nuclear matrix where it may serve a non-mitotic structural role, occupies the majority of the nuclear volume (PubMed:10075938). Required for epidermal differentiation and hair follicle morphogenesis (By similarity). {ECO:0000250|UniProtKB:E9Q7G0, ECO:0000269|PubMed:11163243, ECO:0000269|PubMed:11229403, ECO:0000269|PubMed:11956313, ECO:0000269|PubMed:12445386, ECO:0000269|PubMed:16076287, ECO:0000269|PubMed:17172455, ECO:0000269|PubMed:19255246, ECO:0000269|PubMed:22327364, ECO:0000269|PubMed:23027904, ECO:0000269|PubMed:23870127, ECO:0000269|PubMed:23921553, ECO:0000269|PubMed:24109598, ECO:0000269|PubMed:24371089, ECO:0000269|PubMed:24996901, ECO:0000269|PubMed:25657325, ECO:0000269|PubMed:26195665, ECO:0000269|PubMed:26765568, ECO:0000269|PubMed:27462074, ECO:0000269|PubMed:7769006, ECO:0000305|PubMed:10075938, ECO:0000305|PubMed:21816348}. |
Q15036 | SNX17 | S409 | ochoa | Sorting nexin-17 | Critical regulator of endosomal recycling of numerous surface proteins, including integrins, signaling receptor and channels (PubMed:15121882, PubMed:15769472, PubMed:39587083). Binds to NPxY sequences in the cytoplasmic tails of target cargos (PubMed:21512128). Associates with retriever and CCC complexes to prevent lysosomal degradation and promote cell surface recycling of numerous cargos such as integrins ITGB1, ITGB5 and their associated alpha subunits (PubMed:22492727, PubMed:28892079, PubMed:39587083). Also required for maintenance of normal cell surface levels of APP and LRP1 (PubMed:16712798, PubMed:19005208). Interacts with membranes containing phosphatidylinositol 3-phosphate (PtdIns(3P)) (PubMed:16712798). {ECO:0000269|PubMed:15121882, ECO:0000269|PubMed:15769472, ECO:0000269|PubMed:16712798, ECO:0000269|PubMed:19005208, ECO:0000269|PubMed:21512128, ECO:0000269|PubMed:22492727, ECO:0000269|PubMed:28892079}. |
Q15139 | PRKD1 | S223 | psp | Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase C mu type) (Protein kinase D) (nPKC-D1) (nPKC-mu) | Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response (PubMed:10764790, PubMed:12505989, PubMed:12637538, PubMed:17442957, PubMed:18509061, PubMed:19135240, PubMed:19211839). Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation (PubMed:10523301). Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1 (PubMed:12505989). Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2 (PubMed:18509061). In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling (PubMed:18332134). Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation (PubMed:19211839). In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents (PubMed:10764790). In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines (PubMed:17442957). Acts as an activator of NLRP3 inflammasome assembly by mediating phosphorylation of NLRP3 (By similarity). May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor (PubMed:15471852). Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells (PubMed:24623306). Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity). {ECO:0000250|UniProtKB:Q62101, ECO:0000269|PubMed:10523301, ECO:0000269|PubMed:10764790, ECO:0000269|PubMed:12505989, ECO:0000269|PubMed:12637538, ECO:0000269|PubMed:15471852, ECO:0000269|PubMed:17442957, ECO:0000269|PubMed:18332134, ECO:0000269|PubMed:18509061, ECO:0000269|PubMed:19135240, ECO:0000269|PubMed:19211839, ECO:0000269|PubMed:24623306}. |
Q15149 | PLEC | S4384 | ochoa | Plectin (PCN) (PLTN) (Hemidesmosomal protein 1) (HD1) (Plectin-1) | Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. {ECO:0000269|PubMed:12482924, ECO:0000269|PubMed:21109228}. |
Q15311 | RALBP1 | S22 | ochoa | RalA-binding protein 1 (RalBP1) (76 kDa Ral-interacting protein) (Dinitrophenyl S-glutathione ATPase) (DNP-SG ATPase) (EC 7.6.2.2, EC 7.6.2.3) (Ral-interacting protein 1) | Multifunctional protein that functions as a downstream effector of RALA and RALB (PubMed:7673236). As a GTPase-activating protein/GAP can inactivate CDC42 and RAC1 by stimulating their GTPase activity (PubMed:7673236). As part of the Ral signaling pathway, may also regulate ligand-dependent EGF and insulin receptors-mediated endocytosis (PubMed:10910768, PubMed:12775724). During mitosis, may act as a scaffold protein in the phosphorylation of EPSIN/EPN1 by the mitotic kinase cyclin B-CDK1, preventing endocytosis during that phase of the cell cycle (PubMed:12775724). During mitosis, also controls mitochondrial fission as an effector of RALA (PubMed:21822277). Recruited to mitochondrion by RALA, acts as a scaffold to foster the mitotic kinase cyclin B-CDK1-mediated phosphorylation and activation of DNM1L (PubMed:21822277). {ECO:0000269|PubMed:10910768, ECO:0000269|PubMed:12775724, ECO:0000269|PubMed:21822277, ECO:0000269|PubMed:7673236}.; FUNCTION: Could also function as a primary ATP-dependent active transporter for glutathione conjugates of electrophiles. May also actively catalyze the efflux of a wide range of substrates including xenobiotics like doxorubicin (DOX) contributing to cell multidrug resistance. {ECO:0000269|PubMed:10924126, ECO:0000269|PubMed:11300797, ECO:0000269|PubMed:11437348, ECO:0000269|PubMed:9548755}. |
Q15424 | SAFB | S372 | ochoa | Scaffold attachment factor B1 (SAF-B) (SAF-B1) (HSP27 estrogen response element-TATA box-binding protein) (HSP27 ERE-TATA-binding protein) | Binds to scaffold/matrix attachment region (S/MAR) DNA and forms a molecular assembly point to allow the formation of a 'transcriptosomal' complex (consisting of SR proteins and RNA polymerase II) coupling transcription and RNA processing (PubMed:9671816). Functions as an estrogen receptor corepressor and can also bind to the HSP27 promoter and decrease its transcription (PubMed:12660241). Thereby acts as a negative regulator of cell proliferation (PubMed:12660241). When associated with RBMX, binds to and stimulates transcription from the SREBF1 promoter (By similarity). {ECO:0000250|UniProtKB:D3YXK2, ECO:0000269|PubMed:12660241, ECO:0000269|PubMed:9671816}. |
Q15648 | MED1 | S1467 | ochoa | Mediator of RNA polymerase II transcription subunit 1 (Activator-recruited cofactor 205 kDa component) (ARC205) (Mediator complex subunit 1) (Peroxisome proliferator-activated receptor-binding protein) (PBP) (PPAR-binding protein) (Thyroid hormone receptor-associated protein complex 220 kDa component) (Trap220) (Thyroid receptor-interacting protein 2) (TR-interacting protein 2) (TRIP-2) (Vitamin D receptor-interacting protein complex component DRIP205) (p53 regulatory protein RB18A) | Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors (PubMed:10406464, PubMed:11867769, PubMed:12037571, PubMed:12218053, PubMed:12556447, PubMed:14636573, PubMed:15340084, PubMed:15471764, PubMed:15989967, PubMed:16574658, PubMed:9653119). Acts as a coactivator for GATA1-mediated transcriptional activation during erythroid differentiation of K562 erythroleukemia cells (PubMed:24245781). {ECO:0000269|PubMed:10406464, ECO:0000269|PubMed:11867769, ECO:0000269|PubMed:12037571, ECO:0000269|PubMed:12218053, ECO:0000269|PubMed:12556447, ECO:0000269|PubMed:14636573, ECO:0000269|PubMed:15340084, ECO:0000269|PubMed:15471764, ECO:0000269|PubMed:15989967, ECO:0000269|PubMed:16574658, ECO:0000269|PubMed:24245781, ECO:0000269|PubMed:9653119}. |
Q15742 | NAB2 | S147 | ochoa | NGFI-A-binding protein 2 (EGR-1-binding protein 2) (Melanoma-associated delayed early response protein) (Protein MADER) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. Isoform 2 lacks repression ability (By similarity). {ECO:0000250}. |
Q15742 | NAB2 | S193 | ochoa | NGFI-A-binding protein 2 (EGR-1-binding protein 2) (Melanoma-associated delayed early response protein) (Protein MADER) | Acts as a transcriptional repressor for zinc finger transcription factors EGR1 and EGR2. Isoform 2 lacks repression ability (By similarity). {ECO:0000250}. |
Q16659 | MAPK6 | S676 | ochoa | Mitogen-activated protein kinase 6 (MAP kinase 6) (MAPK 6) (EC 2.7.11.24) (Extracellular signal-regulated kinase 3) (ERK-3) (MAP kinase isoform p97) (p97-MAPK) | Atypical MAPK protein. Phosphorylates microtubule-associated protein 2 (MAP2) and MAPKAPK5. The precise role of the complex formed with MAPKAPK5 is still unclear, but the complex follows a complex set of phosphorylation events: upon interaction with atypical MAPKAPK5, ERK3/MAPK6 is phosphorylated at Ser-189 and then mediates phosphorylation and activation of MAPKAPK5, which in turn phosphorylates ERK3/MAPK6. May promote entry in the cell cycle (By similarity). {ECO:0000250}. |
Q2KJY2 | KIF26B | S1004 | ochoa | Kinesin-like protein KIF26B | Essential for embryonic kidney development. Plays an important role in the compact adhesion between mesenchymal cells adjacent to the ureteric buds, possibly by interacting with MYH10. This could lead to the establishment of the basolateral integrity of the mesenchyme and the polarized expression of ITGA8, which maintains the GDNF expression required for further ureteric bud attraction. Although it seems to lack ATPase activity it is constitutively associated with microtubules (By similarity). {ECO:0000250}. |
Q3B726 | POLR1F | S316 | ochoa | DNA-directed RNA polymerase I subunit RPA43 (DNA-directed RNA polymerase I subunit F) (Twist neighbor protein) | Component of RNA polymerase I (Pol I), a DNA-dependent RNA polymerase which synthesizes ribosomal RNA precursors using the four ribonucleoside triphosphates as substrates. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters. {ECO:0000269|PubMed:34671025, ECO:0000269|PubMed:34887565, ECO:0000269|PubMed:36271492}. |
Q3KQU3 | MAP7D1 | S457 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q3KQU3 | MAP7D1 | S741 | ochoa | MAP7 domain-containing protein 1 (Arginine/proline-rich coiled-coil domain-containing protein 1) (Proline/arginine-rich coiled-coil domain-containing protein 1) | Microtubule-stabilizing protein involved in the control of cell motility and neurite outgrowth. Facilitate microtubule stabilization through the maintenance of acetylated stable microtubules. {ECO:0000250|UniProtKB:A2AJI0}. |
Q53ET0 | CRTC2 | S171 | ochoa|psp | CREB-regulated transcription coactivator 2 (Transducer of regulated cAMP response element-binding protein 2) (TORC-2) (Transducer of CREB protein 2) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates gluconeogenesis as a component of the LKB1/AMPK/TORC2 signaling pathway. Regulates the expression of specific genes such as the steroidogenic gene, StAR. Potent coactivator of PPARGC1A and inducer of mitochondrial biogenesis in muscle cells. Also coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:14506290, ECO:0000269|PubMed:14536081, ECO:0000269|PubMed:15454081, ECO:0000269|PubMed:16809310, ECO:0000269|PubMed:16817901, ECO:0000269|PubMed:16980408, ECO:0000269|PubMed:17210223}. |
Q5HYC2 | BRD10 | S594 | ochoa | Uncharacterized bromodomain-containing protein 10 | None |
Q5HYN5 | CT45A1 | S103 | ochoa | Cancer/testis antigen family 45 member A1 (Cancer/testis antigen 45-1) (Cancer/testis antigen 45A1) | None |
Q5SW79 | CEP170 | S1239 | ochoa | Centrosomal protein of 170 kDa (Cep170) (KARP-1-binding protein) (KARP1-binding protein) | Plays a role in microtubule organization (PubMed:15616186). Required for centriole subdistal appendage assembly (PubMed:28422092). {ECO:0000269|PubMed:15616186, ECO:0000269|PubMed:28422092}. |
Q5SYE7 | NHSL1 | S1458 | ochoa | NHS-like protein 1 | None |
Q5T0Z8 | C6orf132 | S437 | ochoa | Uncharacterized protein C6orf132 | None |
Q5T1M5 | FKBP15 | S344 | ochoa | FK506-binding protein 15 (FKBP-15) (133 kDa FK506-binding protein) (133 kDa FKBP) (FKBP-133) (WASP- and FKBP-like protein) (WAFL) | May be involved in the cytoskeletal organization of neuronal growth cones. Seems to be inactive as a PPIase (By similarity). Involved in the transport of early endosomes at the level of transition between microfilament-based and microtubule-based movement. {ECO:0000250, ECO:0000269|PubMed:19121306}. |
Q5T200 | ZC3H13 | S865 | ochoa | Zinc finger CCCH domain-containing protein 13 | Associated component of the WMM complex, a complex that mediates N6-methyladenosine (m6A) methylation of RNAs, a modification that plays a role in the efficiency of mRNA splicing and RNA processing (PubMed:29507755). Acts as a key regulator of m6A methylation by promoting m6A methylation of mRNAs at the 3'-UTR (By similarity). Controls embryonic stem cells (ESCs) pluripotency via its role in m6A methylation (By similarity). In the WMM complex, anchors component of the MACOM subcomplex in the nucleus (By similarity). Also required for bridging WTAP to the RNA-binding component RBM15 (RBM15 or RBM15B) (By similarity). {ECO:0000250|UniProtKB:E9Q784}. |
Q5T5P2 | KIAA1217 | S1794 | ochoa | Sickle tail protein homolog | Required for normal development of intervertebral disks. {ECO:0000250|UniProtKB:A2AQ25}. |
Q5UIP0 | RIF1 | S1760 | ochoa | Telomere-associated protein RIF1 (Rap1-interacting factor 1 homolog) | Key regulator of TP53BP1 that plays a key role in the repair of double-strand DNA breaks (DSBs) in response to DNA damage: acts by promoting non-homologous end joining (NHEJ)-mediated repair of DSBs (PubMed:15342490, PubMed:28241136). In response to DNA damage, interacts with ATM-phosphorylated TP53BP1 (PubMed:23333306, PubMed:28241136). Interaction with TP53BP1 leads to dissociate the interaction between NUDT16L1/TIRR and TP53BP1, thereby unmasking the tandem Tudor-like domain of TP53BP1 and allowing recruitment to DNA DSBs (PubMed:28241136). Once recruited to DSBs, RIF1 and TP53BP1 act by promoting NHEJ-mediated repair of DSBs (PubMed:23333306). In the same time, RIF1 and TP53BP1 specifically counteract the function of BRCA1 by blocking DSBs resection via homologous recombination (HR) during G1 phase (PubMed:23333306). Also required for immunoglobulin class-switch recombination (CSR) during antibody genesis, a process that involves the generation of DNA DSBs (By similarity). Promotes NHEJ of dysfunctional telomeres (By similarity). {ECO:0000250|UniProtKB:Q6PR54, ECO:0000269|PubMed:15342490, ECO:0000269|PubMed:23333306, ECO:0000269|PubMed:28241136}. |
Q5VT06 | CEP350 | S1244 | ochoa | Centrosome-associated protein 350 (Cep350) (Centrosome-associated protein of 350 kDa) | Plays an essential role in centriole growth by stabilizing a procentriolar seed composed of at least, SASS6 and CPAP (PubMed:19052644). Required for anchoring microtubules to the centrosomes and for the integrity of the microtubule network (PubMed:16314388, PubMed:17878239, PubMed:28659385). Recruits PPARA to discrete subcellular compartments and thereby modulates PPARA activity (PubMed:15615782). Required for ciliation (PubMed:28659385). {ECO:0000269|PubMed:15615782, ECO:0000269|PubMed:16314388, ECO:0000269|PubMed:17878239, ECO:0000269|PubMed:19052644, ECO:0000269|PubMed:28659385}. |
Q5VT52 | RPRD2 | S581 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VT52 | RPRD2 | S626 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VT52 | RPRD2 | S1185 | ochoa | Regulation of nuclear pre-mRNA domain-containing protein 2 | None |
Q5VY43 | PEAR1 | S941 | ochoa | Platelet endothelial aggregation receptor 1 (hPEAR1) (Multiple epidermal growth factor-like domains protein 12) (Multiple EGF-like domains protein 12) | Required for SVEP1-mediated platelet activation, via its interaction with SVEP1 and subsequent activation of AKT/mTOR signaling (PubMed:36792666). May be involved in the early stages of hematopoiesis (By similarity). {ECO:0000250|UniProtKB:Q8VIK5, ECO:0000269|PubMed:36792666}. |
Q5VZK9 | CARMIL1 | S1249 | ochoa | F-actin-uncapping protein LRRC16A (CARMIL homolog) (Capping protein regulator and myosin 1 linker protein 1) (Capping protein, Arp2/3 and myosin-I linker homolog 1) (Capping protein, Arp2/3 and myosin-I linker protein 1) (Leucine-rich repeat-containing protein 16A) | Cell membrane-cytoskeleton-associated protein that plays a role in the regulation of actin polymerization at the barbed end of actin filaments. Prevents F-actin heterodimeric capping protein (CP) activity at the leading edges of migrating cells, and hence generates uncapped barbed ends and enhances actin polymerization, however, seems unable to nucleate filaments (PubMed:16054028). Plays a role in lamellipodial protrusion formations and cell migration (PubMed:19846667). {ECO:0000269|PubMed:16054028, ECO:0000269|PubMed:19846667}. |
Q66K74 | MAP1S | S729 | ochoa | Microtubule-associated protein 1S (MAP-1S) (BPY2-interacting protein 1) (Microtubule-associated protein 8) (Variable charge Y chromosome 2-interacting protein 1) (VCY2-interacting protein 1) (VCY2IP-1) [Cleaved into: MAP1S heavy chain; MAP1S light chain] | Microtubule-associated protein that mediates aggregation of mitochondria resulting in cell death and genomic destruction (MAGD). Plays a role in anchoring the microtubule organizing center to the centrosomes. Binds to DNA. Plays a role in apoptosis. Involved in the formation of microtubule bundles (By similarity). {ECO:0000250, ECO:0000269|PubMed:15899810, ECO:0000269|PubMed:17234756}. |
Q68CZ2 | TNS3 | S941 | ochoa | Tensin-3 (EC 3.1.3.-) (Tensin-like SH2 domain-containing protein 1) (Tumor endothelial marker 6) | May act as a protein phosphatase and/or a lipid phosphatase (Probable). Involved in the dissociation of the integrin-tensin-actin complex (PubMed:17643115). EGF activates TNS4 and down-regulates TNS3 which results in capping the tail of ITGB1 (PubMed:17643115). Increases DOCK5 guanine nucleotide exchange activity towards Rac and plays a role in osteoclast podosome organization (By similarity). Enhances RHOA activation in the presence of DLC1 (PubMed:26427649). Required for growth factor-induced epithelial cell migration; growth factor stimulation induces TNS3 phosphorylation which changes its binding preference from DLC1 to the p85 regulatory subunit of the PI3K kinase complex, displacing PI3K inhibitor PTEN and resulting in translocation of the TNS3-p85 complex to the leading edge of migrating cells to promote RAC1 activation (PubMed:26166433). Meanwhile, PTEN switches binding preference from p85 to DLC1 and the PTEN-DLC1 complex translocates to the posterior of migrating cells to activate RHOA (PubMed:26166433). Acts as an adapter protein by bridging the association of scaffolding protein PEAK1 with integrins ITGB1, ITGB3 and ITGB5 which contributes to the promotion of cell migration (PubMed:35687021). Controls tonsil-derived mesenchymal stem cell proliferation and differentiation by regulating the activity of integrin ITGB1 (PubMed:31905841). {ECO:0000250|UniProtKB:Q5SSZ5, ECO:0000269|PubMed:17643115, ECO:0000269|PubMed:26166433, ECO:0000269|PubMed:26427649, ECO:0000269|PubMed:31905841, ECO:0000269|PubMed:35687021, ECO:0000305}. |
Q68DQ2 | CRYBG3 | S445 | ochoa | Very large A-kinase anchor protein (vlAKAP) (Beta/gamma crystallin domain-containing protein 3) | [Isoform vlAKAP]: Anchoring protein that mediates the subcellular compartmentation of protein kinase A (PKA). {ECO:0000269|PubMed:25097019}. |
Q6BDS2 | BLTP3A | S432 | ochoa | Bridge-like lipid transfer protein family member 3A (ICBP90-binding protein 1) (UHRF1-binding protein 1) (Ubiquitin-like containing PHD and RING finger domains 1-binding protein 1) | Tube-forming lipid transport protein which probably mediates the transfer of lipids between membranes at organelle contact sites (PubMed:35499567). May be involved in the retrograde traffic of vesicle clusters in the endocytic pathway to the Golgi complex (PubMed:35499567). {ECO:0000269|PubMed:35499567}. |
Q6DT37 | CDC42BPG | S1514 | ochoa | Serine/threonine-protein kinase MRCK gamma (EC 2.7.11.1) (CDC42-binding protein kinase gamma) (DMPK-like gamma) (Myotonic dystrophy kinase-related CDC42-binding kinase gamma) (MRCK gamma) (MRCKG) (Myotonic dystrophy protein kinase-like gamma) (Myotonic dystrophy protein kinase-like alpha) | May act as a downstream effector of CDC42 in cytoskeletal reorganization. Contributes to the actomyosin contractility required for cell invasion, through the regulation of MYPT1 and thus MLC2 phosphorylation (By similarity). {ECO:0000250|UniProtKB:Q5VT25, ECO:0000269|PubMed:15194684}. |
Q6IN85 | PPP4R3A | S768 | ochoa | Serine/threonine-protein phosphatase 4 regulatory subunit 3A (SMEK homolog 1) | Regulatory subunit of serine/threonine-protein phosphatase 4. May regulate the activity of PPP4C at centrosomal microtubule organizing centers. The PPP4C-PPP4R2-PPP4R3A PP4 complex specifically dephosphorylates H2AX phosphorylated on 'Ser-140' (gamma-H2AX) generated during DNA replication and required for DNA DSB repair. {ECO:0000269|PubMed:18614045}. |
Q6NYC8 | PPP1R18 | S163 | ochoa | Phostensin (Protein phosphatase 1 F-actin cytoskeleton-targeting subunit) (Protein phosphatase 1 regulatory subunit 18) | [Isoform 1]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:24434620}.; FUNCTION: [Isoform 4]: May target protein phosphatase 1 to F-actin cytoskeleton. {ECO:0000269|PubMed:17374523}. |
Q6P0Q8 | MAST2 | S278 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P0Q8 | MAST2 | S1295 | ochoa | Microtubule-associated serine/threonine-protein kinase 2 (EC 2.7.11.1) | Appears to link the dystrophin/utrophin network with microtubule filaments via the syntrophins. Phosphorylation of DMD or UTRN may modulate their affinities for associated proteins. Functions in a multi-protein complex in spermatid maturation. Regulates lipopolysaccharide-induced IL-12 synthesis in macrophages by forming a complex with TRAF6, resulting in the inhibition of TRAF6 NF-kappa-B activation (By similarity). {ECO:0000250}. |
Q6P2E9 | EDC4 | S768 | ochoa | Enhancer of mRNA-decapping protein 4 (Autoantigen Ge-1) (Autoantigen RCD-8) (Human enhancer of decapping large subunit) (Hedls) | In the process of mRNA degradation, seems to play a role in mRNA decapping. Component of a complex containing DCP2 and DCP1A which functions in decapping of ARE-containing mRNAs. Promotes complex formation between DCP1A and DCP2. Enhances the catalytic activity of DCP2 (in vitro). {ECO:0000269|PubMed:16364915}. |
Q6P3S6 | FBXO42 | S572 | ochoa | F-box only protein 42 (Just one F-box and Kelch domain-containing protein) | Substrate-recognition component of some SCF (SKP1-CUL1-F-box protein)-type E3 ubiquitin ligase complex. Specifically recognizes p53/TP53, promoting its ubiquitination and degradation. {ECO:0000269|PubMed:19509332}. |
Q6P6C2 | ALKBH5 | Y372 | ochoa | RNA demethylase ALKBH5 (EC 1.14.11.53) (Alkylated DNA repair protein alkB homolog 5) (Alpha-ketoglutarate-dependent dioxygenase alkB homolog 5) | Dioxygenase that specifically demethylates N(6)-methyladenosine (m6A) RNA, the most prevalent internal modification of messenger RNA (mRNA) in higher eukaryotes (PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178, PubMed:34048572, PubMed:36944332, PubMed:37257451, PubMed:37369679). Demethylates RNA by oxidative demethylation, which requires molecular oxygen, alpha-ketoglutarate and iron (PubMed:21264265, PubMed:23177736, PubMed:24489119, PubMed:24616105, PubMed:24778178). Demethylation of m6A mRNA affects mRNA processing, translation and export (PubMed:23177736, PubMed:34048572, PubMed:36944332, PubMed:37257451). Can also demethylate N(6)-methyladenosine in single-stranded DNA (in vitro) (PubMed:24616105). Required for the late meiotic and haploid phases of spermatogenesis by mediating m6A demethylation in spermatocytes and round spermatids: m6A demethylation of target transcripts is required for correct splicing and the production of longer 3'-UTR mRNAs in male germ cells (By similarity). Involved in paraspeckle assembly, a nuclear membraneless organelle, by undergoing liquid-liquid phase separation (PubMed:37369679, PubMed:37474102). Paraspeckle assembly is coupled with m6A demethylation of RNAs, such as NEAT1 non-coding RNA (PubMed:37474102). Also acts as a negative regulator of T-cell development: inhibits gamma-delta T-cell proliferation via demethylation of JAG1 and NOTCH2 transcripts (By similarity). Inhibits regulatory T-cell (Treg) recruitment by mediating demethylation and destabilization of CCL28 mRNAs (By similarity). {ECO:0000250|UniProtKB:Q3TSG4, ECO:0000269|PubMed:21264265, ECO:0000269|PubMed:23177736, ECO:0000269|PubMed:24489119, ECO:0000269|PubMed:24616105, ECO:0000269|PubMed:24778178, ECO:0000269|PubMed:34048572, ECO:0000269|PubMed:36944332, ECO:0000269|PubMed:37257451, ECO:0000269|PubMed:37369679, ECO:0000269|PubMed:37474102}. |
Q6UUV9 | CRTC1 | S158 | ochoa | CREB-regulated transcription coactivator 1 (Mucoepidermoid carcinoma translocated protein 1) (Transducer of regulated cAMP response element-binding protein 1) (TORC-1) (Transducer of CREB protein 1) | Transcriptional coactivator for CREB1 which activates transcription through both consensus and variant cAMP response element (CRE) sites. Acts as a coactivator, in the SIK/TORC signaling pathway, being active when dephosphorylated and acts independently of CREB1 'Ser-133' phosphorylation. Enhances the interaction of CREB1 with TAF4. Regulates the expression of specific CREB-activated genes such as the steroidogenic gene, StAR. Potent coactivator of PGC1alpha and inducer of mitochondrial biogenesis in muscle cells. In the hippocampus, involved in late-phase long-term potentiation (L-LTP) maintenance at the Schaffer collateral-CA1 synapses. May be required for dendritic growth of developing cortical neurons (By similarity). In concert with SIK1, regulates the light-induced entrainment of the circadian clock. In response to light stimulus, coactivates the CREB-mediated transcription of PER1 which plays an important role in the photic entrainment of the circadian clock. {ECO:0000250|UniProtKB:Q157S1, ECO:0000250|UniProtKB:Q68ED7, ECO:0000269|PubMed:23699513}.; FUNCTION: (Microbial infection) Plays a role of coactivator for TAX activation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeats (LTR). {ECO:0000269|PubMed:16809310}. |
Q6XZF7 | DNMBP | S1359 | ochoa | Dynamin-binding protein (Scaffold protein Tuba) | Plays a critical role as a guanine nucleotide exchange factor (GEF) for CDC42 in several intracellular processes associated with the actin and microtubule cytoskeleton. Regulates the structure of apical junctions through F-actin organization in epithelial cells (PubMed:17015620, PubMed:19767742). Participates in the normal lumenogenesis of epithelial cell cysts by regulating spindle orientation (PubMed:20479467). Plays a role in ciliogenesis (By similarity). May play a role in membrane trafficking between the cell surface and the Golgi (By similarity). {ECO:0000250|UniProtKB:E2RP94, ECO:0000250|UniProtKB:Q6TXD4, ECO:0000269|PubMed:17015620, ECO:0000269|PubMed:19767742, ECO:0000269|PubMed:20479467}. |
Q6ZRS2 | SRCAP | S262 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZRS2 | SRCAP | S2790 | ochoa | Helicase SRCAP (EC 3.6.4.-) (Domino homolog 2) (Snf2-related CBP activator) | Catalytic component of the SRCAP complex which mediates the ATP-dependent exchange of histone H2AZ/H2B dimers for nucleosomal H2A/H2B, leading to transcriptional regulation of selected genes by chromatin remodeling. Acts as a coactivator for CREB-mediated transcription, steroid receptor-mediated transcription, and Notch-mediated transcription. {ECO:0000269|PubMed:10347196, ECO:0000269|PubMed:11522779, ECO:0000269|PubMed:14500758, ECO:0000269|PubMed:16024792, ECO:0000269|PubMed:16634648, ECO:0000269|PubMed:17617668}. |
Q6ZU80 | CEP128 | S1041 | ochoa | Centrosomal protein of 128 kDa (Cep128) | None |
Q76I76 | SSH2 | S1215 | ochoa | Protein phosphatase Slingshot homolog 2 (EC 3.1.3.16) (EC 3.1.3.48) (SSH-like protein 2) (SSH-2L) (hSSH-2L) | Protein phosphatase which regulates actin filament dynamics. Dephosphorylates and activates the actin binding/depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates their disassembly. Inhibitory phosphorylation of cofilin is mediated by LIMK1, which may also be dephosphorylated and inactivated by this protein (PubMed:11832213). Required for spermatogenesis (By similarity). Involved in acrosome biogenesis, probably by regulating cofilin-mediated actin cytoskeleton remodeling during proacrosomal vesicle fusion and/or Golgi to perinuclear vesicle trafficking (By similarity). {ECO:0000250|UniProtKB:Q5SW75, ECO:0000269|PubMed:11832213}. |
Q7Z3B3 | KANSL1 | S979 | ochoa | KAT8 regulatory NSL complex subunit 1 (MLL1/MLL complex subunit KANSL1) (MSL1 homolog 1) (hMSL1v1) (NSL complex protein NSL1) (Non-specific lethal 1 homolog) | Non-catalytic component of the NSL histone acetyltransferase complex, a multiprotein complex that mediates histone H4 acetylation at 'Lys-5'- and 'Lys-8' (H4K5ac and H4K8ac) at transcription start sites and promotes transcription initiation (PubMed:20018852, PubMed:22547026, PubMed:33657400). The NSL complex also acts as a regulator of gene expression in mitochondria (PubMed:27768893). In addition to its role in transcription, KANSL1 also plays an essential role in spindle assembly during mitosis (PubMed:26243146). Associates with microtubule ends and contributes to microtubule stability (PubMed:26243146). {ECO:0000269|PubMed:20018852, ECO:0000269|PubMed:22547026, ECO:0000269|PubMed:26243146, ECO:0000269|PubMed:27768893, ECO:0000269|PubMed:33657400}. |
Q7Z3J3 | RGPD4 | S768 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z3J3 | RGPD4 | S1264 | ochoa | RanBP2-like and GRIP domain-containing protein 4 | None |
Q7Z494 | NPHP3 | S1308 | ochoa | Nephrocystin-3 | Required for normal ciliary development and function. Inhibits disheveled-1-induced canonical Wnt-signaling activity and may also play a role in the control of non-canonical Wnt signaling which regulates planar cell polarity. Probably acts as a molecular switch between different Wnt signaling pathways. Required for proper convergent extension cell movements. {ECO:0000269|PubMed:18371931}. |
Q7Z4H7 | HAUS6 | S447 | ochoa | HAUS augmin-like complex subunit 6 | Contributes to mitotic spindle assembly, maintenance of centrosome integrity and completion of cytokinesis as part of the HAUS augmin-like complex. Promotes the nucleation of microtubules from the spindle through recruitment of NEDD1 and gamma-tubulin. {ECO:0000269|PubMed:19029337, ECO:0000269|PubMed:19369198, ECO:0000269|PubMed:19427217}. |
Q7Z4S6 | KIF21A | S1263 | ochoa | Kinesin-like protein KIF21A (Kinesin-like protein KIF2) (Renal carcinoma antigen NY-REN-62) | Processive microtubule plus-end directed motor protein involved in neuronal axon guidance. Is recruited by KANK1 to cortical microtubule stabilizing complexes (CMSCs) at focal adhesions (FAs) rims where it promotes microtubule capture and stability. Controls microtubule polymerization rate at axonal growth cones and suppresses microtubule growth without inducing microtubule disassembly once it reaches the cell cortex. {ECO:0000250|UniProtKB:Q9QXL2, ECO:0000269|PubMed:24120883}. |
Q7Z6E9 | RBBP6 | S1261 | ochoa | E3 ubiquitin-protein ligase RBBP6 (EC 2.3.2.27) (Proliferation potential-related protein) (Protein P2P-R) (RING-type E3 ubiquitin transferase RBBP6) (Retinoblastoma-binding Q protein 1) (RBQ-1) (Retinoblastoma-binding protein 6) (p53-associated cellular protein of testis) | E3 ubiquitin-protein ligase which promotes ubiquitination of YBX1, leading to its degradation by the proteasome (PubMed:18851979). May play a role as a scaffold protein to promote the assembly of the p53/TP53-MDM2 complex, resulting in increase of MDM2-mediated ubiquitination and degradation of p53/TP53; may function as negative regulator of p53/TP53, leading to both apoptosis and cell growth (By similarity). Regulates DNA-replication and the stability of chromosomal common fragile sites (CFSs) in a ZBTB38- and MCM10-dependent manner. Controls ZBTB38 protein stability and abundance via ubiquitination and proteasomal degradation, and ZBTB38 in turn negatively regulates the expression of MCM10 which plays an important role in DNA-replication (PubMed:24726359). {ECO:0000250|UniProtKB:P97868, ECO:0000269|PubMed:18851979, ECO:0000269|PubMed:24726359}.; FUNCTION: (Microbial infection) [Isoform 1]: Restricts ebolavirus replication probably by impairing the vp30-NP interaction, and thus viral transcription. {ECO:0000269|PubMed:30550789}. |
Q86TC9 | MYPN | S112 | ochoa | Myopalladin (145 kDa sarcomeric protein) | Component of the sarcomere that tethers together nebulin (skeletal muscle) and nebulette (cardiac muscle) to alpha-actinin, at the Z lines. {ECO:0000269|PubMed:11309420}. |
Q86TI0 | TBC1D1 | S573 | ochoa | TBC1 domain family member 1 | May act as a GTPase-activating protein for Rab family protein(s). May play a role in the cell cycle and differentiation of various tissues. Involved in the trafficking and translocation of GLUT4-containing vesicles and insulin-stimulated glucose uptake into cells (By similarity). {ECO:0000250}. |
Q86VP3 | PACS2 | S337 | ochoa | Phosphofurin acidic cluster sorting protein 2 (PACS-2) (PACS1-like protein) | Multifunctional sorting protein that controls the endoplasmic reticulum (ER)-mitochondria communication, including the apposition of mitochondria with the ER and ER homeostasis. In addition, in response to apoptotic inducer, translocates BIB to mitochondria, which initiates a sequence of events including the formation of mitochondrial truncated BID, the release of cytochrome c, the activation of caspase-3 thereby causing cell death. May also be involved in ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. {ECO:0000269|PubMed:15692563, ECO:0000269|PubMed:15692567}. |
Q86VQ1 | GLCCI1 | S394 | ochoa | Glucocorticoid-induced transcript 1 protein | None |
Q86W92 | PPFIBP1 | S567 | ochoa | Liprin-beta-1 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 1) (PTPRF-interacting protein-binding protein 1) (hSGT2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q86X51 | EZHIP | S385 | ochoa | EZH inhibitory protein | Inhibits PRC2/EED-EZH1 and PRC2/EED-EZH2 complex function by inhibiting EZH1/EZH2 methyltransferase activity, thereby causing down-regulation of histone H3 trimethylation on 'Lys-27' (H3K27me3) (PubMed:29909548, PubMed:30923826, PubMed:31086175, PubMed:31451685). Probably inhibits methyltransferase activity by limiting the stimulatory effect of cofactors such as AEBP2 and JARID2 (PubMed:30923826). Inhibits H3K27me3 deposition during spermatogenesis and oogenesis (By similarity). {ECO:0000250|UniProtKB:B1B0V2, ECO:0000269|PubMed:29909548, ECO:0000269|PubMed:30923826, ECO:0000269|PubMed:31086175, ECO:0000269|PubMed:31451685}. |
Q86XZ4 | SPATS2 | S112 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q86XZ4 | SPATS2 | S382 | ochoa | Spermatogenesis-associated serine-rich protein 2 (Serine-rich spermatocytes and round spermatid 59 kDa protein) (p59scr) | None |
Q8IWE5 | PLEKHM2 | S359 | ochoa | Pleckstrin homology domain-containing family M member 2 (PH domain-containing family M member 2) (Salmonella-induced filaments A and kinesin-interacting protein) (SifA and kinesin-interacting protein) | Plays a role in lysosomes movement and localization at the cell periphery acting as an effector of ARL8B. Required for ARL8B to exert its effects on lysosome location, recruits kinesin-1 to lysosomes and hence direct their movement toward microtubule plus ends. Binding to ARL8B provides a link from lysosomal membranes to plus-end-directed motility (PubMed:22172677, PubMed:24088571, PubMed:25898167, PubMed:28325809). Critical factor involved in NK cell-mediated cytotoxicity. Drives the polarization of cytolytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells (PubMed:24088571). Required for maintenance of the Golgi apparatus organization (PubMed:22172677). May play a role in membrane tubulation (PubMed:15905402). {ECO:0000269|PubMed:15905402, ECO:0000269|PubMed:22172677, ECO:0000269|PubMed:24088571, ECO:0000269|PubMed:25898167, ECO:0000269|PubMed:28325809}. |
Q8IWS0 | PHF6 | S192 | ochoa | PHD finger protein 6 (PHD-like zinc finger protein) | Transcriptional regulator that associates with ribosomal RNA promoters and suppresses ribosomal RNA (rRNA) transcription. {ECO:0000269|PubMed:23229552}. |
Q8IWZ8 | SUGP1 | S326 | ochoa | SURP and G-patch domain-containing protein 1 (RNA-binding protein RBP) (Splicing factor 4) | Plays a role in pre-mRNA splicing. |
Q8IX03 | WWC1 | S523 | ochoa | Protein KIBRA (HBeAg-binding protein 3) (Kidney and brain protein) (KIBRA) (WW domain-containing protein 1) | Regulator of the Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway (PubMed:24682284). Enhances phosphorylation of LATS1 and YAP1 and negatively regulates cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP1, the major effector of the Hippo pathway (PubMed:24682284). Along with NF2 can synergistically induce the phosphorylation of LATS1 and LATS2 and function in the regulation of Hippo signaling pathway (PubMed:20159598). Acts as a transcriptional coactivator of ESR1 which plays an essential role in DYNLL1-mediated ESR1 transactivation (PubMed:16684779). Regulates collagen-stimulated activation of the ERK/MAPK cascade (PubMed:18190796). Modulates directional migration of podocytes (PubMed:18596123). Plays a role in cognition and memory performance (PubMed:18672031). Plays an important role in regulating AMPA-selective glutamate receptors (AMPARs) trafficking underlying synaptic plasticity and learning (By similarity). {ECO:0000250|UniProtKB:Q5SXA9, ECO:0000269|PubMed:16684779, ECO:0000269|PubMed:18190796, ECO:0000269|PubMed:18596123, ECO:0000269|PubMed:18672031, ECO:0000269|PubMed:20159598, ECO:0000269|PubMed:24682284}. |
Q8IX90 | SKA3 | S334 | ochoa | Spindle and kinetochore-associated protein 3 | Component of the SKA1 complex, a microtubule-binding subcomplex of the outer kinetochore that is essential for proper chromosome segregation (PubMed:19289083, PubMed:19360002, PubMed:23085020). The SKA1 complex is a direct component of the kinetochore-microtubule interface and directly associates with microtubules as oligomeric assemblies (PubMed:19289083, PubMed:19360002). The complex facilitates the processive movement of microspheres along a microtubule in a depolymerization-coupled manner (PubMed:19289083). In the complex, it mediates the microtubule-stimulated oligomerization (PubMed:19289083). Affinity for microtubules is synergistically enhanced in the presence of the ndc-80 complex and may allow the ndc-80 complex to track depolymerizing microtubules (PubMed:23085020). {ECO:0000269|PubMed:19289083, ECO:0000269|PubMed:19360002, ECO:0000269|PubMed:23085020}. |
Q8N1G0 | ZNF687 | S1087 | ochoa | Zinc finger protein 687 | May be involved in transcriptional regulation. |
Q8N4S9 | MARVELD2 | Y108 | ochoa | MARVEL domain-containing protein 2 (Tricellulin) | Plays a role in the formation of tricellular tight junctions and of epithelial barriers (By similarity). Required for normal hearing via its role in the separation of the endolymphatic and perilymphatic spaces of the organ of Corti in the inner ear, and for normal survival of hair cells in the organ of Corti (PubMed:17186462). {ECO:0000250|UniProtKB:Q3UZP0, ECO:0000269|PubMed:17186462}. |
Q8N684 | CPSF7 | S48 | ochoa | Cleavage and polyadenylation specificity factor subunit 7 (Cleavage and polyadenylation specificity factor 59 kDa subunit) (CPSF 59 kDa subunit) (Cleavage factor Im complex 59 kDa subunit) (CFIm59) (Pre-mRNA cleavage factor Im 59 kDa subunit) | Component of the cleavage factor Im (CFIm) complex that functions as an activator of the pre-mRNA 3'-end cleavage and polyadenylation processing required for the maturation of pre-mRNA into functional mRNAs (PubMed:17024186, PubMed:29276085, PubMed:8626397). CFIm contributes to the recruitment of multiprotein complexes on specific sequences on the pre-mRNA 3'-end, so called cleavage and polyadenylation signals (pA signals) (PubMed:17024186, PubMed:8626397). Most pre-mRNAs contain multiple pA signals, resulting in alternative cleavage and polyadenylation (APA) producing mRNAs with variable 3'-end formation (PubMed:23187700, PubMed:29276085). The CFIm complex acts as a key regulator of cleavage and polyadenylation site choice during APA through its binding to 5'-UGUA-3' elements localized in the 3'-untranslated region (UTR) for a huge number of pre-mRNAs (PubMed:20695905, PubMed:29276085). CPSF7 activates directly the mRNA 3'-processing machinery (PubMed:29276085). Binds to pA signals in RNA substrates (PubMed:17024186, PubMed:8626397). {ECO:0000269|PubMed:17024186, ECO:0000269|PubMed:20695905, ECO:0000269|PubMed:23187700, ECO:0000269|PubMed:29276085, ECO:0000269|PubMed:8626397}. |
Q8N9U0 | TC2N | S156 | ochoa | Tandem C2 domains nuclear protein (Membrane targeting tandem C2 domain-containing protein 1) (Tandem C2 protein in nucleus) (Tac2-N) | None |
Q8NCD3 | HJURP | S128 | ochoa | Holliday junction recognition protein (14-3-3-associated AKT substrate) (Fetal liver-expressing gene 1 protein) (Up-regulated in lung cancer 9) | Centromeric protein that plays a central role in the incorporation and maintenance of histone H3-like variant CENPA at centromeres. Acts as a specific chaperone for CENPA and is required for the incorporation of newly synthesized CENPA molecules into nucleosomes at replicated centromeres. Prevents CENPA-H4 tetramerization and prevents premature DNA binding by the CENPA-H4 tetramer. Directly binds Holliday junctions. {ECO:0000269|PubMed:19410544, ECO:0000269|PubMed:19410545}. |
Q8NCP5 | ZBTB44 | S149 | ochoa | Zinc finger and BTB domain-containing protein 44 (BTB/POZ domain-containing protein 15) (Zinc finger protein 851) | May be involved in transcriptional regulation. {ECO:0000250}. |
Q8ND04 | SMG8 | S656 | ochoa | Nonsense-mediated mRNA decay factor SMG8 (Amplified in breast cancer gene 2 protein) (Protein smg-8 homolog) | Involved in nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Is recruited by release factors to stalled ribosomes together with SMG1 and SMG9 (forming the SMG1C protein kinase complex) and, in the SMG1C complex, is required to mediate the recruitment of SMG1 to the ribosome:SURF complex and to suppress SMG1 kinase activity until the ribosome:SURF complex locates the exon junction complex (EJC). Acts as a regulator of kinase activity. {ECO:0000269|PubMed:19417104}. |
Q8ND30 | PPFIBP2 | S475 | ochoa | Liprin-beta-2 (Protein tyrosine phosphatase receptor type f polypeptide-interacting protein-binding protein 2) (PTPRF-interacting protein-binding protein 2) | May regulate the disassembly of focal adhesions. Did not bind receptor-like tyrosine phosphatases type 2A. {ECO:0000269|PubMed:9624153}. |
Q8NEY1 | NAV1 | S140 | ochoa | Neuron navigator 1 (Pore membrane and/or filament-interacting-like protein 3) (Steerin-1) (Unc-53 homolog 1) (unc53H1) | May be involved in neuronal migration. {ECO:0000250}. |
Q8NFA0 | USP32 | S1364 | ochoa | Ubiquitin carboxyl-terminal hydrolase 32 (EC 3.4.19.12) (Deubiquitinating enzyme 32) (Renal carcinoma antigen NY-REN-60) (Ubiquitin thioesterase 32) (Ubiquitin-specific-processing protease 32) | Deubiquitinase that can remove conjugated ubiquitin from target proteins, such as RAB7A and LAMTOR1 (PubMed:36476874). Acts as a positive regulator of the mTORC1 signaling by mediating deubiquitination of LAMTOR1, thereby promoting the association between LAMTOR1 and the lysosomal V-ATPase complex and subsequent activation of the mTORC1 complex (PubMed:36476874). {ECO:0000269|PubMed:36476874}. |
Q8NFY4 | SEMA6D | S711 | ochoa | Semaphorin-6D | Shows growth cone collapsing activity on dorsal root ganglion (DRG) neurons in vitro. May be a stop signal for the DRG neurons in their target areas, and possibly also for other neurons. May also be involved in the maintenance and remodeling of neuronal connections. Ligand of TREM2 with PLXNA1 as coreceptor in dendritic cells, plays a role in the generation of immune responses and skeletal homeostasis (By similarity). {ECO:0000250|UniProtKB:Q76KF0}. |
Q8NHU0 | CT45A3 | S103 | ochoa | Cancer/testis antigen family 45 member A3 (Cancer/testis antigen 45-3) (Cancer/testis antigen 45-4) (Cancer/testis antigen 45A3) (Cancer/testis antigen 45A4) (Cancer/testis antigen family 45 member A4) | None |
Q8TD26 | CHD6 | S24 | ochoa | Chromodomain-helicase-DNA-binding protein 6 (CHD-6) (EC 3.6.4.-) (ATP-dependent helicase CHD6) (Radiation-induced gene B protein) | ATP-dependent chromatin-remodeling factor (PubMed:17027977, PubMed:28533432). Regulates transcription by disrupting nucleosomes in a largely non-sliding manner which strongly increases the accessibility of chromatin; nucleosome disruption requires ATP (PubMed:28533432). Activates transcription of specific genes in response to oxidative stress through interaction with NFE2L2. {ECO:0000269|PubMed:16314513, ECO:0000269|PubMed:17027977, ECO:0000269|PubMed:28533432}.; FUNCTION: (Microbial infection) Acts as a transcriptional repressor of different viruses including influenza virus or papillomavirus. During influenza virus infection, the viral polymerase complex localizes CHD6 to inactive chromatin where it gets degraded in a proteasome independent-manner. {ECO:0000269|PubMed:20631145, ECO:0000269|PubMed:21899694, ECO:0000269|PubMed:23408615}. |
Q8WUB8 | PHF10 | S319 | ochoa | PHD finger protein 10 (BRG1-associated factor 45a) (BAF45a) (XAP135) | Involved in transcription activity regulation by chromatin remodeling. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). {ECO:0000250}. |
Q8WUF5 | PPP1R13L | S268 | ochoa | RelA-associated inhibitor (Inhibitor of ASPP protein) (Protein iASPP) (NFkB-interacting protein 1) (PPP1R13B-like protein) | Regulator that plays a central role in regulation of apoptosis and transcription via its interaction with NF-kappa-B and p53/TP53 proteins. Blocks transcription of HIV-1 virus by inhibiting the action of both NF-kappa-B and SP1. Also inhibits p53/TP53 function, possibly by preventing the association between p53/TP53 and ASPP1 or ASPP2, and therefore suppressing the subsequent activation of apoptosis (PubMed:12524540). Is involved in NF-kappa-B dependent negative regulation of inflammatory response (PubMed:28069640). {ECO:0000269|PubMed:10336463, ECO:0000269|PubMed:12134007, ECO:0000269|PubMed:12524540, ECO:0000269|PubMed:15489900, ECO:0000269|PubMed:28069640}. |
Q8WUX9 | CHMP7 | S429 | ochoa | Charged multivesicular body protein 7 (Chromatin-modifying protein 7) | ESCRT-III-like protein required to recruit the ESCRT-III complex to the nuclear envelope (NE) during late anaphase (PubMed:26040712). Together with SPAST, the ESCRT-III complex promotes NE sealing and mitotic spindle disassembly during late anaphase (PubMed:26040712, PubMed:28242692). Recruited to the reforming NE during anaphase by LEMD2 (PubMed:28242692). Plays a role in the endosomal sorting pathway (PubMed:16856878). {ECO:0000269|PubMed:16856878, ECO:0000269|PubMed:26040712, ECO:0000269|PubMed:28242692}. |
Q8WXE9 | STON2 | S295 | ochoa | Stonin-2 (Stoned B) | Adapter protein involved in endocytic machinery. Involved in the synaptic vesicle recycling. May facilitate clathrin-coated vesicle uncoating. {ECO:0000269|PubMed:11381094, ECO:0000269|PubMed:11454741, ECO:0000269|PubMed:21102408}. |
Q8WXG6 | MADD | S818 | ochoa | MAP kinase-activating death domain protein (Differentially expressed in normal and neoplastic cells) (Insulinoma glucagonoma clone 20) (Rab3 GDP/GTP exchange factor) (RabGEF) (Rab3 GDP/GTP exchange protein) (Rab3GEP) | Guanyl-nucleotide exchange factor that regulates small GTPases of the Rab family (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB27A and RAB27B to the GTP-bound active forms (PubMed:18559336, PubMed:20937701). Converts GDP-bound inactive form of RAB3A, RAB3C and RAB3D to the GTP-bound active forms, GTPases involved in synaptic vesicle exocytosis and vesicle secretion (By similarity). Plays a role in synaptic vesicle formation and in vesicle trafficking at the neuromuscular junction (By similarity). Involved in up-regulating a post-docking step of synaptic exocytosis in central synapses (By similarity). Probably by binding to the motor proteins KIF1B and KIF1A, mediates motor-dependent transport of GTP-RAB3A-positive vesicles to the presynaptic nerve terminals (By similarity). Plays a role in TNFA-mediated activation of the MAPK pathway, including ERK1/2 (PubMed:32761064). May link TNFRSF1A with MAP kinase activation (PubMed:9115275). May be involved in the regulation of TNFA-induced apoptosis (PubMed:11577081, PubMed:32761064). {ECO:0000250|UniProtKB:O08873, ECO:0000250|UniProtKB:Q80U28, ECO:0000269|PubMed:11577081, ECO:0000269|PubMed:18559336, ECO:0000269|PubMed:20937701, ECO:0000269|PubMed:32761064, ECO:0000269|PubMed:9115275}. |
Q8WXH0 | SYNE2 | S6377 | ochoa | Nesprin-2 (KASH domain-containing protein 2) (KASH2) (Nuclear envelope spectrin repeat protein 2) (Nucleus and actin connecting element protein) (Protein NUANCE) (Synaptic nuclear envelope protein 2) (Syne-2) | Multi-isomeric modular protein which forms a linking network between organelles and the actin cytoskeleton to maintain the subcellular spatial organization. As a component of the LINC (LInker of Nucleoskeleton and Cytoskeleton) complex involved in the connection between the nuclear lamina and the cytoskeleton. The nucleocytoplasmic interactions established by the LINC complex play an important role in the transmission of mechanical forces across the nuclear envelope and in nuclear movement and positioning (PubMed:34818527). Specifically, SYNE2 and SUN2 assemble in arrays of transmembrane actin-associated nuclear (TAN) lines which are bound to F-actin cables and couple the nucleus to retrograde actin flow during actin-dependent nuclear movement. May be involved in nucleus-centrosome attachment. During interkinetic nuclear migration (INM) at G2 phase and nuclear migration in neural progenitors its LINC complex association with SUN1/2 and probable association with cytoplasmic dynein-dynactin motor complexes functions to pull the nucleus toward the centrosome; SYNE1 and SYNE2 may act redundantly. During INM at G1 phase mediates respective LINC complex association with kinesin to push the nucleus away from the centrosome. Involved in nuclear migration in retinal photoreceptor progenitors. Required for centrosome migration to the apical cell surface during early ciliogenesis. Facilitates the relaxation of mechanical stress imposed by compressive actin fibers at the rupture site through its nteraction with SYN2 (PubMed:34818527). {ECO:0000250|UniProtKB:Q6ZWQ0, ECO:0000269|PubMed:12118075, ECO:0000269|PubMed:18396275, ECO:0000269|PubMed:19596800, ECO:0000269|PubMed:20724637, ECO:0000269|PubMed:22945352, ECO:0000269|PubMed:34818527}. |
Q92538 | GBF1 | S302 | ochoa | Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (BFA-resistant GEF 1) | Guanine-nucleotide exchange factor (GEF) for members of the Arf family of small GTPases involved in trafficking in the early secretory pathway; its GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs through replacement of GDP with GTP. Recruitment to cis-Golgi membranes requires membrane association of Arf-GDP and can be regulated by ARF1, ARF3, ARF4 and ARF5. Involved in the recruitment of the COPI coat complex to the endoplasmic reticulum exit sites (ERES), and the endoplasmic reticulum-Golgi intermediate (ERGIC) and cis-Golgi compartments which implicates ARF1 activation. Involved in COPI vesicle-dependent retrograde transport from the ERGIC and cis-Golgi compartments to the endoplasmic reticulum (ER) (PubMed:12047556, PubMed:12808027, PubMed:16926190, PubMed:17956946, PubMed:18003980, PubMed:19039328, PubMed:24213530). Involved in the trans-Golgi network recruitment of GGA1, GGA2, GGA3, BIG1, BIG2, and the AP-1 adaptor protein complex related to chlathrin-dependent transport; the function requires its GEF activity (probably at least in part on ARF4 and ARF5) (PubMed:23386609). Has GEF activity towards ARF1 (PubMed:15616190). Has in vitro GEF activity towards ARF5 (By similarity). Involved in the processing of PSAP (PubMed:17666033). Required for the assembly of the Golgi apparatus (PubMed:12808027, PubMed:18003980). The AMPK-phosphorylated form is involved in Golgi disassembly during mitotis and under stress conditions (PubMed:18063581, PubMed:23418352). May be involved in the COPI vesicle-dependent recruitment of PNPLA2 to lipid droplets; however, this function is under debate (PubMed:19461073, PubMed:22185782). In neutrophils, involved in G protein-coupled receptor (GPCR)-mediated chemotaxis und superoxide production. Proposed to be recruited by phosphatidylinositol-phosphates generated upon GPCR stimulation to the leading edge where it recruits and activates ARF1, and is involved in recruitment of GIT2 and the NADPH oxidase complex (PubMed:22573891). Plays a role in maintaining mitochondrial morphology (PubMed:25190516). {ECO:0000250|UniProtKB:Q9R1D7, ECO:0000269|PubMed:12047556, ECO:0000269|PubMed:12808027, ECO:0000269|PubMed:15616190, ECO:0000269|PubMed:16926190, ECO:0000269|PubMed:17666033, ECO:0000269|PubMed:17956946, ECO:0000269|PubMed:18003980, ECO:0000269|PubMed:18063581, ECO:0000269|PubMed:19461073, ECO:0000269|PubMed:22185782, ECO:0000269|PubMed:22573891, ECO:0000269|PubMed:23386609, ECO:0000269|PubMed:23418352, ECO:0000269|PubMed:24213530, ECO:0000269|PubMed:25190516, ECO:0000305|PubMed:19039328, ECO:0000305|PubMed:22573891}. |
Q92615 | LARP4B | S512 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92615 | LARP4B | S589 | ochoa | La-related protein 4B (La ribonucleoprotein domain family member 4B) (La ribonucleoprotein domain family member 5) (La-related protein 5) | Stimulates mRNA translation. {ECO:0000269|PubMed:20573744}. |
Q92625 | ANKS1A | S622 | ochoa | Ankyrin repeat and SAM domain-containing protein 1A (Odin) | Regulator of different signaling pathways. Regulates EPHA8 receptor tyrosine kinase signaling to control cell migration and neurite retraction (By similarity). {ECO:0000250, ECO:0000269|PubMed:17875921}. |
Q92698 | RAD54L | S37 | ochoa | DNA repair and recombination protein RAD54-like (EC 3.6.4.12) (RAD54 homolog) (hHR54) (hRAD54) | Plays an essential role in homologous recombination (HR) which is a major pathway for repairing DNA double-strand breaks (DSBs), single-stranded DNA (ssDNA) gaps, and stalled or collapsed replication forks (PubMed:11459989, PubMed:12205100, PubMed:24798879, PubMed:27264870, PubMed:32457312, PubMed:9774452). Acts as a molecular motor during the homology search and guides RAD51 ssDNA along a donor dsDNA thereby changing the homology search from the diffusion-based mechanism to a motor-guided mechanism. Also plays an essential role in RAD51-mediated synaptic complex formation which consists of three strands encased in a protein filament formed once homology is recognized. Once DNA strand exchange occured, dissociates RAD51 from nucleoprotein filaments formed on dsDNA (By similarity). {ECO:0000250|UniProtKB:P32863, ECO:0000269|PubMed:11459989, ECO:0000269|PubMed:12205100, ECO:0000269|PubMed:24798879, ECO:0000269|PubMed:27264870, ECO:0000269|PubMed:32457312, ECO:0000269|PubMed:9774452}. |
Q92974 | ARHGEF2 | S151 | ochoa|psp | Rho guanine nucleotide exchange factor 2 (Guanine nucleotide exchange factor H1) (GEF-H1) (Microtubule-regulated Rho-GEF) (Proliferating cell nucleolar antigen p40) | Activates Rho-GTPases by promoting the exchange of GDP for GTP. May be involved in epithelial barrier permeability, cell motility and polarization, dendritic spine morphology, antigen presentation, leukemic cell differentiation, cell cycle regulation, innate immune response, and cancer. Binds Rac-GTPases, but does not seem to promote nucleotide exchange activity toward Rac-GTPases, which was uniquely reported in PubMed:9857026. May stimulate instead the cortical activity of Rac. Inactive toward CDC42, TC10, or Ras-GTPases. Forms an intracellular sensing system along with NOD1 for the detection of microbial effectors during cell invasion by pathogens. Required for RHOA and RIP2 dependent NF-kappaB signaling pathways activation upon S.flexneri cell invasion. Involved not only in sensing peptidoglycan (PGN)-derived muropeptides through NOD1 that is independent of its GEF activity, but also in the activation of NF-kappaB by Shigella effector proteins (IpgB2 and OspB) which requires its GEF activity and the activation of RhoA. Involved in innate immune signaling transduction pathway promoting cytokine IL6/interleukin-6 and TNF-alpha secretion in macrophage upon stimulation by bacterial peptidoglycans; acts as a signaling intermediate between NOD2 receptor and RIPK2 kinase. Contributes to the tyrosine phosphorylation of RIPK2 through Src tyrosine kinase leading to NF-kappaB activation by NOD2. Overexpression activates Rho-, but not Rac-GTPases, and increases paracellular permeability (By similarity). Involved in neuronal progenitor cell division and differentiation (PubMed:28453519). Involved in the migration of precerebellar neurons (By similarity). {ECO:0000250|UniProtKB:Q60875, ECO:0000250|UniProtKB:Q865S3, ECO:0000269|PubMed:19043560, ECO:0000269|PubMed:21887730, ECO:0000269|PubMed:28453519, ECO:0000269|PubMed:9857026}. |
Q93045 | STMN2 | S50 | psp | Stathmin-2 (Superior cervical ganglion-10 protein) (Protein SCG10) | Regulator of microtubule stability. When phosphorylated by MAPK8, stabilizes microtubules and consequently controls neurite length in cortical neurons. In the developing brain, negatively regulates the rate of exit from multipolar stage and retards radial migration from the ventricular zone (By similarity). {ECO:0000250}. |
Q969V6 | MRTFA | S112 | ochoa | Myocardin-related transcription factor A (MRTF-A) (MKL/myocardin-like protein 1) (Megakaryoblastic leukemia 1 protein) (Megakaryocytic acute leukemia protein) | Transcription coactivator that associates with the serum response factor (SRF) transcription factor to control expression of genes regulating the cytoskeleton during development, morphogenesis and cell migration (PubMed:26224645). The SRF-MRTFA complex activity responds to Rho GTPase-induced changes in cellular globular actin (G-actin) concentration, thereby coupling cytoskeletal gene expression to cytoskeletal dynamics. MRTFA binds G-actin via its RPEL repeats, regulating activity of the MRTFA-SRF complex. Activity is also regulated by filamentous actin (F-actin) in the nucleus. {ECO:0000250|UniProtKB:Q8K4J6, ECO:0000269|PubMed:26224645}. |
Q96CC6 | RHBDF1 | S49 | ochoa | Inactive rhomboid protein 1 (iRhom1) (Epidermal growth factor receptor-related protein) (Rhomboid 5 homolog 1) (Rhomboid family member 1) (p100hRho) | Regulates ADAM17 protease, a sheddase of the epidermal growth factor (EGF) receptor ligands and TNF, thereby plays a role in sleep, cell survival, proliferation, migration and inflammation. Does not exhibit any protease activity on its own. {ECO:0000269|PubMed:15965977, ECO:0000269|PubMed:18524845, ECO:0000269|PubMed:18832597, ECO:0000269|PubMed:21439629}. |
Q96D71 | REPS1 | Y389 | ochoa | RalBP1-associated Eps domain-containing protein 1 (RalBP1-interacting protein 1) | May coordinate the cellular actions of activated EGF receptors and Ral-GTPases. {ECO:0000250}. |
Q96FS4 | SIPA1 | S55 | ochoa | Signal-induced proliferation-associated protein 1 (Sipa-1) (GTPase-activating protein Spa-1) (p130 SPA-1) | GTPase activator for the nuclear Ras-related regulatory proteins Rap1 and Rap2 in vitro, converting them to the putatively inactive GDP-bound state (PubMed:9346962). Affects cell cycle progression (By similarity). {ECO:0000250|UniProtKB:P46062, ECO:0000269|PubMed:9346962}. |
Q96JH7 | VCPIP1 | S756 | ochoa | Deubiquitinating protein VCPIP1 (EC 3.4.19.12) (Valosin-containing protein p97/p47 complex-interacting protein 1) (Valosin-containing protein p97/p47 complex-interacting protein p135) (VCP/p47 complex-interacting 135-kDa protein) | Deubiquitinating enzyme involved in DNA repair and reassembly of the Golgi apparatus and the endoplasmic reticulum following mitosis (PubMed:32649882). Necessary for VCP-mediated reassembly of Golgi stacks after mitosis (By similarity). Plays a role in VCP-mediated formation of transitional endoplasmic reticulum (tER) (By similarity). Mediates dissociation of the ternary complex containing STX5A, NSFL1C and VCP (By similarity). Also involved in DNA repair following phosphorylation by ATM or ATR: acts by catalyzing deubiquitination of SPRTN, thereby promoting SPRTN recruitment to chromatin and subsequent proteolytic cleavage of covalent DNA-protein cross-links (DPCs) (PubMed:32649882). Hydrolyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitin chains (PubMed:23827681). {ECO:0000250|UniProtKB:Q8CF97, ECO:0000269|PubMed:23827681, ECO:0000269|PubMed:32649882}.; FUNCTION: (Microbial infection) Regulates the duration of C.botulinum neurotoxin type A (BoNT/A) intoxication by catalyzing deubiquitination of Botulinum neurotoxin A light chain (LC), thereby preventing LC degradation by the proteasome, and accelerating botulinum neurotoxin intoxication in patients. {ECO:0000269|PubMed:28584101}. |
Q96JK2 | DCAF5 | S636 | ochoa | DDB1- and CUL4-associated factor 5 (Breakpoint cluster region protein 2) (BCRP2) (WD repeat-containing protein 22) | Is a substrate receptor for the CUL4-DDB1 E3 ubiquitin-protein ligase complex (CRL4) (PubMed:29691401, PubMed:30442713). The complex CRL4-DCAF5 is involved in the ubiquitination of a set of methylated non-histone proteins, including SOX2, DNMT1 and E2F1 (PubMed:29691401, PubMed:30442713). {ECO:0000269|PubMed:16949367, ECO:0000269|PubMed:16964240, ECO:0000269|PubMed:29691401, ECO:0000269|PubMed:30442713}. |
Q96JM3 | CHAMP1 | S241 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JM3 | CHAMP1 | S374 | ochoa | Chromosome alignment-maintaining phosphoprotein 1 (Zinc finger protein 828) | Required for proper alignment of chromosomes at metaphase and their accurate segregation during mitosis. Involved in the maintenance of spindle microtubules attachment to the kinetochore during sister chromatid biorientation. May recruit CENPE and CENPF to the kinetochore. {ECO:0000269|PubMed:21063390}. |
Q96JQ0 | DCHS1 | S2983 | ochoa | Protocadherin-16 (Cadherin-19) (Cadherin-25) (Fibroblast cadherin-1) (Protein dachsous homolog 1) | Calcium-dependent cell-adhesion protein. Mediates functions in neuroprogenitor cell proliferation and differentiation. In the heart, has a critical role for proper morphogenesis of the mitral valve, acting in the regulation of cell migration involved in valve formation (PubMed:26258302). {ECO:0000269|PubMed:26258302}. |
Q96JY6 | PDLIM2 | Y122 | ochoa | PDZ and LIM domain protein 2 (PDZ-LIM protein mystique) | Probable adapter protein located at the actin cytoskeleton that promotes cell attachment. Necessary for the migratory capacity of epithelial cells. Overexpression enhances cell adhesion to collagen and fibronectin and suppresses anchorage independent growth. May contribute to tumor cell migratory capacity. {ECO:0000269|PubMed:15659642}. |
Q96MY1 | NOL4L | S375 | ochoa | Nucleolar protein 4-like | None |
Q96N67 | DOCK7 | S898 | ochoa | Dedicator of cytokinesis protein 7 | Functions as a guanine nucleotide exchange factor (GEF), which activates Rac1 and Rac3 Rho small GTPases by exchanging bound GDP for free GTP. Does not have a GEF activity for CDC42. Required for STMN1 'Ser-15' phosphorylation during axon formation and consequently for neuronal polarization (PubMed:16982419). As part of the DISP complex, may regulate the association of septins with actin and thereby regulate the actin cytoskeleton (PubMed:29467281). Has a role in pigmentation (By similarity). Involved in the regulation of cortical neurogenesis through the control of radial glial cells (RGCs) proliferation versus differentiation; negatively regulates the basal-to-apical interkinetic nuclear migration of RGCs by antagonizing the microtubule growth-promoting function of TACC3 (By similarity). {ECO:0000250|UniProtKB:Q8R1A4, ECO:0000269|PubMed:16982419, ECO:0000269|PubMed:29467281}. |
Q96PY5 | FMNL2 | S171 | ochoa|psp | Formin-like protein 2 (Formin homology 2 domain-containing protein 2) | Plays a role in the regulation of cell morphology and cytoskeletal organization. Required in the cortical actin filament dynamics. {ECO:0000269|PubMed:21834987}. |
Q96RL1 | UIMC1 | S451 | ochoa | BRCA1-A complex subunit RAP80 (Receptor-associated protein 80) (Retinoid X receptor-interacting protein 110) (Ubiquitin interaction motif-containing protein 1) | Ubiquitin-binding protein (PubMed:24627472). Specifically recognizes and binds 'Lys-63'-linked ubiquitin (PubMed:19328070, Ref.38). Plays a central role in the BRCA1-A complex by specifically binding 'Lys-63'-linked ubiquitinated histones H2A and H2AX at DNA lesions sites, leading to target the BRCA1-BARD1 heterodimer to sites of DNA damage at double-strand breaks (DSBs). The BRCA1-A complex also possesses deubiquitinase activity that specifically removes 'Lys-63'-linked ubiquitin on histones H2A and H2AX. Also weakly binds monoubiquitin but with much less affinity than 'Lys-63'-linked ubiquitin. May interact with monoubiquitinated histones H2A and H2B; the relevance of such results is however unclear in vivo. Does not bind Lys-48'-linked ubiquitin. May indirectly act as a transcriptional repressor by inhibiting the interaction of NR6A1 with the corepressor NCOR1. {ECO:0000269|PubMed:12080054, ECO:0000269|PubMed:17525340, ECO:0000269|PubMed:17525341, ECO:0000269|PubMed:17525342, ECO:0000269|PubMed:17621610, ECO:0000269|PubMed:17643121, ECO:0000269|PubMed:19015238, ECO:0000269|PubMed:19202061, ECO:0000269|PubMed:19261748, ECO:0000269|PubMed:19328070, ECO:0000269|PubMed:24627472, ECO:0000269|Ref.38}. |
Q96S21 | RAB40C | S256 | ochoa | Ras-related protein Rab-40C (EC 3.6.5.2) (Rar-like protein) (Ras-like protein family member 8C) (SOCS box-containing protein RAR3) | RAB40C small GTPase acts as substrate-recognition component of the ECS(RAB40C) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins (PubMed:15601820, PubMed:35512830). The Rab40 subfamily belongs to the Rab family that are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different sets of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion (PubMed:29156729). As part of the ECS(RAB40C) complex, mediates ANKRD28 ubiquitination and degradation, thereby inhibiting protein phosphatase 6 (PP6) complex activity and focal adhesion assembly during cell migration (PubMed:35512830). Also negatively regulate lipid droplets accumulation in a GTP-dependent manner (PubMed:29156729). {ECO:0000269|PubMed:15601820, ECO:0000269|PubMed:29156729, ECO:0000269|PubMed:35512830}. |
Q96T23 | RSF1 | Y1363 | ochoa | Remodeling and spacing factor 1 (Rsf-1) (HBV pX-associated protein 8) (Hepatitis B virus X-associated protein) (p325 subunit of RSF chromatin-remodeling complex) | Regulatory subunit of the ATP-dependent RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, which form ordered nucleosome arrays on chromatin and facilitate access to DNA during DNA-templated processes such as DNA replication, transcription, and repair (PubMed:12972596, PubMed:28801535). Binds to core histones together with SMARCA5, and is required for the assembly of regular nucleosome arrays by the RSF-5 ISWI chromatin-remodeling complex (PubMed:12972596). Directly stimulates the ATPase activity of SMARCA1 and SMARCA5 in the RSF-1 and RSF-5 ISWI chromatin-remodeling complexes, respectively (PubMed:28801535). The RSF-1 ISWI chromatin remodeling complex has a lower ATP hydrolysis rate than the RSF-5 ISWI chromatin-remodeling complex (PubMed:28801535). The complexes do not have the ability to slide mononucleosomes to the center of a DNA template (PubMed:28801535). Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain (PubMed:11788598, PubMed:11944984). {ECO:0000269|PubMed:11788598, ECO:0000269|PubMed:11944984, ECO:0000269|PubMed:12972596, ECO:0000269|PubMed:28801535}. |
Q96T58 | SPEN | S1906 | ochoa | Msx2-interacting protein (SMART/HDAC1-associated repressor protein) (SPEN homolog) | May serve as a nuclear matrix platform that organizes and integrates transcriptional responses. In osteoblasts, supports transcription activation: synergizes with RUNX2 to enhance FGFR2-mediated activation of the osteocalcin FGF-responsive element (OCFRE) (By similarity). Has also been shown to be an essential corepressor protein, which probably regulates different key pathways such as the Notch pathway. Negative regulator of the Notch pathway via its interaction with RBPSUH, which prevents the association between NOTCH1 and RBPSUH, and therefore suppresses the transactivation activity of Notch signaling. Blocks the differentiation of precursor B-cells into marginal zone B-cells. Probably represses transcription via the recruitment of large complexes containing histone deacetylase proteins. May bind both to DNA and RNA. {ECO:0000250|UniProtKB:Q62504, ECO:0000269|PubMed:11331609, ECO:0000269|PubMed:12374742}. |
Q99081 | TCF12 | S67 | ochoa | Transcription factor 12 (TCF-12) (Class B basic helix-loop-helix protein 20) (bHLHb20) (DNA-binding protein HTF4) (E-box-binding protein) (Transcription factor HTF-4) | Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (PubMed:32620954). {ECO:0000250|UniProtKB:Q61286, ECO:0000269|PubMed:32620954}. |
Q99569 | PKP4 | Y261 | ochoa | Plakophilin-4 (p0071) | Plays a role as a regulator of Rho activity during cytokinesis. May play a role in junctional plaques. {ECO:0000269|PubMed:17115030}. |
Q99638 | RAD9A | S324 | ochoa | Cell cycle checkpoint control protein RAD9A (hRAD9) (EC 3.1.11.2) (DNA repair exonuclease rad9 homolog A) | Component of the 9-1-1 cell-cycle checkpoint response complex that plays a major role in DNA repair (PubMed:10713044, PubMed:17575048, PubMed:20545769, PubMed:21659603, PubMed:31135337). The 9-1-1 complex is recruited to DNA lesion upon damage by the RAD17-replication factor C (RFC) clamp loader complex (PubMed:21659603). Acts then as a sliding clamp platform on DNA for several proteins involved in long-patch base excision repair (LP-BER) (PubMed:21659603). The 9-1-1 complex stimulates DNA polymerase beta (POLB) activity by increasing its affinity for the 3'-OH end of the primer-template and stabilizes POLB to those sites where LP-BER proceeds; endonuclease FEN1 cleavage activity on substrates with double, nick, or gap flaps of distinct sequences and lengths; and DNA ligase I (LIG1) on long-patch base excision repair substrates (PubMed:21659603). The 9-1-1 complex is necessary for the recruitment of RHNO1 to sites of double-stranded breaks (DSB) occurring during the S phase (PubMed:21659603). RAD9A possesses 3'->5' double stranded DNA exonuclease activity (PubMed:10713044). {ECO:0000269|PubMed:10713044, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:31135337}. |
Q99638 | RAD9A | S363 | psp | Cell cycle checkpoint control protein RAD9A (hRAD9) (EC 3.1.11.2) (DNA repair exonuclease rad9 homolog A) | Component of the 9-1-1 cell-cycle checkpoint response complex that plays a major role in DNA repair (PubMed:10713044, PubMed:17575048, PubMed:20545769, PubMed:21659603, PubMed:31135337). The 9-1-1 complex is recruited to DNA lesion upon damage by the RAD17-replication factor C (RFC) clamp loader complex (PubMed:21659603). Acts then as a sliding clamp platform on DNA for several proteins involved in long-patch base excision repair (LP-BER) (PubMed:21659603). The 9-1-1 complex stimulates DNA polymerase beta (POLB) activity by increasing its affinity for the 3'-OH end of the primer-template and stabilizes POLB to those sites where LP-BER proceeds; endonuclease FEN1 cleavage activity on substrates with double, nick, or gap flaps of distinct sequences and lengths; and DNA ligase I (LIG1) on long-patch base excision repair substrates (PubMed:21659603). The 9-1-1 complex is necessary for the recruitment of RHNO1 to sites of double-stranded breaks (DSB) occurring during the S phase (PubMed:21659603). RAD9A possesses 3'->5' double stranded DNA exonuclease activity (PubMed:10713044). {ECO:0000269|PubMed:10713044, ECO:0000269|PubMed:17575048, ECO:0000269|PubMed:20545769, ECO:0000269|PubMed:21659603, ECO:0000269|PubMed:31135337}. |
Q99666 | RGPD5 | S767 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99666 | RGPD5 | S1263 | ochoa | RANBP2-like and GRIP domain-containing protein 5/6 (Ran-binding protein 2-like 1/2) (RanBP2-like 1/2) (RanBP2L1) (RanBP2L2) (Sperm membrane protein BS-63) | None |
Q99684 | GFI1 | S59 | ochoa | Zinc finger protein Gfi-1 (Growth factor independent protein 1) (Zinc finger protein 163) | Transcription repressor essential for hematopoiesis (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Functions in a cell-context and development-specific manner (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Binds to 5'-TAAATCAC[AT]GCA-3' in the promoter region of a large number of genes (PubMed:11060035, PubMed:17197705, PubMed:17646546, PubMed:18805794, PubMed:19164764, PubMed:20190815, PubMed:8754800). Component of several complexes, including the EHMT2-GFI1-HDAC1, AJUBA-GFI1-HDAC1 and RCOR-GFI-KDM1A-HDAC complexes, that suppress, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development (PubMed:16287849). Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development (PubMed:12778173). Inhibits SPI1 transcriptional activity at macrophage-specific genes, repressing macrophage differentiation of myeloid progenitor cells and promoting granulocyte commitment (By similarity). Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor signaling (By similarity). Regulates the endotoxin-mediated Toll-like receptor (TLR) inflammatory response by antagonizing RELA (PubMed:20547752). Cooperates with CBFA2T2 to regulate ITGB1-dependent neurite growth (PubMed:19026687). Controls cell-cycle progression by repressing CDKNIA/p21 transcription in response to TGFB1 via recruitment of GFI1 by ZBTB17 to the CDKNIA/p21 and CDKNIB promoters (PubMed:16287849). Required for the maintenance of inner ear hair cells (By similarity). In addition to its role in transcription, acts as a substrate adapter for PRMT1 in the DNA damage response: facilitates the recognition of TP53BP1 and MRE11 substrates by PRMT1, promoting their methylation and the DNA damage response (PubMed:29651020). {ECO:0000250|UniProtKB:P70338, ECO:0000269|PubMed:11060035, ECO:0000269|PubMed:12778173, ECO:0000269|PubMed:16287849, ECO:0000269|PubMed:17197705, ECO:0000269|PubMed:17646546, ECO:0000269|PubMed:18805794, ECO:0000269|PubMed:19026687, ECO:0000269|PubMed:19164764, ECO:0000269|PubMed:20190815, ECO:0000269|PubMed:20547752, ECO:0000269|PubMed:29651020, ECO:0000269|PubMed:8754800}. |
Q99700 | ATXN2 | S772 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99700 | ATXN2 | S849 | ochoa | Ataxin-2 (Spinocerebellar ataxia type 2 protein) (Trinucleotide repeat-containing gene 13 protein) | Involved in EGFR trafficking, acting as negative regulator of endocytic EGFR internalization at the plasma membrane. {ECO:0000269|PubMed:18602463}. |
Q99704 | DOK1 | S269 | ochoa | Docking protein 1 (Downstream of tyrosine kinase 1) (p62(dok)) (pp62) | DOK proteins are enzymatically inert adaptor or scaffolding proteins. They provide a docking platform for the assembly of multimolecular signaling complexes. DOK1 appears to be a negative regulator of the insulin signaling pathway. Modulates integrin activation by competing with talin for the same binding site on ITGB3. {ECO:0000269|PubMed:18156175}. |
Q9BRD0 | BUD13 | S185 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BRD0 | BUD13 | S259 | ochoa | BUD13 homolog | Involved in pre-mRNA splicing as component of the activated spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000305|PubMed:33509932}. |
Q9BTX1 | NDC1 | S394 | ochoa | Nucleoporin NDC1 (hNDC1) (Transmembrane protein 48) | Component of the nuclear pore complex (NPC), which plays a key role in de novo assembly and insertion of NPC in the nuclear envelope. Required for NPC and nuclear envelope assembly, possibly by forming a link between the nuclear envelope membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane. {ECO:0000269|PubMed:16600873, ECO:0000269|PubMed:16702233}. |
Q9BVT8 | TMUB1 | S86 | ochoa | Transmembrane and ubiquitin-like domain-containing protein 1 (Dendritic cell-derived ubiquitin-like protein) (DULP) (Hepatocyte odd protein shuttling protein) (Ubiquitin-like protein SB144) [Cleaved into: iHOPS] | Involved in sterol-regulated ubiquitination and degradation of HMG-CoA reductase HMGCR (PubMed:21343306). Involved in positive regulation of AMPA-selective glutamate receptor GRIA2 recycling to the cell surface (By similarity). Acts as a negative regulator of hepatocyte growth during regeneration (By similarity). {ECO:0000250|UniProtKB:Q53AQ4, ECO:0000250|UniProtKB:Q9JMG3, ECO:0000269|PubMed:21343306}.; FUNCTION: [iHOPS]: May contribute to the regulation of translation during cell-cycle progression. May contribute to the regulation of cell proliferation (By similarity). May be involved in centrosome assembly. Modulates stabilization and nucleolar localization of tumor suppressor CDKN2A and enhances association between CDKN2A and NPM1 (By similarity). {ECO:0000250|UniProtKB:Q9JMG3}. |
Q9BX66 | SORBS1 | S77 | ochoa | Sorbin and SH3 domain-containing protein 1 (Ponsin) (SH3 domain protein 5) (SH3P12) (c-Cbl-associated protein) (CAP) | Plays a role in tyrosine phosphorylation of CBL by linking CBL to the insulin receptor. Required for insulin-stimulated glucose transport. Involved in formation of actin stress fibers and focal adhesions (By similarity). {ECO:0000250|UniProtKB:Q62417}. |
Q9BXF6 | RAB11FIP5 | S176 | ochoa | Rab11 family-interacting protein 5 (Rab11-FIP5) (Gamma-SNAP-associated factor 1) (Gaf-1) (Phosphoprotein pp75) (Rab11-interacting protein Rip11) | Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. Involved in insulin granule exocytosis. May regulate V-ATPase intracellular transport in response to extracellular acidosis. {ECO:0000269|PubMed:11163216, ECO:0000269|PubMed:20717956}. |
Q9BXK1 | KLF16 | S226 | ochoa | Krueppel-like factor 16 (Basic transcription element-binding protein 4) (BTE-binding protein 4) (Novel Sp1-like zinc finger transcription factor 2) (Transcription factor BTEB4) (Transcription factor NSLP2) | Transcription factor that binds GC and GT boxes and displaces Sp1 and Sp3 from these sequences. Modulates dopaminergic transmission in the brain (By similarity). {ECO:0000250}. |
Q9BYW2 | SETD2 | S742 | ochoa | Histone-lysine N-methyltransferase SETD2 (EC 2.1.1.359) (HIF-1) (Huntingtin yeast partner B) (Huntingtin-interacting protein 1) (HIP-1) (Huntingtin-interacting protein B) (Lysine N-methyltransferase 3A) (Protein-lysine N-methyltransferase SETD2) (EC 2.1.1.-) (SET domain-containing protein 2) (hSET2) (p231HBP) | Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate (PubMed:16118227, PubMed:19141475, PubMed:21526191, PubMed:21792193, PubMed:23043551, PubMed:27474439). It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro (PubMed:19332550). Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation (By similarity). Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A (PubMed:23325844). Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction (PubMed:23622243). Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR) (PubMed:24843002). Acts as a tumor suppressor (PubMed:24509477). H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A (PubMed:27317772). H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase (PubMed:21792193). Required during angiogenesis (By similarity). Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3 (By similarity). In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1 (PubMed:27518565, PubMed:28753426). Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling (PubMed:27518565). Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription (PubMed:28753426). {ECO:0000250|UniProtKB:E9Q5F9, ECO:0000269|PubMed:16118227, ECO:0000269|PubMed:19141475, ECO:0000269|PubMed:21526191, ECO:0000269|PubMed:21792193, ECO:0000269|PubMed:23043551, ECO:0000269|PubMed:23325844, ECO:0000269|PubMed:23622243, ECO:0000269|PubMed:24509477, ECO:0000269|PubMed:24843002, ECO:0000269|PubMed:27317772, ECO:0000269|PubMed:27474439, ECO:0000269|PubMed:27518565, ECO:0000269|PubMed:28753426}.; FUNCTION: (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression. {ECO:0000269|PubMed:11461154}. |
Q9BZ95 | NSD3 | S659 | ochoa | Histone-lysine N-methyltransferase NSD3 (EC 2.1.1.370) (EC 2.1.1.371) (Nuclear SET domain-containing protein 3) (Protein whistle) (WHSC1-like 1 isoform 9 with methyltransferase activity to lysine) (Wolf-Hirschhorn syndrome candidate 1-like protein 1) (WHSC1-like protein 1) | Histone methyltransferase. Preferentially dimethylates 'Lys-4' and 'Lys-27' of histone H3 forming H3K4me2 and H3K27me2. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation, while 'Lys-27' is a mark for transcriptional repression. {ECO:0000269|PubMed:16682010}. |
Q9C0B5 | ZDHHC5 | S682 | ochoa | Palmitoyltransferase ZDHHC5 (EC 2.3.1.225) (Zinc finger DHHC domain-containing protein 5) (DHHC-5) (Zinc finger protein 375) | Palmitoyltransferase that catalyzes the addition of palmitate onto various protein substrates such as CTNND2, CD36, GSDMD, NLRP3, NOD1, NOD2, STAT3 and S1PR1 thus plays a role in various biological processes including cell adhesion, inflammation, fatty acid uptake, bacterial sensing or cardiac functions (PubMed:21820437, PubMed:29185452, PubMed:31402609, PubMed:31649195, PubMed:34293401, PubMed:38092000, PubMed:38530158, PubMed:38599239). Plays an important role in the regulation of synapse efficacy by mediating palmitoylation of delta-catenin/CTNND2, thereby increasing synaptic delivery and surface stabilization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) (PubMed:26334723). Under basal conditions, remains at the synaptic membrane through FYN-mediated phosphorylation that prevents association with endocytic proteins (PubMed:26334723). Neuronal activity enhances the internalization and trafficking of DHHC5 from spines to dendritic shafts where it palmitoylates delta-catenin/CTNND2 (PubMed:26334723). Regulates cell adhesion at the plasma membrane by palmitoylating GOLGA7B and DSG2 (PubMed:31402609). Plays a role in innate immune response by mediating the palmitoylation of NOD1 and NOD2 and their proper recruitment to the bacterial entry site and phagosomes (PubMed:31649195, PubMed:34293401). Also participates in fatty acid uptake by palmitoylating CD36 and thereby targeting it to the plasma membrane (PubMed:32958780). Upon binding of fatty acids to CD36, gets phosphorylated by LYN leading to inactivation and subsequent CD36 caveolar endocytosis (PubMed:32958780). Controls oligodendrocyte development by catalyzing STAT3 palmitoylation (By similarity). Acts as a regulator of inflammatory response by mediating palmitoylation of NLRP3 and GSDMD (PubMed:38092000, PubMed:38530158, PubMed:38599239). Palmitoylates NLRP3 to promote inflammasome assembly and activation (PubMed:38092000). Activates pyroptosis by catalyzing palmitoylation of gasdermin-D (GSDMD), thereby promoting membrane translocation and pore formation of GSDMD (PubMed:38530158, PubMed:38599239). {ECO:0000250|UniProtKB:Q8VDZ4, ECO:0000269|PubMed:21820437, ECO:0000269|PubMed:26334723, ECO:0000269|PubMed:29185452, ECO:0000269|PubMed:31402609, ECO:0000269|PubMed:31649195, ECO:0000269|PubMed:32958780, ECO:0000269|PubMed:34293401, ECO:0000269|PubMed:38092000, ECO:0000269|PubMed:38530158, ECO:0000269|PubMed:38599239}. |
Q9C0C9 | UBE2O | S429 | ochoa | (E3-independent) E2 ubiquitin-conjugating enzyme (EC 2.3.2.24) (E2/E3 hybrid ubiquitin-protein ligase UBE2O) (Ubiquitin carrier protein O) (Ubiquitin-conjugating enzyme E2 O) (Ubiquitin-conjugating enzyme E2 of 230 kDa) (Ubiquitin-conjugating enzyme E2-230K) (Ubiquitin-protein ligase O) | E2/E3 hybrid ubiquitin-protein ligase that displays both E2 and E3 ligase activities and mediates monoubiquitination of target proteins (PubMed:23455153, PubMed:24703950). Negatively regulates TRAF6-mediated NF-kappa-B activation independently of its E2 activity (PubMed:23381138). Acts as a positive regulator of BMP7 signaling by mediating monoubiquitination of SMAD6, thereby regulating adipogenesis (PubMed:23455153). Mediates monoubiquitination at different sites of the nuclear localization signal (NLS) of BAP1, leading to cytoplasmic retention of BAP1. Also able to monoubiquitinate the NLS of other chromatin-associated proteins, such as INO80 and CXXC1, affecting their subcellular location (PubMed:24703950). Acts as a regulator of retrograde transport by assisting the TRIM27:MAGEL2 E3 ubiquitin ligase complex to mediate 'Lys-63'-linked ubiquitination of WASHC1, leading to promote endosomal F-actin assembly (PubMed:23452853). {ECO:0000269|PubMed:23381138, ECO:0000269|PubMed:23452853, ECO:0000269|PubMed:23455153, ECO:0000269|PubMed:24703950}. |
Q9GZR1 | SENP6 | S350 | ochoa | Sentrin-specific protease 6 (EC 3.4.22.-) (SUMO-1-specific protease 1) (Sentrin/SUMO-specific protease SENP6) | Protease that deconjugates SUMO1, SUMO2 and SUMO3 from targeted proteins. Processes preferentially poly-SUMO2 and poly-SUMO3 chains, but does not efficiently process SUMO1, SUMO2 and SUMO3 precursors. Deconjugates SUMO1 from RXRA, leading to transcriptional activation. Involved in chromosome alignment and spindle assembly, by regulating the kinetochore CENPH-CENPI-CENPK complex. Desumoylates PML and CENPI, protecting them from degradation by the ubiquitin ligase RNF4, which targets polysumoylated proteins for proteasomal degradation. Also desumoylates RPA1, thus preventing recruitment of RAD51 to the DNA damage foci to initiate DNA repair through homologous recombination. {ECO:0000269|PubMed:16912044, ECO:0000269|PubMed:17000875, ECO:0000269|PubMed:18799455, ECO:0000269|PubMed:20212317, ECO:0000269|PubMed:20705237, ECO:0000269|PubMed:21148299}. |
Q9H093 | NUAK2 | S418 | ochoa | NUAK family SNF1-like kinase 2 (EC 2.7.11.1) (Omphalocele kinase 2) (SNF1/AMP kinase-related kinase) (SNARK) | Stress-activated kinase involved in tolerance to glucose starvation. Induces cell-cell detachment by increasing F-actin conversion to G-actin. Expression is induced by CD95 or TNF-alpha, via NF-kappa-B. Protects cells from CD95-mediated apoptosis and is required for the increased motility and invasiveness of CD95-activated tumor cells. Phosphorylates LATS1 and LATS2. Plays a key role in neural tube closure during embryonic development through LATS2 phosphorylation and regulation of the nuclear localization of YAP1 a critical downstream regulatory target in the Hippo signaling pathway (PubMed:32845958). {ECO:0000269|PubMed:14575707, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15345718, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:32845958}. |
Q9H0D6 | XRN2 | S473 | ochoa | 5'-3' exoribonuclease 2 (EC 3.1.13.-) (DHM1-like protein) (DHP protein) | Possesses 5'->3' exoribonuclease activity (By similarity). May promote the termination of transcription by RNA polymerase II. During transcription termination, cleavage at the polyadenylation site liberates a 5' fragment which is subsequently processed to form the mature mRNA and a 3' fragment which remains attached to the elongating polymerase. The processive degradation of this 3' fragment by this protein may promote termination of transcription. Binds to RNA polymerase II (RNAp II) transcription termination R-loops formed by G-rich pause sites (PubMed:21700224). {ECO:0000250, ECO:0000269|PubMed:15565158, ECO:0000269|PubMed:16648491, ECO:0000269|PubMed:21700224}. |
Q9H2J7 | SLC6A15 | S675 | ochoa | Sodium-dependent neutral amino acid transporter B(0)AT2 (Sodium- and chloride-dependent neurotransmitter transporter NTT73) (Sodium-coupled branched-chain amino-acid transporter 1) (Solute carrier family 6 member 15) (Transporter v7-3) | Functions as a sodium-dependent neutral amino acid transporter. Exhibits preference for the branched-chain amino acids, particularly leucine, valine and isoleucine and methionine. Can also transport low-affinity substrates such as alanine, phenylalanine, glutamine and pipecolic acid. Mediates the saturable, pH-sensitive and electrogenic cotransport of proline and sodium ions with a stoichiometry of 1:1. May have a role as transporter for neurotransmitter precursors into neurons. In contrast to other members of the neurotransmitter transporter family, does not appear to be chloride-dependent. {ECO:0000269|PubMed:16226721}. |
Q9H330 | TMEM245 | S318 | ochoa | Transmembrane protein 245 (Protein CG-2) | None |
Q9H3S7 | PTPN23 | S1121 | ochoa | Tyrosine-protein phosphatase non-receptor type 23 (EC 3.1.3.48) (His domain-containing protein tyrosine phosphatase) (HD-PTP) (Protein tyrosine phosphatase TD14) (PTP-TD14) | Plays a role in sorting of endocytic ubiquitinated cargos into multivesicular bodies (MVBs) via its interaction with the ESCRT-I complex (endosomal sorting complex required for transport I), and possibly also other ESCRT complexes (PubMed:18434552, PubMed:21757351). May act as a negative regulator of Ras-mediated mitogenic activity (PubMed:18434552). Plays a role in ciliogenesis (PubMed:20393563). {ECO:0000269|PubMed:18434552, ECO:0000269|PubMed:20393563, ECO:0000269|PubMed:21757351}. |
Q9H4M7 | PLEKHA4 | S201 | ochoa | Pleckstrin homology domain-containing family A member 4 (PH domain-containing family A member 4) (Phosphoinositol 3-phosphate-binding protein 1) (PEPP-1) | Binds specifically to phosphatidylinositol 3-phosphate (PtdIns3P), but not to other phosphoinositides. {ECO:0000269|PubMed:11001876}. |
Q9H694 | BICC1 | S31 | ochoa | Protein bicaudal C homolog 1 (Bic-C) | Putative RNA-binding protein. Acts as a negative regulator of Wnt signaling. May be involved in regulating gene expression during embryonic development. {ECO:0000269|PubMed:21922595}. |
Q9H792 | PEAK1 | S377 | ochoa | Inactive tyrosine-protein kinase PEAK1 (Pseudopodium-enriched atypical kinase 1) (Sugen kinase 269) (Tyrosine-protein kinase SgK269) | Probable catalytically inactive kinase. Scaffolding protein that regulates the cytoskeleton to control cell spreading and migration by modulating focal adhesion dynamics (PubMed:20534451, PubMed:23105102, PubMed:35687021). Acts as a scaffold for mediating EGFR signaling (PubMed:23846654). {ECO:0000269|PubMed:20534451, ECO:0000269|PubMed:23105102, ECO:0000269|PubMed:23846654, ECO:0000269|PubMed:35687021}. |
Q9H972 | C14orf93 | S118 | ochoa | Uncharacterized protein C14orf93 | None |
Q9HC35 | EML4 | S132 | ochoa | Echinoderm microtubule-associated protein-like 4 (EMAP-4) (Restrictedly overexpressed proliferation-associated protein) (Ropp 120) | Essential for the formation and stability of microtubules (MTs) (PubMed:16890222, PubMed:31409757). Required for the organization of the mitotic spindle and for the proper attachment of kinetochores to MTs (PubMed:25789526). Promotes the recruitment of NUDC to the mitotic spindle for mitotic progression (PubMed:25789526). {ECO:0000269|PubMed:16890222, ECO:0000269|PubMed:25789526, ECO:0000269|PubMed:31409757}. |
Q9HCK8 | CHD8 | S550 | ochoa | Chromodomain-helicase-DNA-binding protein 8 (CHD-8) (EC 3.6.4.-) (ATP-dependent helicase CHD8) (Helicase with SNF2 domain 1) | ATP-dependent chromatin-remodeling factor, it slides nucleosomes along DNA; nucleosome sliding requires ATP (PubMed:28533432). Acts as a transcription repressor by remodeling chromatin structure and recruiting histone H1 to target genes. Suppresses p53/TP53-mediated apoptosis by recruiting histone H1 and preventing p53/TP53 transactivation activity. Acts as a negative regulator of Wnt signaling pathway by regulating beta-catenin (CTNNB1) activity. Negatively regulates CTNNB1-targeted gene expression by being recruited specifically to the promoter regions of several CTNNB1 responsive genes. Involved in both enhancer blocking and epigenetic remodeling at chromatin boundary via its interaction with CTCF. Acts as a suppressor of STAT3 activity by suppressing the LIF-induced STAT3 transcriptional activity. Also acts as a transcription activator via its interaction with ZNF143 by participating in efficient U6 RNA polymerase III transcription. Regulates alternative splicing of a core group of genes involved in neuronal differentiation, cell cycle and DNA repair. Enables H3K36me3-coupled transcription elongation and co-transcriptional RNA processing likely via interaction with HNRNPL. {ECO:0000255|HAMAP-Rule:MF_03071, ECO:0000269|PubMed:17938208, ECO:0000269|PubMed:18378692, ECO:0000269|PubMed:28533432, ECO:0000269|PubMed:36537238}. |
Q9HDC5 | JPH1 | S578 | ochoa | Junctophilin-1 (JP-1) (Junctophilin type 1) | Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. |
Q9NPG3 | UBN1 | S978 | ochoa | Ubinuclein-1 (HIRA-binding protein) (Protein VT4) (Ubiquitously expressed nuclear protein) | Acts as a novel regulator of senescence. Involved in the formation of senescence-associated heterochromatin foci (SAHF), which represses expression of proliferation-promoting genes. Binds to proliferation-promoting genes. May be required for replication-independent chromatin assembly. {ECO:0000269|PubMed:14718166, ECO:0000269|PubMed:19029251}. |
Q9NQC7 | CYLD | S387 | ochoa | Ubiquitin carboxyl-terminal hydrolase CYLD (EC 3.4.19.12) (Deubiquitinating enzyme CYLD) (Ubiquitin thioesterase CYLD) (Ubiquitin-specific-processing protease CYLD) | Deubiquitinase that specifically cleaves 'Lys-63'- and linear 'Met-1'-linked polyubiquitin chains and is involved in NF-kappa-B activation and TNF-alpha-induced necroptosis (PubMed:18313383, PubMed:18636086, PubMed:26670046, PubMed:26997266, PubMed:27458237, PubMed:27591049, PubMed:27746020, PubMed:29291351, PubMed:32185393). Negatively regulates NF-kappa-B activation by deubiquitinating upstream signaling factors (PubMed:12917689, PubMed:12917691, PubMed:32185393). Contributes to the regulation of cell survival, proliferation and differentiation via its effects on NF-kappa-B activation (PubMed:12917690). Negative regulator of Wnt signaling (PubMed:20227366). Inhibits HDAC6 and thereby promotes acetylation of alpha-tubulin and stabilization of microtubules (PubMed:19893491). Plays a role in the regulation of microtubule dynamics, and thereby contributes to the regulation of cell proliferation, cell polarization, cell migration, and angiogenesis (PubMed:18222923, PubMed:20194890). Required for normal cell cycle progress and normal cytokinesis (PubMed:17495026, PubMed:19893491). Inhibits nuclear translocation of NF-kappa-B (PubMed:18636086). Plays a role in the regulation of inflammation and the innate immune response, via its effects on NF-kappa-B activation (PubMed:18636086). Dispensable for the maturation of intrathymic natural killer cells, but required for the continued survival of immature natural killer cells (By similarity). Negatively regulates TNFRSF11A signaling and osteoclastogenesis (By similarity). Involved in the regulation of ciliogenesis, allowing ciliary basal bodies to migrate and dock to the plasma membrane; this process does not depend on NF-kappa-B activation (By similarity). Ability to remove linear ('Met-1'-linked) polyubiquitin chains regulates innate immunity and TNF-alpha-induced necroptosis: recruited to the LUBAC complex via interaction with SPATA2 and restricts linear polyubiquitin formation on target proteins (PubMed:26670046, PubMed:26997266, PubMed:27458237, PubMed:27591049). Regulates innate immunity by restricting linear polyubiquitin formation on RIPK2 in response to NOD2 stimulation (PubMed:26997266). Involved in TNF-alpha-induced necroptosis by removing linear ('Met-1'-linked) polyubiquitin chains from RIPK1, thereby regulating the kinase activity of RIPK1 (By similarity). Negatively regulates intestinal inflammation by removing 'Lys-63' linked polyubiquitin chain of NLRP6, thereby reducing the interaction between NLRP6 and PYCARD/ASC and formation of the NLRP6 inflammasome (By similarity). Does not catalyze deubiquitination of heterotypic 'Lys-63'-/'Lys-48'-linked branched ubiquitin chains (PubMed:27746020). Removes 'Lys-63' linked polyubiquitin chain of MAP3K7, which inhibits phosphorylation and blocks downstream activation of the JNK-p38 kinase cascades (PubMed:29291351). Also removes 'Lys-63'-linked polyubiquitin chains of MAP3K1 and MA3P3K3, which inhibit their interaction with MAP2K1 and MAP2K2 (PubMed:34497368). {ECO:0000250|UniProtKB:Q80TQ2, ECO:0000269|PubMed:12917689, ECO:0000269|PubMed:12917690, ECO:0000269|PubMed:12917691, ECO:0000269|PubMed:17495026, ECO:0000269|PubMed:18222923, ECO:0000269|PubMed:18313383, ECO:0000269|PubMed:18636086, ECO:0000269|PubMed:19893491, ECO:0000269|PubMed:20194890, ECO:0000269|PubMed:20227366, ECO:0000269|PubMed:26670046, ECO:0000269|PubMed:26997266, ECO:0000269|PubMed:27458237, ECO:0000269|PubMed:27591049, ECO:0000269|PubMed:27746020, ECO:0000269|PubMed:29291351, ECO:0000269|PubMed:32185393, ECO:0000269|PubMed:34497368}. |
Q9NQS7 | INCENP | S300 | ochoa | Inner centromere protein | Component of the chromosomal passenger complex (CPC), a complex that acts as a key regulator of mitosis. The CPC complex has essential functions at the centromere in ensuring correct chromosome alignment and segregation and is required for chromatin-induced microtubule stabilization and spindle assembly. Acts as a scaffold regulating CPC localization and activity. The C-terminus associates with AURKB or AURKC, the N-terminus associated with BIRC5/survivin and CDCA8/borealin tethers the CPC to the inner centromere, and the microtubule binding activity within the central SAH domain directs AURKB/C toward substrates near microtubules (PubMed:12925766, PubMed:15316025, PubMed:27332895). The flexibility of the SAH domain is proposed to allow AURKB/C to follow substrates on dynamic microtubules while ensuring CPC docking to static chromatin (By similarity). Activates AURKB and AURKC (PubMed:27332895). Required for localization of CBX5 to mitotic centromeres (PubMed:21346195). Controls the kinetochore localization of BUB1 (PubMed:16760428). {ECO:0000250|UniProtKB:P53352, ECO:0000269|PubMed:12925766, ECO:0000269|PubMed:15316025, ECO:0000269|PubMed:16760428, ECO:0000269|PubMed:21346195, ECO:0000269|PubMed:27332895}. |
Q9NQU5 | PAK6 | S236 | ochoa | Serine/threonine-protein kinase PAK 6 (EC 2.7.11.1) (PAK-5) (p21-activated kinase 6) (PAK-6) | Serine/threonine protein kinase that plays a role in the regulation of gene transcription. The kinase activity is induced by various effectors including AR or MAP2K6/MAPKK6. Phosphorylates the DNA-binding domain of androgen receptor/AR and thereby inhibits AR-mediated transcription. Also inhibits ESR1-mediated transcription. May play a role in cytoskeleton regulation by interacting with IQGAP1. May protect cells from apoptosis through phosphorylation of BAD. {ECO:0000269|PubMed:14573606, ECO:0000269|PubMed:20054820}. |
Q9NR48 | ASH1L | S545 | ochoa | Histone-lysine N-methyltransferase ASH1L (EC 2.1.1.359) (EC 2.1.1.367) (ASH1-like protein) (huASH1) (Absent small and homeotic disks protein 1 homolog) (Lysine N-methyltransferase 2H) | Histone methyltransferase specifically trimethylating 'Lys-36' of histone H3 forming H3K36me3 (PubMed:21239497). Also monomethylates 'Lys-9' of histone H3 (H3K9me1) in vitro (By similarity). The physiological significance of the H3K9me1 activity is unclear (By similarity). {ECO:0000250|UniProtKB:Q99MY8, ECO:0000269|PubMed:21239497}. |
Q9NYV4 | CDK12 | S253 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NYV4 | CDK12 | Y279 | ochoa | Cyclin-dependent kinase 12 (EC 2.7.11.22) (EC 2.7.11.23) (Cdc2-related kinase, arginine/serine-rich) (CrkRS) (Cell division cycle 2-related protein kinase 7) (CDC2-related protein kinase 7) (Cell division protein kinase 12) (hCDK12) | Cyclin-dependent kinase that phosphorylates the C-terminal domain (CTD) of the large subunit of RNA polymerase II (POLR2A), thereby acting as a key regulator of transcription elongation. Regulates the expression of genes involved in DNA repair and is required for the maintenance of genomic stability. Preferentially phosphorylates 'Ser-5' in CTD repeats that are already phosphorylated at 'Ser-7', but can also phosphorylate 'Ser-2'. Required for RNA splicing, possibly by phosphorylating SRSF1/SF2. Involved in regulation of MAP kinase activity, possibly leading to affect the response to estrogen inhibitors. {ECO:0000269|PubMed:11683387, ECO:0000269|PubMed:19651820, ECO:0000269|PubMed:20952539, ECO:0000269|PubMed:22012619, ECO:0000269|PubMed:24662513}. |
Q9NZJ5 | EIF2AK3 | S844 | ochoa | Eukaryotic translation initiation factor 2-alpha kinase 3 (EC 2.7.11.1) (PRKR-like endoplasmic reticulum kinase) (Pancreatic eIF2-alpha kinase) (HsPEK) (Protein tyrosine kinase EIF2AK3) (EC 2.7.10.2) | Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to various stress, such as unfolded protein response (UPR) (PubMed:10026192, PubMed:10677345, PubMed:11907036, PubMed:12086964, PubMed:25925385, PubMed:31023583). Key effector of the integrated stress response (ISR) to unfolded proteins: EIF2AK3/PERK specifically recognizes and binds misfolded proteins, leading to its activation and EIF2S1/eIF-2-alpha phosphorylation (PubMed:10677345, PubMed:27917829, PubMed:31023583). EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha in a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activators ATF4 and QRICH1, and hence allowing ATF4- and QRICH1-mediated reprogramming (PubMed:10026192, PubMed:10677345, PubMed:31023583, PubMed:33384352). The EIF2AK3/PERK-mediated unfolded protein response increases mitochondrial oxidative phosphorylation by promoting ATF4-mediated expression of COX7A2L/SCAF1, thereby increasing formation of respiratory chain supercomplexes (PubMed:31023583). In contrast to most subcellular compartments, mitochondria are protected from the EIF2AK3/PERK-mediated unfolded protein response due to EIF2AK3/PERK inhibition by ATAD3A at mitochondria-endoplasmic reticulum contact sites (PubMed:39116259). In addition to EIF2S1/eIF-2-alpha, also phosphorylates NFE2L2/NRF2 in response to stress, promoting release of NFE2L2/NRF2 from the BCR(KEAP1) complex, leading to nuclear accumulation and activation of NFE2L2/NRF2 (By similarity). Serves as a critical effector of unfolded protein response (UPR)-induced G1 growth arrest due to the loss of cyclin-D1 (CCND1) (By similarity). Involved in control of mitochondrial morphology and function (By similarity). {ECO:0000250|UniProtKB:Q9Z2B5, ECO:0000269|PubMed:10026192, ECO:0000269|PubMed:10677345, ECO:0000269|PubMed:11907036, ECO:0000269|PubMed:12086964, ECO:0000269|PubMed:25925385, ECO:0000269|PubMed:27917829, ECO:0000269|PubMed:31023583, ECO:0000269|PubMed:33384352, ECO:0000269|PubMed:39116259}. |
Q9P0L2 | MARK1 | S463 | ochoa | Serine/threonine-protein kinase MARK1 (EC 2.7.11.1) (EC 2.7.11.26) (MAP/microtubule affinity-regulating kinase 1) (PAR1 homolog c) (Par-1c) (Par1c) | Serine/threonine-protein kinase (PubMed:23666762). Involved in cell polarity and microtubule dynamics regulation. Phosphorylates DCX, MAP2 and MAP4. Phosphorylates the microtubule-associated protein MAPT/TAU (PubMed:23666762). Involved in cell polarity by phosphorylating the microtubule-associated proteins MAP2, MAP4 and MAPT/TAU at KXGS motifs, causing detachment from microtubules, and their disassembly. Involved in the regulation of neuronal migration through its dual activities in regulating cellular polarity and microtubule dynamics, possibly by phosphorylating and regulating DCX. Also acts as a positive regulator of the Wnt signaling pathway, probably by mediating phosphorylation of dishevelled proteins (DVL1, DVL2 and/or DVL3). {ECO:0000269|PubMed:11433294, ECO:0000269|PubMed:17573348, ECO:0000269|PubMed:23666762}. |
Q9P107 | GMIP | S231 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P107 | GMIP | S425 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P107 | GMIP | S907 | ochoa | GEM-interacting protein (GMIP) | Stimulates, in vitro and in vivo, the GTPase activity of RhoA. {ECO:0000269|PubMed:12093360}. |
Q9P243 | ZFAT | S640 | ochoa | Zinc finger protein ZFAT (Zinc finger gene in AITD susceptibility region) (Zinc finger protein 406) | May be involved in transcriptional regulation. Overexpression causes down-regulation of a number of genes involved in the immune response. Some genes are also up-regulated (By similarity). {ECO:0000250}. |
Q9P2D0 | IBTK | S992 | ochoa | Inhibitor of Bruton tyrosine kinase (IBtk) | Acts as an inhibitor of BTK tyrosine kinase activity, thereby playing a role in B-cell development. Down-regulates BTK kinase activity, leading to interference with BTK-mediated calcium mobilization and NF-kappa-B-driven transcription. {ECO:0000269|PubMed:11577348}. |
Q9P2J2 | IGSF9 | S797 | ochoa | Protein turtle homolog A (Immunoglobulin superfamily member 9A) (IgSF9A) | Functions in dendrite outgrowth and synapse maturation. {ECO:0000250}. |
Q9UEY8 | ADD3 | S652 | ochoa | Gamma-adducin (Adducin-like protein 70) | Membrane-cytoskeleton-associated protein that promotes the assembly of the spectrin-actin network. Plays a role in actin filament capping (PubMed:23836506). Binds to calmodulin (Probable). Involved in myogenic reactivity of the renal afferent arteriole (Af-art), renal interlobular arteries and middle cerebral artery (MCA) to increased perfusion pressure. Involved in regulation of potassium channels in the vascular smooth muscle cells (VSMCs) of the Af-art and MCA ex vivo. Involved in regulation of glomerular capillary pressure, glomerular filtration rate (GFR) and glomerular nephrin expression in response to hypertension. Involved in renal blood flow (RBF) autoregulation. Plays a role in podocyte structure and function. Regulates globular monomer actin (G-actin) and filamentous polymer actin (F-actin) ratios in the primary podocytes affecting actin cytoskeleton organization. Regulates expression of synaptopodin, RhoA, Rac1 and CDC42 in the renal cortex and the primary podocytes. Regulates expression of nephrin in the glomeruli and in the primary podocytes, expression of nephrin and podocinin in the renal cortex, and expression of focal adhesion proteins integrin alpha-3 and integrin beta-1 in the glomeruli. Involved in cell migration and cell adhesion of podocytes, and in podocyte foot process effacement. Regulates expression of profibrotics markers MMP2, MMP9, TGF beta-1, tubular tight junction protein E-cadherin, and mesenchymal markers vimentin and alpha-SMA (By similarity). Promotes the growth of neurites (By similarity). {ECO:0000250|UniProtKB:Q62847, ECO:0000250|UniProtKB:Q9QYB5, ECO:0000269|PubMed:23836506, ECO:0000305}. |
Q9UGU0 | TCF20 | S859 | ochoa | Transcription factor 20 (TCF-20) (Nuclear factor SPBP) (Protein AR1) (Stromelysin-1 PDGF-responsive element-binding protein) (SPRE-binding protein) | Transcriptional activator that binds to the regulatory region of MMP3 and thereby controls stromelysin expression. It stimulates the activity of various transcriptional activators such as JUN, SP1, PAX6 and ETS1, suggesting a function as a coactivator. {ECO:0000269|PubMed:10995766}. |
Q9UHB7 | AFF4 | S210 | ochoa | AF4/FMR2 family member 4 (ALL1-fused gene from chromosome 5q31 protein) (Protein AF-5q31) (Major CDK9 elongation factor-associated protein) | Key component of the super elongation complex (SEC), a complex required to increase the catalytic rate of RNA polymerase II transcription by suppressing transient pausing by the polymerase at multiple sites along the DNA. In the SEC complex, AFF4 acts as a central scaffold that recruits other factors through direct interactions with ELL proteins (ELL, ELL2 or ELL3) and the P-TEFb complex. In case of infection by HIV-1 virus, the SEC complex is recruited by the viral Tat protein to stimulate viral gene expression. {ECO:0000269|PubMed:20159561, ECO:0000269|PubMed:20471948, ECO:0000269|PubMed:23251033}. |
Q9UJX2 | CDC23 | S576 | ochoa | Cell division cycle protein 23 homolog (Anaphase-promoting complex subunit 8) (APC8) (Cyclosome subunit 8) | Component of the anaphase promoting complex/cyclosome (APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through mitosis and the G1 phase of the cell cycle (PubMed:18485873). The APC/C complex acts by mediating ubiquitination and subsequent degradation of target proteins: it mainly mediates the formation of 'Lys-11'-linked polyubiquitin chains and, to a lower extent, the formation of 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains (PubMed:18485873). The APC/C complex catalyzes assembly of branched 'Lys-11'-/'Lys-48'-linked branched ubiquitin chains on target proteins (PubMed:29033132). {ECO:0000269|PubMed:18485873, ECO:0000269|PubMed:29033132}. |
Q9UK76 | JPT1 | S119 | ochoa | Jupiter microtubule associated homolog 1 (Androgen-regulated protein 2) (Hematological and neurological expressed 1 protein) [Cleaved into: Jupiter microtubule associated homolog 1, N-terminally processed] | Modulates negatively AKT-mediated GSK3B signaling (PubMed:21323578, PubMed:22155408). Induces CTNNB1 'Ser-33' phosphorylation and degradation through the suppression of the inhibitory 'Ser-9' phosphorylation of GSK3B, which represses the function of the APC:CTNNB1:GSK3B complex and the interaction with CDH1/E-cadherin in adherent junctions (PubMed:25169422). Plays a role in the regulation of cell cycle and cell adhesion (PubMed:25169422, PubMed:25450365). Has an inhibitory role on AR-signaling pathway through the induction of receptor proteasomal degradation (PubMed:22155408). {ECO:0000269|PubMed:21323578, ECO:0000269|PubMed:22155408, ECO:0000269|PubMed:25169422, ECO:0000269|PubMed:25450365}. |
Q9UKA4 | AKAP11 | S444 | ochoa | A-kinase anchor protein 11 (AKAP-11) (A-kinase anchor protein 220 kDa) (AKAP 220) (hAKAP220) (Protein kinase A-anchoring protein 11) (PRKA11) | Binds to type II regulatory subunits of protein kinase A and anchors/targets them. |
Q9UKI8 | TLK1 | S176 | ochoa | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
Q9UKI8 | TLK1 | S178 | ochoa | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
Q9UKI8 | TLK1 | S743 | ochoa|psp | Serine/threonine-protein kinase tousled-like 1 (EC 2.7.11.1) (PKU-beta) (Tousled-like kinase 1) | Rapidly and transiently inhibited by phosphorylation following the generation of DNA double-stranded breaks during S-phase. This is cell cycle checkpoint and ATM-pathway dependent and appears to regulate processes involved in chromatin assembly. Isoform 3 phosphorylates and enhances the stability of the t-SNARE SNAP23, augmenting its assembly with syntaxin. Isoform 3 protects the cells from the ionizing radiation by facilitating the repair of DSBs. In vitro, phosphorylates histone H3 at 'Ser-10'. {ECO:0000269|PubMed:10523312, ECO:0000269|PubMed:10588641, ECO:0000269|PubMed:11314006, ECO:0000269|PubMed:11470414, ECO:0000269|PubMed:12660173, ECO:0000269|PubMed:9427565}. |
Q9UKL0 | RCOR1 | S127 | ochoa | REST corepressor 1 (Protein CoREST) | Essential component of the BHC complex, a corepressor complex that represses transcription of neuron-specific genes in non-neuronal cells. The BHC complex is recruited at RE1/NRSE sites by REST and acts by deacetylating and demethylating specific sites on histones, thereby acting as a chromatin modifier. In the BHC complex, it serves as a molecular beacon for the recruitment of molecular machinery, including MeCP2 and SUV39H1, that imposes silencing across a chromosomal interval. Plays a central role in demethylation of Lys-4 of histone H3 by promoting demethylase activity of KDM1A on core histones and nucleosomal substrates. It also protects KDM1A from the proteasome. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development and controls hematopoietic differentiation. {ECO:0000269|PubMed:11171972, ECO:0000269|PubMed:11516394, ECO:0000269|PubMed:12032298, ECO:0000269|PubMed:12399542, ECO:0000269|PubMed:12493763, ECO:0000269|PubMed:16079794, ECO:0000269|PubMed:16140033}. |
Q9ULJ3 | ZBTB21 | S504 | ochoa | Zinc finger and BTB domain-containing protein 21 (Zinc finger protein 295) | Acts as a transcription repressor. {ECO:0000269|PubMed:15629158}. |
Q9ULJ7 | ANKRD50 | S1222 | ochoa | Ankyrin repeat domain-containing protein 50 | Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). |
Q9ULJ7 | ANKRD50 | S1236 | ochoa | Ankyrin repeat domain-containing protein 50 | Involved in the endosome-to-plasma membrane trafficking and recycling of SNX27-retromer-dependent cargo proteins, such as GLUT1 (PubMed:25278552). |
Q9ULU4 | ZMYND8 | S478 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9ULU4 | ZMYND8 | S535 | ochoa | MYND-type zinc finger-containing chromatin reader ZMYND8 (Cutaneous T-cell lymphoma-associated antigen se14-3) (CTCL-associated antigen se14-3) (Protein kinase C-binding protein 1) (Rack7) (Transcription coregulator ZMYND8) (Zinc finger MYND domain-containing protein 8) | Chromatin reader that recognizes dual histone modifications such as histone H3.1 dimethylated at 'Lys-36' and histone H4 acetylated at 'Lys-16' (H3.1K36me2-H4K16ac) and histone H3 methylated at 'Lys-4' and histone H4 acetylated at 'Lys-14' (H3K4me1-H3K14ac) (PubMed:26655721, PubMed:27477906, PubMed:31965980, PubMed:36064715). May act as a transcriptional corepressor for KDM5D by recognizing the dual histone signature H3K4me1-H3K14ac (PubMed:27477906). May also act as a transcriptional corepressor for KDM5C and EZH2 (PubMed:33323928). Recognizes acetylated histone H4 and recruits the NuRD chromatin remodeling complex to damaged chromatin for transcriptional repression and double-strand break repair by homologous recombination (PubMed:25593309, PubMed:27732854, PubMed:30134174). Also activates transcription elongation by RNA polymerase II through recruiting the P-TEFb complex to target promoters (PubMed:26655721, PubMed:30134174). Localizes to H3.1K36me2-H4K16ac marks at all-trans-retinoic acid (ATRA)-responsive genes and positively regulates their expression (PubMed:26655721). Promotes neuronal differentiation by associating with regulatory regions within the MAPT gene, to enhance transcription of a protein-coding MAPT isoform and suppress the non-coding MAPT213 isoform (PubMed:30134174, PubMed:35916866, PubMed:36064715). Suppresses breast cancer, and prostate cancer cell invasion and metastasis (PubMed:27477906, PubMed:31965980, PubMed:33323928). {ECO:0000269|PubMed:25593309, ECO:0000269|PubMed:26655721, ECO:0000269|PubMed:27477906, ECO:0000269|PubMed:27732854, ECO:0000269|PubMed:30134174, ECO:0000269|PubMed:31965980, ECO:0000269|PubMed:33323928, ECO:0000269|PubMed:35916866, ECO:0000269|PubMed:36064715}. |
Q9UMS6 | SYNPO2 | S769 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMS6 | SYNPO2 | S890 | ochoa | Synaptopodin-2 (Genethonin-2) (Myopodin) | Has an actin-binding and actin-bundling activity. Can induce the formation of F-actin networks in an isoform-specific manner (PubMed:23225103, PubMed:24005909). At the sarcomeric Z lines is proposed to act as adapter protein that links nascent myofibers to the sarcolemma via ZYX and may play a role in early assembly and stabilization of the Z lines. Involved in autophagosome formation. May play a role in chaperone-assisted selective autophagy (CASA) involved in Z lines maintenance in striated muscle under mechanical tension; may link the client-processing CASA chaperone machinery to a membrane-tethering and fusion complex providing autophagosome membranes (By similarity). Involved in regulation of cell migration (PubMed:22915763, PubMed:25883213). May be a tumor suppressor (PubMed:16885336). {ECO:0000250|UniProtKB:D4A702, ECO:0000250|UniProtKB:Q91YE8, ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:23225103, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213, ECO:0000305|PubMed:16885336, ECO:0000305|PubMed:20554076}.; FUNCTION: [Isoform 1]: Involved in regulation of cell migration. Can induce formation of thick, irregular actin bundles in the cell body. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 2]: Involved in regulation of cell migration. Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 3]: Involved in regulation of cell migration. Can induce an amorphous actin meshwork throughout the cell body containing a mixture of long and short, randomly organized thick and thin actin bundles. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 4]: Can induce long, well-organized actin bundles frequently orientated in parallel along the long axis of the cell showing characteristics of contractile ventral stress fibers. {ECO:0000269|PubMed:24005909}.; FUNCTION: [Isoform 5]: Involved in regulation of cell migration in part dependent on the Rho-ROCK cascade; can promote formation of nascent focal adhesions, actin bundles at the leading cell edge and lamellipodia (PubMed:22915763, PubMed:25883213). Can induce formation of thick, irregular actin bundles in the cell body; the induced actin network is associated with enhanced cell migration in vitro. {ECO:0000269|PubMed:22915763, ECO:0000269|PubMed:24005909, ECO:0000269|PubMed:25883213}. |
Q9UMZ2 | SYNRG | S1075 | ochoa | Synergin gamma (AP1 subunit gamma-binding protein 1) (Gamma-synergin) | Plays a role in endocytosis and/or membrane trafficking at the trans-Golgi network (TGN) (PubMed:15758025). May act by linking the adapter protein complex AP-1 to other proteins (Probable). Component of clathrin-coated vesicles (PubMed:15758025). Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes (PubMed:15758025). {ECO:0000269|PubMed:15758025, ECO:0000305|PubMed:12538641}. |
Q9UQ35 | SRRM2 | S864 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S912 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQ35 | SRRM2 | S2111 | ochoa | Serine/arginine repetitive matrix protein 2 (300 kDa nuclear matrix antigen) (Serine/arginine-rich splicing factor-related nuclear matrix protein of 300 kDa) (SR-related nuclear matrix protein of 300 kDa) (Ser/Arg-related nuclear matrix protein of 300 kDa) (Splicing coactivator subunit SRm300) (Tax-responsive enhancer element-binding protein 803) (TaxREB803) | Required for pre-mRNA splicing as component of the spliceosome. As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable). {ECO:0000269|PubMed:19854871, ECO:0000269|PubMed:28076346, ECO:0000269|PubMed:28502770, ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:29360106, ECO:0000269|PubMed:29361316, ECO:0000269|PubMed:30705154, ECO:0000269|PubMed:9531537, ECO:0000305|PubMed:33509932}. |
Q9UQR0 | SCML2 | S499 | ochoa|psp | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9UQR0 | SCML2 | S582 | ochoa | Sex comb on midleg-like protein 2 | Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development (By similarity). {ECO:0000250}. |
Q9Y242 | TCF19 | S181 | ochoa | Transcription factor 19 (TCF-19) (Transcription factor SC1) | Potential transcription factor that may play a role in the regulation of genes involved in cell cycle G1/S transition (PubMed:1868030, PubMed:31141247). May bind to regulatory elements of genes, including the promoter of the transcription factor FOXO1 (PubMed:31141247). {ECO:0000269|PubMed:1868030, ECO:0000269|PubMed:31141247}. |
Q9Y2W1 | THRAP3 | S308 | ochoa | Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) | Involved in pre-mRNA splicing. Remains associated with spliced mRNA after splicing which probably involves interactions with the exon junction complex (EJC). Can trigger mRNA decay which seems to be independent of nonsense-mediated decay involving premature stop codons (PTC) recognition. May be involved in nuclear mRNA decay. Involved in regulation of signal-induced alternative splicing. During splicing of PTPRC/CD45 is proposed to sequester phosphorylated SFPQ from PTPRC/CD45 pre-mRNA in resting T-cells. Involved in cyclin-D1/CCND1 mRNA stability probably by acting as component of the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. Involved in response to DNA damage. Is excluced from DNA damage sites in a manner that parallels transcription inhibition; the function may involve the SNARP complex. Initially thought to play a role in transcriptional coactivation through its association with the TRAP complex; however, it is not regarded as a stable Mediator complex subunit. Cooperatively with HELZ2, enhances the transcriptional activation mediated by PPARG, maybe through the stabilization of the PPARG binding to DNA in presence of ligand. May play a role in the terminal stage of adipocyte differentiation. Plays a role in the positive regulation of the circadian clock. Acts as a coactivator of the CLOCK-BMAL1 heterodimer and promotes its transcriptional activator activity and binding to circadian target genes (PubMed:24043798). {ECO:0000269|PubMed:20123736, ECO:0000269|PubMed:20932480, ECO:0000269|PubMed:22424773, ECO:0000269|PubMed:23525231, ECO:0000269|PubMed:24043798}. |
Q9Y4H2 | IRS2 | S608 | ochoa | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y4H2 | IRS2 | S667 | psp | Insulin receptor substrate 2 (IRS-2) | Signaling adapter protein that participates in the signal transduction from two prominent receptor tyrosine kinases, insulin receptor/INSR and insulin-like growth factor I receptor/IGF1R (PubMed:25879670). Plays therefore an important role in development, growth, glucose homeostasis as well as lipid metabolism (PubMed:24616100). Upon phosphorylation by the insulin receptor, functions as a signaling scaffold that propagates insulin action through binding to SH2 domain-containing proteins including the p85 regulatory subunit of PI3K, NCK1, NCK2, GRB2 or SHP2 (PubMed:15316008, PubMed:19109239). Recruitment of GRB2 leads to the activation of the guanine nucleotide exchange factor SOS1 which in turn triggers the Ras/Raf/MEK/MAPK signaling cascade (By similarity). Activation of the PI3K/AKT pathway is responsible for most of insulin metabolic effects in the cell, and the Ras/Raf/MEK/MAPK is involved in the regulation of gene expression and in cooperation with the PI3K pathway regulates cell growth and differentiation. Acts a positive regulator of the Wnt/beta-catenin signaling pathway through suppression of DVL2 autophagy-mediated degradation leading to cell proliferation (PubMed:24616100). Plays a role in cell cycle progression by promoting a robust spindle assembly checkpoint (SAC) during M-phase (PubMed:32554797). In macrophages, IL4-induced tyrosine phosphorylation of IRS2 leads to the recruitment and activation of phosphoinositide 3-kinase (PI3K) (PubMed:19109239). {ECO:0000250|UniProtKB:P35570, ECO:0000269|PubMed:15316008, ECO:0000269|PubMed:19109239, ECO:0000269|PubMed:24616100, ECO:0000269|PubMed:25879670, ECO:0000269|PubMed:32554797}. |
Q9Y6A5 | TACC3 | S558 | ochoa|psp | Transforming acidic coiled-coil-containing protein 3 (ERIC-1) | Plays a role in the microtubule-dependent coupling of the nucleus and the centrosome. Involved in the processes that regulate centrosome-mediated interkinetic nuclear migration (INM) of neural progenitors (By similarity). Acts as a component of the TACC3/ch-TOG/clathrin complex proposed to contribute to stabilization of kinetochore fibers of the mitotic spindle by acting as inter-microtubule bridge. The TACC3/ch-TOG/clathrin complex is required for the maintenance of kinetochore fiber tension (PubMed:21297582, PubMed:23532825). May be involved in the control of cell growth and differentiation. May contribute to cancer (PubMed:14767476). {ECO:0000250|UniProtKB:Q9JJ11, ECO:0000269|PubMed:14767476, ECO:0000269|PubMed:21297582, ECO:0000269|PubMed:23532825}. |
Q9Y6R1 | SLC4A4 | S233 | psp | Electrogenic sodium bicarbonate cotransporter 1 (Sodium bicarbonate cotransporter) (Na(+)/HCO3(-) cotransporter) (Solute carrier family 4 member 4) (kNBC1) | Electrogenic sodium/bicarbonate cotransporter with a Na(+):HCO3(-) stoichiometry varying from 1:2 to 1:3. May regulate bicarbonate influx/efflux at the basolateral membrane of cells and regulate intracellular pH. {ECO:0000269|PubMed:10069984, ECO:0000269|PubMed:11744745, ECO:0000269|PubMed:12411514, ECO:0000269|PubMed:12730338, ECO:0000269|PubMed:12907161, ECO:0000269|PubMed:14567693, ECO:0000269|PubMed:15218065, ECO:0000269|PubMed:15713912, ECO:0000269|PubMed:15817634, ECO:0000269|PubMed:15930088, ECO:0000269|PubMed:16636648, ECO:0000269|PubMed:16769890, ECO:0000269|PubMed:17661077, ECO:0000269|PubMed:23324180, ECO:0000269|PubMed:23636456, ECO:0000269|PubMed:29500354, ECO:0000269|PubMed:9235899, ECO:0000269|PubMed:9651366}. |
Q9Y6W5 | WASF2 | S284 | ochoa | Actin-binding protein WASF2 (Protein WAVE-2) (Verprolin homology domain-containing protein 2) (Wiskott-Aldrich syndrome protein family member 2) (WASP family protein member 2) | Downstream effector molecule involved in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Promotes formation of actin filaments. Part of the WAVE complex that regulates lamellipodia formation. The WAVE complex regulates actin filament reorganization via its interaction with the Arp2/3 complex. {ECO:0000269|PubMed:10381382, ECO:0000269|PubMed:16275905}. |
Q9H3H1 | TRIT1 | S431 | Sugiyama | tRNA dimethylallyltransferase (EC 2.5.1.75) (Isopentenyl-diphosphate:tRNA isopentenyltransferase) (IPP transferase) (IPPT) (hGRO1) (tRNA isopentenyltransferase 1) (IPTase) | Catalyzes the transfer of a dimethylallyl group onto the adenine at position 37 of both cytosolic and mitochondrial tRNAs, leading to the formation of N6-(dimethylallyl)adenosine (i6A37) (PubMed:11111046, PubMed:24126054, PubMed:24901367, PubMed:34774131). Mediates modification of a limited subset of tRNAs: tRNA(Ser)(AGA), tRNA(Ser)(CGA), tRNA(Ser)(UGA), as well as partial modification of the selenocysteine tRNA(Ser)(UCA) (PubMed:24126054). TRIT1 is therefore required for selenoprotein expression (PubMed:24126054). {ECO:0000269|PubMed:11111046, ECO:0000269|PubMed:24126054, ECO:0000269|PubMed:24901367, ECO:0000269|PubMed:34774131}. |
O15075 | DCLK1 | S160 | Sugiyama | Serine/threonine-protein kinase DCLK1 (EC 2.7.11.1) (Doublecortin domain-containing protein 3A) (Doublecortin-like and CAM kinase-like 1) (Doublecortin-like kinase 1) | Probable kinase that may be involved in a calcium-signaling pathway controlling neuronal migration in the developing brain. May also participate in functions of the mature nervous system. |
O60285 | NUAK1 | S313 | Sugiyama | NUAK family SNF1-like kinase 1 (EC 2.7.11.1) (AMPK-related protein kinase 5) (ARK5) (Omphalocele kinase 1) | Serine/threonine-protein kinase involved in various processes such as cell adhesion, regulation of cell ploidy and senescence, cell proliferation and tumor progression. Phosphorylates ATM, CASP6, LATS1, PPP1R12A and p53/TP53. Acts as a regulator of cellular senescence and cellular ploidy by mediating phosphorylation of 'Ser-464' of LATS1, thereby controlling its stability. Controls cell adhesion by regulating activity of the myosin protein phosphatase 1 (PP1) complex. Acts by mediating phosphorylation of PPP1R12A subunit of myosin PP1: phosphorylated PPP1R12A then interacts with 14-3-3, leading to reduced dephosphorylation of myosin MLC2 by myosin PP1. May be involved in DNA damage response: phosphorylates p53/TP53 at 'Ser-15' and 'Ser-392' and is recruited to the CDKN1A/WAF1 promoter to participate in transcription activation by p53/TP53. May also act as a tumor malignancy-associated factor by promoting tumor invasion and metastasis under regulation and phosphorylation by AKT1. Suppresses Fas-induced apoptosis by mediating phosphorylation of CASP6, thereby suppressing the activation of the caspase and the subsequent cleavage of CFLAR. Regulates UV radiation-induced DNA damage response mediated by CDKN1A. In association with STK11, phosphorylates CDKN1A in response to UV radiation and contributes to its degradation which is necessary for optimal DNA repair (PubMed:25329316). {ECO:0000269|PubMed:12409306, ECO:0000269|PubMed:14976552, ECO:0000269|PubMed:15060171, ECO:0000269|PubMed:15273717, ECO:0000269|PubMed:19927127, ECO:0000269|PubMed:20354225, ECO:0000269|PubMed:21317932, ECO:0000269|PubMed:25329316}. |
P30050 | RPL12 | S26 | Sugiyama | Large ribosomal subunit protein uL11 (60S ribosomal protein L12) | Component of the large ribosomal subunit (PubMed:25901680). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:25901680). Binds directly to 26S ribosomal RNA (PubMed:25901680). {ECO:0000269|PubMed:25901680}. |
Q92620 | DHX38 | S220 | Sugiyama | Pre-mRNA-splicing factor ATP-dependent RNA helicase PRP16 (EC 3.6.4.13) (ATP-dependent RNA helicase DHX38) (DEAH box protein 38) | Probable ATP-binding RNA helicase (Probable). Involved in pre-mRNA splicing as component of the spliceosome (PubMed:29301961, PubMed:9524131). {ECO:0000269|PubMed:29301961, ECO:0000269|PubMed:9524131, ECO:0000305}. |
P35222 | CTNNB1 | S179 | PSP | Catenin beta-1 (Beta-catenin) | Key downstream component of the canonical Wnt signaling pathway (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes (PubMed:17524503, PubMed:18077326, PubMed:18086858, PubMed:18957423, PubMed:21262353, PubMed:22155184, PubMed:22647378, PubMed:22699938). Also acts as a coactivator for other transcription factors, such as NR5A2 (PubMed:22187462). Promotes epithelial to mesenchymal transition/mesenchymal to epithelial transition (EMT/MET) via driving transcription of CTNNB1/TCF-target genes (PubMed:29910125). Involved in the regulation of cell adhesion, as component of an E-cadherin:catenin adhesion complex (By similarity). Acts as a negative regulator of centrosome cohesion (PubMed:18086858). Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization (PubMed:21262353). Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2 (PubMed:18957423). Disrupts PML function and PML-NB formation by inhibiting RANBP2-mediated sumoylation of PML (PubMed:22155184). Promotes neurogenesis by maintaining sympathetic neuroblasts within the cell cycle (By similarity). Involved in chondrocyte differentiation via interaction with SOX9: SOX9-binding competes with the binding sites of TCF/LEF within CTNNB1, thereby inhibiting the Wnt signaling (By similarity). Acts as a positive regulator of odontoblast differentiation during mesenchymal tooth germ formation, via promoting the transcription of differentiation factors such as LEF1, BMP2 and BMP4 (By similarity). Activity is repressed in a MSX1-mediated manner at the bell stage of mesenchymal tooth germ formation which prevents premature differentiation of odontoblasts (By similarity). {ECO:0000250|UniProtKB:Q02248, ECO:0000269|PubMed:17524503, ECO:0000269|PubMed:18077326, ECO:0000269|PubMed:18086858, ECO:0000269|PubMed:18957423, ECO:0000269|PubMed:21262353, ECO:0000269|PubMed:22155184, ECO:0000269|PubMed:22187462, ECO:0000269|PubMed:22647378, ECO:0000269|PubMed:22699938, ECO:0000269|PubMed:29910125}. |
Q8TD08 | MAPK15 | S350 | Sugiyama | Mitogen-activated protein kinase 15 (MAP kinase 15) (MAPK 15) (EC 2.7.11.24) (Extracellular signal-regulated kinase 7) (ERK-7) (Extracellular signal-regulated kinase 8) (ERK-8) | Atypical MAPK protein that regulates several process such as autophagy, ciliogenesis, protein trafficking/secretion and genome integrity, in a kinase activity-dependent manner (PubMed:20733054, PubMed:21847093, PubMed:22948227, PubMed:24618899, PubMed:29021280). Controls both, basal and starvation-induced autophagy throught its interaction with GABARAP, MAP1LC3B and GABARAPL1 leading to autophagosome formation, SQSTM1 degradation and reduced MAP1LC3B inhibitory phosphorylation (PubMed:22948227). Regulates primary cilium formation and the localization of ciliary proteins involved in cilium structure, transport, and signaling (PubMed:29021280). Prevents the relocation of the sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production of sugar-coated proteins (PubMed:24618899). Upon amino-acid starvation, mediates transitional endoplasmic reticulum site disassembly and inhibition of secretion (PubMed:21847093). Binds to chromatin leading to MAPK15 activation and interaction with PCNA, that which protects genomic integrity by inhibiting MDM2-mediated degradation of PCNA (PubMed:20733054). Regulates DA transporter (DAT) activity and protein expression via activation of RhoA (PubMed:28842414). In response to H(2)O(2) treatment phosphorylates ELAVL1, thus preventing it from binding to the PDCD4 3'UTR and rendering the PDCD4 mRNA accessible to miR-21 and leading to its degradation and loss of protein expression (PubMed:26595526). Also functions in a kinase activity-independent manner as a negative regulator of growth (By similarity). Phosphorylates in vitro FOS and MBP (PubMed:11875070, PubMed:16484222, PubMed:19166846, PubMed:20638370). During oocyte maturation, plays a key role in the microtubule organization and meiotic cell cycle progression in oocytes, fertilized eggs, and early embryos (By similarity). Interacts with ESRRA promoting its re-localization from the nucleus to the cytoplasm and then prevents its transcriptional activity (PubMed:21190936). {ECO:0000250|UniProtKB:Q80Y86, ECO:0000250|UniProtKB:Q9Z2A6, ECO:0000269|PubMed:11875070, ECO:0000269|PubMed:16484222, ECO:0000269|PubMed:19166846, ECO:0000269|PubMed:20638370, ECO:0000269|PubMed:20733054, ECO:0000269|PubMed:21190936, ECO:0000269|PubMed:21847093, ECO:0000269|PubMed:22948227, ECO:0000269|PubMed:24618899, ECO:0000269|PubMed:26595526, ECO:0000269|PubMed:28842414, ECO:0000269|PubMed:29021280}. |
Q9H2X6 | HIPK2 | S815 | Sugiyama | Homeodomain-interacting protein kinase 2 (hHIPk2) (EC 2.7.11.1) | Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1, ZBTB4 and DAZAP2. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. In response to DNA damage, phosphorylates DAZAP2 which localizes DAZAP2 to the nucleus, reduces interaction of DAZAP2 with HIPK2 and prevents DAZAP2-dependent ubiquitination of HIPK2 by E3 ubiquitin-protein ligase SIAH1 and subsequent proteasomal degradation (PubMed:33591310). Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis. {ECO:0000269|PubMed:11740489, ECO:0000269|PubMed:11925430, ECO:0000269|PubMed:12851404, ECO:0000269|PubMed:12874272, ECO:0000269|PubMed:14678985, ECO:0000269|PubMed:17018294, ECO:0000269|PubMed:17960875, ECO:0000269|PubMed:18695000, ECO:0000269|PubMed:18809579, ECO:0000269|PubMed:19015637, ECO:0000269|PubMed:19046997, ECO:0000269|PubMed:19448668, ECO:0000269|PubMed:20307497, ECO:0000269|PubMed:20573984, ECO:0000269|PubMed:20637728, ECO:0000269|PubMed:20980392, ECO:0000269|PubMed:21192925, ECO:0000269|PubMed:22825850, ECO:0000269|PubMed:33591310}. |
Download
reactome_id | name | p | -log10_p |
---|---|---|---|
R-HSA-5663202 | Diseases of signal transduction by growth factor receptors and second messengers | 0.000006 | 5.260 |
R-HSA-8866910 | TFAP2 (AP-2) family regulates transcription of growth factors and their receptor... | 0.000055 | 4.257 |
R-HSA-162582 | Signal Transduction | 0.000051 | 4.293 |
R-HSA-9725370 | Signaling by ALK fusions and activated point mutants | 0.000385 | 3.415 |
R-HSA-73887 | Death Receptor Signaling | 0.000352 | 3.453 |
R-HSA-9700206 | Signaling by ALK in cancer | 0.000385 | 3.415 |
R-HSA-9700645 | ALK mutants bind TKIs | 0.000561 | 3.251 |
R-HSA-159231 | Transport of Mature mRNA Derived from an Intronless Transcript | 0.000627 | 3.203 |
R-HSA-168276 | NS1 Mediated Effects on Host Pathways | 0.000627 | 3.203 |
R-HSA-8878159 | Transcriptional regulation by RUNX3 | 0.000613 | 3.212 |
R-HSA-159234 | Transport of Mature mRNAs Derived from Intronless Transcripts | 0.000710 | 3.149 |
R-HSA-8952158 | RUNX3 regulates BCL2L11 (BIM) transcription | 0.000896 | 3.048 |
R-HSA-5619107 | Defective TPR may confer susceptibility towards thyroid papillary carcinoma (TPC... | 0.000958 | 3.019 |
R-HSA-1855196 | IP3 and IP4 transport between cytosol and nucleus | 0.001101 | 2.958 |
R-HSA-1855229 | IP6 and IP7 transport between cytosol and nucleus | 0.001101 | 2.958 |
R-HSA-2980766 | Nuclear Envelope Breakdown | 0.001029 | 2.988 |
R-HSA-193648 | NRAGE signals death through JNK | 0.000933 | 3.030 |
R-HSA-4791275 | Signaling by WNT in cancer | 0.001259 | 2.900 |
R-HSA-111465 | Apoptotic cleavage of cellular proteins | 0.001259 | 2.900 |
R-HSA-1855170 | IPs transport between nucleus and cytosol | 0.001435 | 2.843 |
R-HSA-159227 | Transport of the SLBP independent Mature mRNA | 0.001435 | 2.843 |
R-HSA-9022692 | Regulation of MECP2 expression and activity | 0.001435 | 2.843 |
R-HSA-159230 | Transport of the SLBP Dependant Mature mRNA | 0.001629 | 2.788 |
R-HSA-170822 | Regulation of Glucokinase by Glucokinase Regulatory Protein | 0.001629 | 2.788 |
R-HSA-9022534 | Loss of MECP2 binding ability to 5hmC-DNA | 0.001796 | 2.746 |
R-HSA-180746 | Nuclear import of Rev protein | 0.001841 | 2.735 |
R-HSA-3301854 | Nuclear Pore Complex (NPC) Disassembly | 0.002075 | 2.683 |
R-HSA-3769402 | Deactivation of the beta-catenin transactivating complex | 0.002607 | 2.584 |
R-HSA-180910 | Vpr-mediated nuclear import of PICs | 0.002607 | 2.584 |
R-HSA-8862803 | Deregulated CDK5 triggers multiple neurodegenerative pathways in Alzheimer's dis... | 0.002522 | 2.598 |
R-HSA-8863678 | Neurodegenerative Diseases | 0.002522 | 2.598 |
R-HSA-9839394 | TGFBR3 expression | 0.002899 | 2.538 |
R-HSA-165054 | Rev-mediated nuclear export of HIV RNA | 0.002909 | 2.536 |
R-HSA-8951430 | RUNX3 regulates WNT signaling | 0.003790 | 2.421 |
R-HSA-4411364 | Binding of TCF/LEF:CTNNB1 to target gene promoters | 0.003790 | 2.421 |
R-HSA-1640170 | Cell Cycle | 0.003809 | 2.419 |
R-HSA-9734009 | Defective Intrinsic Pathway for Apoptosis | 0.003772 | 2.423 |
R-HSA-177243 | Interactions of Rev with host cellular proteins | 0.003590 | 2.445 |
R-HSA-176033 | Interactions of Vpr with host cellular proteins | 0.003590 | 2.445 |
R-HSA-168271 | Transport of Ribonucleoproteins into the Host Nucleus | 0.003972 | 2.401 |
R-HSA-204998 | Cell death signalling via NRAGE, NRIF and NADE | 0.003942 | 2.404 |
R-HSA-8864260 | Transcriptional regulation by the AP-2 (TFAP2) family of transcription factors | 0.005805 | 2.236 |
R-HSA-168333 | NEP/NS2 Interacts with the Cellular Export Machinery | 0.006346 | 2.197 |
R-HSA-6784531 | tRNA processing in the nucleus | 0.006384 | 2.195 |
R-HSA-8951911 | RUNX3 regulates RUNX1-mediated transcription | 0.006902 | 2.161 |
R-HSA-72202 | Transport of Mature Transcript to Cytoplasm | 0.007249 | 2.140 |
R-HSA-168274 | Export of Viral Ribonucleoproteins from Nucleus | 0.006923 | 2.160 |
R-HSA-75153 | Apoptotic execution phase | 0.006923 | 2.160 |
R-HSA-8939243 | RUNX1 interacts with co-factors whose precise effect on RUNX1 targets is not kno... | 0.007504 | 2.125 |
R-HSA-193704 | p75 NTR receptor-mediated signalling | 0.007603 | 2.119 |
R-HSA-6802952 | Signaling by BRAF and RAF1 fusions | 0.007932 | 2.101 |
R-HSA-9031628 | NGF-stimulated transcription | 0.008190 | 2.087 |
R-HSA-9009391 | Extra-nuclear estrogen signaling | 0.008485 | 2.071 |
R-HSA-6802957 | Oncogenic MAPK signaling | 0.008719 | 2.060 |
R-HSA-68875 | Mitotic Prophase | 0.009273 | 2.033 |
R-HSA-9022538 | Loss of MECP2 binding ability to 5mC-DNA | 0.010569 | 1.976 |
R-HSA-4839748 | Signaling by AMER1 mutants | 0.011437 | 1.942 |
R-HSA-5339716 | Signaling by GSK3beta mutants | 0.011437 | 1.942 |
R-HSA-195253 | Degradation of beta-catenin by the destruction complex | 0.011101 | 1.955 |
R-HSA-4839743 | Signaling by CTNNB1 phospho-site mutants | 0.013574 | 1.867 |
R-HSA-5358752 | CTNNB1 T41 mutants aren't phosphorylated | 0.013574 | 1.867 |
R-HSA-5358751 | CTNNB1 S45 mutants aren't phosphorylated | 0.013574 | 1.867 |
R-HSA-5358749 | CTNNB1 S37 mutants aren't phosphorylated | 0.013574 | 1.867 |
R-HSA-5358747 | CTNNB1 S33 mutants aren't phosphorylated | 0.013574 | 1.867 |
R-HSA-159236 | Transport of Mature mRNA derived from an Intron-Containing Transcript | 0.013395 | 1.873 |
R-HSA-5689896 | Ovarian tumor domain proteases | 0.012136 | 1.916 |
R-HSA-9634638 | Estrogen-dependent nuclear events downstream of ESR-membrane signaling | 0.012776 | 1.894 |
R-HSA-68886 | M Phase | 0.014115 | 1.850 |
R-HSA-9022927 | MECP2 regulates transcription of genes involved in GABA signaling | 0.014918 | 1.826 |
R-HSA-75893 | TNF signaling | 0.014937 | 1.826 |
R-HSA-2219530 | Constitutive Signaling by Aberrant PI3K in Cancer | 0.016054 | 1.794 |
R-HSA-525793 | Myogenesis | 0.017650 | 1.753 |
R-HSA-3214841 | PKMTs methylate histone lysines | 0.017010 | 1.769 |
R-HSA-5693532 | DNA Double-Strand Break Repair | 0.017913 | 1.747 |
R-HSA-416482 | G alpha (12/13) signalling events | 0.017943 | 1.746 |
R-HSA-191859 | snRNP Assembly | 0.018246 | 1.739 |
R-HSA-194441 | Metabolism of non-coding RNA | 0.018246 | 1.739 |
R-HSA-74713 | IRS activation | 0.019903 | 1.701 |
R-HSA-9022535 | Loss of phosphorylation of MECP2 at T308 | 0.019903 | 1.701 |
R-HSA-8943724 | Regulation of PTEN gene transcription | 0.019452 | 1.711 |
R-HSA-1257604 | PIP3 activates AKT signaling | 0.019032 | 1.721 |
R-HSA-2995410 | Nuclear Envelope (NE) Reassembly | 0.020035 | 1.698 |
R-HSA-5683057 | MAPK family signaling cascades | 0.020084 | 1.697 |
R-HSA-168325 | Viral Messenger RNA Synthesis | 0.020711 | 1.684 |
R-HSA-196299 | Beta-catenin phosphorylation cascade | 0.021266 | 1.672 |
R-HSA-72203 | Processing of Capped Intron-Containing Pre-mRNA | 0.024021 | 1.619 |
R-HSA-5693538 | Homology Directed Repair | 0.022114 | 1.655 |
R-HSA-2219528 | PI3K/AKT Signaling in Cancer | 0.022114 | 1.655 |
R-HSA-9669937 | Drug resistance of KIT mutants | 0.030152 | 1.521 |
R-HSA-9669921 | KIT mutants bind TKIs | 0.030152 | 1.521 |
R-HSA-9669914 | Dasatinib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-9669936 | Sorafenib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-5467333 | APC truncation mutants are not K63 polyubiquitinated | 0.030152 | 1.521 |
R-HSA-5467343 | Deletions in the AMER1 gene destabilize the destruction complex | 0.030152 | 1.521 |
R-HSA-9669924 | Masitinib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-9669929 | Regorafenib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-9669934 | Sunitinib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-9669926 | Nilotinib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-9669917 | Imatinib-resistant KIT mutants | 0.030152 | 1.521 |
R-HSA-9022537 | Loss of MECP2 binding ability to the NCoR/SMRT complex | 0.025482 | 1.594 |
R-HSA-182971 | EGFR downregulation | 0.028063 | 1.552 |
R-HSA-8939211 | ESR-mediated signaling | 0.029320 | 1.533 |
R-HSA-427975 | Proton/oligopeptide cotransporters | 0.025482 | 1.594 |
R-HSA-5357905 | Regulation of TNFR1 signaling | 0.026501 | 1.577 |
R-HSA-69278 | Cell Cycle, Mitotic | 0.025409 | 1.595 |
R-HSA-9909649 | Regulation of PD-L1(CD274) transcription | 0.027835 | 1.555 |
R-HSA-9839373 | Signaling by TGFBR3 | 0.026501 | 1.577 |
R-HSA-9008059 | Interleukin-37 signaling | 0.025744 | 1.589 |
R-HSA-8939256 | RUNX1 regulates transcription of genes involved in WNT signaling | 0.031616 | 1.500 |
R-HSA-68882 | Mitotic Anaphase | 0.032348 | 1.490 |
R-HSA-9006925 | Intracellular signaling by second messengers | 0.032548 | 1.487 |
R-HSA-2555396 | Mitotic Metaphase and Anaphase | 0.033279 | 1.478 |
R-HSA-9022707 | MECP2 regulates transcription factors | 0.038265 | 1.417 |
R-HSA-8931987 | RUNX1 regulates estrogen receptor mediated transcription | 0.038265 | 1.417 |
R-HSA-112412 | SOS-mediated signalling | 0.038265 | 1.417 |
R-HSA-9726840 | SHOC2 M1731 mutant abolishes MRAS complex function | 0.038265 | 1.417 |
R-HSA-9614657 | FOXO-mediated transcription of cell death genes | 0.034535 | 1.462 |
R-HSA-9959399 | SLC-mediated transport of oligopeptides | 0.038265 | 1.417 |
R-HSA-9856649 | Transcriptional and post-translational regulation of MITF-M expression and activ... | 0.036415 | 1.439 |
R-HSA-187037 | Signaling by NTRK1 (TRKA) | 0.034194 | 1.466 |
R-HSA-9924644 | Developmental Lineages of the Mammary Gland | 0.038313 | 1.417 |
R-HSA-450531 | Regulation of mRNA stability by proteins that bind AU-rich elements | 0.038313 | 1.417 |
R-HSA-198725 | Nuclear Events (kinase and transcription factor activation) | 0.038313 | 1.417 |
R-HSA-5578749 | Transcriptional regulation by small RNAs | 0.038313 | 1.417 |
R-HSA-9927426 | Developmental Lineage of Mammary Gland Alveolar Cells | 0.038550 | 1.414 |
R-HSA-983231 | Factors involved in megakaryocyte development and platelet production | 0.039196 | 1.407 |
R-HSA-446107 | Type I hemidesmosome assembly | 0.045394 | 1.343 |
R-HSA-9660537 | Signaling by MRAS-complex mutants | 0.045394 | 1.343 |
R-HSA-9726842 | Gain-of-function MRAS complexes activate RAF signaling | 0.045394 | 1.343 |
R-HSA-450408 | AUF1 (hnRNP D0) binds and destabilizes mRNA | 0.044527 | 1.351 |
R-HSA-5693567 | HDR through Homologous Recombination (HRR) or Single Strand Annealing (SSA) | 0.042445 | 1.372 |
R-HSA-9772755 | Formation of WDR5-containing histone-modifying complexes | 0.041477 | 1.382 |
R-HSA-9012852 | Signaling by NOTCH3 | 0.046115 | 1.336 |
R-HSA-1169408 | ISG15 antiviral mechanism | 0.044380 | 1.353 |
R-HSA-5688426 | Deubiquitination | 0.046803 | 1.330 |
R-HSA-177929 | Signaling by EGFR | 0.048711 | 1.312 |
R-HSA-6811434 | COPI-dependent Golgi-to-ER retrograde traffic | 0.048795 | 1.312 |
R-HSA-6796648 | TP53 Regulates Transcription of DNA Repair Genes | 0.051015 | 1.292 |
R-HSA-5696397 | Gap-filling DNA repair synthesis and ligation in GG-NER | 0.051178 | 1.291 |
R-HSA-2995383 | Initiation of Nuclear Envelope (NE) Reformation | 0.051178 | 1.291 |
R-HSA-9825892 | Regulation of MITF-M-dependent genes involved in cell cycle and proliferation | 0.051178 | 1.291 |
R-HSA-9673013 | Diseases of Telomere Maintenance | 0.059397 | 1.226 |
R-HSA-9670621 | Defective Inhibition of DNA Recombination at Telomere | 0.059397 | 1.226 |
R-HSA-9006821 | Alternative Lengthening of Telomeres (ALT) | 0.059397 | 1.226 |
R-HSA-5632968 | Defective Mismatch Repair Associated With MSH6 | 0.059397 | 1.226 |
R-HSA-9763198 | Impaired BRCA2 binding to SEM1 (DSS1) | 0.059397 | 1.226 |
R-HSA-9670613 | Defective Inhibition of DNA Recombination at Telomere Due to DAXX Mutations | 0.059397 | 1.226 |
R-HSA-9709275 | Impaired BRCA2 translocation to the nucleus | 0.059397 | 1.226 |
R-HSA-9670615 | Defective Inhibition of DNA Recombination at Telomere Due to ATRX Mutations | 0.059397 | 1.226 |
R-HSA-9022702 | MECP2 regulates transcription of neuronal ligands | 0.060952 | 1.215 |
R-HSA-198203 | PI3K/AKT activation | 0.060952 | 1.215 |
R-HSA-74749 | Signal attenuation | 0.060952 | 1.215 |
R-HSA-9013507 | NOTCH3 Activation and Transmission of Signal to the Nucleus | 0.055846 | 1.253 |
R-HSA-983189 | Kinesins | 0.059943 | 1.222 |
R-HSA-264870 | Caspase-mediated cleavage of cytoskeletal proteins | 0.052967 | 1.276 |
R-HSA-8851680 | Butyrophilin (BTN) family interactions | 0.052967 | 1.276 |
R-HSA-2586552 | Signaling by Leptin | 0.060952 | 1.215 |
R-HSA-3371453 | Regulation of HSF1-mediated heat shock response | 0.061544 | 1.211 |
R-HSA-110313 | Translesion synthesis by Y family DNA polymerases bypasses lesions on DNA templa... | 0.061600 | 1.210 |
R-HSA-73933 | Resolution of Abasic Sites (AP sites) | 0.061600 | 1.210 |
R-HSA-8853884 | Transcriptional Regulation by VENTX | 0.061600 | 1.210 |
R-HSA-9607240 | FLT3 Signaling | 0.061600 | 1.210 |
R-HSA-6811558 | PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling | 0.062735 | 1.202 |
R-HSA-162909 | Host Interactions of HIV factors | 0.064835 | 1.188 |
R-HSA-9616222 | Transcriptional regulation of granulopoiesis | 0.066067 | 1.180 |
R-HSA-9669935 | Signaling by juxtamembrane domain KIT mutants | 0.087762 | 1.057 |
R-HSA-9680187 | Signaling by extracellular domain mutants of KIT | 0.087762 | 1.057 |
R-HSA-5619054 | Defective SLC4A4 causes renal tubular acidosis, proximal, with ocular abnormalit... | 0.087762 | 1.057 |
R-HSA-5339700 | Signaling by TCF7L2 mutants | 0.087762 | 1.057 |
R-HSA-9669933 | Signaling by kinase domain mutants of KIT | 0.087762 | 1.057 |
R-HSA-5619111 | Defective SLC20A2 causes idiopathic basal ganglia calcification 1 (IBGC1) | 0.087762 | 1.057 |
R-HSA-5619052 | Defective SLC9A9 causes autism 16 (AUTS16) | 0.087762 | 1.057 |
R-HSA-3828062 | Glycogen storage disease type 0 (muscle GYS1) | 0.115274 | 0.938 |
R-HSA-3814836 | Glycogen storage disease type XV (GYG1) | 0.115274 | 0.938 |
R-HSA-111446 | Activation of BIM and translocation to mitochondria | 0.141957 | 0.848 |
R-HSA-9673766 | Signaling by cytosolic PDGFRA and PDGFRB fusion proteins | 0.141957 | 0.848 |
R-HSA-1251932 | PLCG1 events in ERBB2 signaling | 0.167837 | 0.775 |
R-HSA-4839744 | Signaling by APC mutants | 0.069316 | 1.159 |
R-HSA-5467337 | APC truncation mutants have impaired AXIN binding | 0.069316 | 1.159 |
R-HSA-5467340 | AXIN missense mutants destabilize the destruction complex | 0.069316 | 1.159 |
R-HSA-5467348 | Truncations of AMER1 destabilize the destruction complex | 0.069316 | 1.159 |
R-HSA-8939247 | RUNX1 regulates transcription of genes involved in interleukin signaling | 0.192938 | 0.715 |
R-HSA-8939245 | RUNX1 regulates transcription of genes involved in BCR signaling | 0.192938 | 0.715 |
R-HSA-9005895 | Pervasive developmental disorders | 0.087064 | 1.060 |
R-HSA-9697154 | Disorders of Nervous System Development | 0.087064 | 1.060 |
R-HSA-9005891 | Loss of function of MECP2 in Rett syndrome | 0.087064 | 1.060 |
R-HSA-69091 | Polymerase switching | 0.087064 | 1.060 |
R-HSA-69109 | Leading Strand Synthesis | 0.087064 | 1.060 |
R-HSA-8935964 | RUNX1 regulates expression of components of tight junctions | 0.217283 | 0.663 |
R-HSA-182218 | Nef Mediated CD8 Down-regulation | 0.217283 | 0.663 |
R-HSA-9833576 | CDH11 homotypic and heterotypic interactions | 0.217283 | 0.663 |
R-HSA-5638303 | Inhibition of Signaling by Overexpressed EGFR | 0.217283 | 0.663 |
R-HSA-9017802 | Noncanonical activation of NOTCH3 | 0.217283 | 0.663 |
R-HSA-5638302 | Signaling by Overexpressed Wild-Type EGFR in Cancer | 0.217283 | 0.663 |
R-HSA-5340588 | Signaling by RNF43 mutants | 0.217283 | 0.663 |
R-HSA-2559584 | Formation of Senescence-Associated Heterochromatin Foci (SAHF) | 0.096393 | 1.016 |
R-HSA-1433559 | Regulation of KIT signaling | 0.105990 | 0.975 |
R-HSA-8857538 | PTK6 promotes HIF1A stabilization | 0.240895 | 0.618 |
R-HSA-9027283 | Erythropoietin activates STAT5 | 0.240895 | 0.618 |
R-HSA-6802953 | RAS signaling downstream of NF1 loss-of-function variants | 0.240895 | 0.618 |
R-HSA-110312 | Translesion synthesis by REV1 | 0.115830 | 0.936 |
R-HSA-5656121 | Translesion synthesis by POLI | 0.125891 | 0.900 |
R-HSA-176412 | Phosphorylation of the APC/C | 0.125891 | 0.900 |
R-HSA-9687136 | Aberrant regulation of mitotic exit in cancer due to RB1 defects | 0.125891 | 0.900 |
R-HSA-9732724 | IFNG signaling activates MAPKs | 0.263797 | 0.579 |
R-HSA-2470946 | Cohesin Loading onto Chromatin | 0.263797 | 0.579 |
R-HSA-77595 | Processing of Intronless Pre-mRNAs | 0.136149 | 0.866 |
R-HSA-5655862 | Translesion synthesis by POLK | 0.136149 | 0.866 |
R-HSA-8939246 | RUNX1 regulates transcription of genes involved in differentiation of myeloid ce... | 0.286009 | 0.544 |
R-HSA-212718 | EGFR interacts with phospholipase C-gamma | 0.286009 | 0.544 |
R-HSA-9828211 | Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation | 0.286009 | 0.544 |
R-HSA-3785653 | Myoclonic epilepsy of Lafora | 0.286009 | 0.544 |
R-HSA-5651801 | PCNA-Dependent Long Patch Base Excision Repair | 0.157177 | 0.804 |
R-HSA-174048 | APC/C:Cdc20 mediated degradation of Cyclin B | 0.167907 | 0.775 |
R-HSA-9927418 | Developmental Lineage of Mammary Gland Luminal Epithelial Cells | 0.069268 | 1.159 |
R-HSA-179409 | APC-Cdc20 mediated degradation of Nek2A | 0.189712 | 0.722 |
R-HSA-2468052 | Establishment of Sister Chromatid Cohesion | 0.328446 | 0.484 |
R-HSA-9027277 | Erythropoietin activates Phospholipase C gamma (PLCG) | 0.328446 | 0.484 |
R-HSA-9669938 | Signaling by KIT in disease | 0.211866 | 0.674 |
R-HSA-9670439 | Signaling by phosphorylated juxtamembrane, extracellular and kinase domain KIT m... | 0.211866 | 0.674 |
R-HSA-8876493 | InlA-mediated entry of Listeria monocytogenes into host cells | 0.348711 | 0.458 |
R-HSA-9824878 | Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 | 0.368366 | 0.434 |
R-HSA-9931512 | Phosphorylation of CLOCK, acetylation of BMAL1 (ARNTL) at target gene promoters | 0.368366 | 0.434 |
R-HSA-9022699 | MECP2 regulates neuronal receptors and channels | 0.256764 | 0.590 |
R-HSA-9027276 | Erythropoietin activates Phosphoinositide-3-kinase (PI3K) | 0.387429 | 0.412 |
R-HSA-9656223 | Signaling by RAF1 mutants | 0.191001 | 0.719 |
R-HSA-201722 | Formation of the beta-catenin:TCF transactivating complex | 0.146249 | 0.835 |
R-HSA-8877330 | RUNX1 and FOXP3 control the development of regulatory T lymphocytes (Tregs) | 0.405917 | 0.392 |
R-HSA-9927432 | Developmental Lineage of Mammary Gland Myoepithelial Cells | 0.290566 | 0.537 |
R-HSA-9709570 | Impaired BRCA2 binding to RAD51 | 0.290566 | 0.537 |
R-HSA-9649948 | Signaling downstream of RAS mutants | 0.230332 | 0.638 |
R-HSA-174084 | Autodegradation of Cdh1 by Cdh1:APC/C | 0.230332 | 0.638 |
R-HSA-174154 | APC/C:Cdc20 mediated degradation of Securin | 0.238376 | 0.623 |
R-HSA-9925563 | Developmental Lineage of Pancreatic Ductal Cells | 0.212100 | 0.673 |
R-HSA-5658442 | Regulation of RAS by GAPs | 0.262771 | 0.580 |
R-HSA-174184 | Cdc20:Phospho-APC/C mediated degradation of Cyclin A | 0.279203 | 0.554 |
R-HSA-72187 | mRNA 3'-end processing | 0.279203 | 0.554 |
R-HSA-1221632 | Meiotic synapsis | 0.287457 | 0.541 |
R-HSA-174178 | APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins ... | 0.287457 | 0.541 |
R-HSA-179419 | APC:Cdc20 mediated degradation of cell cycle proteins prior to satisfation of th... | 0.287457 | 0.541 |
R-HSA-9701190 | Defective homologous recombination repair (HRR) due to BRCA2 loss of function | 0.357353 | 0.447 |
R-HSA-176409 | APC/C:Cdc20 mediated degradation of mitotic proteins | 0.304014 | 0.517 |
R-HSA-176814 | Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins | 0.312310 | 0.505 |
R-HSA-6782210 | Gap-filling DNA repair synthesis and ligation in TC-NER | 0.312310 | 0.505 |
R-HSA-380284 | Loss of proteins required for interphase microtubule organization from the centr... | 0.370327 | 0.431 |
R-HSA-380259 | Loss of Nlp from mitotic centrosomes | 0.370327 | 0.431 |
R-HSA-380320 | Recruitment of NuMA to mitotic centrosomes | 0.345958 | 0.461 |
R-HSA-8854518 | AURKA Activation by TPX2 | 0.394966 | 0.403 |
R-HSA-8986944 | Transcriptional Regulation by MECP2 | 0.089615 | 1.048 |
R-HSA-8934593 | Regulation of RUNX1 Expression and Activity | 0.076421 | 1.117 |
R-HSA-8878171 | Transcriptional regulation by RUNX1 | 0.079508 | 1.100 |
R-HSA-72172 | mRNA Splicing | 0.379965 | 0.420 |
R-HSA-69186 | Lagging Strand Synthesis | 0.189712 | 0.722 |
R-HSA-72163 | mRNA Splicing - Major Pathway | 0.329857 | 0.482 |
R-HSA-9931510 | Phosphorylated BMAL1:CLOCK (ARNTL:CLOCK) activates expression of core clock gene... | 0.076421 | 1.117 |
R-HSA-5656169 | Termination of translesion DNA synthesis | 0.093721 | 1.028 |
R-HSA-73893 | DNA Damage Bypass | 0.099703 | 1.001 |
R-HSA-6802955 | Paradoxical activation of RAF signaling by kinase inactive BRAF | 0.230332 | 0.638 |
R-HSA-6802946 | Signaling by moderate kinase activity BRAF mutants | 0.230332 | 0.638 |
R-HSA-9018519 | Estrogen-dependent gene expression | 0.192388 | 0.716 |
R-HSA-9675151 | Disorders of Developmental Biology | 0.136149 | 0.866 |
R-HSA-110314 | Recognition of DNA damage by PCNA-containing replication complex | 0.234252 | 0.630 |
R-HSA-5674135 | MAP2K and MAPK activation | 0.191001 | 0.719 |
R-HSA-1250196 | SHC1 events in ERBB2 signaling | 0.301801 | 0.520 |
R-HSA-9609690 | HCMV Early Events | 0.217140 | 0.663 |
R-HSA-180292 | GAB1 signalosome | 0.157177 | 0.804 |
R-HSA-3134973 | LRR FLII-interacting protein 1 (LRRFIP1) activates type I IFN production | 0.192938 | 0.715 |
R-HSA-5358565 | Mismatch repair (MMR) directed by MSH2:MSH6 (MutSalpha) | 0.146584 | 0.834 |
R-HSA-9762292 | Regulation of CDH11 function | 0.328446 | 0.484 |
R-HSA-9690406 | Transcriptional regulation of testis differentiation | 0.136149 | 0.866 |
R-HSA-6802949 | Signaling by RAS mutants | 0.230332 | 0.638 |
R-HSA-9675136 | Diseases of DNA Double-Strand Break Repair | 0.357353 | 0.447 |
R-HSA-8856828 | Clathrin-mediated endocytosis | 0.226744 | 0.644 |
R-HSA-8852405 | Signaling by MST1 | 0.217283 | 0.663 |
R-HSA-8939242 | RUNX1 regulates transcription of genes involved in differentiation of keratinocy... | 0.286009 | 0.544 |
R-HSA-1234176 | Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha | 0.270973 | 0.567 |
R-HSA-2467813 | Separation of Sister Chromatids | 0.324925 | 0.488 |
R-HSA-9013973 | TICAM1-dependent activation of IRF3/IRF7 | 0.368366 | 0.434 |
R-HSA-8939236 | RUNX1 regulates transcription of genes involved in differentiation of HSCs | 0.154388 | 0.811 |
R-HSA-4641265 | Repression of WNT target genes | 0.087064 | 1.060 |
R-HSA-5693616 | Presynaptic phase of homologous DNA pairing and strand exchange | 0.368287 | 0.434 |
R-HSA-69618 | Mitotic Spindle Checkpoint | 0.255116 | 0.593 |
R-HSA-5693579 | Homologous DNA Pairing and Strand Exchange | 0.400626 | 0.397 |
R-HSA-110381 | Resolution of AP sites via the single-nucleotide replacement pathway | 0.192938 | 0.715 |
R-HSA-9860276 | SLC15A4:TASL-dependent IRF5 activation | 0.217283 | 0.663 |
R-HSA-430039 | mRNA decay by 5' to 3' exoribonuclease | 0.136149 | 0.866 |
R-HSA-176407 | Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase | 0.146584 | 0.834 |
R-HSA-5357786 | TNFR1-induced proapoptotic signaling | 0.189712 | 0.722 |
R-HSA-6802948 | Signaling by high-kinase activity BRAF mutants | 0.153652 | 0.813 |
R-HSA-174411 | Polymerase switching on the C-strand of the telomere | 0.245498 | 0.610 |
R-HSA-179812 | GRB2 events in EGFR signaling | 0.387429 | 0.412 |
R-HSA-5693565 | Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at... | 0.151871 | 0.819 |
R-HSA-5685942 | HDR through Homologous Recombination (HRR) | 0.199537 | 0.700 |
R-HSA-69190 | DNA strand elongation | 0.324171 | 0.489 |
R-HSA-5673000 | RAF activation | 0.357353 | 0.447 |
R-HSA-5696400 | Dual Incision in GG-NER | 0.357353 | 0.447 |
R-HSA-9917777 | Epigenetic regulation by WDR5-containing histone modifying complexes | 0.277025 | 0.557 |
R-HSA-9734767 | Developmental Cell Lineages | 0.253662 | 0.596 |
R-HSA-354192 | Integrin signaling | 0.335288 | 0.475 |
R-HSA-1500620 | Meiosis | 0.318488 | 0.497 |
R-HSA-168638 | NOD1/2 Signaling Pathway | 0.132492 | 0.878 |
R-HSA-167590 | Nef Mediated CD4 Down-regulation | 0.263797 | 0.579 |
R-HSA-9615933 | Postmitotic nuclear pore complex (NPC) reformation | 0.076421 | 1.117 |
R-HSA-9675126 | Diseases of mitotic cell cycle | 0.112462 | 0.949 |
R-HSA-9614399 | Regulation of localization of FOXO transcription factors | 0.348711 | 0.458 |
R-HSA-5687128 | MAPK6/MAPK4 signaling | 0.068742 | 1.163 |
R-HSA-68877 | Mitotic Prometaphase | 0.206105 | 0.686 |
R-HSA-1227990 | Signaling by ERBB2 in Cancer | 0.301801 | 0.520 |
R-HSA-9734779 | Developmental Cell Lineages of the Integumentary System | 0.078770 | 1.104 |
R-HSA-2428928 | IRS-related events triggered by IGF1R | 0.353798 | 0.451 |
R-HSA-437239 | Recycling pathway of L1 | 0.238376 | 0.623 |
R-HSA-2032785 | YAP1- and WWTR1 (TAZ)-stimulated gene expression | 0.105990 | 0.975 |
R-HSA-5649702 | APEX1-Independent Resolution of AP Sites via the Single Nucleotide Replacement P... | 0.307552 | 0.512 |
R-HSA-5693606 | DNA Double Strand Break Response | 0.199537 | 0.700 |
R-HSA-8856825 | Cargo recognition for clathrin-mediated endocytosis | 0.278156 | 0.556 |
R-HSA-1227986 | Signaling by ERBB2 | 0.345512 | 0.462 |
R-HSA-9609646 | HCMV Infection | 0.316102 | 0.500 |
R-HSA-168315 | Inhibition of Host mRNA Processing and RNA Silencing | 0.087762 | 1.057 |
R-HSA-5632928 | Defective Mismatch Repair Associated With MSH2 | 0.087762 | 1.057 |
R-HSA-8875513 | MET interacts with TNS proteins | 0.141957 | 0.848 |
R-HSA-8941333 | RUNX2 regulates genes involved in differentiation of myeloid cells | 0.167837 | 0.775 |
R-HSA-5624138 | Trafficking of myristoylated proteins to the cilium | 0.192938 | 0.715 |
R-HSA-4839735 | Signaling by AXIN mutants | 0.078030 | 1.108 |
R-HSA-1614603 | Cysteine formation from homocysteine | 0.263797 | 0.579 |
R-HSA-141430 | Inactivation of APC/C via direct inhibition of the APC/C complex | 0.136149 | 0.866 |
R-HSA-1839117 | Signaling by cytosolic FGFR1 fusion mutants | 0.157177 | 0.804 |
R-HSA-2179392 | EGFR Transactivation by Gastrin | 0.328446 | 0.484 |
R-HSA-9014325 | TICAM1,TRAF6-dependent induction of TAK1 complex | 0.328446 | 0.484 |
R-HSA-5140745 | WNT5A-dependent internalization of FZD2, FZD5 and ROR2 | 0.328446 | 0.484 |
R-HSA-2151209 | Activation of PPARGC1A (PGC-1alpha) by phosphorylation | 0.328446 | 0.484 |
R-HSA-75067 | Processing of Capped Intronless Pre-mRNA | 0.234252 | 0.630 |
R-HSA-68884 | Mitotic Telophase/Cytokinesis | 0.368366 | 0.434 |
R-HSA-8866427 | VLDLR internalisation and degradation | 0.387429 | 0.412 |
R-HSA-162588 | Budding and maturation of HIV virion | 0.313006 | 0.504 |
R-HSA-69017 | CDK-mediated phosphorylation and removal of Cdc6 | 0.295728 | 0.529 |
R-HSA-8856688 | Golgi-to-ER retrograde transport | 0.172072 | 0.764 |
R-HSA-73856 | RNA Polymerase II Transcription Termination | 0.353798 | 0.451 |
R-HSA-2426168 | Activation of gene expression by SREBF (SREBP) | 0.370327 | 0.431 |
R-HSA-73886 | Chromosome Maintenance | 0.397252 | 0.401 |
R-HSA-69239 | Synthesis of DNA | 0.301592 | 0.521 |
R-HSA-201681 | TCF dependent signaling in response to WNT | 0.095859 | 1.018 |
R-HSA-5358508 | Mismatch Repair | 0.157177 | 0.804 |
R-HSA-5675221 | Negative regulation of MAPK pathway | 0.191001 | 0.719 |
R-HSA-195721 | Signaling by WNT | 0.182047 | 0.740 |
R-HSA-1234174 | Cellular response to hypoxia | 0.386778 | 0.413 |
R-HSA-176187 | Activation of ATR in response to replication stress | 0.119003 | 0.924 |
R-HSA-9006931 | Signaling by Nuclear Receptors | 0.288277 | 0.540 |
R-HSA-5673001 | RAF/MAP kinase cascade | 0.097338 | 1.012 |
R-HSA-912631 | Regulation of signaling by CBL | 0.167907 | 0.775 |
R-HSA-418885 | DCC mediated attractive signaling | 0.115830 | 0.936 |
R-HSA-2173796 | SMAD2/SMAD3:SMAD4 heterotrimer regulates transcription | 0.153652 | 0.813 |
R-HSA-2428924 | IGF1R signaling cascade | 0.378564 | 0.422 |
R-HSA-5684996 | MAPK1/MAPK3 signaling | 0.110809 | 0.955 |
R-HSA-446388 | Regulation of cytoskeletal remodeling and cell spreading by IPP complex componen... | 0.217283 | 0.663 |
R-HSA-9603381 | Activated NTRK3 signals through PI3K | 0.263797 | 0.579 |
R-HSA-5357956 | TNFR1-induced NF-kappa-B signaling pathway | 0.082019 | 1.086 |
R-HSA-111453 | BH3-only proteins associate with and inactivate anti-apoptotic BCL-2 members | 0.286009 | 0.544 |
R-HSA-937042 | IRAK2 mediated activation of TAK1 complex | 0.307552 | 0.512 |
R-HSA-450341 | Activation of the AP-1 family of transcription factors | 0.307552 | 0.512 |
R-HSA-8875555 | MET activates RAP1 and RAC1 | 0.328446 | 0.484 |
R-HSA-9937080 | Developmental Lineage of Multipotent Pancreatic Progenitor Cells | 0.324171 | 0.489 |
R-HSA-3214815 | HDACs deacetylate histones | 0.304014 | 0.517 |
R-HSA-9759475 | Regulation of CDH11 Expression and Function | 0.290566 | 0.537 |
R-HSA-73857 | RNA Polymerase II Transcription | 0.325419 | 0.488 |
R-HSA-74160 | Gene expression (Transcription) | 0.096901 | 1.014 |
R-HSA-69242 | S Phase | 0.141019 | 0.851 |
R-HSA-9841251 | Mitochondrial unfolded protein response (UPRmt) | 0.268037 | 0.572 |
R-HSA-5685939 | HDR through MMEJ (alt-NHEJ) | 0.096393 | 1.016 |
R-HSA-4086398 | Ca2+ pathway | 0.105640 | 0.976 |
R-HSA-73894 | DNA Repair | 0.127672 | 0.894 |
R-HSA-2404192 | Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) | 0.386778 | 0.413 |
R-HSA-69620 | Cell Cycle Checkpoints | 0.150425 | 0.823 |
R-HSA-9764260 | Regulation of Expression and Function of Type II Classical Cadherins | 0.335288 | 0.475 |
R-HSA-381042 | PERK regulates gene expression | 0.368287 | 0.434 |
R-HSA-9909396 | Circadian clock | 0.302015 | 0.520 |
R-HSA-176408 | Regulation of APC/C activators between G1/S and early anaphase | 0.362071 | 0.441 |
R-HSA-5693607 | Processing of DNA double-strand break ends | 0.140267 | 0.853 |
R-HSA-3928662 | EPHB-mediated forward signaling | 0.214406 | 0.669 |
R-HSA-166016 | Toll Like Receptor 4 (TLR4) Cascade | 0.398526 | 0.400 |
R-HSA-2682334 | EPH-Ephrin signaling | 0.380338 | 0.420 |
R-HSA-352238 | Breakdown of the nuclear lamina | 0.087762 | 1.057 |
R-HSA-5423599 | Diseases of Mismatch Repair (MMR) | 0.141957 | 0.848 |
R-HSA-5674499 | Negative feedback regulation of MAPK pathway | 0.217283 | 0.663 |
R-HSA-8951671 | RUNX3 regulates YAP1-mediated transcription | 0.240895 | 0.618 |
R-HSA-141405 | Inhibition of the proteolytic activity of APC/C required for the onset of anapha... | 0.136149 | 0.866 |
R-HSA-4419969 | Depolymerization of the Nuclear Lamina | 0.157177 | 0.804 |
R-HSA-9834899 | Specification of the neural plate border | 0.167907 | 0.775 |
R-HSA-1433617 | Regulation of signaling by NODAL | 0.307552 | 0.512 |
R-HSA-450321 | JNK (c-Jun kinases) phosphorylation and activation mediated by activated human ... | 0.189712 | 0.722 |
R-HSA-9706019 | RHOBTB3 ATPase cycle | 0.348711 | 0.458 |
R-HSA-6794362 | Protein-protein interactions at synapses | 0.068742 | 1.163 |
R-HSA-442720 | CREB1 phosphorylation through the activation of Adenylate Cyclase | 0.405917 | 0.392 |
R-HSA-9687139 | Aberrant regulation of mitotic cell cycle due to RB1 defects | 0.301801 | 0.520 |
R-HSA-69481 | G2/M Checkpoints | 0.149018 | 0.827 |
R-HSA-3858494 | Beta-catenin independent WNT signaling | 0.192388 | 0.716 |
R-HSA-166058 | MyD88:MAL(TIRAP) cascade initiated on plasma membrane | 0.385254 | 0.414 |
R-HSA-168188 | Toll Like Receptor TLR6:TLR2 Cascade | 0.385254 | 0.414 |
R-HSA-168179 | Toll Like Receptor TLR1:TLR2 Cascade | 0.403243 | 0.394 |
R-HSA-110373 | Resolution of AP sites via the multiple-nucleotide patch replacement pathway | 0.256764 | 0.590 |
R-HSA-6794361 | Neurexins and neuroligins | 0.279203 | 0.554 |
R-HSA-9610379 | HCMV Late Events | 0.172231 | 0.764 |
R-HSA-181438 | Toll Like Receptor 2 (TLR2) Cascade | 0.403243 | 0.394 |
R-HSA-5693571 | Nonhomologous End-Joining (NHEJ) | 0.095026 | 1.022 |
R-HSA-2028269 | Signaling by Hippo | 0.146584 | 0.834 |
R-HSA-9842663 | Signaling by LTK | 0.387429 | 0.412 |
R-HSA-199991 | Membrane Trafficking | 0.314644 | 0.502 |
R-HSA-4641262 | Disassembly of the destruction complex and recruitment of AXIN to the membrane | 0.082019 | 1.086 |
R-HSA-392517 | Rap1 signalling | 0.167907 | 0.775 |
R-HSA-8934903 | Receptor Mediated Mitophagy | 0.328446 | 0.484 |
R-HSA-8863795 | Downregulation of ERBB2 signaling | 0.301801 | 0.520 |
R-HSA-168273 | Influenza Viral RNA Transcription and Replication | 0.281737 | 0.550 |
R-HSA-1839124 | FGFR1 mutant receptor activation | 0.335288 | 0.475 |
R-HSA-937061 | TRIF (TICAM1)-mediated TLR4 signaling | 0.319366 | 0.496 |
R-HSA-3371556 | Cellular response to heat stress | 0.124122 | 0.906 |
R-HSA-5689880 | Ub-specific processing proteases | 0.374015 | 0.427 |
R-HSA-202403 | TCR signaling | 0.174257 | 0.759 |
R-HSA-6804756 | Regulation of TP53 Activity through Phosphorylation | 0.332209 | 0.479 |
R-HSA-166166 | MyD88-independent TLR4 cascade | 0.319366 | 0.496 |
R-HSA-168164 | Toll Like Receptor 3 (TLR3) Cascade | 0.289831 | 0.538 |
R-HSA-9675135 | Diseases of DNA repair | 0.230332 | 0.638 |
R-HSA-9706374 | FLT3 signaling through SRC family kinases | 0.167837 | 0.775 |
R-HSA-427652 | Sodium-coupled phosphate cotransporters | 0.217283 | 0.663 |
R-HSA-199920 | CREB phosphorylation | 0.240895 | 0.618 |
R-HSA-8948747 | Regulation of PTEN localization | 0.263797 | 0.579 |
R-HSA-8849469 | PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 | 0.286009 | 0.544 |
R-HSA-425986 | Sodium/Proton exchangers | 0.286009 | 0.544 |
R-HSA-198693 | AKT phosphorylates targets in the nucleus | 0.307552 | 0.512 |
R-HSA-1181150 | Signaling by NODAL | 0.178758 | 0.748 |
R-HSA-425381 | Bicarbonate transporters | 0.348711 | 0.458 |
R-HSA-428540 | Activation of RAC1 | 0.368366 | 0.434 |
R-HSA-8951936 | RUNX3 regulates p14-ARF | 0.387429 | 0.412 |
R-HSA-9796292 | Formation of axial mesoderm | 0.405917 | 0.392 |
R-HSA-69473 | G2/M DNA damage checkpoint | 0.244394 | 0.612 |
R-HSA-8875878 | MET promotes cell motility | 0.400626 | 0.397 |
R-HSA-69275 | G2/M Transition | 0.294167 | 0.531 |
R-HSA-453274 | Mitotic G2-G2/M phases | 0.303007 | 0.519 |
R-HSA-373755 | Semaphorin interactions | 0.370327 | 0.431 |
R-HSA-168643 | Nucleotide-binding domain, leucine rich repeat containing receptor (NLR) signali... | 0.378564 | 0.422 |
R-HSA-2173793 | Transcriptional activity of SMAD2/SMAD3:SMAD4 heterotrimer | 0.312310 | 0.505 |
R-HSA-2559583 | Cellular Senescence | 0.161190 | 0.793 |
R-HSA-6811442 | Intra-Golgi and retrograde Golgi-to-ER traffic | 0.357087 | 0.447 |
R-HSA-430116 | GP1b-IX-V activation signalling | 0.307552 | 0.512 |
R-HSA-9662834 | CD163 mediating an anti-inflammatory response | 0.348711 | 0.458 |
R-HSA-9617629 | Regulation of FOXO transcriptional activity by acetylation | 0.387429 | 0.412 |
R-HSA-9824585 | Regulation of MITF-M-dependent genes involved in pigmentation | 0.081642 | 1.088 |
R-HSA-9645723 | Diseases of programmed cell death | 0.179152 | 0.747 |
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 0.170482 | 0.768 |
R-HSA-9762293 | Regulation of CDH11 gene transcription | 0.307552 | 0.512 |
R-HSA-8940973 | RUNX2 regulates osteoblast differentiation | 0.279308 | 0.554 |
R-HSA-373760 | L1CAM interactions | 0.367240 | 0.435 |
R-HSA-9764302 | Regulation of CDH19 Expression and Function | 0.217283 | 0.663 |
R-HSA-9613354 | Lipophagy | 0.307552 | 0.512 |
R-HSA-450302 | activated TAK1 mediates p38 MAPK activation | 0.200753 | 0.697 |
R-HSA-9645460 | Alpha-protein kinase 1 signaling pathway | 0.348711 | 0.458 |
R-HSA-9931509 | Expression of BMAL (ARNTL), CLOCK, and NPAS2 | 0.168308 | 0.774 |
R-HSA-199418 | Negative regulation of the PI3K/AKT network | 0.080744 | 1.093 |
R-HSA-4839726 | Chromatin organization | 0.074101 | 1.130 |
R-HSA-9675108 | Nervous system development | 0.389462 | 0.410 |
R-HSA-450282 | MAPK targets/ Nuclear events mediated by MAP kinases | 0.290566 | 0.537 |
R-HSA-73884 | Base Excision Repair | 0.359717 | 0.444 |
R-HSA-9619665 | EGR2 and SOX10-mediated initiation of Schwann cell myelination | 0.125682 | 0.901 |
R-HSA-9909648 | Regulation of PD-L1(CD274) expression | 0.234386 | 0.630 |
R-HSA-3247509 | Chromatin modifying enzymes | 0.094763 | 1.023 |
R-HSA-5578768 | Physiological factors | 0.105990 | 0.975 |
R-HSA-388844 | Receptor-type tyrosine-protein phosphatases | 0.125891 | 0.900 |
R-HSA-1362277 | Transcription of E2F targets under negative control by DREAM complex | 0.178758 | 0.748 |
R-HSA-9818030 | NFE2L2 regulating tumorigenic genes | 0.405917 | 0.392 |
R-HSA-389948 | Co-inhibition by PD-1 | 0.357087 | 0.447 |
R-HSA-450294 | MAP kinase activation | 0.163356 | 0.787 |
R-HSA-8941326 | RUNX2 regulates bone development | 0.379148 | 0.421 |
R-HSA-9823730 | Formation of definitive endoderm | 0.178758 | 0.748 |
R-HSA-168181 | Toll Like Receptor 7/8 (TLR7/8) Cascade | 0.337261 | 0.472 |
R-HSA-168138 | Toll Like Receptor 9 (TLR9) Cascade | 0.355234 | 0.449 |
R-HSA-8878166 | Transcriptional regulation by RUNX2 | 0.225584 | 0.647 |
R-HSA-166520 | Signaling by NTRKs | 0.072554 | 1.139 |
R-HSA-69273 | Cyclin A/B1/B2 associated events during G2/M transition | 0.119003 | 0.924 |
R-HSA-9764790 | Positive Regulation of CDH1 Gene Transcription | 0.328446 | 0.484 |
R-HSA-210990 | PECAM1 interactions | 0.348711 | 0.458 |
R-HSA-9764560 | Regulation of CDH1 Gene Transcription | 0.218463 | 0.661 |
R-HSA-448424 | Interleukin-17 signaling | 0.218463 | 0.661 |
R-HSA-9764725 | Negative Regulation of CDH1 Gene Transcription | 0.345512 | 0.462 |
R-HSA-1483249 | Inositol phosphate metabolism | 0.089752 | 1.047 |
R-HSA-9679191 | Potential therapeutics for SARS | 0.258392 | 0.588 |
R-HSA-168255 | Influenza Infection | 0.263768 | 0.579 |
R-HSA-156711 | Polo-like kinase mediated events | 0.157177 | 0.804 |
R-HSA-110357 | Displacement of DNA glycosylase by APEX1 | 0.263797 | 0.579 |
R-HSA-9634285 | Constitutive Signaling by Overexpressed ERBB2 | 0.387429 | 0.412 |
R-HSA-6807070 | PTEN Regulation | 0.110019 | 0.959 |
R-HSA-6803204 | TP53 Regulates Transcription of Genes Involved in Cytochrome C Release | 0.268037 | 0.572 |
R-HSA-9730414 | MITF-M-regulated melanocyte development | 0.106690 | 0.972 |
R-HSA-3214842 | HDMs demethylate histones | 0.245498 | 0.610 |
R-HSA-209543 | p75NTR recruits signalling complexes | 0.387429 | 0.412 |
R-HSA-9020558 | Interleukin-2 signaling | 0.348711 | 0.458 |
R-HSA-9006936 | Signaling by TGFB family members | 0.305574 | 0.515 |
R-HSA-351906 | Apoptotic cleavage of cell adhesion proteins | 0.286009 | 0.544 |
R-HSA-6804759 | Regulation of TP53 Activity through Association with Co-factors | 0.405917 | 0.392 |
R-HSA-9958790 | SLC-mediated transport of inorganic anions | 0.400626 | 0.397 |
R-HSA-9725371 | Nuclear events stimulated by ALK signaling in cancer | 0.095026 | 1.022 |
R-HSA-162906 | HIV Infection | 0.229438 | 0.639 |
R-HSA-9013508 | NOTCH3 Intracellular Domain Regulates Transcription | 0.301801 | 0.520 |
R-HSA-70171 | Glycolysis | 0.128544 | 0.891 |
R-HSA-9705671 | SARS-CoV-2 activates/modulates innate and adaptive immune responses | 0.121932 | 0.914 |
R-HSA-8853659 | RET signaling | 0.379148 | 0.421 |
R-HSA-9707616 | Heme signaling | 0.362071 | 0.441 |
R-HSA-109581 | Apoptosis | 0.190807 | 0.719 |
R-HSA-73943 | Reversal of alkylation damage by DNA dioxygenases | 0.387429 | 0.412 |
R-HSA-446652 | Interleukin-1 family signaling | 0.267664 | 0.572 |
R-HSA-1538133 | G0 and Early G1 | 0.324171 | 0.489 |
R-HSA-5357801 | Programmed Cell Death | 0.156915 | 0.804 |
R-HSA-72306 | tRNA processing | 0.226210 | 0.645 |
R-HSA-5619102 | SLC transporter disorders | 0.118832 | 0.925 |
R-HSA-5619115 | Disorders of transmembrane transporters | 0.304346 | 0.517 |
R-HSA-9768919 | NPAS4 regulates expression of target genes | 0.357353 | 0.447 |
R-HSA-162599 | Late Phase of HIV Life Cycle | 0.121932 | 0.914 |
R-HSA-70326 | Glucose metabolism | 0.215896 | 0.666 |
R-HSA-9682706 | Replication of the SARS-CoV-1 genome | 0.405917 | 0.392 |
R-HSA-9679506 | SARS-CoV Infections | 0.314861 | 0.502 |
R-HSA-1266695 | Interleukin-7 signaling | 0.245498 | 0.610 |
R-HSA-982772 | Growth hormone receptor signaling | 0.223037 | 0.652 |
R-HSA-162587 | HIV Life Cycle | 0.172231 | 0.764 |
R-HSA-211000 | Gene Silencing by RNA | 0.161178 | 0.793 |
R-HSA-2132295 | MHC class II antigen presentation | 0.409228 | 0.388 |
R-HSA-9856651 | MITF-M-dependent gene expression | 0.409313 | 0.388 |
R-HSA-8953750 | Transcriptional Regulation by E2F6 | 0.411234 | 0.386 |
R-HSA-381771 | Synthesis, secretion, and inactivation of Glucagon-like Peptide-1 (GLP-1) | 0.411234 | 0.386 |
R-HSA-212436 | Generic Transcription Pathway | 0.411760 | 0.385 |
R-HSA-1280215 | Cytokine Signaling in Immune system | 0.420910 | 0.376 |
R-HSA-9604323 | Negative regulation of NOTCH4 signaling | 0.421748 | 0.375 |
R-HSA-202433 | Generation of second messenger molecules | 0.421748 | 0.375 |
R-HSA-69166 | Removal of the Flap Intermediate | 0.423849 | 0.373 |
R-HSA-177504 | Retrograde neurotrophin signalling | 0.423849 | 0.373 |
R-HSA-8847993 | ERBB2 Activates PTK6 Signaling | 0.423849 | 0.373 |
R-HSA-975163 | IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation | 0.423849 | 0.373 |
R-HSA-9933939 | Formation of the polybromo-BAF (pBAF) complex | 0.423849 | 0.373 |
R-HSA-9679514 | SARS-CoV-1 Genome Replication and Transcription | 0.423849 | 0.373 |
R-HSA-69306 | DNA Replication | 0.425459 | 0.371 |
R-HSA-69202 | Cyclin E associated events during G1/S transition | 0.427400 | 0.369 |
R-HSA-975871 | MyD88 cascade initiated on plasma membrane | 0.428091 | 0.368 |
R-HSA-168142 | Toll Like Receptor 10 (TLR10) Cascade | 0.428091 | 0.368 |
R-HSA-168176 | Toll Like Receptor 5 (TLR5) Cascade | 0.428091 | 0.368 |
R-HSA-1169410 | Antiviral mechanism by IFN-stimulated genes | 0.430829 | 0.366 |
R-HSA-174143 | APC/C-mediated degradation of cell cycle proteins | 0.435416 | 0.361 |
R-HSA-453276 | Regulation of mitotic cell cycle | 0.435416 | 0.361 |
R-HSA-427413 | NoRC negatively regulates rRNA expression | 0.435416 | 0.361 |
R-HSA-5620920 | Cargo trafficking to the periciliary membrane | 0.435416 | 0.361 |
R-HSA-9027284 | Erythropoietin activates RAS | 0.441241 | 0.355 |
R-HSA-180336 | SHC1 events in EGFR signaling | 0.441241 | 0.355 |
R-HSA-6785631 | ERBB2 Regulates Cell Motility | 0.441241 | 0.355 |
R-HSA-69183 | Processive synthesis on the lagging strand | 0.441241 | 0.355 |
R-HSA-399954 | Sema3A PAK dependent Axon repulsion | 0.441241 | 0.355 |
R-HSA-937072 | TRAF6-mediated induction of TAK1 complex within TLR4 complex | 0.441241 | 0.355 |
R-HSA-9933946 | Formation of the embryonic stem cell BAF (esBAF) complex | 0.441241 | 0.355 |
R-HSA-446353 | Cell-extracellular matrix interactions | 0.441241 | 0.355 |
R-HSA-450513 | Tristetraprolin (TTP, ZFP36) binds and destabilizes mRNA | 0.441241 | 0.355 |
R-HSA-419408 | Lysosphingolipid and LPA receptors | 0.441241 | 0.355 |
R-HSA-450385 | Butyrate Response Factor 1 (BRF1) binds and destabilizes mRNA | 0.441241 | 0.355 |
R-HSA-9735871 | SARS-CoV-1 targets host intracellular signalling and regulatory pathways | 0.441241 | 0.355 |
R-HSA-416700 | Other semaphorin interactions | 0.441241 | 0.355 |
R-HSA-193639 | p75NTR signals via NF-kB | 0.441241 | 0.355 |
R-HSA-73942 | DNA Damage Reversal | 0.441241 | 0.355 |
R-HSA-5610787 | Hedgehog 'off' state | 0.441575 | 0.355 |
R-HSA-174417 | Telomere C-strand (Lagging Strand) Synthesis | 0.442482 | 0.354 |
R-HSA-5610780 | Degradation of GLI1 by the proteasome | 0.442482 | 0.354 |
R-HSA-5655302 | Signaling by FGFR1 in disease | 0.442482 | 0.354 |
R-HSA-199992 | trans-Golgi Network Vesicle Budding | 0.443389 | 0.353 |
R-HSA-69656 | Cyclin A:Cdk2-associated events at S phase entry | 0.443389 | 0.353 |
R-HSA-380270 | Recruitment of mitotic centrosome proteins and complexes | 0.451319 | 0.346 |
R-HSA-69052 | Switching of origins to a post-replicative state | 0.451319 | 0.346 |
R-HSA-73762 | RNA Polymerase I Transcription Initiation | 0.452693 | 0.344 |
R-HSA-512988 | Interleukin-3, Interleukin-5 and GM-CSF signaling | 0.452693 | 0.344 |
R-HSA-400508 | Incretin synthesis, secretion, and inactivation | 0.452693 | 0.344 |
R-HSA-2559580 | Oxidative Stress Induced Senescence | 0.454963 | 0.342 |
R-HSA-877300 | Interferon gamma signaling | 0.457536 | 0.340 |
R-HSA-450604 | KSRP (KHSRP) binds and destabilizes mRNA | 0.458108 | 0.339 |
R-HSA-354194 | GRB2:SOS provides linkage to MAPK signaling for Integrins | 0.458108 | 0.339 |
R-HSA-399955 | SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion | 0.458108 | 0.339 |
R-HSA-5099900 | WNT5A-dependent internalization of FZD4 | 0.458108 | 0.339 |
R-HSA-9942503 | Differentiation of naive CD+ T cells to T helper 1 cells (Th1 cells) | 0.458108 | 0.339 |
R-HSA-9945266 | Differentiation of T cells | 0.458108 | 0.339 |
R-HSA-168898 | Toll-like Receptor Cascades | 0.462749 | 0.335 |
R-HSA-1433557 | Signaling by SCF-KIT | 0.462798 | 0.335 |
R-HSA-5633007 | Regulation of TP53 Activity | 0.462843 | 0.335 |
R-HSA-8953854 | Metabolism of RNA | 0.464646 | 0.333 |
R-HSA-913531 | Interferon Signaling | 0.466646 | 0.331 |
R-HSA-380287 | Centrosome maturation | 0.467036 | 0.331 |
R-HSA-6781827 | Transcription-Coupled Nucleotide Excision Repair (TC-NER) | 0.467036 | 0.331 |
R-HSA-388841 | Regulation of T cell activation by CD28 family | 0.470525 | 0.327 |
R-HSA-373752 | Netrin-1 signaling | 0.472792 | 0.325 |
R-HSA-9931521 | The CRY:PER:kinase complex represses transactivation by the BMAL:CLOCK (ARNTL:CL... | 0.474468 | 0.324 |
R-HSA-936964 | Activation of IRF3, IRF7 mediated by TBK1, IKKε (IKBKE) | 0.474468 | 0.324 |
R-HSA-1963640 | GRB2 events in ERBB2 signaling | 0.474468 | 0.324 |
R-HSA-6787450 | tRNA modification in the mitochondrion | 0.474468 | 0.324 |
R-HSA-212165 | Epigenetic regulation of gene expression | 0.480062 | 0.319 |
R-HSA-69601 | Ubiquitin-Mediated Degradation of Phosphorylated Cdc25A | 0.482673 | 0.316 |
R-HSA-69613 | p53-Independent G1/S DNA Damage Checkpoint | 0.482673 | 0.316 |
R-HSA-606279 | Deposition of new CENPA-containing nucleosomes at the centromere | 0.482673 | 0.316 |
R-HSA-774815 | Nucleosome assembly | 0.482673 | 0.316 |
R-HSA-76009 | Platelet Aggregation (Plug Formation) | 0.482673 | 0.316 |
R-HSA-9824272 | Somitogenesis | 0.482673 | 0.316 |
R-HSA-9705683 | SARS-CoV-2-host interactions | 0.489554 | 0.310 |
R-HSA-4086400 | PCP/CE pathway | 0.490227 | 0.310 |
R-HSA-174437 | Removal of the Flap Intermediate from the C-strand | 0.490334 | 0.310 |
R-HSA-372708 | p130Cas linkage to MAPK signaling for integrins | 0.490334 | 0.310 |
R-HSA-5637812 | Signaling by EGFRvIII in Cancer | 0.490334 | 0.310 |
R-HSA-5637810 | Constitutive Signaling by EGFRvIII | 0.490334 | 0.310 |
R-HSA-4641263 | Regulation of FZD by ubiquitination | 0.490334 | 0.310 |
R-HSA-1963642 | PI3K events in ERBB2 signaling | 0.490334 | 0.310 |
R-HSA-164938 | Nef-mediates down modulation of cell surface receptors by recruiting them to cla... | 0.490334 | 0.310 |
R-HSA-3229121 | Glycogen storage diseases | 0.490334 | 0.310 |
R-HSA-9909505 | Modulation of host responses by IFN-stimulated genes | 0.490334 | 0.310 |
R-HSA-5358606 | Mismatch repair (MMR) directed by MSH2:MSH3 (MutSbeta) | 0.490334 | 0.310 |
R-HSA-5210891 | Uptake and function of anthrax toxins | 0.490334 | 0.310 |
R-HSA-9694686 | Replication of the SARS-CoV-2 genome | 0.490334 | 0.310 |
R-HSA-1655829 | Regulation of cholesterol biosynthesis by SREBP (SREBF) | 0.497847 | 0.303 |
R-HSA-975138 | TRAF6 mediated induction of NFkB and MAP kinases upon TLR7/8 or 9 activation | 0.500904 | 0.300 |
R-HSA-3928665 | EPH-ephrin mediated repulsion of cells | 0.502087 | 0.299 |
R-HSA-445989 | TAK1-dependent IKK and NF-kappa-B activation | 0.502087 | 0.299 |
R-HSA-5250941 | Negative epigenetic regulation of rRNA expression | 0.505410 | 0.296 |
R-HSA-9665348 | Signaling by ERBB2 ECD mutants | 0.505722 | 0.296 |
R-HSA-416993 | Trafficking of GluR2-containing AMPA receptors | 0.505722 | 0.296 |
R-HSA-8849932 | Synaptic adhesion-like molecules | 0.505722 | 0.296 |
R-HSA-163615 | PKA activation | 0.505722 | 0.296 |
R-HSA-164378 | PKA activation in glucagon signalling | 0.505722 | 0.296 |
R-HSA-9679504 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.505722 | 0.296 |
R-HSA-9648025 | EML4 and NUDC in mitotic spindle formation | 0.507332 | 0.295 |
R-HSA-975155 | MyD88 dependent cascade initiated on endosome | 0.507332 | 0.295 |
R-HSA-449147 | Signaling by Interleukins | 0.511310 | 0.291 |
R-HSA-2262752 | Cellular responses to stress | 0.511983 | 0.291 |
R-HSA-2151201 | Transcriptional activation of mitochondrial biogenesis | 0.512913 | 0.290 |
R-HSA-2559582 | Senescence-Associated Secretory Phenotype (SASP) | 0.520356 | 0.284 |
R-HSA-9709603 | Impaired BRCA2 binding to PALB2 | 0.520647 | 0.283 |
R-HSA-110320 | Translesion Synthesis by POLH | 0.520647 | 0.283 |
R-HSA-9754189 | Germ layer formation at gastrulation | 0.520647 | 0.283 |
R-HSA-881907 | Gastrin-CREB signalling pathway via PKC and MAPK | 0.520647 | 0.283 |
R-HSA-9913635 | Strand-asynchronous mitochondrial DNA replication | 0.520647 | 0.283 |
R-HSA-9694682 | SARS-CoV-2 Genome Replication and Transcription | 0.520647 | 0.283 |
R-HSA-9766229 | Degradation of CDH1 | 0.521026 | 0.283 |
R-HSA-109704 | PI3K Cascade | 0.530313 | 0.275 |
R-HSA-2565942 | Regulation of PLK1 Activity at G2/M Transition | 0.535053 | 0.272 |
R-HSA-5696399 | Global Genome Nucleotide Excision Repair (GG-NER) | 0.535053 | 0.272 |
R-HSA-9934037 | Formation of neuronal progenitor and neuronal BAF (npBAF and nBAF) | 0.535122 | 0.272 |
R-HSA-9701193 | Defective homologous recombination repair (HRR) due to PALB2 loss of function | 0.535122 | 0.272 |
R-HSA-9704646 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.535122 | 0.272 |
R-HSA-9704331 | Defective HDR through Homologous Recombination Repair (HRR) due to PALB2 loss of... | 0.535122 | 0.272 |
R-HSA-9701192 | Defective homologous recombination repair (HRR) due to BRCA1 loss of function | 0.535122 | 0.272 |
R-HSA-3322077 | Glycogen synthesis | 0.535122 | 0.272 |
R-HSA-389513 | Co-inhibition by CTLA4 | 0.535122 | 0.272 |
R-HSA-5620922 | BBSome-mediated cargo-targeting to cilium | 0.535122 | 0.272 |
R-HSA-416572 | Sema4D induced cell migration and growth-cone collapse | 0.535122 | 0.272 |
R-HSA-140875 | Common Pathway of Fibrin Clot Formation | 0.535122 | 0.272 |
R-HSA-5620916 | VxPx cargo-targeting to cilium | 0.535122 | 0.272 |
R-HSA-445144 | Signal transduction by L1 | 0.535122 | 0.272 |
R-HSA-9764265 | Regulation of CDH1 Expression and Function | 0.535420 | 0.271 |
R-HSA-9764274 | Regulation of Expression and Function of Type I Classical Cadherins | 0.535420 | 0.271 |
R-HSA-1169091 | Activation of NF-kappaB in B cells | 0.539477 | 0.268 |
R-HSA-156584 | Cytosolic sulfonation of small molecules | 0.539477 | 0.268 |
R-HSA-157118 | Signaling by NOTCH | 0.542540 | 0.266 |
R-HSA-9931269 | AMPK-induced ERAD and lysosome mediated degradation of PD-L1(CD274) | 0.548516 | 0.261 |
R-HSA-9634815 | Transcriptional Regulation by NPAS4 | 0.548516 | 0.261 |
R-HSA-5602498 | MyD88 deficiency (TLR2/4) | 0.549161 | 0.260 |
R-HSA-1236382 | Constitutive Signaling by Ligand-Responsive EGFR Cancer Variants | 0.549161 | 0.260 |
R-HSA-5637815 | Signaling by Ligand-Responsive EGFR Variants in Cancer | 0.549161 | 0.260 |
R-HSA-111931 | PKA-mediated phosphorylation of CREB | 0.549161 | 0.260 |
R-HSA-141444 | Amplification of signal from unattached kinetochores via a MAD2 inhibitory si... | 0.549493 | 0.260 |
R-HSA-141424 | Amplification of signal from the kinetochores | 0.549493 | 0.260 |
R-HSA-6807505 | RNA polymerase II transcribes snRNA genes | 0.556613 | 0.254 |
R-HSA-446728 | Cell junction organization | 0.561855 | 0.250 |
R-HSA-5603041 | IRAK4 deficiency (TLR2/4) | 0.562776 | 0.250 |
R-HSA-9617828 | FOXO-mediated transcription of cell cycle genes | 0.562776 | 0.250 |
R-HSA-9705462 | Inactivation of CSF3 (G-CSF) signaling | 0.562776 | 0.250 |
R-HSA-8876384 | Listeria monocytogenes entry into host cells | 0.562776 | 0.250 |
R-HSA-9034015 | Signaling by NTRK3 (TRKC) | 0.562776 | 0.250 |
R-HSA-9671555 | Signaling by PDGFR in disease | 0.562776 | 0.250 |
R-HSA-422475 | Axon guidance | 0.565786 | 0.247 |
R-HSA-1592230 | Mitochondrial biogenesis | 0.569406 | 0.245 |
R-HSA-76071 | RNA Polymerase III Transcription Initiation From Type 3 Promoter | 0.575981 | 0.240 |
R-HSA-8964038 | LDL clearance | 0.575981 | 0.240 |
R-HSA-6807062 | Cholesterol biosynthesis via lathosterol | 0.575981 | 0.240 |
R-HSA-9694676 | Translation of Replicase and Assembly of the Replication Transcription Complex | 0.575981 | 0.240 |
R-HSA-9694516 | SARS-CoV-2 Infection | 0.576805 | 0.239 |
R-HSA-5620912 | Anchoring of the basal body to the plasma membrane | 0.584408 | 0.233 |
R-HSA-202424 | Downstream TCR signaling | 0.584408 | 0.233 |
R-HSA-164952 | The role of Nef in HIV-1 replication and disease pathogenesis | 0.588788 | 0.230 |
R-HSA-5674400 | Constitutive Signaling by AKT1 E17K in Cancer | 0.588788 | 0.230 |
R-HSA-9755511 | KEAP1-NFE2L2 pathway | 0.590538 | 0.229 |
R-HSA-9764561 | Regulation of CDH1 Function | 0.591826 | 0.228 |
R-HSA-112399 | IRS-mediated signalling | 0.591826 | 0.228 |
R-HSA-2500257 | Resolution of Sister Chromatid Cohesion | 0.592988 | 0.227 |
R-HSA-1852241 | Organelle biogenesis and maintenance | 0.593911 | 0.226 |
R-HSA-6782135 | Dual incision in TC-NER | 0.600107 | 0.222 |
R-HSA-9772572 | Early SARS-CoV-2 Infection Events | 0.600107 | 0.222 |
R-HSA-202430 | Translocation of ZAP-70 to Immunological synapse | 0.601209 | 0.221 |
R-HSA-9665686 | Signaling by ERBB2 TMD/JMD mutants | 0.601209 | 0.221 |
R-HSA-5621575 | CD209 (DC-SIGN) signaling | 0.601209 | 0.221 |
R-HSA-180786 | Extension of Telomeres | 0.608262 | 0.216 |
R-HSA-429914 | Deadenylation-dependent mRNA decay | 0.608262 | 0.216 |
R-HSA-2022090 | Assembly of collagen fibrils and other multimeric structures | 0.608262 | 0.216 |
R-HSA-68867 | Assembly of the pre-replicative complex | 0.611069 | 0.214 |
R-HSA-5693554 | Resolution of D-loop Structures through Synthesis-Dependent Strand Annealing (SD... | 0.613256 | 0.212 |
R-HSA-9932444 | ATP-dependent chromatin remodelers | 0.613256 | 0.212 |
R-HSA-9932451 | SWI/SNF chromatin remodelers | 0.613256 | 0.212 |
R-HSA-1482801 | Acyl chain remodelling of PS | 0.613256 | 0.212 |
R-HSA-9830364 | Formation of the nephric duct | 0.613256 | 0.212 |
R-HSA-400685 | Sema4D in semaphorin signaling | 0.613256 | 0.212 |
R-HSA-5617833 | Cilium Assembly | 0.617411 | 0.209 |
R-HSA-9851695 | Epigenetic regulation of adipogenesis genes by MLL3 and MLL4 complexes | 0.621366 | 0.207 |
R-HSA-9841922 | MLL4 and MLL3 complexes regulate expression of PPARG target genes in adipogenesi... | 0.621366 | 0.207 |
R-HSA-9818564 | Epigenetic regulation of gene expression by MLL3 and MLL4 complexes | 0.621366 | 0.207 |
R-HSA-9793380 | Formation of paraxial mesoderm | 0.624190 | 0.205 |
R-HSA-8939902 | Regulation of RUNX2 expression and activity | 0.624190 | 0.205 |
R-HSA-1643713 | Signaling by EGFR in Cancer | 0.624940 | 0.204 |
R-HSA-2046105 | Linoleic acid (LA) metabolism | 0.624940 | 0.204 |
R-HSA-5689901 | Metalloprotease DUBs | 0.624940 | 0.204 |
R-HSA-2122948 | Activated NOTCH1 Transmits Signal to the Nucleus | 0.624940 | 0.204 |
R-HSA-6785807 | Interleukin-4 and Interleukin-13 signaling | 0.626510 | 0.203 |
R-HSA-3700989 | Transcriptional Regulation by TP53 | 0.627936 | 0.202 |
R-HSA-2559586 | DNA Damage/Telomere Stress Induced Senescence | 0.631964 | 0.199 |
R-HSA-174414 | Processive synthesis on the C-strand of the telomere | 0.636271 | 0.196 |
R-HSA-73863 | RNA Polymerase I Transcription Termination | 0.636271 | 0.196 |
R-HSA-3928663 | EPHA-mediated growth cone collapse | 0.636271 | 0.196 |
R-HSA-445095 | Interaction between L1 and Ankyrins | 0.636271 | 0.196 |
R-HSA-202427 | Phosphorylation of CD3 and TCR zeta chains | 0.636271 | 0.196 |
R-HSA-6807878 | COPI-mediated anterograde transport | 0.636563 | 0.196 |
R-HSA-5607764 | CLEC7A (Dectin-1) signaling | 0.636563 | 0.196 |
R-HSA-69615 | G1/S DNA Damage Checkpoints | 0.639613 | 0.194 |
R-HSA-8848021 | Signaling by PTK6 | 0.639613 | 0.194 |
R-HSA-9006927 | Signaling by Non-Receptor Tyrosine Kinases | 0.639613 | 0.194 |
R-HSA-8953897 | Cellular responses to stimuli | 0.640740 | 0.193 |
R-HSA-157579 | Telomere Maintenance | 0.642751 | 0.192 |
R-HSA-170834 | Signaling by TGF-beta Receptor Complex | 0.642751 | 0.192 |
R-HSA-1280218 | Adaptive Immune System | 0.644241 | 0.191 |
R-HSA-9759476 | Regulation of Homotypic Cell-Cell Adhesion | 0.644328 | 0.191 |
R-HSA-74751 | Insulin receptor signalling cascade | 0.647135 | 0.189 |
R-HSA-9619483 | Activation of AMPK downstream of NMDARs | 0.647260 | 0.189 |
R-HSA-380994 | ATF4 activates genes in response to endoplasmic reticulum stress | 0.647260 | 0.189 |
R-HSA-5620971 | Pyroptosis | 0.647260 | 0.189 |
R-HSA-1474165 | Reproduction | 0.653733 | 0.185 |
R-HSA-8950505 | Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulati... | 0.654533 | 0.184 |
R-HSA-9614085 | FOXO-mediated transcription | 0.654903 | 0.184 |
R-HSA-9006335 | Signaling by Erythropoietin | 0.657918 | 0.182 |
R-HSA-9664565 | Signaling by ERBB2 KD Mutants | 0.657918 | 0.182 |
R-HSA-9674555 | Signaling by CSF3 (G-CSF) | 0.657918 | 0.182 |
R-HSA-917729 | Endosomal Sorting Complex Required For Transport (ESCRT) | 0.657918 | 0.182 |
R-HSA-9615710 | Late endosomal microautophagy | 0.657918 | 0.182 |
R-HSA-180024 | DARPP-32 events | 0.657918 | 0.182 |
R-HSA-9020702 | Interleukin-1 signaling | 0.666757 | 0.176 |
R-HSA-380972 | Energy dependent regulation of mTOR by LKB1-AMPK | 0.668255 | 0.175 |
R-HSA-2424491 | DAP12 signaling | 0.668255 | 0.175 |
R-HSA-76046 | RNA Polymerase III Transcription Initiation | 0.668255 | 0.175 |
R-HSA-9933387 | RORA,B,C and NR1D1 (REV-ERBA) regulate gene expression | 0.668255 | 0.175 |
R-HSA-114452 | Activation of BH3-only proteins | 0.668255 | 0.175 |
R-HSA-8936459 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet fun... | 0.675985 | 0.170 |
R-HSA-5218859 | Regulated Necrosis | 0.675985 | 0.170 |
R-HSA-399719 | Trafficking of AMPA receptors | 0.678280 | 0.169 |
R-HSA-211733 | Regulation of activated PAK-2p34 by proteasome mediated degradation | 0.678280 | 0.169 |
R-HSA-9913351 | Formation of the dystrophin-glycoprotein complex (DGC) | 0.678280 | 0.169 |
R-HSA-9820960 | Respiratory syncytial virus (RSV) attachment and entry | 0.678280 | 0.169 |
R-HSA-936440 | Negative regulators of DDX58/IFIH1 signaling | 0.678280 | 0.169 |
R-HSA-350562 | Regulation of ornithine decarboxylase (ODC) | 0.688003 | 0.162 |
R-HSA-2173795 | Downregulation of SMAD2/3:SMAD4 transcriptional activity | 0.688003 | 0.162 |
R-HSA-1168372 | Downstream signaling events of B Cell Receptor (BCR) | 0.689676 | 0.161 |
R-HSA-5696398 | Nucleotide Excision Repair | 0.695083 | 0.158 |
R-HSA-5250913 | Positive epigenetic regulation of rRNA expression | 0.696342 | 0.157 |
R-HSA-5632684 | Hedgehog 'on' state | 0.696342 | 0.157 |
R-HSA-9668328 | Sealing of the nuclear envelope (NE) by ESCRT-III | 0.697432 | 0.156 |
R-HSA-5685938 | HDR through Single Strand Annealing (SSA) | 0.697432 | 0.156 |
R-HSA-5693568 | Resolution of D-loop Structures through Holliday Junction Intermediates | 0.697432 | 0.156 |
R-HSA-399721 | Glutamate binding, activation of AMPA receptors and synaptic plasticity | 0.697432 | 0.156 |
R-HSA-6804758 | Regulation of TP53 Activity through Acetylation | 0.697432 | 0.156 |
R-HSA-1855204 | Synthesis of IP3 and IP4 in the cytosol | 0.697432 | 0.156 |
R-HSA-9733709 | Cardiogenesis | 0.697432 | 0.156 |
R-HSA-9930044 | Nuclear RNA decay | 0.697432 | 0.156 |
R-HSA-5675482 | Regulation of necroptotic cell death | 0.697432 | 0.156 |
R-HSA-5358351 | Signaling by Hedgehog | 0.698708 | 0.156 |
R-HSA-1500931 | Cell-Cell communication | 0.701087 | 0.154 |
R-HSA-381119 | Unfolded Protein Response (UPR) | 0.703437 | 0.153 |
R-HSA-390522 | Striated Muscle Contraction | 0.706577 | 0.151 |
R-HSA-5693537 | Resolution of D-Loop Structures | 0.706577 | 0.151 |
R-HSA-390471 | Association of TriC/CCT with target proteins during biosynthesis | 0.706577 | 0.151 |
R-HSA-9768727 | Regulation of CDH1 posttranslational processing and trafficking to plasma membra... | 0.706577 | 0.151 |
R-HSA-1482788 | Acyl chain remodelling of PC | 0.706577 | 0.151 |
R-HSA-180534 | Vpu mediated degradation of CD4 | 0.706577 | 0.151 |
R-HSA-163359 | Glucagon signaling in metabolic regulation | 0.706577 | 0.151 |
R-HSA-9818027 | NFE2L2 regulating anti-oxidant/detoxification enzymes | 0.706577 | 0.151 |
R-HSA-5223345 | Miscellaneous transport and binding events | 0.706577 | 0.151 |
R-HSA-1445148 | Translocation of SLC2A4 (GLUT4) to the plasma membrane | 0.709317 | 0.149 |
R-HSA-1632852 | Macroautophagy | 0.712734 | 0.147 |
R-HSA-5653656 | Vesicle-mediated transport | 0.714552 | 0.146 |
R-HSA-9680350 | Signaling by CSF1 (M-CSF) in myeloid cells | 0.715446 | 0.145 |
R-HSA-75815 | Ubiquitin-dependent degradation of Cyclin D | 0.715446 | 0.145 |
R-HSA-349425 | Autodegradation of the E3 ubiquitin ligase COP1 | 0.715446 | 0.145 |
R-HSA-110328 | Recognition and association of DNA glycosylase with site containing an affected ... | 0.715446 | 0.145 |
R-HSA-5205647 | Mitophagy | 0.715446 | 0.145 |
R-HSA-5686938 | Regulation of TLR by endogenous ligand | 0.715446 | 0.145 |
R-HSA-1368108 | BMAL1:CLOCK,NPAS2 activates circadian expression | 0.715446 | 0.145 |
R-HSA-1236394 | Signaling by ERBB4 | 0.715629 | 0.145 |
R-HSA-1226099 | Signaling by FGFR in disease | 0.715629 | 0.145 |
R-HSA-9013694 | Signaling by NOTCH4 | 0.715629 | 0.145 |
R-HSA-69002 | DNA Replication Pre-Initiation | 0.716407 | 0.145 |
R-HSA-5633008 | TP53 Regulates Transcription of Cell Death Genes | 0.721826 | 0.142 |
R-HSA-8854050 | FBXL7 down-regulates AURKA during mitotic entry and in early mitosis | 0.724048 | 0.140 |
R-HSA-174113 | SCF-beta-TrCP mediated degradation of Emi1 | 0.724048 | 0.140 |
R-HSA-1482839 | Acyl chain remodelling of PE | 0.724048 | 0.140 |
R-HSA-169911 | Regulation of Apoptosis | 0.724048 | 0.140 |
R-HSA-2559585 | Oncogene Induced Senescence | 0.724048 | 0.140 |
R-HSA-2408508 | Metabolism of ingested SeMet, Sec, MeSec into H2Se | 0.724048 | 0.140 |
R-HSA-5689603 | UCH proteinases | 0.727909 | 0.138 |
R-HSA-73854 | RNA Polymerase I Promoter Clearance | 0.727909 | 0.138 |
R-HSA-9020591 | Interleukin-12 signaling | 0.727909 | 0.138 |
R-HSA-432720 | Lysosome Vesicle Biogenesis | 0.732390 | 0.135 |
R-HSA-114604 | GPVI-mediated activation cascade | 0.732390 | 0.135 |
R-HSA-180585 | Vif-mediated degradation of APOBEC3G | 0.732390 | 0.135 |
R-HSA-74158 | RNA Polymerase III Transcription | 0.732390 | 0.135 |
R-HSA-749476 | RNA Polymerase III Abortive And Retractive Initiation | 0.732390 | 0.135 |
R-HSA-3371511 | HSF1 activation | 0.732390 | 0.135 |
R-HSA-111933 | Calmodulin induced events | 0.732390 | 0.135 |
R-HSA-111997 | CaM pathway | 0.732390 | 0.135 |
R-HSA-140877 | Formation of Fibrin Clot (Clotting Cascade) | 0.732390 | 0.135 |
R-HSA-69205 | G1/S-Specific Transcription | 0.732390 | 0.135 |
R-HSA-418990 | Adherens junctions interactions | 0.736369 | 0.133 |
R-HSA-383280 | Nuclear Receptor transcription pathway | 0.739736 | 0.131 |
R-HSA-73864 | RNA Polymerase I Transcription | 0.739736 | 0.131 |
R-HSA-191273 | Cholesterol biosynthesis | 0.739736 | 0.131 |
R-HSA-933541 | TRAF6 mediated IRF7 activation | 0.740480 | 0.130 |
R-HSA-4641258 | Degradation of DVL | 0.740480 | 0.130 |
R-HSA-4641257 | Degradation of AXIN | 0.740480 | 0.130 |
R-HSA-9762114 | GSK3B and BTRC:CUL1-mediated-degradation of NFE2L2 | 0.740480 | 0.130 |
R-HSA-549127 | SLC-mediated transport of organic cations | 0.740480 | 0.130 |
R-HSA-196757 | Metabolism of folate and pterines | 0.740480 | 0.130 |
R-HSA-9925561 | Developmental Lineage of Pancreatic Acinar Cells | 0.745484 | 0.128 |
R-HSA-2046106 | alpha-linolenic acid (ALA) metabolism | 0.748326 | 0.126 |
R-HSA-5213460 | RIPK1-mediated regulated necrosis | 0.748326 | 0.126 |
R-HSA-9856530 | High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR... | 0.751122 | 0.124 |
R-HSA-6806834 | Signaling by MET | 0.751122 | 0.124 |
R-HSA-9758941 | Gastrulation | 0.751925 | 0.124 |
R-HSA-4420097 | VEGFA-VEGFR2 Pathway | 0.755564 | 0.122 |
R-HSA-9725554 | Differentiation of Keratinocytes in Interfollicular Epidermis in Mammalian Skin | 0.755936 | 0.122 |
R-HSA-9929356 | GSK3B-mediated proteasomal degradation of PD-L1(CD274) | 0.755936 | 0.122 |
R-HSA-1236978 | Cross-presentation of soluble exogenous antigens (endosomes) | 0.755936 | 0.122 |
R-HSA-8964043 | Plasma lipoprotein clearance | 0.755936 | 0.122 |
R-HSA-69541 | Stabilization of p53 | 0.755936 | 0.122 |
R-HSA-201556 | Signaling by ALK | 0.755936 | 0.122 |
R-HSA-9670095 | Inhibition of DNA recombination at telomere | 0.763316 | 0.117 |
R-HSA-3371568 | Attenuation phase | 0.763316 | 0.117 |
R-HSA-427389 | ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 0.763316 | 0.117 |
R-HSA-9843743 | Transcriptional regulation of brown and beige adipocyte differentiation | 0.763316 | 0.117 |
R-HSA-9844594 | Transcriptional regulation of brown and beige adipocyte differentiation by EBF2 | 0.763316 | 0.117 |
R-HSA-8982491 | Glycogen metabolism | 0.763316 | 0.117 |
R-HSA-5602358 | Diseases associated with the TLR signaling cascade | 0.763316 | 0.117 |
R-HSA-5260271 | Diseases of Immune System | 0.763316 | 0.117 |
R-HSA-1251985 | Nuclear signaling by ERBB4 | 0.763316 | 0.117 |
R-HSA-8941858 | Regulation of RUNX3 expression and activity | 0.763316 | 0.117 |
R-HSA-451927 | Interleukin-2 family signaling | 0.763316 | 0.117 |
R-HSA-9820448 | Developmental Cell Lineages of the Exocrine Pancreas | 0.764040 | 0.117 |
R-HSA-9929491 | SPOP-mediated proteasomal degradation of PD-L1(CD274) | 0.770473 | 0.113 |
R-HSA-5362768 | Hh mutants are degraded by ERAD | 0.770473 | 0.113 |
R-HSA-73817 | Purine ribonucleoside monophosphate biosynthesis | 0.770473 | 0.113 |
R-HSA-5676590 | NIK-->noncanonical NF-kB signaling | 0.770473 | 0.113 |
R-HSA-9821002 | Chromatin modifications during the maternal to zygotic transition (MZT) | 0.770473 | 0.113 |
R-HSA-9694548 | Maturation of spike protein | 0.770473 | 0.113 |
R-HSA-5218920 | VEGFR2 mediated vascular permeability | 0.770473 | 0.113 |
R-HSA-9615017 | FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes | 0.777414 | 0.109 |
R-HSA-9932298 | Degradation of CRY and PER proteins | 0.777414 | 0.109 |
R-HSA-6811438 | Intra-Golgi traffic | 0.777414 | 0.109 |
R-HSA-5610783 | Degradation of GLI2 by the proteasome | 0.777414 | 0.109 |
R-HSA-5610785 | GLI3 is processed to GLI3R by the proteasome | 0.777414 | 0.109 |
R-HSA-442660 | SLC-mediated transport of neurotransmitters | 0.777414 | 0.109 |
R-HSA-9612973 | Autophagy | 0.779471 | 0.108 |
R-HSA-9759194 | Nuclear events mediated by NFE2L2 | 0.781984 | 0.107 |
R-HSA-9909615 | Regulation of PD-L1(CD274) Post-translational modification | 0.782738 | 0.106 |
R-HSA-8876198 | RAB GEFs exchange GTP for GDP on RABs | 0.782738 | 0.106 |
R-HSA-165159 | MTOR signalling | 0.784146 | 0.106 |
R-HSA-110329 | Cleavage of the damaged pyrimidine | 0.784146 | 0.106 |
R-HSA-73928 | Depyrimidination | 0.784146 | 0.106 |
R-HSA-381676 | Glucagon-like Peptide-1 (GLP1) regulates insulin secretion | 0.784146 | 0.106 |
R-HSA-111996 | Ca-dependent events | 0.784146 | 0.106 |
R-HSA-381038 | XBP1(S) activates chaperone genes | 0.787651 | 0.104 |
R-HSA-5387390 | Hh mutants abrogate ligand secretion | 0.790674 | 0.102 |
R-HSA-75876 | Synthesis of very long-chain fatty acyl-CoAs | 0.790674 | 0.102 |
R-HSA-8854214 | TBC/RABGAPs | 0.790674 | 0.102 |
R-HSA-438064 | Post NMDA receptor activation events | 0.792467 | 0.101 |
R-HSA-447115 | Interleukin-12 family signaling | 0.792467 | 0.101 |
R-HSA-2172127 | DAP12 interactions | 0.797006 | 0.099 |
R-HSA-9907900 | Proteasome assembly | 0.797006 | 0.099 |
R-HSA-187577 | SCF(Skp2)-mediated degradation of p27/p21 | 0.797006 | 0.099 |
R-HSA-375280 | Amine ligand-binding receptors | 0.797006 | 0.099 |
R-HSA-9663891 | Selective autophagy | 0.797185 | 0.098 |
R-HSA-1236974 | ER-Phagosome pathway | 0.801809 | 0.096 |
R-HSA-69206 | G1/S Transition | 0.802162 | 0.096 |
R-HSA-194138 | Signaling by VEGF | 0.802162 | 0.096 |
R-HSA-9660821 | ADORA2B mediated anti-inflammatory cytokines production | 0.803146 | 0.095 |
R-HSA-4608870 | Asymmetric localization of PCP proteins | 0.803146 | 0.095 |
R-HSA-432040 | Vasopressin regulates renal water homeostasis via Aquaporins | 0.803146 | 0.095 |
R-HSA-5678895 | Defective CFTR causes cystic fibrosis | 0.803146 | 0.095 |
R-HSA-5607761 | Dectin-1 mediated noncanonical NF-kB signaling | 0.803146 | 0.095 |
R-HSA-1489509 | DAG and IP3 signaling | 0.803146 | 0.095 |
R-HSA-9664323 | FCGR3A-mediated IL10 synthesis | 0.806005 | 0.094 |
R-HSA-72165 | mRNA Splicing - Minor Pathway | 0.809101 | 0.092 |
R-HSA-2299718 | Condensation of Prophase Chromosomes | 0.809101 | 0.092 |
R-HSA-2454202 | Fc epsilon receptor (FCERI) signaling | 0.809560 | 0.092 |
R-HSA-2046104 | alpha-linolenic (omega3) and linoleic (omega6) acid metabolism | 0.814876 | 0.089 |
R-HSA-381070 | IRE1alpha activates chaperones | 0.815123 | 0.089 |
R-HSA-983168 | Antigen processing: Ubiquitination & Proteasome degradation | 0.817274 | 0.088 |
R-HSA-156842 | Eukaryotic Translation Elongation | 0.819380 | 0.087 |
R-HSA-74752 | Signaling by Insulin receptor | 0.819380 | 0.087 |
R-HSA-9634597 | GPER1 signaling | 0.820477 | 0.086 |
R-HSA-389356 | Co-stimulation by CD28 | 0.820477 | 0.086 |
R-HSA-425410 | Metal ion SLC transporters | 0.820477 | 0.086 |
R-HSA-1266738 | Developmental Biology | 0.822833 | 0.085 |
R-HSA-2029481 | FCGR activation | 0.823550 | 0.084 |
R-HSA-69563 | p53-Dependent G1 DNA Damage Response | 0.825909 | 0.083 |
R-HSA-69580 | p53-Dependent G1/S DNA damage checkpoint | 0.825909 | 0.083 |
R-HSA-1474290 | Collagen formation | 0.827632 | 0.082 |
R-HSA-9843745 | Adipogenesis | 0.827762 | 0.082 |
R-HSA-5576891 | Cardiac conduction | 0.827762 | 0.082 |
R-HSA-9748787 | Azathioprine ADME | 0.831176 | 0.080 |
R-HSA-168928 | DDX58/IFIH1-mediated induction of interferon-alpha/beta | 0.831630 | 0.080 |
R-HSA-5621481 | C-type lectin receptors (CLRs) | 0.833326 | 0.079 |
R-HSA-9954709 | Ribosome Quality Control (RQC) complex extracts and degrades nascent peptide | 0.835544 | 0.078 |
R-HSA-3371571 | HSF1-dependent transactivation | 0.836285 | 0.078 |
R-HSA-912446 | Meiotic recombination | 0.836285 | 0.078 |
R-HSA-5358346 | Hedgehog ligand biogenesis | 0.836285 | 0.078 |
R-HSA-421270 | Cell-cell junction organization | 0.836743 | 0.077 |
R-HSA-397014 | Muscle contraction | 0.838140 | 0.077 |
R-HSA-9662851 | Anti-inflammatory response favouring Leishmania parasite infection | 0.839221 | 0.076 |
R-HSA-9664433 | Leishmania parasite growth and survival | 0.839221 | 0.076 |
R-HSA-381340 | Transcriptional regulation of white adipocyte differentiation | 0.839376 | 0.076 |
R-HSA-112382 | Formation of RNA Pol II elongation complex | 0.841239 | 0.075 |
R-HSA-73772 | RNA Polymerase I Promoter Escape | 0.841239 | 0.075 |
R-HSA-68949 | Orc1 removal from chromatin | 0.841239 | 0.075 |
R-HSA-9692916 | SARS-CoV-1 activates/modulates innate immune responses | 0.841239 | 0.075 |
R-HSA-5339562 | Uptake and actions of bacterial toxins | 0.841239 | 0.075 |
R-HSA-2029480 | Fcgamma receptor (FCGR) dependent phagocytosis | 0.842102 | 0.075 |
R-HSA-9678108 | SARS-CoV-1 Infection | 0.844940 | 0.073 |
R-HSA-5250924 | B-WICH complex positively regulates rRNA expression | 0.846044 | 0.073 |
R-HSA-75955 | RNA Polymerase II Transcription Elongation | 0.846044 | 0.073 |
R-HSA-9639288 | Amino acids regulate mTORC1 | 0.846044 | 0.073 |
R-HSA-445355 | Smooth Muscle Contraction | 0.846044 | 0.073 |
R-HSA-432722 | Golgi Associated Vesicle Biogenesis | 0.846044 | 0.073 |
R-HSA-8956320 | Nucleotide biosynthesis | 0.846044 | 0.073 |
R-HSA-8948751 | Regulation of PTEN stability and activity | 0.846044 | 0.073 |
R-HSA-3214847 | HATs acetylate histones | 0.850390 | 0.070 |
R-HSA-9820952 | Respiratory Syncytial Virus Infection Pathway | 0.850474 | 0.070 |
R-HSA-73929 | Base-Excision Repair, AP Site Formation | 0.850703 | 0.070 |
R-HSA-9664422 | FCGR3A-mediated phagocytosis | 0.859383 | 0.066 |
R-HSA-9664417 | Leishmania phagocytosis | 0.859383 | 0.066 |
R-HSA-9664407 | Parasite infection | 0.859383 | 0.066 |
R-HSA-5578775 | Ion homeostasis | 0.859604 | 0.066 |
R-HSA-109606 | Intrinsic Pathway for Apoptosis | 0.859604 | 0.066 |
R-HSA-442755 | Activation of NMDA receptors and postsynaptic events | 0.860714 | 0.065 |
R-HSA-8951664 | Neddylation | 0.860769 | 0.065 |
R-HSA-2029482 | Regulation of actin dynamics for phagocytic cup formation | 0.862247 | 0.064 |
R-HSA-5621480 | Dectin-2 family | 0.863854 | 0.064 |
R-HSA-1483166 | Synthesis of PA | 0.863854 | 0.064 |
R-HSA-9860931 | Response of endothelial cells to shear stress | 0.867230 | 0.062 |
R-HSA-9833110 | RSV-host interactions | 0.870382 | 0.060 |
R-HSA-352230 | Amino acid transport across the plasma membrane | 0.871973 | 0.059 |
R-HSA-9711123 | Cellular response to chemical stress | 0.875009 | 0.058 |
R-HSA-9845323 | Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) | 0.875849 | 0.058 |
R-HSA-8873719 | RAB geranylgeranylation | 0.875849 | 0.058 |
R-HSA-351202 | Metabolism of polyamines | 0.875849 | 0.058 |
R-HSA-1660661 | Sphingolipid de novo biosynthesis | 0.875849 | 0.058 |
R-HSA-9692914 | SARS-CoV-1-host interactions | 0.876481 | 0.057 |
R-HSA-453279 | Mitotic G1 phase and G1/S transition | 0.878382 | 0.056 |
R-HSA-1643685 | Disease | 0.878979 | 0.056 |
R-HSA-445717 | Aquaporin-mediated transport | 0.879608 | 0.056 |
R-HSA-112043 | PLC beta mediated events | 0.879608 | 0.056 |
R-HSA-9824446 | Viral Infection Pathways | 0.879827 | 0.056 |
R-HSA-199977 | ER to Golgi Anterograde Transport | 0.880902 | 0.055 |
R-HSA-1236975 | Antigen processing-Cross presentation | 0.882315 | 0.054 |
R-HSA-375165 | NCAM signaling for neurite out-growth | 0.883254 | 0.054 |
R-HSA-8852276 | The role of GTSE1 in G2/M progression after G2 checkpoint | 0.883254 | 0.054 |
R-HSA-186797 | Signaling by PDGF | 0.883254 | 0.054 |
R-HSA-1660499 | Synthesis of PIPs at the plasma membrane | 0.883254 | 0.054 |
R-HSA-936837 | Ion transport by P-type ATPases | 0.890217 | 0.051 |
R-HSA-927802 | Nonsense-Mediated Decay (NMD) | 0.893225 | 0.049 |
R-HSA-975957 | Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) | 0.893225 | 0.049 |
R-HSA-2871796 | FCERI mediated MAPK activation | 0.893225 | 0.049 |
R-HSA-6782315 | tRNA modification in the nucleus and cytosol | 0.896767 | 0.047 |
R-HSA-9855142 | Cellular responses to mechanical stimuli | 0.898321 | 0.047 |
R-HSA-1989781 | PPARA activates gene expression | 0.899444 | 0.046 |
R-HSA-112040 | G-protein mediated events | 0.899893 | 0.046 |
R-HSA-9830369 | Kidney development | 0.899893 | 0.046 |
R-HSA-9958863 | SLC-mediated transport of amino acids | 0.899893 | 0.046 |
R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | 0.903655 | 0.044 |
R-HSA-2871809 | FCERI mediated Ca+2 mobilization | 0.905542 | 0.043 |
R-HSA-983705 | Signaling by the B Cell Receptor (BCR) | 0.905700 | 0.043 |
R-HSA-9843940 | Regulation of endogenous retroelements by KRAB-ZFP proteins | 0.908718 | 0.042 |
R-HSA-1834949 | Cytosolic sensors of pathogen-associated DNA | 0.908718 | 0.042 |
R-HSA-75105 | Fatty acyl-CoA biosynthesis | 0.908718 | 0.042 |
R-HSA-9007101 | Rab regulation of trafficking | 0.910088 | 0.041 |
R-HSA-2980736 | Peptide hormone metabolism | 0.910088 | 0.041 |
R-HSA-5663084 | Diseases of carbohydrate metabolism | 0.916767 | 0.038 |
R-HSA-674695 | RNA Polymerase II Pre-transcription Events | 0.919289 | 0.037 |
R-HSA-3000171 | Non-integrin membrane-ECM interactions | 0.921735 | 0.035 |
R-HSA-1980143 | Signaling by NOTCH1 | 0.924107 | 0.034 |
R-HSA-9694635 | Translation of Structural Proteins | 0.926407 | 0.033 |
R-HSA-983169 | Class I MHC mediated antigen processing & presentation | 0.927929 | 0.032 |
R-HSA-216083 | Integrin cell surface interactions | 0.928637 | 0.032 |
R-HSA-5619084 | ABC transporter disorders | 0.928637 | 0.032 |
R-HSA-597592 | Post-translational protein modification | 0.931725 | 0.031 |
R-HSA-977225 | Amyloid fiber formation | 0.934932 | 0.029 |
R-HSA-5668541 | TNFR2 non-canonical NF-kB pathway | 0.938818 | 0.027 |
R-HSA-9707564 | Cytoprotection by HMOX1 | 0.938818 | 0.027 |
R-HSA-1614635 | Sulfur amino acid metabolism | 0.945908 | 0.024 |
R-HSA-390466 | Chaperonin-mediated protein folding | 0.947549 | 0.023 |
R-HSA-156902 | Peptide chain elongation | 0.949140 | 0.023 |
R-HSA-9948299 | Ribosome-associated quality control | 0.950806 | 0.022 |
R-HSA-373080 | Class B/2 (Secretin family receptors) | 0.952179 | 0.021 |
R-HSA-9824443 | Parasitic Infection Pathways | 0.953334 | 0.021 |
R-HSA-9658195 | Leishmania infection | 0.953334 | 0.021 |
R-HSA-9954714 | PELO:HBS1L and ABCE1 dissociate a ribosome on a non-stop mRNA | 0.953629 | 0.021 |
R-HSA-1912408 | Pre-NOTCH Transcription and Translation | 0.953629 | 0.021 |
R-HSA-975956 | Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) | 0.955036 | 0.020 |
R-HSA-174824 | Plasma lipoprotein assembly, remodeling, and clearance | 0.956400 | 0.019 |
R-HSA-391251 | Protein folding | 0.956400 | 0.019 |
R-HSA-9772573 | Late SARS-CoV-2 Infection Events | 0.956400 | 0.019 |
R-HSA-983695 | Antigen activates B Cell Receptor (BCR) leading to generation of second messenge... | 0.957723 | 0.019 |
R-HSA-2871837 | FCERI mediated NF-kB activation | 0.958885 | 0.018 |
R-HSA-9954716 | ZNF598 and the Ribosome-associated Quality Trigger (RQT) complex dissociate a ri... | 0.960250 | 0.018 |
R-HSA-72764 | Eukaryotic Translation Termination | 0.961456 | 0.017 |
R-HSA-72689 | Formation of a pool of free 40S subunits | 0.961456 | 0.017 |
R-HSA-2730905 | Role of LAT2/NTAL/LAB on calcium mobilization | 0.962626 | 0.017 |
R-HSA-112316 | Neuronal System | 0.964063 | 0.016 |
R-HSA-8957275 | Post-translational protein phosphorylation | 0.964860 | 0.016 |
R-HSA-422356 | Regulation of insulin secretion | 0.964860 | 0.016 |
R-HSA-948021 | Transport to the Golgi and subsequent modification | 0.965537 | 0.015 |
R-HSA-376176 | Signaling by ROBO receptors | 0.966326 | 0.015 |
R-HSA-9010553 | Regulation of expression of SLITs and ROBOs | 0.966563 | 0.015 |
R-HSA-382556 | ABC-family proteins mediated transport | 0.966961 | 0.015 |
R-HSA-2408557 | Selenocysteine synthesis | 0.967964 | 0.014 |
R-HSA-9842860 | Regulation of endogenous retroelements | 0.968937 | 0.014 |
R-HSA-1483255 | PI Metabolism | 0.968937 | 0.014 |
R-HSA-192823 | Viral mRNA Translation | 0.969880 | 0.013 |
R-HSA-9633012 | Response of EIF2AK4 (GCN2) to amino acid deficiency | 0.970795 | 0.013 |
R-HSA-111885 | Opioid Signalling | 0.970795 | 0.013 |
R-HSA-9711097 | Cellular response to starvation | 0.971397 | 0.013 |
R-HSA-5617472 | Activation of anterior HOX genes in hindbrain development during early embryogen... | 0.971682 | 0.012 |
R-HSA-5619507 | Activation of HOX genes during differentiation | 0.971682 | 0.012 |
R-HSA-163125 | Post-translational modification: synthesis of GPI-anchored proteins | 0.971682 | 0.012 |
R-HSA-425407 | SLC-mediated transmembrane transport | 0.972349 | 0.012 |
R-HSA-112314 | Neurotransmitter receptors and postsynaptic signal transmission | 0.973338 | 0.012 |
R-HSA-1799339 | SRP-dependent cotranslational protein targeting to membrane | 0.974184 | 0.011 |
R-HSA-416476 | G alpha (q) signalling events | 0.974618 | 0.011 |
R-HSA-72706 | GTP hydrolysis and joining of the 60S ribosomal subunit | 0.974968 | 0.011 |
R-HSA-156827 | L13a-mediated translational silencing of Ceruloplasmin expression | 0.974968 | 0.011 |
R-HSA-2672351 | Stimuli-sensing channels | 0.974968 | 0.011 |
R-HSA-2408522 | Selenoamino acid metabolism | 0.975554 | 0.011 |
R-HSA-6803157 | Antimicrobial peptides | 0.977181 | 0.010 |
R-HSA-1912422 | Pre-NOTCH Expression and Processing | 0.978546 | 0.009 |
R-HSA-6791226 | Major pathway of rRNA processing in the nucleolus and cytosol | 0.979668 | 0.009 |
R-HSA-381426 | Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-l... | 0.979830 | 0.009 |
R-HSA-5628897 | TP53 Regulates Metabolic Genes | 0.980443 | 0.009 |
R-HSA-168256 | Immune System | 0.980677 | 0.008 |
R-HSA-2029485 | Role of phospholipids in phagocytosis | 0.981038 | 0.008 |
R-HSA-72613 | Eukaryotic Translation Initiation | 0.981614 | 0.008 |
R-HSA-72737 | Cap-dependent Translation Initiation | 0.981614 | 0.008 |
R-HSA-9816359 | Maternal to zygotic transition (MZT) | 0.985187 | 0.006 |
R-HSA-6809371 | Formation of the cornified envelope | 0.985637 | 0.006 |
R-HSA-109582 | Hemostasis | 0.987122 | 0.006 |
R-HSA-114608 | Platelet degranulation | 0.987307 | 0.006 |
R-HSA-8868773 | rRNA processing in the nucleus and cytosol | 0.987403 | 0.006 |
R-HSA-983712 | Ion channel transport | 0.987736 | 0.005 |
R-HSA-76005 | Response to elevated platelet cytosolic Ca2+ | 0.989775 | 0.004 |
R-HSA-71387 | Metabolism of carbohydrates and carbohydrate derivatives | 0.990791 | 0.004 |
R-HSA-163685 | Integration of energy metabolism | 0.990964 | 0.004 |
R-HSA-6798695 | Neutrophil degranulation | 0.991147 | 0.004 |
R-HSA-1483206 | Glycerophospholipid biosynthesis | 0.991588 | 0.004 |
R-HSA-8957322 | Metabolism of steroids | 0.993431 | 0.003 |
R-HSA-76002 | Platelet activation, signaling and aggregation | 0.994088 | 0.003 |
R-HSA-1474244 | Extracellular matrix organization | 0.994421 | 0.002 |
R-HSA-72312 | rRNA processing | 0.996291 | 0.002 |
R-HSA-1483257 | Phospholipid metabolism | 0.996517 | 0.002 |
R-HSA-156580 | Phase II - Conjugation of compounds | 0.996942 | 0.001 |
R-HSA-418555 | G alpha (s) signalling events | 0.997124 | 0.001 |
R-HSA-5663205 | Infectious disease | 0.998238 | 0.001 |
R-HSA-388396 | GPCR downstream signalling | 0.998294 | 0.001 |
R-HSA-112315 | Transmission across Chemical Synapses | 0.998301 | 0.001 |
R-HSA-428157 | Sphingolipid metabolism | 0.998866 | 0.000 |
R-HSA-6805567 | Keratinization | 0.999059 | 0.000 |
R-HSA-372790 | Signaling by GPCR | 0.999149 | 0.000 |
R-HSA-9748784 | Drug ADME | 0.999352 | 0.000 |
R-HSA-196849 | Metabolism of water-soluble vitamins and cofactors | 0.999553 | 0.000 |
R-HSA-15869 | Metabolism of nucleotides | 0.999629 | 0.000 |
R-HSA-202733 | Cell surface interactions at the vascular wall | 0.999641 | 0.000 |
R-HSA-168249 | Innate Immune System | 0.999766 | 0.000 |
R-HSA-418594 | G alpha (i) signalling events | 0.999821 | 0.000 |
R-HSA-446203 | Asparagine N-linked glycosylation | 0.999881 | 0.000 |
R-HSA-392499 | Metabolism of proteins | 0.999897 | 0.000 |
R-HSA-72766 | Translation | 0.999901 | 0.000 |
R-HSA-382551 | Transport of small molecules | 0.999925 | 0.000 |
R-HSA-9824439 | Bacterial Infection Pathways | 0.999959 | 0.000 |
R-HSA-373076 | Class A/1 (Rhodopsin-like receptors) | 0.999964 | 0.000 |
R-HSA-196854 | Metabolism of vitamins and cofactors | 0.999993 | 0.000 |
R-HSA-8978868 | Fatty acid metabolism | 0.999998 | 0.000 |
R-HSA-500792 | GPCR ligand binding | 0.999999 | 0.000 |
R-HSA-5668914 | Diseases of metabolism | 0.999999 | 0.000 |
R-HSA-211859 | Biological oxidations | 0.999999 | 0.000 |
R-HSA-71291 | Metabolism of amino acids and derivatives | 1.000000 | 0.000 |
R-HSA-556833 | Metabolism of lipids | 1.000000 | 0.000 |
R-HSA-1430728 | Metabolism | 1.000000 | -0.000 |
Download
kinase | JSD_mean | pearson_surrounding | kinase_max_IC_position | max_position_JSD |
---|---|---|---|---|
CLK3 |
0.888 | 0.366 | 1 | 0.837 |
COT |
0.886 | 0.267 | 2 | 0.857 |
PIM3 |
0.876 | 0.244 | -3 | 0.900 |
RSK2 |
0.873 | 0.269 | -3 | 0.857 |
CDC7 |
0.873 | 0.150 | 1 | 0.873 |
NDR2 |
0.873 | 0.189 | -3 | 0.897 |
MOS |
0.873 | 0.250 | 1 | 0.880 |
CLK2 |
0.870 | 0.379 | -3 | 0.844 |
SRPK1 |
0.868 | 0.237 | -3 | 0.835 |
CAMK1B |
0.867 | 0.205 | -3 | 0.900 |
MTOR |
0.867 | 0.110 | 1 | 0.793 |
PIM1 |
0.867 | 0.249 | -3 | 0.868 |
CDKL1 |
0.866 | 0.227 | -3 | 0.864 |
SKMLCK |
0.866 | 0.238 | -2 | 0.849 |
PRKD2 |
0.864 | 0.218 | -3 | 0.857 |
P90RSK |
0.863 | 0.210 | -3 | 0.851 |
GRK1 |
0.863 | 0.209 | -2 | 0.813 |
RAF1 |
0.863 | 0.079 | 1 | 0.847 |
PRKD1 |
0.863 | 0.180 | -3 | 0.879 |
KIS |
0.862 | 0.167 | 1 | 0.716 |
NDR1 |
0.862 | 0.138 | -3 | 0.894 |
CDKL5 |
0.862 | 0.203 | -3 | 0.861 |
HIPK4 |
0.862 | 0.202 | 1 | 0.793 |
PKN3 |
0.861 | 0.135 | -3 | 0.878 |
PRPK |
0.861 | -0.079 | -1 | 0.826 |
NUAK2 |
0.861 | 0.179 | -3 | 0.903 |
CAMK2B |
0.860 | 0.210 | 2 | 0.776 |
CAMK2A |
0.860 | 0.228 | 2 | 0.803 |
CAMK2G |
0.860 | 0.023 | 2 | 0.791 |
RSK4 |
0.860 | 0.253 | -3 | 0.837 |
IKKB |
0.860 | -0.026 | -2 | 0.712 |
NLK |
0.859 | 0.079 | 1 | 0.845 |
DSTYK |
0.859 | 0.041 | 2 | 0.880 |
MAPKAPK2 |
0.859 | 0.197 | -3 | 0.829 |
RSK3 |
0.859 | 0.180 | -3 | 0.845 |
PKN2 |
0.859 | 0.164 | -3 | 0.885 |
BMPR1B |
0.859 | 0.283 | 1 | 0.854 |
AURC |
0.858 | 0.176 | -2 | 0.662 |
ICK |
0.858 | 0.205 | -3 | 0.891 |
LATS2 |
0.857 | 0.102 | -5 | 0.757 |
CLK4 |
0.857 | 0.256 | -3 | 0.848 |
PKACG |
0.857 | 0.150 | -2 | 0.738 |
LATS1 |
0.857 | 0.241 | -3 | 0.902 |
CAMK2D |
0.857 | 0.121 | -3 | 0.880 |
ATR |
0.857 | 0.026 | 1 | 0.816 |
PKACB |
0.856 | 0.224 | -2 | 0.676 |
MST4 |
0.856 | 0.096 | 2 | 0.822 |
WNK1 |
0.856 | 0.093 | -2 | 0.850 |
CAMLCK |
0.856 | 0.139 | -2 | 0.835 |
PDHK4 |
0.855 | -0.178 | 1 | 0.851 |
DAPK2 |
0.855 | 0.173 | -3 | 0.898 |
SRPK2 |
0.855 | 0.199 | -3 | 0.772 |
PRKX |
0.855 | 0.252 | -3 | 0.794 |
NIK |
0.855 | 0.113 | -3 | 0.899 |
MSK1 |
0.855 | 0.226 | -3 | 0.830 |
P70S6KB |
0.855 | 0.157 | -3 | 0.866 |
TBK1 |
0.855 | -0.067 | 1 | 0.744 |
MAPKAPK3 |
0.854 | 0.134 | -3 | 0.854 |
DYRK2 |
0.854 | 0.200 | 1 | 0.727 |
GCN2 |
0.854 | -0.157 | 2 | 0.766 |
MARK4 |
0.854 | 0.080 | 4 | 0.852 |
ERK5 |
0.853 | 0.047 | 1 | 0.813 |
BMPR2 |
0.853 | -0.115 | -2 | 0.866 |
CLK1 |
0.853 | 0.249 | -3 | 0.832 |
GRK6 |
0.853 | 0.104 | 1 | 0.861 |
PKCD |
0.853 | 0.121 | 2 | 0.757 |
RIPK3 |
0.852 | 0.005 | 3 | 0.735 |
GRK5 |
0.852 | -0.027 | -3 | 0.838 |
AMPKA1 |
0.852 | 0.102 | -3 | 0.904 |
IKKE |
0.851 | -0.075 | 1 | 0.742 |
FAM20C |
0.851 | 0.101 | 2 | 0.631 |
MSK2 |
0.850 | 0.154 | -3 | 0.822 |
TGFBR2 |
0.850 | 0.005 | -2 | 0.811 |
HUNK |
0.850 | -0.004 | 2 | 0.788 |
GRK7 |
0.850 | 0.178 | 1 | 0.788 |
SRPK3 |
0.849 | 0.171 | -3 | 0.802 |
TGFBR1 |
0.848 | 0.157 | -2 | 0.818 |
TSSK2 |
0.847 | 0.084 | -5 | 0.874 |
TSSK1 |
0.847 | 0.114 | -3 | 0.919 |
IKKA |
0.847 | -0.021 | -2 | 0.708 |
CHAK2 |
0.847 | -0.033 | -1 | 0.825 |
PAK1 |
0.847 | 0.096 | -2 | 0.779 |
AMPKA2 |
0.847 | 0.110 | -3 | 0.888 |
HIPK2 |
0.846 | 0.204 | 1 | 0.645 |
ULK2 |
0.846 | -0.220 | 2 | 0.735 |
DLK |
0.846 | 0.022 | 1 | 0.835 |
DYRK4 |
0.846 | 0.231 | 1 | 0.660 |
MYLK4 |
0.846 | 0.169 | -2 | 0.762 |
MLK1 |
0.845 | -0.090 | 2 | 0.793 |
NEK6 |
0.845 | -0.097 | -2 | 0.838 |
PKCB |
0.845 | 0.111 | 2 | 0.721 |
PDHK1 |
0.845 | -0.249 | 1 | 0.834 |
ALK4 |
0.845 | 0.097 | -2 | 0.840 |
CDK1 |
0.844 | 0.127 | 1 | 0.678 |
JNK2 |
0.844 | 0.157 | 1 | 0.660 |
PASK |
0.844 | 0.307 | -3 | 0.901 |
CAMK4 |
0.844 | 0.052 | -3 | 0.876 |
AKT2 |
0.844 | 0.202 | -3 | 0.791 |
PKCG |
0.844 | 0.099 | 2 | 0.728 |
HIPK1 |
0.844 | 0.201 | 1 | 0.741 |
PRKD3 |
0.844 | 0.147 | -3 | 0.826 |
MASTL |
0.843 | -0.153 | -2 | 0.790 |
CDK8 |
0.843 | 0.059 | 1 | 0.694 |
CDK18 |
0.843 | 0.136 | 1 | 0.640 |
QSK |
0.843 | 0.117 | 4 | 0.823 |
MNK2 |
0.843 | 0.087 | -2 | 0.775 |
AURB |
0.843 | 0.115 | -2 | 0.660 |
SGK3 |
0.842 | 0.178 | -3 | 0.846 |
MNK1 |
0.842 | 0.111 | -2 | 0.785 |
NEK7 |
0.842 | -0.191 | -3 | 0.807 |
PLK1 |
0.841 | 0.031 | -2 | 0.802 |
AURA |
0.841 | 0.117 | -2 | 0.641 |
GRK4 |
0.841 | -0.049 | -2 | 0.833 |
CDK19 |
0.841 | 0.079 | 1 | 0.659 |
ATM |
0.841 | 0.001 | 1 | 0.757 |
PKCA |
0.841 | 0.096 | 2 | 0.706 |
CDK7 |
0.841 | 0.065 | 1 | 0.705 |
NIM1 |
0.841 | 0.003 | 3 | 0.782 |
ALK2 |
0.840 | 0.140 | -2 | 0.828 |
PIM2 |
0.840 | 0.180 | -3 | 0.833 |
BCKDK |
0.840 | -0.156 | -1 | 0.778 |
ANKRD3 |
0.840 | -0.092 | 1 | 0.846 |
RIPK1 |
0.840 | -0.084 | 1 | 0.798 |
ACVR2B |
0.840 | 0.126 | -2 | 0.803 |
PAK3 |
0.840 | 0.025 | -2 | 0.770 |
DRAK1 |
0.839 | 0.163 | 1 | 0.820 |
PKG2 |
0.839 | 0.117 | -2 | 0.674 |
JNK3 |
0.839 | 0.117 | 1 | 0.688 |
NUAK1 |
0.839 | 0.067 | -3 | 0.863 |
MARK3 |
0.838 | 0.106 | 4 | 0.786 |
PKACA |
0.838 | 0.183 | -2 | 0.624 |
CAMK1G |
0.838 | 0.135 | -3 | 0.836 |
BMPR1A |
0.838 | 0.193 | 1 | 0.831 |
SIK |
0.838 | 0.103 | -3 | 0.835 |
ACVR2A |
0.837 | 0.092 | -2 | 0.790 |
DNAPK |
0.837 | 0.074 | 1 | 0.700 |
BRSK1 |
0.837 | 0.070 | -3 | 0.861 |
DCAMKL1 |
0.837 | 0.143 | -3 | 0.867 |
QIK |
0.837 | 0.014 | -3 | 0.871 |
MLK2 |
0.837 | -0.126 | 2 | 0.781 |
PAK6 |
0.837 | 0.094 | -2 | 0.689 |
WNK3 |
0.836 | -0.228 | 1 | 0.796 |
MLK3 |
0.836 | -0.037 | 2 | 0.730 |
P38B |
0.836 | 0.130 | 1 | 0.668 |
MELK |
0.836 | 0.046 | -3 | 0.871 |
CDK5 |
0.835 | 0.083 | 1 | 0.719 |
P38A |
0.835 | 0.108 | 1 | 0.729 |
PKR |
0.835 | -0.011 | 1 | 0.821 |
ULK1 |
0.835 | -0.243 | -3 | 0.773 |
CHK1 |
0.835 | 0.067 | -3 | 0.879 |
PKCH |
0.835 | 0.050 | 2 | 0.698 |
DYRK1A |
0.835 | 0.162 | 1 | 0.752 |
PKCZ |
0.834 | 0.029 | 2 | 0.747 |
YSK4 |
0.834 | -0.042 | 1 | 0.776 |
MEK1 |
0.834 | -0.078 | 2 | 0.809 |
PHKG1 |
0.834 | 0.011 | -3 | 0.885 |
GSK3A |
0.834 | 0.183 | 4 | 0.579 |
NEK9 |
0.834 | -0.207 | 2 | 0.788 |
TTBK2 |
0.833 | -0.165 | 2 | 0.670 |
GRK2 |
0.833 | 0.048 | -2 | 0.719 |
CDK10 |
0.833 | 0.155 | 1 | 0.672 |
CDK17 |
0.833 | 0.095 | 1 | 0.595 |
P38G |
0.833 | 0.102 | 1 | 0.590 |
PAK2 |
0.833 | 0.014 | -2 | 0.763 |
DYRK3 |
0.832 | 0.188 | 1 | 0.741 |
CDK14 |
0.832 | 0.133 | 1 | 0.686 |
PLK3 |
0.832 | -0.021 | 2 | 0.769 |
IRE1 |
0.832 | -0.112 | 1 | 0.763 |
CDK13 |
0.832 | 0.036 | 1 | 0.679 |
MARK2 |
0.832 | 0.046 | 4 | 0.752 |
GSK3B |
0.831 | 0.145 | 4 | 0.572 |
DYRK1B |
0.831 | 0.143 | 1 | 0.687 |
CK1E |
0.831 | 0.059 | -3 | 0.551 |
ERK1 |
0.831 | 0.084 | 1 | 0.658 |
MST3 |
0.830 | 0.113 | 2 | 0.828 |
BRSK2 |
0.829 | -0.013 | -3 | 0.871 |
MARK1 |
0.829 | 0.051 | 4 | 0.800 |
SMMLCK |
0.829 | 0.124 | -3 | 0.871 |
VRK2 |
0.829 | -0.214 | 1 | 0.856 |
MLK4 |
0.829 | -0.080 | 2 | 0.704 |
CDK3 |
0.829 | 0.099 | 1 | 0.614 |
MAK |
0.829 | 0.259 | -2 | 0.760 |
HIPK3 |
0.829 | 0.132 | 1 | 0.732 |
AKT1 |
0.828 | 0.159 | -3 | 0.810 |
CAMK1D |
0.827 | 0.151 | -3 | 0.786 |
CDK2 |
0.827 | 0.020 | 1 | 0.754 |
CDK16 |
0.827 | 0.114 | 1 | 0.610 |
DAPK3 |
0.827 | 0.178 | -3 | 0.873 |
DCAMKL2 |
0.827 | 0.074 | -3 | 0.879 |
CDK12 |
0.827 | 0.049 | 1 | 0.654 |
TLK2 |
0.826 | -0.087 | 1 | 0.776 |
MEKK3 |
0.826 | -0.032 | 1 | 0.805 |
CDK9 |
0.826 | 0.027 | 1 | 0.685 |
CK2A2 |
0.826 | 0.151 | 1 | 0.775 |
GAK |
0.826 | 0.177 | 1 | 0.844 |
DAPK1 |
0.825 | 0.196 | -3 | 0.857 |
MAPKAPK5 |
0.825 | -0.005 | -3 | 0.792 |
SMG1 |
0.825 | -0.091 | 1 | 0.761 |
NEK2 |
0.824 | -0.135 | 2 | 0.771 |
IRE2 |
0.824 | -0.127 | 2 | 0.702 |
ERK2 |
0.824 | 0.028 | 1 | 0.698 |
P38D |
0.824 | 0.114 | 1 | 0.595 |
PRP4 |
0.823 | 0.037 | -3 | 0.738 |
P70S6K |
0.823 | 0.090 | -3 | 0.793 |
BRAF |
0.823 | -0.081 | -4 | 0.839 |
SGK1 |
0.822 | 0.195 | -3 | 0.727 |
MPSK1 |
0.822 | 0.089 | 1 | 0.769 |
CK1D |
0.822 | 0.059 | -3 | 0.501 |
TAO3 |
0.822 | 0.020 | 1 | 0.795 |
PLK4 |
0.822 | -0.098 | 2 | 0.586 |
PKCE |
0.821 | 0.114 | 2 | 0.711 |
PKCT |
0.821 | 0.037 | 2 | 0.697 |
GCK |
0.821 | 0.146 | 1 | 0.819 |
GRK3 |
0.821 | 0.041 | -2 | 0.689 |
CHAK1 |
0.821 | -0.196 | 2 | 0.727 |
SSTK |
0.821 | 0.026 | 4 | 0.807 |
SNRK |
0.820 | -0.145 | 2 | 0.641 |
MEK5 |
0.820 | -0.201 | 2 | 0.787 |
WNK4 |
0.820 | -0.076 | -2 | 0.841 |
AKT3 |
0.819 | 0.173 | -3 | 0.742 |
ZAK |
0.819 | -0.140 | 1 | 0.775 |
CK1A2 |
0.818 | 0.043 | -3 | 0.506 |
PKCI |
0.818 | 0.036 | 2 | 0.720 |
CK2A1 |
0.818 | 0.154 | 1 | 0.760 |
TLK1 |
0.818 | -0.099 | -2 | 0.829 |
JNK1 |
0.818 | 0.090 | 1 | 0.651 |
NEK5 |
0.817 | -0.121 | 1 | 0.805 |
MEKK2 |
0.817 | -0.126 | 2 | 0.761 |
PERK |
0.816 | -0.185 | -2 | 0.823 |
MEKK1 |
0.816 | -0.193 | 1 | 0.794 |
PAK5 |
0.816 | 0.044 | -2 | 0.639 |
HPK1 |
0.816 | 0.124 | 1 | 0.808 |
CHK2 |
0.816 | 0.151 | -3 | 0.747 |
ROCK2 |
0.816 | 0.169 | -3 | 0.864 |
NEK11 |
0.816 | -0.058 | 1 | 0.798 |
MOK |
0.816 | 0.199 | 1 | 0.748 |
PHKG2 |
0.815 | -0.008 | -3 | 0.862 |
MRCKA |
0.815 | 0.145 | -3 | 0.837 |
PAK4 |
0.815 | 0.055 | -2 | 0.648 |
CK1G1 |
0.815 | -0.020 | -3 | 0.538 |
SBK |
0.814 | 0.182 | -3 | 0.695 |
MRCKB |
0.814 | 0.146 | -3 | 0.823 |
PKN1 |
0.813 | 0.087 | -3 | 0.811 |
HRI |
0.812 | -0.253 | -2 | 0.828 |
CAMK1A |
0.812 | 0.134 | -3 | 0.760 |
DMPK1 |
0.812 | 0.206 | -3 | 0.849 |
ERK7 |
0.812 | 0.038 | 2 | 0.561 |
PDK1 |
0.811 | -0.028 | 1 | 0.788 |
PLK2 |
0.811 | 0.015 | -3 | 0.741 |
IRAK4 |
0.811 | -0.160 | 1 | 0.768 |
MST2 |
0.810 | -0.032 | 1 | 0.814 |
LKB1 |
0.810 | -0.076 | -3 | 0.814 |
PINK1 |
0.809 | -0.239 | 1 | 0.814 |
TAO2 |
0.809 | -0.093 | 2 | 0.807 |
PDHK3_TYR |
0.809 | 0.325 | 4 | 0.915 |
NEK8 |
0.808 | -0.160 | 2 | 0.783 |
KHS2 |
0.808 | 0.108 | 1 | 0.805 |
TNIK |
0.808 | 0.012 | 3 | 0.851 |
TAK1 |
0.808 | 0.001 | 1 | 0.817 |
CAMKK1 |
0.808 | -0.175 | -2 | 0.720 |
CAMKK2 |
0.808 | -0.127 | -2 | 0.712 |
EEF2K |
0.807 | -0.041 | 3 | 0.814 |
KHS1 |
0.807 | 0.068 | 1 | 0.786 |
BUB1 |
0.806 | 0.121 | -5 | 0.810 |
MEKK6 |
0.806 | -0.073 | 1 | 0.777 |
MINK |
0.806 | -0.032 | 1 | 0.793 |
MAP3K15 |
0.806 | -0.065 | 1 | 0.756 |
LRRK2 |
0.804 | -0.091 | 2 | 0.810 |
HGK |
0.804 | -0.063 | 3 | 0.847 |
CDK6 |
0.804 | 0.038 | 1 | 0.660 |
CDK4 |
0.803 | 0.043 | 1 | 0.642 |
TTBK1 |
0.803 | -0.213 | 2 | 0.596 |
PDHK4_TYR |
0.803 | 0.251 | 2 | 0.867 |
MST1 |
0.802 | -0.049 | 1 | 0.792 |
NEK4 |
0.802 | -0.151 | 1 | 0.777 |
CRIK |
0.801 | 0.159 | -3 | 0.810 |
LOK |
0.801 | -0.056 | -2 | 0.734 |
SLK |
0.801 | -0.048 | -2 | 0.685 |
ROCK1 |
0.800 | 0.138 | -3 | 0.835 |
MAP2K6_TYR |
0.800 | 0.207 | -1 | 0.857 |
PBK |
0.799 | 0.024 | 1 | 0.758 |
NEK1 |
0.799 | -0.123 | 1 | 0.779 |
VRK1 |
0.798 | -0.166 | 2 | 0.792 |
BMPR2_TYR |
0.798 | 0.173 | -1 | 0.860 |
MAP2K4_TYR |
0.797 | 0.115 | -1 | 0.851 |
IRAK1 |
0.797 | -0.325 | -1 | 0.713 |
STK33 |
0.796 | -0.145 | 2 | 0.603 |
TESK1_TYR |
0.796 | 0.027 | 3 | 0.888 |
PKG1 |
0.794 | 0.052 | -2 | 0.594 |
PDHK1_TYR |
0.794 | 0.101 | -1 | 0.864 |
HASPIN |
0.794 | 0.063 | -1 | 0.735 |
YSK1 |
0.793 | -0.090 | 2 | 0.768 |
YANK3 |
0.792 | -0.027 | 2 | 0.419 |
PKMYT1_TYR |
0.791 | -0.026 | 3 | 0.854 |
MAP2K7_TYR |
0.790 | -0.110 | 2 | 0.826 |
LIMK2_TYR |
0.789 | 0.020 | -3 | 0.894 |
TTK |
0.788 | -0.054 | -2 | 0.826 |
OSR1 |
0.788 | -0.087 | 2 | 0.761 |
EPHA6 |
0.787 | 0.067 | -1 | 0.826 |
MEK2 |
0.787 | -0.304 | 2 | 0.755 |
CK1A |
0.787 | 0.030 | -3 | 0.412 |
PINK1_TYR |
0.786 | -0.135 | 1 | 0.830 |
RIPK2 |
0.786 | -0.292 | 1 | 0.735 |
EPHB4 |
0.783 | 0.032 | -1 | 0.789 |
TXK |
0.783 | 0.148 | 1 | 0.866 |
BIKE |
0.782 | 0.008 | 1 | 0.726 |
ALPHAK3 |
0.781 | -0.062 | -1 | 0.739 |
MYO3B |
0.780 | -0.081 | 2 | 0.785 |
ASK1 |
0.779 | -0.166 | 1 | 0.745 |
EPHA4 |
0.779 | 0.049 | 2 | 0.786 |
RET |
0.779 | -0.144 | 1 | 0.786 |
LIMK1_TYR |
0.777 | -0.214 | 2 | 0.800 |
NEK3 |
0.777 | -0.244 | 1 | 0.734 |
DDR1 |
0.776 | -0.126 | 4 | 0.826 |
MYO3A |
0.776 | -0.112 | 1 | 0.774 |
FGR |
0.776 | -0.051 | 1 | 0.844 |
MST1R |
0.775 | -0.178 | 3 | 0.799 |
SRMS |
0.773 | 0.002 | 1 | 0.860 |
INSRR |
0.773 | -0.073 | 3 | 0.733 |
ABL2 |
0.773 | -0.055 | -1 | 0.748 |
YES1 |
0.773 | -0.072 | -1 | 0.785 |
TNK2 |
0.773 | -0.042 | 3 | 0.743 |
TAO1 |
0.773 | -0.145 | 1 | 0.715 |
ITK |
0.772 | 0.014 | -1 | 0.731 |
TYRO3 |
0.772 | -0.203 | 3 | 0.779 |
CSF1R |
0.772 | -0.143 | 3 | 0.774 |
EPHB1 |
0.771 | -0.035 | 1 | 0.849 |
JAK3 |
0.771 | -0.123 | 1 | 0.769 |
ROS1 |
0.771 | -0.207 | 3 | 0.746 |
EPHB2 |
0.770 | -0.008 | -1 | 0.764 |
TYK2 |
0.770 | -0.312 | 1 | 0.781 |
FER |
0.770 | -0.151 | 1 | 0.864 |
EPHB3 |
0.769 | -0.051 | -1 | 0.767 |
AAK1 |
0.769 | 0.061 | 1 | 0.625 |
JAK2 |
0.768 | -0.257 | 1 | 0.778 |
BLK |
0.768 | 0.020 | -1 | 0.785 |
ABL1 |
0.768 | -0.085 | -1 | 0.736 |
PTK2 |
0.768 | 0.147 | -1 | 0.784 |
FGFR2 |
0.768 | -0.144 | 3 | 0.797 |
LCK |
0.767 | -0.033 | -1 | 0.776 |
FYN |
0.767 | 0.049 | -1 | 0.762 |
KDR |
0.766 | -0.116 | 3 | 0.746 |
BMX |
0.766 | -0.012 | -1 | 0.653 |
HCK |
0.766 | -0.121 | -1 | 0.769 |
KIT |
0.765 | -0.132 | 3 | 0.781 |
FLT1 |
0.765 | -0.048 | -1 | 0.806 |
MET |
0.764 | -0.092 | 3 | 0.777 |
NEK10_TYR |
0.763 | -0.153 | 1 | 0.672 |
DDR2 |
0.763 | 0.001 | 3 | 0.719 |
EPHA7 |
0.763 | -0.040 | 2 | 0.773 |
TNK1 |
0.763 | -0.134 | 3 | 0.768 |
TNNI3K_TYR |
0.762 | -0.112 | 1 | 0.783 |
EPHA3 |
0.762 | -0.084 | 2 | 0.745 |
STLK3 |
0.761 | -0.261 | 1 | 0.742 |
MERTK |
0.761 | -0.117 | 3 | 0.772 |
PTK2B |
0.761 | 0.007 | -1 | 0.698 |
PDGFRB |
0.761 | -0.261 | 3 | 0.788 |
TEC |
0.760 | -0.097 | -1 | 0.653 |
AXL |
0.760 | -0.185 | 3 | 0.764 |
SYK |
0.760 | 0.103 | -1 | 0.757 |
TEK |
0.759 | -0.194 | 3 | 0.717 |
EPHA5 |
0.759 | -0.011 | 2 | 0.768 |
CK1G3 |
0.759 | -0.016 | -3 | 0.366 |
JAK1 |
0.759 | -0.162 | 1 | 0.732 |
FLT3 |
0.759 | -0.231 | 3 | 0.777 |
FGFR3 |
0.758 | -0.133 | 3 | 0.766 |
FGFR1 |
0.757 | -0.240 | 3 | 0.752 |
WEE1_TYR |
0.755 | -0.157 | -1 | 0.695 |
YANK2 |
0.755 | -0.073 | 2 | 0.433 |
ERBB2 |
0.755 | -0.179 | 1 | 0.759 |
EPHA8 |
0.754 | -0.054 | -1 | 0.760 |
NTRK1 |
0.754 | -0.241 | -1 | 0.768 |
FRK |
0.753 | -0.135 | -1 | 0.778 |
BTK |
0.753 | -0.255 | -1 | 0.685 |
FLT4 |
0.752 | -0.203 | 3 | 0.744 |
EPHA1 |
0.752 | -0.168 | 3 | 0.752 |
ALK |
0.751 | -0.250 | 3 | 0.697 |
LYN |
0.751 | -0.126 | 3 | 0.697 |
LTK |
0.751 | -0.233 | 3 | 0.728 |
SRC |
0.751 | -0.076 | -1 | 0.749 |
PDGFRA |
0.750 | -0.346 | 3 | 0.782 |
EGFR |
0.750 | -0.098 | 1 | 0.672 |
CK1G2 |
0.749 | 0.015 | -3 | 0.457 |
INSR |
0.749 | -0.226 | 3 | 0.705 |
NTRK3 |
0.748 | -0.202 | -1 | 0.721 |
PTK6 |
0.748 | -0.324 | -1 | 0.652 |
MATK |
0.748 | -0.160 | -1 | 0.684 |
EPHA2 |
0.748 | -0.031 | -1 | 0.731 |
NTRK2 |
0.745 | -0.317 | 3 | 0.740 |
CSK |
0.745 | -0.175 | 2 | 0.768 |
FGFR4 |
0.744 | -0.131 | -1 | 0.717 |
ERBB4 |
0.744 | -0.034 | 1 | 0.710 |
IGF1R |
0.736 | -0.191 | 3 | 0.650 |
ZAP70 |
0.734 | 0.001 | -1 | 0.680 |
MUSK |
0.729 | -0.239 | 1 | 0.658 |
FES |
0.720 | -0.185 | -1 | 0.627 |